WO2011099750A2 - Nanowire alignment method using a three-dimensional structure, three-dimensional framework for nanowire alignment, manufacturing method for a three-dimensional framework for nanowire alignment, and transfer printing method for an aligned nanowire - Google Patents

Nanowire alignment method using a three-dimensional structure, three-dimensional framework for nanowire alignment, manufacturing method for a three-dimensional framework for nanowire alignment, and transfer printing method for an aligned nanowire Download PDF

Info

Publication number
WO2011099750A2
WO2011099750A2 PCT/KR2011/000823 KR2011000823W WO2011099750A2 WO 2011099750 A2 WO2011099750 A2 WO 2011099750A2 KR 2011000823 W KR2011000823 W KR 2011000823W WO 2011099750 A2 WO2011099750 A2 WO 2011099750A2
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
groove
nanowire
grooves
nanowires
Prior art date
Application number
PCT/KR2011/000823
Other languages
French (fr)
Korean (ko)
Other versions
WO2011099750A3 (en
Inventor
이태윤
이슬아
서정목
이현익
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100012875A external-priority patent/KR101165447B1/en
Priority claimed from KR1020100056922A external-priority patent/KR20110136980A/en
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2011099750A2 publication Critical patent/WO2011099750A2/en
Publication of WO2011099750A3 publication Critical patent/WO2011099750A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0061Methods for manipulating nanostructures
    • B82B3/0066Orienting nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to a method for transferring nanowires used in nanowire network devices and the like, and more particularly, to a method of aligning nanowires and transferring the aligned nanowires to a desired substrate using transfer printing.
  • Nanowires are wire-shaped materials with nano-diameter diameters and have potential applications in a variety of electronic device applications.
  • nanowire network devices are attracting great attention because they can be applied to various industrial fields such as transistors or sensors using nanowires, and many researches are currently being conducted worldwide.
  • Nanowires have excellent electrical and optical properties and at the same time have a high selectivity in distinguishing chemicals from energy band structures, crystalline (cryatalline quality) and mobility of charge carriers. Because of its excellent mobility, it is used in various nano devices such as sensors and transistors.
  • nanostructures can be moved to a desired substrate at low temperatures after they are grown, thereby releasing various limitations caused by high silicon-based high process temperatures.
  • a flexible substrate made of a material such as a polymer deformation of the substrate occurs, and thus there is a limitation in applying a conventional silicon-based process method.
  • the method of transferring nanomaterials is expected to be advantageous in a variety of industries that use flexible substrates because they can be processed at low temperatures.
  • nanowire transistors To fabricate nanowire transistors, one can locate an arbitrarily positioned nanowire and use electron beam lithography. However, in this case, since the time required for manufacturing the device is too long and only one device can be made at a time, it is difficult to mass-produce, so that practical application and application to the electronic industry are difficult. In order to solve this problem, efforts are being actively made to study devices using nanowire networks (for example, nanowires are entangled with each other).
  • As a method of forming a nanowire network there is a method of stamping a nanowire by pressing the substrate on which the nanowire is grown onto another desired substrate and a method of using a nanowire dispersed in a liquid solvent. . By using this method, mass production is possible by eliminating or reducing the electron-beam lithography process. However, since the nanowire network obtained by this method is difficult to align in a desired pattern where desired, the electrical and optical performance of the device is low.
  • One embodiment of the present invention provides a method capable of effectively transferring nanowires or nanowire networks aligned to desired locations of a desired substrate.
  • Another embodiment of the present invention provides a three-dimensional framework for efficiently collecting and aligning nanowires where desired in nanowire device fabrication.
  • Yet another embodiment of the present invention provides a method of manufacturing a three-dimensional framework for efficiently collecting and aligning nanowires in a desired place in manufacturing nanowire devices.
  • Another embodiment of the present invention provides an electronic device using nanowires.
  • An ordered nanowire transfer method comprises the steps of: aligning a nanowire in the groove of the first substrate having a groove on the upper surface; And transferring the nanowires aligned in the grooves of the first substrate to another second substrate by using a transfer member having elasticity and adhesion.
  • the aligned nanowire transfer method may include: aligning the nanowires and transferring the aligned nanowires to a second substrate, using a removal member having an adhesive force to form a first substrate outside the groove.
  • the method may further include removing the nanowire located on the upper surface.
  • the step of aligning the nanowire and the step of removing the nanowire located on the upper surface of the first substrate outside the groove may be further performed.
  • Aligning the nanowires may include preparing a first substrate having a three-dimensional structure having a groove shape on an upper surface thereof; Providing a solution in which nanowires are dispersed (nanowire dispersion solution) on a three-dimensional structure of the first substrate; And drying the nanowire dispersion solution provided on the three-dimensional structure to align the nanowires in the grooves of the first substrate.
  • the groove may have a trench-shaped groove extending in one direction.
  • the groove may have a shape in which both sidewalls of the groove are inclined so that the width of the groove becomes narrower as the depth in the groove increases.
  • the cross-sectional shape of the groove may be V-shaped or trapezoidal.
  • a plurality of grooves may be formed on the first substrate.
  • the removal member may have an elastic force together with the adhesive force.
  • the transfer member may be formed of PDMS.
  • the removal member may be formed of PDMS.
  • a nanowire alignment method includes preparing a substrate having a three-dimensional structure in which trench grooves in which both inner walls of the groove are inclined are formed so that the width in the groove becomes narrower as the depth in the groove becomes deeper. step; Providing a solution in which nanowires are dispersed on the three-dimensional structure; And drying the solution provided on the three-dimensional structure to align the nanowires in the trench grooves along the length direction of the trench grooves.
  • a plurality of trench grooves may be formed in the three-dimensional structure, and the plurality of trench grooves may extend in parallel to each other.
  • the trench groove may have a cross-sectional shape of a V-shaped or truncated inverse pyramid.
  • the preparing of the substrate having the three-dimensional structure may include preparing a mother substrate having a planar top surface; Etching the upper surface of the mother substrate to form a trench groove in which both inner walls of the groove are inclined so that the width of the groove becomes narrower as the depth in the groove becomes deeper.
  • the mother substrate may be a silicon substrate.
  • the preparing of the substrate having the three-dimensional structure may include preparing a mother substrate having a planar top surface; Etching the upper surface of the mother substrate to form trench grooves in which both inner walls of the groove are inclined so that the width of the groove becomes narrower as the depth in the groove becomes deeper; Coating a first polymer material on the mother substrate where the trench grooves are formed to form a polymer layer which completely fills the trench grooves; After separating the polymer layer from the mother substrate and coating a second polymer material on the separation surface of the polymer layer, trench grooves in which both inner walls of the grooves are inclined so that the width in the grooves becomes narrower as the depth in the grooves becomes deeper. Forming a three-dimensional mold which is formed and has a bottom portion of the trench groove opened as an opening; And separating the three-dimensional framework from the polymer layer and placing it on a substrate that requires nanowire alignment.
  • the preparing of the substrate having the three-dimensional structure may include: separating the polymer layer from the mother substrate and before coating the second polymer material on the separation surface of the polymer layer on the separation surface of the polymer layer.
  • the method may further include forming a thin film for layer separation.
  • the nanowire alignment method may include reusing the three-dimensional framework by separating the three-dimensional framework from the substrate and disposing the three-dimensional framework on the substrate after the alignment of the nanowires in the trench grooves. It may further include.
  • the three-dimensional frame for aligning nanowires is a frame for aligning nanowires arranged on a substrate on which nanowires are to be arranged, and trench grooves are formed on the opposite side of the surface disposed on the substrate. As the trench groove deepens in the groove, both inner walls of the groove are inclined so that the width of the trench narrows, and the bottom of the trench groove is opened as an opening.
  • Method of manufacturing a three-dimensional framework for aligning nanowires comprises the steps of preparing a mother substrate having a planar top surface; Etching the upper surface of the mother substrate to form trench grooves in which both inner walls of the groove are inclined so that the width of the groove becomes narrower as the depth in the groove becomes deeper; Coating a first polymer material on the mother substrate where the trench grooves are formed to form a polymer layer which completely fills the trench grooves; And separating the polymer layer from the mother substrate and coating a second polymer material on the pyramid structure formed on the upper surface of the polymer layer, so that inner walls of both grooves are narrow so that the width in the groove becomes narrower as the depth in the groove increases. And forming a three-dimensional frame in which a photo trench groove is formed and a bottom portion of the trench groove is opened as an opening.
  • An electronic device includes a substrate having grooves that become narrower in width, and nanowires aligned in the grooves.
  • nanowires or nanowire networks well aligned in a desired pattern can be easily transferred to a desired substrate in a short time.
  • it can be effectively applied to mass production at low cost of nanowire devices or nanowire network devices having well aligned nanowires.
  • by spraying the nanowire dispersion solution and then drying and removing the nanowires attached to the unnecessary parts by repeating the process there is an advantage that can effectively control the nanowire density of the nanowire network.
  • the substrate structure in which the nanowires are aligned may be used in nanowire devices such as nanowire network devices.
  • a device in which nanowires are aligned can be mass produced.
  • the nanowire on the substrate is not etched without separately etching the substrate requiring nanowire alignment.
  • the three-dimensional framework can be repeatedly reused for the substrates that require nano-wire alignment, which has the advantage of aligning the nano-wires on multiple substrates in one three-dimensional framework.
  • FIG. 1 is a schematic diagram illustrating a process of aligning nanowires in an aligned nanowire transfer method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a process of removing nanowires attached to an undesired portion (the upper surface of the substrate outside the groove) after the nanowire alignment in the aligned nanowire transfer method according to an embodiment of the present invention.
  • 3 is a micrograph showing the change in density of aligned nanowires.
  • FIG. 4 is a diagram illustrating a process of transferring an aligned nanowire or a nanowire network to another desired substrate.
  • FIG. 5 is a diagram illustrating a nanowire network transferred to a material having elasticity and adhesion during aligned nanowire transfer processes according to an embodiment of the present invention ((a) and (b)), and the nanowire network is flexible again. It is a figure (c) which shows what was transferred to the board
  • 6 to 8 are views for explaining the nanowire alignment method according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a three-dimensional frame for aligning nanowires according to an embodiment of the present invention.
  • FIG. 10 is a plan view of the three-dimensional framework shown in FIG.
  • 11 to 14 are views for explaining a nanowire alignment method according to another embodiment of the present invention.
  • 15 to 18 are views for explaining a method of manufacturing a three-dimensional frame for aligning nanowires according to an embodiment of the present invention.
  • 19 to 20 are views for explaining the reuse of the three-dimensional framework for aligning nanowires according to an embodiment of the present invention.
  • FIG. 21 is a scanning electron microscope (SEM) photograph showing a V-shaped trench groove formed in a silicon substrate through wet etching and a trench groove having a truncated inverted pyramid cross-sectional shape.
  • FIG. 22 is a SEM photograph showing nanowires aligned in trench trenches.
  • FIG. 1 is a schematic diagram illustrating a process of aligning nanowires in an aligned nanowire transfer method according to an embodiment of the present invention.
  • the nanowires are separated using a transfer member (for example, a PDMS substrate) having elasticity and adhesion.
  • a transfer member for example, a PDMS substrate
  • second substrate By transferring the transfer member to the desired other substrate (second substrate), it is possible to form a well aligned nanowire or a nanowire network on the desired substrate.
  • a first substrate 101 having a three-dimensional structure having a groove shape on an upper surface thereof is prepared.
  • the groove formed on the upper surface of the first substrate 101 has a trench shape extending in one direction of a trapezoidal cross section, but the present invention is not limited thereto.
  • a groove having a V-shaped cross section may be used.
  • the shape of the groove bottom may have various shapes and sizes desired to form a desired nanowire or nanowire network pattern.
  • both sidewalls of the groove may be inclined so that the width of the groove becomes narrower as the depth in the groove deepens.
  • a plurality of such grooves may be formed on the upper surface of the first substrate 101, and the plurality of grooves may extend in parallel with each other.
  • Such grooves may be formed, for example, by wet etching or dry etching of the silicon substrate. When the silicon substrate is etched with KOH while the stripe-shaped etching region is opened with the etching mask on the silicon substrate, a groove shape as illustrated in FIG. 1 may be easily formed.
  • a solution (nanowire dispersion solution) 60 in which the nanowires 10 are dispersed is sprayed on the three-dimensional structure (upper surface) of the first substrate 101.
  • a solution obtained by dispersing the nanowire in a solvent such as isopropyl alcohol and then performing a sonication well may be used.
  • the nanowires are lowered in the three-dimensional structure, that is, at the bottom of the groove. Is sorted on. This results in a nanowire network that is well aligned in the desired pattern.
  • the nanowires or nanowire networks aligned as described above can be transferred to other desired substrates using a transfer member made of a material having elasticity and adhesion.
  • a transfer member made of a material having elasticity and adhesion.
  • PDMS may be used as a material having elasticity and adhesion.
  • the nanowire networks may be transferred to another desired substrate by using a PDMS member having elasticity and adhesion.
  • FIG. 2 is a cross-sectional view showing such an unnecessary nanowire removal process, and the process shown in FIG. 2 may be performed following the process shown in FIG. 1.
  • Nanowire (10a) can also be attached to the upper surface portion.
  • the removal member 201 having the adhesive force is placed on the first substrate 101 and a weak pressure is applied to the removal member 201 (FIG. 2B). Then, the removal member 201 is separated from the first substrate 101, so that the nanowire 10a that has risen in an undesired position is stuck to the removal member 201 and detached from the first substrate 101 (Fig. 2 (c)).
  • the nanowires can be aligned only to a desired portion (groove bottom) of the first substrate 101.
  • the removal member may have an elastic force together with the adhesive force, and for example, a member made of PDMS may be used as the removal member.
  • the nanowire network may vary depending on the number of times the nanowire dispersion solution is sprayed onto the first substrate.
  • the nanowire network may vary depending on the number of times the nanowire dispersion solution is sprayed onto the first substrate.
  • FIG. 1 the process of spraying and drying the nanowire dispersion solution
  • FIG. 1 (b) the process of drying the nanowire dispersion solution
  • 3 is a micrograph showing changes in the density of nanowires aligned in a groove by repeatedly performing the processes of FIGS. 1 and 2.
  • 3A shows a plan view photograph of a first substrate having grooves formed therein.
  • the nanowire network (nanowire pattern) as shown in FIG. 3 (b) was obtained by aligning the nanowires by performing the above-described processes of FIGS. 1 and 2 on the first substrate shown in FIG. Then, by repeating the process of FIGS. 1 and 2 on the first substrate again, the density of well-aligned nanowires was increased as shown in FIG.
  • FIG. 4 is a diagram illustrating a process of transferring an aligned nanowire or a nanowire network to another desired substrate.
  • FIG. 4 (d) when the network of the nanowires 10 attached to the transfer member 301 is transferred to another second substrate 401 to be aligned with the nanowires, FIG. As shown, a well aligned network of nanowires 10 transferred to the second substrate 401 can be obtained.
  • the transfer member 301 for example, a member made of a PDMS material having elasticity and adhesion may be used. By controlling the ratio of the synthetic resin (resin) material and the curing agent (curing agent) material constituting the PDMS there is an advantage that can control the elasticity and adhesion.
  • the well-aligned nanowire network can easily form a well-aligned nanowire network anywhere regardless of the type of substrate (rigid substrate, flexible substrate).
  • a nanowire network having a desired pattern and a desired density can be easily formed on a flexible substrate such as PET.
  • Mass production of nanowire network devices is possible, and the process is simple.
  • Providing or transferring the nanowire dispersion solution can be performed at room temperature or at low temperature, thereby avoiding problems such as deformation of the substrate by the high temperature process and limitation of substrate selection.
  • an advantage of easily adjusting the nanowire density of the aligned nanowire network may be obtained.
  • FIG. 5 is a diagram illustrating a nanowire network transferred to a material having elasticity and adhesion during aligned nanowire transfer processes according to an embodiment of the present invention ((a) and (b)), and the nanowire network is flexible again. It is a figure (c) which shows what was transferred to the board
  • FIGS. 5A and 5B a nanowire network transferred onto a PDMS member through the process of FIGS. 1 and 2 described above is shown. As shown in FIG. 5 (c), this nanowire network can be transferred to another substrate such as PET through the process of FIG. 4.
  • FIG. 6 to 8 are diagrams for explaining the nanowire alignment method according to an embodiment of the present invention.
  • a substrate 501 on which an aligned nanowire, for example, a silicon substrate, is to be disposed is prepared.
  • the trench 505 is formed by etching the upper surface of the substrate 501 through wet or dry etching.
  • the cross-sectional shape of the trench grooves 505 may be, for example, an inverted pyramid cross-sectional shape having a sharp V-shaped bottom or a flat truncated bottom.
  • a plurality of trench grooves 505 may be formed, and in particular, the plurality of trench grooves 505 may extend in parallel to each other.
  • the trench groove 505 described above may be formed using wet etching.
  • wet etching there is a method of etching a silicon substrate using a KOH solution, the etching rate is different depending on the crystallographic orientation (orientation) of the silicon may be used.
  • a silicon wafer having a main surface in the ⁇ 100> direction may be etched at a constant angle of 54.7 degrees using a KOH etching solution to form a V-shaped groove or a truncated inverted pyramid groove.
  • 21 is a SEM photograph showing the structure of the V-shaped groove (FIG. 21 (a)) and the truncated inverted pyramid type groove (FIG. 21 (b)) formed through wet etching using a KOH solution.
  • the three-dimensional structure in which the trench grooves 505 are formed in the substrate 501 may be formed.
  • the solution in which the nanowires 10 are dispersed is provided in a three-dimensional structure in which the trench grooves 505 are formed.
  • a solution in which the nanowires 10 are dispersed may be dropped into the trench grooves 505 or sprayed into the trench grooves 505.
  • the nanowires 10 are aligned with the bottoms of the plurality of trench grooves 505 while the nanowires 10 are aligned with the lower groove valley portions by the inclined groove inner walls. This results in an ordered nanowire network with the desired orientation and pattern.
  • FIG. 22 is an SEM image showing nanowires aligned in the V-shaped trench grooves of a silicon substrate using the process described above. As shown in FIG. 22, the nanowires are well aligned in the trench grooves.
  • a solvent such as isopropyl alcohol (isopropyl alcohol) to make a solution obtained by sonication (sonication) well dispersed (nano wire dispersed solution). This solution was then sprayed onto the V-shaped trench groove structure of the silicon substrate and dried sufficiently to obtain well aligned nanowires as shown in FIG.
  • FIG. 9 is a cross-sectional view of a three-dimensional framework that may be used for nanowire alignment in accordance with an embodiment of the invention
  • FIG. 10 is a top view of the three-dimensional framework shown in FIG. 9.
  • FIG. 9 is a cross-sectional view taken along the AA ′ line of the three-dimensional frame of FIG. 10.
  • This three-dimensional framework serves as a 'three-dimensional structure with trench grooves'.
  • At least one trench groove 50 is formed on an upper surface of the three-dimensional mold 551 for nanowire alignment.
  • an opening 15 extending along the longitudinal direction of the trench groove 50 is drilled in the bottom portion of the trench groove 50 of the three-dimensional mold 551.
  • the trench groove 50 may be a V-shaped groove or may have a cross-sectional shape of truncated inverted pyramid.
  • the three-dimensional frame 551 for aligning the nanowires may be formed of a polymer material such as, for example, PDMS.
  • FIG. 11-14 illustrate an example of a method of aligning nanowires on a substrate (eg, a silicon substrate) using the three-dimensional framework 551 for nanowire alignment described above.
  • a three-dimensional frame 551 for nanowire alignment is disposed on a substrate 601 that requires nanowire alignment.
  • the three-dimensional mold 551 is disposed on the substrate 601 such that the upper surface of the substrate 601 is exposed through the opening 15 formed in the bottom portion of the trench groove 50 of the three-dimensional mold 551.
  • the solution 60 in which the nanowires 10 are dispersed is dropped or sprinkled on the three-dimensional mold 551 in which the trench grooves 50 are formed.
  • the liquid 60 dries, and the nanowire 10 descends to the bottom of the trench groove 50 to form the trench groove 50. Aligned along the longitudinal direction of the), you can get a well-ordered nanowire pattern.
  • the nanowire 10 aligned in the trench groove 50 may directly contact the substrate 601, and the nanowire alignment After this is completed, the aligned nanowires 10 remain on the substrate 601 even if the three-dimensional mold 551 is peeled off.
  • the three-dimensional framework 551 may be repeatedly reused while moving from the substrate to the substrate as described below.
  • the nanowire alignment method using a three-dimensional structure (a three-dimensional frame formed and disposed separately from a part of the substrate itself or a substrate formed with a trench groove) is usefully applied in the fabrication of nanowire network devices, and is well aligned.
  • a nanowire network device having nanowires can be obtained.
  • Such a nanowire network device has improved performance compared to a conventional nanowire network device using a randomly arranged nanowire.
  • the mass production is possible and the process is relatively simple, and at the same time, it significantly overcomes the disadvantages of the conventional nanowire network device, which is relatively inferior to a single nanowire device, and thus has high performance.
  • the device can be implemented.
  • a trench groove 705 is formed by etching the upper surface of the mother substrate 701.
  • a silicon substrate can be used as the mother substrate 701.
  • both inner walls of the grooves are inclined so that the width of the trench narrows as the depth in the grooves increases.
  • a trench groove 705 having a cross-sectional shape of a V-shaped or truncated inverted pyramid may be formed.
  • the trench grooves 705 may be formed using wet etching or other dry etching using, for example, KOH.
  • a first polymer material is coated on the mother substrate 701 on which the trench grooves are formed to form a polymer layer 715 that completely fills the trench grooves.
  • an uncured polymer liquid material eg, PDMS
  • PDMS polymer liquid material
  • a polymer layer 715 as shown in FIG. 16 can be obtained. Accordingly, the shape of the trench grooves 705 of the mother substrate 701 is transferred to the polymer layer 715 so that the polymer layer 715 has a cross-sectional shape of a pyramid.
  • This polymer layer 715 is provided as a kind of mold for manufacturing the three-dimensional mold 551.
  • the polymer layer 715 is peeled off from the mother substrate 701, and then the thin film 320 for layer separation is formed on the trench groove transfer surface (separation surface) of the pollimer layer 715. do.
  • a material such as parylene may be evenly coated on the separation surface of the polymer layer 715 to form a thin film 320 for separating layers.
  • the thin film 320 for separating layers is used to easily separate the polymer material (second polymer material) to be formed thereon and the polymer layer 715 below.
  • the second polymer material is coated on the layer separation thin film 320 to form a three-dimensional mold 551.
  • the same polymer material as the first polymer material for forming the polymer layer 715 may be used.
  • a three-dimensional mold 551 may be formed by coating a polymer liquid such as uncured PDMS on the thin film for separation of layers 320.
  • This three-dimensional framework 551 is separated from the polymer layer 715 and placed on a substrate that requires nanowire alignment.
  • the three-dimensional mold 551 manufactured by the above-described process has a trench groove 50 as described with reference to FIGS. 9 and 10. That is, the trench groove 50 is inclined at both inner walls of the groove so that the width of the groove becomes narrower as the depth in the groove becomes deeper, and the bottom portion of the trench groove 50 is bored as an opening 15.
  • the three-dimensional framework 551 may be moved to a substrate to form a nanowire network and used to align the nanowires on the substrate.
  • the valley portion of the polymer layer 715 is formed when the second polymer material is coated to form the three-dimensional mold 551.
  • the second polymer material may be coated to leave some acid tip without filling up completely.
  • the upper portion may be etched to leave a little acid portion of the polymer layer 715.
  • the three-dimensional frame 551 for aligning the nanowires may be repeatedly reused while moving the substrate. As shown in FIG. 19, a three-dimensional frame 551 may be disposed on the substrate 601 to align the nanowires 10 on the substrate 601. Then, the three-dimensional mold 551 is peeled off from the substrate 601, and then placed on another substrate (another substrate requiring nanowire alignment) 801 and the above-described nanowire alignment process (see FIGS. 11 to 14). However, the nanowires may be aligned on the substrate 801 through the substrate changed from 601 to 801. Therefore, when performing nanowire alignment on several substrates, there is an advantage that can be repeated, reused by manufacturing a single three-dimensional framework.
  • Embodiments of the present invention can be effectively applied to mass production of nanowire devices or nanowire network devices having well aligned nanowires at low cost.

