US20110165337A1 - Method and system for printing aligned nanowires and other electrical devices - Google Patents
Method and system for printing aligned nanowires and other electrical devices Download PDFInfo
- Publication number
- US20110165337A1 US20110165337A1 US13/009,675 US201113009675A US2011165337A1 US 20110165337 A1 US20110165337 A1 US 20110165337A1 US 201113009675 A US201113009675 A US 201113009675A US 2011165337 A1 US2011165337 A1 US 2011165337A1
- Authority
- US
- United States
- Prior art keywords
- electrode pair
- nanowires
- transfer
- destination
- nanowire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68354—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68363—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate
Definitions
- the present invention relates to nanostructures, and more particularly, to the deposition of aligned nanostructures and electrical devices.
- Nanostructures such as nanowires, have the potential to facilitate a whole new generation of electronic devices.
- a major impediment to the emergence of this new generation of electronic devices based on nanostructures is the ability to effectively align and deposit the nanostructures on various surfaces, such as substrates.
- Electric fields enable the alignment of nanowires suspended in suspension, but current techniques pose stringent constraints on the scalability to large area substrates.
- current techniques for depositing electrical devices such as integrated circuits, dies, optical components, etc., do not scale well to large area substrates.
- nanowires are provided proximate to an electrode pair.
- An electric field is generated by electrodes of the electrode pair to associate the nanowires with the electrodes.
- the electrode pair is aligned with a region of the destination surface.
- the nanowires are deposited from the electrode pair to the region.
- the nanowires may be deposited to the region in a variety of ways.
- a passive or active force may be used to move the nanowires from the electrodes to the destination surface.
- Example forces include an electric field (AC and/or DC), a vacuum force, an electrostatic force, gravity, and/or other forces.
- the electrode pair may be formed on a transfer surface.
- the transfer surface is configured to have a first electric charge.
- the first electric charge applies a repulsive electrostatic force to the nanowires (e.g., the nanowires may have the same charge as the first electric charge).
- the electric field generated by the electrodes attracts the nanowires to the transfer surface against the repulsive electrostatic force.
- the electric field may be biased with an alternating current (AC) field to attract the nanowires to the transfer surface.
- the electric field may be reduced (including entirely removed) to enable the nanowires to be moved toward the destination surface by the repulsive electrostatic force of the first electric charge.
- AC alternating current
- the destination surface has a second electric charge that is opposite the first electric charge.
- An attractive electrostatic force of the second electric charge attracts the nanowires to the destination surface.
- a distance between the nanowires and the destination surface may be reduced to increase this attraction.
- the transfer surface is vibrated (e.g., ultrasonically) to enable the attractive electrostatic force of the second electric charge to attract the nanowires toward the destination surface.
- a vacuum is applied from the destination surface to the transfer surface to move the nanowires toward the destination surface.
- the vacuum may draw a solution in which the nanowires reside towards the destination surface.
- the solution flow draws the nanowires toward the destination surface.
- a second electric field associated with the destination surface is generated to attract the nanowires toward the destination surface.
- a system for applying nanowires to a destination surface includes a body having a transfer surface, an electrode pair formed on the transfer surface, a suspension that includes a plurality of nanowires provided proximate to the electrode pair, a signal generator, and an alignment mechanism.
- the signal generator is coupled to the electrode pair.
- the signal generator is configured to supply an electric signal to enable electrodes of the electrode pair to generate an electric field to associate nanowires of the plurality of nanowires with the electrodes.
- the alignment mechanism is configured to align the electrode pair with a region of the destination surface to enable the nanowires to be deposited from the electrode pair to the region.
- electrical devices are transferred to surfaces in a similar manner as described elsewhere herein for nanowires.
- one or more electrical devices are provided proximate to an electrode pair on a transfer surface. The electrode pair is energized, whereby an electrical device becomes associated with the electrode pair. Subsequently, the electrical device is deposited from the electrode pair to a destination surface.
- nanostructures such as nanowires
- a transfer surface of a print head is positioned adjacent to a destination surface.
- a nanowire is associated with the transfer surface.
- a distance between the transfer surface and the destination surface is reduced.
- a fluid is received in one or more openings in the transfer surface from between the transfer surface and the destination surface during the reducing of the distance between the transfer and destination surfaces. Receiving the fluid in the opening(s) reduces a shear force on the nanowire.
- the nanowire is deposited from the transfer surface to the destination surface.
- a nanowire transfer system includes an association station, a printing station, and a cleaning station.
- the association station is configured to receive a plurality of print heads, and to associate nanostructures with a transfer surface of each of the received plurality of print heads.
- the printing station is configured to receive a destination substrate and at least one of the print heads, and to transfer the nanostructures from the received print head(s) to a plurality of regions of a surface of the destination substrate.
- the cleaning station is configured to receive the plurality of print heads from the printing station, and to clean the received plurality of print heads.
- the printing station may be configured to perform the transfer of the nanostructures as a “wet” transfer or a “dry” transfer.
- the nanowire transfer system may include an inspection station.
- the inspection station is configured to perform an inspection of the transfer surfaces of the plurality of print heads, and to select at least one print head of the plurality of print heads based on the inspection.
- the printing station may be configured to transfer the nanostructures from the selected at least one print head.
- the nanowire transfer system may include a repair station.
- the repair station is configured to perform an inspection of the nanostructures transferred to the plurality of regions of the surface of the destination substrate. If the repair station determines an arrangement of nanostructures in need of repair, the repair station is configured to repair the arrangement of nanostructures.
- the nanowire transfer system may include a print head drying station and a repair station.
- the print head drying station is configured to dry the nanostructures associated with the transfer surfaces of the plurality of print heads.
- the repair station is configured to perform an inspection of the dried transfer surfaces. If the repair station determines an arrangement of nanostructures associated with a transfer surface in need of repair, the repair station is configured to repair the determined arrangement of nanostructures.
- the print head drying station enables a dry transfer of the nanowires to be performed at the printing station.
- the nanowire transfer system may include a panel drying station.
- the panel drying station is configured to dry the nanostructures transferred to the plurality of regions of the surface of the destination substrate (e.g., if a wet transfer of the nanowires is performed by the printing station)
- FIG. 1A is a diagram of a single crystal semiconductor nanowire.
- FIG. 1B is a diagram of a nanowire doped according to a core-shell (CS) structure.
- FIG. 1C is a diagram of a nanowire doped according to a core-shell-shell (CSS) structure.
- FIG. 2 shows a block diagram of a nanostructure transfer system, according to an example embodiment of the present invention.
- FIG. 3 shows a flowchart providing example steps for transferring nanostructures, according to example embodiments of the present invention.
- FIGS. 4-6 show block diagram views of the nanostructure transfer system of FIG. 2 during different phases of operation, according to example embodiments of the present invention.
- FIG. 7 shows a nanowire print head, according to an embodiment of the present invention.
- FIGS. 8 and 9 show portions of example nanowire transfer systems, according to embodiments of the present invention.
- FIG. 10 shows a block diagram of a nanowire solution flow system, according to an example embodiment of the present invention.
- FIGS. 11 and 12 show views of an example print head having cantilevers, according to an example embodiment of the present invention.
- FIG. 13 shows an electric field generation system for a transfer system, according to an example embodiment of the present invention.
- FIG. 14 shows a transfer system, where an electric field is generated to associate nanowires with an electrode pair, according to an example embodiment of the present invention.
- FIG. 15 shows the transfer system of FIG. 14 , with an associated nanowire, according to an example embodiment of the present invention.
- FIG. 16 shows forces acting upon a nanowire in a transfer system, according to an example embodiment of the present invention.
- FIGS. 17 and 18 show plan and side views of the print head of FIG. 11 , with associated nanowires, according to example embodiment of the present invention.
- FIG. 19 shows an alignment system, according to an example embodiment of the present invention.
- FIG. 20 shows a print head having been aligned with a surface region by alignment mechanism, according to an embodiment of the present invention.
- FIGS. 21 and 22 show the print head in solution of FIG. 9 being aligned with a destination surface, according to an example embodiment of the present invention.
- FIG. 23 shows an example print head with spacers, according to an embodiment of the present invention.
- FIGS. 24 and 25 show side views of the print head of FIG. 11 in alignment with a destination surface, according to an example embodiment of the present invention.
- FIG. 26 shows a nanowire transfer system with a vacuum source, according to an example embodiment of the present invention.
- FIG. 27 shows an example plan view of a transfer surface with vacuum ports, according to an example embodiment of the present invention.
- FIGS. 28 , 29 , 31 A, 31 B, 32 , and 33 show example nanowire transfer systems configured to deposit nanowires, according to example embodiments of the present invention.
- FIG. 30 shows a plot of potential energy levels for a transfer surface having an oxide layer and for a destination surface having a nitride layer, according to an embodiment of the present invention.
- FIG. 31C shows a plot of the inertial motion of nanowires in isopropyl alcohol, according to an embodiment of the present invention.
- FIG. 34 shows a nanowire transfer system that includes a print head having two electrode pairs, according to an embodiment of the present invention.
- FIG. 35 shows a flowchart providing example steps for transferring electrical devices, according to example embodiments of the present invention.
- FIGS. 36-39 show block diagram views of an electrical device transfer system during different phases of operation, according to example embodiments of the present invention.
- FIG. 40 shows a cross-sectional view of a nanostructure transfer system, according to an example embodiment of the present invention.
- FIG. 41 shows a view of a transfer surface of the print head shown in FIG. 40 , according to an example embodiment of the present invention.
- FIG. 42 shows a cross-sectional view of a nanostructure transfer system, according to an example embodiment of the present invention.
- FIG. 43 show a view of a transfer surface of the print head shown in FIG. 42 , according to an example embodiment of the present invention.
- FIG. 44 shows a flowchart for transferring nanostructures to a destination surface, according to an example embodiment of the present invention.
- FIG. 45 shows a cross-sectional view of the nanostructure transfer system of FIG. 42 , illustrating a nanowire being deposited to the destination surface, according to an example embodiment of the present invention.
- FIG. 46 shows a nanostructure transfer system, according to an embodiment of the present invention.
- FIG. 47 shows a cross-sectional view of a print head, according to an example embodiment of the present invention.
- FIG. 48 shows a block diagram of a nanostructure printing system, according to an example embodiment of the present invention.
- FIG. 49 shows a flowchart for a print head pipeline portion of the system of FIG. 48 , according to an example embodiment of the present invention.
- FIG. 50 shows a flowchart for a panel pipeline portion of the system of FIG. 48 , according to an example embodiment of the present invention.
- FIGS. 51 and 52 show views of an example association station, according to embodiments of the present invention.
- FIG. 53 shows an example inspection station, according to an embodiment of the present invention.
- FIGS. 54-56 show views of a printing station during a nanostructure transfer process, according to an example embodiment of the present invention.
- FIG. 57 shows an example cleaning station, according to an embodiment of the present invention
- FIGS. 58 and 59 show views of a panel repair station, according to example embodiments of the present invention.
- FIG. 60 shows an example panel drying station, according to an embodiment of the present invention.
- FIG. 61 shows a block diagram of a nanostructure printing system, according to an example embodiment of the present invention.
- FIG. 62 shows a flowchart for a print head pipeline portion of the system of FIG. 61 , according to an example embodiment of the present invention.
- FIG. 63 shows a flowchart for a panel pipeline portion of the system of FIG. 61 , according to an example embodiment of the present invention.
- FIGS. 64 , 66 , 68 , and 70 show views of a nanostructure transfer system during a nanostructure transfer process, according to example embodiments of the present invention.
- FIGS. 65 , 67 , 69 , and 71 show respective images captured using a microscope of the nanostructure transfer system shown in FIGS. 64 , 66 , 68 , and 70 , according to example embodiments of the present invention.
- nanowires are frequently referred to, the techniques described herein are also applicable to other nanostructures, such as nanorods, nanotubes, nanotetrapods, nanoribbons and/or combinations thereof. It should further be appreciated that the manufacturing techniques described herein could be used to create any semiconductor device type, and other electronic component types. Further, the techniques would be suitable for application in electrical systems, optical systems, consumer electronics, industrial electronics, wireless systems, space applications, or any other application.
- an “aspect ratio” is the length of a first axis of a nanostructure divided by the average of the lengths of the second and third axes of the nanostructure, where the second and third axes are the two axes whose lengths are most nearly equal to each other.
- the aspect ratio for a perfect rod would be the length of its long axis divided by the diameter of a cross-section perpendicular to (normal to) the long axis.
- heterostructure when used with reference to nanostructures refers to nanostructures characterized by at least two different and/or distinguishable material types. Typically, one region of the nanostructure comprises a first material type, while a second region of the nanostructure comprises a second material type.
- the nanostructure comprises a core of a first material and at least one shell of a second (or third etc.) material, where the different material types are distributed radially about the long axis of a nanowire, a long axis of an arm of a branched nanocrystal, or the center of a nanocrystal, for example.
- a shell need not completely cover the adjacent materials to be considered a shell or for the nanostructure to be considered a heterostructure.
- a nanocrystal characterized by a core of one material covered with small islands of a second material is a heterostructure.
- the different material types are distributed at different locations within the nanostructure.
- material types can be distributed along the major (long) axis of a nanowire or along a long axis of arm of a branched nanocrystal.
- Different regions within a heterostructure can comprise entirely different materials, or the different regions can comprise a base material.
- a “nanostructure” is a structure having at least one region or characteristic dimension with a dimension of less than about 500 nm, e.g., less than about 200 nm, less than about 100 nm, less than about 50 nm, or even less than about 20 nm. Typically, the region or characteristic dimension will be along the smallest axis of the structure. Examples of such structures include nanowires, nanorods, nanotubes, branched nanocrystals, nanotetrapods, tripods, bipods, nanocrystals, nanodots, quantum dots, nanoparticles, branched tetrapods (e.g., inorganic dendrimers), and the like.
- Nanostructures can be substantially homogeneous in material properties, or in certain embodiments can be heterogeneous (e.g., heterostructures). Nanostructures can be, for example, substantially crystalline, substantially monocrystalline, polycrystalline, amorphous, or a combination thereof. In one aspect, each of the three dimensions of the nanostructure has a dimension of less than about 500 nm, for example, less than about 200 nm, less than about 100 nm, less than about 50 nm, or even less than about 20 nm.
- nanowire generally refers to any elongated conductive or semiconductive material (or other material described herein) that includes at least one cross-sectional dimension that is less than 500 nm, and preferably, equal to or less than less than about 100 nm, and has an aspect ratio (length:width) of greater than 10, preferably greater than 50, and more preferably, greater than 100.
- Exemplary nanowires for use in the practice of the methods and systems of the present invention are on the order of 10's of microns long (e.g., about 10, 20, 30, 40, 50 microns, etc.) and about 100 nm in diameter.
- the nanowires of this invention can be substantially homogeneous in material properties, or in certain embodiments can be heterogeneous (e.g., nanowire heterostructures).
- the nanowires can be fabricated from essentially any convenient material or materials, and can be, e.g., substantially crystalline, substantially monocrystalline, polycrystalline, or amorphous.
- Nanowires can have a variable diameter or can have a substantially uniform diameter, that is, a diameter that shows a variance less than about 20% (e.g., less than about 10%, less than about 5%, or less than about 1%) over the region of greatest variability and over a linear dimension of at least 5 nm (e.g., at least 10 nm, at least 20 nm, or at least 50 nm).
- Nanowires according to this invention can expressly exclude carbon nanotubes, and, in certain embodiments, exclude “whiskers” or “nanowhiskers”, particularly whiskers having a diameter greater than 100 nm, or greater than about 200 nm.
- nanowires examples include semiconductor nanowires as described in Published International Patent Application Nos. WO 02/17362, WO 02/48701, and WO 01/03208, carbon nanotubes, and other elongated conductive or semiconductive structures of like dimensions, which are incorporated herein by reference.
- nanorod generally refers to any elongated conductive or semiconductive material (or other material described herein) similar to a nanowire, but having an aspect ratio (length:width) less than that of a nanowire.
- two or more nanorods can be coupled together along their longitudinal axis so that the coupled nanorods span all the way between electrodes.
- two or more nanorods can be substantially aligned along their longitudinal axis, but not coupled together, such that a small gap exists between the ends of the two or more nanorods.
- electrons can flow from one nanorod to another by hopping from one nanorod to another to traverse the small gap.
- the two or more nanorods can be substantially aligned, such that they form a path by which electrons can travel between electrodes.
- a wide range of types of materials for nanowires, nanorods, nanotubes and nanoribbons can be used, including semiconductor material selected from, e.g., Si, Ge, Sn, Se, Te, B, C (including diamond), P, B—C, B—P(BP 6 ), B—Si, Si—C, Si—Ge, Si—Sn and Ge—Sn, SiC, BN, BP, BAs, MN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe,
- the nanowires can also be formed from other materials such as metals such as gold, nickel, palladium, iradium, cobalt, chromium, aluminum, titanium, tin and the like, metal alloys, polymers, conductive polymers, ceramics, and/or combinations thereof.
- metals such as gold, nickel, palladium, iradium, cobalt, chromium, aluminum, titanium, tin and the like
- metal alloys polymers, conductive polymers, ceramics, and/or combinations thereof.
- Other now known or later developed conducting or semiconductor materials can be employed.
- the semiconductor may comprise a dopant from a group consisting of: a p-type dopant from Group III of the periodic table; an n-type dopant from Group V of the periodic table; a p-type dopant selected from a group consisting of: B, Al and In; an n-type dopant selected from a group consisting of: P, As and Sb; a p-type dopant from Group II of the periodic table; a p-type dopant selected from a group consisting of: Mg, Zn, Cd and Hg; a p-type dopant from Group IV of the periodic table; a p-type dopant selected from a group consisting of: C and Si; or an n-type dopant selected from a group consisting of: Si, Ge, Sn, S, Se and Te.
- Other now known or later developed dopant materials can be employed.
- the nanowires or nanoribbons can include carbon nanotubes, or nanotubes formed of conductive or semiconductive organic polymer materials, (e.g., pentacene, and transition metal oxides).
- conductive or semiconductive organic polymer materials e.g., pentacene, and transition metal oxides.
- Nanowire e.g., nanowire-like structures having a hollow tube formed axially therethrough.
- Nanotubes can be formed in combinations/thin films of nanotubes as is described herein for nanowires, alone or in combination with nanowires, to provide the properties and advantages described herein.
- FIG. 1A illustrates a single crystal semiconductor nanowire core (hereafter “nanowire”) 100 .
- FIG. 1A shows a nanowire 100 that is a uniformly doped single crystal nanowire.
- Such single crystal nanowires can be doped into either p- or n-type semiconductors in a fairly controlled way.
- Doped nanowires such as nanowire 100 exhibit improved electronic properties. For instance, such nanowires can be doped to have carrier mobility levels comparable to bulk single crystal materials.
- FIG. 1B shows a nanowire 110 having a core-shell structure, with a shell 112 around the nanowire core.
- Surface scattering can be reduced by forming an outer layer of the nanowire, such as by the passivation annealing of nanowires, and/or the use of core-shell structures with nanowires.
- An insulating layer such as an oxide coating, can be formed on a nanowire as the shell layer.
- the annealing of the nanowires in hydrogen (H 2 ) can greatly reduce surface states.
- the core-shell combination is configured to satisfy the following constraints: (1) the shell energy level should be higher than the core energy level, so that the conducting carriers are confined in the core; and (2) the core and shell materials should have good lattice match, with few surface states and surface charges.
- Other more complex NW core-shell structures may also be used to include a core of single crystal semiconductor, an inner-shell of gate dielectric, and an outer-shell of conformal gate, such as shown in FIG. 1C .
- FIG. 1C shows a nanowire 114 having a core-shell-shell structure, with an inner shell 112 and outer shell 116 around the nanowire core. This can be realized by depositing a layer of TaAlN, WN, or highly-doped amorphous silicon around the Si/SiO x core-shell structure (described above) as the outer-gate shell, for example.
- the valence band of the insulating shell can be lower than the valence band of the core for p-type doped wires, or the conduction band of the shell can be higher than the core for n-type doped wires.
- the core nanostructure can be made from any metallic or semiconductor material, and the one or more shell layers deposited on the core can be made from the same or a different material.
- the first core material can comprise a first semiconductor selected from the group consisting of: a Group II-VI semiconductor, a Group III-V semiconductor, a Group IV semiconductor, and an alloy thereof.
- the second material of the one or more shell layers can comprise an oxide layer, a second semiconductor, the same as or different from the first semiconductor, e.g., selected from the group consisting of: a Group II-VI semiconductor, a Group III-V semiconductor, a Group IV semiconductor, and an alloy thereof.
- Example semiconductors include, but are not limited to, CdSe, CdTe, InP, InAs, CdS, ZnS, ZnSe, ZnTe, HgTe, GaN, GaP, GaAs, GaSb, InSb, Si, Ge, AlAs, AlSb, PbSe, PbS, and PbTe.
- metallic materials such as gold, chromium, tin, nickel, aluminum etc. and alloys thereof can be used as the core material, and the metallic core can be overcoated with an appropriate shell material such as silicon dioxide or other insulating materials, which may in turn may be coated with one or more additional shell layers of the materials described above to form more complex core-shell-shell nanowire structures.
- Nanostructures can be fabricated and their size can be controlled by any of a number of convenient methods that can be adapted to different materials. For example, synthesis of nanocrystals of various composition is described in, e.g., Peng et al. (2000) “Shape Control of CdSe Nanocrystals” Nature 404, 59-61; Puntes et al. (2001) “Colloidal nanocrystal shape and size control: The case of cobalt” Science 291, 2115-2117; U.S. Pat. No. 6,306,736 to Alivisatos et al. (Oct. 23, 2001) entitled “Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process”; U.S.
- nanowires having various aspect ratios including nanowires with controlled diameters, is described in, e.g., Gudiksen et al (2000) “Diameter-selective synthesis of semiconductor nanowires” J. Am. Chem. Soc. 122, 8801-8802; Cui et al. (2001) “Diameter-controlled synthesis of single-crystal silicon nanowires” Appl. Phys. Lett. 78, 2214-2216; Gudiksen et al. (2001) “Synthetic control of the diameter and length of single crystal semiconductor nanowires” J. Phys. Chem. B 105, 4062-4064; Morales et al.
- branched nanowires e.g., nanotetrapods, tripods, bipods, and branched tetrapods
- FIG. 1 “Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system” J. Am. Chem. Soc. 123, 5150-5151; and Manna et al. (2000) “ Synthesis of Soluble and Processable Rod -, Arrow -, Teardrop -, and Tetrapod - Shaped CdSe Nanocrystals” J. Am. Chem. Soc. 122, 12700-12706.
- core-shell nanostructure heterostructures namely nanocrystal and nanowire (e.g., nanorod) core-shell heterostructures
- core-shell nanostructure heterostructures namely nanocrystal and nanowire (e.g., nanorod) core-shell heterostructures
- Peng et al. 1997) “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility” J. Am. Chem. Soc. 119, 7019-7029; Dabbousi et al. (1997) “(CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrysallites” J. Phys. Chem. B 101, 9463-9475; Manna et al.
- Nanowire heterostructures in which the different materials are distributed at different locations along the long axis of the nanowire is described in, e.g., Gudiksen et al. (2002) “Growth of nanowire superlattice structures for nanoscale photonics and electronics” Nature 415, 617-620; Bjork et al. (2002) “One-dimensional steeplechase for electrons realized” Nano Letters 2, 86-90; Wu et al. (2002) “Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires” Nano Letters 2, 83-86; and U.S. patent application 60/370,095 (Apr. 2, 2002) to Empedocles entitled “Nanowire heterostructures for encoding information.” Similar approaches can be applied to growth of other heterostructures.
- nanowires are described in this section.
- one or more nanowires are provided proximate to an electrode pair on a transfer surface.
- the electrode pair is energized, whereby the nanowires become associated with the electrode pair.
- the nanowires are deposited from the electrode pairs to a destination surface.
- positioning refers to the alignment and association, as well as the deposition or coupling, of nanowires onto a surface, for example, an electrode pair. Positioning includes nanowires that are both aligned and non-aligned.
- aligned nanowires refers to nanowires that are substantially parallel or oriented in the same or substantially same direction of one another (i.e. the nanowires are aligned in the same direction, or within about 45° of one another).
- the nanowires of the present invention are aligned such that they are all substantially parallel to one another and substantially perpendicular to each electrode of an electrode pair (e.g., aligned parallel to an axis through both electrodes) (though in additional embodiments, they can be aligned parallel to an electrode).
- Positioning of nanowires onto an electrode pair includes positioning the nanowires such that the nanowires span the electrode pair. In embodiments in which the nanowires are longer than the distance separating two electrodes of an electrode pair, the nanowires may extend beyond the electrodes.
- the nanowires are provided in a suspension, which is a plurality of nanowires suspended in a liquid.
- the liquid is an aqueous media, such as water or a solution of water, ions (including salts), and other components, for example surfactants.
- ions including salts
- surfactants for example surfactants.
- Additional examples of liquids suitable for preparing nanowire suspensions include, but are not limited, organic solvents, inorganic solvents, alcohols (e.g., isopropyl alcohol) (IPA), etc.
- the phrase “proximate to an electrode pair” as it relates to providing the nanowires means that the nanowires are provided or positioned such that they can be acted upon by an electric field generated at the electrode pair. This is a distance from the electrode pair such that they can be associated with the electrodes.
- the nanowires are provided such that they are at distance of less than about 10 mm from the electrode pairs.
- the nanowires may be provided such that they are less than about 100 ⁇ m, less than about 50 ⁇ m, or less than about 1 ⁇ m from the electrode pair.
