WO2011108605A1 - 2次元カラーコードの作成方法および復号方法 - Google Patents
2次元カラーコードの作成方法および復号方法 Download PDFInfo
- Publication number
- WO2011108605A1 WO2011108605A1 PCT/JP2011/054794 JP2011054794W WO2011108605A1 WO 2011108605 A1 WO2011108605 A1 WO 2011108605A1 JP 2011054794 W JP2011054794 W JP 2011054794W WO 2011108605 A1 WO2011108605 A1 WO 2011108605A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- color
- code
- cell
- decoding
- pixel
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/06009—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
- G06K19/06037—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/06009—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
- G06K19/06046—Constructional details
- G06K19/06131—Constructional details the marking comprising a target pattern, e.g. for indicating the center of the bar code or for helping a bar code reader to properly orient the scanner or to retrieve the bar code inside of an image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/06009—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
- G06K19/06046—Constructional details
- G06K19/0614—Constructional details the marking being selective to wavelength, e.g. color barcode or barcodes only visible under UV or IR
Definitions
- the present invention relates to a two-dimensional color code that can hold electronic data.
- Black and white limit Conventionally, various methods have been proposed for converting electronic data into an information code and for recording on a code display medium using the information code and decoding them. For example, several one-dimensional barcodes and two-dimensional barcodes that record information in black and white patterns have been proposed. However, since a bar code that records information in a black and white pattern has a low data recording density per display area, it cannot handle electronic data such as a document having a large amount of data, an image, or sound.
- the two-dimensional color code increases the number of colors used (hereinafter referred to as “used colors”), and changes in color due to discoloration such as fading, printing unevenness, illumination light, and dirt (hereinafter referred to as “color change”). )), The decoding accuracy is low compared to a black and white two-dimensional code.
- the determination of the color of the displayed two-dimensional color code and the color of each cell uses the color information of the image receiving pixel acquired by the image receiving apparatus, and therefore the difference in color used (color difference). The easier it is to identify.
- the image receiving device used for decoding the code displayed on the code display medium is information (image receiving pixel) that can handle the wavelength of the color received by each sensor of the image receiving device on an electronic medium such as an RGB value.
- image receiving pixel information that can handle the wavelength of the color received by each sensor of the image receiving device on an electronic medium such as an RGB value.
- the wavelength obtained by mixing the wavelengths of the adjacent colors becomes the color information of the image receiving pixel. It is easy to receive a color different from the color of.
- the smaller the cell size the closer the cell boundaries, so the percentage of sensor area that can receive the wavelength of the original color of the cell decreases. Therefore, reducing the cell size makes it more difficult to obtain the same color information of the received pixel as the original color information assigned to the cell.
- all colors used in the two-dimensional color code area are displayed as reference colors (synonyms with color bars), and the color components of the read pixels and the read colors of the used colors are also displayed.
- the used color of the pixel is determined by comparing the color component. In that case, a large reference color space must be provided in the two-dimensional color code area so that the reference color can be read with high accuracy, and the color difference decreases as the number of colors used increases. There are problems such as that an error is likely to occur in reading, and that when the reference color area becomes dirty and discolored, it becomes useless as a reference color.
- the present invention not only devised the cell characteristics as in the prior art, but also devised processing of the received pixel data itself from the two-dimensional color code, and We are making innovative works such as not displaying standard colors. As a result, even when the number of colors used is increased and the cell size is reduced to improve the recording density, the reading / decoding accuracy can be maintained, and the reading time has been further shortened.
- Japanese Patent No. 3996520 (Denso Wave Co., Ltd., Claims 1 to 5) This is one method for improving the cell reading accuracy, but there is no description about the improvement of the processing method of the image receiving pixels.
- the reference color is displayed in the color code.
- Japanese Patent No. 4241803 (Denso Wave Co., Ltd. Claim 1-2) Although it is about a method for improving cell reading accuracy, there is no description about improvement of a processing method of image receiving pixels.
- the reference color is displayed in the color code.
- PCT / JP2008 / 059885 WO2009 / 144794A1 (GMG Color Technologies Co., Ltd. company name change Color Code Technologies Co., Ltd. Claim 1-2) This is one method for improving cell reading accuracy, and is a method for processing image receiving pixels. An improvement is described. However, it is different from the processing method of the present invention.
- Microsoft's Home Page entitled Microsoft Tag, proposes a special cell shape as a way to improve cell reading accuracy.
- the display of the size, its reference color, etc. in a separate area from the recording code area is proposed.
- the cell size is not a digital display but an actual display, it cannot be made small, and there is a limit to increasing the recording code density.
- the color used is displayed in the color code.
- the conventional two-dimensional color code has a weak point that the decoding accuracy is lowered when trying to improve the data recording density on the code display medium. Therefore, the electronic data is placed on the code display medium.
- the method of displaying the reference color around or inside the color code and using it as a reference for correcting the used color or determining the color of the cell may cause errors in reading of the used color, discoloration, or contamination. , Useless as a standard.
- the two-dimensional color code on the code display medium is received by an image receiving device such as a digital camera.
- an image receiving device such as a digital camera.
- image-receiving pixels There are dozens or hundreds of image-receiving pixels according to the performance of the image receiving device in a region assumed to correspond to each cell in the received image.
- the color mixture In the area near the boundary between cells, the color mixture is unavoidable, and in the cell boundary area, the image receiving pixel shows a mixed color of colors used in adjacent cells.
- the boundary area occupies a small area ratio in the whole cell, so as long as avoiding the vicinity of the boundary area, the color of the cell is determined based on the color information of the image receiving pixel in the cell.
- the cell size is reduced to increase the recording density, the number of image receiving pixels assigned to the cell is reduced, and the area ratio of the boundary color mixture region to the entire cell increases.
- the area of the image receiving pixel having accurate color information that is not affected by the color mixture at the boundary is reduced, and the pixel to be measured becomes an important problem in terms of accuracy.
- the present invention is not limited to the conventional device for the cell shape and arrangement pattern, but the image receiving pixel acquired by the image receiving device.
- the code system and data processing method were devised in consideration of the characteristics of. In order to make this possible, a revolutionary device that can easily and accurately obtain the information (including numerical information) required to carry out the process of specifying the image receiving pixel used in the cell color determination. was created. The present invention will be described below.
- the two-dimensional color code is divided into two areas, a guide code part and a data recording code part, on the code display medium, and the former is a color code that focuses on easy and accurate position determination and reading. In the latter case, the color code focuses on the high recording density.
- the guide code portion only determines an image and decodes the image by analyzing the color component using color information (for example, RGB values) of each pixel of the received image including the two-dimensional color code region.