Abstract

A transfer printing method for an aligned nanowire according to an embodiment of the present invention comprises: aligning a nanowire in a groove formed on the upper surface of a first substrate; and printing the nanowire aligned in the groove of the first substrate into a second substrate by using a transfer printing member having elasticity and adhesion.

Description

3차원 구조를 이용한 나노선 정렬방법, 나노선 정렬용 3차원 틀, 나노선 정렬용 3차원 틀의 제조 방법, 및 정렬된 나노선의 전사 방법Nanowire alignment method using three-dimensional structure, three-dimensional framework for nanowire alignment, manufacturing method of three-dimensional framework for nanowire alignment, and method for transferring aligned nanowire
본 발명은 나노선 네트워크 소자 등에 사용되는 나노선의 전사 방법에 관한 것으로, 특히 나노선을 정렬하고 그 정렬된 나노선을 전사기법(transfer printing)을 이용하여 원하는 기판에 옮기는 방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for transferring nanowires used in nanowire network devices and the like, and more particularly, to a method of aligning nanowires and transferring the aligned nanowires to a desired substrate using transfer printing.
나노선은 나노 단위의 직경을 갖는 와이어 형태의 물질로서 다양한 전자 소자 분야에의 응용 가능성을 갖는다. 특히 나노선 네트워크 소자는 나노선을 이용한 트랜지스터 또는 센서 등의 다양한 산업 분야에 적용할 수 있어 크게 주목 받고 있으며 현재 전세계적으로 많은 연구가 진행되고 있는 분야이다.Nanowires are wire-shaped materials with nano-diameter diameters and have potential applications in a variety of electronic device applications. In particular, nanowire network devices are attracting great attention because they can be applied to various industrial fields such as transistors or sensors using nanowires, and many researches are currently being conducted worldwide.
기존의 실리콘 기반의 트랜지스터는 그 성능이 이미 어느정도의 한계에 이르렀기 때문에, 기존 소자 성능의 한계를 극복할 수 있는 차세대 소자로서 나노 물질이라는 새로운 개념과 구조가 제안되었고 이에 대한 연구가 활발히 이루어지고 있다. 이러한 차세대 소자로서 나노물질(nanomaterial)이 각광받고 있고, 특히 일차원(1-D) 구조를 가진 나노선에 대한 연구가 활발히 진행되고 있다. 나노선은 우수한 전기적, 광학적 성질을 가진 동시에 화학물질과 에너지 밴드 구조(band structure)를 구별하는 데 있어서 그 선택비(selectivity)가 크고, 결정질(cryatalline quality)과 전하 운반체(charge carrier)의 이동성(mobility)이 우수하기 때문에, 센서, 트랜지스터 등 다양한 나노 소자에서 활용이 되고 있다. 나노 구조체의 또 다른 장점은 나노 물질을 성장시키고 난 후 그 물질을 저온에서 원하는 원하는 기판으로 옮길 수 있기 때문에, 기존 실리콘 기반의 높은 공정 온도로 인해 발생하는 다양한 한계에서 벗어날 수 있다. 폴리머와 같은 물질로 이루어진 휘어지는 플렉서블 기판(flexible substrate)을 사용하여 높은 온도에서 공정을 수행하면 기판의 변형이 발생하기 때문에 기존 실리콘 기반의 공정 방법을 적용하는데에 있어서 그 한계가 있다. 그러나 나노물질을 옮기는 방법을 사용하면 낮은 온도에서도 공정이 가능하기 때문에 플렉서블 기판을 사용하는 다양한 산업 분야에 있어서 이점이 있을 것으로 예상된다. Since conventional silicon-based transistors have already reached a certain limit, a new concept and structure of nanomaterials has been proposed and researched actively as a next-generation device capable of overcoming the limitations of existing device performance. . As such a next-generation device, nanomaterials are in the spotlight, and research on nanowires having a one-dimensional (1-D) structure is being actively conducted. Nanowires have excellent electrical and optical properties and at the same time have a high selectivity in distinguishing chemicals from energy band structures, crystalline (cryatalline quality) and mobility of charge carriers. Because of its excellent mobility, it is used in various nano devices such as sensors and transistors. Another advantage of nanostructures is that they can be moved to a desired substrate at low temperatures after they are grown, thereby releasing various limitations caused by high silicon-based high process temperatures. When the process is performed at a high temperature by using a flexible substrate made of a material such as a polymer, deformation of the substrate occurs, and thus there is a limitation in applying a conventional silicon-based process method. However, the method of transferring nanomaterials is expected to be advantageous in a variety of industries that use flexible substrates because they can be processed at low temperatures.
나노선 트랜지스터를 제조하기 위해서, 임의적으로 위치한 나노선 하나를 찾아내서 전자-빔 리소그래피(electron beam lithography)를 사용할 수 있다. 그러나, 이 경우 소자 제조에 걸리는 시간이 너무 길고 한 번에 소자 한 개밖에 만들 수 없기 때문에 대량 생산하기가 어렵다는 점에서, 전자 산업에의 실질적으로 적용과 응용이 힘들다. 이를 해결하기 위해서, (예를 들어 나노선들이 서로 얽혀 있는 형태를 갖는) 나노선 네트워크를 이용한 소자를 연구하고자 하는 노력이 활발히 이루어지고 있다. 나노선 네트워크를 형성하는 방법으로는, 나노선이 성장된 기판을 원하는 다른 기판 위에 눌러 나노선을 찍어내는 스탬핑(stamping) 공정을 이용하는 방법과, 액체 용매에 분산된 나노선을 이용하는 방법 등이 있다. 이러한 방법을 사용함으로써, 전자-빔 리소그래피 공정을 없애거나 줄임으로써 대량생산이 가능하게 된다. 그러나, 이러한 방법으로 얻은 나노선 네트워크는 원하는 곳에 원하는 패턴으로 정렬시키기가 어렵기 때문에, 소자의 전기적 성능, 광학적 성능이 낮다. To fabricate nanowire transistors, one can locate an arbitrarily positioned nanowire and use electron beam lithography. However, in this case, since the time required for manufacturing the device is too long and only one device can be made at a time, it is difficult to mass-produce, so that practical application and application to the electronic industry are difficult. In order to solve this problem, efforts are being actively made to study devices using nanowire networks (for example, nanowires are entangled with each other). As a method of forming a nanowire network, there is a method of stamping a nanowire by pressing the substrate on which the nanowire is grown onto another desired substrate and a method of using a nanowire dispersed in a liquid solvent. . By using this method, mass production is possible by eliminating or reducing the electron-beam lithography process. However, since the nanowire network obtained by this method is difficult to align in a desired pattern where desired, the electrical and optical performance of the device is low.
본 발명의 일 실시형태는 원하는 기판의 원하는 곳에 정렬된 나노선 또는 나노선 네트워크를 효과적으로 전사시킬 수 있는 방법을 제공한다. One embodiment of the present invention provides a method capable of effectively transferring nanowires or nanowire networks aligned to desired locations of a desired substrate.
본 발명의 다른 실시형태는 나노선 소자 제조시 나노선을 원하는 곳에 효율적으로 모으고 정렬시키기 위한 3차원 틀을 제공한다.Another embodiment of the present invention provides a three-dimensional framework for efficiently collecting and aligning nanowires where desired in nanowire device fabrication.
본 발명의 또 다른 실시형태에는 나노선 소자 제조시 나노선을 원하는 곳에 효율적으로 모으고 정렬시키기 위한 3차원 틀의 제조 방법을 제공한다.Yet another embodiment of the present invention provides a method of manufacturing a three-dimensional framework for efficiently collecting and aligning nanowires in a desired place in manufacturing nanowire devices.
본 발명의 또 다른 실시형태는 나노선을 사용한 전자소자를 제공한다.Another embodiment of the present invention provides an electronic device using nanowires.
본 발명의 일 실시 형태에 따른 정렬된 나노선 전사 방법은, 상면에 홈을 갖는 제1 기판의 상기 홈 내에 나노선을 정렬시키는 단계; 및 탄성력과 접착력을 갖는 전사용 부재를 이용하여 상기 제1 기판의 홈 내에 정렬된 나노선을 다른 제2 기판에 옮겨 찍는 단계를 포함한다. An ordered nanowire transfer method according to an embodiment of the present invention comprises the steps of: aligning a nanowire in the groove of the first substrate having a groove on the upper surface; And transferring the nanowires aligned in the grooves of the first substrate to another second substrate by using a transfer member having elasticity and adhesion.
상기 정렬된 나노선 전사 방법은, 상기 나노선을 정렬시키는 단계와, 상기 정렬된 나노선을 제2 기판에 옮겨 찍는 단계 사이에, 접착력을 갖는 제거용 부재를 이용하여 상기 홈 외측의 제1 기판 상면에 위치한 나노선을 떼어내는 단계를 더 포함할 수 있다. The aligned nanowire transfer method may include: aligning the nanowires and transferring the aligned nanowires to a second substrate, using a removal member having an adhesive force to form a first substrate outside the groove. The method may further include removing the nanowire located on the upper surface.
상기 정렬된 나노선을 상기 제2 기판에 옮겨 찍는 단계 전에, 상기 나노선을 정렬시키는 단계와 상기 홈 외측의 제1 기판 상면에 위치한 나노선을 떼어내는 단계를 반복해서 추가로 수행할 수 있다. Before the step of transferring the aligned nanowire to the second substrate, the step of aligning the nanowire and the step of removing the nanowire located on the upper surface of the first substrate outside the groove may be further performed.
상기 나노선을 정렬시키는 단계는, 상면에 홈 형태의 3차원 구조를 갖는 제1 기판을 준비하는 단계; 나노선이 분산되어 있는 용액(나노선 분산 용액)을 상기 제1 기판의 3차원 구조 상에 제공하는 단계; 및 상기 3차원 구조 상에 제공된 상기 나노선 분산 용액을 건조시켜 상기 제1 기판의 홈 내에 나노선을 정렬시키는 단계를 포함한다. Aligning the nanowires may include preparing a first substrate having a three-dimensional structure having a groove shape on an upper surface thereof; Providing a solution in which nanowires are dispersed (nanowire dispersion solution) on a three-dimensional structure of the first substrate; And drying the nanowire dispersion solution provided on the three-dimensional structure to align the nanowires in the grooves of the first substrate.
상기 홈은 일 방향으로 연장된 트렌치 형태의 홈을 구비할 수 있다. 상기 홈은 홈 내의 깊이가 깊어질 수록 홈 내의 폭이 좁아지도록 홈의 양 측벽이 경사진 형태를 가질 수 있다. 상기 홈의 단면 형상은 V자형 또는 사다리꼴 형태일 수 있다. 상기 홈은 상기 제1 기판 상에 복수개 형성될 수 있다. The groove may have a trench-shaped groove extending in one direction. The groove may have a shape in which both sidewalls of the groove are inclined so that the width of the groove becomes narrower as the depth in the groove increases. The cross-sectional shape of the groove may be V-shaped or trapezoidal. A plurality of grooves may be formed on the first substrate.
상기 제거용 부재는 접착력과 함께 탄성력을 가질 수 있다. 상기 전사용 부재는 PDMS로 형성된 것일 수 있다. 상기 제거용 부재는 PDMS로 형성된 것일 수 있다. The removal member may have an elastic force together with the adhesive force. The transfer member may be formed of PDMS. The removal member may be formed of PDMS.
본 발명의 다른 실시형태에 따른 나노선 정렬 방법은, 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사진 트렌치홈이 형성되어 있는 3차원 구조를 구비한 기판을 준비하는 단계; 나노선이 분산되어 있는 용액을 상기 3차원 구조 상에 제공하는 단계; 및 상기 3차원 구조 상에 제공된 용액을 건조시켜 상기 트렌치홈의 길이 방향을 따라 상기 나노선을 상기 트렌치홈 내에 정열시키는 단계를 포함한다. 상기 트렌치홈은 상기 3차원 구조에 복수개 형성되어 있고, 상기 복수개의 트렌치홈은 서로 평행하게 연장될 수 있다. 상기 트렌치홈의 단면 형상은 V자형이거나 절두형 역피라미드의 단면 형상일 수 있다. According to another embodiment of the present invention, a nanowire alignment method includes preparing a substrate having a three-dimensional structure in which trench grooves in which both inner walls of the groove are inclined are formed so that the width in the groove becomes narrower as the depth in the groove becomes deeper. step; Providing a solution in which nanowires are dispersed on the three-dimensional structure; And drying the solution provided on the three-dimensional structure to align the nanowires in the trench grooves along the length direction of the trench grooves. A plurality of trench grooves may be formed in the three-dimensional structure, and the plurality of trench grooves may extend in parallel to each other. The trench groove may have a cross-sectional shape of a V-shaped or truncated inverse pyramid.
본 발명의 실시예에 따르면, 상기 3차원 구조를 구비한 기판을 준비하는 단계는, 평면 형상의 상면을 갖는 모기판을 준비하는 단계; 상기 모기판의 상면을 식각하여, 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사진 트렌치홈을 상기 모기판에 형성하는 단계를 포함할 수 있다. 상기 모기판은 실리콘 기판일 수 있다.According to an embodiment of the present invention, the preparing of the substrate having the three-dimensional structure may include preparing a mother substrate having a planar top surface; Etching the upper surface of the mother substrate to form a trench groove in which both inner walls of the groove are inclined so that the width of the groove becomes narrower as the depth in the groove becomes deeper. The mother substrate may be a silicon substrate.