- FIG. 2 shows a nanostructure transfer system 200 , according to an example embodiment of the present invention.
- transfer system 200 includes a nanostructure print head 202 , nanostructure(s) 204 , and a destination substrate 212 .
- Nanostructure print head 202 is a body configured to receive nanostructure(s) 204 , and to transfer nanostructure(s) 204 to substrate 212 .
- nanostructure print head 202 has a transfer surface 206 and includes an electrode pair 208 .
- Substrate 212 has a surface 210 , referred to as a “destination surface” for receiving nanostructure(s) 204 .
- Electrode pair 208 is located on transfer surface 206 .
- Nanostructure(s) 204 are received by electrode pair 208 of transfer surface 206 , for transfer to destination surface 210 .
- Nanostructure(s) 204 can include any of the nanostructure types mentioned elsewhere herein, including one or more nanowires. Further description of the components of transfer system 200 is provided further below.
- FIG. 3 shows a flowchart 300 providing example steps for transferring nanostructures, according to example embodiments of the present invention.
- nanostructure print head 202 of FIG. 2 can be used to transfer nanostructure(s) 204 according to flowchart 300 .
- flowchart 300 is described as follows with respect to FIGS. 2 and 4 - 6 , which show various block diagrams of embodiments of the present invention. Other structural and operational embodiments will be apparent to persons skilled in the relevant art(s) based on the following discussion. Not all steps of flowchart 300 are necessarily performed in all embodiments.
- Flowchart 300 begins with step 302 .
- step 302 at least one nanostructure is provided proximate to an electrode pair.
- nanostructure(s) 204 are provided proximate to electrode pair 208 .
- nanostructure(s) 204 may be present in a solution which flows in contact with electrode pair 208 , to enable nanostructure(s) 204 to be positioned proximate to electrode pair 208 .
- nanostructure(s) 204 may be provided proximate to electrode pair 208 in other ways.
- an electric field is generated by electrodes of the electrode pair to associate one or more nanostructures with the electrodes.
- an electrical potential may be coupled to electrode pair 208 to generate the electric field.
- the electric field generated by electrode pair 208 may be used to associate nanostructure(s) 204 with electrode pair 208 that are proximately located to electrode pair 208 .
- nanostructures 204 are associated with electrode pair 208 .
- associated nanostructure(s) 204 are held suspended at a distance from transfer surface 206 by the electric field. Example embodiments for generating an electric field by an electrode pair to associate nanostructures are described in further detail below.
- the electrode pair is aligned with a region of the destination surface.
- electrode pair 208 is aligned with destination surface 210 , by nanostructure print head 202 , which is moved towards destination surface 210 (e.g., in a direction shown by a dotted arrow in FIG. 5 ).
- electrode pair 208 is aligned in contact with destination surface 210 .
- electrode pair 208 is aligned adjacent to destination surface 210 , a short distance away from destination surface 210 .
- Electrode pair 208 may be aligned with any region of surface 210 , including a generally open region (i.e., no contacts on surface 210 are required), a region having electrical contacts corresponding to electrode pair 208 , or other region. Electrode pair 208 is aligned with a region of surface 210 on which nanostructure(s) 204 are to be positioned.
- the one or more nanostructures are deposited from the electrode pair to the region.
- Nanostructure(s) 204 may be deposited on destination surface 210 in a variety of ways. Various example embodiments for depositing nanostructures on a surface are described in detail below.
- step 310 the electrode pair is removed from alignment with the region of the surface.
- nanostructure print head 202 is moved away from destination surface 210 (e.g., in a direction shown by dotted arrow in FIG. 6 ).
- Nanostructure(s) 204 remain deposited on surface 210 .
- Nanostructure print head 202 can subsequently be used to repeat performing flowchart 300 for the same region of surface 210 , a different region of surface 210 , and/or a surface of a structure other than substrate 212 , to deposit further nanostructures.
- nanostructure transfer system 200 and for performing flowchart 300 are described as follows.
- the embodiments are described below with respect to nanowires. These embodiments are provided for illustrative purposes, and are not intended to be limiting. It will be understood by persons skilled in the relevant art(s) that these embodiments may be used to transfer other types of nanostructures than just nanowires. Furthermore, these various embodiments may be adapted and/or combined in a variety of ways, as would be known to persons skilled in the relevant art(s) from the teachings herein.
- FIG. 7 shows a nanowire print head 702 , which is an example of nanostructure print head 202 shown in FIG. 2 , according to an embodiment of the present invention.
- nanowire print head 702 includes electrode pair 208 on transfer surface 206 .
- Transfer surface 206 may be a surface of a substrate or other structure of print head 702 onto which electrode pair 208 is formed (e.g., patterned, plated, etc.).
- Electrode pair 208 includes a first electrode 704 and a second electrode 706 .
- Transfer surface 206 may be formed of any suitable material, such as a semiconductor wafer or dielectric material.
- suitable materials include, but are not limited to Si, SiO 2 , GaAs, InP, and other semiconductor materials described herein.
- first and second electrodes 704 and 706 include, but are not limited to, Al, Mo (Moly electrodes), Cu, Fe, Au, Ag, Pt, Cr/Au, doped polysilicon, etc. Electrodes for use in the practice of the present invention can also further comprise an oxide coating or other layer on their surface, if desired. Any suitable orientation or pattern of first and second electrodes 704 and 706 can be used. Note that in embodiments, one or more additional electrodes may be positioned on print head 702 (e.g., between electrodes 704 and 706 ). Such additional electrodes may be configured to modify an attractive or repulsive force (e.g., an electrostatic force) between the nanowires associated with print head 702 and transfer surface 206 and/or a destination surface.
- an attractive or repulsive force e.g., an electrostatic force
- Nanowires may be provided proximate to first and second electrodes 704 and 706 in a variety of ways according to step 302 of flowchart 300 .
- FIG. 8 shows a portion of a nanowire transfer system 800 , according to an embodiment of the present invention.
- transfer system 800 includes print head 702 and a solution container 802 .
- Container 802 contains a solution 804 that includes a plurality of nanowires 806 , which may be referred to as a “nanowire suspension.”
- transfer surface 206 of print head 702 is temporarily moved (e.g., “dipped”) into solution 804 to enable nanowires 806 to become proximate to electrode pair 208 , according to step 302 of flowchart 300 .
- FIG. 9 shows a portion of a nanowire transfer system 900 , according to an alternative embodiment of the present invention.
- transfer system 900 includes print head 702 and solution container 802 .
- Container 802 contains solution 804 that includes plurality of nanowires 806 .
- transfer surface 206 (and the rest of print head 702 ) resides in solution 804 , to enable nanowires 806 to become proximate to electrode pair 208 , according to step 302 of flowchart 300 .
- electrode pair 208 is shown in FIG. 9 as facing upward in solution 804 , and is shown in FIG. 8 as facing downward, print head 702 may be oriented in other ways so that electrode pair 208 may face in other directions, including upwards, downwards or sideways.
- Nanowires 806 may be any suitable nanowire type described herein or otherwise known.
- nanowires 806 may have a semiconductor core and one or more shell layers disposed about the core (i.e., the shell layers surround the core) (such as shown in FIGS. 1B and 1C ).
- semiconductor materials and shell materials include those described elsewhere herein.
- the core includes silicon (Si) and at least one of the shell layers, such as the outermost shell layer (i.e., the shell layer that is in contact with the external environment) includes a metal, such as TaAlN or WN. Additional examples of metal shell layers include those described elsewhere herein.
- nanowires include core:shell (CS) nanowires (e.g., SiO 2 ), core:shell:shell (CSS) nanowires (e.g., SiO 2 :metal), and core:no oxide shell:metal shell nanowires (CNOS) (e.g., Si:metal).
- CS core:shell
- CSS core:shell:shell
- CNOS core:no oxide shell:metal shell nanowires
- container 802 receives a flow of solution 804 containing nanowires 806 .
- FIG. 10 shows a block diagram of a nanowire solution flow system 1000 , according to an example embodiment of the present invention.
- flow system 1000 includes a nanowire suspension source reservoir 1002 , container 802 , and a nanowire suspension collection chamber 1004 .
- Nanowire suspension source reservoir 1002 is a tank or other type of reservoir that contains a supply of solution 804 .
- Nanowires 806 may be introduced into solution 804 in reservoir 1002 to form the suspension, if desired.
- Solution 804 may be any suitable type of liquid for containing nanowires 806 , including water, isopropyl alcohol (IPA), other liquids described herein, etc.
- IPA isopropyl alcohol
- nanowire suspension source reservoir 1002 outputs a nanowire suspension flow 1006 that is received by container 802 .
- Nanowire suspension flow 1006 may be supplied by reservoir 1002 to container 802 by one or more flow channels, pipes, valves, etc.
- container 802 After enabling the suspension to interact with print head 702 , container 802 outputs a residual nanowire suspension flow 1008 that is received by nanowire suspension collection chamber 1004 .
- Nanowire suspension collection chamber 1004 is a tank or other type of reservoir. The residual nanowire suspension flow received in chamber 1004 may be filtered and/or supplied back to source reservoir 1002 for recirculation through system 1000 , may have residual nanowires recovered therefrom, may be discarded, etc.
- one or more nanowires 806 are provided by providing a suspension of nanowires (e.g., a nanowire “ink”) to electrode pair 208 .
- a nanowire suspension is provided by flowing a solution containing nanowires against an electrode pair on a transfer surface. As nanowires 806 are provided, the suspension flow helps to align the nanowires in the direction of the flow.
- container 802 can be stirred, vibrated, or otherwise moved to maintain a homogeneous suspension of nanowires 806 .
- gravity, electric fields and/or an overflow by a nanowire-free solvent of similar or lower density can be used to create stratification.
- a stratified suspension of nanowires may be used in a variety of ways.
- print head 702 may be positioned in a high nanowire-density region of the stratified suspension for deposition of nanowires, and subsequently positioned in a lower density, “clean solvent” region for removal of excess nanowires.
- Additional methods for providing nanowires to an electrode pair include, but are not limited to, spray coaters, spray painting, meniscus coater, dip-coater, bar-coater, gravure coater, Meyer rod, doctor blade, extrusion, micro-gravure, web coaters, doctor blade coaters, in-line or ink jet printers.
- FIG. 11 shows a plan view of an example print head 1100 , according to an embodiment of the present invention.
- Print head 1100 has a transfer surface 1102 having first and second cantilevers 1104 and 1106 that mount electrode pair 208 .
- FIG. 12 shows a side cross-sectional view of print head 1100 .
- first and second cantilevers 1104 and 1106 are generally coplanar and coaxial bodies, having adjacently positioned movable ends, and oppositely positioned fixed ends.
- First cantilever 1104 has a raised end portion 1112 on its movable end
- second cantilever 1106 has a raised end portion 1114 on its movable end
- First electrode 704 is formed on raised end portion 1112 of first cantilever 1104
- second electrode 706 is formed on raised end portion 1114 of second cantilever 1106
- a first electrical conductor 1108 e.g., a metal trace
- first electrical conductor 1108 is formed on first cantilever 1104 to electrically couple first electrode 704 to an external circuit
- a second electrical conductor 1110 e.g., a metal trace
- first and second electrical conductors 1110 may electrically couple first and second electrodes 704 and 706 to a DC and/or AC electrical signal source.
- First and second cantilevers 1104 and 1106 are not substantially flexible in the plane of transfer surface 1102 , but are flexible in a direction normal to the plane of transfer surface 1102 (shown as a Z-axis in FIG. 12 ). Thus, when first and second electrodes 704 and 706 are positioned in contact with a surface (e.g., destination surface 210 ), the free ends of first and second cantilevers 1104 and 1106 can flex into a gap 1202 below their free ends, to provide compliance to protect first and second electrodes 704 and 706 from damage, and to aid in complying with a non-level destination surface.
- a surface e.g., destination surface 210
- Cantilevers 1104 and 1106 may be any type and configuration of cantilever.
- cantilevers 1104 and 1106 are micro-electromechanical system (MEMS) cantilevers.
- MEMS micro-electromechanical system
- FIG. 13 shows a nanowire transfer system 1300 that can be used to perform step 304 of flowchart 300 ( FIG. 3 ), according to an example embodiment of the present invention.
- system 1300 includes a voltage source 1302 .
- Voltage source 1302 is a signal/waveform generator coupled to electrode pair 208 by electrical signal 1304 .
- Voltage source 1302 generates electrical signal 1304 as a direct current (DC) and/or alternating current (AC) signal to cause electrode pair 208 to generate an electric field.
- FIG. 14 shows transfer system 800 of FIG.
- an electric field represented between first and second electrodes 704 and 706 by arrow 1402 , is generated by application of a voltage to electrode pair 208 .
- Electric field 1402 is generated between electrodes 704 and 706 of electrode pair 208 by energizing electrode pair with electrical signal 1304 to associate at least some of nanowires 806 with electrode pair 208 .
- electric field 1402 can be generated before, after, or during the period of nanowire producing/introduction into container 802 .
- the terms “electric field” and “electromagnetic field” are used interchangeably and refer to the force exerted on charged objects in the vicinity of an electric charge.
- energizing the electrode pair refers to any suitable mechanism or system for providing an electric current to the electrodes such that an electric field is generated between electrodes of an electrode pair.
- Electrodes pair 208 to generate electric field 1402 can be performed during part or all of a nanowire alignment and deposition process. For example, electrode pair 208 may remain energized during step 306 of flowchart 300 (alignment of print head) and during a portion or all of step 308 of flowchart 300 (deposition of nanowires).
- electric field 1402 is generated by coupling (e.g., using wires or other connection) first electrode 704 to a positive electrode terminal of voltage source 1302 , and coupling second electrode 706 to a negative electrode terminal of voltage source 1302 .
- electric field 1402 can be constant electric field, a pulsed electric field such as a pulsed AC electric field, or other electric field type.
- the energizing of electrode pair 208 to create electric field 1402 can also be caused by supplying an electromagnetic wave to electrode pair 208 .
- waveguides of various dimensions and configurations e.g., cylindrical, rectangular
- waveguides of various dimensions and configurations can be used to direct and supply an electromagnetic wave (see e.g., Guru, B. S. et al., “Electromagnetic Field Theory Fundamentals,” Chapter 10, PWS Publishing Company, Boston, Mass. (1998)).
- Operation frequencies of waveguides for use in the practice of the present invention are readily determined by those of skill in the art, and may be in the range of about 100 MHz to 10 GHz, about 1 GHz-5 GHz, about 2-3 GHz, about 2.5 GHz, or about 2.45 GHz, for example.
- FIG. 15 shows nanowire 806 a having been aligned by electric field 1402 parallel to electric field 1402 in association with electrode pair 208 .
- first and second electrodes 704 and 706 are separated by a distance that is less than, equal to, or greater than a long axis length of nanowires 806 .
- Nanowires 806 of any length can be aligned and positioned using the methods of the present invention.
- the distance between electrodes of an electrode pair is such that the nanowires extend just beyond the first edge of the electrode.
- nanowires 806 extend just beyond a first edge and into a middle of each electrode, with tens of nanometers to several microns overlapping the electrode material at the end of a nanowire 806 .
- Nanowires 806 that are shorter than the distance between electrodes 704 and 706 may be able to couple to only one electrode in a pair (if they couple at all), and thus may be removed during subsequent removing phases if desired. Similarly, nanowires 806 that are substantially longer than the distance between electrodes 704 and 706 hang over one or more of electrodes 704 and 706 , and may be removed during subsequent removing phases (larger exposed surface area). Thus, this embodiment additionally provides a way to preferentially select nanowires 806 of a particular length from a suspension of a range of nanowire sizes, and align and deposit them onto an electrode pair 208 . Embodiments may also associate and couple nanowires 806 that are “straight” rather than bent or crooked. Hence, such embodiments provide an added benefit of depositing preferably straight nanowires 806 , rather than less preferred bent or crooked nanowires 806 .
- the field gradient exerts a dielectrophoretic force on proximate nanowires 806 , attracting them toward electrode pair 208 .
- FIG. 16 shows a force 1602 attracting nanowire 806 a towards electrode pair 208 of print head 702 .
- force 1602 is a dielectrophoretic force.
- the gradient is highest at electrode pair 208 , exerting an increasing attraction toward the electrodes.
- An electric double-layer is produced at the surface of each electrode of electrode pair 208 , such that oppositely charged ions are present at each electrode.
- ions migrate away from each electrode and initially toward nanowire 806 a hovering proximately nearby (e.g., above or below).
- the ions are repulsed by the like charge and then directed back toward the respective electrode resulting in a circulating pattern of ions.
- Liquid that is present i.e., the nanowire suspension
- a force 1606 shown in FIG. 16 may be an osmotic force.
- nanowire 806 a As forces 1602 and 1606 reach an equilibrium (or relative equilibrium), nanowire 806 a is held in place such that it becomes associated with electrode pair 208 .
- association As used herein the terms “associated” and “pinned” are used to indicate that nanowires (such as nanowire 806 a ) are in such a state that the electro-osmotic force and the dielectrophoretic force are at equilibrium, such that there is no or little net movement of the nanowires away from electrode pair 208 (i.e., normal or substantially normal to transfer surface 206 and electrode pair 208 ). This is also called the “association phase” throughout.
- charge values of nanowires 806 and transfer surface 206 affect association or pinning of nanowires to electrode pair 208 .
- FIG. 16 shows print head 702 having associated nanowire 806 a (additional nanowires not shown may also be associated).
- transfer surface 206 may have a layer 1604 that provides a surface charge to transfer surface 206 , such as an oxide layer. The charge polarity of layer 1604 can be selected to attract or repel nanowire 806 a , as desired.
- layer 1604 can provide a negative surface charge to transfer surface 206 that results in a repulsive force on nanowire 806 a , which may also have a negative surface charge (e.g., in isopropyl alcohol).
- force 1606 repelling nanowire 806 a in FIG. 16 may include an electrostatic repulsive force that results from a same charge polarity of nanowire 806 a and layer 1604 .
- FIGS. 17 and 18 show plan and side cross-sectional views, respectively, of electrode pair 208 on cantilevers 1104 and 1106 of FIG. 11 .
- a plurality of nanowires 1702 is associated, or pinned, with first and second electrodes 704 and 706 .
- Nanowires 1702 are pinned at a distance 1802 from electrode pair 208 .
- the amount of distance 1802 depends on a variety of factors, including a strength of the applied electric field 1402 , a frequency of electric field 1402 , a strength of charge of nanowires 1702 , a strength of charge of layer 1604 , etc.
- nanowires 1702 are free to rearrange, migrate and/or align along the length of the electrodes 704 and 706 .
- Nanowires 1702 that are already substantially aligned with electric field 1402 will tend to migrate along electrode pair 208 until contacting, and/or being repelled by, a nearest neighbor nanowire.
- Nanowires 1702 that are not substantially aligned will tend to migrate such that they become aligned as they contact, and/or are repelled by, nearest neighbor nanowires and, an equilibrium between the various forces acting on nanowires 1702 is reached.
- nanowires 1702 allow them to accommodate a chronological sequence of alignment and association events without giving rise to nanowire clumping. That is, as nanowires are continuously supplied to electrode pair 208 (i.e., from a suspension) additional nanowires are able to associate with the electrodes, as the nanowires that are previously associated are freely mobile such that they move out of the way to accommodate additional nanowires.
- uncoupled nanowires can then be removed from electrode pair 208 so as to substantially eliminate nanowires that are not fully aligned, not fully coupled, overlapped, crossing, or otherwise not ideally coupled to electrode pair 208 .
- Nanowires that are to be removed following the coupling phase are described herein as “uncoupled nanowires.” Any suitable method for removing uncoupled nanowires can be used.
- the uncoupled nanowires can be removed using tweezers (e.g., optical tweezers, see, e.g., U.S. Pat. Nos.
- uncoupled nanowires are removed by flushing away the nanowires.
- flushing away includes processes where a fluid (either gaseous or liquid phase) is flowed over or around the nanowires so as to remove them from the electrode pairs.
- Nanowires that are crossed can be uncrossed using a suitably modulated electric field, and a third electrode can be used to remove “uncoupled nanowires,” such as dielectrophoretically or electroosmotically. Uncoupled nanowires can also be removed inertially, and by other techniques.
- FIG. 19 shows a print head alignment system 1900 that can be used to perform step 306 for a nanowire transfer system, according to an example embodiment of the present invention.
- system 1900 includes an alignment mechanism 1902 that is coupled to print head 702 .
- Alignment mechanism 1902 is configured to move print head 702 such that electrode pair 208 is aligned with a designated nanowire transfer region 1904 on destination surface 210 of substrate 212 .
- Alignment mechanism 1902 may be configured to move print head 702 so that electrode pair 208 is adjacent to but not in contact with region 1904 , and/or to move print head 702 so that electrode pair 208 contacts region 1904 .
- alignment mechanism 1902 may include a motor (e.g., a linear motor) or other movement mechanism for moving print head 702 to region 1904 .
- alignment mechanism 1902 may include position detecting sensors for detecting a position of print head 702 and/or substrate 212 to accurately position print head 702 with respect to region 1904 .
- Example position detecting sensors may include optical sensors (e.g., vision systems), proximity sensors, mechanical sensors, etc., to detect relative position.
- Substrate 212 may be any type of structure suitable for placement of nanostructures.
- substrate 212 may be formed of a variety of materials, including a semiconductor material (e.g., silicon, GaAs, etc.), a polymer (e.g., a plastic material), glass, a ceramic material, a composite material, a printed circuit board (PCB), etc.
- FIG. 19 shows an embodiment where electrode pair 208 and a plurality of associated nanowires 1702 are covered in a fluid membrane 1906 .
- print head 702 may have been dipped in solution 804 , as shown in FIG. 8 , to have nanowires 1702 associated with electrode pair 208 , as shown in FIGS. 14 and 15 . Subsequently, print head 702 is withdrawn from solution 804 . However, fluid membrane 1906 remains on transfer surface 206 to keep nanowires 1702 wet. In this manner, nanowires 1702 remain associated with electrode pair 208 , including being aligned and positioned relative to first and second electrodes 704 and 706 .
- transfer surface 206 may be coated with a hydrophilic material that enables fluid membrane 1906 to stick to transfer surface 206 .
- region 1904 on destination surface 210 may also be coated with a solution or may alternatively be relatively dry.
- FIG. 20 shows print head 702 having been aligned with region 1904 by alignment mechanism 1902 (e.g., in the direction of the downward dotted arrow shown in FIG. 20 ).
- first and second electrodes 704 and 706 physically hold nanowires 1702 in contact with region 1904 .
- nanowires 1702 substantially retain their alignment and position on electrode pair 208 while making contact with region 1904 due to the action of electric field 1402 and other forces acting on nanowires 1702 .
- FIGS. 21 and 22 show print head 702 of FIG. 9 being aligned with destination surface 210 , according to an example embodiment of the present invention.
- Nanowires 806 are shown removed from solution 804 in FIGS. 21 and 22 , although they may alternatively still be present in solution 804 .
- substrate 212 and print head 702 are both submerged in solution 804 .
- Nanowires 1702 are shown associated with electrodes 704 and 706 (e.g., according to step 304 of flowchart 300 ).
- print head 702 has been aligned with region 1904 (e.g., by alignment mechanism 1902 , not shown in FIGS. 21 and 22 ).
- First and second electrodes 704 and 706 physically hold nanowires 1702 in contact with region 1904 in FIG. 22 .
- nanowires 1702 substantially retain their alignment and position on electrode pair 208 while making contact with region 1904 , as described above.
- one or more spacers or spacing members 2302 may be present on transfer surface 206 (and/or on destination surface 210 ) to hold transfer surface 206 /electrode pair 208 at a predetermined distance from destination surface 210 , and/or to reduce an impact between electrodes 704 and 706 and destination surface 210 when making contact. This may further be useful in aiding associated nanowires 1702 from losing their alignment and position when transfer surface 206 is being aligned with destination surface 210 according to step 306 .
- Spacing members 2302 may be used in combination with any embodiment described herein. Spacing members 2302 may have any height, as determined for a particular application. For example, in an embodiment, a spacing member 2302 has a height of approximately 100 ⁇ m.
- FIGS. 24 and 25 show examples of print head alignment for the configuration of print head 1100 of FIGS. 11 , 17 , and 18 .
- print head 1100 has been aligned with region 1904 (e.g., by alignment mechanism 1902 , not shown in FIGS. 24 and 25 ).
- First and second electrodes 704 and 706 physically hold nanowire 1702 in contact with region 1904 in FIG. 22 .
- nanowires 1702 substantially retain their alignment and position on electrode pair 208 while making contact with region 1904 , as described above.
- substrate 212 is not planar, but instead has an uneven surface.
- a portion of region 1904 corresponding to second electrode 706 is higher than a portion of region 1904 corresponding to first electrode 704 .
- second cantilever 1106 of print head 1100 flexes (e.g., in an upward direction indicated by a dotted arrow) in order for second electrode 706 to maintain contact with region 1904 .
- first electrode 704 is able to maintain holding its respective ends of nanowires 1702 on region 1904 .
- FIG. 26 shows a nanowire transfer system 2600 , according to an example embodiment of the present invention.
- System 2600 is similar to system 1300 shown in FIG. 13 , with the addition of a vacuum source 2602 .
- transfer surface 206 includes one or more vacuum ports 2604 coupled to vacuum source 2602 .
- Vacuum source 2602 applies a vacuum or suction 2606 through vacuum port 2604 to the volume between transfer surface 206 and substrate 212 to remove excess solution.
- excess solution can be removed to prevent displacement of associated nanowires, etc.
- FIG. 27 shows an example plan view of transfer surface 206 , according to an example embodiment of the present invention.