- color information for example, RGB values
- the guide code portion only determines an image and decodes the image by analyzing the color component using color information (for example, RGB values) of each pixel of the received image including the two-dimensional color code region.
- premise information information required for determining, decoding, or shortening the time of the data recording code portion, for example, the value of the number of cells in the vertical and horizontal directions of the data recording code portion by determining or decoding the position.
- premise information Therefore, not only a role as a mere mark or symbol having a characteristic shape or pattern, but also premise information for determining the position of the data recording code portion, decoding, or shortening the time is encoded. It is characterized in that it is a coded code.
- the guide code portion is required to have “high decoding accuracy” due to its property, whereas the data recording code portion required to have “high recording density” due to cell reduction or increased use color has a different purpose. Therefore, the guide code portion and the data recording code portion are also characterized by being different codes having one or more differences among “shape”, “number of cells”, “cell size”, and “number of colors used”. Specifically, due to the nature of each other, in order to read these easily and accurately even with a general image receiving device such as a digital camera of a mobile phone, the cell size is smaller than the data recording code for the color information of the guide code. The code system is different from that of the data recording code, and the number of colors is small.
- the method for determining the position of the guide code portion and the data recording code portion may be a method that completely depends on the determination or decoding of the position of the guide code, or each image received by the received image including the two-dimensional color code region without depending on it. Image processing such as color component analysis using pixel color information (for example, RGB values) may be used.
- the color information related to positioning stored in the guide code part is the information necessary for the position determination method used, such as the position of the guide code part, the distance between the guide code part and the data recording code part, the top / bottom / left / right, the end point position, etc. It is.
- the area of the guide code part may be an area independent of the data recording code part area, or a recess is formed in the data recording code part area having no dent as shown by, for example, any of the reference numerals 2a to 2f in FIG. Or may be included like floating islands. That is, the area indicating the position information of the guide code part may be included in the data recording code part area.
- the precondition information for the measurement and processing of the received pixel for decoding the data recording code portion of the guide code portion includes, for example, the number of vertical and horizontal cells, the cell size, the redundancy level for error code detection / correction, and the number of code divisions , One or more pieces of numerical information including at least the number of vertical and horizontal cells in the division order, code processing method, etc., and the guide code portion has this as color information.
- the color information here refers to the used color of the cell of the guide code portion, and the reading device has a conversion table in which the color information (for example, RGB values) of the used color is associated with the precondition information.
- the color information of the guide code portion can be converted into the precondition information.
- the data recording code part can determine the position based on the information obtained by the determination or decoding of the position of the guide code part.
- Position relationship between the guide code portion and the data recording code portion for example, “the lengths of the left and right ends of the data recording code portion and the guide code portion are always the same” “the same interval as the vertical length of the guide code”
- By having a certain positional relationship such as “located in a separated lower part”, it is possible to determine the position of the data recording code portion based on that, or to limit the area used for the determination.
- the position of the data recording code portion can be easily determined from the received image including the code area, or the area of the received image where the position determination is performed can be limited, so that the color information (for example, RGB) of each pixel included in the received image can be limited. Image processing time can be shortened by analyzing the color component using the value), etc.
- the data recording code depends on the positional relationship between the position of the guide code portion and the data recording code portion. It is possible to adopt a method in which the position of the data is not determined, but even in that case, a color (a color other than white) is used for the cells constituting the data recording code part or the squares of the code (synonyms for the four corners).
- a quadrangle having a ratio of m to n in length and width, or a quadrangle having a square as a vertex, and a white frame having a certain width or more are provided around the data recording code portion.
- the position of the data recording code portion can be determined.
- the original color is used.
- the color is converted to the used color assigned in the creation stage of a certain data recording code part.
- the color information (for example, RGB values) of the data recording code portion captured as the image receiving pixel has a different color change tendency depending on the environment, but each used color is changed in the same direction according to the tendency. For example, an image received by the image receiving apparatus in a dark illumination environment is generally blackish, and an image received in a bright illumination environment is generally whitish.
- the positional relationship of the originally assigned color in the color space is distorted in the color-shifted space in that direction, but since the color is changed in the same direction, a plurality of colors used It is highly possible that the color information of the image receiving pixel of each cell to which each cell has been assigned has similar color information even if there is a variation in color information due to discoloration.
- the positions indicated by the color information tend to be easily divided into groups corresponding to the number of colors used, as originally used colors are set separately. Therefore, the color information of each receiving pixel is quantized (the meaning is defined below) according to the number of colors used, and based on the position of each group and the positional relationship of the original colors used. Thus, it is possible to determine which use color is originally assigned to each group.
- quantization originally comes from quantum mechanics, but here it is used in a more general sense to indicate that continuous quantities are represented as discrete quantities.
- the color information of each pixel that is actually measured is a continuous quantity represented by RGB values, but these are "deviations" due to the color change of the cells and the characteristics of the image receiving device from the RGB values originally possessed by the colors used. Will not necessarily match. However, the values generally vary in the vicinity of the RGB values of the original used colors. Therefore, the RGB value of each actually measured pixel is replaced with the RGB value of the original used color located closest to the color information of those pixels.
- the color information of the image receiving pixels in the group is converted into the color information of the used color that was originally set.
- the image receiving pixel of the data recording code portion is an image composed only of pixels to which any color information of the used color is assigned.
- the image receiving pixels of the data recording code part are adjacent to each other.
- An average value of color information (for example, RGB value) possessed by each image receiving pixel may be obtained for each X ⁇ Y image receiving pixels to be combined and integrated into one pixel. This is hereinafter referred to as an aggregate pixel.
- the aggregated pixels may be quantized as described above to determine the original color used.
- the value indicated by the color information (for example, RGB value) of the image receiving pixel in the data recording code portion is mapped to a space expressing the color information (hereinafter referred to as “color space”), and is the same as the number of colors used.
- Color space a space expressing the color information
- a vector line is drawn from the center position of each group toward the position indicated by the color information of each used color, the closest used color is found on each vector line, and the group is determined to belong to the used color.
- the color information of the image receiving pixels in the group is converted into the color information of the used color to which it belongs.
- an intermediate point between the center positions of adjacent groups is obtained, and the color used is determined using the value as a threshold value between adjacent groups.
- the position of the image receiving pixel at the center position of each cell of the data recording code portion is determined from the vertical and horizontal numbers of the cells of the data recording code portion read by decoding the guide code portion. Since the vicinity of the center of the cell is a portion where the influence of the mixed color of the cells having different used colors adjacent thereto is the smallest, the color information of the image receiving pixel at this position is determined as the used color of the cell. Since the image receiving pixel at this time already has color information of the used color by the processing steps of paragraphs “0023” and “0024”, the color information is determined as the used color of the cell as it is.