다른 실시예에 따르면, 상기 3차원 구조를 구비한 기판을 준비하는 단계는, 평면 형상의 상면을 갖는 모기판을 준비하는 단계; 상기 모기판의 상면을 식각하여, 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사진 트렌치홈을 상기 모기판에 형성하는 단계; 상기 트렌치홈이 형성된 모기판 상에 제1 폴리머 물질을 코팅하여 상기 트렌치홈을 완전히 매립하는 폴리머층을 형성하는 단계; 상기 폴리머층을 상기 모기판으로부터 분리한 후 상기 폴리머층의 분리면 상에 제2 폴리머 물질을 코팅하여, 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사진 트렌치홈이 형성되어 있고 상기 트렌치홈의 바닥부가 개구로서 뚫려있는 3차원 틀을 형성하는 단계; 및 상기 3차원 틀을 상기 폴리머층으로부터 분리하고, 나노선 정열이 필요한 기판 상에 배치하는 단계를 포함한다. According to another embodiment, the preparing of the substrate having the three-dimensional structure may include preparing a mother substrate having a planar top surface; Etching the upper surface of the mother substrate to form trench grooves in which both inner walls of the groove are inclined so that the width of the groove becomes narrower as the depth in the groove becomes deeper; Coating a first polymer material on the mother substrate where the trench grooves are formed to form a polymer layer which completely fills the trench grooves; After separating the polymer layer from the mother substrate and coating a second polymer material on the separation surface of the polymer layer, trench grooves in which both inner walls of the grooves are inclined so that the width in the grooves becomes narrower as the depth in the grooves becomes deeper. Forming a three-dimensional mold which is formed and has a bottom portion of the trench groove opened as an opening; And separating the three-dimensional framework from the polymer layer and placing it on a substrate that requires nanowire alignment.
상기 3차원 구조를 구비한 기판을 준비하는 단계는, 상기 폴리머층을 상기 모기판으로부터 분리한 후 상기 폴리머층의 분리면 상에 상기 제2 폴리머 물질을 코팅하기 전에 상기 폴리머층의 분리면 상에 층분리용 박막을 형성하는 단계를 더 포함할 수 있다.The preparing of the substrate having the three-dimensional structure may include: separating the polymer layer from the mother substrate and before coating the second polymer material on the separation surface of the polymer layer on the separation surface of the polymer layer. The method may further include forming a thin film for layer separation.
상기 나노선 정렬 방법은, 상기 나노선을 상기 트렌치홈 내에 정열시키는 단계 후에, 상기 3차원 틀을 상기 기판으로부터 분리하고 나노선 정열이 필요한 다른 기판 상에 배치하여 상기 3차원 틀을 재사용하는 단계를 더 포함할 수 있다. The nanowire alignment method may include reusing the three-dimensional framework by separating the three-dimensional framework from the substrate and disposing the three-dimensional framework on the substrate after the alignment of the nanowires in the trench grooves. It may further include.
본 발명의 실시형태에 따른 나노선 정렬용 3차원 틀은 나노선이 배열될 기판 상에 배치되어 나노선을 정렬하기 위한 틀로서, 기판 상에 배치되는 면의 반대면측에 트렌치홈이 형성되어 있고 상기 트렌치홈은 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사지고, 상기 트렌치홈의 바닥부는 개구로서 뚫려있다. The three-dimensional frame for aligning nanowires according to the embodiment of the present invention is a frame for aligning nanowires arranged on a substrate on which nanowires are to be arranged, and trench grooves are formed on the opposite side of the surface disposed on the substrate. As the trench groove deepens in the groove, both inner walls of the groove are inclined so that the width of the trench narrows, and the bottom of the trench groove is opened as an opening.
본 발명의 실시형태에 따른 나노선 정렬용 3차원 틀을 제조하는 방법은, 평면 형상의 상면을 갖는 모기판을 준비하는 단계; 상기 모기판의 상면을 식각하여, 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사진 트렌치홈을 상기 모기판에 형성하는 단계; 상기 트렌치홈이 형성된 모기판 상에 제1 폴리머 물질을 코팅하여 상기 트렌치홈을 완전히 매립하는 폴리머층을 형성하는 단계; 및 상기 폴리머층을 상기 모기판으로부터 분리한 후 상기 폴리머층의 상면에 형성된 피라미드 구조 상에 제2 폴리머 물질을 코팅하여, 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사진 트렌치홈이 형성되어 있고 상기 트렌치홈의 바닥부가 개구로서 뚫려있는 3차원 틀을 형성하는 단계를 포함한다. Method of manufacturing a three-dimensional framework for aligning nanowires according to an embodiment of the present invention comprises the steps of preparing a mother substrate having a planar top surface; Etching the upper surface of the mother substrate to form trench grooves in which both inner walls of the groove are inclined so that the width of the groove becomes narrower as the depth in the groove becomes deeper; Coating a first polymer material on the mother substrate where the trench grooves are formed to form a polymer layer which completely fills the trench grooves; And separating the polymer layer from the mother substrate and coating a second polymer material on the pyramid structure formed on the upper surface of the polymer layer, so that inner walls of both grooves are narrow so that the width in the groove becomes narrower as the depth in the groove increases. And forming a three-dimensional frame in which a photo trench groove is formed and a bottom portion of the trench groove is opened as an opening.
본 발명의 일 실시 형태에 따른 전자소자는 폭이 점점 좁아지는 홈을 구비하는 기판, 그리고 상기 홈 내에 정렬된 나노선을 포함한다.An electronic device according to an embodiment of the present invention includes a substrate having grooves that become narrower in width, and nanowires aligned in the grooves.
본 발명의 실시예에 따르면, 원하는 패턴으로 잘 정렬된 나노선 또는 나노선 네트워크를 원하는 기판에 단시간에 손쉽게 전사시킬 수 있다. 따라서, 잘 정렬된 나노선을 갖는 나노선 소자 또는 나노선 네트워크 소자를 저비용으로 대량 생산하는 데에 효과적으로 적용될 수 있다. 또한, 나노선 분산 용액을 뿌린 후 건조시키고 불필요한 부분에 붙어있는 나노선을 제거하는 과정을 반복해서 수행함으로써 나노선 네트워크의 나노선 밀도를 효과적으로 조절할 수 있는 장점이 있다. 본 발명의 실시예에 따른 정렬된 나노선 전사 방법을 플렉서블 기판에의 나노선 전사에 적용함으로써 플렉서블 전자 시스템(flexible electronics) 제작에 효과적으로 이용될 수 있다.According to an embodiment of the present invention, nanowires or nanowire networks well aligned in a desired pattern can be easily transferred to a desired substrate in a short time. Thus, it can be effectively applied to mass production at low cost of nanowire devices or nanowire network devices having well aligned nanowires. In addition, by spraying the nanowire dispersion solution and then drying and removing the nanowires attached to the unnecessary parts by repeating the process there is an advantage that can effectively control the nanowire density of the nanowire network. By applying the aligned nanowire transfer method according to an embodiment of the present invention to nanowire transfer to a flexible substrate, it can be effectively used for fabricating flexible electronics.
본 발명의 실시형태에 따르면, 단시간에 저비용으로 나노선을 원하는 방향으로 정렬시킨 기판 구조체를 얻을 수 있다. 이와 같이 나노선이 정렬된 기판 구조체는 나노선 네트워크 소자 등 나노선 소자에 이용될 수 있다. 또한, 본 발명의 실시형태를 이용함으로써 나노선이 정렬된 소자를 대량으로 생산할 수 있다. 뿐만 아니라, 나노선 소자에 사용되는 기판(예를 들어 실리콘 반도체 기판) 과는 별도로 상술한 트렌치홈이 형성된 3차원 틀을 사용함으로써, 나노선 정렬이 필요한 기판을 별도로 식각하지 않고도 기판 상에 나노선을 용이하게 정렬시킬 수 있다. 또한, 나노선 정렬이 필요한 기판들에 3차원 틀을 반복하여 재사용할 수 있어, 하나의 3차원 틀로 여러 개의 기판 상에 나노선을 정렬시킬 수 있는 이점이 있다.According to the embodiment of the present invention, it is possible to obtain a substrate structure in which nanowires are aligned in a desired direction at low cost in a short time. The substrate structure in which the nanowires are aligned may be used in nanowire devices such as nanowire network devices. In addition, by using the embodiment of the present invention, a device in which nanowires are aligned can be mass produced. In addition, by using a three-dimensional frame formed with the trench grooves described above, apart from the substrate (for example, silicon semiconductor substrate) used in the nanowire device, the nanowire on the substrate is not etched without separately etching the substrate requiring nanowire alignment. Can be easily aligned. In addition, the three-dimensional framework can be repeatedly reused for the substrates that require nano-wire alignment, which has the advantage of aligning the nano-wires on multiple substrates in one three-dimensional framework.
도 1은 본 발명의 실시예에 따른 정렬된 나노선 전사 방법에 있어서, 나노선을 정렬시키는 과정을 나타내는 개략적인 도면이다.1 is a schematic diagram illustrating a process of aligning nanowires in an aligned nanowire transfer method according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 정렬된 나노선 전사 방법에 있어서, 나노선 정렬 후 원하지 않는 부분(홈 외측의 기판 상면)에 붙어있는 나노선을 제거하는 과정을 나타내는 개략적인 도면이다.FIG. 2 is a schematic diagram illustrating a process of removing nanowires attached to an undesired portion (the upper surface of the substrate outside the groove) after the nanowire alignment in the aligned nanowire transfer method according to an embodiment of the present invention.
도 3은 정렬된 나노선의 밀도의 변화를 보여주는 현미경 사진이다.3 is a micrograph showing the change in density of aligned nanowires.
도 4는 정렬된 나노선 또는 나노선 네트워크를 원하는 다른 기판에 옮겨 찍는 과정을 나타내는 도면이다. 4 is a diagram illustrating a process of transferring an aligned nanowire or a nanowire network to another desired substrate.
도 5는 본 발명의 실시예에 따른 정렬된 나노선 전사 과정 중 탄성력과 접착력이 있는 물질에 옮겨진 나노선 네트워크를 보여주는 도면((a) 및 (b))과, 이 나노선 네트워크를 다시 원하는 플렉서블 기판에 옮긴 것을 보여주는 도면((c))이다. 5 is a diagram illustrating a nanowire network transferred to a material having elasticity and adhesion during aligned nanowire transfer processes according to an embodiment of the present invention ((a) and (b)), and the nanowire network is flexible again. It is a figure (c) which shows what was transferred to the board | substrate.
도 6 내지 8은 본 발명의 실시예에 따른 나노선 정렬 방법을 설명하기 위한 도면들이다.6 to 8 are views for explaining the nanowire alignment method according to an embodiment of the present invention.
도 9는 본 발명의 실시예에 따른 나노선 정렬용 3차원 틀의 단면도이다.9 is a cross-sectional view of a three-dimensional frame for aligning nanowires according to an embodiment of the present invention.
도 10은 도 9에 도시된 3차원 틀의 평면도이다.10 is a plan view of the three-dimensional framework shown in FIG.
도 11 내지 14는 본 발명의 다른 실시예에 따른 나노선 정렬 방법을 설명하기 위한 도면들이다.11 to 14 are views for explaining a nanowire alignment method according to another embodiment of the present invention.
도 15 내지 18은 본 발명의 실시예에 따른 나노선 정렬용 3차원 틀을 제조하는 방법을 설명하기 위한 도면들이다.15 to 18 are views for explaining a method of manufacturing a three-dimensional frame for aligning nanowires according to an embodiment of the present invention.
도 19 내지 20은 본 발명의 실시예에 따른 나노선 정렬용 3차원 틀의 재사용을 설명하기 위한 도면들이다. 19 to 20 are views for explaining the reuse of the three-dimensional framework for aligning nanowires according to an embodiment of the present invention.
도 21은 습식식각을 통해 실리콘 기판에 형성된 V자형 트렌치홈과, 절두형 역피라미드 단면 형상의 트렌치홈을 나타낸 SEM(주사 전자 현미경) 사진이다.21 is a scanning electron microscope (SEM) photograph showing a V-shaped trench groove formed in a silicon substrate through wet etching and a trench groove having a truncated inverted pyramid cross-sectional shape.
도 22는 트렌치홈 내에 정렬된 나노선을 나타낸 SEM 사진이다. FIG. 22 is a SEM photograph showing nanowires aligned in trench trenches. FIG.
이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러 가지의 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로만 한정되는 것은 아니다. 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. Shapes and sizes of the elements in the drawings may be exaggerated for clarity, elements denoted by the same reference numerals in the drawings are the same elements.
정렬된 Aligned 나노선Nanowire 또는  or 나노선Nanowire 네트워크의 전사 방법 Transcription method of network
