WO2011105880A2 - 개선된 감쇠 특성을 가지는 디지털 필터 - Google Patents

개선된 감쇠 특성을 가지는 디지털 필터 Download PDF

Info

Publication number
WO2011105880A2
WO2011105880A2 PCT/KR2011/001408 KR2011001408W WO2011105880A2 WO 2011105880 A2 WO2011105880 A2 WO 2011105880A2 KR 2011001408 W KR2011001408 W KR 2011001408W WO 2011105880 A2 WO2011105880 A2 WO 2011105880A2
Authority
WO
WIPO (PCT)
Prior art keywords
filter
image
sampling
response
equation
Prior art date
Application number
PCT/KR2011/001408
Other languages
English (en)
French (fr)
Other versions
WO2011105880A3 (ko
Inventor
남상원
김경재
정성일
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100018201A external-priority patent/KR101216908B1/ko
Priority claimed from KR1020100018219A external-priority patent/KR101174546B1/ko
Priority claimed from KR1020100073696A external-priority patent/KR101194160B1/ko
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to US13/581,292 priority Critical patent/US9225315B2/en
Publication of WO2011105880A2 publication Critical patent/WO2011105880A2/ko
Publication of WO2011105880A3 publication Critical patent/WO2011105880A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0294Variable filters; Programmable filters