- transfer surface 206 includes first and second electrodes 704 and 706 , and a plurality of vacuum ports 2604 a - 2604 c .
- three vacuum ports 2604 a - 2604 c are shown.
- First vacuum port 2604 a is positioned on transfer surface 206 adjacent to first electrode 704 .
- Second vacuum port 2604 b is positioned on transfer surface 206 between first and second electrodes 704 and 706 .
- Third vacuum port 2604 c is positioned on transfer surface 206 adjacent to second electrode 706 .
- Any number of vacuum ports 2604 may be present, and may be distributed on transfer surface 206 as desired.
- vacuum ports 2604 a - 2604 c are rectangular shaped. In other embodiments, vacuum ports 2604 may have other shapes, including round, square, etc.
- one or more nanostructures are deposited from the electrode pair to the region.
- Nanowires may be deposited on destination surface 210 in a variety of ways. Various example embodiments for depositing nanowires on a surface are described as follows.
- FIG. 28 shows a nanowire transfer system 2800 , according to an embodiment of the present invention.
- nanowires 2802 are deposited on region 1904 from electrode pair 208 .
- a force 2802 is present (which may include one or more forces) that attracted nanowires 1702 from print head 702 to destination surface 210 while they are aligned, and/or repelled nanowires 1702 from print head 702 , overcoming any force(s) that attracted nanowires 1702 to transfer surface 206 of print head 702 .
- Example forces that may be present in force 2802 include an electric field (AC and/or DC), a vacuum force, an electrostatic force, gravity, ultrasonic excitation, and/or other forces. These and other passive and active forces may be used to attract/repel nanowires 1702 , as would be known to persons skilled in the relevant art(s). Example embodiments for utilizing some of these forces are described as follows.
- FIG. 29 shows a transfer system 2900 , according to an embodiment of the present invention.
- Transfer system 2900 is generally similar to transfer system 2800 of FIG. 28 .
- transfer surface 206 has negatively charged layer 2902 formed thereon.
- Negatively charged layer 2902 results in a negative surface charge for transfer surface 206 , and thus a DC repulsive force on nanowires 1702 (which may be negatively charged).
- layer 2902 may be an oxide layer.
- An electric field generated by electrode pair 208 e.g., electric field 1402
- destination surface 210 has a positively charged layer 2904 formed thereon.
- positively charge layer 2904 may be an alumina layer.
- Positively charged layer 2904 results in a positive surface charge for destination surface 210 , and thus a DC attractive force on nanowires 1702 .
- transfer surface 206 and destination surface 210 are sufficiently close (e.g., in the range of 1 ⁇ m to 4 ⁇ m), including when they are in contact with each other, nanowires 1702 transfer onto destination surface 210 , as shown in FIG. 29 , because the DC attractive force of layer 2904 overcomes the attractive force (dielectrophoretic force) caused by the AC electric field generated by electrode pair 208 .
- the AC electric field may be reduced (e.g., by voltage source 1302 ) or entirely removed to reduce or remove the dielectrophoretic force.
- FIG. 30 shows a plot 3000 of nanowire potential energy as a function of distance from either transfer surface 206 or destination surface 210 .
- Transfer surface 206 can have a negatively charged layer 2902 as an oxide layer and destination surface 210 can have a positively charged layer 2904 as a nitride layer, according to an embodiment of the present invention.
- a plot line 3002 represents the potential energy of nanowires suspended in solution over transfer surface 206 and a plot line 3004 represents the potential energy of nanowires suspended in solution over destination surface 210 .
- first plot region 3006 representing a first potential minimum on plot line 3002 for transfer surface 210
- nanowires 1702 are associated (pinned) with electrode pair 208 .
- the pinned nanowires remain relatively rigid/aligned without being in contact with a transfer surface.
- first plot region (first potential minimum) 3006 occurs when transfer surface 206 and destination surface 210 are approximately 1 ⁇ m-4 ⁇ m apart.
- second plot region (second potential minimum) 3008 representing a potential minimum on plot line 3004 for destination surface 210
- Nanowires 1702 are attracted to destination surface 210 due to the electrostatic attraction by the nitride layer. Nanowires 1702 may be “locked” on destination surface 210 in this manner.
- Second plot region 3008 occurs when nanowires and destination surface 210 are spaced approximately 0.1 ⁇ m-0.4 ⁇ m apart.
- the transfer of nanowires 1702 from transfer surface 206 onto destination surface 210 is achieved by first “weakly” pinning nanowires 1702 on transfer surface 206 at low electric fields and low frequencies, “strongly” pinning nanowires 1702 on transfer surface 206 using low electric fields and high frequencies, moving transfer surface 206 to close proximity with destination surface 210 , and finally releasing nanowires 1702 from potential minimum 3006 of transfer surface 206 by reducing the AC field on electrodes 704 and 706 of transfer surface 206 . Due to the electrostatic repulsion represented by a potential maximum 3010 between nanowires 1702 and transfer surface 206 (e.g. layer 2902 on transfer surface 206 ) nanowires 1702 move away from transfer surface 206 after reduction of the AC attractive field.
- nanowires 1702 maintain the desired alignment determined by the AC field across electrodes 704 and 706 on transfer surface 206 .
- the close proximity (e.g., ⁇ 1 ⁇ m) of the pre-aligned nanowires 1702 in solution to destination surface 210 enables a transfer onto destination surface 210 due to the electrostatic attraction represented by potential minimum 3008 (e.g. layer 2904 on destination surface 210 ).
- nanowires 1702 An efficient transfer of nanowires 1702 is enabled when the rotational diffusion time is large compared to the translational diffusion time for motion of nanowires from potential minimum 3006 to potential minimum 3008 .
- Functional layers on nanowires 1702 and on destination surface 210 can be used to minimize the translational diffusion time without affecting the rotational diffusion time.
- FIG. 31A shows a transfer system 3100 , according to an embodiment of the present invention.
- Transfer system 3100 is generally similar to transfer system 2900 of FIG. 29 , with the addition of ultrasonic vibration source 3102 .
- Ultrasonic vibration source 3102 includes a piezoelectric transducer or other ultrasonic vibration source to ultrasonically vibrate print head 702 and transfer surface 206 .
- ultrasonic vibration of print head 702 causes nanowires to be separated from the transfer head up to approximately 100 ⁇ m, which enables the distance between transfer surface 206 and destination surface 210 to be larger while still allowing nanowires 1702 to be deposited on destination surface 210 .
- the rate at which print head 702 moves toward destination surface 210 may be high initially and reduced gradually as print head 702 moves close to destination surface 210 .
- ultrasonic vibration source 3102 can be activated when transfer surface 206 approaches within 100 ⁇ m of destination surface 210 . This enables depositing of nanowires 1702 to destination surface 210 (e.g., by gravity, electrostatic attraction, etc.) sooner (at a larger distance) while better maintaining the alignment of nanowires 1702 with electrode pair 208 than when electrode pair 208 is moved closer or even contacts destination surface 210 .
- FIG. 31B shows a transfer system 3150 , according to an embodiment of the present invention.
- Transfer system 3150 is generally similar to transfer system 3100 of FIG. 31A , except that an ultrasonic vibration source 3152 is coupled to substrate 212 , rather than ultrasonic vibration source 3102 being associated with print head 702 .
- ultrasonic vibration source 3152 can be coupled to substrate 212 in any manner, including being coupled to the top surface, or being embedded in substrate 212
- Ultrasonic vibration source 3152 may be secured in an ultrasonic chuck, or other application mechanism.
- Ultrasonic vibration source 3152 includes a piezoelectric transducer or other ultrasonic vibration source to ultrasonically vibrate substrate 212 , and thus to ultrasonically vibrate destination surface 210 . Furthermore, when transfer surface 206 and destination surface 210 are brought near each other, spacers 2302 (on print head 702 and/or substrate 212 ) contact print head 702 and destination surface 210 together. Thus, ultrasonic vibration source 3152 also vibrates print head 702 and transfer surface 206 . Because ultrasonic vibration source 3152 vibrates both transfer surface 206 and destination surface 210 , they vibrate synchronously, such that they both vibrate in the same direction simultaneously.
- nanowires 1702 are better able to retain their alignment while being transferred (e.g., by gravity, electrostatic attraction, etc.) from transfer surface 206 to destination surface 210 .
- FIG. 31C shows a plot 3170 of an inertial motion of nanowires in isopropyl alcohol (IPA) solution, according to an embodiment of the present invention.
- An X-axis 3172 of plot 3170 is a displacement amplitude, in centimeters, of destination surface 210 and transfer surface 206 caused by ultrasonic vibration source 3152 .
- a Y-axis 3174 of plot 3170 is a displacement frequency caused by ultrasonic vibration source 3152 .
- a Z-axis 3176 of plot 3170 shows a resulting displacement amplitude of nanowires 1702 in ⁇ m.
- a plot surface 3178 indicates generally that as surface displacement amplitude increases (on X-axis 3172 ), nanowire displacement amplitude (on Z-axis 3176 ) also increases.
- displacement frequency (on Y-axis 3174 ) increases, nanowire displacement amplitude (on Z-axis 3176 ) also increases.
- transfer surface 206 and/or destination surface 210 may be ultrasonically vibrated at relatively high frequency, such as 10 KHz, with a low amplitude, such as 50-100 microns, to effectively transfer nanowires 1702 from transfer surface 206 to destination surface 210 .
- relatively high frequency such as 10 KHz
- a low amplitude such as 50-100 microns
- Z-axis 3176 wire displacement
- FIG. 32 shows an example transfer system 3200 , according to another embodiment of the present invention.
- Transfer system 3200 is similar to transfer system 2800 of FIG. 28 , with the addition of a vacuum source 3202 that applies a vacuum force 3204 through vacuum ports 3206 in substrate 212 to attract nanowires 1702 to destination surface 210 .
- vacuum source 3202 uses vacuum force 3204 to draw a solution surrounding nanowires 1702 in through vacuum ports 3206 .
- the resulting solution flow exerts a pull on nanowires 1702 toward destination surface 210 .
- FIG. 33 shows an example transfer system 3300 , according to another embodiment of the present invention.
- Transfer system 3300 is similar to transfer system 2800 of FIG. 28 , with the addition of an electric field source 3302 that generates an electric field 3304 to attract nanowires 1702 to destination surface 210 .
- electric field source 3302 may generate a DC electric field for electric field 3304 .
- the DC electric field e.g., a positive charge
- Such movement of nanowires 1702 enables nanowires 1702 to be attracted to destination surface 210 by electric field 3304 and/or other force.
- electric field source 3302 may generate an AC electric field for electric field 3304 which operates in an analogous fashion to move nanowires 1702 , to enable nanowires 1702 to be attracted to destination surface 210 .
- a combination of DC and AC electric fields may be used.
- electric field source 3302 is a signal generator, voltage supply, or other component or device capable of generating an electric field.
- the electrode pair is removed from alignment with the region of the surface.
- print head 702 may be moved in the upward direction (shown by dotted arrow) to be removed from alignment with region 1904 .
- alignment mechanism 1902 (shown in FIG. 19 ) may be used to move print head 702 from alignment with region 1904 .
- a fluid can be supplied (e.g., through ports 2604 of FIG. 26 and/or ports 3206 of FIG. 32 ) between transfer surface 206 and destination surface 210 to provide pressure to move the surfaces apart (e.g., gas or liquid pressure).
- flowchart 300 of FIG. 3 may be repeated by print head 702 , to associate and deposit further nanowires on region 1904 , on other region(s) of substrate 212 , and/or on alternative surfaces.
- FIG. 34 shows a nanowire transfer system 3400 that includes a print head 3402 having two electrode pairs, according to an embodiment of the present invention.
- print head 3402 has a transfer surface 3404 having a first electrode pair 208 a and a second electrode pair 208 b .
- First electrode pair 208 a is shown having associated nanowires 1702 a
- second electrode pair 208 b is shown having associated nanowires 1702 b .
- Nanowires 1702 a are designated for deposit on first region 1904 a of destination surface 210
- nanowires 1702 b are designated for deposit on second region 1904 b of destination surface 210 .
- each step of flowchart 300 shown in FIG. 3 may be performed for both of first and second electrode pairs 208 a and 208 b in parallel.
- step 302 in parallel with providing nanowires 1702 a proximate to first electrode pair 208 a , nanowires 1702 b can be provided proximate to second electrode pair 208 b .
- step 304 in parallel with generating a first electric field (e.g., electric field 1402 in FIG. 14 ) using first electrode pair 208 a , a second electric field can be generated using second electrode pair 208 b to associate nanowires 1702 b with second electrode pair 208 b .
- a same electrical signal e.g., electrical signal 1304
- step 306 in parallel with aligning first electrode pair 208 a with first region 1904 a , second electrode pair 208 b can be aligned with second region 1904 b .
- step 308 in parallel with depositing nanowires 1702 a from first electrode pair 208 a to first region 1904 a , nanowires 1702 b can be deposited from second electrode pair 208 b to second region 1904 b .
- step 310 first and second electrode pairs 208 a and 208 b can be removed from alignment with their respective regions in parallel, by withdrawing print head 3402 from destination surface 210 .
- any number of electrode pairs may be formed on a transfer surface to be used to transfer any number of corresponding sets of nanowires in parallel, in a similar fashion to the configuration of FIG. 34 .
- By increasing the size of transfer surface 206 to enable additional electrode pairs, increasing numbers of simultaneous nanowire transfers may be performed in parallel, increasing a rate of fabrication.
- the spacing of electrodes 704 and 706 of electrode pairs on print heads may be varied to associate and deposit different types of nanowires, including different lengths, dopings, shell materials, etc.
- Embodiments are described in this section for applying electrical devices, such as integrated circuits, electrical components, semiconductor die, optical devices, etc., to surfaces in a similar manner as described above for nanowires.
- one or more electrical devices are provided proximate to an electrode pair on a transfer surface. The electrode pair is energized such that an electrical device becomes associated with the electrode pair. Subsequently, the electrical device is deposited from the electrode pair to a destination surface.
- FIG. 35 shows a flowchart 3500 providing example steps for transferring electrical devices, according to example embodiments of the present invention.
- print head 702 of FIG. 7 can be used to transfer electrical devices according to flowchart 3500 .
- flowchart 3500 is described as follows with respect to FIGS. 36-39 , which show block diagrams of an electrical device transfer system 3600 , according to an embodiment of the present invention.
- FIGS. 36-39 show block diagrams of an electrical device transfer system 3600 , according to an embodiment of the present invention.
- Other structural and operational embodiments will be apparent to persons skilled in the relevant art(s) based on the following discussion. Not all steps of flowchart 3500 are necessarily performed in all embodiments.
- Flowchart 3500 begins with step 3502 .
- step 3502 at least one electrical device is provided proximate to an electrode pair.
- electrical devices 3602 are provided proximate to electrode pair 208 .
- electrical devices 3602 are present in solution 804 , which flows in contact with electrode pair 208 , to enable electrical devices 3602 to be positioned proximate to electrode pair 208 .
- electrical devices 3602 may be provided proximate to electrode pair 208 in other ways.
- electrical devices 3602 may all be the same type of electrical device, or may include different types.
- an electric field is generated by electrodes of the electrode pair to associate an electrical device with the electrodes.
- an electrical potential may be coupled to electrode pair 208 to generate the electric field.
- the electric field generated by electrode pair 208 may be used to associate one of electrical devices 3602 with electrode pair 208 that is proximately located to electrode pair 208 .
- electrical device 3602 a is associated with electrode pair 208 .
- associated electrical device 3602 a is held suspended at a distance from transfer surface 206 by the electric field.
- an electric field 1402 is generated between electrodes 704 and 706 of electrode pair 208 .
- Electric field 1402 can be used to align electrical device electrical device 3602 a , and to position electrical device 3602 a between electrodes 704 and 706 .
- electrical device 3602 a encounters an AC electric field generated between electrodes 704 and 706 , a field gradient results.
- a net dipole moment is produced in proximate electrical devices 3602 , and the AC field exerts a torque on the dipole, such that proximate electrical device 3602 a aligns parallel to the direction of the electric field.
- the field gradient exerts a dielectrophoretic force on proximate electrical device 3602 a , attracting it toward electrode pair 208 , as described above for nanowires with respect to FIG. 16 .
- An electro-osmotic force may also be generated, as described above, that opposes the dielectrophoretic force attracting electrical device 3602 a to the electrodes. As these forces reach an equilibrium (or relative equilibrium), electrical device 3602 a is held in place such that it becomes associated, or “pinned,” with electrode pair 208 .
- electrical devices 3602 in FIG. 36 may all be the same type of electrical device or may include different electrical device types.
- electrodes 704 and 706 may be sized and/or positioned to generate the electric field in a manner to only attract a designated type of electrical device.
- electrical device 3602 a may have a metal (or other material) patterned thereon to enhance the attraction of electrical device 3602 a to electrodes 208 .
- the electrode pair is aligned with a region of the destination surface.
- electrode pair 208 is aligned with destination surface 210 , by print head 702 , which is moved towards destination surface 210 .
- electrode pair 208 is aligned in contact with destination surface 210 .
- electrode pair 208 is aligned adjacent to destination surface 210 , a short distance away from destination surface 210 .
- Electrode pair 208 may be aligned with any region of surface 210 , including a generally open region (i.e., no contacts on surface 210 are required), a region having electrical contacts corresponding to electrode pair 208 , or other region.
- Electrode pair 208 is aligned with a region of surface 210 on which electrical device 3602 a is to be positioned.
- the electrical device is deposited from the electrode pair to the region.
- Electrical device 3602 a may be deposited on destination surface 210 in a variety of ways. Various example embodiments for depositing nanostructures on a surface are described in detail above. For example, the embodiments described above with respect to FIGS. 28-33 for depositing nanostructures may be used to deposit electrical device 3602 a .
- a force 2802 is present (which may include one or more forces) that attracted nanowires 1702 from print head 702 to destination surface 210 and/or repelled nanowires 1702 from print head 702 . Force 2802 may also be used to deposit electrical device 3602 a to destination surface 210 from print head 702 .
- Example forces that may be present in force 2802 include an electric field (AC and/or DC), a vacuum force, an electrostatic force, gravity, ultrasonic excitation, and/or other forces. These and other passive and active forces may be used to attract/repel electrical device 3602 a , as would be known to persons skilled in the relevant art(s). Furthermore, ultrasonic vibration may be used, as described above with respect to FIGS. 31A-31C , to aid in freeing electrical device 3602 a from print head 702 , to transfer to destination surface 210 (e.g., via a force such as gravity, an electrostatic force, etc.).
- step 3510 the electrode pair is removed from alignment with the region of the surface.
- print head 702 is moved away from destination surface 210 .
- Electrical device 3602 a remains deposited on surface 210 .
- Print head 702 can subsequently be used to repeat performing flowchart 3500 for the same region of surface 210 , a different region of surface 210 , and/or a surface of a structure other than substrate 212 , to deposit further electrical devices.
- print head 702 may be used to simultaneously transfer nanostructures and electrical devices.
- complex electrical circuits can be formed, by using print heads to transfer nanostructures and electrical devices to substrates.
- Print heads used to “print” nanowires onto a substrate in the presence of a fluid may cause a shear force that is orthogonal to the motion of the print head as the print head approaches the substrate. As a result, the fluid is forced out of the region between the print head and the substrate due. This fluid shear can displace the nanowires laterally, causing the nanowires to be misplaced in the printing process.
- FIG. 40 shows a cross-sectional view of a nanostructure transfer system 4000 , according to an embodiment of the present invention.
- system 4000 includes print head 702 and substrate 212 .
- FIG. 41 shows a view of transfer surface 206 of print head 702 .
- Print head 702 is configured to transfer nanostructures, such as a nanowire 1702 (shown end-on in FIG. 40 ), from electrodes 704 and 706 to destination surface 210 in a liquid solution 4004 .
- print head 702 is moved towards substrate 212 in the direction of arrow 4002 , reducing a distance between transfer surface 206 and destination surface 210 .
- Arrows 4006 indicate directions of flow of solution 4004 as print head 4002 is moved towards substrate 212 , as solution 4004 is forced out of the region between transfer surface 206 and destination surface 210 .
- the relative lengths of arrows 4006 indicate a relative flow velocity at the locations of arrows 4006 . For instance, a flow velocity is lower for solution 4004 close to one of transfer surface 206 and destination surface 210 relative to solution 4004 midway between transfer surface 206 and destination surface 210 .
- arrows 4006 indicate that solution 4004 is forced outwardly in all directions from a central region of transfer surface 2006 .
- solution 4004 is forced to flow across nanowire 1702 when print head 702 is moved towards substrate 212 .
- This fluid exerts a shear force on nanowire 1702 , which may undesirably displace nanowire 1702 laterally, causing nanowire 1702 to be misplaced in the printing process.
- drain holes are formed in a print head to remove fluid from the region between the print head and the destination surface as the print head approaches the destination surface.
- the drain holes reduce a shear force on the nanowires, to enable the nanowires to be more reliably transferred from the print head to the destination surface.
- FIG. 42 shows a nanostructure transfer system 4200 , according to an example embodiment of the present invention.
- system 4200 includes a print head 4202 and substrate 212 .
- FIG. 43 shows a view of transfer surface 206 of print head 4202 .
- transfer surface 206 includes first and second openings 4204 a and 4204 b (also referred to as “drain holes”).
- First and second openings 4204 a and 4204 b receive solution 4004 from the region between transfer surface 206 and destination surface 210 when print head 4202 is moved toward substrate 210 . Removal of solution 4004 due to first and second openings 4204 a and 4204 b reduces a shear force on nanowire 1702 while being deposited from transfer surface 206 to destination surface 210 .
- FIG. 44 shows a flowchart 4400 for transferring nanostructures to a destination surface, according to an example embodiment of the present invention.
- System 4200 may perform flowchart 4400 , for example.
- Flowchart 4400 is described as follows. Other structural and operational embodiments will be apparent to persons skilled in the relevant art(s) based on the following discussion.
- a transfer surface of a print head is positioned adjacent to a destination surface. For instance, as shown in FIG. 42 , transfer surface 206 of print head 4202 is positioned adjacent to destination surface 210 of substrate 212 .
- step 4404 a distance between the transfer surface and the destination surface is reduced.
- print head 4202 is moved in the direction of arrow 4002 to reduce a distance 4208 between transfer surface 206 and destination surface 210 .
- a fluid is received through at least one opening in the transfer surface from between the transfer surface and the destination surface during step 4404 .
- solution 4004 between transfer surface 206 and destination surface 210 flows outward from a central region of transfer surface 2006 due to transfer surface 206 moving toward destination surface 210 .
- solution 4004 flows into openings 4204 a and 4204 b in transfer surface 206 . Openings 4204 a and 4204 b relieve at least a portion of the shear force received by nanowire 1702 by receiving solution 4004 .
- a nanowire associated with the transfer surface is deposited to the destination surface.
- FIG. 45 shows a view of system 4200 of FIG. 42 , where transfer surface 206 is proximate to destination surface 210 , such that nanowire 1702 may be deposited to destination surface 210 .
- Nanowire 1702 may be deposited from transfer surface 206 to destination surface 210 in any manner described elsewhere herein, including as described above with respect to flowchart 300 shown in FIG. 3 .
- print head 4202 and substrate 212 may be moved apart.
- openings 4204 may be present in transfer surface 206 .
- an array of openings 4204 of any number may be present at the locations of openings 4204 a and 4204 b .
- Such openings may have any shape, including being round, rectangular, or any other shape.
- openings 4204 may have any distribution/geometry relative to electrodes 704 and 706 to further reduce the shear force.
- openings 4204 a and 4204 b may be located relative to electrodes 704 and 706 so that nanowire 1702 is located midway between openings 4204 a and 4204 b .
- a “dead zone” for flow of solution 4004 at the location of nanowire 1702 is created (e.g., a flow stream is parted at nanowire 1702 ), so that the shear force experienced by nanowire 1702 may be brought close to none.
- openings 4204 can be holes and/or slots that are positioned symmetrically along either side of the long axis of nanowire 1702 .
- openings 4202 may have lengths that are longer than a long axis length of nanowire 1702 .
- openings 4202 may have a length that is the same or less than a long axis length of nanowire 1702 .
- a width of openings 4204 a and 4204 b may be selected so that a substantial amount of solution 4004 between openings 4204 a and 4204 b on either side of nanowire 1702 may exit through openings 4204 a and 4204 b.
- openings 4204 are shown in FIG. 42 as being located along the length of nanowire 1702 , alternatively or additionally, openings 4204 may be located on transfer surface 206 adjacent to one or both ends of nanowire 1702 . Furthermore, although openings 4204 a and 4204 b are shown in FIG. 42 as penetrating all the way through print head 4202 , alternatively, openings 4204 may penetrate partially through print head 4204 (e.g., may be recessed areas in transfer surface 206 , of any suitable depth).
- solution 4004 is enabled to passively flow into openings 4204 .
- solution 4004 may be actively drawn into openings 4204 .
- a piston/cylinder arrangement, a corkscrew, vacuum suction, and/or further mechanisms may be used to actively draw solution 4004 into openings 4204 .
- FIG. 46 shows a nanostructure transfer system 4600 , according to an embodiment of the present invention.
- System 4600 is generally similar to system 4200 shown in FIG. 42 , with the addition of first and second pistons 4602 a and 4602 b .
- Pistons 4602 a and 4602 b are located in openings 4204 a and 4204 b , respectively.
- First piston 4602 a and opening 4204 a form a first piston/cylinder arrangement
- second piston 4602 b and opening 4204 b form a second piston/cylinder arrangement.
- First and second pistons 4602 a and 4602 b may be configured to move in the directions of arrows 4604 during step 4404 of flowchart 4400 , to enable solution 4004 to be drawn into openings 4204 a and 4204 b according to step 4406 of flowchart 4400 .