도 1은 본 발명의 실시예에 따른 정렬된 나노선 전사 방법에 있어서, 나노선을 정렬시키는 과정을 나타내는 개략적인 도면이다. 본 실시예에 따르면, 상면에 홈이 형성된 기판(제1 기판)의 홈 내에 나노선을 정렬시킨 후, 탄성력과 접착력을 갖는 전사용 부재(예를 들어 PDMS 기판 등)를 이용하여 나노선을 이 전사용 부재에 옮기고 이 전사용 부재를 원하는 다른 기판(제2 기판)에 옮겨 찍어냄으로써 원하는 기판 상에 잘 정렬된 나노선 혹은 나노선 네트워크를 형성할 수 있다. 1 is a schematic diagram illustrating a process of aligning nanowires in an aligned nanowire transfer method according to an embodiment of the present invention. According to this embodiment, after aligning the nanowires in the grooves of the substrate (first substrate) having a groove on the upper surface, the nanowires are separated using a transfer member (for example, a PDMS substrate) having elasticity and adhesion. By transferring the transfer member to the desired other substrate (second substrate), it is possible to form a well aligned nanowire or a nanowire network on the desired substrate.
도 1(a)을 참조하면, 기판 상에 나노선을 정렬시키기 위해서, 먼저 상면에 홈 형태의 3차원 구조를 갖는 제1 기판(101)을 준비한다. 도 1에는 제1 기판(101) 상면에 형성된 홈이 사다리꼴 단면의 일방향으로 연장된 트렌치 형태로 되어 있으나 본 발명이 이에 한정되는 것은 아니다. 예를 들어, V자형의 단면 형상을 갖는 홈을 이용할 수도 있다. 또한, 원하는 나노선 혹은 나노선 네트워크 패턴을 형성하기 위해 홈 바닥의 형태는 원하는 다양한 형상과 크기를 가질 수 있다. 도 1에 도시된 바와 같이, 홈은 홈 내의 깊이가 깊어질 수록 홈 내의 폭이 좁아지도록 홈의 양 측벽이 경사진 형태를 가질 수 있다. 이러한 홈은 제1 기판(101) 상면에 복수개 형성될 수 있고, 이들 복수개의 홈은 서로 평행하게 연장될 수도 있다. 이러한 홈은 예를 들어, 실리콘 기판의 습식 식각 또는 건식 식각으로 형성될 수 있다. 실리콘 기판 상에 식각 마스크로 스트라이프 형상의 식각 영역을 오픈한 상태에서 KOH로 실리콘 기판을 식각하면 도 1에 도시된 바와 같은 홈 형태를 손쉽게 형성할 수 있다. Referring to FIG. 1A, in order to align nanowires on a substrate, first, a first substrate 101 having a three-dimensional structure having a groove shape on an upper surface thereof is prepared. In FIG. 1, the groove formed on the upper surface of the first substrate 101 has a trench shape extending in one direction of a trapezoidal cross section, but the present invention is not limited thereto. For example, a groove having a V-shaped cross section may be used. In addition, the shape of the groove bottom may have various shapes and sizes desired to form a desired nanowire or nanowire network pattern. As illustrated in FIG. 1, both sidewalls of the groove may be inclined so that the width of the groove becomes narrower as the depth in the groove deepens. A plurality of such grooves may be formed on the upper surface of the first substrate 101, and the plurality of grooves may extend in parallel with each other. Such grooves may be formed, for example, by wet etching or dry etching of the silicon substrate. When the silicon substrate is etched with KOH while the stripe-shaped etching region is opened with the etching mask on the silicon substrate, a groove shape as illustrated in FIG. 1 may be easily formed.
이러한 제1 기판(101)을 준비한 후, 제1 기판(101)의 3차원 구조(상면) 상에 나노선(10)이 분산된 용액(나노선 분산 용액)(60)을 뿌린다. 나노선 분산 용액(60)으로는, 예를 들어, 이소프로필 알코올과 같은 용매에 나노선을 넣은 후 초음파 처리(sonication)를 하여 잘 분산시켜 얻은 용액을 사용할 수 있다. After the first substrate 101 is prepared, a solution (nanowire dispersion solution) 60 in which the nanowires 10 are dispersed is sprayed on the three-dimensional structure (upper surface) of the first substrate 101. As the nanowire dispersion solution 60, for example, a solution obtained by dispersing the nanowire in a solvent such as isopropyl alcohol and then performing a sonication well may be used.
도 1(b)에 도시된 바와 같이, 제1 기판(101)의 3차원 구조 상에 뿌려진 나노선 분산 용액(60)을 충분히 건조시킴으로써 나노선들은 3차원 구조의 낮은 곳, 즉 홈의 바닥부에 정렬된다. 이로써 원하는 패턴으로 잘 정렬된 나노선 네트워크를 얻을 수 있다. As shown in FIG. 1 (b), by sufficiently drying the nanowire dispersion solution 60 sprayed on the three-dimensional structure of the first substrate 101, the nanowires are lowered in the three-dimensional structure, that is, at the bottom of the groove. Is sorted on. This results in a nanowire network that is well aligned in the desired pattern.
상술한 바와 같이 정렬된 나노선 또는 나노선 네트워크를 탄성력과 접착력이 있는 물질로 된 전사용 부재를 이용하여 원하는 다른 기판에 옮길 수 있다. 탄성력과 접착력이 있는 물질로는 예를 들어 PDMS를 사용할 수 있다. 도 1을 참조하여 설명한 바와 같이 홈 내에 잘 정렬된 나노선 네트워크를 형성시킨 후, 탄성력과 접착력을 갖는 PDMS 부재를 이용하여 나노선 네트워크를 다른 원하는 기판에 옮겨 찍을 수 있다. 그러나, 도 1에 도시된 공정에 따르면, 나노선(10)이 제1 기판(101)의 홈 패턴 이외의 원하지 않는 부분(홈 외측의 제1 기판 상면 부분)에도 올라와 붙어있기 때문에 원하지 않는 부분에 붙어있는 나노선을 전사 공정 전에 미리 제거하는 것이 바람직하다. 도 2는 이러한 불필요한 나노선 제거 공정을 보여주는 단면도로서, 도 2에 도시된 공정은 도 1에 도시된 공정에 이어서 수행될 수 있다. The nanowires or nanowire networks aligned as described above can be transferred to other desired substrates using a transfer member made of a material having elasticity and adhesion. For example, PDMS may be used as a material having elasticity and adhesion. After forming the nanowire networks well aligned in the grooves as described with reference to FIG. 1, the nanowire networks may be transferred to another desired substrate by using a PDMS member having elasticity and adhesion. However, according to the process shown in Fig. 1, since the nanowire 10 is also attached to an unwanted portion (upper surface portion of the first substrate outside the groove) other than the groove pattern of the first substrate 101, It is desirable to remove the attached nanowires before the transfer process. FIG. 2 is a cross-sectional view showing such an unnecessary nanowire removal process, and the process shown in FIG. 2 may be performed following the process shown in FIG. 1.
도 2(a)를 참조하면, 전술한 도 1의 나노선 정렬 공정을 통해서 나노선(10)이 제1 기판(101)의 홈 내에 정렬될 뿐만 아니라 제1 기판(101)의 홈 외측의 원하지 않는 상면 부분에도 나노선(10a)이 올라와 붙을 수 있다. 이에 따라, 접착력을 갖는 제거용 부재(201)를 제1 기판(101) 위에 올려 놓고 제거용 부재(201)에 약한 압력을 준다(도 2(b)). 그리고 나서 이 제거용 부재(201)를 제1 기판(101)으로부터 분리시킴으로써, 원하지 않는 곳에 올라간 나노선(10a)을 제거용 부재(201)에 붙게 하여 제1 기판(101)으로부터 떼어낸다(도 2(c)). 이에 따라, 제1 기판(101)의 원하는 부분(홈 바닥)에만 나노선을 정렬시킬 수 있게 된다. 제거용 부재는 접착력과 함께 탄성력을 가질 수도 있으며, 이러한 제거용 부재로는 예를 들어 PDMS로 된 부재를 사용할 수 있다.Referring to FIG. 2A, not only the nanowires 10 are aligned in the grooves of the first substrate 101 through the nanowire alignment process of FIG. 1 described above, but also the desired outside of the grooves of the first substrate 101. Nanowire (10a) can also be attached to the upper surface portion. As a result, the removal member 201 having the adhesive force is placed on the first substrate 101 and a weak pressure is applied to the removal member 201 (FIG. 2B). Then, the removal member 201 is separated from the first substrate 101, so that the nanowire 10a that has risen in an undesired position is stuck to the removal member 201 and detached from the first substrate 101 (Fig. 2 (c)). Accordingly, the nanowires can be aligned only to a desired portion (groove bottom) of the first substrate 101. The removal member may have an elastic force together with the adhesive force, and for example, a member made of PDMS may be used as the removal member.
기존에 연구되고 있는 나노선 네트워크의 경우 원하는 밀도 혹은 높은 밀도의 나노선 네트워크를 형성시키기 어렵지만, 본 발명의 실시예에서는, 제1 기판에 나노선 분산 용액을 뿌리는 횟수에 따라서 나노선 네트워크의 나노선 밀도를 조절할 수 있는 장점을 갖는다. 상술한 도 1의 과정(나노선 분산 용액을 뿌리고 건조시키는 과정)과 도 2의 과정(제거용 부재를 이용하여, 원하지 않는 곳에 올라간 나노선을 제거하는 과정)을 반복적으로 수행함으로써, 원하는 곳(홈 바닥부)에 원하는 밀도의 나노선 네트워크를 얻을 수 있다. 예를 들어, 나노선 분산액 뿌림(도 1(a)) → 분산액 건조(도 1(b)) → 원하지 않는 곳에 올라간 나노선 제거(도 2) → 다시 나노선 분산액 뿌림(도 1(a)) → 분산액 건조(도 1(b)) → 원하지 않는 곳에 올라간 나노선 제거(도 2)와 같이 2회 반복 수행할 수 있고, 이러한 과정을 더 많은 횟수로 반복함으로써 더 높은 밀도의 나노선 패턴 혹은 나노선 네트워크를 얻을 수 있다. It is difficult to form a nanowire network of a desired density or a high density in the case of a nanowire network that has been studied in the past, but in an embodiment of the present invention, the nanowire network may vary depending on the number of times the nanowire dispersion solution is sprayed onto the first substrate. Has the advantage of adjusting the line density. By repeatedly performing the process of FIG. 1 (the process of spraying and drying the nanowire dispersion solution) of FIG. 1 and the process of FIG. At the bottom of the groove, a nanowire network of desired density can be obtained. For example, spraying nanowire dispersion (FIG. 1 (a)) → drying the dispersion (FIG. 1 (b)) → removing the unwanted nanowires (FIG. 2) → spraying the nanowire dispersion again (FIG. 1 (a)). ¡Æ drying of the dispersion (FIG. 1 (b)) may be repeated twice, such as removal of nanowires from undesired locations (FIG. 2), and the nanowire pattern or pattern of higher density You can get a route network.
도 3은 도 1 및 2의 과정을 반복적으로 수행함으로써 홈 내에 정렬된 나노선의 밀도의 변화를 보여주는 현미경 사진이다. 도 3(a)는 홈이 형성된 제1 기판의 평면도 사진을 나타낸다. 도 3(a)에 도시된 제1 기판에 상술한 도 1 및 2의 과정을 수행하여 나노선을 정렬시킴으로써 도 3(b)에 나타난 바와 같은 나노선 네트워크(나노선 패턴)을 얻었다. 그리고, 이 제1 기판에 도 1 및 2의 과정을 다시 반복하여 수행함으로써 도 3(c)에 나타난 바와 같이 잘 정렬된 나노선의 밀도를 증가시켰다. 3 is a micrograph showing changes in the density of nanowires aligned in a groove by repeatedly performing the processes of FIGS. 1 and 2. 3A shows a plan view photograph of a first substrate having grooves formed therein. The nanowire network (nanowire pattern) as shown in FIG. 3 (b) was obtained by aligning the nanowires by performing the above-described processes of FIGS. 1 and 2 on the first substrate shown in FIG. Then, by repeating the process of FIGS. 1 and 2 on the first substrate again, the density of well-aligned nanowires was increased as shown in FIG.
상술한 바와 같이 원하지 않는 곳에 올라간 일부 나노선(10a)을 떼어낸 후에는, 제1 기판(101)의 홈 내에 잘 정렬된 나노선 혹은 나노선 네트워크를 다른 기판에 옮겨찍는 공정을 수행한다. 도 4는 정렬된 나노선 또는 나노선 네트워크를 원하는 다른 기판에 옮겨 찍는 과정을 나타내는 도면이다. As described above, after removing some of the nanowires 10a that have been raised to the undesired place, a process of transferring the nanowires or the nanowire network well aligned in the grooves of the first substrate 101 to another substrate is performed. 4 is a diagram illustrating a process of transferring an aligned nanowire or a nanowire network to another desired substrate.
도 4(a)에 도시된 바와 같이 제1 기판(101)의 홈 내에 나노선(10)을 정렬시킨 후, 도 4(b)에 도시된 바와 같이 제1 기판(101) 위에 탄성력과 접착력을 가진 전사용 부재(301)를 올려놓고 강한 압력을 준다. 이 경우, 제1 기판(101)의 홈 내의 나노선 네트워크를 모두 전사용 부재로 옮길 수 있을 정도의 압력을 주면, 전사용 부재(301)는 탄성력이 있기 때문에 압력에 의해 전사용 부재(301)가 홈 안으로 들어가서 나노선 네트워크와 붙을 수 있다. 그리고 나서 이 전사용 부재(301)를 제1 기판(101)으로부터 분리시킴으로써 나노선 네트워크를 전사용 부재(301)로 옮긴다(도 4(c)). 그 후, 도 4(d)에 도시된 바와 같이 전사용 부재(301)에 붙어 있는 나노선(10) 네트워크를 나노선 정렬을 원하는 다른 제2 기판(401)에 옮기면, 도 4(e)에 도시된 바와 같이 제2 기판(401)에 전사된 잘 정렬된 나노선(10) 네트워크를 얻을 수 있게 된다. 전사용 부재(301)로는 예를 들어 탄성력과 접착력을 갖는 PDMS 물질로 된 부재를 사용할 수 있다. PDMS를 구성하고 있는 합성수지(resin) 물질과 숙성물질(curing agent) 물질의 비율을 조절함으로써 탄성력과 접착력을 조절할 수 있는 장점이 있다. After aligning the nanowires 10 in the grooves of the first substrate 101 as shown in FIG. 4 (a), elastic and adhesive forces are applied on the first substrate 101 as shown in FIG. 4 (b). Put the transfer member 301 having a strong pressure. In this case, when the nanowire network in the groove of the first substrate 101 is applied to a degree enough to transfer all of the nanowire networks to the transfer member, the transfer member 301 is elastic, so the transfer member 301 is under pressure. Can enter the groove and attach to the nanowire network. The nanowire network is then transferred to the transfer member 301 by separating the transfer member 301 from the first substrate 101 (Fig. 4 (c)). Thereafter, as shown in FIG. 4 (d), when the network of the nanowires 10 attached to the transfer member 301 is transferred to another second substrate 401 to be aligned with the nanowires, FIG. As shown, a well aligned network of nanowires 10 transferred to the second substrate 401 can be obtained. As the transfer member 301, for example, a member made of a PDMS material having elasticity and adhesion may be used. By controlling the ratio of the synthetic resin (resin) material and the curing agent (curing agent) material constituting the PDMS there is an advantage that can control the elasticity and adhesion.