Definitions

  • the present invention relates to a digital filter, and more particularly, to an improvement in attenuation characteristics of a digital filter.
  • Digital filters have many advantages compared to analog filters because they can be integrated circuits and can be miniaturized, low cost, and high in reliability.
  • the field of application of the digital filter is increasing, and it is used in places such as the transmitting end and the receiving end of the baseband part of the mobile communication system.
  • Digital filters are generally divided into finite impulse response (FIR) filters and infinite impulse response (IIR) filters.
  • the finite impulse response filter uses the property that the impulse response will be finite length when it is input to the filter because the finite impulse response filter does not use any feedback.
  • Finite impulse response filters that do not use feedback do not require a feedback loop to ensure stability.
  • the specification of the linear phase characteristic is satisfied, it is widely used for applications such as waveform transmission.
  • the finite impulse response filter tries to obtain the amplitude characteristic that is the same as that of the infinite impulse response filter, the order becomes larger, which causes more burden on hardware such as an adder and a multiplier.
  • the impulse response corresponds to the coefficient of the finite impulse response filter, which is simpler than the design in the frequency domain.
  • the optimal solution can be found.
  • finite impulse response filters allow calculations whose finiteness of their output does not produce decimated output, or calculations with predictable values in interpolated output, to be omitted. It is computationally efficient, for example, when interpolated or decimated to increase or decrease the sampling rate of a signal.
  • the attenuation characteristic in the filter is a measure of the degree of filter response transition between the passband and the stopband. Ideally, the steeper the attenuation characteristic of the filter, the better. However, the attenuation characteristic of such a filter is in a trade-off relationship with the number of taps of the filter.
  • the conventional digital filter has a problem that it is virtually impossible to adjust the pass band because the filter coefficient and the number of taps are fixed to the filter chip.
  • the present invention proposes a digital filter having good attenuation characteristics with a low number of taps.
  • the present invention provides a digital filter that can implement a good skirt characteristic with a low number of taps, but can change the passband of the filter with a simple parameter change.
  • a digital filter having an improved attenuation characteristic for performing upsampling by applying a sampling kernel scaled by a sampling constant to a model filter response.
  • the sampling kernel is a kernel scaled by a sampling constant using a sink function.
  • sampling kernel using the sync function is as follows.
  • the upsampling is performed by the following equation.
  • the sampling constant may be determined by the following equation.
  • the delay unit for delaying the input signal corresponding to the sampling constant; And a filter unit for performing filtering on the output signal of the delay unit, wherein the response of the delay unit and the filter unit is set such that upsampling by a sampling kernel scaled by a sampling constant is made to the filter response of the filter unit.
  • a digital filter having attenuation characteristics is provided.
  • a sampling kernel storage unit for performing upsampling scaled by a sampling constant on a model filter response and generating a multi-image response in which the upsampled model filter response is repeated with a certain period.
  • a complimentary conversion unit configured to generate a multi-complementary image response having the same characteristics as that of the multi-image and repeating at a predetermined frequency in a frequency region where the multi-image is not generated;
  • an image response calculator for calculating a response of the multi-complementary image and an image corresponding to a selected band of the multi-image.
  • the digital filter of the present invention can have a good attenuation characteristic with a small number of taps, and has an advantage of changing the passband of the filter with a simple parameter change.
  • FIG. 1 is a diagram illustrating a change in model filter response when upsampling is performed according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a module configuration of a digital filter device according to a first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an internal module configuration of a general filter.
  • FIG. 4 is a block diagram showing the configuration of a digital filter capable of frequency reconstruction according to the first embodiment of the present invention.
  • FIG. 5 is a block diagram showing the configuration of a digital filter capable of frequency reconstruction according to a second embodiment of the present invention.
  • FIG. 6 illustrates a conceptual module of a filter for performing upsampling by a delay unit and a filter unit.
  • FIG. 7 illustrates an example of a multi-image and multi-complementary image generated in accordance with one embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a change of a multi-image according to a change of an L value according to an embodiment of the present invention.
  • FIG 9 illustrates a change in a multi-complementary image according to a change in L value according to an embodiment of the present invention.
  • upsampling means a series of procedures for improving attenuation by applying a sampling kernel to a model filter.
  • the model filter may be implemented in hardware or software as a filter function designed to have specific filtering characteristics.
  • upsampling is performed to improve attenuation characteristics corresponding to slopes of pass bands among the characteristics of the filter, and bandwidth may be additionally adjusted through upsampling.
  • Increasing the number of taps in a filter means that the filter's price and size increase when the filter is manufactured in hardware, and that a large amount of computation is required when the filter is implemented in software. (Trade Off) relationship.
  • up-sampling is performed on a model filter function having a relatively small number of taps to improve attenuation characteristics and to adjust a bandwidth of the model filter as necessary.
  • upsampling is a sampling constant This is done using a sampling kernel that is scaled by.
  • Sampling kernel Define it as Is defined as the sampling constant, and the finite impulse response filter
  • the upsampling scaled by the sampling constant according to the present invention may be performed as in Equation 1 below.
  • Equation 1 Is a filter response that finally has good attenuation characteristics by upsampling.
  • the sampling kernel may have various forms.
  • the sampling kernel may have the form of a sinc function, but is not limited thereto. It will be apparent to those skilled in the art that various types of functions may be applied to the sampling kernel.
  • Sinc function including the Sinc function as shown in Equation 2 below. It may have various types of adaptive window functions, and various functions may be applied.
  • Equation 2 the second equation is a raised-cosine, where R is a roll-off constant and serves as a criterion for determining the bandwidth of the filter.
  • the third equation is Kaiser, and I 0 is zeroth order modified Bessel function of the first kind, Is an arbitrary real number that determines the shape of the window, and M is the length of the sequence.
  • the fourth equation is using Dolph-Chebychev.
  • I a side-lobe control parameter.
  • FIG. 1 is a diagram illustrating a change in model filter response when upsampling is performed according to an embodiment of the present invention.
  • FIG. 1 shows the response of the model filter before upsampling, and (b) shows the filter response after the upsampling.
  • the transition slope in the pass band and the stop band is increased as compared with the model filter function before upsampling, thereby improving attenuation characteristics.
  • Equation 1 may be expressed in a convolution form as shown in Equation 3 below.
  • Equation 3 Equation 3
  • Equation 4 is an example for obtaining an optimal sampling constant. Is the frequency of the passband Is the frequency of the stopband. The integer closest to the sampling constant obtained at this time is Determining and applying it can give the greatest efficiency in overall operation.
  • FIG. 2 is a block diagram showing a module configuration of a digital filter device according to a first embodiment of the present invention.
  • the digital filter device may include a delay unit 200 and a filter unit 202.
  • the delay unit 200 functions to delay the input signal input to the filter by a predetermined time interval.
  • the delay unit 200 and the filter unit 202 operate as an upsampling module for improving the attenuation characteristics of the filter, and the delay unit 200 is a sampling set for upsampling.
  • the delay unit 200 converts the input signal into a sampling constant ( Delaying corresponding to) has the same effect as interpolating by inserting a zero corresponding to the sampling constant in the middle of the input signal.
  • the optimal sampling constant can be obtained to have the optimal calculation amount. You will be able to set
  • sampling constant May be set to other values to have the desired attenuation characteristics without following the optimal equation above.
  • the filter unit 202 filters the output signal of the delay unit 200.
  • the filter unit 102 includes a plurality of delayers and an adder like a general filter chip to filter the input signal.
  • the filter response used in the delay unit and the filter unit ( ) May be expressed as Equation 5 below.
  • FIG. 3 is a diagram illustrating an internal module configuration of a general filter
  • FIG. 6 is a diagram illustrating a conceptual module of a filter performing upsampling by a delay unit and a filter unit.
  • a typical filter may include a plurality of delayers ( ), And a plurality of filter coefficients h0, h1, h2, ... are set.
  • sampling constant The present invention performs upsampling by inserting a zero corresponding to By delaying the signal corresponding to the filter response is to operate substantially as shown in equation (5).
  • Upsampling using the delay unit shown in FIG. 2 is an example of applying the sampling kernel proposed in the present invention. Upsampling may be performed by applying the sampling kernels of Equations 1 and 2 through a software operation. Through this, it is possible to secure the filter characteristics having the improved attenuation characteristics as shown in FIG.
  • the filter of the present invention may be operable to generate multiple images for the upsampled filter response to select various passbands.
  • image refers to an object that forms a specific passband in the frequency domain graph of the filter, and may be interpreted as having the same meaning as a specific band.
  • image is used. This can be understood to be the same as for a particular band.
  • the model filter response generally has a filtering response for the baseband, so the upsampled model filter response has only one image in the low frequency band.
  • the present invention provides a function of converting the up-sampling filter response having a single image to have multiple images, which means that the filter response has multiple pass bands through such conversion.
  • a plurality of images generated through the conversion are defined as "multi-images", and a plurality of multi-images are repeatedly generated with a predetermined period.
  • Multiple multi-images are generated based on the baseband image, and the multiple images (multiple passbands) have the same characteristics as those of the spontaneous band. That is, when the low pass band image has a bandwidth of W, attenuation characteristic of C, and size A, a plurality of formed multi-images also have the same characteristics of bandwidth of W, attenuation characteristic of C, and size of A.
  • the multiple images generated based on the low pass band image have a certain period, where the period is related to the bandwidth of the low pass band image.
  • the multi images are repeatedly formed in the same form as the low pass image with a period of 2W.
  • FIG. 7 illustrates an example of a multi image and a multi-complementary image generated according to an embodiment of the present invention.
  • (a) illustrates the response of Equation 1 in the frequency domain
  • (b) illustrates multiple images of the response of (a).
  • the same image as the upsampled model filter response is repeatedly formed with a constant period.
  • Generating a plurality of multi-images for the upsampled miracle band model filter response may be implemented by performing a kind of IDTFT transform, which is expressed by Equation 6 below.
  • the single low pass filter may be extended to have a desired number of images.
  • L is the number of images (image number)
  • IDTFT transform May be expressed as Equation 6 below.
  • Equation 7 the sampling kernel When the Sinc function is applied to, the sampling kernel can be expressed as Equation 8 below.
  • Equation 7 is expressed as a frequency response, it may be expressed as Equation 9 below.
  • the shape of such multi-images is the same as the upsampled model filter response, the period of which corresponds to the bandwidth of the upsampled model filter response.
  • sampling kernels of Equations 7 and 8 are sampling kernels for simultaneously generating upsampling and multi-images, and are distinct from the sampling kernels of Equations 1 and 2 only for improving attenuation characteristics. And through the application of the sampling kernel of Equation 8 can be improved both attenuation characteristics and the generation of multi-image.
  • FIG. 8 is a diagram illustrating a change of a multi image according to a change of an L value according to an embodiment of the present invention.
  • the number of multi-images generated by adjusting an image number L which is a parameter of a sampling kernel may be adjusted.
  • L when L is 1, one additional multi image is generated, and when L is 3, three additional multi images are generated. In this case, L may be selected by the user.
  • a plurality of complimentary images are generated in a frequency region opposite to the multi image separately from the multi image based on the baseband image.
  • the complimentary image refers to an image formed in a frequency region in which multiple images are not formed. Referring to FIG. An image is formed.
  • the multi-complementary image also has the same characteristics as the low pass image by the model filter response and is repeatedly formed with the same period as the bandwidth of the low pass image.
  • Multi-complementary images produce model filter responses in the z domain It can be obtained by delaying by (where N is the length of the model filter), which can be expressed as Equation 10 below.
  • the multi-complementary image may be obtained through Equation 11 below, and the number of multi-complementary images may also be determined by the L value.
  • the sampling kernel may be expressed as Equation 12 below.
  • Equation 11 when Equation 11 is expressed as a frequency response, it may be expressed as Equation 13 below.
  • the number of multi-complementary images can also be adjusted by adjusting the image number L.
  • FIG. 9 is a diagram illustrating a change in a multi-complementary image according to a change in L value according to an embodiment of the present invention.
  • the response to the selected L-th multi-image may be obtained by subtracting the expression of L-1 from the equation of L in Equation 7, which is a response to the multi-image.
  • the filter response corresponding to the L-th image may be expressed as in Equation 14 below.
  • the filter response for the L-th multi-complementary image may be obtained by subtracting L-1 from Equation 11 in Equation 11, which may be expressed as Equation 15 below.
  • the present invention sums the responses for each selected image or complementary image to produce the final filter response.
  • a wideband filter response or filter response for multiple bands is required, multiple images or complimentary images are selected, and the final filter response is obtained by summing the filter responses of each image or complementary image.
  • the final filter response can be obtained by summing filter responses of each of the second and third images.
  • FIG. 4 is a block diagram showing the configuration of a digital filter capable of frequency reconstruction according to the first embodiment of the present invention.
  • the digital filter capable of frequency reconstruction according to the first embodiment of the present invention may include an upsampling unit 400, a multi-image generator 402, a multi-complementary image generator 404, and an image. It may include a response operator 406 and a filter response operator 408.
  • the upsampling unit 400 applies the sampling kernel scaled by the sampling constant to the model filter to improve the characteristics of the model filter.
  • Upsampling for the model filter may be performed by multiplying the sampling kernel scaled by the sampling constant ⁇ with respect to the model filter function as shown in Equation 1, and the attenuation characteristic and bandwidth of the filter change according to the sampling constant ⁇ value.
  • can be appropriately selected depending on the desired bandwidth and attenuation characteristics.
  • the multi-image generator 402 generates a response to the multi-image corresponding to the plurality of pass bands with respect to the upsampled model filter response, and the multi-complementary image generator 404 generates a response to the upsampled model filter response. Generate responses to multiple multi-complementary images in the frequency domain opposite to the pass band of the multi-images.
  • the multi-image and multi-complementary image have the same characteristics as the upsampled model filter response but form passbands in different frequency domains.
  • the multi-image may be generated through a transform, such as Equation 6, for the upsampled model filter response, and the multi-complementary image may be generated by using a complimentary transform or an equation 10, such as Equation 9. Can be.
  • the upsampling and the generation of the multi-image and the multi-complementary image are described as a sequential process, but the upsampling and the multi-image and the multicom It will be apparent to those skilled in the art that the response to the creation of the fleecy image can be obtained at once.
  • the image response calculator 406 calculates a response to an image or a complementary image selected by the user. When a specific pass band is selected, the image response calculator 406 calculates a response for each selected image.
  • the filter response for the image can be obtained by subtracting the response equation transformed to generate the multi-image up to the (L-1) th to the L-th response.
  • Each image response to the multi-complementary image is represented by Equations 13 and 14, respectively.
  • the filter response calculator 408 calculates the final filter response by summing the image responses for each selected image, thereby obtaining a frequency-reconstructed filter response in a closed-form form. If only one image is selected, the response of the image becomes the final filter response, and no separate summing procedure is required.
  • FIG. 5 is a block diagram showing the configuration of a digital filter capable of frequency reconstruction according to a second embodiment of the present invention.
  • the second embodiment is a module representation of the filter configuration when the filter according to the embodiment of the present invention is implemented in software.
  • the filter of the first embodiment is represented in a block diagram from another viewpoint.
  • the digital filter capable of frequency reconstruction according to the second embodiment of the present invention includes a model filter response storage unit 500, a sampling kernel storage unit 502, a complimentary transform unit 504, and an image.
  • the response operator 506 and the filter response operator 508 may be included.
  • the model filter response storage unit 500 stores a model filter response having a specific tap number and coefficient.
  • the sampling kernel storage unit 502 stores a sampling kernel response that is scaled by sampling constants applied to upsampling and multi-image generation and has an image number L as a variable.
  • a sampling kernel such as Equation 7 may be stored in the sampling kernel storage unit 502, and various sampling kernels as illustrated in Equation 2 may be utilized in addition to the Sinc function.
  • the complimentary converter 504 performs a complimentary transform for generating a multi-complementary image.
  • Complementary conversion may be performed through a conversion equation such as Equation 9, or a multi-complementary image may be generated by separately storing a model filter response and a sampling kernel for the complimentary image.
  • the image response calculator 506 calculates a response to the image corresponding to the selected pass band.
  • the filter response corresponding to the selected image is calculated through the method as shown in Equations 6 and 13 by using the stored model filter response and the sampling kernel having the stored sampling constant and the image number as variables.
  • the equation 10 and the equation conversion are performed through a sampling kernel and a complimentary conversion using the stored model filter response, the stored sampling constant, and the image number as variables.
  • the filter response corresponding to the selected complementary image is calculated.
  • the filter response calculator 508 calculates the final filter response by summing the image responses of the selected images, thereby obtaining a frequency-reconstructed filter response in a closed-form form. If only one image is selected, it is the final filter response of the image, and no separate summing process is required.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Networks Using Active Elements (AREA)

Abstract

개선된 감쇠 특성을 가지는 디지털 필터가 개시된다. 개시된 필터는 모델 필터 응답에 대해 샘플링 상수에 의해 스케일링되는 샘플링 커널을 적용하여 업샘플링을 수행한다. 개시된 필터는 적은 탭 수로 양호한 감쇠 특성을 가지며, 필터의 통과 대역을 단순한 파라미터 변경으로 변화시킬 수 있는 장점이 있다.