- Conventional methods generally use a method of determining cell boundaries, number, and color by image analysis such as histogram analysis.
- this method cannot assign the same color to adjacent cells. For this reason, it has been necessary to provide a boundary line between cells, or to devise how to arrange cells and assign colors. In addition, in order to accurately grasp the feature, it is necessary to assign a sufficient number of received pixels to each cell so that noise and the feature can be clearly distinguished.
- the vertical and horizontal directions of the received pixels acquired by determining the value and the data recording code portion position are obtained. The pixel at the center position can be determined by simple calculation based on the value of the number of pixels.
- the image receiving pixels of the data recording code portion have already been reduced or quantized by noise receiving pixels. Since it has the classified color information of the used color with relatively reliability, the color information of the image receiving pixel determined as the center position can be determined as the color of the cell as it is.
- the center position of each cell is to be obtained first, it is limited to a preset number of pixels or aggregated pixels around the center position, and the use color determination or cell use color determination by the above quantization is performed.
- the processing time can be shortened by performing the above.
- the vertical and horizontal numbers of the cells of the data recording code portion are grasped in advance and the image receiving pixel at the center position is not determined. Even if it can, some of the receiving pixels may be noise or receiving pixels that are significantly discolored. As in the present invention, when compared with the averaging process in advance or the color information of the received pixels that are quantized based on a larger number of samples and classified into the used colors, such a process is not performed in advance. Using only the image receiving pixels for color determination is inaccurate. Alternatively, to select several receiving pixels in the vicinity of the central receiving pixel, and average the color information of each receiving pixel to compensate for erroneous determination of noise or discoloration, a plurality of receiving pixels per cell Must be assigned.
- the data recording code portion even if adjacent cells have the same color, it is not necessary to provide a boundary line between the cells, and it is not necessary to devise how to arrange the cells and assign colors. Furthermore, as a matter of extreme, even if an image has only one image receiving pixel assigned to a cell in the data recording code portion, the data recording code portion can be theoretically decoded by performing quantization between all the pixels. The process is devised so that it can be performed with high accuracy and the cell color can be determined more accurately.
- cells positioned at “vertical Nc-th” and “horizontal Mc-th” The expression for obtaining the positions “vertical Pp-th” and “horizontal Qp-th” of the image receiving pixel corresponding to the center of the suffix c is cell and p is pixel.
- Pp (Nc ⁇ 1) ⁇ (m ⁇ a) + ((m ⁇ a) ⁇ 2)
- Qp (Mc ⁇ 1) ⁇ (n ⁇ b) + ((n ⁇ b) ⁇ 2) It becomes.
- conversion from the determined use color of each cell to a bit array is performed. This is performed based on a conversion table in which the color information of the used color and the bit arrangement that are previously stored in the reading apparatus are associated with each other.
- An example of the conversion table is shown below. "Example” For example, when each bit arrangement for 3 bits is converted into a color, there are 8 bit arrangements “000” “001” “010” “011” “100” “101” “110” “111”. To convert to a different color, 8 colors are required. For example, assume that eight colors of red, green, blue, blue-green, red-green, yellow, black, and white are used and are associated with each other as follows, and assigned identification numbers.
- the bit array acquired from each cell is combined according to the order arranged at the time of encoding, and the encoded data is acquired.
- the electronic data is color-coded.
- data including an error correction code (synonymous with a redundant code) is encoded in advance. By doing so, it is possible to detect and correct the bit arrangement using the error correction code included in the acquired data.
- error correction methods depend on the coverage of error correction codes, but there is a limit to the amount of errors that can be corrected.
- the error correction code itself becomes erroneous data and may not play its role.
- the use color of all or some of the cells is adjacent to the image receiving pixel used when determining (or The color information of the image receiving pixels at a predetermined position such as N left, right, up and down) is newly adopted as the use color of the cell, and again using the data converted into the bit array of the use color, the same as above Error detection / correction processing. If it cannot be corrected again, the same processing is performed by adopting the adjacent image receiving pixel (or the order is set in advance, such as the opposite side). By repeating this operation until the error can be corrected, it is possible to correct acquisition of an erroneous bit array due to a selection error of the image receiving pixel adopted for the use color of the cell.
- the received pixels are averaged, quantized, data error detection / correction, and when the correction is impossible, the received pixels are shifted, and errors and abnormal values are detected.
- the elimination / correction the reading accuracy of the data recording code is improved, and the processing time can be shortened by integrating and limiting the image receiving pixels.
- the present invention it has become possible to increase the number of color codes and reduce the cell size, which has been difficult since the reading and decoding accuracy has been deteriorated, while maintaining the reading and decoding accuracy.
- the number of colors of the color code is, for example, at most 5 colors, and the cell size is about 0.5 mm wide.
- the number of colors may be eight or more, and the cell size can be reduced to a width of 0.3 to 0.1 mm depending on the performance of the image receiving apparatus. Therefore, in practice, the density of data recording codes has increased by an order of magnitude, and the data capacity per display area has increased dramatically.
- FIG. 3 is a configuration diagram of an image receiving pixel, an aggregation pixel, and a cell according to an embodiment.
- Two-dimensional color code creation method and encoding method (1-1)
- a guide code system having a high accuracy of position determination and data decoding is used.
- the number of colors used is limited to black and white or two or three colors such as RGB or CMY, and by maintaining the color difference, it is less susceptible to the effects of discoloration such as color fading, printing unevenness, illumination light, and dirt. Or increasing the cell size to make it easier to identify the shape and color.
- Already-proven one-dimensional bar codes and QR codes may be used, but they are not suitable because the printing area is large or the printed shape is not consistent with the shape of the data recording code.
- One method is to use a code system that focuses on decoding accuracy as disclosed in Japanese Patent Laid-Open No. 2008-27029, which transmits binary data in the order of cell colors.
- the data recording code portion is a high recording density code system mainly for recording efficiency for recording electronic data, and adopts a general encoding method for assigning colors to bit arrays. Therefore, it is ideal to use the maximum number of colors that can be used within a range where the target decoding accuracy can be maintained, and to reduce the cell size within a range that can be reproduced when printed. Actually, eight colors of red, green, blue, blue-green, red-green, yellow, black, and white are used, and the cell size to be printed is limited by the performance of the image receiving apparatus rather than the printing performance. It can be reduced to about 0.3 mm.
- the guide code portion 2 shown in FIG. 1 includes two-dimensional color code position information (end point position, up / down / left / right, guide code portion and data recording code portion). Distance, etc.), the number of vertical and horizontal cells of the data recording code part, cell size, redundancy level (level of error correction capability), number of divisions of two-dimensional color code, division order, code processing method, etc.