상술한 전사방법을 사용함으로써, 잘 정렬된 나노선 네트워크를 기판의 종류(강성 기판, 플렉서블 기판)에 상관없이 어느 곳에나 잘 정렬된 나노선 네트워크를 용이하게 형성할 수 있다는 장점을 얻을 수 있다. 예를 들어, PET 등의 플렉서블 기판에 원하는 패턴, 원하는 밀도를 갖는 나노선 네트워크를 용이하게 형성할 수 있다. 나노선 네트워크 소자의 대량생산이 가능하게 되고 공정이 간단하다는 장점 또한 얻을 수 있다. 나노선 분산 용액의 제공이나 옮겨찍는 과정은 상온에서 혹은 저온에서 수행가능하므로 고온 공정에 의한 기판의 변형이나 기판 선택의 제한과 같은 문제를 피할 수 있다. 또한, 상술한 바와 같이 제1 기판에 나노선 분산 용액을 뿌리고 이를 건조하는 과정의 수행 횟수에 따라, 정렬된 나노선 네트워크의 나노선 밀도를 용이하게 조절할 수 있는 장점 또한 얻을 수 있다.By using the above-described transfer method, it is possible to obtain an advantage that the well-aligned nanowire network can easily form a well-aligned nanowire network anywhere regardless of the type of substrate (rigid substrate, flexible substrate). For example, a nanowire network having a desired pattern and a desired density can be easily formed on a flexible substrate such as PET. Mass production of nanowire network devices is possible, and the process is simple. Providing or transferring the nanowire dispersion solution can be performed at room temperature or at low temperature, thereby avoiding problems such as deformation of the substrate by the high temperature process and limitation of substrate selection. In addition, as described above, according to the number of times of spraying the nanowire dispersion solution on the first substrate and drying the same, an advantage of easily adjusting the nanowire density of the aligned nanowire network may be obtained.
도 5는 본 발명의 실시예에 따른 정렬된 나노선 전사 과정 중 탄성력과 접착력이 있는 물질에 옮겨진 나노선 네트워크를 보여주는 도면((a) 및 (b))과, 이 나노선 네트워크를 다시 원하는 플렉서블 기판에 옮긴 것을 보여주는 도면((c))이다. 도 5(a) 및 (b)를 참조하면, 상술한 도 1 및 2의 공정을 통해 PDMS 부재 상에 옮겨진 나노선 네트워크가 도시되어 있다. 도 5(c)에 도시된 바와 같이, 이러한 나노선 네트워크를 도 4의 과정을 통해 PET와 같은 다른 기판에 옮길 수 있다. 5 is a diagram illustrating a nanowire network transferred to a material having elasticity and adhesion during aligned nanowire transfer processes according to an embodiment of the present invention ((a) and (b)), and the nanowire network is flexible again. It is a figure (c) which shows what was transferred to the board | substrate. Referring to FIGS. 5A and 5B, a nanowire network transferred onto a PDMS member through the process of FIGS. 1 and 2 described above is shown. As shown in FIG. 5 (c), this nanowire network can be transferred to another substrate such as PET through the process of FIG. 4.
나노선Nanowire 정렬 방법 Sort method
도 6 내지 도 8은 본 발명의 실시예에 따른 나노선 정렬 방법을 설명하기 위한 도면들이다. 도 6을 참조하면, 예를 들어 실리콘 기판 등, 정렬된 나노선이 상면에 배치될 기판(501)을 준비한다. 그리고 나서, 도 7에 도시된 바와 같이, 기판(501)의 상면을 습식 또는 건식식각을 통해 식각하여 트렌치홈(505)을 형성한다. 이 트렌치홈(505)은 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사져 있다. 트렌치홈(505)의 단면 형상은 예를 들어 저부가 뾰족한 V자형이거나 저부가 평평한 절두형의 역피라미드 단면 형상일 수 있다. 도 2에 도시된 바와 같이, 트렌치홈(505)은 복수개 형성될 수 있고, 특히 복수개의 트렌치홈(505)은 서로 평행하게 연장될 수 있다. 6 to 8 are diagrams for explaining the nanowire alignment method according to an embodiment of the present invention. Referring to FIG. 6, a substrate 501 on which an aligned nanowire, for example, a silicon substrate, is to be disposed is prepared. Then, as shown in FIG. 7, the trench 505 is formed by etching the upper surface of the substrate 501 through wet or dry etching. As the trench grooves 505 become deeper in the grooves, both inner walls of the grooves are inclined so that the widths in the grooves become narrower. The cross-sectional shape of the trench grooves 505 may be, for example, an inverted pyramid cross-sectional shape having a sharp V-shaped bottom or a flat truncated bottom. As shown in FIG. 2, a plurality of trench grooves 505 may be formed, and in particular, the plurality of trench grooves 505 may extend in parallel to each other.
상술한 트렌치홈(505)은 습식식각을 이용하여 형성될 수 있다. 예를 들어, KOH 용액을 이용하여 실리콘 기판을 식각하는 방법이 있는데, 실리콘의 결정학적 방향(orientation)에 따라서 식각 속도가 다르게 되는 것을 이용할 수 있다. <100> 방향의 주면을 갖는 실리콘 웨이퍼의 경우 KOH 식각용액을 사용하여 54.7도로 일정한 각도를 이루며 식각되어, V자형 홈 또는 절두형 역피라미드형의 홈을 형성할 수 있다. 도 21은 KOH 용액을 이용한 습식 식각을 통해 형성된 V자형 홈(도 21 (a))과 절두형 역피라미드형의 홈(도 21(b)) 구조를 보여주는 SEM 사진이다. 습식 식각 시간의 졸에 따라 도 21(a)처럼 바닥이 뾰족한 V자형 홈을 형성할 수도 있고, 21(b) 처럼 바닥이 평평한 절두형 역피라미드형 홈을 형성할 수도 있다. 이러한 실리콘 기판의 습식식각은 조건의 변화에 민감하지 않으면서, 동일한 모양을 갖는 V자형 또는 절두형 역피라미드형의 트렌치홈을 매우 용이하게 형성할 수 있다. The trench groove 505 described above may be formed using wet etching. For example, there is a method of etching a silicon substrate using a KOH solution, the etching rate is different depending on the crystallographic orientation (orientation) of the silicon may be used. A silicon wafer having a main surface in the <100> direction may be etched at a constant angle of 54.7 degrees using a KOH etching solution to form a V-shaped groove or a truncated inverted pyramid groove. 21 is a SEM photograph showing the structure of the V-shaped groove (FIG. 21 (a)) and the truncated inverted pyramid type groove (FIG. 21 (b)) formed through wet etching using a KOH solution. Depending on the sol of the wet etching time, it is possible to form a V-shaped groove having a pointed bottom as shown in FIG. 21 (a), or a truncated inverted pyramid-shaped groove having a flat bottom as shown in 21 (b). The wet etching of such a silicon substrate can be very easily formed in the trench grooves of the V-shape or truncated inverted pyramidal shape having the same shape without being sensitive to the change of conditions.
이와 같이 기판(501) 자체에 트렌치 홈(505)이 형성된 3차원 구조를 만들 수 있다. 다음으로, 도 8을 참조하면, 나노선(10)이 분산되어 있는 용액을 트렌치 홈(505)이 형성된 3차원 구조에 제공한다. 예를 들어, 나노선(10)이 분산된 용액을 트렌치 홈(505)으로 떨어뜨리거나 트렌치 홈(505)으로 뿌릴 수 있다. 그리고 나서 트렌치 홈(505)에 제공된 용액을 건조시키면, 나노선(10)은 기울어진 홈 내벽을 타고 낮은 홈 골짜기 부분으로 내려가 정렬되면서, 다수의 트렌치홈(505)의 바닥부에 정렬된 나노선을 얻게 되고, 이에 따라 원하는 방향과 패턴을 가진 정렬된 나노선 네트워크를 형성할 수 있다.As such, the three-dimensional structure in which the trench grooves 505 are formed in the substrate 501 may be formed. Next, referring to FIG. 8, the solution in which the nanowires 10 are dispersed is provided in a three-dimensional structure in which the trench grooves 505 are formed. For example, a solution in which the nanowires 10 are dispersed may be dropped into the trench grooves 505 or sprayed into the trench grooves 505. Then, when the solution provided in the trench grooves 505 is dried, the nanowires 10 are aligned with the bottoms of the plurality of trench grooves 505 while the nanowires 10 are aligned with the lower groove valley portions by the inclined groove inner walls. This results in an ordered nanowire network with the desired orientation and pattern.
도 22는 상술한 공정을 사용하여, 실리콘 기판의 V자형 트렌치홈 내에 정렬된 나노선을 보여주는 SEM사진이다. 도 22에 도시된 바와 같이 나노선이 트렌치홈 내에 잘 정렬되어 있음을 알 수 있다. 도 22에 나타난 나노선 정렬을 얻기 위해, 먼저 이소프로필 알코올(isopropyl alcohol)과 같은 용매에 넣어 초음파 처리(sonication)을 하여 잘 분산시켜 얻은 용액(나노선이 분산된 용액)을 만들었다. 그 후, 이 용액을 실리콘 기판의 V자형 트렌치홈 구조 위에 뿌리고 충분히 말려서 도 22에 도시된 바와 같이 잘 정렬된 나노선을 얻었다. FIG. 22 is an SEM image showing nanowires aligned in the V-shaped trench grooves of a silicon substrate using the process described above. As shown in FIG. 22, the nanowires are well aligned in the trench grooves. In order to obtain the nanowire alignment shown in Figure 22, it was first put in a solvent such as isopropyl alcohol (isopropyl alcohol) to make a solution obtained by sonication (sonication) well dispersed (nano wire dispersed solution). This solution was then sprayed onto the V-shaped trench groove structure of the silicon substrate and dried sufficiently to obtain well aligned nanowires as shown in FIG.
나노선Nanowire 정렬틀Sorting frame 제작 making
상술한 실시예에서는, 기판 자체에 트렌치홈이 형성된 3차원 구조를 만들었으나, 기판과는 별도로 제작된 3차원 틀을 기판 상에 배치하여 나노선 정렬을 위한 트렌치홈을 마련할 수도 있다. 도 9는 본 발명의 실시예에 따라 나노선 정렬을 위해 사용될 수 있는 3차원 틀의 단면도이고, 도 10은 도 9에 도시된 3차원 틀의 평면도이다. 도 9는 도 10의 3차원 틀을 AA' 라인을 따라 자른 단면도에 해당한다. 이 3차원 틀은 '트렌치홈이 형성된 3차원 구조'의 역할을 하게 된다.In the above-described embodiment, a three-dimensional structure in which a trench groove is formed in the substrate itself is formed, but a trench groove for nanowire alignment may be provided by disposing a three-dimensional frame manufactured separately from the substrate on the substrate. 9 is a cross-sectional view of a three-dimensional framework that may be used for nanowire alignment in accordance with an embodiment of the invention, and FIG. 10 is a top view of the three-dimensional framework shown in FIG. 9. FIG. 9 is a cross-sectional view taken along the AA ′ line of the three-dimensional frame of FIG. 10. This three-dimensional framework serves as a 'three-dimensional structure with trench grooves'.
도 9 및 10을 참조하면, 나노선 정렬용 3차원 틀(551)은 상면에 적어도 하나의 트렌치홈(50)이 형성되어 있다. 또한 3차원 틀(551)의 트렌치홈(50)의 바닥부에는 트렌치홈(50)의 길이방향을 따라 연장된 개구(15)가 뚫려있다. 이 트렌치홈(50)은 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사져 있다. 예를 들어, 트렌치홈(50)은 V자형 홈이거나 절두형 역피라미드의 단면 형상을 가질 수 있다. 이러한 나노선 정렬용 3차원 틀(551)은 예를 들어 PDMS와 같은 폴리머 물질로 형성될 수 있다. 9 and 10, at least one trench groove 50 is formed on an upper surface of the three-dimensional mold 551 for nanowire alignment. In addition, an opening 15 extending along the longitudinal direction of the trench groove 50 is drilled in the bottom portion of the trench groove 50 of the three-dimensional mold 551. As the trench grooves 50 have deeper grooves, the inner walls of both grooves are inclined so that the width of the trench grooves becomes narrower. For example, the trench groove 50 may be a V-shaped groove or may have a cross-sectional shape of truncated inverted pyramid. The three-dimensional frame 551 for aligning the nanowires may be formed of a polymer material such as, for example, PDMS.