Description

개선된 감쇠 특성을 가지는 디지털 필터
본 발명은 디지털 필터에 관한 것으로서 더욱 상세하게는 디지털 필터의 감쇠 특성 향상에 관한 것이다.
디지털 필터는 집적 회로화가 가능하며 소형화, 저가격화, 고신뢰화를 도모할 수 있어 아날로그 필터와 비교하여 많은 이점을 가지고 있다. 특히 통신 속도와 고속화 및 통신량의 증대에 따라 디지털 필터의 활용 분야는 증대되고 있으며, 이동통신 시스템의 기저대역부의 전송단 및 수신단과 같은 곳에 활용되고 있다.
디지털 필터는 유한 임펄스 응답(Finite Impulse Response: FIR) 필터 및 무한 임펄스 응답(Infinite Impulse Response: IIR) 필터로 일반적으로 구분된다.
유한 임펄스 응답 필터는 임펄스 응답이 필터에 입력될 때 유한한 길이가 될이라는 특성을 이용하는 것으로서 이는 유한 임펄스 응답 필터가 어떠한 피드백도 사용하지 않기 때문이다.
피드백을 사용하지 않는 유한 임펄스 응답 필터는 귀환 루프가 필요 없어 안정성이 보장된다. 특히, 선형 위상 특성의 스펙을 만족하므로 파형 전송 등의 응용에 널리 이용되고 있다. 그러나, 유한 임펄스 응답 필터로 무한 임펄스 응답 필터와 동일한 정도의 진폭 특성을 얻으려고 하면 차수가 더 커져서 가산기와 승산기 등 하드웨어에 있어서는 부담이 더 생긴다.
유한 임펄스 응답 필터를 설계할 때 주파수 영역에서의 설계 방법 및 시간 영역에서의 설계 방법의 두 가지가 있으며, 주파수 영역에서의 설계 시 윈도우 함수 방법 및 주파수 샘플링 방법 등이 많이 이용된다.
한편, 시간 영역에서 설계할 경우 임펄스 응답은 유한 임펄스 응답 필터의 계수에 대응하므로 주파수 영역에서의 설계보다 간단하며, 전달 함수를 근사화하는 방법으로는 선형 계획법이 많이 알려져 있는데 최적해가 존재할 경우에는 유한 계산해를 최적해를 구할 수 있다.
특히, 유한 임펄스 응답 필터는 자신의 출력의 유한성이 데시메이션(Decimation)된 출력을 만들지 않는 계산, 또는 인터폴레이션(Interpolation)된 출력에서 예측 가능한 값을 갖는 계산이 생략되는 것을 허용하므로 소위 멀티 레이트 응용, 예를 들어 신호의 샘플링 레이트를 높이거나 낮추기 위하여 인터폴레이션 되거나 데시메이션 되는 경우에 있어서 계산적으로 효율적이다.
필터에서 감쇠 특성은 통과 대역과 저지 대역 사이에서 필터 응답 트랜지션(Transition)의 정도를 나타내는 척도이다. 이상적으로는 필터의 감쇠 특성이 가파를수록 양호한 것이나, 이와 같은 필터의 감쇠 특성은 필터의 탭(Tap) 수와 트레이드 오프(Trade Off) 관계에 있다.
즉, 양호한 감쇠 특성을 확보하려면 그에 상응하여 많은 수의 필터 탭 수를 요구하게 되는 것이다. 필터의 탭 수는 필터의 제조 가격에 결정적인 영향을 미치는 요소로서 양호한 감쇠 특성을 확보하려면 필터의 가격이 증가할 수밖에 없게 된다.
또한, 기존의 디지털 필터는 필터 칩에 필터 계수 및 탭 수가 고정되어 있어 통과 대역을 유동적으로 조절하는 것이 사실상 불가능한 문제점이 있었다.
본 발명은 적은 탭 수로 양호한 감쇠 특성을 가지는 디지털 필터를 제안한다.
또한, 본 발명은 적은 탭 수로 양호한 스커트 특성을 구현하되 필터의 통과 대역을 단순한 파라미터 변경으로 변화시킬 수 있는 디지털 필터를 제공한다.
본 발명의 일 측면에 따르면, 모델 필터 응답에 대해 샘플링 상수에 의해 스케일링되는 샘플링 커널을 적용하여 업샘플링을 수행하는 개선된 감쇠 특성을 가지는 디지털 필터가 제공된다.
상기 샘플링 커널은 싱크 함수를 이용한 샘플링 상수에 의해 스케일링되는 커널인 것이 바람직하다.
상기 싱크 함수를 이용한 샘플링 커널은 다음의 수학식과 같다.
Figure PCTKR2011001408-appb-I000001
위 수학식에서
Figure PCTKR2011001408-appb-I000002
는 샘플링 상수이고
Figure PCTKR2011001408-appb-I000003
는 샘플링 커널임.
상기 업샘플링은 다음의 수학식과 같이 수행된다.
Figure PCTKR2011001408-appb-I000004
위 수학식에서
Figure PCTKR2011001408-appb-I000005
은 샘플링 커널이고
Figure PCTKR2011001408-appb-I000006
은 모델 필터 응답임.
상기 샘플링 상수는 다음의 수학식에 의해 결정될 수 있다.
Figure PCTKR2011001408-appb-I000007
위 수학식에서
Figure PCTKR2011001408-appb-I000008
는 통과 대역의 주파수이고
Figure PCTKR2011001408-appb-I000009
는 저지 대역의 주파수임.
본 발명의 다른 측면에 따르면, 입력 신호를 샘플링 상수에 상응하여 지연시키는 지연부; 상기 지연부의 출력 신호에 대해 필터링을 수행하는 필터부를 포함하되, 상기 지연부 및 필터부의 응답은 상기 필터부의 필터 응답에 대해 샘플링 상수에 의해 스케일링되는 샘플링 커널에 의한 업샘플링이 이루어지도록 설정되는 개선된 감쇠 특성을 가지는 디지털 필터가 제공된다.
본 발명의 또 다른 측면에 따르면, 모델 필터 응답에 대해 샘플링 상수에 의해 스케일링 되는 업샘플링을 수행하고 상기 업샘플링된 모델 필터 응답이 일정 주기를 가지고 반복되는 멀티 이미지 응답을 생성하기 위한 샘플링 커널 저장부; 상기 멀티 이미지가 생성되지 않은 주파수 영역에 상기 일정 주기를 가지고 반복되며 상기 멀티 이미지와 동일한 특성을 가지는 멀티 컴플리멘터리 이미지 응답을 생성하기 위한 컴플리멘터리 변환부; 및 상기 멀티 컴플리멘터리 이미지 및 상기 멀티 이미지 중 선택된 대역에 상응하는 이미지의 응답을 연산하는 이미지 응답 연산부를 포함하는 개선된 감쇠 특성을 가지는 디지털 필터가 제공된다.
본 발명의 디지털 필터는 적은 탭 수로 양호한 감쇠 특성을 가지는 것이 가능하며, 필터의 통과 대역을 단순한 파라미터 변경으로 변화시킬 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 업샘플링을 수행하였을 경우 모델 필터 응답의 변화를 도시한 도면.
도 2는 본 발명의 제1 실시예에 따른 디지털 필터 장치의 모듈 구성을 도시한 블록도.
도 3은 일반적인 필터의 내부 모듈 구성을 도시한 도면.
도 4는 본 발명의 제1 실시예에 따른 주파수 재구성이 가능한 디지털 필터의 구성을 도시한 블록도.
도 5는 본 발명의 제2 실시예에 따른 주파수 재구성이 가능한 디지털 필터의 구성을 도시한 블록도.
도 6은 지연부 및 필터부에 의해 업샘플링을 수행하는 필터의 개념적인 모듈을 도시한 도면.
도 7은 본 발명의 일 실시예에 따라 생성되는 멀티 이미지 및 멀티 컴플리멘터리 이미지의 일례를 도시한 도면.
도 8은 본 발명의 일 실시예에 따른 L 값의 변화에 따른 멀티 이미지의 변화를 도시한 도면.
도 9는 본 발명의 일 실시예에 따른 L 값의 변화에 따른 멀티 컴플리멘터리 이미지의 변화를 도시한 도면.
이하, 본 발명의 실시예를 첨부한 도면들을 참조하여 상세히 설명하기로 한다. 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
(1) 업샘플링
본 발명에서 업샘플링은 모델 필터에 샘플링 커널을 적용하여 감쇠 특성을 개선하는 일련의 절차를 의미한다. 모델 필터는 특정 필터링 특성을 가지도록 설계된 필터 함수로서 하드웨어로 구현될 수도 있고 소프트웨어로 구현될 수도 있다.
본 발명에서 업샘플링은 필터의 특성 중 통과 대역의 기울기에 해당되는 감쇠 특성을 보다 양호하게 하기 위해 수행되며, 부가적으로 업샘플링을 통해 대역폭이 조절될 수도 있다.
감쇠 특성을 좋게(통과 대역의 기울기를 크게) 설계하는 것이 가장 이상적인 필터 설계라 할 수 있으나, 감쇠 특성을 개선시키려면 많은 수의 계수가 필터 설계에 적용되어야 하고 이는 많은 수의 탭이 필터에 필요하게 된다는 것을 의미한다.