- numerical data is encoded as color information and printed or displayed on a code display medium. As shown in FIG. 3, these data may be input directly by a person using dedicated encoding software downloaded to a personal computer, or may be input from an electronic data file.
- input data is converted into a binary bit array, converted into a use color corresponding to bit information in advance for each unit of the number of bits to be converted, and the color information is converted into a cell pattern of the guide code portion.
- the data recording code portion 3 shown in FIG. 1 is arranged so as to have a certain positional relationship so that the position of the data recording code portion can be specified with reference to the guide code portion.
- data such as characters, tables, images, and sounds to be recorded as a two-dimensional color code are encoded with cells and printed. As shown in FIG. 3, these data are input from an electronic data file by dedicated encoding software downloaded to a personal computer.
- the encoding method converts the electronic data into a binary bit array, adds redundant bits necessary for mathematical processing for data error detection / correction when decoded later, and summarizes the bit array in units of 3 bits.
- the target electronic data may be compressed using a general compression technique such as ZIP or LZH, instead of code conversion as it is, in order to improve recording efficiency.
- a general compression technique such as ZIP or LZH
- a line feed is generated for each number of cells to form a data recording code.
- Two-dimensional color code reading method and decoding method A printed two-dimensional color code reading method and color information decoding method will be described with reference to FIG. As shown in FIG. 3, the two-dimensional color code is read and decoded by dedicated decoding software downloaded to an image receiving apparatus such as a digital camera.
- a person displays a two-dimensional color code displayed on a display medium on a screen of an image receiving apparatus such as a digital camera or a scanner, determines the position of the two-dimensional color code, and shoots the entire two-dimensional color code.
- the color information of the area including the color code is captured as an image of an image sensor such as a CCD.
- the two-dimensional color code is provided with a white background frame of several millimeters around it so that the automatic position can be easily determined.
- the accurate position of the guide code portion area is determined, and the position of the data recording code portion area is determined accurately based on the determination.
- the actual position determination method may be a method that depends entirely on the color and shape information of the guide code portion as described above, or general image processing (binarization, expansion processing, contour detection, polygon processing).
- the guide code area and the data recording code area may be extracted).
- the method of reading and decoding information other than the position determination information stored in the guide code part is a code reading system in which the cells of the guide code part have a small number of colors and a large cell size and are easy to decode with high accuracy. Any size is acceptable as long as the size is not appropriate for the data recording code. It is also one method to use a code system that focuses on decoding accuracy as disclosed in JP-A-2008-27029.
- the RGB color component data of the CCD image receiving pixels (11 in FIG. 4 and 4 to 12 as an aggregate thereof) in the data recording code area whose position is accurately determined are stored in the memory of the digital photographing apparatus as a file.
- the All pixels are divided into aggregated pixels with m ⁇ n image receiving pixels in the vertical and horizontal directions as one aggregated pixel (13 in FIG. 4).
- the center position of each cell in the data recording code screen is calculated from the vertical and horizontal cell number data obtained from the color information of the guide code.
- An average value is calculated for each, and these average values are obtained for all aggregated pixels of the data recording code and mapped into the RGB color space, so that the groups are divided into eight groups.
- the color of each aggregated pixel is determined by making it belong.