- Nanostructures and/or contaminants may become attached to transfer surfaces of print heads, causing degradation in performance.
- the transfer surface of nanostructure print heads may be treated to prevent contaminants from sticking, and/to increase a durability of the transfer surface.
- Such embodiments may be particularly useful to extend a lifetime of a print head/transfer surface when print heads/transfer surfaces are expensive to replace.
- a coating may be applied to the transfer surface, such as a coating of a non-stick material.
- the coating may be removable. In this manner, the coating may be removed and reapplied as needed when a coating wears out, rather than having to dispose of the print head completely.
- FIG. 47 shows a cross-sectional view of a print head 4700 , according to an example embodiment of the present invention.
- a non-stick material layer 4702 is formed on transfer surface 206 of print head 4700 .
- Non-stick material layer 4702 is a coating of a non-stick material that is configured to reduce nanowire and contaminate adhesion.
- non-stick material layer 4702 may be removed (e.g., stripped) from transfer surface 206 , and reapplied to transfer surface 206 , to provide a longer lifespan to print head 4700 .
- Example advantages of non-stick material layer 4702 on transfer surface 206 include preventing nanowire adhesion and sticking, enabling the use of a higher nanowire capture voltage (e.g., during step 304 of flowchart 300 in FIG. 3 ) so that nanowires are not lost due to shear forces during the nanowire transfer process (e.g., as described above with respect to FIGS. 41 and 42 ), enhancing nanowire transfer efficiency, and/or reducing contamination and corrosion of print head 4700 to increase a lifetime of print head 4700 .
- Non-stick material layer 4702 may be formed on transfer surface 206 in any manner, including by coating transfer surface 206 from a solution (i.e., spin coating or dip coating) or by a vapor phase deposition process.
- Non-stick material layer 4702 may be configured to have weak adhesion properties, such as adhesion properties characterized through van der Waals forces.
- Transfer surface 206 may be treated with adhesion promoters to prevent non-stick material layer 4702 from delaminating from transfer surface 206 .
- Example materials for non-stick material layer 4702 include materials that have very low van der Waals force attraction with inorganic materials (contamination and nanowires), such as organic molecules or fluorinated organics (e.g., Teflon).
- a fluorinated organic material such as Teflon, can have van der Waals forces 3 orders of magnitude lower than a typical oxide surface, thus making the strength of adhesion of contaminants to transfer surface 206 relatively weak.
- a thickness and/or chemistry of non-stick material layer 4702 may be selected as desired for the particular application.
- non-stick material layer 4702 may be removable. For instance, if nanowires and/or other contamination does adhere to transfer surface 206 after one or more uses, non-stick material layer 4702 may be removed using solvents, plasma, thermal decomposition, or other removal material or technique. After removal of non-stick material layer 4702 , a fresh replacement coating of non-stick material layer 4702 may be formed on transfer surface 206 . This replacement process is simpler and less expensive than manufacturing a replacement print head 4700 , which may be relatively expensive.
- non-stick material that may be applied to transfer surface 206
- a film of a material such as SiO 2 or Si 3 N 4 .
- Such a film may be deposited on transfer surface 206 according to a plasma enhanced chemical vapor deposition (PECVD) process or other process.
- PECVD plasma enhanced chemical vapor deposition
- Such a film may prevent nanowires from sticking to transfer surface 206 by static charge.
- such a film may be removed after use, and reapplied to transfer surface 206 , as needed, which may enable a lifespan of transfer surface 206 to be increased.
- Example embodiments are described in this section for nanostructure printing processes and systems. Embodiments are described for fabricating devices that incorporate nanostructures. These embodiments are provided for illustrative purposes, and are not intended to be limiting.
- FIG. 48 shows a block diagram of a nanostructure printing system 4800 , according to an example embodiment of the present invention.
- system 4800 includes an association station 4802 , an inspection station 4804 , a printing station 4806 , a cleaning station 4808 , a panel repair station 4812 , and a panel drying station 4814 .
- Association station 4802 , inspection station 4804 , printing station 4806 , and cleaning station 4808 form a print head pipeline portion of system 4800
- printing station 4806 , panel repair station 4812 , and panel drying station 4814 form a panel pipeline portion of system 4800 .
- System 4800 is described with respect to flowcharts 4900 and 5000 shown in FIGS. 49 and 50 , respectively.
- Flowchart 4900 shows a process for the print head pipeline portion of system 4800
- flowchart 5000 shows a process for the panel pipeline of system 4800 , according to example embodiments of the present invention.
- flowcharts 4900 and 5000 are described as follows with respect to system 4800 .
- Other structural and operational embodiments will be apparent to persons skilled in the relevant art(s) based on the following discussion. Not all elements of system 4800 shown in FIG. 48 need be present in all embodiments, and not all steps of flowcharts 4900 and 5000 are necessarily performed in all embodiments.
- nanostructures are associated with transfer surfaces of print heads.
- association station 4802 receives a plurality of print heads 4818 , including a print head 4810 .
- Association station 4802 is configured to associate nanostructures with a transfer surface of each print head of the received plurality of print heads 4818 .
- the association of nanostructures with print heads 4818 may be performed in any manner described elsewhere herein, such as described above with respect to flowchart 300 in FIG. 3 , or in other ways known to persons skilled in the relevant art(s).
- association station 4802 outputs a plurality of print heads and associated nanostructures 4820 .
- FIG. 51 illustrates nanostructures being associated with transfer surfaces of print head 4810 in solution (e.g., in a liquid environment) at association station 4802 .
- print head 4810 is one of a plurality of print heads received at association station 4802 .
- a single print head 4810 is received.
- print head 4810 has six transfer surfaces 206 a - 206 f .
- print head 4810 may have other numbers of transfer surfaces 206 , including a two-dimensional array of transfer surfaces 206 .
- Transfer surfaces 206 a - 206 f are submerged in a nanowire solution 5106 (e.g., a nanowire ink) contained by a reservoir 5104 .
- nanowire solution 5106 e.g., a nanowire ink
- print head 4810 has five through-holes or openings 5108 a - 5108 e , with each opening 5108 being positioned between a corresponding adjacent pair of transfer surfaces 206 . Openings 5108 may be configured similarly to openings 4204 described above with respect to FIG. 42 . In embodiments, print head 4810 may include any number and configuration of openings 5108 .
- each transfer surface 206 a - 206 f includes a respective pair of electrodes (e.g., electrode pair 208 of FIG. 2 , which may include electrodes 704 and 706 shown in FIG. 7 ).
- the electrodes generate an electric field (e.g., electric field 1402 shown in FIG. 14 ) to associate one or more nanowires 5110 in nanowire solution 5106 with the respective transfer surface 206 .
- FIG. 51 shows a first nanowire 5110 a in solution 5106 that is not associated with any of transfer surfaces 206 a - 206 b .
- a second nanowire 5110 b is shown associated with second transfer surface 206 b .
- a third nanowire 5110 c is nearby but not associated with first transfer surface 206 a.
- print head 4810 of FIG. 48 may optionally be configured to flush excess nanostructures from transfer surfaces 206 of plurality of print heads 4818 at association station 4802 .
- FIG. 52 shows excess nanowires being flushed from transfer surfaces 206 a - 206 f of print head 4810 .
- a fluid e.g., solution 5106
- openings 5108 a - 5108 e as indicated by arrows 5202
- a fluid source (not shown in FIG.
- a fluid velocity and flush time provided by the fluid source may be determined for a particular application. For example, fluid velocities in the range of 1-100 ⁇ m/s may be used, during a flush time of 60 minutes or less (e.g., 1 minute or less), in embodiments.
- nanowires 5110 such as nanowire 5110 c , which may be desired to be flushed from transfer surfaces 206 , are nanowires that may be weakly associated with a transfer surface 206 , that may have become entangled with other nanowires 5110 that are associated, and/or that may have become otherwise attached to (but not associated with) a surface of print head 4810 .
- nanowire 5110 c is shown in FIG. 52 as having been flushed from transfer surface 206 a.
- an inspection of the print heads is performed.
- inspection station 4804 receives plurality of print heads and associated nanostructures 4820 .
- Inspection station 4804 is configured to perform an inspection of transfer surfaces 206 of the received plurality of print heads, and to select at least one print head of received plurality of print heads based on the inspection.
- inspection station 4804 outputs at least one selected print head and associated nanostructures 4822 .
- FIG. 53 shows an example of inspection station 4804 , according to an embodiment of the present invention.
- inspection station 4804 has received a plurality of print heads 4810 a - 4810 c .
- Each of print heads 4810 a - 4810 c has a respective plurality of transfer surfaces 206 a - 206 f .
- An inspection device 5302 is present that is configured to inspect arrangements of nanowires 5110 associated with transfer surfaces 206 of print heads 4810 a - 4810 c .
- Inspection device 5302 may be an optical inspection device (e.g., a microscope, a camera, and/or other optical inspection device), an electrical inspection device, a mechanical inspection device, and/or further type of inspection device.
- Inspection device 5302 may be configured to determine whether a sufficient number of nanostructures is present at each transfer surface 206 , to determine whether an unsuitable arrangement of nanostructures is present at a transfer surface 206 (e.g., determine whether sufficient contact between electrodes is made by the present nanostructures), and/or to otherwise determine the suitability and/or unsuitability of an arrangement of nanostructures at transfer surfaces 206 of print heads 4810 a - 4810 c.
- inspection device 5302 may determine that an insufficient number of nanowires 5110 (e.g., no nanowires) is present at transfer surface 206 c of print head 4810 a , while all transfer surfaces of print heads 4810 b and 4810 c have sufficient numbers and arrangements of nanowires 5110 . Because inspection device 5302 determined that transfer surface 206 c of print head 4810 does not have a sufficient number of associated nanowires 5110 , print head 4810 a may be indicated as having failed inspection, while print heads 4810 b and 4810 c may be indicated as having passed inspection.
- an insufficient number of nanowires 5110 e.g., no nanowires
- one or more print heads are selected based on the inspection.
- One or more print heads that passed inspection in step 4904 may be selected.
- print heads 4810 b and 4810 c may be selected for further processing in system 4800 .
- an arrangement of nanowires 5110 at a print head 4810 that failed inspection may be repaired. For example, in the current example, after transfer surface 206 c was determined (in step 4904 ) to be lacking a sufficient number of nanowires, one or more additional nanowires 5110 may be associated with transfer surface 206 c .
- print head 4810 a may be re-inspected (repeat step 4904 ). If print head 4810 a passes the re-inspection, print head 4810 a may be selected in step 4906 .
- Example embodiments for repairing arrangements of nanostructures on surfaces are described in detail further below.
- the nanostructures are transferred from the selected print head(s) to a destination surface.
- printing station 4806 receives at least one selected print head and associated nanostructures 4822 .
- at least one selected print head and associated nanostructures 4822 includes print heads 4810 b and 4810 c .
- Printing station 4806 also receives a panel 4816 , which is an example of destination substrate 212 shown in FIG. 2 .
- Printing station 4806 is configured to transfer the nanostructures from the received at least one of the plurality of print heads to a plurality of regions of a surface of panel 4816 .
- printing station 4806 outputs a plurality of print heads 4824 and a panel with deposited nanostructures 4828 .
- printing station 4806 may be configured to transfer nanostructures from print heads 4810 to panel 4816 in any manner described elsewhere herein, such as described above with respect to flowchart 300 in FIG. 3 , or in other ways known to persons skilled in the relevant art(s).
- FIGS. 54-56 show views of printing station 4806 during a nanostructure transfer process, according to an example embodiment of the present invention.
- transfer surfaces 206 of print heads 4802 and destination surface 210 may be coated with molecules that interact via a lock and key mechanism.
- One of transfers surfaces 206 or print heads 4802 may be coated with a first molecule, and the other of transfer surfaces 206 or print heads 4802 may be coated with a second molecule.
- the first and second molecules interact according to a molecular binding process that occurs in biological systems.
- This type of molecular recognition could be used to perform more sophisticated multi step depositions of nanowires 5110 .
- Such a molecular coating may be used on transfer surfaces and destination surfaces in conjunction with other nanostructure transfer embodiments described elsewhere herein.
- FIG. 54 shows print head 4810 b and panel 4816 in solution 5106 .
- one or more nanowires 5110 are associated with each of transfer surfaces 206 a - 206 f of print head 4810 b .
- print head 4810 b is moved adjacent to panel 4816 , so that each of transfer surfaces 206 a - 206 f is aligned with a corresponding one of regions 1902 a - 1902 f of panel 4816 .
- print head 4810 b has deposited nanowires 5110 on panel 4816 , and has withdrawn from panel 4816 . For instance, as shown in FIG. 56 , nanowire 5110 b is deposited from transfer surface 206 b to region 1904 b of destination surface 210 of panel 4816 .
- step 4910 the print heads are cleaned.
- cleaning station 4808 receives plurality of print heads 4824 .
- plurality of print heads 4824 includes print heads 4810 a - 4810 c .
- Cleaning station 4808 is configured to clean the received plurality of print heads 4824 .
- Cleaning station 4808 may be configured to clean print heads 4824 in any manner, to remove any remaining nanostructures (e.g., nanostructures that were not deposited from a print head at printing station 4806 ) and/or to remove any further contaminants.
- FIG. 57 shows an example of cleaning station 4808 , according to an embodiment of the present invention.
- a fluid source 5702 may be present that outputs and/or directs a fluid to transfer surfaces 206 a - 206 f , as indicated by arrows 5704 , to remove/dislodge contaminants from transfer surfaces 206 a - 206 f .
- Fluid source 5702 may be any mechanism for providing a fluid flow of a suitable pressure.
- the fluid output/directed by fluid source 5702 may be solution 5106 and/or other fluid, such a fluid configured to clean transfer surfaces 206 a - 206 f.
- cleaning station 4808 outputs plurality of print heads 4818 .
- Plurality of print heads 4818 may be received by association station 4802 for a next cycle of nanostructure printing to be performed by system 4800 .
- a single set of print heads may proceed from station to station in system 4800 , such that at any particular time, all print heads are at the same station.
- each station may be operating on a corresponding set of print heads, which shift to a next station at predetermined time intervals.
- step 5002 of flowchart 5000 the nanostructures are received on the destination surface.
- nanowires 5110 are transferred to destination surface 210 of panel 4816 .
- step 5004 the placement of received nanostructures on the destination surface is repaired.
- Step 5004 is optional.
- panel repair station 4812 receives panel with deposited nanostructures 4828 .
- Panel repair station 4812 is configured to perform an inspection of the nanostructures transferred to the plurality of regions of the surface of the received panel.
- FIGS. 58 and 59 show views of an example panel repair station 4812 , according to embodiments of the present invention.
- an inspection device 5802 is present that is configured to inspect arrangements of nanowires 5110 at regions 1904 of panel 4816 .
- Inspection device 5802 may be an optical inspection device (e.g., a microscope, a camera, and/or other optical inspection device), an electrical inspection device, a mechanical inspection device, and/or further type of inspection device. Inspection device 5802 may be configured to determine whether a sufficient number of nanostructures is present at each region 1904 , to determine whether an unsuitable arrangement of nanostructures is present at a region 1904 (e.g., sufficient contact with electrical conductors on surface 210 is not made by the present nanostructures), and/or to otherwise determine the suitability and/or unsuitability of an arrangement of nanostructures at regions 1904 of destination surface 210 .
- an optical inspection device e.g., a microscope, a camera, and/or other optical inspection device
- an electrical inspection device e.g., a mechanical inspection device, and/or further type of inspection device.
- Inspection device 5802 may be configured to determine whether a sufficient number of nanostructures is present at each region 1904 , to determine whether an unsuitable arrangement of
- inspection device 5802 may determine that an insufficient number of nanowires 5110 (e.g., no nanowires) is present at region 1904 c of panel 4816 . Because inspection device 5802 determined that region 1904 c does not have a sufficient number of nanowires 5110 , region 1904 c may be indicated for repair.
- an insufficient number of nanowires 5110 e.g., no nanowires
- FIG. 59 shows a repair of the arrangement of nanostructures at region 1904 c being performed.
- a print head 5902 is shown repairing region 1904 c , by depositing one or more nanostructures, including a nanowire 5110 c , on region 1904 c .
- print head 5902 may be configured to add one or more nanostructures to a region 1904 in need of repair.
- print head 5902 may be configured to rearrange the present nanostructures (e.g., move nanostructures into contact with desired electrical conductors of the region 1904 ), and/or to remove one or more present nanostructures, to create a sufficient nanostructure arrangement.
- panel repair station 4812 outputs a panel with deposited nano structures 4830 .
- step 5006 the destination surface is dried.
- panel drying station 4814 receives panel with deposited nanostructures 4830 .
- Panel drying station 4814 is configured to dry the deposited nanostructures on panel 4814 .
- FIG. 60 shows an example of panel drying station 4814 , according to an embodiment of the present invention.
- a dryer 6002 is present. Dryer 6002 is configured to dry nanowires 5110 on panel 4814 . Dryer 6002 may be configured to dry nanowires 5110 on panel 4814 in any suitable manner, including by radiating electromagnetic energy (e.g., infrared heat), by blowing air 6004 (as shown in FIG. 60 ), and/or in any other manner.
- electromagnetic energy e.g., infrared heat
- panel drying station 4814 outputs panel 4816 with deposited nanostructures 4826 .
- Panel 4816 may receive further processing, such as receiving a coating for environmental protection of the deposited nanostructures.
- Panel 4816 with nanostructures 4826 may be an electronic device, such as a display, and/or may be incorporated into an electronic device. Examples of such electronic devices are described further below.
- Nanostructure printing system 4800 includes printing station 4806 , which in the example of FIGS. 54-56 , performs a “wet” nanostructure transfer process (e.g., nanowires 5110 are transferred in FIGS. 54-56 in reservoir 5104 containing solution 5106 ) (also referred to as “wet stamping”).
- a nanostructure printing system may perform a “dry” nanostructure transfer process.
- FIG. 61 shows a nanostructure printing system 6100 , according to an example embodiment of the present invention.
- Nanostructure printing system 6100 includes an association station 6102 , a drying station 6104 , a print head repair station 6106 , a printing station 6108 , a cleaning station 6110 , and a panel repair station 6114 .
- Printing station 6108 of system 6100 is configured to perform a dry nanostructure transfer process.
- Association station 6102 , drying station 6104 , print head repair station 6106 , printing station 6108 , and cleaning station 6110 form a print head pipeline portion of system 6100
- printing station 6108 and panel repair station 6114 form a panel pipeline portion of system 6100 .
- System 6100 is described with respect to flowcharts 6200 and 6300 shown in FIGS. 62 and 63 , respectively.
- Flowchart 6200 shows a process for the print head pipeline portion of system 6100
- flowchart 6300 shows a process for the panel pipeline of system 6100 , according to example embodiments of the present invention.
- flowcharts 6200 and 6300 are described as follows with respect to system 6100 .
- Other structural and operational embodiments will be apparent to persons skilled in the relevant art(s) based on the following discussion. Not all elements of system 6100 shown in FIG. 61 need be present in all embodiments, and not all steps of flowcharts 6200 and 6300 are necessarily performed in all embodiments.
- nanostructures are associated with transfer surfaces of print heads.
- association station 6102 receives a plurality of print heads 6118 , including a print head 6112 .
- Association station 6102 is configured to associate nanostructures with a transfer surface of each print head the received plurality of print heads 6118 .
- the association of nanostructures with print heads 6118 may be performed in any manner described elsewhere herein, such as described above with respect to flowchart 300 in FIG. 3 , or in other ways known to persons skilled in the relevant art(s).
- association station 6102 may associate nanostructures with print heads in a similar manner as described above for association station 4802 of FIG. 48 .
- association station 6102 outputs a plurality of print heads and associated nanostructures 6120 .
- drying station 6104 receives plurality of print heads and associated nanostructures 6120 .
- Drying station 6104 is configured to dry the transfer surfaces and associated nanostructures of the received plurality of print heads.
- drying station 6104 may include a dryer similar to dryer 6002 shown in FIG. 60 , and described above, to perform drying.
- drying station 6104 outputs a dried plurality of print heads and associated nanostructures 6122 .
- step 6206 placement of nanostructures on one or more print heads is repaired.
- Step 6206 is optional.
- print head repair station 6106 receives dried plurality of print heads and associated nanostructures 6122 .
- Print head repair station 6106 may be configured to inspect and repair the nanostructures associated with the print heads in a similar manner as panel repair station 4812 of FIG. 48 , and described above.
- print head repair station 6106 may include an inspection device similar to inspection device 5802 shown in FIG. 58 , to determine nanostructure arrangements on print heads in need of repair.
- print head repair station 6106 may include a print head or other repair device, such as print head 5902 shown in FIG. 59 , which may be used repair the determined nanostructure arrangements in need of repair, in a wet or dry manner.
- panel repair station 6106 outputs a plurality of print heads and associated nanostructures 6124 .
- the nanostructures are transferred from one or more of the print heads to a destination surface.
- printing station 6108 receives plurality of print heads and associated nanostructures 6124 .
- Printing station 6108 also receives a panel 6116 , which is an example of destination substrate 212 shown in FIG. 2 .
- Printing station 6108 is configured to transfer the nanostructures from the received plurality of print heads to a plurality of regions of a surface of panel 6116 .
- Nanostructures may be transferred from all of the received print heads, or from a selected portion of the print heads (e.g., selected in a similar manner as described above with respect to step 4906 of flowchart 4900 ).
- printing station 6108 may be configured to transfer nanostructures to panel 6116 according to any dry transfer process described elsewhere herein, such as described above with respect to flowchart 300 in FIG. 3 , or in other ways known to persons skilled in the relevant art(s).
- a difference in adhesion properties of the transfer surface of the print head and of the destination surface may be used to enable a transfer of nanostructures.
- the destination surface may be configured to have greater adhesion (to the nanostructures) than the transfer surface. In this manner, the nanostructures associated with the transfer surface may be brought into contact with the destination surface. As the transfer surface is moved away from the destination surface, the greater adhesion of the destination surface may cause the nanostructure to remain on the destination surface.
- printing station 6108 may be configured similarly to printing station 4806 shown in FIGS. 54-56 , but without the presence of reservoir 5104 and solution 5106 . As shown in FIG. 61 , printing station 6108 outputs a plurality of print heads 6126 and a panel with deposited nanostructures 6130 .
- cleaning station 6110 receives plurality of print heads 6126 .
- Cleaning station 6110 is configured to clean the received plurality of print heads 6126 .
- Cleaning station 6110 may be configured to clean print heads 6126 in any manner, to remove any remaining nanostructures (e.g., nanostructures that were not deposited from a print head at printing station 6108 ) and/or to remove any further contaminants.
- cleaning station 6110 may be configured to clean print heads in a similar fashion as cleaning station 4808 shown in FIG. 48 .
- cleaning station 6110 may include a fluid source, such as fluid source 5702 shown in FIG. 57 , to clean the transfer surfaces of print heads 6126 .
- cleaning station 6110 outputs plurality of print heads 6118 .
- Plurality of print heads 6118 may be received by association station 6102 for a next cycle of nanostructure printing to be performed by system 6100 .
- a single set of print heads may proceed from station to station in system 6100 , such that at any particular time, all print heads are at the same station.
- each station may be operating on a corresponding set of print heads, which shift forward to the next station at predetermined time intervals.
- step 6302 of flowchart 6300 the nanostructures are received on the destination surface.
- nanostructures are transferred to panel 6116 by printing station 6108 .
- step 6302 placement of the received nanostructures is repaired on destination surface.
- Step 6302 is optional.
- panel repair station 6114 receives panel with deposited nanostructures 6130 .
- Panel repair station 6114 is configured to perform an inspection of the nanostructures transferred to the plurality of regions of the surface of the received panel.
- panel repair station 6114 may be configured similarly to panel repair station 4812 described above with respect to FIG. 48 , including being configured as shown in FIGS. 58 and 59 .
- panel repair station 6114 outputs panel 6116 with deposited nanostructures 6128 .
- Panel 6116 may receive further processing, such as receiving a coating for environmental protection of nanostructures 6128 .
- Panel 6116 with nanostructures 6128 may be an electronic device, such as a display, and/or may be incorporated into an electronic device. Examples of such electronic devices are described further below.
- FIG. 64 shows a nanostructure transfer system 6400 used to perform the nanostructure transfer and to capture the images of the transfer.
- system 6400 includes print head 702 , destination substrate 212 , and an image capturing microscope 6402 .
- Transfer surface 206 of print head 702 includes first and second electrodes 704 and 706 and a plurality of spacing members 2302 .
- electrodes 704 and 706 hold an associated first nanowire 1702 a (and a second nanowire 1702 b , not visible in FIG. 64 ).
- First and second nanowires 1702 a and 1702 b may have been associated with first and second electrodes 704 and 706 in any manner described elsewhere herein, such as described above with respect to steps 302 and 304 of flowchart 300 ( FIG. 3 ).
- FIG. 65 shows a first image 6500 captured by microscope 6402 of system 6400 .
- First image 6500 shows first and second nanowires 1702 a and 1702 b associated with first and second electrodes 704 and 706 on transfer surface 206 of print head 702 .
- destination substrate 212 is transparent to microscope 6402 , and thus microscope 6402 may capture images of nanowires 1702 a and 1702 b through substrate 212 .
- FIG. 66 shows another view of nanostructure transfer system 6400 , where print head 702 is moved into contact with destination substrate 212 (e.g., according to step 306 of flowchart 300 of FIG. 3 ). Spacing members 2302 on transfer surface 206 of print head 702 are in contact with destination surface 210 of substrate 212 , to maintain print head 702 at a predetermined distance (a height of spacing members 2302 ) from substrate 212 .