필터의 탭 수가 증가하게 되면 하드웨어로 필터가 제조될 때 필터의 가격 및 사이즈가 증가하게 되며, 소프트웨어로 필터가 구현될 때 많은 계산량을 필요료 한다는 것을 의미하는데, 감쇠 특성과 탭 수는 서로 트레이드 오프(Trade Off) 관계에 있다.
본 발명에서는 비교적 적은 탭수를 가지는 모델 필터 함수에 대해 업샘플링을 수행하여 감쇠 특성을 양호하게 하고 필요에 따라 모델 필터의 대역폭을 조절하는 방식을 사용한다.
본 발명의 바람직한 실시예에 따르면, 업샘플링은 샘플링 상수
Figure PCTKR2011001408-appb-I000010
에 의해 스케일링되는 샘플링 커널을 이용하여 이루어진다.
샘플링 커널을
Figure PCTKR2011001408-appb-I000011
라고 정의하고
Figure PCTKR2011001408-appb-I000012
를 샘플링 상수로 정의하고, 길이가 N인 유한 임펄스 응답 필터 응답을
Figure PCTKR2011001408-appb-I000013
이라 할 때, 본 발명에 의한 샘플링 상수에 의해 스케일링되는 업샘플링은 다음의 수학식 1과 같이 수행될 수 있다.
수학식 1
Figure PCTKR2011001408-appb-M000001
위 수학식1에서
Figure PCTKR2011001408-appb-I000014
은 업샘플링에 의해 최종적으로 양호한 감쇠 특성을 가지는 필터 응답이다.
한편, 위 수학식 1에서 샘플링 커널은 다양한 형태를 가질 수 있다. 가장 이상적인 케이스 중 하나로 샘플링 커널은 Sinc 함수의 형태를 가질 수 있으나 이에 한정되는 것은 아니며 다양한 형태의 함수가 샘플링 커널에 적용될 수 있음은 당업자에게 있어 자명할 것이다.
일례로, 다음의 수학식 2와 같이 Sinc함수를 비롯한 다양한 형태의 적응적 윈도우 함수 형태를 가질 수도 있으며, 그 외에도 다양한 함수가 적용될 수 있다.
수학식 2
Figure PCTKR2011001408-appb-M000002
위 수학식 2에서, 두번째 수학식은 raised-cosine을 사용한 것으로 R은 roll-off 상수이며, 필터의 대역폭을 결정하는 기준이 된다. 위 수학식 2에서 세번째 수학식은 Kaiser를 사용한 것으로서, I0는 zeroth order modified Bessel function of the first kind,
Figure PCTKR2011001408-appb-I000015
는 윈도우의 모양을 결정하는 임의의 real number, M은 sequence의 길이이다.
네 번째 수식은 Dolph-Chebychev를 사용한 것이다. 세 번째 수식에서,
Figure PCTKR2011001408-appb-I000016
는 side-lobe를 조절할 수 있는 파라미터이다.
도 1은 본 발명의 일 실시예에 따른 업샘플링을 수행하였을 경우 모델 필터 응답의 변화를 도시한 도면이다.
도 1에서 (a)는 업샘플링전 모델 필터의 응답이며, (b)는 업샘플링후의 필터 응답을 도시한 것이다.
도 1를 참조하면, 업샘플링 전의 모델 필터 함수와 비교할 때 통과 대역 및 저지 대역에서의 트랜지션(Transition) 기울기가 커져 감쇠 특성이 양호해졌음을 확인할 수 있다.
위 수학식 1에서 샘플링 상수
Figure PCTKR2011001408-appb-I000017
로 정수를 사용할 경우, 위 수학식 1은 다음의 수학식 3과 같이 콘볼루션(Convolution) 형태로 표현될 수 있다. 즉, 업샘플링을 단순한 콘볼루션 연산에 의해 수행함으로써 기존의 필터 디자인에 비해 연산량을 줄일 수 있는 것이다.
수학식 3
Figure PCTKR2011001408-appb-M000003
본 발명에 의한 업샘플링 방식에서
Figure PCTKR2011001408-appb-I000018
Figure PCTKR2011001408-appb-I000019
의 인접한 필터 계수 사이에
Figure PCTKR2011001408-appb-I000020
개의 0을 끼워넣는 형태로 변경되고, 수학식 3에서와 같이 실제 연산은
Figure PCTKR2011001408-appb-I000021
의 계수만으로 이루어지므로 샘플링 레이트나 계산량이 증가하지는 않는다.
한편, 샘플링 상수
Figure PCTKR2011001408-appb-I000022
를 설정함에 있어 최적의 계산량을 가지도록 최적 샘플링 상수를 구할 수 있다. 다음의 수학식 4는 최적 샘플링 상수를 구하기 위한 일례로서,
Figure PCTKR2011001408-appb-I000023
는 통과 대역의 주파수이고
Figure PCTKR2011001408-appb-I000024
는 저지 대역의 주파수이다. 이때 얻어진 샘플링 상수에 가장 근사한 정수를
Figure PCTKR2011001408-appb-I000025
로 결정하여 적용하는 것이 전체적인 연산에 있어 가장 큰 효율을 보일 수 있다.
수학식 4
Figure PCTKR2011001408-appb-M000004
(2) 지연을 이용한 감쇠 특성이 개선된 필터 구성의 일례
도 2는 본 발명의 제1 실시예에 따른 디지털 필터 장치의 모듈 구성을 도시한 블록도이다.
도 2를 참조하면, 본 발명의 제1 실시예에 따른 디지털 필터 장치는 지연부(200) 및 필터부(202)를 포함할 수 있다.
지연부(200)는 필터로 입력되는 입력 신호를 미리 설정된 시간 간격만큼 지연시키는 기능을 한다. 지연부(200)와 필터부(202)는 필터의 감쇠 특성을 개선시키기 위한 업샘플링 모듈로 동작하며, 지연부(200)는 업샘플링을 위해 설정된 샘플링
상수(
Figure PCTKR2011001408-appb-I000026
)에 상응하여 입력 신호를 지연시킨다.
지연부(200)에서 입력 신호를 샘플링 상수(
Figure PCTKR2011001408-appb-I000027
)에 상응하여 지연시키는 것은 입력 신호의 중간에 샘플링 상수에 상응하는 0을 삽입하여 보간 작업을 수행하는 것과 동일한 효과를 가져온다.
한편, 샘플링 상수
Figure PCTKR2011001408-appb-I000028
를 설정함에 있어 최적의 계산량을 가지도록 최적 샘플링 상수를 구할 수 있으며, 위 수학식 4에 의해 샘플링 상수
Figure PCTKR2011001408-appb-I000029
를 설정할 수 있을 것이다.
물론 샘플링 상수
Figure PCTKR2011001408-appb-I000030
는 위의 최적 수학식을 따르지 않고 원하는 감쇠 특성을 가지도록 다른 값으로 설정될 수도 있을 것이다.
필터부(202)는 지연부(200)의 출력 신호에 대한 필터링을 수행한다. 필터부(102)는 일반적인 필터 칩과 같이 다수의 지연기 및 덧셈기를 포함하고 있어 입력 신호에 대한 필터링을 수행한다.
전술한 바와 같이, 입력 신호를 샘플링 상수에 상응하여 지연시키고 이에 대한 필터링을 수행할 경우 실질적으로 인터폴레이션을 수행한 것과 동일한 결과를 가져올 수 있으며 이때, 지연부 및 필터부에서 사용되는 필터 응답(
Figure PCTKR2011001408-appb-I000031
)은 다음의 수학식 5와 같이 표현될 수 있다.
수학식 5
Figure PCTKR2011001408-appb-M000005
도 3은 일반적인 필터의 내부 모듈 구성을 도시한 도면이며, 도 6은 지연부 및 필터부에 의해 업샘플링을 수행하는 필터의 개념적인 모듈을 도시한 도면이다.
도 3을 참조하면, 일반적인 필터는 다수의 지연기(
Figure PCTKR2011001408-appb-I000032
)를 포함하며, 다수의 필터 계수(h0, h1, h2,.....)가 설정되어 있다.
한편, 샘플링 상수
Figure PCTKR2011001408-appb-I000033
에 상응하는 0을 삽입하여 업샘플링을 수행하는 본 발명은
Figure PCTKR2011001408-appb-I000034
에 상응하여 신호를 지연시킴으로써 필터 응답이 실질적으로 수학식 5와 같이 이루어지도록 동작하는 것이다.