도 11 내지 14는 상술한 나노선 정렬용 3차원 틀(551)을 사용하여 기판(예를 들어, 실리콘 기판) 상에 나노선을 정렬시키는 방법의 일례를 나타낸다. 도 11에 도시된 바와 같이, 나노선 정렬용 3차원 틀(551)을 나노선 정렬이 필요한 기판(601) 상에 배치한다. 이 경우, 3차원 틀(551)의 트렌치홈(50)의 바닥부에 형성된 개구(15)를 통해 기판(601) 상면이 노출되도록, 3차원 틀(551)을 기판(601) 상에 배치한다. 그리고 나서, 도 12에 도시된 바와 같이, 트렌치홈(50)이 형성된 3차원 틀(551)에 나노선(10)이 분산된 용액(60)을 떨어뜨리거나 뿌린다. 그리고 나서, 떨어뜨리거나 뿌려진 그 용액(60)을 건조시키면, 도 13 및 14에 도시된 바와 같이 액체(60)가 마르면서 나노선(10)은 트렌치홈(50) 바닥으로 내려가 트렌치홈(50)의 길이방향을 따라 정렬되면서 잘 정돈된 나노선 패턴을 얻을 수 있게 된다. 특히, 트렌치홈(50)의 바닥은 상술한 바와 같이 개구(15)로 뚫려있으므로, 트렌치홈(50) 내에 정렬된 나노선(10)은 기판(601)과 직접 접촉할 수 있고, 나노선 정렬이 완료된 후 3차원 틀(551)을 벗겨내도 정렬된 나노선(10)은 기판(601) 상에 남아있게 된다. 이러한 점을 고려하여, 후술하는 바와 같이 3차원 틀(551)을 기판에서 기판으로 옮겨가며 반복적으로 재사용할 수 있다. 11-14 illustrate an example of a method of aligning nanowires on a substrate (eg, a silicon substrate) using the three-dimensional framework 551 for nanowire alignment described above. As shown in FIG. 11, a three-dimensional frame 551 for nanowire alignment is disposed on a substrate 601 that requires nanowire alignment. In this case, the three-dimensional mold 551 is disposed on the substrate 601 such that the upper surface of the substrate 601 is exposed through the opening 15 formed in the bottom portion of the trench groove 50 of the three-dimensional mold 551. . Then, as shown in FIG. 12, the solution 60 in which the nanowires 10 are dispersed is dropped or sprinkled on the three-dimensional mold 551 in which the trench grooves 50 are formed. Then, when the dropped or sprinkled solution 60 is dried, as shown in FIGS. 13 and 14, the liquid 60 dries, and the nanowire 10 descends to the bottom of the trench groove 50 to form the trench groove 50. Aligned along the longitudinal direction of the), you can get a well-ordered nanowire pattern. In particular, since the bottom of the trench groove 50 is drilled through the opening 15 as described above, the nanowire 10 aligned in the trench groove 50 may directly contact the substrate 601, and the nanowire alignment After this is completed, the aligned nanowires 10 remain on the substrate 601 even if the three-dimensional mold 551 is peeled off. In consideration of this point, the three-dimensional framework 551 may be repeatedly reused while moving from the substrate to the substrate as described below.
상술한 바와 같이 트렌치홈이 형성된 3차원 구조(기판 자체의 일부 또는 기판과 별도로 제작되어 배치되는 3차원 틀)를 이용한 나노선 정렬 방법은, 나노선 네트워크 소자 제작에 유용하게 적용되어, 잘 정렬된 나노선을 갖는 나노선 네트워크 소자를 얻을 수 있게 된다. 이러한 나노선 네트워크 소자는 기존의 램던하게 배열된 나노선을 이용한 나노선 네트워크 소자에 비해 향상된 성능을 갖게 된다. 또한, 상술한 나노선 정렬 방법을 이용하면, 대량 생산이 가능하고 공정이 비교적 간단한 장점이 있는 동시에, 단일 나노선 소자에 비해 비교적 성능이 떨어지는 기존의 나노선 네트워크 소자의 단점을 상당히 극복하여 고성능의 소자를 구현할 수 있다. As described above, the nanowire alignment method using a three-dimensional structure (a three-dimensional frame formed and disposed separately from a part of the substrate itself or a substrate formed with a trench groove) is usefully applied in the fabrication of nanowire network devices, and is well aligned. A nanowire network device having nanowires can be obtained. Such a nanowire network device has improved performance compared to a conventional nanowire network device using a randomly arranged nanowire. In addition, using the above-described nanowire alignment method, the mass production is possible and the process is relatively simple, and at the same time, it significantly overcomes the disadvantages of the conventional nanowire network device, which is relatively inferior to a single nanowire device, and thus has high performance. The device can be implemented.
도 15 내지 18은 상술한 3차원 틀(551)을 제조하는 방법을 설명하기 위한 도면들이다. 도 15를 참조하면, 평면 형상을 갖는 모기판(701)을 준비한 후 모기판(701)의 상면을 식각하여 트렌치홈(705)을 형성한다. 모기판(701)으로서 예를 들어 실리콘 기판을 사용할 수 있다. 이 트렌치홈(705)은 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사져 있다. 예를 들어, V자형 또는 절두형 역피라미드의 단면 형상을 갖는 트렌치홈(705)을 형성할 수 있다. 모기판(701)으로서 실리콘 기판을 사용할 경우, 예를 들어 KOH를 이용한 습식식각 또는 다른 건식식각을 이용하여 트렌치홈(705)을 형성할 수 있다. 15 to 18 are views for explaining the method of manufacturing the three-dimensional mold 551 described above. Referring to FIG. 15, after preparing the mother substrate 701 having a planar shape, a trench groove 705 is formed by etching the upper surface of the mother substrate 701. As the mother substrate 701, for example, a silicon substrate can be used. In the trench grooves 705, both inner walls of the grooves are inclined so that the width of the trench narrows as the depth in the grooves increases. For example, a trench groove 705 having a cross-sectional shape of a V-shaped or truncated inverted pyramid may be formed. When the silicon substrate is used as the mother substrate 701, the trench grooves 705 may be formed using wet etching or other dry etching using, for example, KOH.
다음으로, 도 16을 참조하면, 트렌치홈이 형성된 모기판(701) 상에 제1 폴리머 물질을 코팅하여 상기 트렌치홈을 완전히 매립하는 폴리머층(715)을 형성한다. 예를 들어, 경화되지 않은 폴리머 액체 물질(예컨대, PDMS)을, 모기판(701)의 트렌치홈(705)을 다 메울 수 있을 정도로 충분한 양을 코팅할 수 있다. 이 코팅된 폴리머 액체 물질을 고체로 경화시킴으로써, 도 16에 도시된 바와 같은 폴리머층(715)을 얻을 수 있다. 이에 따라, 모기판(701)의 트렌치홈(705)의 형상이 폴리머층(715)으로 전사되어 폴리머층(715)은 피라미드의 단면 형상을 갖게 된다. 이 폴리머층(715)은 3차원 틀(551)을 제작하기 위한 일종의 주형(mold)으로서 제공된다. Next, referring to FIG. 16, a first polymer material is coated on the mother substrate 701 on which the trench grooves are formed to form a polymer layer 715 that completely fills the trench grooves. For example, an uncured polymer liquid material (eg, PDMS) may be coated in an amount sufficient to fill the trench grooves 705 of the mother substrate 701. By curing this coated polymer liquid material to a solid, a polymer layer 715 as shown in FIG. 16 can be obtained. Accordingly, the shape of the trench grooves 705 of the mother substrate 701 is transferred to the polymer layer 715 so that the polymer layer 715 has a cross-sectional shape of a pyramid. This polymer layer 715 is provided as a kind of mold for manufacturing the three-dimensional mold 551.
다음으로, 도 17을 참조하면, 폴리머층(715)을 모기판(701)으로부터 벗겨낸 후, 폴미머층(715)의 트렌치홈 전사면(분리면) 상에 층분리용 박막(320)을 형성한다. 예를 들어, 파릴렌(parylene)과 같은 물질을 폴리머층(715)의 분리면 상에 고르게 코팅하여 층분리용 박막(320)을 형성할 수 있다. 이러한 층분리용 박막(320)은 후술하는 바와 같이, 그 위에 형성될 폴리머 물질(제2 폴리머 물질)과 아래의 폴리머층(715)을 쉽게 분리하기 위한 것이다. Next, referring to FIG. 17, the polymer layer 715 is peeled off from the mother substrate 701, and then the thin film 320 for layer separation is formed on the trench groove transfer surface (separation surface) of the pollimer layer 715. do. For example, a material such as parylene may be evenly coated on the separation surface of the polymer layer 715 to form a thin film 320 for separating layers. As described below, the thin film 320 for separating layers is used to easily separate the polymer material (second polymer material) to be formed thereon and the polymer layer 715 below.
그 후, 도 18에 도시된 바와 같이, 층분리용 박막(320) 상에 제2 폴리머 물질을 코팅하여 3차원 틀(551)을 형성한다. 3차원 틀(551)이 되는 제2 폴리머 물질로는, 상술한 폴리머층(715) 형성용 제1 폴리머 물질과 동일한 폴리머 물질이 사용될 수 있다. 예를 들어 경화되지 않은 PDMS와 같은 폴리머 액체를 층분리용 박막(320) 상에 코팅하여 3차원 틀(551)을 형성할 수 있다.Thereafter, as shown in FIG. 18, the second polymer material is coated on the layer separation thin film 320 to form a three-dimensional mold 551. As the second polymer material to be the three-dimensional mold 551, the same polymer material as the first polymer material for forming the polymer layer 715 may be used. For example, a three-dimensional mold 551 may be formed by coating a polymer liquid such as uncured PDMS on the thin film for separation of layers 320.
이 3차원 틀(551)은 폴리머층(715)으로부터 분리되어 나노선 정렬이 필요한 기판 상에 배치된다. 상술한 바와 같은 프로세스로 제작된 3차원 틀(551)은 도 9 및 10을 참조하여 설명한 바와 같이 트렌치홈(50)을 갖는다. 즉, 트렌치홈(50)은 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사져 있고, 트렌치홈(50)의 바닥부는 개구(15)로서 뚫려있다. 3차원 틀(551)을 나노선 네트워크를 형성시키고자 하는 기판에 옮겨 그 기판 위에 나노선을 정렬하는 데에 사용될 있다.This three-dimensional framework 551 is separated from the polymer layer 715 and placed on a substrate that requires nanowire alignment. The three-dimensional mold 551 manufactured by the above-described process has a trench groove 50 as described with reference to FIGS. 9 and 10. That is, the trench groove 50 is inclined at both inner walls of the groove so that the width of the groove becomes narrower as the depth in the groove becomes deeper, and the bottom portion of the trench groove 50 is bored as an opening 15. The three-dimensional framework 551 may be moved to a substrate to form a nanowire network and used to align the nanowires on the substrate.
3차원 틀(551)에 개구(15)를 형성하기 위해, 도 18에 도시된 바와 같이, 3차원 틀(551) 형성을 위해 제2 폴리머 물질을 코팅할 때 폴리머층(715)의 골짜기 부분을 완전히 매립하지 않고 산 끝부분을 조금 남겨놓도록 제2 폴리머 물질을 코팅할 수 있다. 또는, 폴리머층(715)의 골짜기 부분을 완전히 매립한 후 윗부분을 식각하여 폴리머층(715)의 산 부분을 조금 남겨놓을 수 있다. 이 3차원 틀(551)을 폴리머층(715)으로부터 뜯어내면 3차원 틀(551)에는 V자형 또는 절두형 역피라미드형 등의 트렌치홈(도 9의 도면부호 50 참조)이 나타나게 되고, 이 트렌치홈(50)의 바닥에는 나노 단위의 폭을 갖는 개구(15)가 나타나게 된다.In order to form the opening 15 in the three-dimensional mold 551, as shown in FIG. 18, the valley portion of the polymer layer 715 is formed when the second polymer material is coated to form the three-dimensional mold 551. The second polymer material may be coated to leave some acid tip without filling up completely. Alternatively, after the valley portion of the polymer layer 715 is completely buried, the upper portion may be etched to leave a little acid portion of the polymer layer 715. When the three-dimensional mold 551 is removed from the polymer layer 715, trench grooves (refer to reference numeral 50 in FIG. 9), such as V-shaped or truncated inverted pyramid type, appear in the three-dimensional mold 551. An opening 15 having a width in nano units appears at the bottom of the groove 50.
상술한 나노선 정렬용 3차원 틀(551)은 기판을 옮겨가며 반복하여 재사용될 수 있다. 도 19에 도시된 바와 같이, 3차원 틀(551)이 기판(601) 상에 배치되어 기판(601) 상에 나노선(10)을 정렬시킬 수 있다. 그리고 나서, 이 3차원 틀(551)을 기판(601)으로부터 벗겨낸 후, 다른 기판(나노선 정렬이 필요한 다른 기판)(801) 상에 올려놓고 상술한 나노선 정렬 과정(도 11 내지 14 참조, 다만, 기판이 601에서 801로 바뀌어짐)을 통해 기판(801) 상에 나노선을 정렬시킬 수 있다. 따라서, 여러 기판에 나노선 정렬을 수행하고자 할 때, 하나의 3차원 틀을 제작하여 반복, 재사용할 수 있는 잇점이 있다. The three-dimensional frame 551 for aligning the nanowires may be repeatedly reused while moving the substrate. As shown in FIG. 19, a three-dimensional frame 551 may be disposed on the substrate 601 to align the nanowires 10 on the substrate 601. Then, the three-dimensional mold 551 is peeled off from the substrate 601, and then placed on another substrate (another substrate requiring nanowire alignment) 801 and the above-described nanowire alignment process (see FIGS. 11 to 14). However, the nanowires may be aligned on the substrate 801 through the substrate changed from 601 to 801. Therefore, when performing nanowire alignment on several substrates, there is an advantage that can be repeated, reused by manufacturing a single three-dimensional framework.
본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되지 아니한다. 첨부된 청구범위에 의해 권리범위를 한정하고자 하며, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게 자명할 것이다. The present invention is not limited by the above-described embodiment and the accompanying drawings. It is intended that the scope of the invention be defined by the appended claims, and that various forms of substitution, modification, and alteration are possible without departing from the spirit of the invention as set forth in the claims. Will be self-explanatory.
본 발명의 실시 예들은 잘 정렬된 나노선을 갖는 나노선 소자 또는 나노선 네트워크 소자를 저비용으로 대량 생산하는 데에 효과적으로 적용될 수 있다. Embodiments of the present invention can be effectively applied to mass production of nanowire devices or nanowire network devices having well aligned nanowires at low cost.
본 발명의 실시예에 따른 정렬된 나노선 전사 방법을 플렉서블 기판에의 나노선 전사에 적용함으로써 플렉서블 전자 시스템(flexible electronics) 제작에 효과적으로 이용될 수 있다.By applying the aligned nanowire transfer method according to an embodiment of the present invention to nanowire transfer to a flexible substrate, it can be effectively used for fabricating flexible electronics.