- the R, G, B values of the used colors having values closest to the average value of each aggregated pixel without being grouped are quantized, and the used colors having the quantized RGB values are quantized. May be obtained.
- the RGB value of m ⁇ n pixels vertical pixels of A, B, C, D, E, F,...) Is A (R255, G010, B004).
- the specified use color is set as the use color of the aggregate pixel.
- Number data indicating the used colors corresponding to the used colors is obtained, and the numbers are stored in the memory as numbers indicating the used colors of the aggregated pixels.
- the aggregation pixel including the center position of each cell in the area is used as the use color of the cell (14 in FIG. 4), and a number indicating the use color is coded. In this way, the colors used for all the cells and the numbers indicating the colors used are determined. They are stored in memory as files.
- Reed-Solomon method added when converting to 3-bit binary data using a correspondence table with numbers indicating the colors used in all cells, and encoding the electronic data by binary encoding when creating a two-dimensional color code
- a general mathematical method for detecting and correcting data errors such as the above is used here to check and correct any errors.
- the number indicating the use color of the aggregation pixel adjacent to the aggregation pixel adopted as the use color of the cell indicates the use color of the cell.
- An error is detected and corrected (hereinafter referred to as “decoding of an error correction method”) using the same error detection / correction method as described above.
- the same processing is performed on the adjacent aggregated pixels (or the order is set in advance, such as the opposite side). This operation is repeated until error correction decoding is possible.
- encoded binary data can be obtained. If this binary data is converted into primitive electronic data such as bytes, the original electronic data such as documents, images, and sounds can be reproduced.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Compression Of Band Width Or Redundancy In Fax (AREA)
- Image Processing (AREA)
- Color Image Communication Systems (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
- Recording Measured Values (AREA)
Abstract
Description
従来から電子データを情報コードに変換する方法、およびその情報コードを用いてコード表示媒体上へ記録しそれらを復号する方法はさまざまな方法が提唱されている。例えば、黒と白のパターンで情報を記録する1次元バーコードや2次元バーコードがいくつか提案されている。しかし、白と黒のパターンで情報を記録するバーコードは表示面積当たりのデータ記録密度が低いために、大量のデータを持つ文書、画像或いは音声等の電子データを取扱うことができない。
そこで、表示媒体に使用する面積当たりのデータ記録密度の向上を目的としたさまざまな2次元カラーコード体系が提唱されている。符号化する電子データのビット配列を色に置き換える場合、白黒の2色ではなく、赤や青も用い使用する色(以下、「使用色」とする)の数を増やした方が、1つのブロック(以下セルという)で表せるbit数が増え、データ記録密度を向上できるからである。
しかし、2次元カラーコードは、使用する色(以下、「使用色」とする)の数が増えた分、退色、印刷ムラ、照明光、汚れなどの変色原因による色の変化(以下、「変色」という)によるセルの色の誤判定を起こし易いため、復号精度は、白黒の2次元コードに比べて低い。
一般的に、表示された2次元カラーコードの領域や各セルの色の判定は画像受像装置によって取得した受像画素の色情報を利用しているために、使用している色の違い(色差)があるほど識別がし易い。一方、多色になればなるほど使用している色夫々が持てる領域(その色と判断される色域)が狭くなる。つまり、退色、印刷ムラ、照明光、汚れなどの影響による変色があっても使用している元の色として判別できる色域が狭くなるため、セルの色を元の色とは違う色として誤認識し易い。従って、記録密度を向上させるために使用色の数を増やすと、色の誤認識の率が高くなってしまう。
コード表示媒体に表示されているコードを復号するために用いる画像受像装置は、画像受像装置が持つ各センサーが受信した色の波長を、例えばRGB値のような電子媒体上で扱える情報(受像画素の色情報)に変換しているが、色の境界線付近は、隣接する互いの色の波長が混合された波長が、受像画素の色情報となるため、色の境界付近では、セルの元々の色とは違う色を受像し易い。セルサイズが小さくなればなるほど、セルの境界が密接しあうため、セルの元々の色の波長を受像できるセンサーの領域割合が減少してしまう。そのため、セルサイズの縮小は、セルに割り当てられている元々の色情報と同じ受像画素の色情報を取得することをより困難にする。
従来の2次元カラーコードにおいては、色の成分分析等の画像解析に頼ったセルの境界線や色の判定手法は、画像受像装置によって取得した受像画素の色情報を解析の基礎情報に用いており、これらは、色の境界付近における色の混合だけでなく、色そのものが、退色、印刷ムラ、照明光、汚れなどの影響により変化し易い情報であるため、特に色数が多くなると一層誤判定をし易い。そのため、色変化に大きくは影響されない程度の大きな色差と大きなセルサイズを必要とする。従って、色数の増加やセルの縮小により記録効率の向上を図ることは、実用的な復号精度を維持することが原理的に困難であるので限界がある。実際に、実用環境下においては、復号精度を維持するため、限定された色数(高々白黒+3色の5色)と大きなセルサイズ(例えば最小0.5mm)しか使用されておらず、記録密度は低い。
以上の課題を解決するために種々な方法が提唱されているが、未だ文書、画像、音声などの大量の電子データを高密度で記録し高精度で復号出来る2次元カラーコードは開発されていない。下記の先行技術文献にあるように、従来は、特許文献3を除いて、読取復号精度を上げるためには、セルについての特性、即ち、形、並べ方、枠取り、色、色の組合せ等に重点を置いて種々の工夫を凝らし、どのような形と色の2次元カラーコードを表示すればよいかを研究してきた。更にまた、基準色をカラーコードに直接表示する方法を脱していない。
受像画素として取り込まれたデータ記録コード部の色情報(例えばRGB値)は、環境によって変色の傾向が異なるが、各使用色は、その傾向に合わせて同様の方向に変色している。例えば、暗い照明環境下で画像受像装置によって受像した画像は、全体的に黒っぽくなり、明るい照明環境下で受像した画像は、全体的に白っぽくなる。このとき、もともとの割り当てられていた色の色空間における位置関係は、その方向の色寄りの空間にゆがめられた状態になるが、同様の方向に向かって変色しているので、複数の使用色を割り当てられていた各セルの受像画素の夫々の色情報は、変色による色情報のばらつきがあったとしても、似たような色情報を持っている可能性が高く、色空間における各受像画素の色情報が示す位置は、もともとの使用色が分かれて設定されていたように、全体的に使用色の色数分のグループ群に分かれやすい傾向を持つ。そこで、使用色の色数に合わせて各受像画素の色情報の量子化(その意味は下記に定義してある)を行い、各グループの位置と、もともとの使用色の位置関係をもとに、各グループがもともとどの使用色が割り当てられていた受像画素なのかを判定することができる。これにより、2次元カラーコード周辺に変色の補正や色の判定に使用する基準色を配置する必要がない。ここで言う量子化の意味を説明する。