이와 같은 업샘플링 방식이 이용될 경우, 필터부에 사용되는 필터의 탭 수에 비해 보다 양호한 감쇠 특성을 확보하는 것이 가능하다. 예를 들어, 필터의 탭 수가 N으로 고정되어 있다고 할지라도 본 발명에 의하면,
Figure PCTKR2011001408-appb-I000035
이상의 탭이 사용될 경우와 동일한 감쇠 특성을 확보할 수 있게 된다.
도 2에 도시된 지연부를 이용한 업샘플링은 본 발명에서 제안되는 샘플링 커널을 적용하는 일례이며, 수학식 1 및 수학식 2의 샘플링 커널을 소프트웨어적인 연산을 통해 적용하여 업샘플링을 수행할 수도 있을 것이며, 이를 통해 도 1과 같이 개선된 감쇠 특성을 가지는 필터 특성을 확보하는 것이 가능하다.
(3)멀티 이미지 및 멀티 컴플리멘터리 이미지
본 발명의 필터는 다양한 통과 대역을 선택할 수 있도록 업샘플링된 필터 응답에 대해 다수의 이미지를 생성하도록 동작할 수 있다. 본 발명에서 사용되는 “이미지”는 필터의 주파수 도메인 그래프에서 특정 통과 대역을 형성하는 객체를 의미하며, 특정 밴드와 동일한 의미로 해석할 수 있으며, 본 실시예에서는 이미지란 용어를 사용하기로 하며, 이는 특정 밴드와 동일하게 이해될 수 있다.
모델 필터 응답은 일반적으로 기저 대역에 대한 필터링 응답을 가지고 있으며, 따라서, 업샘플링된 모델 필터 응답은 저주파 대역에서 하나의 이미지만을 가지고 있다.
본 발명에서는 이와 같이 단일 이미지를 가지는 업생플링된 필터 응답이 다수의 이미지를 가지도록 변환하는 기능을 제공하며, 이는 이와 같은 변환을 통해 필터 응답이 다수의 통과 대역을 가지도록 한다는 것을 의미한다. 본 발명에서는 해당 변환을 통해 발생하는 다수의 이미지를 “멀티 이미지”라고 정의하며, 다수의 멀티 이미지가 소정 주기를 가지고 반복적으로 생성된다.
다수의 멀티 이미지는 기저 대역의 이미지를 기준으로 생성되며, 다수의 이미지(다수의 통과 대역)는 기적 대역의 이미지와 동일한 특성을 가지고 있다. 즉, 저역 통과 대역의 이미지가 대역폭이 W이고 감쇠 특성이 C이고 크기가 A일 경우, 다수개 형성된 멀티 이미지 역시 대역폭이 W이고 감쇠 특성이 C이며 크기가 A인 동일한 특성을 가지고 있는 것이다.
저역 통과 대역 이미지를 기준으로 생성되는 다수의 이미지들은 일정한 주기를 가지고 있으며, 이때 주기는 저역 통과 대역 이미지의 대역폭과 연관성이 있다.
예를 들어, 저역 통과 대역 이미지가 -W에서 W까지의 2W의 대역폭을 가진다고 할 때, 멀티 이미지들은 2W의 주기를 가지고 저역 통과 이미지와 동일한 형태로 반복적으로 형성되는 것이다.
따라서, -W에서 W의 2W의 대역폭을 가진 저역 통과 대역 이미지가 있을 때, 3W에서 5W 대역에서 제2 멀티 이미지가 생성되고, 7W에서 9W 대역에서 제3 멀티 이미지를 생성하는 방식으로 다수의 멀티 이미지들이 생성된다.
도 7은 본 발명의 일 실시예에 따라 생성되는 멀티 이미지 및 멀티 컴플리멘터리 이미지의 일례를 도시한 도면이다.
도 7에서 (a)는 수학식 1의 응답을 주파수 도메인에서 도식화한 것이며, (b)는 (a)의 응답에 대한 멀티 이미지를 도시한 것이다. 도 7에 도시된 바와 같이, 업샘플링된 모델 필터 응답과 동일한 이미지가 일정한 주기를 가지고 반복적으로 형성된다.
업샘플링된 기적 대역의 모델 필터 응답에 대해 다수의 멀티 이미지를 생성하는 것은 일종의 IDTFT 변환을 수행하여 구현될 수 있으며, 이는 다음의 수학식 6과 같다.
수학식 6
Figure PCTKR2011001408-appb-M000006
위 수학식 6에서 단일 저역 통과 필터는 원하는 개수만큼의 다수의 이미지들로 이루어진 형태로 확장될 수 있다. L을 이미지의 개수(이미지 번호)라고 할 때 IDTFT 변환에 의해 다수의 멀티 이미지를 가지는 필터 응답인
Figure PCTKR2011001408-appb-I000036
은 다음의 수학식 6과 같이 표현될 수 있다.
수학식 7
Figure PCTKR2011001408-appb-M000007
위 수학식 7에서, 샘플링 커널
Figure PCTKR2011001408-appb-I000037
에 Sinc 함수가 적용될 경우샘플링 커널은 다음의 수학식 8과 같이 표현될 수 있다.
수학식 8
Figure PCTKR2011001408-appb-M000008
위 수학식 7 및 수학식 8에서 L이 0일 경우에는 멀티 이미지가 생성되지 않으나, L이 그 외의 정수값을 가질 경우 해당 정수에 상응하는 멀티 이미지가 생성된다.
위 수학식 7을 주파수 응답으로 표현하면 다음의 수학식 9와 같이 표현될 수 있다.
수학식 9
Figure PCTKR2011001408-appb-M000009
전술한 바와 같이, 이와 같은 멀티 이미지들의 형태는 업샘플링된 모델 필터 응답과 동일하며, 그 주기는 업샘플링된 모델 필터 응답의 대역폭에 상응한다.
결국, 모델 필터에 대해 수학식 7 및 수학식 8에 의한 샘플링 커널을 적용하게 되면, 업샘플링 및 다수의 멀티 이미지 생성이 함께 이루어질 수 있게 된다. 수학식 7 및 수학식 8에 의한 샘플링 커널은 업샘플링과 멀티 이미지의 생성을 동시에 하기 위한 샘플링 커널로서 감쇠 특성 개선만을 위한 수학식 1 및 수학식 2에 의한 샘플링 커널과는 구별되며, 수학식 7 및 수학식 8의 샘플링 커널 적용을 통해 감쇠 특성의 개선과 멀티 이미지의 생성이 함께 이루어질 수 있다.
도 8은 본 발명의 일 실시예에 따른 L 값의 변화에 따른 멀티 이미지의 변화를 도시한 도면이다.
도 8을 참조하면, 샘플링 커널의 파라미터인 이미지 번호 L을 조절함으로써 생성되는 멀티 이미지의 개수를 조절할 수 있다.
도 8에 도시된 바와 같이, L이 1일 경우 한 개의 추가적인 멀티 이미지가 생성되고 L이 3일 경우 세 개의 추가적인 멀티 이미지가 생성된다. 이때, L은 사용자에 의해 선택되어질 수 있다.
한편, 본 발명에서는 기저 대역의 이미지를 기준으로 한 멀티 이미지와는 별개로 멀티 이미지와는 반대되는 주파수 영역에 다수의 컴플리멘터리 이미지를 생성한다.
즉, 컴플리멘터리 이미지는 멀티 이미지가 형성되지 않는 주파수 영역에 형성되는 이미지를 말하며, 도 7을 참조하면, 멀티 이미지가 형성되지 않는 W-3W 영역 및 5W-7W 영역 등에 멀티 컴플리멘터리 이미지가 형성된다.
멀티 컴플리멘터리 이미지 역시 모델 필터 응답에 의한 저역 통과 이미지와 동일한 특성을 가지고 있으며, 저역 통과 이미지의 대역폭과 동일한 주기를 가지고 반복적으로 형성된다.
멀티 컴플리멘터리 이미지는 모델 필터 응답을 z 도메인에서
Figure PCTKR2011001408-appb-I000038
만큼 지연시킴으로써 획득할 수 있으며(여기서 N은 모델 필터의 길이임), 이는 다음의 수학식 10과 같이 표현될 수 있다.
수학식 10
Figure PCTKR2011001408-appb-M000010
최종적으로, 멀티 컴플리멘터리 이미지는 다음의 수학식 11을 통해 구해질 수 있으며, 멀티 컴플리멘터리 이미지의 개수 역시 L 값에 의해 정해질 수 있다.
수학식 11
Figure PCTKR2011001408-appb-M000011
위 수학식 11에서 멀티 컴플리멘터리 이미지를 위한 샘플링 커널로 Sinc 함
수가 적용될 때 샘플링 커널은 다음의 수학식 12와 같이 표현될 수 있다.
수학식 12
Figure PCTKR2011001408-appb-M000012
또한, 수학식 11을 주파수 응답으로 표현하면 다음의 수학식 13과 같이 표현될 수 있다.
수학식 13
Figure PCTKR2011001408-appb-M000013
멀티 컴플리멘터리 이미지의 개수 역시 이미지 번호인 L을 조절함으로써 조절할 수 있다.
도 9는 본 발명의 일 실시예에 따른 L 값의 변화에 따른 멀티 컴플리멘터리 이미지의 변화를 도시한 도면이다.
도 9를 참조하면, L이 0인 경우에는 멀티 컴플리멘터리 이미지가 생성되지 않고 L값과 동일한 수의 멀티 컴플리멘터리 이미지가 생성되는 것을 확인할 수 있다.