- FIG. 67 shows a second image 6700 captured by microscope 6402 of first and second nanowires 1702 a and 1702 b associated with first and second electrodes 704 and 706 , with print head 702 in contact with destination surface 210 (as in FIG. 66 ).
- FIG. 68 shows another view of nanostructure transfer system 6400 .
- print head 702 remains in contact with destination substrate 212 (as in FIG. 66 ).
- nanowire 1702 a (and nanowire 1702 b , not visible in FIG. 68 ) is transferred to destination surface 210 of substrate 212 .
- Nanowires 1702 a and 1702 b may be transferred to destination surface 210 in any manner described elsewhere herein, such as according to step 308 of flowchart 300 ( FIG. 3 ) described above.
- an electric field generated by first and second electrodes 704 and 706 may be removed to release first and second nanowires 1702 a and 1702 b .
- destination surface 210 may have been configured to have a charge that is opposite to a charge of first and second nanowires 1702 a and 1702 b , to attract nanowires 1702 a and 1702 b .
- FIG. 69 shows a third image 6900 captured by microscope 6402 of first and second nanowires 1702 a and 1702 b , where first and second nanowires 1702 a and 1702 b are transferred to destination surface 210 (as in FIG. 68 ).
- FIG. 70 shows another view of nanostructure transfer system 6400 .
- print head 702 is moved away from destination substrate 212 (e.g., according to step 310 of flowchart 300 in FIG. 3 ).
- Nanowire 1702 a (and nanowire 1702 b , not visible in FIG. 68 ) remains deposited on destination surface 210 of substrate 212 .
- FIG. 71 shows a fourth image 7100 captured by microscope 6402 of first and second nanowires 1702 a and 1702 b , where first and second nanowires 1702 a and 1702 b are on destination surface 210 , and print head 702 has been moved away from destination surface 210 (as in FIG. 70 ). Note that in each of FIGS.
- first and second nanowires 1702 a and 1702 b remain in focus, while focus is diminished with respect to transfer surface 206 of print head 702 due to the increased separation between nanowires 1702 a and 1702 b and transfer surface 206 .
- Example electronic devices and systems that can be formed according to embodiments of the present invention are described below.
- Numerous electronic devices and systems can incorporate semiconductor or other type devices with thin films of nanowires and/or electrical devices deposited according the methods of the present invention.
- Some example applications for the present invention are described below or elsewhere herein for illustrative purposes, and are not limiting.
- the applications described herein can include aligned or non-aligned thin films of nanowires, and can include composite or non-composite thin films of nanowires.
- Semiconductor devices can be coupled to signals of other electronic circuits, and/or can be integrated with other electronic circuits.
- Semiconductor devices can be formed on large substrates, which can be subsequently separated or diced into smaller substrates. Furthermore, on large substrates (i.e., substrates substantially larger than conventional semiconductor wafers), semiconductor devices formed thereon can be interconnected.
- the nanowires deposited by the processes and methods of the present invention can also be incorporated in applications requiring a single semiconductor device, and in multiple semiconductor devices.
- the nanowires deposited by the processes and methods of the present invention are particularly applicable to large area, macro electronic substrates on which a plurality of semiconductor devices are formed.
- Such electronic devices can include display driving circuits for active matrix liquid crystal displays (LCDs), organic LED displays, field emission displays.
- LCDs liquid crystal displays
- Other active displays can be formed from a nanowire-polymer, quantum dots-polymer composite (the composite can function both as the emitter and active driving matrix).
- the nanowires deposited by the processes and methods of the present invention are also applicable to smart libraries, credit cards, large area array sensors, and radio-frequency identification (RFID) tags, including smart cards, smart inventory tags, and the like.
- RFID radio-frequency identification
- the nanowires deposited by the processes and methods of the present invention are also applicable to digital and analog circuit applications.
- the nanowires deposited by the processes and methods of the present invention are useful in applications that require ultra large-scale integration on a large area substrate.
- a thin film of nanowires deposited by the processes and methods of the present invention can be implemented in logic circuits, memory circuits, processors, amplifiers, and other digital and analog circuits.
- a clear conducting substrate is used to enhance the photovoltaic properties of the particular photovoltaic device.
- a clear conducting substrate can be used as a flexible, large-area replacement for indium tin oxide (ITO) or the like.
- ITO indium tin oxide
- a substrate can be coated with a thin film of nanowires that is formed to have a large bandgap, i.e., greater than visible light so that it would be non-absorbing, but would be formed to have either the HOMO or LUMO bands aligned with the active material of a photovoltaic device that would be formed on top of it.
- Clear conductors can be located on two sides of the absorbing photovoltaic material to carry away current from the photovoltaic device.
- Two different nanowire materials can be chosen, one having the HOMO aligned with that of the photovoltaic material HOMO band, and the other having the LUMO aligned with the LUMO band of the photovoltaic material.
- the bandgaps of the two nanowires materials can be chosen to be much larger than that of the photovoltaic material.
- the nanowires, according to this embodiment can be lightly doped to decrease the resistance of the thin films of nanowires, while permitting the substrate to remain mostly non-absorbing.
- such goods can include personal computers, workstations, servers, networking devices, handheld electronic devices such as PDAs and palm pilots, telephones (e.g., cellular and standard), radios, televisions, electronic games and game systems, home security systems, automobiles, aircraft, boats, other household and commercial appliances, and the like.
- PDAs and palm pilots e.g., cellular and standard
- telephones e.g., cellular and standard
- radios e.g., televisions, electronic games and game systems, home security systems, automobiles, aircraft, boats, other household and commercial appliances, and the like.
- a method for transferring nanowires to a destination surface includes providing at least one nanowire proximate to an electrode pair, generating an electric field with electrodes of the electrode pair to associate the at least one nanowire with the electrodes, aligning the electrode pair with a region of the destination surface, and depositing the at least one nanowire from the electrode pair to the region.
- the transfer surface may be configured to have a first electric charge.
- the first electric charge may apply a repulsive electrostatic force to the at least one nanowire, and the electric field may be configured to attract the at least one nanowire to the transfer surface against the repulsive electrostatic force.
- the electric field may be biased with an alternating current (AC) field to attract the at least one nanowire to the transfer surface.
- AC alternating current
- the electric field may be biased with a second AC field to enable the at least one nanowire to move toward the destination surface.
- the destination surface may be configured to have a second electric charge that is opposite the first electric charge.
- the at least one nanowire may be enabled to be attracted to the destination surface by an attractive electrostatic force of the second electric charge by reducing a distance between the at least one nanowire and the destination surface.
- the at least one nanowire may be attracted toward the destination surface with the second electric charge.
- the transfer surface may be ultrasonically vibrated to enable an attractive electrostatic force of the second electric charge to attract the at least one nanowire toward the destination surface.
- Both the transfer surface and destination surface may be ultrasonically vibrated.
- the transfer surface and destination surface may be ultrasonically vibrated synchronously.
- a vacuum may be applied from the destination surface to the transfer surface to move the at least one nanowire toward the destination surface.
- a second electric field associated with the destination surface may be generated to attract the at least one nanowire toward the destination surface.
- Generation of the electric field may be ceased.
- the destination surface may be configured to have a hydrophilic property to attract a solution containing the at least one nanowire toward the destination surface.
- the transfer surface may be configured to have a hydrophobic property to repel a solution containing the at least one nanowire.
- a solution containing the at least one nanowire may be flowed on the electrode pair.
- a rate of flow of the solution on the electrode pair may be varied.
- the electrode pair may include a first electrode and a second electrode, and the at least one nanowire may include a first nanowire.
- a first end of the first nanowire may be caused to be positioned adjacent to a surface of the first electrode, and a second end of the first nanowire may be caused to be positioned adjacent to a surface of the second electrode.
- the at least one nanowire may be caused to align substantially in parallel with an axis through the first and second electrodes.
- the at least one nanowire may be positioned such that the first and second ends are not in contact with the first and second electrodes.
- the region may include an electrical contact pair.
- the electrode pair may be contacted with the electrical contact pair.
- the electrode pair may be contacted with the destination surface.
- a cantilever that mounts a first electrode of the electrode pair may be caused to flex due to the contacting.
- a pair of cantilevers that mount the electrode pair may be caused to flex due to the contacting.
- the electrode pair may be positioned adjacent to the surface.
- the electrode pair may be removed from alignment with the region of the destination surface.
- a second at least one nanowire may be provided proximate to the electrode pair.
- a second electric field may be generated with the electrodes of the electrode pair to associate the second at least one nanowire with the electrodes.
- the electrode pair may be aligned with a second region of the surface.
- the at least one nanowire may be deposited from the electrode pair to the second region.
- the first electrode pair and a second electrode pair may be on a common transfer surface.
- a second at least one nanowire proximate may be provided to the second electrode pair.
- a second electric field may be generated with second electrodes of the second electrode pair to associate the second at least one nanowire with the second electrodes.
- the second electrode pair may be aligned with a second region of the surface.
- the second at least one nanowire may be deposited from the second electrode pair to the second region.
- Uncoupled nanowires may be removed from the electrode pair.
- a system for transferring nanowires to a destination may include a body having a transfer surface, an electrode pair on the transfer surface, a suspension that includes a plurality of nanowires provided proximate to the electrode pair, a signal generator coupled to the electrode pair, wherein the signal generator is configured to enable electrodes of the electrode pair to generate an electric field to associate at least one nanowire of the plurality of nanowires with the electrodes, and an alignment mechanism configured to align the electrode pair with a region of the destination surface to enable the associated at least one nanowire to be deposited from the electrode pair to the region.
- the transfer surface may have a first electric charge.
- the first electric charge may apply a repulsive electrostatic force to the at least one nanowire, and the electric field may attract the at least one nanowire to the transfer surface against the repulsive electrostatic force.
- the signal generator may bias the electric field with an alternating current (AC) field to attract the at least one nanowire to the transfer surface.
- AC alternating current
- the signal generator may bias the electric field with a second AC field to enable the associated at least one nanowire to move toward the destination surface.
- the destination surface may have a second electric charge that is opposite the first electric charge.
- the alignment mechanism may be configured to reduce a distance between the at least one nanowire and the destination surface to enable the associated at least one nanowire to be attracted to the destination surface by an attractive electrostatic force of the second electric charge.
- the associated at least one nanowire may be attracted toward the destination surface by the second electric charge.
- the system may further include an ultrasonic vibration source configured to vibrate the transfer surface to enable an attractive electrostatic force of the second electric charge to attract the associated at least one nanowire toward the destination surface.
- the ultrasonic vibration source may be configured to vibrate both the transfer surface and destination surface.
- the ultrasonic vibration source may be configured to vibrate the transfer surface and destination surface synchronously.
- the system may further include a vacuum source configured to apply a vacuum from the destination surface to the transfer surface to move the associated at least one nanowire toward the destination surface.
- the system may further include an electric field source configured to generate a second electric field associated with the destination surface to attract the associated at least one nanowire toward the destination surface.
- the signal generator may be configured to reduce an intensity of the electric field to enable the associated at least one nanowire to be attracted toward the destination surface.
- the destination surface may be configured to have a hydrophilic property to attract a fluid containing the associated at least one nanowire toward the destination surface.
- the transfer surface may be configured to have a hydrophobic property to repel the fluid containing the associated at least one nanowire.
- the system may further include a container that contains the suspension and the electrode pair.
- the suspension may be flowed over the electrode pair.
- the electrode pair may include a first electrode and a second electrode, and the at least one nanowire may include a first nanowire.
- the electric field may cause a first end of the first nanowire to be positioned adjacent to a surface of the first electrode, and a second end of the first nanowire to be positioned adjacent to a surface of the second electrode.
- the electric field may align the at least one nanowire substantially in parallel with an axis through the first and second electrodes.
- the electric field may position the at least one nanowire such that the first and second ends are not in contact with the first and second electrodes.
- the region may include an electrical contact pair.
- the alignment mechanism may be configured to contact the electrode pair with the electrical contact pair.
- the alignment mechanism may be configured contact the electrode pair with the destination surface.
- the transfer surface may have a cantilever that mounts a first electrode of the electrode pair.
- the cantilever is configured to flex if the electrode pair contacts the destination surface.
- the transfer surface may have a pair of cantilevers that mount first and second electrodes of the electrode pair.
- the pair of cantilevers is configured to flex if the electrode pair contacts the destination surface.
- the alignment mechanism may be configured to position the electrode pair adjacent to the surface.
- the system may further include a plurality of spacers on the transfer surface.
- the alignment mechanism may be configured to remove the electrode pair from alignment with the region of the destination surface after the associated at least one nanowire is deposited.
- a second electrode pair may be on the transfer surface.
- a method for applying nanowires to a destination surface may include aligning an electrode pair having an associated at least one nanowire with a region of the destination surface, and depositing the at least one nanowire from the electrode pair to the region.
- a system for transferring electrical devices to a destination surface may include a body having a transfer surface, an electrode pair on the transfer surface, a suspension that includes a plurality of electrical devices provided proximate to the electrode pair, a signal generator coupled to the electrode pair, wherein the signal generator is configured to enable electrodes of the electrode pair to generate an electric field to associate an electrical device of the plurality of electrical devices with the electrodes, and an alignment mechanism configured to align the electrode pair with a region of the destination surface to enable the associated electrical device to be deposited from the electrode pair to the region.
- the system may further include an ultrasonic vibration source configured to vibrate the transfer surface to enable an attractive electrostatic force to attract the associated electrical device toward the destination surface.
- the ultrasonic vibration source may be configured to vibrate both the transfer surface and destination surface.
- the ultrasonic vibration source may be configured to vibrate the transfer surface and destination surface synchronously.
- the system may further include an ultrasonic vibration source configured to vibrate the transfer surface to enable an attractive electrostatic force to attract the associated electrical device toward the destination surface.
- the ultrasonic vibration source may be configured to vibrate both the transfer surface and destination surface.
- the ultrasonic vibration source may be configured to vibrate the transfer surface and destination surface synchronously.
- a method for transferring nanowires to a destination surface may include positioning a transfer surface of a print head adjacent to a destination surface, wherein a nanowire is associated with the transfer surface, reducing a distance between the transfer surface and the destination surface, receiving a fluid in at least one opening in the transfer surface from between the transfer surface and the destination surface during the reducing, and depositing the nanowire from the transfer surface to the destination surface.
- the fluid may be received in first and second openings in the transfer surface, the nanowire being associated with the transfer surface at a location substantially midway between the first and second openings.
- the first and second openings may each have a length that is greater than a length of a long axis of the nanowire.
- the lengths of the first and second openings may be positioned in the transfer surface in parallel with the long axis of the nanowire.
- a piston may be moved within each of the first and second openings to draw the fluid from between the transfer surface and the destination surface into the first and second openings.
- a system for transferring nanowires to a destination surface may include a body having a transfer surface, at least one opening in the transfer surface, and an electrode pair formed on the transfer surface.
- the electrode pair may be configured to generate an electric field to associate a nanowire with the electrode pair.
- the at least one opening may be configured to receive a fluid from between the transfer surface and the destination surface.
- the at least one opening may be configured to receive the fluid from between the transfer surface and the destination surface when the transfer surface is being moved toward the destination surface.
- the at least one opening may include a first opening and a second opening.
- the electrode pair may be configured to associate the nanowire with the transfer surface at a location substantially midway between the first and second openings.
- the first and second openings may each have a length that is greater than a length of a long axis of the nanowire.
- the first and second openings may be positioned in the transfer surface such that the lengths of the first and second openings are configured to be parallel with the long axis of the nanowire.
- the system may further include a first piston in the first opening and a second piston in the second opening.
- the first and second pistons may be configured to draw the fluid from between the transfer surface and the destination surface into the first and second openings.
- a method for transferring nanowires to a destination substrate may include associating nanostructures with transfer surfaces of a plurality of print heads, performing an inspection of the transfer surfaces of the plurality of print heads, selecting at least one print head of the plurality of print heads based on the inspection, and transferring the nanostructures from the selected at least one print head to a plurality of regions of a surface of a destination substrate.
- Excess nanostructures may be flushed from the transfer surfaces of the plurality of print heads.
- the selected at least one print head may be cleaned after the transferring.
- An inspection may be performed of the nanostructures transferred to the plurality of regions of the surface of the destination substrate.
- An arrangement of nanostructures transferred to a region of the surface of the destination substrate in need of repair may be determined, and the determined arrangement of nanostructures may be repaired.
- the transfer surfaces may be positioned in a suspension containing a plurality of nanostructures, and an electric field may be generated with electrodes of an electrode pair of each transfer surface to associate nanostructures with the electrode pair of each transfer surface.
- the associated nanostructures may be deposited from at least one electrode pair of the selected at least one print head to the surface of the destination substrate.
- a method for transferring nanowires to a destination substrate may include associating nanostructures with transfer surfaces of a plurality of print heads, drying the transfer surfaces having associated nanostructures, performing an inspection of the dried transfer surfaces having associated nanostructures, and transferring the nanostructures from the dried transfer surfaces to a plurality of regions of a surface of the destination substrate.
- An arrangement of nanostructures associated with a transfer surface of a print head in need of repair may be determined, and the determined arrangement of nanostructures may be repaired.
- Excess nanostructures may be flushed from the transfer surfaces of the plurality of print heads prior to the drying.
- the plurality of print heads may be cleaned after the transferring.
- An inspection of the nanostructures transferred to the plurality of regions of the surface of the destination substrate may be performed.
- An arrangement of nanostructures transferred to a region of the surface of the destination substrate in need of repair may be determined, and the determined arrangement of nanostructures may be repaired.
- the transfer surfaces may be positioned in a suspension containing a plurality of nanostructures, and an electric field may be generated with electrodes of an electrode pair of each transfer surface to associate nanostructures with the electrode pair of each transfer surface.
- the associated nanostructures may be deposited from at least one electrode pair of the selected at least one print head to the surface of the destination substrate.
- a system for transferring nanowires to a destination substrate may include an association station configured to receive a plurality of print heads, and to associate nanostructures with a transfer surface of each of the received plurality of print heads, a printing station configured to receive a destination substrate and at least one of the plurality of print heads, and to transfer the nanostructures from the received at least one of the plurality of print heads to a plurality of regions of a surface of the destination substrate, and a cleaning station configured to receive the plurality of print heads from the printing station, and to clean the received plurality of print heads.
- the association station may be configured to flush excess nanostructures from the transfer surfaces of the plurality of print heads.
- the system may further include a repair station configured to receive the destination substrate, and to perform an inspection of the nanostructures transferred to the plurality of regions of the surface of the destination substrate.
- the repair station may be configured to determine an arrangement of nanostructures transferred to a region of the surface of the destination substrate in need of repair based on the inspection, and to repair the determined arrangement of nano structures.
- the printing station may be configured to perform a wet transfer of the nano structures.
- the system may further include an inspection station configured to receive the plurality of print heads from the association station, to perform an inspection of the transfer surfaces of the plurality of print heads, and to select at least one print head of the plurality of print heads based on the inspection.
- the printing station may be configured to transfer the nanostructures from the selected at least one print head to the plurality of regions of the surface of the destination substrate.
- the system may further include a panel drying station configured to receive the destination substrate, and to dry the nanostructures transferred to the plurality of regions of the surface of the destination substrate.
- the printing station may be configured to perform a dry transfer of the nano structures.
- the system may further include a print head drying station configured to receive the plurality of print heads, and to dry the transfer surfaces and the nanostructures associated with the transfer surfaces of the plurality of print heads.
- the system may further include a repair station configured to perform an inspection of the dried transfer surfaces having associated nanostructures, to determine an arrangement of nanostructures associated with a transfer surface of a print head in need of repair based on the inspection, and to repair the determined arrangement of nano structures.
- a repair station configured to perform an inspection of the dried transfer surfaces having associated nanostructures, to determine an arrangement of nanostructures associated with a transfer surface of a print head in need of repair based on the inspection, and to repair the determined arrangement of nano structures.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Thin Film Transistor (AREA)
- Micromachines (AREA)
- Electrodes Of Semiconductors (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
- This application is a divisional of allowed U.S. application Ser. No. 12/114,446, filed on May 2, 2008, which claims the benefit of U.S. Provisional Application No. 60/916,337, filed on May 7, 2007, both of which are incorporated by reference herein in their entireties.
- 1. Field of the Invention
- The present invention relates to nanostructures, and more particularly, to the deposition of aligned nanostructures and electrical devices.
- 2. Background of the Invention
- Nanostructures, such as nanowires, have the potential to facilitate a whole new generation of electronic devices. A major impediment to the emergence of this new generation of electronic devices based on nanostructures is the ability to effectively align and deposit the nanostructures on various surfaces, such as substrates. Electric fields enable the alignment of nanowires suspended in suspension, but current techniques pose stringent constraints on the scalability to large area substrates. Likewise, current techniques for depositing electrical devices, such as integrated circuits, dies, optical components, etc., do not scale well to large area substrates.
- What are needed are systems and methods for achieving a high quality deposition of nanostructures and other electrical devices that are suitable for manufacturing large arrays of nanostructure-enabled electronic devices.
- Methods and systems for applying nanowires to surfaces are described. In an example aspect, nanowires are provided proximate to an electrode pair. An electric field is generated by electrodes of the electrode pair to associate the nanowires with the electrodes. The electrode pair is aligned with a region of the destination surface. The nanowires are deposited from the electrode pair to the region.
- The nanowires may be deposited to the region in a variety of ways. For example, a passive or active force, or combination of such forces, may be used to move the nanowires from the electrodes to the destination surface. Example forces include an electric field (AC and/or DC), a vacuum force, an electrostatic force, gravity, and/or other forces.
- In a first example, the electrode pair may be formed on a transfer surface. The transfer surface is configured to have a first electric charge. The first electric charge applies a repulsive electrostatic force to the nanowires (e.g., the nanowires may have the same charge as the first electric charge). The electric field generated by the electrodes attracts the nanowires to the transfer surface against the repulsive electrostatic force. In one instance, the electric field may be biased with an alternating current (AC) field to attract the nanowires to the transfer surface. The electric field may be reduced (including entirely removed) to enable the nanowires to be moved toward the destination surface by the repulsive electrostatic force of the first electric charge.
- In another example, the destination surface has a second electric charge that is opposite the first electric charge. An attractive electrostatic force of the second electric charge attracts the nanowires to the destination surface. A distance between the nanowires and the destination surface may be reduced to increase this attraction.
- In another example, the transfer surface is vibrated (e.g., ultrasonically) to enable the attractive electrostatic force of the second electric charge to attract the nanowires toward the destination surface.
- In another example, a vacuum is applied from the destination surface to the transfer surface to move the nanowires toward the destination surface. For example, the vacuum may draw a solution in which the nanowires reside towards the destination surface. The solution flow draws the nanowires toward the destination surface.
- In another example, a second electric field associated with the destination surface is generated to attract the nanowires toward the destination surface.
- In another aspect of the present invention, a system for applying nanowires to a destination surface is described. The system includes a body having a transfer surface, an electrode pair formed on the transfer surface, a suspension that includes a plurality of nanowires provided proximate to the electrode pair, a signal generator, and an alignment mechanism. The signal generator is coupled to the electrode pair. The signal generator is configured to supply an electric signal to enable electrodes of the electrode pair to generate an electric field to associate nanowires of the plurality of nanowires with the electrodes. The alignment mechanism is configured to align the electrode pair with a region of the destination surface to enable the nanowires to be deposited from the electrode pair to the region.
- In another aspect of the present invention, electrical devices are transferred to surfaces in a similar manner as described elsewhere herein for nanowires. In aspects, one or more electrical devices are provided proximate to an electrode pair on a transfer surface. The electrode pair is energized, whereby an electrical device becomes associated with the electrode pair. Subsequently, the electrical device is deposited from the electrode pair to a destination surface.
- In another aspect of the present invention, nanostructures, such as nanowires, are transferred to a destination surface. A transfer surface of a print head is positioned adjacent to a destination surface. A nanowire is associated with the transfer surface. A distance between the transfer surface and the destination surface is reduced. A fluid is received in one or more openings in the transfer surface from between the transfer surface and the destination surface during the reducing of the distance between the transfer and destination surfaces. Receiving the fluid in the opening(s) reduces a shear force on the nanowire. The nanowire is deposited from the transfer surface to the destination surface.
- In still another aspect of the present invention, nanostructures, such as nanowires, are transferred to a destination substrate. A nanowire transfer system includes an association station, a printing station, and a cleaning station. The association station is configured to receive a plurality of print heads, and to associate nanostructures with a transfer surface of each of the received plurality of print heads. The printing station is configured to receive a destination substrate and at least one of the print heads, and to transfer the nanostructures from the received print head(s) to a plurality of regions of a surface of the destination substrate. The cleaning station is configured to receive the plurality of print heads from the printing station, and to clean the received plurality of print heads.
- In aspects, the printing station may be configured to perform the transfer of the nanostructures as a “wet” transfer or a “dry” transfer.
- In a further aspect, the nanowire transfer system may include an inspection station. The inspection station is configured to perform an inspection of the transfer surfaces of the plurality of print heads, and to select at least one print head of the plurality of print heads based on the inspection. The printing station may be configured to transfer the nanostructures from the selected at least one print head.
- In a still further aspect, the nanowire transfer system may include a repair station. The repair station is configured to perform an inspection of the nanostructures transferred to the plurality of regions of the surface of the destination substrate. If the repair station determines an arrangement of nanostructures in need of repair, the repair station is configured to repair the arrangement of nanostructures.