量子化という言葉はもともとは量子力学から来るが、ここではより一般的意味として使い、連続量を離散的量で表すことを示す。実際に測定される各画素の色情報はRGB値で表される連続量であるが、それらはもともとの使用色が持っているRGB値とはセルの変色や画像受像装置の特性によって「ずれ」が生じ必ずしも一致しない。しかし概ねはもともとの使用色のRGB値の近傍の値にばらついている。そこでそれらの実測された各画素のRGB値を最も近傍に位置するもともとの使用色のRGB値に置き換えてそれらの画素の色情報とする。従って置き換えられた色情報は全てもともとの使用色の色情報に統一される。これを量子化すると言う。量子化の数学的方法は、RGB値の3次元空間において
ベクトル距離またはユークリッド距離の最短距離にあるもともとの使用色の値に置き換えたり、逆にもともとの使用色のRGB値の近傍に閾値を設定して夫々の閾値内に入る実際の測定値をもともとの使用色のRGB値に置き換えたりする方法もある。方法はその他にもあるが要するにもともとの使用色のRGB値に置き換えてしまうことである。なお測定値に異常に長いベクトル距離や閾値を越えるものがあれば異常値としてその画素は排除してもよい。
このようにして、グループ内の受像画素の色情報を、もともと設定した使用色の色情報に変換する。これにより、データ記録コード部の受像画素は、使用色の何れかの色情報が割り当てられた画素のみで構成された画像となる。
「例」
先ず、データ記録コード部の受像画素の色情報(例えばRGB値)が示す値を、その色情報を表現している空間(以下、「色空間」という)にマッピングし、使用色の数と同様の数にグループ群に分ける。次に、全グループの夫々の中心位置から各使用色の色情報の示す位置に向けベクトル線を引き、各ベクトル線上で最も近接する使用色を見出し、そのグループを使用色に属すグループと判断し、そのグループ内の受像画素の色情報を、属する使用色の色情報に変換する。または、隣合うグループの中心位置間の中間点を求め、その値を隣合うグループ同士の閾値として使用色を判定する。
また、この処理工程の前に、段落「0023」および段落「0024」の処理工程を踏んでいることで、すでにデータ記録コード部の受像画素は、ノイズとなる受像画素の低減処理や量子化により分類された比較的信頼性のある使用色の色情報を持っているため、中心位置と判定した受像画素の色情報をそのままそのセルの色として判定できる。
本発明によるデータ記録コード部は、隣接するセルが同じ色であっても、セルとセルの間に境界線を設ける必要がなく、セルの配置や色の割り当て方に工夫する必要もない。さらに、極論すれば、データ記録コード部のセルに割り当てられる受像画素数が1つしかない画像であったとしても、全ての画素間の量子化をすることによって理論上データ記録コード部の復号が高い精度で可能であり、セルの色の判定がより正確に行えるよう、その処理の工程を工夫している。
「例」
データ記録コード部は、「縦m個」×「横n個」の受像画素によって構成された画像であり、ガイドコード部の復号によって得られたデータ記録コード部の「縦のセル数=a」「横のセル数=b」(縦a個×横b個のセルで構成されたデータ記録コード部である)とした場合
このとき、「縦Nc番目」且つ「横Mc番目」に位置するセルの中心にあたる受像画素の位置「縦Pp番目」と「横Qp番目」を求める式は、サフィックスcはcellを表しpはpixelを表すとして、
Pp=(Nc-1)×(m÷a)+((m÷a)÷2)
Qp=(Mc-1)×(n÷b)+((n÷b)÷2)
となる。
これは、予め読取装置内に持たせている使用色の色情報とビット配列を対応させた変換テーブルにもとづいて行う。
以下に変換テーブルの一例を示す。
「例」
例えば、3bit分の各ビット配列を色に変換する場合、ビット配列は「000」「001」「010」「011」「100」「101」「110」「111」の8パターンあるので、それぞれを異なる色に変換するには、使用色は8色必要となる。例えば、赤、緑、青、青緑、赤緑、黄、黒、白、の8色を使用し、以下のように対応させ、それぞれに識別する番号を割り当てたとする。
000=赤=1、001=緑=2、010=青=3、011=青緑=4、100=赤緑=5、101=黄=6、110=黒=7、111=白=8
例えば、RGB値を用いて使用色の色情報を表現すると、以下のような対応表となる。
番号 ビット配列 使用色 RGB値
1 000 赤 255,0,0
2 001 緑 0,255,0
3 010 青 0,0,255
4 011 青緑 0,255,255
5 100 赤緑 255,0,255
6 101 黄 255,255,0
7 110 黒 0,0,0
8 111 白 255,255,255
このような使用色の色情報とビット配列を対応させた情報を、予め読取装置内に、変換テーブルとして持たせておくことで、判定した各セルの使用色の色情報からビット配列に変換できる。
(1-1)ガイドコードとデータ記録コードの特徴
ガイドコード体系は、位置の判定やデータの復号の精度が高いものを使用する。例えば、使用する色の数は白黒またはRGBやCMYといった2色ないし3色に限定し、色差を保つことによって、色の退色、印刷ムラ、照明光、汚れなどの変色原因の影響を受け難くくしたり、セルのサイズを大きくすることで形状や色を識別しやすくする。既に実績のある一次元バーコードやQRコードでも良いが印刷面積が大きかったり印刷形状がデータ記録コードの形状と整合性が取れなかったりするので適当ではない。セルの色の並び順番でバイナリーデータを発信する特開2008-27029のような復号精度に主眼を置いたコード体系を利用することも一つの方法である。
実際には、赤、緑、青、青緑、赤緑、黄、黒、白の8色とし、印刷するセルサイズは印刷性能よりも画像受像装置の性能に制約され、それに合わせて0.1~0.3mm程度まで縮小することが可能である。
図1に示すガイドコード部2には、2次元カラーコードの位置情報(端点位置、上下左右、ガイドコード部とデータ記録コード部の距離、等)、データ記録コード部の縦横のセルの数、セルサイズ、冗長レベル(誤り訂正能力のレベル)、2次元カラーコードの分割数、分割順番、コード処理方法、等を表す目印として、或いは数値データを色情報として符号化してコード表示媒体に印刷または表示する。これらデータの入力は、図3に示すように、パソコンにダウンロードした専用エンコードソフトウェアによって、人が直接入力しても良いし、電子データファイルから入力してもよい。エンコードの方法は、入力データを2進法ビット配列に変換し、変換するビット数の単位ごとに、予めビット情報と対応させている使用色に変換し、その色情報をガイドコード部のセルパターンの色としてコード表示媒体に印刷または表示する。
例えば、3bit分の各ビット配列を色に変換する場合、ビット配列は「000」「001」「010」「011」「100」「101」「110」「111」の8パターンあるので、それぞれを異なる色に変換するには、使用色は8色必要となる。例えば、赤、緑、青、青緑、赤緑、黄、黒、白、の8色を使用し、以下のように対応させ、それぞれに識別する番号を割り当てたとする。
000=赤=1、001=緑=2、010=青=3、011=青緑=4、100=赤緑=5、101=黄=6、110=黒=7、111=白=8
例えば、RGB値を用いて使用色の色情報を表現すると、以下のような対応表となる。
番号 ビット配列 使用色 RGB値
1 000 赤 255,0,0
2 001 緑 0,255,0
3 010 青 0,0,255
4 011 青緑 0,255,255
5 100 赤緑 255,0,255
6 101 黄 255,255,0
7 110 黒 0,0,0
8 111 白 255,255,255
印刷された2次元カラーコードの読取りと色情報の復号方法について図3に沿って説明する。図3に示すように、デジタルカメラなどの画像受像装置にダウンロードした専用デコードソフトウェアによって2次元カラーコードの読取りと復号が行われる。
A(R255、G010、B004)
B(R245、G006、B002)
C(R250、G020、B020)
D(R239、G000、B000)
E(R248、G013、B014)
F(R251、G003、B006)
G(R254、G010、B001)
H(R255、G002、B000)
I(R255、G001、B004)
・
・
・
とすると、それらの平均値が(R250.2、G7.2、B5.6)であるとすれば、予め使用色として決めた赤、緑、青、青緑、赤緑、黄、黒、白の色成分(色情報と同義語)にもっとも近い色としてその平均値を量子化すると、R(R255、G000、B000)となりその使用色を特定できる。
2:ガイドコード
3:データ記録コード
11:データ記録コードの受像画素
12:受像した全画素
13:集約画素
Claims (5)
- 多色のセルが2次元に展開した2次元カラーコードにおいて、光学的な画像の処理と光学的な解析のみにより2次元カラーコードの領域の位置決めとデータの読取り・復号が高い精度で容易に行えるコード体系のガイドコード部と、電子データを高い密度で記録できるよう、少なくても、ガイドコード部より小さいセルを使用したデータ記録コード部から成り、ガイドコード部にはデータ記録コード部の読取り・復号のための前提条件であるデータとして、縦横セル数、セルサイズ、データの誤り検出・訂正レベル、コードの分割数、コードの分割順番、コードの処理方法、等の少なくとも1つ以上のデータを数値情報として持ち、それらの数値情報が色として符号化されていることを特徴とする2次元カラーコードの作成方法。
- ガイドコード部のデータの1つとしてデータ記録コード部の縦横のセル数を含め、それをデジタルカメラ等の画像受像装置で読取り、それらを数値情報として取得することによって、その縦横セル数とデータ記録コード部の縦横画素数を用いた数式による計算処理で、受像したデータ記録コード部の各セルの中心位置にある画素の位置を求めることができ、その中心位置又はその周辺にある設定された数の受像画素の色情報(例えば、RGB値)を使用色について設定されているもともとの色情報に対比して量子化することにより色情報を求め、それを当該セルの色種として判定することを特徴とする請求項1記載の2次元カラーコードの作成と読取り・復号の方法。
- データ記録コード部の全受像画素を縦横任意に設定するm×n個の単位で一個の仮想画素として集約し(集約画素という)、各集約画素内のm×n個の画素の色情報の平均値または量子化された値をその集約画素の色情報とし、各セルの中心位置を領域に含む集約画素又はその周辺にある設定された数の集約画素の色情報を量子化することにより色情報を求め、それを当該セルの色種として判定することを特徴とする請求項2記載の2次元カラーコードの読取り・復号の方法。