Claims (26)

  1. 상면에 홈을 갖는 제1 기판의 상기 홈 내에 나노선을 정렬시키는 단계; 및 Aligning nanowires in the grooves of the first substrate having grooves on the top surface; And
    탄성력과 접착력을 갖는 전사용 부재를 이용하여 상기 제1 기판의 홈 내에 정렬된 나노선을 다른 제2 기판에 옮겨 찍는 단계를 포함하는 정렬된 나노선 전사 방법. And transferring the nanowires aligned in the grooves of the first substrate to another second substrate by using a transfer member having elasticity and adhesion.
  2. 제1항에 있어서, The method of claim 1,
    상기 나노선을 정렬시키는 단계와, 상기 정렬된 나노선을 제2 기판에 옮겨 찍는 단계 사이에, 접착력을 갖는 제거용 부재를 이용하여 상기 홈 외측의 제1 기판 상면에 위치한 나노선을 떼어내는 단계를 더 포함하는 것을 특징으로 하는 정렬된 나노선 전사 방법. Separating the nanowires located on the upper surface of the first substrate outside the groove by using a removing member having an adhesive force between aligning the nanowires and transferring the aligned nanowires to the second substrate. Aligned nanowire transfer method characterized in that it further comprises.
  3. 제2항에 있어서, The method of claim 2,
    상기 정렬된 나노선을 상기 제2 기판에 옮겨 찍는 단계 전에, 상기 나노선을 정렬시키는 단계와 상기 홈 외측의 제1 기판 상면에 위치한 나노선을 떼어내는 단계를 반복해서 추가로 수행하는 것을 특징으로 하는 정렬된 나노선 전사 방법. Before the step of transferring the aligned nanowires to the second substrate, the step of aligning the nanowires and the step of removing the nanowires located on the upper surface of the first substrate outside the groove, it is further carried out by repeating Aligned nanowire transcription method.
  4. 제1항에 있어서, The method of claim 1,
    상기 나노선을 정렬시키는 단계는, Aligning the nanowires,
    상면에 홈을 갖는 제1 기판을 준비하는 단계; Preparing a first substrate having a groove on an upper surface thereof;
    나노선 분산 용액을 상기 제1 기판의 3차원 구조 상에 제공하는 단계; 및 Providing a nanowire dispersion solution on a three-dimensional structure of the first substrate; And
    상기 3차원 구조 상에 제공된 상기 나노선 분산 용액을 건조시켜 상기 제1 기판의 홈 내에 나노선을 정렬시키는 단계를 포함하는 것을 특징으로 하는 정렬된 나노선 전사 방법. And drying the nanowire dispersion solution provided on the three-dimensional structure to align the nanowires in the grooves of the first substrate.
  5. 제1항에 있어서, The method of claim 1,
    상기 홈은 일 방향으로 연장된 트렌치 형태의 홈을 포함하는 것을 특징으로 하는 정렬된 나노선 전사 방법. The groove is aligned nanowire transfer method, characterized in that it comprises a trench-shaped groove extending in one direction.
  6. 제1항에 있어서, The method of claim 1,
    상기 홈은 홈 내의 깊이가 깊어질 수록 홈 내의 폭이 좁아지도록 홈의 양 측벽이 경사진 형태를 갖는 것을 특징으로 하는 정렬된 나노선 전사 방법. The grooves are aligned nanowire transfer method, characterized in that the groove has a shape inclined both sidewalls of the grooves become narrower as the depth in the grooves.
  7. 제1항에 있어서, The method of claim 1,
    상기 홈의 단면 형상은 V자형 또는 사다리꼴 형태인 것을 특징으로 하는 정렬된 나노선 전사 방법. Cross-sectional shape of the groove is aligned nanowire transfer method, characterized in that the V-shaped or trapezoidal shape.
  8. 제1항에 있어서, The method of claim 1,
    상기 홈은 상기 제1 기판 상에 복수개 형성된 것을 특징으로 하는 정렬된 나노선 전사 방법. And a plurality of grooves formed on the first substrate.
  9. 제2항에 있어서, The method of claim 2,
    상기 제거용 부재는 접착력과 함께 탄성력을 갖는 것을 특징으로 하는 정렬된 나노선 전사 방법. And the removing member has elastic force together with adhesive force.
  10. 제1항에 있어서, The method of claim 1,
    상기 전사용 부재는 PDMS로 형성된 것을 특징으로 하는 정렬된 나노선 전사 방법. And said transfer member is formed of PDMS.
  11. 제2항에 있어서, The method of claim 2,
    상기 제거용 부재는 PDMS로 형성된 것을 특징으로 하는 정렬된 나노선 전사 방법. And the removal member is formed of PDMS.
  12. 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사진 트렌치홈이 형성되어 있는 3차원 구조를 구비한 기판을 준비하는 단계;Preparing a substrate having a three-dimensional structure in which trench grooves in which both inner walls of the groove are inclined are formed so that the width in the groove becomes narrower as the depth in the groove becomes deeper;
    나노선이 분산되어 있는 용액을 상기 3차원 구조 상에 제공하는 단계; 및Providing a solution in which nanowires are dispersed on the three-dimensional structure; And
    상기 3차원 구조 상에 제공된 용액을 건조시켜 상기 트렌치홈의 길이 방향을 따라 상기 나노선을 상기 트렌치홈 내에 정열시키는 단계를 포함하는 나노선 정렬 방법.Drying the solution provided on the three-dimensional structure to align the nanowires in the trench grooves along a length direction of the trench grooves.
  13. 제12항에 있어서,The method of claim 12,
    상기 트렌치홈은 상기 3차원 구조에 복수개 형성되어 있고, 상기 복수개의 트렌치홈은 서로 평행하게 연장된 것을 특징으로 하는 나노선 정렬 방법.And a plurality of trench grooves formed in the three-dimensional structure, and the plurality of trench grooves extend in parallel to each other.
  14. 제12항에 있어서,The method of claim 12,
    상기 트렌치홈의 단면 형상은 V자형이거나 절두형 역피라미드의 단면 형상인 것을 특징으로 하는 나노선 정렬 방법.Cross-sectional shape of the trench groove is V-shaped or nanowire alignment method characterized in that the cross-sectional shape of the truncated inverted pyramid.
  15. 제12항에 있어서,The method of claim 12,
    상기 3차원 구조를 구비한 기판을 준비하는 단계는, Preparing the substrate having the three-dimensional structure,
    평면 형상의 상면을 갖는 모기판을 준비하는 단계; 및Preparing a mother substrate having a planar top surface; And
    상기 모기판의 상면을 식각하여, 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사진 트렌치홈을 상기 모기판에 형성하는 단계를 포함하는 것을 특징으로 하는 나노선 정렬 방법.Etching the upper surface of the mother substrate to form trench grooves in which both inner walls of the groove are inclined so that the width of the groove becomes narrower as the depth in the groove becomes deeper. .
  16. 제15항에 있어서,The method of claim 15,
    상기 모기판은 실리콘 기판인 것을 특징으로 하는 나노선 정렬 방법.The mother substrate is a nanowire alignment method, characterized in that the silicon substrate.
  17. 제12항에 있어서,The method of claim 12,
    상기 3차원 구조를 구비한 기판을 준비하는 단계는, Preparing the substrate having the three-dimensional structure,
    평면 형상의 상면을 갖는 모기판을 준비하는 단계;Preparing a mother substrate having a planar top surface;
    상기 모기판의 상면을 식각하여, 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사진 트렌치홈을 상기 모기판에 형성하는 단계; Etching the upper surface of the mother substrate to form trench grooves in which both inner walls of the groove are inclined so that the width of the groove becomes narrower as the depth in the groove becomes deeper;
    상기 트렌치홈이 형성된 모기판 상에 제1 폴리머 물질을 코팅하여 상기 트렌치홈을 완전히 매립하는 폴리머층을 형성하는 단계; Coating a first polymer material on the mother substrate where the trench grooves are formed to form a polymer layer which completely fills the trench grooves;
    상기 폴리머층을 상기 모기판으로부터 분리한 후 상기 폴리머층의 분리면 상에 제2 폴리머 물질을 코팅하여, 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사진 트렌치홈이 형성되어 있고 상기 트렌치홈의 바닥부가 개구로서 뚫려있는 3차원 틀을 형성하는 단계; 및 After separating the polymer layer from the mother substrate and coating a second polymer material on the separation surface of the polymer layer, trench grooves in which both inner walls of the grooves are inclined so that the width in the grooves becomes narrower as the depth in the grooves becomes deeper. Forming a three-dimensional mold which is formed and has a bottom portion of the trench groove opened as an opening; And
    상기 3차원 틀을 상기 폴리머층으로부터 분리하고, 나노선 정열이 필요한 기판 상에 배치하는 단계를 포함하는 것을 특징으로 하는 나노선 정렬 방법.Separating the three-dimensional framework from the polymer layer and placing it on a substrate that requires nanowire alignment.
  18. 제17항에 있어서,The method of claim 17,
    상기 3차원 구조를 구비한 기판을 준비하는 단계는, 상기 폴리머층을 상기 모기판으로부터 분리한 후 상기 폴리머층의 분리면 상에 상기 제2 폴리머 물질을 코팅하기 전에 상기 폴리머층의 분리면 상에 층분리용 박막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 나노선 정렬 방법.The preparing of the substrate having the three-dimensional structure may include: separating the polymer layer from the mother substrate and then separating the polymer layer on the separation surface of the polymer layer before coating the second polymer material on the separation surface of the polymer layer. Nanowire alignment method further comprising the step of forming a thin film for layer separation.
  19. 제17항에 있어서,The method of claim 17,
    상기 나노선을 상기 트렌치홈 내에 정열시키는 단계 후에, 상기 3차원 틀을 상기 기판으로부터 분리하고 나노선 정열이 필요한 다른 기판 상에 배치하여 상기 3차원 틀을 재사용하는 단계를 더 포함하는 것을 특징으로 하는 나노선 정렬 방법.After the step of aligning the nanowires in the trench grooves, separating the three-dimensional framework from the substrate and disposing the three-dimensional framework on another substrate that requires nanowire alignment to reuse the three-dimensional framework. Nanowire alignment method.
  20. 나노선이 배열될 기판 상에 배치되어 나노선을 정렬하기 위한 틀로서, A framework for aligning nanowires by placing them on a substrate on which nanowires are to be arranged
    기판 상에 배치되는 면의 반대면측에 트렌치홈이 형성되어 있고, 상기 트렌치홈은 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사지고, 상기 트렌치홈의 바닥부는 개구로서 뚫려있는 것을 특징으로 하는 나노선 정렬용 3차원 틀.Trench grooves are formed on the opposite side of the surface disposed on the substrate, and both sides of the trench grooves are inclined so that the trench grooves become narrower as the depth of the grooves increases. Three-dimensional framework for aligning nanowires, characterized in that perforated.
  21. 제20항에 있어서,상기 트렌치홈은 상기 3차원 틀에 복수개 형성되어 있고, 상기 복수개의 트렌치홈은 서로 평행하게 연장된 것을 특징으로 하는 나노선 정렬용 3차원 틀.The three-dimensional mold of claim 20, wherein the plurality of trench grooves are formed in the three-dimensional mold, and the plurality of trench grooves extend in parallel to each other.
  22. 제20항에 있어서,상기 트렌치홈의 단면 형상은 V자형이거나 절두형 역피라미드의 단면 형상인 것을 특징으로 하는 나노선 정렬용 3차원 틀.The three-dimensional framework of claim 20, wherein the trench groove has a cross-sectional shape of V-shaped or truncated inverted pyramid.
  23. 평면 형상의 상면을 갖는 모기판을 준비하는 단계; Preparing a mother substrate having a planar top surface;
    상기 모기판의 상면을 식각하여, 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사진 트렌치홈을 상기 모기판에 형성하는 단계; Etching the upper surface of the mother substrate to form trench grooves in which both inner walls of the groove are inclined so that the width of the groove becomes narrower as the depth in the groove becomes deeper;
    상기 트렌치홈이 형성된 모기판 상에 제1 폴리머 물질을 코팅하여 상기 트렌치홈을 완전히 매립하는 폴리머층을 형성하는 단계; 및 Coating a first polymer material on the mother substrate where the trench grooves are formed to form a polymer layer which completely fills the trench grooves; And
    상기 폴리머층을 상기 모기판으로부터 분리한 후 상기 폴리머층의 상면에 형성된 피라미드 구조 상에 제2 폴리머 물질을 코팅하여, 홈 내의 깊이가 깊어질수록 홈 내의 폭이 좁아지도록 홈의 양측 내벽이 경사진 트렌치홈이 형성되어 있고 상기 트렌치홈의 바닥부가 개구로서 뚫려있는 3차원 틀을 형성하는 단계를 포함하는 나노선 정렬용 3차원 틀의 제조 방법.After separating the polymer layer from the mother substrate and coating a second polymer material on the pyramid structure formed on the upper surface of the polymer layer, both inner walls of the groove are inclined so that the width in the groove becomes narrower as the depth deeper in the groove And forming a three-dimensional mold in which a trench groove is formed and a bottom portion of the trench groove is opened as an opening.
  24. 폭이 점점 좁아지는 홈을 구비하는 기판; 그리고A substrate having a groove that becomes narrower in width; And
    상기 홈 내에 정렬된 나노선을 포함하는 전자 소자.An electronic device comprising nanowires aligned in the grooves.
  25. 제24항에 있어서,The method of claim 24,
    상기 기판은 플렉서블 기판인 것을 특징으로 하는 전자소자.The substrate is an electronic device, characterized in that the flexible substrate.
  26. 제24항 또는 제25항에 있어서,The method of claim 24 or 25,
    상기 홈은 단면 형상은 V자형, 사다리꼴 또는 절두형 역피라미드 형태인 것을 특징으로 하는 전자소자.The groove is cross-sectional shape is an electronic device, characterized in that the V-shaped, trapezoidal or truncated inverted pyramid form.
PCT/KR2011/000823 2010-02-11 2011-02-08 Nanowire alignment method using a three-dimensional structure, three-dimensional framework for nanowire alignment, manufacturing method for a three-dimensional framework for nanowire alignment, and transfer printing method for an aligned nanowire WO2011099750A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020100012875A KR101165447B1 (en) 2010-02-11 2010-02-11 Method for aligning nanowires, 3-dimensional frame for aligning nanowires, and method for 3-dimensional frame for aligning nanowires
KR10-2010-0012875 2010-02-11
KR10-2010-0056922 2010-06-16
KR1020100056922A KR20110136980A (en) 2010-06-16 2010-06-16 Method of transfer printing of aligned nanowires