(4) 이미지 응답 연산
멀티 이미지 및 멀티 컴플리멘터리 이미지의 생성이 수학식 7 및 수학식 11을 통해 이루어지면, 통과 대역에 상응하는 이미지를 선택하여 통과 대역에 대한 응답을 설정하는 과정이 이루어진다.
다수의 멀티 이미지 및 멀티 컴플리멘터리 이미지 중 원하는 통과 대역에 상응하는 이미지 또는 멀티 컴플리멘터리 이미지가 선택되면, 각 이미지의 응답을 연산한다.
예를 들어, 7W-9W의 대역에 대한 밴드 패스 필터가 필요할 경우, 이는 도 5에서 2번째 멀티 이미지와 동일한 대역이며, 2번째 멀티 이미지에 대한 응답을 생성한다.
선택된 L 번째 멀티 이미지에 대한 응답은 멀티 이미지에 대한 응답인 수학식 7에서 L을 대입한 식으로부터 L-1을 대입한 식을 차감함으로써 구할 수 있다. 위의 예에서 2번째 멀티 이미지에 대한 필터 응답은 L=2로 설정된 수학식 7의 응답식에서 L=1로 설정된 수학식 7의 응답식을 차감하여 구할 수 있다.
L번째 이미지에 상응하는 필터 응답은 다음의 수학식 14와 같이 표현될 수 있다.
수학식 14
Figure PCTKR2011001408-appb-M000014
이와 같은 방식은 특정 멀티 컴플리멘터리 이미지에 대한 응답을 구할 때도 동일하게 적용된다.
L 번째 멀티 컴플리멘터리 이미지에 대한 필터 응답은 수학식 11에서 L을 대입한 식으로부터 L-1을 대입한 식을 차감함으로써 구할 수 있으며, 이는 다음의 수학식 15와 같이 표현될 수 있다.
수학식 15
Figure PCTKR2011001408-appb-M000015
(4) 최종 필터 응답
본 발명은 선택된 각 이미지 또는 컴플리멘터리 이미지에 대한 응답을 합산하여 최종적인 필터 응답을 생성한다. 광대역의 필터 응답 또는 멀티 밴드에 대한 필터 응답이 필요할 때, 다수의 이미지 또는 컴플리멘터리 이미지가 선택되며, 최종적인 필터 응답은 각 이미지 또는 컴플리멘터리 이미지의 필터 응답을 합산함으로써 구해진다.
예를 들어, 멀티 이미지의 2번째 이미지 및 3번째 이미지 각각에 상응하는 멀티 밴드 패스 필터가 요구될 때, 2번째 이미지 및 3번째 이미지 각각의 필터 응답을 합산함으로써 최종적인 필터 응답을 구할 수 있게 된다.
필터의 구성
(1) 제1 실시예
도 4는 본 발명의 제1 실시예에 따른 주파수 재구성이 가능한 디지털 필터의 구성을 도시한 블록도이다.
도 4를 참조하면, 본 발명의 제1 실시예에 따른 주파수 재구성이 가능한 디지털 필터는 업샘플링부(400), 멀티 이미지 생성부(402), 멀티 컴플리멘터리 이미지 생성부(404), 이미지 응답 연산부(406) 및 필터 응답 연산부(408)를 포함할 수 있다.
업샘플링부(400)는 모델 필터에 샘플링 상수에 의해 스케일링되는 샘플링 커널을 적용하여 모델 필터의 특성을 양호하게 한다. 모델 필터에 대한 업샘플링은 수학식 1과 같이 모델 필터 함수에 대해 샘플링 상수 α에 의해 스케일링되는 샘플링 커널을 곱하여 수행될 수 있으며, 샘플링 상수 α값에 따라 필터의 감쇠 특성 및 대역폭이 변화된다. α는 원하는 대역폭 및 감쇠 특성에 따라 적절히 선택될 수 있다.
멀티 이미지 생성부(402)는 업샘플링된 모델 필터 응답에 대해 다수의 통과 대역에 상응하는 멀티 이미지에 대한 응답을 생성하고 멀티 컴플리멘터리 이미지 생성부(404)는 업샘플링된 모델 필터 응답에 대해 멀티 이미지의 통과 대역과 반대되는 주파수 영역에 다수의 멀티 컴플리멘터리 이미지에 대한 응답을 생성한다.
전술한 바와 같이, 멀티 이미지와 멀티 컴플리멘터리 이미지는 업샘플링된 모델 필터 응답과 동일한 특성을 가지되 서로 다른 주파수 영역에 통과 대역을 형성한다.
멀티 이미지는 업샘플링된 모델 필터 응답에 대해 수학식 6과 같은 변환을 통해 생성될 수 있으며, 멀티 컴플리멘터리 이미지는 수학식 9와 같은 컴플리멘터리 변환식 또는 수학식 10을 이용하여 생성될 수 있다.
본 제1 실시예에는 업샘플링 및 멀티 이미지와 멀티 컴플리멘터리 이미지의 생성이 순차적인 과정으로 기술되었으나, 수학식6, 수학식 9 또는 수학식 10을 이용하여 업샘플링 및 멀티 이미지와 멀티 컴플리멘터리 이미지의 생성에 대한 응답이 한번에 구해질 수 있다는 점은 당업자에게 있어 자명할 것이다.
이미지 응답 연산부(406)는 사용자가 선택한 이미지 또는 컴플리멘터리 이미지에 대한 응답을 연산한다. 특정 통과 대역이 선택되면, 이미지 응답 연산부(406)는 선택된 각 이미지에 대한 응답을 연산한다.
전술한 바와 같이, 이미지에 대한 필터 응답은 L번째까지 멀티 이미지가 생성되도록 변환된 응답식으로부터 (L-1)번째까지 멀티 이미지가 생성되도록 변환된 응답식을 차감함으로써 구할 수 있으며, 멀티 이미지 및 멀티 컴플리멘터리 이미지에 대한 각각의 이미지 응답은 각각 수학식 13 및 수학식 14와 같다.
필터 응답 연산부(408)는 선택된 각각의 이미지에 대한 이미지 응답을 합산하여 최종적인 필터 응답을 연산하며, 이를 통해 주파수가 재구성된 필터 응답을 클로즈드-폼 형태로 구할 수 있게 된다. 만일 하나의 이미지만 선택될 경우 해당 이미지의 응답이 최종적인 필터 응답이 되며, 별도의 합산 절차는 요구되지 않는다.
(2)제2 실시예
도 5는 본 발명의 제2 실시예에 따른 주파수 재구성이 가능한 디지털 필터의 구성을 도시한 블록도이다.
제2 실시예는 본 발명의 실시예에 따른 필터가 소프트웨어로 구현될 경우의 필터의 구성을 모듈로 표현한 것으로서 제1 실시예의 필터를 다른 관점에서 블록도로 표현한 것이다.
도 5를 참조하면, 본 발명의 제2 실시예에 따른 주파수 재구성이 가능한 디지털 필터는 모델 필터 응답 저장부(500), 샘플링 커널 저장부(502), 컴플리멘터리 변환부(504), 이미지 응답 연산부(506) 및 필터 응답 연산부(508)를 포함할 수 있다.
모델 필터 응답 저장부(500)는 특정 탭수 및 계수를 가지는 모델 필터 응답을 저장한다.
샘플링 커널 저장부(502)는 업샘플링 및 멀티 이미지의 생성에 적용되는 샘플링 상수에 의해 스케일링되며 이미지 넘버 L을 변수로 가진 샘플링 커널 응답을 저장한다. 샘플링 커널로 Sinc 함수가 사용될 때, 수학식 7과 같은 샘플링 커널이 샘플링 커널 저장부(502)에 저장될 수 있으며, Sinc 함수 이외에도 수학식 2에 예시된 것과 같은 다양한 샘플링 커널이 활용될 수 있다.
컴플리멘터리 변환부(504)는 멀티 컴플리멘터리 이미지 생성을 위한 컴플리멘터리 변환을 수행한다. 컴플리멘터리 변환은 수학식 9와 같은 변환식을 통해 이루어질 수도 있으며, 컴플리멘터리 이미지를 위한 모델 필터 응답과 샘플링 커널을 별도로 저장하여 멀티 컴플리멘터리 이미지를 생성할 수도 있다.
이미지 응답 연산부(506)는 선택된 통과 대역에 상응하는 이미지에 대한 응답을 연산한다. 멀티 이미지가 선택된 경우, 저장된 모델 필터 응답 및 저장된 샘플링 상수 및 이미지 넘버를 변수로 하는 샘플링 커널을 이용하여 수학식 6 및 수학식 13과 같은 방법을 통해 선택된 이미지에 상응하는 필터 응답을 연산한다.
또한, 멀티 컴플리멘터리 이미지 중 특정 컴플리멘터리 이미지가 선택된 경우, 저장된 모델 필터 응답, 저장된 샘플링 상수 및 이미지 넘버를 변수로 하는 샘플링 커널과 컴플리멘터리 변환을 통해 수학식 10 및 수학식 14와 같은 방법을 통해 선택된 컴플리멘터리 이미지에 상응하는 필터 응답을 연산한다.
필터 응답 연산부(508)는 선택된 각각의 이미지에 대한 이미지 응답을 합산하여 최종적인 필터 응답을 연산하며, 이를 통해 주파수가 재구성된 필터 응답을 클로즈드-폼 형태로 구할 수 있게 된다. 만일 하나의 이미지만 선택될 경우 해당 이미지의 최종적인 필터 응답이 되며, 별도의 합산 절차는 요구되지 않는다.
상기에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (14)