- データ記録コード部のセルの使用色の判定の誤りによる符号(ビット配列)の誤りを検出・訂正するために用いる誤り訂正方式による復号処理(誤りの検出・訂正)が出来なかった場合は、当該セルの色の判定に用いた画素または集約画素とは別の予め設定された位置にある画素または集約画素の色情報を、当該セルの使用色として判定し、その使用色に対応しているビット配列を用いて、再度誤り検出・訂正方式による復号処理を行い、誤り訂正方式による復号ができるまで、あるいは、予め設定した回数まで、当該セルの使用色の判定に用いる画素または集約画素の位置を予め設定された方式に従って代えながら誤り検出・訂正方式による復号処理を繰り返すことを特徴とする請求項2或いは3記載の2次元カラーコードの読取り・復号の方法。
- データ記録コード部のセルの使用色を判定するために、基準色を2次元カラーコード領域に印刷または表示せず、予め決めておいたセルの使用色の色情報と、受像画素の色情報、或いはそれを加工した色情報とを比較して量子化することにより色情報を求め、それを当該セルの使用色として判定することを特徴とする請求項1記載の2次元カラーコードの作成と読取り・復号の方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11750714A EP2544128A1 (en) | 2010-03-05 | 2011-03-02 | Method for creating and method for decoding two-dimensional colour code |
EA201290877A EA201290877A1 (ru) | 2010-03-05 | 2011-03-02 | Способы подготовки и декодирования двумерных цветовых кодов |
CA2790925A CA2790925A1 (en) | 2010-03-05 | 2011-03-02 | Method for preparing and decoding two-dimensional color codes |
MX2012010260A MX2012010260A (es) | 2010-03-05 | 2011-03-02 | Metodos para preparar y descodificar codigos de color bidimensionales. |
BR112012022354A BR112012022354A2 (pt) | 2010-03-05 | 2011-03-02 | código de cor bidimensional |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-049219 | 2010-03-05 | ||
JP2010049219A JP2011186613A (ja) | 2010-03-05 | 2010-03-05 | 2次元カラーコードの作成方法および復号方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011108605A1 true WO2011108605A1 (ja) | 2011-09-09 |
Family
ID=44542252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/054794 WO2011108605A1 (ja) | 2010-03-05 | 2011-03-02 | 2次元カラーコードの作成方法および復号方法 |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP2544128A1 (ja) |
JP (1) | JP2011186613A (ja) |
BR (1) | BR112012022354A2 (ja) |
CA (1) | CA2790925A1 (ja) |
EA (1) | EA201290877A1 (ja) |
MX (1) | MX2012010260A (ja) |
TW (1) | TW201142713A (ja) |
WO (1) | WO2011108605A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014112366A (ja) * | 2012-11-28 | 2014-06-19 | Konicaminolta Laboratory Usa Inc | 極めて小さいデータセルを有する印刷されたカラーバーコードの確実な復号化 |
US10740666B2 (en) | 2018-09-27 | 2020-08-11 | Caleb J. Webster | Two-dimensional cryptographic poly-chromatic poly-digital code |
CN114072810A (zh) * | 2020-04-10 | 2022-02-18 | 丰富M1有限公司 | 信息编码、信息编码生成装置、信息编码读取装置、程序以及信息编码使用系统 |
CN114239631A (zh) * | 2021-11-19 | 2022-03-25 | 支付宝(杭州)信息技术有限公司 | 二维码识别方法、装置、存储介质及电子设备 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103390183B (zh) | 2012-05-09 | 2019-07-19 | 顾泽苍 | 一种适用于手机识别的防伪代码的生成方法 |
US9970862B2 (en) | 2014-07-16 | 2018-05-15 | International Business Machines Corporation | Reflective tag and polarized light sensor for transmitting information |
WO2016121126A1 (ja) * | 2015-01-30 | 2016-08-04 | 株式会社日立製作所 | 二次元コード、二次元コード読取装置、及び符号化方法 |
JP6160968B2 (ja) * | 2015-03-23 | 2017-07-12 | 李健宇 | ロバスト・インデックス・コード |
WO2017082607A1 (en) | 2015-11-09 | 2017-05-18 | Samsung Electronics Co., Ltd. | Electronic device and operating method of the same |
ES2616146B2 (es) * | 2016-12-20 | 2018-04-27 | Universitat D'alacant / Universidad De Alicante | Método de detección y reconocimiento de marcadores visuales de largo alcance y alta densidad |
KR102067321B1 (ko) * | 2017-10-03 | 2020-01-16 | 이건우 | 저작권 보호 인덱스 코드, 이들의 부호화 방법 및 복호화 방법 |
CN110276428A (zh) * | 2019-06-05 | 2019-09-24 | 上海工程技术大学 | 一种四维码编码及解码方法 |
JP7460113B2 (ja) | 2020-01-20 | 2024-04-02 | 溝口 さとし | 二次元コードエンコーダ |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006009300A1 (ja) * | 2004-07-22 | 2006-01-26 | Matsushita Electric Industrial Co., Ltd. | 多色型二次元バーコードおよびその映像表示装置、情報端末装置、表示方法、解読方法、情報通信システム、情報通信方法 |
JP2006178692A (ja) * | 2004-12-21 | 2006-07-06 | Adoin Kenkyusho:Kk | カラー二次元コード |
JP3996520B2 (ja) | 2003-01-30 | 2007-10-24 | 株式会社デンソーウェーブ | 二次元情報コードおよびその生成方法 |
JP2007323632A (ja) * | 2006-05-31 | 2007-12-13 | Konica Minolta Systems Lab Inc | 2次元カラーバーコード、2次元カラーバーコードの生成方法及びデコード方法並びにコンピュータプログラム製品 |
JP2008027029A (ja) | 2006-07-19 | 2008-02-07 | B-Core Inc | 光学式シンボル及びそれが付された物品並びに光学式シンボルを物品に付す方法及び光学式シンボルのデコード方法。 |
JP4241803B2 (ja) | 2006-11-10 | 2009-03-18 | 株式会社デンソーウェーブ | 二次元情報コードの読取方法および読取装置 |
WO2009144794A1 (ja) | 2008-05-29 | 2009-12-03 | Gmgカラー・テクノロジーズ株式会社 | 情報コード |
JP2009289066A (ja) * | 2008-05-29 | 2009-12-10 | B-Core Inc | 位置特定方法及び色彩特定方法及びid作成方法 |
-
2010
- 2010-03-05 JP JP2010049219A patent/JP2011186613A/ja active Pending
-
2011
- 2011-03-02 WO PCT/JP2011/054794 patent/WO2011108605A1/ja active Application Filing
- 2011-03-02 MX MX2012010260A patent/MX2012010260A/es unknown
- 2011-03-02 TW TW100106924A patent/TW201142713A/zh unknown