- In a still further aspect, the nanowire transfer system may include a print head drying station and a repair station. The print head drying station is configured to dry the nanostructures associated with the transfer surfaces of the plurality of print heads. The repair station is configured to perform an inspection of the dried transfer surfaces. If the repair station determines an arrangement of nanostructures associated with a transfer surface in need of repair, the repair station is configured to repair the determined arrangement of nanostructures. The print head drying station enables a dry transfer of the nanowires to be performed at the printing station.
- In a still further aspect, the nanowire transfer system may include a panel drying station. The panel drying station is configured to dry the nanostructures transferred to the plurality of regions of the surface of the destination substrate (e.g., if a wet transfer of the nanowires is performed by the printing station)
- Further embodiments, features, and advantages of the invention, as well as the structure and operation of the various embodiments of the invention are described in detail below with reference to accompanying drawings.
- The invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. The drawing in which an element first appears is indicated by the left-most digit in the corresponding reference number.
-
FIG. 1A is a diagram of a single crystal semiconductor nanowire. -
FIG. 1B is a diagram of a nanowire doped according to a core-shell (CS) structure. -
FIG. 1C is a diagram of a nanowire doped according to a core-shell-shell (CSS) structure. -
FIG. 2 shows a block diagram of a nanostructure transfer system, according to an example embodiment of the present invention. -
FIG. 3 shows a flowchart providing example steps for transferring nanostructures, according to example embodiments of the present invention. -
FIGS. 4-6 show block diagram views of the nanostructure transfer system ofFIG. 2 during different phases of operation, according to example embodiments of the present invention. -
FIG. 7 shows a nanowire print head, according to an embodiment of the present invention. -
FIGS. 8 and 9 show portions of example nanowire transfer systems, according to embodiments of the present invention. -
FIG. 10 shows a block diagram of a nanowire solution flow system, according to an example embodiment of the present invention. -
FIGS. 11 and 12 show views of an example print head having cantilevers, according to an example embodiment of the present invention. -
FIG. 13 shows an electric field generation system for a transfer system, according to an example embodiment of the present invention. -
FIG. 14 shows a transfer system, where an electric field is generated to associate nanowires with an electrode pair, according to an example embodiment of the present invention. -
FIG. 15 shows the transfer system ofFIG. 14 , with an associated nanowire, according to an example embodiment of the present invention. -
FIG. 16 shows forces acting upon a nanowire in a transfer system, according to an example embodiment of the present invention. -
FIGS. 17 and 18 show plan and side views of the print head ofFIG. 11 , with associated nanowires, according to example embodiment of the present invention. -
FIG. 19 shows an alignment system, according to an example embodiment of the present invention. -
FIG. 20 shows a print head having been aligned with a surface region by alignment mechanism, according to an embodiment of the present invention. -
FIGS. 21 and 22 show the print head in solution ofFIG. 9 being aligned with a destination surface, according to an example embodiment of the present invention. -
FIG. 23 shows an example print head with spacers, according to an embodiment of the present invention. -
FIGS. 24 and 25 show side views of the print head ofFIG. 11 in alignment with a destination surface, according to an example embodiment of the present invention. -
FIG. 26 shows a nanowire transfer system with a vacuum source, according to an example embodiment of the present invention. -
FIG. 27 shows an example plan view of a transfer surface with vacuum ports, according to an example embodiment of the present invention. -
FIGS. 28 , 29, 31A, 31B, 32, and 33 show example nanowire transfer systems configured to deposit nanowires, according to example embodiments of the present invention. -
FIG. 30 shows a plot of potential energy levels for a transfer surface having an oxide layer and for a destination surface having a nitride layer, according to an embodiment of the present invention. -
FIG. 31C shows a plot of the inertial motion of nanowires in isopropyl alcohol, according to an embodiment of the present invention. -
FIG. 34 shows a nanowire transfer system that includes a print head having two electrode pairs, according to an embodiment of the present invention. -
FIG. 35 shows a flowchart providing example steps for transferring electrical devices, according to example embodiments of the present invention. -
FIGS. 36-39 show block diagram views of an electrical device transfer system during different phases of operation, according to example embodiments of the present invention. -
FIG. 40 shows a cross-sectional view of a nanostructure transfer system, according to an example embodiment of the present invention. -
FIG. 41 shows a view of a transfer surface of the print head shown inFIG. 40 , according to an example embodiment of the present invention. -
FIG. 42 shows a cross-sectional view of a nanostructure transfer system, according to an example embodiment of the present invention. -
FIG. 43 show a view of a transfer surface of the print head shown inFIG. 42 , according to an example embodiment of the present invention. -
FIG. 44 shows a flowchart for transferring nanostructures to a destination surface, according to an example embodiment of the present invention. -
FIG. 45 shows a cross-sectional view of the nanostructure transfer system ofFIG. 42 , illustrating a nanowire being deposited to the destination surface, according to an example embodiment of the present invention. -
FIG. 46 shows a nanostructure transfer system, according to an embodiment of the present invention. -
FIG. 47 shows a cross-sectional view of a print head, according to an example embodiment of the present invention. -
FIG. 48 shows a block diagram of a nanostructure printing system, according to an example embodiment of the present invention. -
FIG. 49 shows a flowchart for a print head pipeline portion of the system ofFIG. 48 , according to an example embodiment of the present invention. -
FIG. 50 shows a flowchart for a panel pipeline portion of the system ofFIG. 48 , according to an example embodiment of the present invention. -
FIGS. 51 and 52 show views of an example association station, according to embodiments of the present invention. -
FIG. 53 shows an example inspection station, according to an embodiment of the present invention. -
FIGS. 54-56 show views of a printing station during a nanostructure transfer process, according to an example embodiment of the present invention. -
FIG. 57 shows an example cleaning station, according to an embodiment of the present invention -
FIGS. 58 and 59 show views of a panel repair station, according to example embodiments of the present invention. -
FIG. 60 shows an example panel drying station, according to an embodiment of the present invention. -
FIG. 61 shows a block diagram of a nanostructure printing system, according to an example embodiment of the present invention. -
FIG. 62 shows a flowchart for a print head pipeline portion of the system ofFIG. 61 , according to an example embodiment of the present invention. -
FIG. 63 shows a flowchart for a panel pipeline portion of the system ofFIG. 61 , according to an example embodiment of the present invention. -
FIGS. 64 , 66, 68, and 70 show views of a nanostructure transfer system during a nanostructure transfer process, according to example embodiments of the present invention. -
FIGS. 65 , 67, 69, and 71 show respective images captured using a microscope of the nanostructure transfer system shown inFIGS. 64 , 66, 68, and 70, according to example embodiments of the present invention. - The present invention will now be described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.
- It should be appreciated that the particular implementations shown and described herein are examples of the invention and are not intended to otherwise limit the scope of the present invention in any way. Indeed, for the sake of brevity, conventional electronics, manufacturing, semiconductor devices, and nanowire (NW), nanorod, nanotube, and nanoribbon technologies and other functional aspects of the systems (and components of the individual operating components of the systems) may not be described in detail herein. Furthermore, for purposes of brevity, the invention is frequently described herein as pertaining to nanowires.
- It should be appreciated that although nanowires are frequently referred to, the techniques described herein are also applicable to other nanostructures, such as nanorods, nanotubes, nanotetrapods, nanoribbons and/or combinations thereof. It should further be appreciated that the manufacturing techniques described herein could be used to create any semiconductor device type, and other electronic component types. Further, the techniques would be suitable for application in electrical systems, optical systems, consumer electronics, industrial electronics, wireless systems, space applications, or any other application.
- As used herein, an “aspect ratio” is the length of a first axis of a nanostructure divided by the average of the lengths of the second and third axes of the nanostructure, where the second and third axes are the two axes whose lengths are most nearly equal to each other. For example, the aspect ratio for a perfect rod would be the length of its long axis divided by the diameter of a cross-section perpendicular to (normal to) the long axis.
- The term “heterostructure” when used with reference to nanostructures refers to nanostructures characterized by at least two different and/or distinguishable material types. Typically, one region of the nanostructure comprises a first material type, while a second region of the nanostructure comprises a second material type. In certain embodiments, the nanostructure comprises a core of a first material and at least one shell of a second (or third etc.) material, where the different material types are distributed radially about the long axis of a nanowire, a long axis of an arm of a branched nanocrystal, or the center of a nanocrystal, for example. A shell need not completely cover the adjacent materials to be considered a shell or for the nanostructure to be considered a heterostructure. For example, a nanocrystal characterized by a core of one material covered with small islands of a second material is a heterostructure. In other embodiments, the different material types are distributed at different locations within the nanostructure. For example, material types can be distributed along the major (long) axis of a nanowire or along a long axis of arm of a branched nanocrystal. Different regions within a heterostructure can comprise entirely different materials, or the different regions can comprise a base material.
- As used herein, a “nanostructure” is a structure having at least one region or characteristic dimension with a dimension of less than about 500 nm, e.g., less than about 200 nm, less than about 100 nm, less than about 50 nm, or even less than about 20 nm. Typically, the region or characteristic dimension will be along the smallest axis of the structure. Examples of such structures include nanowires, nanorods, nanotubes, branched nanocrystals, nanotetrapods, tripods, bipods, nanocrystals, nanodots, quantum dots, nanoparticles, branched tetrapods (e.g., inorganic dendrimers), and the like. Nanostructures can be substantially homogeneous in material properties, or in certain embodiments can be heterogeneous (e.g., heterostructures). Nanostructures can be, for example, substantially crystalline, substantially monocrystalline, polycrystalline, amorphous, or a combination thereof. In one aspect, each of the three dimensions of the nanostructure has a dimension of less than about 500 nm, for example, less than about 200 nm, less than about 100 nm, less than about 50 nm, or even less than about 20 nm.
- As used herein, the term “nanowire” generally refers to any elongated conductive or semiconductive material (or other material described herein) that includes at least one cross-sectional dimension that is less than 500 nm, and preferably, equal to or less than less than about 100 nm, and has an aspect ratio (length:width) of greater than 10, preferably greater than 50, and more preferably, greater than 100. Exemplary nanowires for use in the practice of the methods and systems of the present invention are on the order of 10's of microns long (e.g., about 10, 20, 30, 40, 50 microns, etc.) and about 100 nm in diameter.
- The nanowires of this invention can be substantially homogeneous in material properties, or in certain embodiments can be heterogeneous (e.g., nanowire heterostructures). The nanowires can be fabricated from essentially any convenient material or materials, and can be, e.g., substantially crystalline, substantially monocrystalline, polycrystalline, or amorphous. Nanowires can have a variable diameter or can have a substantially uniform diameter, that is, a diameter that shows a variance less than about 20% (e.g., less than about 10%, less than about 5%, or less than about 1%) over the region of greatest variability and over a linear dimension of at least 5 nm (e.g., at least 10 nm, at least 20 nm, or at least 50 nm). Typically the diameter is evaluated away from the ends of the nanowire (e.g., over the central 20%, 40%, 50%, or 80% of the nanowire). A nanowire can be straight or can be e.g., curved or bent, over the entire length of its long axis or a portion thereof. In certain embodiments, a nanowire or a portion thereof can exhibit two- or three-dimensional quantum confinement. Nanowires according to this invention can expressly exclude carbon nanotubes, and, in certain embodiments, exclude “whiskers” or “nanowhiskers”, particularly whiskers having a diameter greater than 100 nm, or greater than about 200 nm.
- Examples of such nanowires include semiconductor nanowires as described in Published International Patent Application Nos. WO 02/17362, WO 02/48701, and WO 01/03208, carbon nanotubes, and other elongated conductive or semiconductive structures of like dimensions, which are incorporated herein by reference.
- As used herein, the term “nanorod” generally refers to any elongated conductive or semiconductive material (or other material described herein) similar to a nanowire, but having an aspect ratio (length:width) less than that of a nanowire. Note that two or more nanorods can be coupled together along their longitudinal axis so that the coupled nanorods span all the way between electrodes. Alternatively, two or more nanorods can be substantially aligned along their longitudinal axis, but not coupled together, such that a small gap exists between the ends of the two or more nanorods. In this case, electrons can flow from one nanorod to another by hopping from one nanorod to another to traverse the small gap. The two or more nanorods can be substantially aligned, such that they form a path by which electrons can travel between electrodes.
- A wide range of types of materials for nanowires, nanorods, nanotubes and nanoribbons can be used, including semiconductor material selected from, e.g., Si, Ge, Sn, Se, Te, B, C (including diamond), P, B—C, B—P(BP6), B—Si, Si—C, Si—Ge, Si—Sn and Ge—Sn, SiC, BN, BP, BAs, MN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, Cul, AgF, AgCl, AgBr, Agl, BeSiN2, CaCN2, ZnGeP2, CdSnAs2, ZnSnSb2, CuGeP3, CuSi2P3, (Cu, Ag)(Al, Ga, In, Tl, Fe)(S, Se, Te)2, Si3N4, Ge3N4, Al2O3, (Al, Ga, In)2 (S, Se, Te)3, Al2CO, and an appropriate combination of two or more such semiconductors.
- The nanowires can also be formed from other materials such as metals such as gold, nickel, palladium, iradium, cobalt, chromium, aluminum, titanium, tin and the like, metal alloys, polymers, conductive polymers, ceramics, and/or combinations thereof. Other now known or later developed conducting or semiconductor materials can be employed.
- In certain aspects, the semiconductor may comprise a dopant from a group consisting of: a p-type dopant from Group III of the periodic table; an n-type dopant from Group V of the periodic table; a p-type dopant selected from a group consisting of: B, Al and In; an n-type dopant selected from a group consisting of: P, As and Sb; a p-type dopant from Group II of the periodic table; a p-type dopant selected from a group consisting of: Mg, Zn, Cd and Hg; a p-type dopant from Group IV of the periodic table; a p-type dopant selected from a group consisting of: C and Si; or an n-type dopant selected from a group consisting of: Si, Ge, Sn, S, Se and Te. Other now known or later developed dopant materials can be employed.
- Additionally, the nanowires or nanoribbons can include carbon nanotubes, or nanotubes formed of conductive or semiconductive organic polymer materials, (e.g., pentacene, and transition metal oxides).
- Hence, although the term “nanowire” is referred to throughout the description herein for illustrative purposes, it is intended that the description herein also encompass the use of nanotubes (e.g., nanowire-like structures having a hollow tube formed axially therethrough). Nanotubes can be formed in combinations/thin films of nanotubes as is described herein for nanowires, alone or in combination with nanowires, to provide the properties and advantages described herein.
- It should be understood that the spatial descriptions (e.g., “above”, “below”, “up”, “down”, “top”, “bottom,” “vertical,” “horizontal,” etc.) made herein are for purposes of illustration only, and that devices of the present invention can be spatially arranged in any orientation or manner.
-
FIG. 1A illustrates a single crystal semiconductor nanowire core (hereafter “nanowire”) 100.FIG. 1A shows ananowire 100 that is a uniformly doped single crystal nanowire. Such single crystal nanowires can be doped into either p- or n-type semiconductors in a fairly controlled way. Doped nanowires such asnanowire 100 exhibit improved electronic properties. For instance, such nanowires can be doped to have carrier mobility levels comparable to bulk single crystal materials. -
FIG. 1B shows ananowire 110 having a core-shell structure, with ashell 112 around the nanowire core. Surface scattering can be reduced by forming an outer layer of the nanowire, such as by the passivation annealing of nanowires, and/or the use of core-shell structures with nanowires. An insulating layer, such as an oxide coating, can be formed on a nanowire as the shell layer. Furthermore, for example, for silicon nanowires having an oxide coating, the annealing of the nanowires in hydrogen (H2) can greatly reduce surface states. In embodiments, the core-shell combination is configured to satisfy the following constraints: (1) the shell energy level should be higher than the core energy level, so that the conducting carriers are confined in the core; and (2) the core and shell materials should have good lattice match, with few surface states and surface charges. Other more complex NW core-shell structures may also be used to include a core of single crystal semiconductor, an inner-shell of gate dielectric, and an outer-shell of conformal gate, such as shown inFIG. 1C .FIG. 1C shows ananowire 114 having a core-shell-shell structure, with aninner shell 112 andouter shell 116 around the nanowire core. This can be realized by depositing a layer of TaAlN, WN, or highly-doped amorphous silicon around the Si/SiOx core-shell structure (described above) as the outer-gate shell, for example. - The valence band of the insulating shell can be lower than the valence band of the core for p-type doped wires, or the conduction band of the shell can be higher than the core for n-type doped wires. Generally, the core nanostructure can be made from any metallic or semiconductor material, and the one or more shell layers deposited on the core can be made from the same or a different material. For example, the first core material can comprise a first semiconductor selected from the group consisting of: a Group II-VI semiconductor, a Group III-V semiconductor, a Group IV semiconductor, and an alloy thereof. Similarly, the second material of the one or more shell layers can comprise an oxide layer, a second semiconductor, the same as or different from the first semiconductor, e.g., selected from the group consisting of: a Group II-VI semiconductor, a Group III-V semiconductor, a Group IV semiconductor, and an alloy thereof. Example semiconductors include, but are not limited to, CdSe, CdTe, InP, InAs, CdS, ZnS, ZnSe, ZnTe, HgTe, GaN, GaP, GaAs, GaSb, InSb, Si, Ge, AlAs, AlSb, PbSe, PbS, and PbTe. As noted above, metallic materials such as gold, chromium, tin, nickel, aluminum etc. and alloys thereof can be used as the core material, and the metallic core can be overcoated with an appropriate shell material such as silicon dioxide or other insulating materials, which may in turn may be coated with one or more additional shell layers of the materials described above to form more complex core-shell-shell nanowire structures.
- Nanostructures can be fabricated and their size can be controlled by any of a number of convenient methods that can be adapted to different materials. For example, synthesis of nanocrystals of various composition is described in, e.g., Peng et al. (2000) “Shape Control of CdSe Nanocrystals” Nature 404, 59-61; Puntes et al. (2001) “Colloidal nanocrystal shape and size control: The case of cobalt” Science 291, 2115-2117; U.S. Pat. No. 6,306,736 to Alivisatos et al. (Oct. 23, 2001) entitled “Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process”; U.S. Pat. No. 6,225,198 to Alivisatos et al. (May 1, 2001) entitled “Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process”; U.S. Pat. No. 5,505,928 to Alivisatos et al. (Apr. 9, 1996) entitled “Preparation of III-V semiconductor nanocrystals”; U.S. Pat. No. 5,751,018 to Alivisatos et al. (May 12, 1998) entitled “Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers”; U.S. Pat. No. 6,048,616 to Gallagher et al. (Apr. 11, 2000) entitled “Encapsulated quantum sized doped semiconductor particles and method of manufacturing same”; and U.S. Pat. No. 5,990,479 to Weiss et al. (Nov. 23, 1999) entitled “Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes.”
- Growth of nanowires having various aspect ratios, including nanowires with controlled diameters, is described in, e.g., Gudiksen et al (2000) “Diameter-selective synthesis of semiconductor nanowires” J. Am. Chem. Soc. 122, 8801-8802; Cui et al. (2001) “Diameter-controlled synthesis of single-crystal silicon nanowires” Appl. Phys. Lett. 78, 2214-2216; Gudiksen et al. (2001) “Synthetic control of the diameter and length of single crystal semiconductor nanowires” J. Phys. Chem. B 105, 4062-4064; Morales et al. (1998) “A laser ablation method for the synthesis of crystalline semiconductor nanowires” Science 279, 208-211; Duan et al. (2000) “General synthesis of compound semiconductor nanowires” Adv. Mater. 12, 298-302; Cui et al. (2000) “Doping and electrical transport in silicon nanowires” J. Phys. Chem. B 104, 5213-5216; Peng et al. (2000) “Shape control of CdSe nanocrystals” Nature 404, 59-61; Puntes et al. (2001) “Colloidal nanocrystal shape and size control: The case of cobalt” Science 291, 2115-2117; U.S. Pat. No. 6,306,736 to Alivisatos et al. (Oct. 23, 2001) entitled “Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process”; U.S. Pat. No. 6,225,198 to Alivisatos et al. (May 1, 2001) entitled “Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process”; U.S. Pat. No. 6,036,774 to Lieber et al. (Mar. 14, 2000) entitled “Method of producing metal oxide nanorods”; U.S. Pat. No. 5,897,945 to Lieber et al. (Apr. 27, 1999) entitled “Metal oxide nanorods”; U.S. Pat. No. 5,997,832 to Lieber et al. (Dec. 7, 1999) “Preparation of carbide nanorods”; Urbau et al. (2002) “Synthesis of single-crystalline perovskite nanowires composed of barium titanate and strontium titanate” J. Am. Chem. Soc., 124, 1186; and Yun et al. (2002) “Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy” Nanoletters 2, 447.
- Growth of branched nanowires (e.g., nanotetrapods, tripods, bipods, and branched tetrapods) is described in, e.g., Jun et al. (2001) “Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system” J. Am. Chem. Soc. 123, 5150-5151; and Manna et al. (2000) “Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals” J. Am. Chem. Soc. 122, 12700-12706.
- Synthesis of nanoparticles is described in, e.g., U.S. Pat. No. 5,690,807 to Clark Jr. et al. (Nov. 25, 1997) entitled “Method for producing semiconductor particles”; U.S. Pat. No. 6,136,156 to El-Shall, et al. (Oct. 24, 2000) entitled “Nanoparticles of silicon oxide alloys”; U.S. Pat. No. 6,413,489 to Ying et al. (Jul. 2, 2002) entitled “Synthesis of nanometer-sized particles by reverse micelle mediated techniques”; and Liu et al. (2001) “Sol-Gel Synthesis of Free-Standing Ferroelectric Lead Zirconate Titanate Nanoparticles” J. Am. Chem. Soc. 123, 4344. Synthesis of nanoparticles is also described in the above citations for growth of nanocrystals, nanowires, and branched nanowires, where the resulting nanostructures have an aspect ratio less than about 1.5.
- Synthesis of core-shell nanostructure heterostructures, namely nanocrystal and nanowire (e.g., nanorod) core-shell heterostructures, are described in, e.g., Peng et al. (1997) “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility” J. Am. Chem. Soc. 119, 7019-7029; Dabbousi et al. (1997) “(CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrysallites” J. Phys. Chem. B 101, 9463-9475; Manna et al. (2002) “Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods” J. Am. Chem. Soc. 124, 7136-7145; and Cao et al. (2000) “Growth and properties of semiconductor core/shell nanocrystals with InAs cores” J. Am. Chem. Soc. 122, 9692-9702. Similar approaches can be applied to growth of other core-shell nanostructures.
- Growth of nanowire heterostructures in which the different materials are distributed at different locations along the long axis of the nanowire is described in, e.g., Gudiksen et al. (2002) “Growth of nanowire superlattice structures for nanoscale photonics and electronics” Nature 415, 617-620; Bjork et al. (2002) “One-dimensional steeplechase for electrons realized” Nano Letters 2, 86-90; Wu et al. (2002) “Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires” Nano Letters 2, 83-86; and U.S. patent application 60/370,095 (Apr. 2, 2002) to Empedocles entitled “Nanowire heterostructures for encoding information.” Similar approaches can be applied to growth of other heterostructures.
- Embodiments for applying nanostructures such as nanowires to surfaces are described in this section. In embodiments, one or more nanowires are provided proximate to an electrode pair on a transfer surface. The electrode pair is energized, whereby the nanowires become associated with the electrode pair. Subsequently, the nanowires are deposited from the electrode pairs to a destination surface.
- The term “positioning” as used throughout refers to the alignment and association, as well as the deposition or coupling, of nanowires onto a surface, for example, an electrode pair. Positioning includes nanowires that are both aligned and non-aligned. The term “aligned” nanowires as used throughout refers to nanowires that are substantially parallel or oriented in the same or substantially same direction of one another (i.e. the nanowires are aligned in the same direction, or within about 45° of one another). The nanowires of the present invention are aligned such that they are all substantially parallel to one another and substantially perpendicular to each electrode of an electrode pair (e.g., aligned parallel to an axis through both electrodes) (though in additional embodiments, they can be aligned parallel to an electrode). Positioning of nanowires onto an electrode pair includes positioning the nanowires such that the nanowires span the electrode pair. In embodiments in which the nanowires are longer than the distance separating two electrodes of an electrode pair, the nanowires may extend beyond the electrodes.
- Methods for providing nanowires for use in the methods and systems of the present invention are well known in the art. In an embodiment, the nanowires are provided in a suspension, which is a plurality of nanowires suspended in a liquid. In an embodiment, the liquid is an aqueous media, such as water or a solution of water, ions (including salts), and other components, for example surfactants. Additional examples of liquids suitable for preparing nanowire suspensions include, but are not limited, organic solvents, inorganic solvents, alcohols (e.g., isopropyl alcohol) (IPA), etc.
- As used herein the phrase “proximate to an electrode pair” as it relates to providing the nanowires means that the nanowires are provided or positioned such that they can be acted upon by an electric field generated at the electrode pair. This is a distance from the electrode pair such that they can be associated with the electrodes. In example embodiments, the nanowires are provided such that they are at distance of less than about 10 mm from the electrode pairs. For example, the nanowires may be provided such that they are less than about 100 μm, less than about 50 μm, or less than about 1 μm from the electrode pair.