Publications (2)

Publication Number Publication Date
WO2011099750A2 true WO2011099750A2 (en) 2011-08-18
WO2011099750A3 WO2011099750A3 (en) 2012-02-02

Family

ID=44368277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000823 WO2011099750A2 (en) 2010-02-11 2011-02-08 Nanowire alignment method using a three-dimensional structure, three-dimensional framework for nanowire alignment, manufacturing method for a three-dimensional framework for nanowire alignment, and transfer printing method for an aligned nanowire

Country Status (1)

Country Link
WO (1) WO2011099750A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104485367A (en) * 2014-12-17 2015-04-01 中国科学院半导体研究所 Micro-nano structure capable of improving properties of HIT solar cells and preparation method of micro-nano structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050048470A (en) * 2003-11-19 2005-05-24 캐논 가부시끼가이샤 Method for aligning needle-like substances and alignment unit
KR20070102633A (en) * 2005-02-10 2007-10-19 마쯔시다덴기산교 가부시키가이샤 Structure for holding fine structure, semiconductor device, tft driving circuit, panel, display, sensor and their manufacturing methods
KR100858223B1 (en) * 2007-05-21 2008-09-10 연세대학교 산학협력단 Thin film transister with self-aligned semiconductor nanowires and fabricating method thereof
KR20090084304A (en) * 2008-01-31 2009-08-05 고려대학교 산학협력단 Nanowire thin film, method for preparing the same, apparatus for preparing the same, and electornic device comprising the same
KR20100059187A (en) * 2008-11-26 2010-06-04 삼성전자주식회사 Method of arranging one-dimensional nanostructures and method of manufacturing a semiconductor device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050048470A (en) * 2003-11-19 2005-05-24 캐논 가부시끼가이샤 Method for aligning needle-like substances and alignment unit
KR20070102633A (en) * 2005-02-10 2007-10-19 마쯔시다덴기산교 가부시키가이샤 Structure for holding fine structure, semiconductor device, tft driving circuit, panel, display, sensor and their manufacturing methods
KR100858223B1 (en) * 2007-05-21 2008-09-10 연세대학교 산학협력단 Thin film transister with self-aligned semiconductor nanowires and fabricating method thereof
KR20090084304A (en) * 2008-01-31 2009-08-05 고려대학교 산학협력단 Nanowire thin film, method for preparing the same, apparatus for preparing the same, and electornic device comprising the same
KR20100059187A (en) * 2008-11-26 2010-06-04 삼성전자주식회사 Method of arranging one-dimensional nanostructures and method of manufacturing a semiconductor device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104485367A (en) * 2014-12-17 2015-04-01 中国科学院半导体研究所 Micro-nano structure capable of improving properties of HIT solar cells and preparation method of micro-nano structure

Also Published As

Publication number Publication date
WO2011099750A3 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
US20110165337A1 (en) Method and system for printing aligned nanowires and other electrical devices
KR101126899B1 (en) Methods, devices and compositions for depositing and orienting nanostructures
CN110092349B (en) Preparation method of suspended two-dimensional nano material
US20090199960A1 (en) Pattern Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp
CN101449405A (en) Patterning nanowires on surfaces for fabricating nanoscale electronic devices
US20140272272A1 (en) Electrostatic dry adhesives
WO2011021918A1 (en) Polariton mode optical switch with composite structure
US10906286B2 (en) Method for transferring two-dimensional nanomaterials
WO2013002570A2 (en) Nanowire manufacturing method
US20140369802A1 (en) Methods, apparatuses, and systems for micromanipulation with adhesive fibrillar structures
KR101165447B1 (en) Method for aligning nanowires, 3-dimensional frame for aligning nanowires, and method for 3-dimensional frame for aligning nanowires
WO2015183008A1 (en) Coating method using particle alignment
US11652082B2 (en) Particle capture using transfer stamp
KR20100025836A (en) Fabrication method of nanowire multichannel fet device
WO2011099750A2 (en) Nanowire alignment method using a three-dimensional structure, three-dimensional framework for nanowire alignment, manufacturing method for a three-dimensional framework for nanowire alignment, and transfer printing method for an aligned nanowire
WO2013119083A1 (en) Free-standing polymer membrane having through-holes and method for manufacturing same
Guo et al. Large-scale programmable assembly of functional micro-components for advanced electronics via light-regulated adhesion and polymer growth
DE102018214017B4 (en) PROCESS FOR MANUFACTURING THIN FILMS AND MICROSYSTEMS WITH THIN FILMS
KR20110136980A (en) Method of transfer printing of aligned nanowires
KR101181602B1 (en) method of forming a pattern on a substrate having a curved surface
KR102190706B1 (en) Method for transferring a plurality of micro LED chips
KR101064380B1 (en) Transition apparatus for the nano wire pattern
CN114486960B (en) Method for transferring two-dimensional material to transmission electron microscope grid
WO2013129807A1 (en) Method for manufacturing graphene
WO2015016453A1 (en) Method for forming nanostructure by using nanoimprint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742442

Country of ref document: EP

Kind code of ref document: A2