- 2011-03-02 EP EP11750714A patent/EP2544128A1/en not_active Withdrawn
- 2011-03-02 BR BR112012022354A patent/BR112012022354A2/pt not_active IP Right Cessation
- 2011-03-02 CA CA2790925A patent/CA2790925A1/en not_active Abandoned
- 2011-03-02 EA EA201290877A patent/EA201290877A1/ru unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3996520B2 (ja) | 2003-01-30 | 2007-10-24 | 株式会社デンソーウェーブ | 二次元情報コードおよびその生成方法 |
WO2006009300A1 (ja) * | 2004-07-22 | 2006-01-26 | Matsushita Electric Industrial Co., Ltd. | 多色型二次元バーコードおよびその映像表示装置、情報端末装置、表示方法、解読方法、情報通信システム、情報通信方法 |
JP2006178692A (ja) * | 2004-12-21 | 2006-07-06 | Adoin Kenkyusho:Kk | カラー二次元コード |
JP2007323632A (ja) * | 2006-05-31 | 2007-12-13 | Konica Minolta Systems Lab Inc | 2次元カラーバーコード、2次元カラーバーコードの生成方法及びデコード方法並びにコンピュータプログラム製品 |
JP2008027029A (ja) | 2006-07-19 | 2008-02-07 | B-Core Inc | 光学式シンボル及びそれが付された物品並びに光学式シンボルを物品に付す方法及び光学式シンボルのデコード方法。 |
JP4241803B2 (ja) | 2006-11-10 | 2009-03-18 | 株式会社デンソーウェーブ | 二次元情報コードの読取方法および読取装置 |
WO2009144794A1 (ja) | 2008-05-29 | 2009-12-03 | Gmgカラー・テクノロジーズ株式会社 | 情報コード |
JP2009289066A (ja) * | 2008-05-29 | 2009-12-10 | B-Core Inc | 位置特定方法及び色彩特定方法及びid作成方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014112366A (ja) * | 2012-11-28 | 2014-06-19 | Konicaminolta Laboratory Usa Inc | 極めて小さいデータセルを有する印刷されたカラーバーコードの確実な復号化 |
US10740666B2 (en) | 2018-09-27 | 2020-08-11 | Caleb J. Webster | Two-dimensional cryptographic poly-chromatic poly-digital code |
US10997482B2 (en) | 2018-09-27 | 2021-05-04 | Caleb J. Webster | Two-dimensional cryptographic poly-chromatic poly-digital code |
CN114072810A (zh) * | 2020-04-10 | 2022-02-18 | 丰富M1有限公司 | 信息编码、信息编码生成装置、信息编码读取装置、程序以及信息编码使用系统 |
CN114239631A (zh) * | 2021-11-19 | 2022-03-25 | 支付宝(杭州)信息技术有限公司 | 二维码识别方法、装置、存储介质及电子设备 |
CN114239631B (zh) * | 2021-11-19 | 2024-03-26 | 支付宝(杭州)信息技术有限公司 | 二维码识别方法、装置、存储介质及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
JP2011186613A (ja) | 2011-09-22 |
BR112012022354A2 (pt) | 2016-07-05 |
EA201290877A1 (ru) | 2013-04-30 |
CA2790925A1 (en) | 2011-09-09 |
EP2544128A1 (en) | 2013-01-09 |
MX2012010260A (es) | 2012-10-10 |
TW201142713A (en) | 2011-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011108605A1 (ja) | 2次元カラーコードの作成方法および復号方法 | |
JP4838387B2 (ja) | 情報コード及び情報コード復号方法 | |
US8113432B2 (en) | Apparatus for recognizing an optical recognition code in which a code symbol of a 1-dimensional color bit code indicative of certain data is divided into a plurality of code symbols | |
EP2806377B1 (en) | OK CODE: A Multidimensional Color Barcode | |
US7478746B2 (en) | Two-dimensional color barcode and method of generating and decoding the same | |
US10679175B2 (en) | Two-dimensional code, system for creation of two-dimensional code, and analysis program | |
Grillo et al. | High capacity colored two dimensional codes | |
US7673807B2 (en) | Multiple resolution readable color array | |
CN100446540C (zh) | 彩色图像压缩方法和装置 | |
JP6590335B2 (ja) | 二次元コード、及び該二次元コードの読取方法 | |
US20040026511A1 (en) | Guiding a scanning device to decode 2D symbols | |
WO2020181592A1 (zh) | 矩阵式二维码、其生成、解码方法及其设备 | |
JP2008027029A (ja) | 光学式シンボル及びそれが付された物品並びに光学式シンボルを物品に付す方法及び光学式シンボルのデコード方法。 | |
KR20090035529A (ko) | 광학식 심볼 및 그것이 부착된 물품 및 광학식 심볼을 물품에 부착하는 방법, 및 광학식 인식 코드 인식 방법 | |
CN106797250A (zh) | 用于传送和接收可见光数据的装置和方法 | |
JP2010061217A (ja) | 二次元コード | |
JP2004054871A (ja) | 二次元コード読取装置、二次元コード読取装置設定方法、二次元コード読取装置読取テスト方法、二次元コード読取装置照度分布確認方法、二次元コード読取装置設定プログラムおよびコンピュータ読取可能な記録媒体 | |
JP2004054645A (ja) | 二次元コード読取装置、二次元コード読取方法、二次元コード読取プログラムおよびコンピュータ読取可能な記録媒体 | |
JP2005208843A (ja) | 情報符号化/復号方法、装置及びコード表示物 | |
EP4078451B1 (en) | Method and device for reading a two-dimensional encoded pattern applied on a non-uniform background | |
TWI856222B (zh) | 用於讀取應用於非均勻的背景上的二維的編碼圖案的方法及裝置 | |
CN102521635A (zh) | 一种连续型多进制条码的编码方法及其解码方法 | |
US20240296609A1 (en) | Combining a graphic code with an image | |
CN102117399A (zh) | 一种识别公文条码的方法和装置 | |
Mishra et al. | Region identification and decoding of security markers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11750714 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998/MUMNP/2012 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2790925 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011750714 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/010260 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201290877 Country of ref document: EA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012022354 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012022354 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120904 |