- In embodiments, the present invention provides a system or apparatus for nanostructure alignment and deposition. For example,
FIG. 2 shows ananostructure transfer system 200, according to an example embodiment of the present invention. As shown inFIG. 2 ,transfer system 200 includes ananostructure print head 202, nanostructure(s) 204, and adestination substrate 212.Nanostructure print head 202 is a body configured to receive nanostructure(s) 204, and to transfer nanostructure(s) 204 tosubstrate 212. As shown inFIG. 2 ,nanostructure print head 202 has atransfer surface 206 and includes anelectrode pair 208.Substrate 212 has asurface 210, referred to as a “destination surface” for receiving nanostructure(s) 204.Electrode pair 208 is located ontransfer surface 206. Nanostructure(s) 204 are received byelectrode pair 208 oftransfer surface 206, for transfer todestination surface 210. Nanostructure(s) 204 can include any of the nanostructure types mentioned elsewhere herein, including one or more nanowires. Further description of the components oftransfer system 200 is provided further below. -
FIG. 3 shows aflowchart 300 providing example steps for transferring nanostructures, according to example embodiments of the present invention. For example,nanostructure print head 202 ofFIG. 2 can be used to transfer nanostructure(s) 204 according toflowchart 300. For illustrative purposes,flowchart 300 is described as follows with respect to FIGS. 2 and 4-6, which show various block diagrams of embodiments of the present invention. Other structural and operational embodiments will be apparent to persons skilled in the relevant art(s) based on the following discussion. Not all steps offlowchart 300 are necessarily performed in all embodiments. -
Flowchart 300 begins withstep 302. Instep 302, at least one nanostructure is provided proximate to an electrode pair. For example, as shown inFIG. 2 , nanostructure(s) 204 are provided proximate toelectrode pair 208. For instance, nanostructure(s) 204 may be present in a solution which flows in contact withelectrode pair 208, to enable nanostructure(s) 204 to be positioned proximate toelectrode pair 208. Alternatively, nanostructure(s) 204 may be provided proximate toelectrode pair 208 in other ways. - In
step 304, an electric field is generated by electrodes of the electrode pair to associate one or more nanostructures with the electrodes. For instance, an electrical potential may be coupled toelectrode pair 208 to generate the electric field. The electric field generated byelectrode pair 208 may be used to associate nanostructure(s) 204 withelectrode pair 208 that are proximately located toelectrode pair 208. As shown inFIG. 4 ,nanostructures 204 are associated withelectrode pair 208. In an embodiment, associated nanostructure(s) 204 are held suspended at a distance fromtransfer surface 206 by the electric field. Example embodiments for generating an electric field by an electrode pair to associate nanostructures are described in further detail below. - In
step 306, the electrode pair is aligned with a region of the destination surface. For example, as shown inFIG. 5 ,electrode pair 208 is aligned withdestination surface 210, bynanostructure print head 202, which is moved towards destination surface 210 (e.g., in a direction shown by a dotted arrow inFIG. 5 ). In an embodiment,electrode pair 208 is aligned in contact withdestination surface 210. In another embodiment,electrode pair 208 is aligned adjacent todestination surface 210, a short distance away fromdestination surface 210.Electrode pair 208 may be aligned with any region ofsurface 210, including a generally open region (i.e., no contacts onsurface 210 are required), a region having electrical contacts corresponding toelectrode pair 208, or other region.Electrode pair 208 is aligned with a region ofsurface 210 on which nanostructure(s) 204 are to be positioned. - In
step 308, the one or more nanostructures are deposited from the electrode pair to the region. Nanostructure(s) 204 may be deposited ondestination surface 210 in a variety of ways. Various example embodiments for depositing nanostructures on a surface are described in detail below. - In
step 310, the electrode pair is removed from alignment with the region of the surface. For example, as shown inFIG. 6 ,nanostructure print head 202 is moved away from destination surface 210 (e.g., in a direction shown by dotted arrow inFIG. 6 ). Nanostructure(s) 204 remain deposited onsurface 210.Nanostructure print head 202 can subsequently be used to repeat performingflowchart 300 for the same region ofsurface 210, a different region ofsurface 210, and/or a surface of a structure other thansubstrate 212, to deposit further nanostructures. - Detailed example embodiments for
nanostructure transfer system 200 and for performingflowchart 300 are described as follows. The embodiments are described below with respect to nanowires. These embodiments are provided for illustrative purposes, and are not intended to be limiting. It will be understood by persons skilled in the relevant art(s) that these embodiments may be used to transfer other types of nanostructures than just nanowires. Furthermore, these various embodiments may be adapted and/or combined in a variety of ways, as would be known to persons skilled in the relevant art(s) from the teachings herein. -
FIG. 7 shows ananowire print head 702, which is an example ofnanostructure print head 202 shown inFIG. 2 , according to an embodiment of the present invention. As shown inFIG. 7 ,nanowire print head 702 includeselectrode pair 208 ontransfer surface 206.Transfer surface 206 may be a surface of a substrate or other structure ofprint head 702 onto whichelectrode pair 208 is formed (e.g., patterned, plated, etc.).Electrode pair 208 includes afirst electrode 704 and asecond electrode 706.Transfer surface 206 may be formed of any suitable material, such as a semiconductor wafer or dielectric material. Example suitable materials include, but are not limited to Si, SiO2, GaAs, InP, and other semiconductor materials described herein. Exemplary materials for use as first andsecond electrodes second electrodes electrodes 704 and 706). Such additional electrodes may be configured to modify an attractive or repulsive force (e.g., an electrostatic force) between the nanowires associated withprint head 702 andtransfer surface 206 and/or a destination surface. - Nanowires may be provided proximate to first and
second electrodes flowchart 300. For example,FIG. 8 shows a portion of ananowire transfer system 800, according to an embodiment of the present invention. As shown inFIG. 8 ,transfer system 800 includesprint head 702 and asolution container 802.Container 802 contains asolution 804 that includes a plurality ofnanowires 806, which may be referred to as a “nanowire suspension.” In the embodiment ofFIG. 8 ,transfer surface 206 ofprint head 702 is temporarily moved (e.g., “dipped”) intosolution 804 to enablenanowires 806 to become proximate toelectrode pair 208, according to step 302 offlowchart 300. -
FIG. 9 shows a portion of ananowire transfer system 900, according to an alternative embodiment of the present invention. As shown inFIG. 9 ,transfer system 900 includesprint head 702 andsolution container 802.Container 802 containssolution 804 that includes plurality ofnanowires 806. In the embodiment ofFIG. 9 , transfer surface 206 (and the rest of print head 702) resides insolution 804, to enablenanowires 806 to become proximate toelectrode pair 208, according to step 302 offlowchart 300. - Note that although
electrode pair 208 is shown inFIG. 9 as facing upward insolution 804, and is shown inFIG. 8 as facing downward,print head 702 may be oriented in other ways so thatelectrode pair 208 may face in other directions, including upwards, downwards or sideways. -
Nanowires 806 may be any suitable nanowire type described herein or otherwise known. For example,nanowires 806 may have a semiconductor core and one or more shell layers disposed about the core (i.e., the shell layers surround the core) (such as shown inFIGS. 1B and 1C ). Examples semiconductor materials and shell materials include those described elsewhere herein. In an example embodiment, the core includes silicon (Si) and at least one of the shell layers, such as the outermost shell layer (i.e., the shell layer that is in contact with the external environment) includes a metal, such as TaAlN or WN. Additional examples of metal shell layers include those described elsewhere herein. Further exemplary nanowires include core:shell (CS) nanowires (e.g., SiO2), core:shell:shell (CSS) nanowires (e.g., SiO2:metal), and core:no oxide shell:metal shell nanowires (CNOS) (e.g., Si:metal). - In an embodiment,
container 802 receives a flow ofsolution 804 containingnanowires 806. For instance,FIG. 10 shows a block diagram of a nanowiresolution flow system 1000, according to an example embodiment of the present invention. As shown inFIG. 10 ,flow system 1000 includes a nanowiresuspension source reservoir 1002,container 802, and a nanowiresuspension collection chamber 1004. Nanowiresuspension source reservoir 1002 is a tank or other type of reservoir that contains a supply ofsolution 804.Nanowires 806 may be introduced intosolution 804 inreservoir 1002 to form the suspension, if desired.Solution 804 may be any suitable type of liquid for containingnanowires 806, including water, isopropyl alcohol (IPA), other liquids described herein, etc. - As shown in
FIG. 10 , nanowiresuspension source reservoir 1002 outputs ananowire suspension flow 1006 that is received bycontainer 802.Nanowire suspension flow 1006 may be supplied byreservoir 1002 tocontainer 802 by one or more flow channels, pipes, valves, etc. After enabling the suspension to interact withprint head 702,container 802 outputs a residualnanowire suspension flow 1008 that is received by nanowiresuspension collection chamber 1004. Nanowiresuspension collection chamber 1004 is a tank or other type of reservoir. The residual nanowire suspension flow received inchamber 1004 may be filtered and/or supplied back tosource reservoir 1002 for recirculation throughsystem 1000, may have residual nanowires recovered therefrom, may be discarded, etc. - Thus, in the embodiments described above, one or
more nanowires 806 are provided by providing a suspension of nanowires (e.g., a nanowire “ink”) toelectrode pair 208. As represented inFIG. 10 , a nanowire suspension is provided by flowing a solution containing nanowires against an electrode pair on a transfer surface. Asnanowires 806 are provided, the suspension flow helps to align the nanowires in the direction of the flow. - In an embodiment,
container 802 can be stirred, vibrated, or otherwise moved to maintain a homogeneous suspension ofnanowires 806. In another embodiment, where a stratified suspension of nanowires is desired, gravity, electric fields and/or an overflow by a nanowire-free solvent of similar or lower density can be used to create stratification. A stratified suspension of nanowires may be used in a variety of ways. For example,print head 702 may be positioned in a high nanowire-density region of the stratified suspension for deposition of nanowires, and subsequently positioned in a lower density, “clean solvent” region for removal of excess nanowires. - Additional methods for providing nanowires to an electrode pair are well known in the art, and include, but are not limited to, spray coaters, spray painting, meniscus coater, dip-coater, bar-coater, gravure coater, Meyer rod, doctor blade, extrusion, micro-gravure, web coaters, doctor blade coaters, in-line or ink jet printers.
- As described above, a variety of configurations for
electrode pair 208 may be used in embodiments. For example,electrode pair 208 may be fixed position electrodes. In another embodiment,electrode pair 208 may be configured to enable compliance with a destination surface to which they may be applied. For instance,FIG. 11 shows a plan view of anexample print head 1100, according to an embodiment of the present invention.Print head 1100 has atransfer surface 1102 having first andsecond cantilevers electrode pair 208.FIG. 12 shows a side cross-sectional view ofprint head 1100. As shown inFIGS. 12 and 13 , first andsecond cantilevers First cantilever 1104 has a raisedend portion 1112 on its movable end, andsecond cantilever 1106 has a raisedend portion 1114 on its movable end.First electrode 704 is formed on raisedend portion 1112 offirst cantilever 1104, andsecond electrode 706 is formed on raisedend portion 1114 ofsecond cantilever 1106. A first electrical conductor 1108 (e.g., a metal trace) is formed onfirst cantilever 1104 to electrically couplefirst electrode 704 to an external circuit, and a second electrical conductor 1110 (e.g., a metal trace) is formed onsecond cantilever 1106 to electrically couplesecond electrode 706 to an external circuit. For example, first and secondelectrical conductors 1110 may electrically couple first andsecond electrodes - First and
second cantilevers transfer surface 1102, but are flexible in a direction normal to the plane of transfer surface 1102 (shown as a Z-axis inFIG. 12 ). Thus, when first andsecond electrodes second cantilevers gap 1202 below their free ends, to provide compliance to protect first andsecond electrodes -
Cantilevers cantilevers - According to step 304 of flowchart 300 (
FIG. 3 ), an electric field is generated by electrodes of an electrode pair to associate nanostructures with the electrodes.FIG. 13 shows ananowire transfer system 1300 that can be used to performstep 304 of flowchart 300 (FIG. 3 ), according to an example embodiment of the present invention. As shown inFIG. 13 ,system 1300 includes avoltage source 1302.Voltage source 1302 is a signal/waveform generator coupled toelectrode pair 208 byelectrical signal 1304.Voltage source 1302 generateselectrical signal 1304 as a direct current (DC) and/or alternating current (AC) signal to causeelectrode pair 208 to generate an electric field. For example,FIG. 14 showstransfer system 800 ofFIG. 8 , where an electric field, represented between first andsecond electrodes arrow 1402, is generated by application of a voltage toelectrode pair 208.Electric field 1402 is generated betweenelectrodes electrode pair 208 by energizing electrode pair withelectrical signal 1304 to associate at least some ofnanowires 806 withelectrode pair 208. It should be noted thatelectric field 1402 can be generated before, after, or during the period of nanowire producing/introduction intocontainer 802. As used herein, the terms “electric field” and “electromagnetic field” are used interchangeably and refer to the force exerted on charged objects in the vicinity of an electric charge. As used herein, “energizing the electrode pair” refers to any suitable mechanism or system for providing an electric current to the electrodes such that an electric field is generated between electrodes of an electrode pair. - Energizing
electrode pair 208 to generateelectric field 1402 can be performed during part or all of a nanowire alignment and deposition process. For example,electrode pair 208 may remain energized duringstep 306 of flowchart 300 (alignment of print head) and during a portion or all ofstep 308 of flowchart 300 (deposition of nanowires). In an example embodiment,electric field 1402 is generated by coupling (e.g., using wires or other connection)first electrode 704 to a positive electrode terminal ofvoltage source 1302, and couplingsecond electrode 706 to a negative electrode terminal ofvoltage source 1302. When an electric current is switched on and supplied byelectrical signal 1304, the negative and positive terminals transfer charge toelectrodes transfer surface 206, thereby generatingelectric field 1402 betweenelectrodes electrode pair 208. In embodiments,electric field 1402 can be constant electric field, a pulsed electric field such as a pulsed AC electric field, or other electric field type. - The energizing of
electrode pair 208 to createelectric field 1402 can also be caused by supplying an electromagnetic wave toelectrode pair 208. As is well known in the art, waveguides of various dimensions and configurations (e.g., cylindrical, rectangular) can be used to direct and supply an electromagnetic wave (see e.g., Guru, B. S. et al., “Electromagnetic Field Theory Fundamentals,” Chapter 10, PWS Publishing Company, Boston, Mass. (1998)). Operation frequencies of waveguides for use in the practice of the present invention are readily determined by those of skill in the art, and may be in the range of about 100 MHz to 10 GHz, about 1 GHz-5 GHz, about 2-3 GHz, about 2.5 GHz, or about 2.45 GHz, for example. - As is further described below, as
nanowires 806 encounter an ACelectric field 1402 generated betweenelectrodes FIG. 14 ), and the AC field exerts a torque on the dipole, such that proximate nanowires align parallel to the direction of the electric field. For example,FIG. 15 shows nanowire 806 a having been aligned byelectric field 1402 parallel toelectric field 1402 in association withelectrode pair 208. - In embodiments, first and
second electrodes nanowires 806.Nanowires 806 of any length can be aligned and positioned using the methods of the present invention. In an embodiment, the distance between electrodes of an electrode pair is such that the nanowires extend just beyond the first edge of the electrode. In an embodiment,nanowires 806 extend just beyond a first edge and into a middle of each electrode, with tens of nanometers to several microns overlapping the electrode material at the end of ananowire 806.Nanowires 806 that are shorter than the distance betweenelectrodes nanowires 806 that are substantially longer than the distance betweenelectrodes electrodes nanowires 806 of a particular length from a suspension of a range of nanowire sizes, and align and deposit them onto anelectrode pair 208. Embodiments may also associate andcouple nanowires 806 that are “straight” rather than bent or crooked. Hence, such embodiments provide an added benefit of depositing preferablystraight nanowires 806, rather than less preferred bent orcrooked nanowires 806. - In addition to aligning the nanowires parallel to an AC electric field, the field gradient exerts a dielectrophoretic force on
proximate nanowires 806, attracting them towardelectrode pair 208.FIG. 16 shows aforce 1602 attractingnanowire 806 a towardselectrode pair 208 ofprint head 702. In an embodiment,force 1602 is a dielectrophoretic force. The gradient is highest atelectrode pair 208, exerting an increasing attraction toward the electrodes. An electric double-layer is produced at the surface of each electrode ofelectrode pair 208, such that oppositely charged ions are present at each electrode. In the presence ofelectric field 1402, the ions migrate away from each electrode and initially towardnanowire 806 a hovering proximately nearby (e.g., above or below). As ions approach oppositely chargednanowire 806 a, the ions are repulsed by the like charge and then directed back toward the respective electrode resulting in a circulating pattern of ions. Liquid that is present (i.e., the nanowire suspension) is also circulated, generating an electro-osmotic force that opposes the dielectrophoreticforce attracting nanowire 806 a to the electrodes. Thus, in an embodiment, aforce 1606 shown inFIG. 16 may be an osmotic force. Asforces nanowire 806 a is held in place such that it becomes associated withelectrode pair 208. As used herein the terms “associated” and “pinned” are used to indicate that nanowires (such asnanowire 806 a) are in such a state that the electro-osmotic force and the dielectrophoretic force are at equilibrium, such that there is no or little net movement of the nanowires away from electrode pair 208 (i.e., normal or substantially normal to transfersurface 206 and electrode pair 208). This is also called the “association phase” throughout. - Furthermore, in an embodiment, charge values of
nanowires 806 andtransfer surface 206 affect association or pinning of nanowires toelectrode pair 208. For example,FIG. 16 showsprint head 702 having associatednanowire 806 a (additional nanowires not shown may also be associated). As shown inFIG. 16 ,transfer surface 206 may have alayer 1604 that provides a surface charge to transfersurface 206, such as an oxide layer. The charge polarity oflayer 1604 can be selected to attract or repelnanowire 806 a, as desired. For example,layer 1604 can provide a negative surface charge to transfersurface 206 that results in a repulsive force onnanowire 806 a, which may also have a negative surface charge (e.g., in isopropyl alcohol). Thus,force 1606 repellingnanowire 806 a inFIG. 16 may include an electrostatic repulsive force that results from a same charge polarity ofnanowire 806 a andlayer 1604. - In the associated, or pinned state, the nanowires are aligned parallel to the electric field, but are sufficiently mobile along the electrode edges (i.e. in a plane just above the surface of the electrodes). For example,
FIGS. 17 and 18 show plan and side cross-sectional views, respectively, ofelectrode pair 208 oncantilevers FIG. 11 . As shown inFIGS. 17 and 18 , a plurality ofnanowires 1702 is associated, or pinned, with first andsecond electrodes Nanowires 1702 are pinned at adistance 1802 fromelectrode pair 208. The amount ofdistance 1802 depends on a variety of factors, including a strength of the appliedelectric field 1402, a frequency ofelectric field 1402, a strength of charge ofnanowires 1702, a strength of charge oflayer 1604, etc. - In the associated or pinned state,
nanowires 1702 are free to rearrange, migrate and/or align along the length of theelectrodes Nanowires 1702 that are already substantially aligned withelectric field 1402 will tend to migrate alongelectrode pair 208 until contacting, and/or being repelled by, a nearest neighbor nanowire.Nanowires 1702 that are not substantially aligned will tend to migrate such that they become aligned as they contact, and/or are repelled by, nearest neighbor nanowires and, an equilibrium between the various forces acting onnanowires 1702 is reached. The lateral mobility (i.e., along electrode pairs 208, perpendicular to a direction of electric field 1402) ofnanowires 1702 allows them to accommodate a chronological sequence of alignment and association events without giving rise to nanowire clumping. That is, as nanowires are continuously supplied to electrode pair 208 (i.e., from a suspension) additional nanowires are able to associate with the electrodes, as the nanowires that are previously associated are freely mobile such that they move out of the way to accommodate additional nanowires. - For further example description regarding the association of nanowires with electrode pairs, various nanowire densities, alternating current frequencies, modulating of the electric field, “locking” nanowires to an electrode pair, etc., refer to co-pending U.S. Appl. No. 60/857,765, filed Nov. 9, 2006, titled “Methods for Nanowire Alignment and Deposition,” which is incorporated by reference herein in its entirety.
- Following the associating of
nanowires 1702 withelectrodes electrode pair 208 so as to substantially eliminate nanowires that are not fully aligned, not fully coupled, overlapped, crossing, or otherwise not ideally coupled toelectrode pair 208. Nanowires that are to be removed following the coupling phase are described herein as “uncoupled nanowires.” Any suitable method for removing uncoupled nanowires can be used. For example, the uncoupled nanowires can be removed using tweezers (e.g., optical tweezers, see, e.g., U.S. Pat. Nos. 6,941,033, 6,897,950 and 6,846,084, the disclosures of each of which are incorporated herein by reference in their entireties) or similar instrument, or by shaking or physically dislodging the uncoupled nanowires. Suitably, uncoupled nanowires are removed by flushing away the nanowires. As used herein, the term “flushing away” includes processes where a fluid (either gaseous or liquid phase) is flowed over or around the nanowires so as to remove them from the electrode pairs. Nanowires that are crossed can be uncrossed using a suitably modulated electric field, and a third electrode can be used to remove “uncoupled nanowires,” such as dielectrophoretically or electroosmotically. Uncoupled nanowires can also be removed inertially, and by other techniques. - According to step 306 of flowchart 300 (
FIG. 3 ), the electrode pair is aligned with a region of the destination surface.FIG. 19 shows a printhead alignment system 1900 that can be used to performstep 306 for a nanowire transfer system, according to an example embodiment of the present invention. As shown inFIG. 19 ,system 1900 includes analignment mechanism 1902 that is coupled toprint head 702.Alignment mechanism 1902 is configured to moveprint head 702 such thatelectrode pair 208 is aligned with a designatednanowire transfer region 1904 ondestination surface 210 ofsubstrate 212.Alignment mechanism 1902 may be configured to moveprint head 702 so thatelectrode pair 208 is adjacent to but not in contact withregion 1904, and/or to moveprint head 702 so thatelectrode pair 208contacts region 1904. For example,alignment mechanism 1902 may include a motor (e.g., a linear motor) or other movement mechanism for movingprint head 702 toregion 1904. Furthermore,alignment mechanism 1902 may include position detecting sensors for detecting a position ofprint head 702 and/orsubstrate 212 to accurately positionprint head 702 with respect toregion 1904. Example position detecting sensors may include optical sensors (e.g., vision systems), proximity sensors, mechanical sensors, etc., to detect relative position. -
Substrate 212 may be any type of structure suitable for placement of nanostructures. For example,substrate 212 may be formed of a variety of materials, including a semiconductor material (e.g., silicon, GaAs, etc.), a polymer (e.g., a plastic material), glass, a ceramic material, a composite material, a printed circuit board (PCB), etc. - Note that
FIG. 19 shows an embodiment whereelectrode pair 208 and a plurality of associatednanowires 1702 are covered in afluid membrane 1906. For example,print head 702 may have been dipped insolution 804, as shown inFIG. 8 , to havenanowires 1702 associated withelectrode pair 208, as shown inFIGS. 14 and 15 . Subsequently,print head 702 is withdrawn fromsolution 804. However,fluid membrane 1906 remains ontransfer surface 206 to keepnanowires 1702 wet. In this manner,nanowires 1702 remain associated withelectrode pair 208, including being aligned and positioned relative to first andsecond electrodes transfer surface 206 may be coated with a hydrophilic material that enablesfluid membrane 1906 to stick to transfersurface 206. In embodiments,region 1904 ondestination surface 210 may also be coated with a solution or may alternatively be relatively dry. -
FIG. 20 showsprint head 702 having been aligned withregion 1904 by alignment mechanism 1902 (e.g., in the direction of the downward dotted arrow shown inFIG. 20 ). As shown inFIG. 20 , first andsecond electrodes nanowires 1702 in contact withregion 1904. Furthermore,nanowires 1702 substantially retain their alignment and position onelectrode pair 208 while making contact withregion 1904 due to the action ofelectric field 1402 and other forces acting onnanowires 1702. -
FIGS. 21 and 22 show print head 702 ofFIG. 9 being aligned withdestination surface 210, according to an example embodiment of the present invention.Nanowires 806 are shown removed fromsolution 804 inFIGS. 21 and 22 , although they may alternatively still be present insolution 804. As shown inFIG. 21 ,substrate 212 andprint head 702 are both submerged insolution 804.Nanowires 1702 are shown associated withelectrodes 704 and 706 (e.g., according to step 304 of flowchart 300). As shown inFIG. 22 ,print head 702 has been aligned with region 1904 (e.g., byalignment mechanism 1902, not shown inFIGS. 21 and 22 ). First andsecond electrodes nanowires 1702 in contact withregion 1904 inFIG. 22 . Furthermore,nanowires 1702 substantially retain their alignment and position onelectrode pair 208 while making contact withregion 1904, as described above. - Note that in an embodiment, as shown in
FIG. 23 , one or more spacers orspacing members 2302 may be present on transfer surface 206 (and/or on destination surface 210) to holdtransfer surface 206/electrode pair 208 at a predetermined distance fromdestination surface 210, and/or to reduce an impact betweenelectrodes destination surface 210 when making contact. This may further be useful in aiding associatednanowires 1702 from losing their alignment and position whentransfer surface 206 is being aligned withdestination surface 210 according tostep 306. Spacingmembers 2302 may be used in combination with any embodiment described herein. Spacingmembers 2302 may have any height, as determined for a particular application. For example, in an embodiment, aspacing member 2302 has a height of approximately 100 μm. -
FIGS. 24 and 25 show examples of print head alignment for the configuration ofprint head 1100 ofFIGS. 11 , 17, and 18. As shown inFIG. 24 ,print head 1100 has been aligned with region 1904 (e.g., byalignment mechanism 1902, not shown inFIGS. 24 and 25 ). First andsecond electrodes nanowire 1702 in contact withregion 1904 inFIG. 22 . Furthermore,nanowires 1702 substantially retain their alignment and position onelectrode pair 208 while making contact withregion 1904, as described above. - In
FIG. 25 ,substrate 212 is not planar, but instead has an uneven surface. A portion ofregion 1904 corresponding tosecond electrode 706 is higher than a portion ofregion 1904 corresponding tofirst electrode 704. Thus,second cantilever 1106 ofprint head 1100 flexes (e.g., in an upward direction indicated by a dotted arrow) in order forsecond electrode 706 to maintain contact withregion 1904. Furthermore, bysecond cantilever 1106 flexing,first electrode 704 is able to maintain holding its respective ends ofnanowires 1702 onregion 1904. - Note that in an embodiment where a print head is aligned with a destination surface in solution, the solution between the print head and destination surface will be displaced during alignment. If the solution is displaced laterally, this may cause problems with displacing associated nanowires, with increasing an area of the print head, and/or further problems.