  1. 모델 필터 응답에 대해 샘플링 상수에 의해 스케일링되는 샘플링 커널을 적용하여 업샘플링을 수행하는 것을 특징으로 하는 개선된 감쇠 특성을 가지는 디지털 필터.
  2. 제1항에 있어서,
    상기 샘플링 커널은 싱크 함수를 이용한 샘플링 상수에 의해 스케일링되는 커널인 것을 특징으로 하는 개선된 감쇠 특성을 가지는 디지털 필터.
  3. 제1항에 있어서,
    상기 싱크 함수를 이용한 샘플링 커널은 다음의 수학식과 같은 것을 특징으로 하는 개선된 감쇠 특성을 가지는 디지털 필터.
    Figure PCTKR2011001408-appb-I000039
    위 수학식에서
    Figure PCTKR2011001408-appb-I000040
    는 샘플링 상수이고
    Figure PCTKR2011001408-appb-I000041
    는 샘플링 커널임.
  4. 제1항에 있어서,
    상기 업샘플링은 다음의 수학식과 같이 수행되는 것을 특징으로 하는 개선된 감쇠 특성을 가지는 디지털 필터.
    Figure PCTKR2011001408-appb-I000042
    위 수학식에서
    Figure PCTKR2011001408-appb-I000043
    은 샘플링 커널이고
    Figure PCTKR2011001408-appb-I000044
    은 모델 필터 응
    답임.
  5. 제1항에 있어서, 상기 샘플링 상수는 다음의 수학식에 의해 결정되는 것을 특징으로 하는 개선된 감쇠 특성을 가지는 디지털 필터.
    Figure PCTKR2011001408-appb-I000045
    위 수학식에서
    Figure PCTKR2011001408-appb-I000046
    는 통과 대역의 주파수이고
    Figure PCTKR2011001408-appb-I000047
    는 저지 대역의 주파
    수임.
  6. 입력 신호를 샘플링 상수에 상응하여 지연시키는 지연부;
    상기 지연부의 출력 신호에 대해 필터링을 수행하는 필터부를 포함하되, 상기 지연부 및 필터부의 응답은 상기 필터부의 필터 응답에 대해 샘플링 상수에 의해 스케일링되는 샘플링 커널에 의한 업샘플링이 이루어지도록 설정되는 것을 특징으로 하는 개선된 감쇠 특성을 가지는 디지털 필터.
  7. 제6항에 있어서,
    상기 샘플링 커널은 싱크 함수를 이용하며 다음의 수학식과 같이 설정되는 것을 특징으로 하는 개선된 감쇠 특성을 가지는 디지털 필터.
    Figure PCTKR2011001408-appb-I000048
    위 수학식에서
    Figure PCTKR2011001408-appb-I000049
    는 샘플링 상수이고
    Figure PCTKR2011001408-appb-I000050
    는 샘플링 커널임.
  8. 제6항에 있어서,
    상기 샘플링 상수는 다음의 수학식에 의해 결정되는 것을 특징으로 하는 개선된 감쇠 특성을 가지는 디지털 필터.
    Figure PCTKR2011001408-appb-I000051
    위 수학식에서
    Figure PCTKR2011001408-appb-I000052
    는 통과 대역의 주파수이고
    Figure PCTKR2011001408-appb-I000053
    는 저지 대역의 주파
    수임.
  9. 모델 필터 응답에 대해 샘플링 상수에 의해 스케일링 되는 업샘플링을 수행하고 상기 업샘플링된 모델 필터 응답이 일정 주기를 가지고 반복되는 멀티 이미지 응답을 생성하기 위한 샘플링 커널 저장부;
    상기 멀티 이미지가 생성되지 않은 주파수 영역에 상기 일정 주기를 가지고 반복되며 상기 멀티 이미지와 동일한 특성을 가지는 멀티 컴플리멘터리 이미지 응답을 생성하기 위한 컴플리멘터리 변환부; 및
    상기 멀티 컴플리멘터리 이미지 및 상기 멀티 이미지 중 선택된 대역에 상응하는 이미지의 응답을 연산하는 이미지 응답 연산부를 포함하는 것을 특징으로 하는 개선된 감쇠 특성을 가지는 디지털 필터.
  10. 제9항에 있어서,
    선택된 대역이 다수의 멀티 이미지 또는 멀티 컴플리멘터리 이미지에 대응될 경우 상기 선택된 대역에 상응하는 각 이미지의 응답을 합산하여 필터 응답을 생성하는 필터 응답 연산부를 더 포함하는 것을 특징으로 하는 개선된 감쇠 특성을 가지는 디지털 필터.
  11. 제9항에 있어서,
    상기 샘플링 커널
    Figure PCTKR2011001408-appb-I000054
    은 샘플링 상수 및 멀티 이미지 넘버를
    변수로 포함하며, 다음의 수학식과 같은 것을 특징으로 하는 개선된 감쇠 특성을 가지는 디지털 필터.
  12. 제11항에 있어서,
    상기 샘플링 커널
    Figure PCTKR2011001408-appb-I000055
    은 다음의 수학식을 포함하는 것을 특징
    으로 하는 주파수 재구성이 가능한 디지털 필터.
    Figure PCTKR2011001408-appb-I000056
    위 수학식에서, L은 멀티 이미지 넘버이고
    Figure PCTKR2011001408-appb-I000057
    는 샘플링 상수임.
  13. 제12항에 있어서,
    상기 샘플링 커널을 적용하여 모델 필터 응답을 업샘플링하고 다수의 멀티 이미지 생성은 다음의 수학식에 의해 수행되는 것을 특징으로 하는 주파수 재구성이 가능한 디지털 필터.
    Figure PCTKR2011001408-appb-I000058
    위 수학식에서
    Figure PCTKR2011001408-appb-I000059
    는 샘플링 상수이고,
    Figure PCTKR2011001408-appb-I000060
    은 모델 필터 응답이고,
    L은 멀티 이미지 번호 이며,
    Figure PCTKR2011001408-appb-I000061
    는 샘플링 커널이고, 멀티 이미지의
    수는 L 값에 상응함.
  14. 제9항에 있어서,
    상기 컴플리멘터리 변환부는 멀티 이미지를 생성하기 위한 응답을 z 도메인에서
    Figure PCTKR2011001408-appb-I000062
    (여기서 N은 모델 필터의 길이임)만큼 지연시켜 다수의 멀티 컴
    플리멘터리 이미지를 생성하는 것을 특징으로 하는 개선된 감쇠 특성을 가지는 디지털 필터.
PCT/KR2011/001408 2010-02-26 2011-02-28 개선된 감쇠 특성을 가지는 디지털 필터 WO2011105880A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/581,292 US9225315B2 (en) 2010-02-26 2011-02-28 Digital filter having improved attenuation characteristics

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020100018201A KR101216908B1 (ko) 2010-02-26 2010-02-26 주파수 재구성이 가능한 디지털 필터 및 필터 설계 방법
KR10-2010-0018218 2010-02-26
KR1020100018219A KR101174546B1 (ko) 2010-02-26 2010-02-26 통과 대역의 재구성이 가능한 디지털 필터 장치
KR10-2010-0018219 2010-02-26
KR20100018218 2010-02-26
KR10-2010-0018201 2010-02-26
KR10-2010-0073696 2010-07-29
KR1020100073696A KR101194160B1 (ko) 2010-07-29 2010-07-29 주파수 재구성이 가능한 디지털 필터 및 이를 이용한 이퀄라이저

Publications (2)

Publication Number Publication Date
WO2011105880A2 true WO2011105880A2 (ko) 2011-09-01
WO2011105880A3 WO2011105880A3 (ko) 2012-01-19

Family

ID=44507483

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2011/001407 WO2011105879A2 (en) 2010-02-26 2011-02-28 Frequency reconfigurable digital filter and equalizer using the same
PCT/KR2011/001408 WO2011105880A2 (ko) 2010-02-26 2011-02-28 개선된 감쇠 특성을 가지는 디지털 필터

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001407 WO2011105879A2 (en) 2010-02-26 2011-02-28 Frequency reconfigurable digital filter and equalizer using the same

Country Status (5)

Country Link
US (2) US9099989B2 (ko)
EP (1) EP2540000B1 (ko)
JP (1) JP5882917B2 (ko)
CN (1) CN102812637A (ko)
WO (2) WO2011105879A2 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540000B1 (en) * 2010-02-26 2020-01-01 Industry-University Cooperation Foundation Hanyang University Frequency reconfigurable digital filter and equalizer using the same
CN103956987B (zh) * 2014-04-28 2016-06-22 唐萍 一种数字滤波器设计方法
DK3369258T3 (da) 2015-10-29 2021-01-18 Widex As System og fremgangsmåde til håndtering af en tilpasselig konfiguration i et høreapparat
US10193683B2 (en) * 2016-07-20 2019-01-29 Intel Corporation Methods and devices for self-interference cancelation
TWI604731B (zh) * 2016-08-05 2017-11-01 瑞昱半導體股份有限公司 影像濾波方法及其影像濾波裝置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094763A (ja) * 2007-10-09 2009-04-30 Nippon Telegr & Teleph Corp <Ntt> アップダウンサンプリング装置とアップダウンサンプリング方法、及びそのプログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211912A (ja) * 1987-02-27 1988-09-05 Nec Home Electronics Ltd デイジタル・ロ−カツト・フイルタ
US5018090A (en) * 1990-03-13 1991-05-21 Rca Licensing Corporation Digital interpolation circuitry
US5783974A (en) * 1997-01-27 1998-07-21 Hitachi America, Ltd. Digital interpolation up sampling circuit and digital modulator using same
US6009445A (en) * 1997-10-15 1999-12-28 Zilog, Inc. Reconfigurable infinite impulse response digital filter
US6963890B2 (en) * 2001-05-31 2005-11-08 Koninklijke Philips Electronics N.V. Reconfigurable digital filter having multiple filtering modes
KR100421013B1 (ko) * 2001-08-10 2004-03-04 삼성전자주식회사 음성 향상 시스템 및 방법
JP2004023389A (ja) * 2002-06-14 2004-01-22 Fujitsu Ltd データ補間方法及びデータ処理装置
WO2005078925A1 (ja) * 2004-02-17 2005-08-25 Neuro Solution Corp. デジタルフィルタの設計方法および装置、デジタルフィルタ設計用プログラム、デジタルフィルタ
KR100722832B1 (ko) * 2006-05-23 2007-05-30 국방과학연구소 강인 진동 주파수 추정기법을 이용한 적응 노치필터링 방법
EP2036201B1 (en) * 2006-07-04 2017-02-01 Dolby International AB Filter unit and method for generating subband filter impulse responses
US8792147B2 (en) * 2006-08-14 2014-07-29 Asml Netherlands B.V. Method, program product and apparatus for creating optimal test patterns for optical model calibration and for selecting suitable calibration test patterns from an arbitrary layout
CN100455006C (zh) * 2006-12-14 2009-01-21 上海广电(集团)有限公司中央研究院 应用于atsc高清数字电视上的变频多级滤波方法
JP2009017246A (ja) * 2007-07-05 2009-01-22 Sanyo Electric Co Ltd 伝送路推定用の周波数方向補間フィルタおよびデジタル信号受信機
JP2010041311A (ja) * 2008-08-04 2010-02-18 Japan Science & Technology Agency フィルタ、フィルタの構成システム及び構成方法
FR2935850B1 (fr) * 2008-09-05 2011-04-01 Commissariat Energie Atomique Dispositif de filtrage a structure hierarchique et dispositif de filtrage reconfigurable
EP2540000B1 (en) * 2010-02-26 2020-01-01 Industry-University Cooperation Foundation Hanyang University Frequency reconfigurable digital filter and equalizer using the same
US8793298B2 (en) * 2010-11-01 2014-07-29 Blackberry Limited Reconfigurable digital signal filter processor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094763A (ja) * 2007-10-09 2009-04-30 Nippon Telegr & Teleph Corp <Ntt> アップダウンサンプリング装置とアップダウンサンプリング方法、及びそのプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.Y.KIM ET AL.: 'Arbitrary scaling of images using an M-channel DFT filter bank with optimized adaptive interpolation kernels' IEICE ELECTRONICS EXPRESS vol. 4, no. 21, November 2007, pages 665 - 671 *
J.Y.KIM ET AL.: 'Design of a new DFT filter bank with modified sampling kernels and its application to arbitrary image scaling' IEICE ELECTRONICS EXPRESS vol. 6, no. 2, January 2009, pages 58 - 64 *

Also Published As

Publication number Publication date
WO2011105880A3 (ko) 2012-01-19
US9225315B2 (en) 2015-12-29
EP2540000B1 (en) 2020-01-01
US20120314891A1 (en) 2012-12-13
EP2540000A4 (en) 2018-03-28
US9099989B2 (en) 2015-08-04
JP5882917B2 (ja) 2016-03-09
EP2540000A2 (en) 2013-01-02
JP2013520919A (ja) 2013-06-06
WO2011105879A2 (en) 2011-09-01
WO2011105879A3 (en) 2012-01-19
US20130110897A1 (en) 2013-05-02
CN102812637A (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
WO2011105880A2 (ko) 개선된 감쇠 특성을 가지는 디지털 필터
WO2017171487A2 (en) Method and apparatus for synchronization for vehicle-to-x communication
AU609611B2 (en) Adaptive, digital filter including a non-recursive part and a recursive part
WO2013115431A1 (ko) 신경망 컴퓨팅 장치 및 시스템과 그 방법
WO2014069710A1 (ko) 포락선 검출 궤환 방식의 저비용 디지털 전치왜곡 장치 및 그 방법
WO2015016640A1 (ko) 신경망 컴퓨팅 장치 및 시스템과 그 방법
WO2020242260A1 (ko) 전역적 문맥을 이용하는 기계 학습 기반의 이미지 압축을 위한 방법 및 장치
WO2010050734A9 (ko) Fhss 시스템에서 간섭 잡음을 회피하기 위한 장치 및 그 방법
WO2022158913A1 (ko) 병렬 구조의 심화신경망을 이용한 잡음 및 에코 신호 통합 제거 장치
WO2012026727A9 (ko) 프리앰블을 이용하여 특성 정보를 공유하는 통신 방법, 상기 프리앰블을 생성하는 방법, 상기 방법들이 적용되는 통신 시스템
WO2015069035A1 (ko) 무선 통신 시스템에서 다중 빔을 이용하여 신호를 송수신하기 위한 방법 및 장치
WO2022158914A1 (ko) 어텐션 메커니즘을 이용한 음성 신호 추정 방법 및 장치
WO2013108952A1 (en) Turbo encoder apparatus
WO2021107515A1 (en) Identity-based encryption method based on lattices
JPS59207721A (ja) ウエ−ブデイジタルフイルタ
WO2019093580A1 (ko) 위상 천이기
WO2022034967A1 (ko) 적응형 지연 다이버시티 필터와, 이를 이용하는 에코 제거 장치 및 방법
WO2023008831A1 (ko) 해석적 방법에 기반한 디제이 변환 주파수 추출 방법
WO2023229169A1 (ko) 무선 통신 시스템에서, 역 신호 및 피드백 신호를 획득하기 위한 전자 장치 및 방법
EP0422796A2 (en) An adaptive FIR filter having restricted coefficient ranges
WO2022098056A1 (ko) 컨볼루션 연산을 수행하는 전자 장치 및 그 동작 방법
WO2021040303A1 (ko) 확장함수를 이용한 복수의 인증서 발급 시스템 및 그 발급 방법
WO2017065531A1 (ko) 고속 무선 통신을 위한 g-ofdm을 이용한 통신 방법 및 장치
WO2023003149A1 (ko) 스펙트럼 공유 멀티-뉴멀롤로지를 이용한 신호 송신 방법 및 그 방법을 수행하는 전자 장치
WO2021096258A1 (ko) 5g nr 위한 srs 시퀀스 생성 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747770

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13581292

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11747770

Country of ref document: EP

Kind code of ref document: A2