FIG. 26 shows ananowire transfer system 2600, according to an example embodiment of the present invention.System 2600 is similar tosystem 1300 shown inFIG. 13 , with the addition of avacuum source 2602. Furthermore,transfer surface 206 includes one ormore vacuum ports 2604 coupled tovacuum source 2602.Vacuum source 2602 applies a vacuum orsuction 2606 throughvacuum port 2604 to the volume betweentransfer surface 206 andsubstrate 212 to remove excess solution. Thus, astransfer surface 206 andsubstrate 212 approach each other, excess solution can be removed to prevent displacement of associated nanowires, etc. -
FIG. 27 shows an example plan view oftransfer surface 206, according to an example embodiment of the present invention. As shown inFIG. 27 ,transfer surface 206 includes first andsecond electrodes vacuum ports 2604 a-2604 c. In the example ofFIG. 27 , threevacuum ports 2604 a-2604 c are shown.First vacuum port 2604 a is positioned ontransfer surface 206 adjacent tofirst electrode 704.Second vacuum port 2604 b is positioned ontransfer surface 206 between first andsecond electrodes Third vacuum port 2604 c is positioned ontransfer surface 206 adjacent tosecond electrode 706. Any number ofvacuum ports 2604 may be present, and may be distributed ontransfer surface 206 as desired. In the example ofFIG. 27 ,vacuum ports 2604 a-2604 c are rectangular shaped. In other embodiments,vacuum ports 2604 may have other shapes, including round, square, etc. - According to step 308 of flowchart 300 (
FIG. 3 ), one or more nanostructures are deposited from the electrode pair to the region. Nanowires may be deposited ondestination surface 210 in a variety of ways. Various example embodiments for depositing nanowires on a surface are described as follows. - For example,
FIG. 28 shows ananowire transfer system 2800, according to an embodiment of the present invention. As shown inFIG. 28 ,nanowires 2802 are deposited onregion 1904 fromelectrode pair 208. In the embodiment ofFIG. 28 , aforce 2802 is present (which may include one or more forces) that attractednanowires 1702 fromprint head 702 todestination surface 210 while they are aligned, and/or repellednanowires 1702 fromprint head 702, overcoming any force(s) that attractednanowires 1702 to transfersurface 206 ofprint head 702. Example forces that may be present inforce 2802 include an electric field (AC and/or DC), a vacuum force, an electrostatic force, gravity, ultrasonic excitation, and/or other forces. These and other passive and active forces may be used to attract/repelnanowires 1702, as would be known to persons skilled in the relevant art(s). Example embodiments for utilizing some of these forces are described as follows. - For example,
FIG. 29 shows atransfer system 2900, according to an embodiment of the present invention.Transfer system 2900 is generally similar totransfer system 2800 ofFIG. 28 . However, as shown inFIG. 29 ,transfer surface 206 has negatively chargedlayer 2902 formed thereon. Negatively chargedlayer 2902 results in a negative surface charge fortransfer surface 206, and thus a DC repulsive force on nanowires 1702 (which may be negatively charged). For example,layer 2902 may be an oxide layer. An electric field generated by electrode pair 208 (e.g., electric field 1402) is biased with an AC field condition to previously capturenanowires 1702 from solution, according to step 304 offlowchart 300 described above. - Furthermore, as shown in
FIG. 29 ,destination surface 210 has a positively chargedlayer 2904 formed thereon. For example, positively chargelayer 2904 may be an alumina layer. Positively chargedlayer 2904 results in a positive surface charge fordestination surface 210, and thus a DC attractive force onnanowires 1702. Whentransfer surface 206 anddestination surface 210 are sufficiently close (e.g., in the range of 1 μm to 4 μm), including when they are in contact with each other,nanowires 1702 transfer ontodestination surface 210, as shown inFIG. 29 , because the DC attractive force oflayer 2904 overcomes the attractive force (dielectrophoretic force) caused by the AC electric field generated byelectrode pair 208. In an embodiment, to enable transfer, the AC electric field may be reduced (e.g., by voltage source 1302) or entirely removed to reduce or remove the dielectrophoretic force. -
FIG. 30 shows aplot 3000 of nanowire potential energy as a function of distance from eithertransfer surface 206 ordestination surface 210.Transfer surface 206 can have a negatively chargedlayer 2902 as an oxide layer anddestination surface 210 can have a positively chargedlayer 2904 as a nitride layer, according to an embodiment of the present invention. Aplot line 3002 represents the potential energy of nanowires suspended in solution overtransfer surface 206 and aplot line 3004 represents the potential energy of nanowires suspended in solution overdestination surface 210. - As shown in
FIG. 30 , at afirst plot region 3006 representing a first potential minimum onplot line 3002 fortransfer surface 210,nanowires 1702 are associated (pinned) withelectrode pair 208. The pinned nanowires remain relatively rigid/aligned without being in contact with a transfer surface. In the current example, first plot region (first potential minimum) 3006 occurs whentransfer surface 206 anddestination surface 210 are approximately 1 μm-4 μm apart. At a second plot region (second potential minimum) 3008 representing a potential minimum onplot line 3004 fordestination surface 210,nanowires 1702 are attracted todestination surface 210 due to the electrostatic attraction by the nitride layer.Nanowires 1702 may be “locked” ondestination surface 210 in this manner.Second plot region 3008 occurs when nanowires anddestination surface 210 are spaced approximately 0.1 μm-0.4 μm apart. - The transfer of
nanowires 1702 fromtransfer surface 206 ontodestination surface 210 is achieved by first “weakly” pinningnanowires 1702 ontransfer surface 206 at low electric fields and low frequencies, “strongly” pinningnanowires 1702 ontransfer surface 206 using low electric fields and high frequencies, movingtransfer surface 206 to close proximity withdestination surface 210, and finally releasingnanowires 1702 frompotential minimum 3006 oftransfer surface 206 by reducing the AC field onelectrodes transfer surface 206. Due to the electrostatic repulsion represented by a potential maximum 3010 betweennanowires 1702 and transfer surface 206 (e.g. layer 2902 on transfer surface 206)nanowires 1702 move away fromtransfer surface 206 after reduction of the AC attractive field. Within the rotational diffusion time (i.e. time required for nanowires to be rotated by an angle θ from a pre-aligned direction while subjected to gravity and Brownian motion)nanowires 1702 maintain the desired alignment determined by the AC field acrosselectrodes transfer surface 206. The close proximity (e.g., ˜1 μm) of thepre-aligned nanowires 1702 in solution todestination surface 210 enables a transfer ontodestination surface 210 due to the electrostatic attraction represented by potential minimum 3008 (e.g. layer 2904 on destination surface 210). An efficient transfer ofnanowires 1702 is enabled when the rotational diffusion time is large compared to the translational diffusion time for motion of nanowires from potential minimum 3006 topotential minimum 3008. Functional layers onnanowires 1702 and ondestination surface 210 can be used to minimize the translational diffusion time without affecting the rotational diffusion time. - Note that in an embodiment, ultrasonic excitation/vibration can be used to enhance the process just described. For example,
FIG. 31A shows atransfer system 3100, according to an embodiment of the present invention.Transfer system 3100 is generally similar totransfer system 2900 ofFIG. 29 , with the addition ofultrasonic vibration source 3102.Ultrasonic vibration source 3102 includes a piezoelectric transducer or other ultrasonic vibration source to ultrasonically vibrateprint head 702 andtransfer surface 206. In an embodiment, ultrasonic vibration ofprint head 702 causes nanowires to be separated from the transfer head up to approximately 100 μm, which enables the distance betweentransfer surface 206 anddestination surface 210 to be larger while still allowingnanowires 1702 to be deposited ondestination surface 210. The rate at whichprint head 702 moves towarddestination surface 210 may be high initially and reduced gradually asprint head 702 moves close todestination surface 210. For example,ultrasonic vibration source 3102 can be activated when transfer surface 206 approaches within 100 μm ofdestination surface 210. This enables depositing ofnanowires 1702 to destination surface 210 (e.g., by gravity, electrostatic attraction, etc.) sooner (at a larger distance) while better maintaining the alignment ofnanowires 1702 withelectrode pair 208 than whenelectrode pair 208 is moved closer or evencontacts destination surface 210. -
FIG. 31B shows atransfer system 3150, according to an embodiment of the present invention.Transfer system 3150 is generally similar totransfer system 3100 ofFIG. 31A , except that anultrasonic vibration source 3152 is coupled tosubstrate 212, rather thanultrasonic vibration source 3102 being associated withprint head 702. Although shown coupled to a bottom surface ofsubstrate 212,ultrasonic vibration source 3152 can be coupled tosubstrate 212 in any manner, including being coupled to the top surface, or being embedded insubstrate 212Ultrasonic vibration source 3152 may be secured in an ultrasonic chuck, or other application mechanism. -
Ultrasonic vibration source 3152 includes a piezoelectric transducer or other ultrasonic vibration source to ultrasonically vibratesubstrate 212, and thus to ultrasonically vibratedestination surface 210. Furthermore, whentransfer surface 206 anddestination surface 210 are brought near each other, spacers 2302 (onprint head 702 and/or substrate 212)contact print head 702 anddestination surface 210 together. Thus,ultrasonic vibration source 3152 also vibratesprint head 702 andtransfer surface 206. Becauseultrasonic vibration source 3152 vibrates bothtransfer surface 206 anddestination surface 210, they vibrate synchronously, such that they both vibrate in the same direction simultaneously. This causes less turbulence than when only one oftransfer surface 206 anddestination surface 210 vibrate, and thusnanowires 1702 are better able to retain their alignment while being transferred (e.g., by gravity, electrostatic attraction, etc.) fromtransfer surface 206 todestination surface 210. -
FIG. 31C shows aplot 3170 of an inertial motion of nanowires in isopropyl alcohol (IPA) solution, according to an embodiment of the present invention. AnX-axis 3172 ofplot 3170 is a displacement amplitude, in centimeters, ofdestination surface 210 andtransfer surface 206 caused byultrasonic vibration source 3152. A Y-axis 3174 ofplot 3170 is a displacement frequency caused byultrasonic vibration source 3152. A Z-axis 3176 ofplot 3170 shows a resulting displacement amplitude ofnanowires 1702 in μm. Aplot surface 3178 indicates generally that as surface displacement amplitude increases (on X-axis 3172), nanowire displacement amplitude (on Z-axis 3176) also increases. Likewise, as displacement frequency (on Y-axis 3174) increases, nanowire displacement amplitude (on Z-axis 3176) also increases. - In an example embodiment,
transfer surface 206 and/ordestination surface 210 may be ultrasonically vibrated at relatively high frequency, such as 10 KHz, with a low amplitude, such as 50-100 microns, to effectively transfernanowires 1702 fromtransfer surface 206 todestination surface 210. A variety of other combinations of displacement amplitude (X-axis 3172) and displacement frequency (Y-axis 3174) combinations are apparent fromplot 3170, and may be used to cause wire displacement (Z-axis 3176) to transfer nanowires, as desired for a particular application. -
FIG. 32 shows anexample transfer system 3200, according to another embodiment of the present invention.Transfer system 3200 is similar totransfer system 2800 ofFIG. 28 , with the addition of avacuum source 3202 that applies avacuum force 3204 throughvacuum ports 3206 insubstrate 212 to attractnanowires 1702 todestination surface 210. For example, usingvacuum force 3204,vacuum source 3202 draws asolution surrounding nanowires 1702 in throughvacuum ports 3206. The resulting solution flow exerts a pull onnanowires 1702 towarddestination surface 210. -
FIG. 33 shows anexample transfer system 3300, according to another embodiment of the present invention.Transfer system 3300 is similar totransfer system 2800 ofFIG. 28 , with the addition of anelectric field source 3302 that generates anelectric field 3304 to attractnanowires 1702 todestination surface 210. For example, in an embodiment,electric field source 3302 may generate a DC electric field forelectric field 3304. The DC electric field (e.g., a positive charge) exerts an attractive force onnanowires 1702 due to the opposite charge of nanowires 1702 (e.g., a negative charge), causingnanowires 1702 to move. Such movement ofnanowires 1702 enablesnanowires 1702 to be attracted todestination surface 210 byelectric field 3304 and/or other force. In another embodiment,electric field source 3302 may generate an AC electric field forelectric field 3304 which operates in an analogous fashion to movenanowires 1702, to enablenanowires 1702 to be attracted todestination surface 210. In still another embodiment, a combination of DC and AC electric fields may be used. In an embodiment,electric field source 3302 is a signal generator, voltage supply, or other component or device capable of generating an electric field. - It is noted that the above described embodiments for depositing nanowires on a destination surface according to step 308 of flowchart 300 (
FIG. 3 ) may be combined in any manner, as would be understood by persons skilled in the relevant art(s) from the teachings herein. - According to step 310 of flowchart 300 (
FIG. 3 ), the electrode pair is removed from alignment with the region of the surface. For example, as shown inFIG. 28 ,print head 702 may be moved in the upward direction (shown by dotted arrow) to be removed from alignment withregion 1904. For example, alignment mechanism 1902 (shown inFIG. 19 ) may be used to moveprint head 702 from alignment withregion 1904. In an embodiment, a fluid can be supplied (e.g., throughports 2604 ofFIG. 26 and/orports 3206 ofFIG. 32 ) betweentransfer surface 206 anddestination surface 210 to provide pressure to move the surfaces apart (e.g., gas or liquid pressure). In this manner,flowchart 300 ofFIG. 3 may be repeated byprint head 702, to associate and deposit further nanowires onregion 1904, on other region(s) ofsubstrate 212, and/or on alternative surfaces. - Furthermore,
flowchart 300 is adaptable to using multiple electrode pairs on a single transfer surface to deposit groups of nanowires on substrates in parallel. For example,FIG. 34 shows ananowire transfer system 3400 that includes aprint head 3402 having two electrode pairs, according to an embodiment of the present invention. As shown inFIG. 34 ,print head 3402 has atransfer surface 3404 having afirst electrode pair 208 a and asecond electrode pair 208 b.First electrode pair 208 a is shown having associatednanowires 1702 a, andsecond electrode pair 208 b is shown having associatednanowires 1702 b.Nanowires 1702 a are designated for deposit onfirst region 1904 a ofdestination surface 210, andnanowires 1702 b are designated for deposit onsecond region 1904 b ofdestination surface 210. - Thus, in an embodiment, each step of
flowchart 300 shown inFIG. 3 may be performed for both of first and second electrode pairs 208 a and 208 b in parallel. Instep 302, in parallel with providingnanowires 1702 a proximate tofirst electrode pair 208 a,nanowires 1702 b can be provided proximate tosecond electrode pair 208 b. Instep 304, in parallel with generating a first electric field (e.g.,electric field 1402 inFIG. 14 ) usingfirst electrode pair 208 a, a second electric field can be generated usingsecond electrode pair 208 b toassociate nanowires 1702 b withsecond electrode pair 208 b. In embodiments, a same electrical signal (e.g., electrical signal 1304) can be provided to both of first and second electrode pairs 208 a and 208 b, or different electrical signals can be generated and provided. - In
step 306, in parallel with aligningfirst electrode pair 208 a withfirst region 1904 a,second electrode pair 208 b can be aligned withsecond region 1904 b. Instep 308, in parallel with depositingnanowires 1702 a fromfirst electrode pair 208 a tofirst region 1904 a,nanowires 1702 b can be deposited fromsecond electrode pair 208 b tosecond region 1904 b. Instep 310, first and second electrode pairs 208 a and 208 b can be removed from alignment with their respective regions in parallel, by withdrawingprint head 3402 fromdestination surface 210. - Note that any number of electrode pairs may be formed on a transfer surface to be used to transfer any number of corresponding sets of nanowires in parallel, in a similar fashion to the configuration of
FIG. 34 . By increasing the size oftransfer surface 206, to enable additional electrode pairs, increasing numbers of simultaneous nanowire transfers may be performed in parallel, increasing a rate of fabrication. The spacing ofelectrodes - Embodiments are described in this section for applying electrical devices, such as integrated circuits, electrical components, semiconductor die, optical devices, etc., to surfaces in a similar manner as described above for nanowires. In embodiments, one or more electrical devices are provided proximate to an electrode pair on a transfer surface. The electrode pair is energized such that an electrical device becomes associated with the electrode pair. Subsequently, the electrical device is deposited from the electrode pair to a destination surface.
-
FIG. 35 shows aflowchart 3500 providing example steps for transferring electrical devices, according to example embodiments of the present invention. For example,print head 702 ofFIG. 7 can be used to transfer electrical devices according toflowchart 3500. For illustrative purposes,flowchart 3500 is described as follows with respect toFIGS. 36-39 , which show block diagrams of an electricaldevice transfer system 3600, according to an embodiment of the present invention. Other structural and operational embodiments will be apparent to persons skilled in the relevant art(s) based on the following discussion. Not all steps offlowchart 3500 are necessarily performed in all embodiments. -
Flowchart 3500 begins withstep 3502. Instep 3502, at least one electrical device is provided proximate to an electrode pair. For example, as shown inFIG. 36 ,electrical devices 3602 are provided proximate toelectrode pair 208. InFIG. 36 ,electrical devices 3602 are present insolution 804, which flows in contact withelectrode pair 208, to enableelectrical devices 3602 to be positioned proximate toelectrode pair 208. Alternatively,electrical devices 3602 may be provided proximate toelectrode pair 208 in other ways. In embodiments,electrical devices 3602 may all be the same type of electrical device, or may include different types. - In
step 3504, an electric field is generated by electrodes of the electrode pair to associate an electrical device with the electrodes. For instance, an electrical potential may be coupled toelectrode pair 208 to generate the electric field. The electric field generated byelectrode pair 208 may be used to associate one ofelectrical devices 3602 withelectrode pair 208 that is proximately located toelectrode pair 208. As shown inFIG. 37 ,electrical device 3602 a is associated withelectrode pair 208. In an embodiment, associatedelectrical device 3602 a is held suspended at a distance fromtransfer surface 206 by the electric field. - The example embodiments described above for generating an electric field by an electrode pair to associate nanostructures are adaptable to associating electrical devices. For example, as described with respect to
FIG. 14 , anelectric field 1402 is generated betweenelectrodes electrode pair 208.Electric field 1402 can be used to align electrical deviceelectrical device 3602 a, and to positionelectrical device 3602 a betweenelectrodes electrical device 3602 a encounters an AC electric field generated betweenelectrodes electrical devices 3602, and the AC field exerts a torque on the dipole, such that proximateelectrical device 3602 a aligns parallel to the direction of the electric field. - Furthermore, in an embodiment, the field gradient exerts a dielectrophoretic force on proximate
electrical device 3602 a, attracting it towardelectrode pair 208, as described above for nanowires with respect toFIG. 16 . An electro-osmotic force may also be generated, as described above, that opposes the dielectrophoretic force attractingelectrical device 3602 a to the electrodes. As these forces reach an equilibrium (or relative equilibrium),electrical device 3602 a is held in place such that it becomes associated, or “pinned,” withelectrode pair 208. - As mentioned above,
electrical devices 3602 inFIG. 36 may all be the same type of electrical device or may include different electrical device types. When different electrical device types are present,electrodes electrical device 3602 a may have a metal (or other material) patterned thereon to enhance the attraction ofelectrical device 3602 a toelectrodes 208. - In
step 3506, the electrode pair is aligned with a region of the destination surface. For example, as shown inFIG. 38 ,electrode pair 208 is aligned withdestination surface 210, byprint head 702, which is moved towardsdestination surface 210. In an embodiment,electrode pair 208 is aligned in contact withdestination surface 210. In another embodiment,electrode pair 208 is aligned adjacent todestination surface 210, a short distance away fromdestination surface 210.Electrode pair 208 may be aligned with any region ofsurface 210, including a generally open region (i.e., no contacts onsurface 210 are required), a region having electrical contacts corresponding toelectrode pair 208, or other region.Electrode pair 208 is aligned with a region ofsurface 210 on whichelectrical device 3602 a is to be positioned. - In
step 3508, the electrical device is deposited from the electrode pair to the region.Electrical device 3602 a may be deposited ondestination surface 210 in a variety of ways. Various example embodiments for depositing nanostructures on a surface are described in detail above. For example, the embodiments described above with respect toFIGS. 28-33 for depositing nanostructures may be used to depositelectrical device 3602 a. For example, inFIG. 28 , aforce 2802 is present (which may include one or more forces) that attractednanowires 1702 fromprint head 702 todestination surface 210 and/or repellednanowires 1702 fromprint head 702.Force 2802 may also be used to depositelectrical device 3602 a todestination surface 210 fromprint head 702. Example forces that may be present inforce 2802 include an electric field (AC and/or DC), a vacuum force, an electrostatic force, gravity, ultrasonic excitation, and/or other forces. These and other passive and active forces may be used to attract/repelelectrical device 3602 a, as would be known to persons skilled in the relevant art(s). Furthermore, ultrasonic vibration may be used, as described above with respect toFIGS. 31A-31C , to aid in freeingelectrical device 3602 a fromprint head 702, to transfer to destination surface 210 (e.g., via a force such as gravity, an electrostatic force, etc.). - In
step 3510, the electrode pair is removed from alignment with the region of the surface. For example, as shown inFIG. 39 ,print head 702 is moved away fromdestination surface 210.Electrical device 3602 a remains deposited onsurface 210.Print head 702 can subsequently be used to repeat performingflowchart 3500 for the same region ofsurface 210, a different region ofsurface 210, and/or a surface of a structure other thansubstrate 212, to deposit further electrical devices. Furthermore, in an embodiment,print head 702 may be used to simultaneously transfer nanostructures and electrical devices. - Using the techniques described herein, complex electrical circuits can be formed, by using print heads to transfer nanostructures and electrical devices to substrates.
- Further embodiments are described in this section for applying nanostructures to surfaces using print heads. Print heads used to “print” nanowires onto a substrate in the presence of a fluid, as described above, may cause a shear force that is orthogonal to the motion of the print head as the print head approaches the substrate. As a result, the fluid is forced out of the region between the print head and the substrate due. This fluid shear can displace the nanowires laterally, causing the nanowires to be misplaced in the printing process.
- For example,
FIG. 40 shows a cross-sectional view of ananostructure transfer system 4000, according to an embodiment of the present invention. As shown inFIG. 40 ,system 4000 includesprint head 702 andsubstrate 212.FIG. 41 shows a view oftransfer surface 206 ofprint head 702.Print head 702 is configured to transfer nanostructures, such as a nanowire 1702 (shown end-on inFIG. 40 ), fromelectrodes destination surface 210 in aliquid solution 4004. - During the transfer process,
print head 702 is moved towardssubstrate 212 in the direction ofarrow 4002, reducing a distance betweentransfer surface 206 anddestination surface 210.Arrows 4006 indicate directions of flow ofsolution 4004 asprint head 4002 is moved towardssubstrate 212, assolution 4004 is forced out of the region betweentransfer surface 206 anddestination surface 210. Referring toFIG. 40 , the relative lengths ofarrows 4006 indicate a relative flow velocity at the locations ofarrows 4006. For instance, a flow velocity is lower forsolution 4004 close to one oftransfer surface 206 anddestination surface 210 relative tosolution 4004 midway betweentransfer surface 206 anddestination surface 210. Referring toFIG. 41 ,arrows 4006 indicate thatsolution 4004 is forced outwardly in all directions from a central region of transfer surface 2006. - As indicted in
FIG. 41 ,solution 4004 is forced to flow acrossnanowire 1702 whenprint head 702 is moved towardssubstrate 212. This fluid exerts a shear force onnanowire 1702, which may undesirably displacenanowire 1702 laterally, causingnanowire 1702 to be misplaced in the printing process. - In embodiments, drain holes are formed in a print head to remove fluid from the region between the print head and the destination surface as the print head approaches the destination surface. The drain holes reduce a shear force on the nanowires, to enable the nanowires to be more reliably transferred from the print head to the destination surface. For example
FIG. 42 shows ananostructure transfer system 4200, according to an example embodiment of the present invention. As shown inFIG. 42 ,system 4200 includes aprint head 4202 andsubstrate 212.FIG. 43 shows a view oftransfer surface 206 ofprint head 4202. As shown inFIGS. 42 and 43 ,transfer surface 206 includes first andsecond openings second openings solution 4004 from the region betweentransfer surface 206 anddestination surface 210 whenprint head 4202 is moved towardsubstrate 210. Removal ofsolution 4004 due to first andsecond openings nanowire 1702 while being deposited fromtransfer surface 206 todestination surface 210. -
FIG. 44 shows aflowchart 4400 for transferring nanostructures to a destination surface, according to an example embodiment of the present invention.System 4200 may performflowchart 4400, for example.Flowchart 4400 is described as follows. Other structural and operational embodiments will be apparent to persons skilled in the relevant art(s) based on the following discussion. - In
step 4402, a transfer surface of a print head is positioned adjacent to a destination surface. For instance, as shown inFIG. 42 ,transfer surface 206 ofprint head 4202 is positioned adjacent todestination surface 210 ofsubstrate 212. - In
step 4404, a distance between the transfer surface and the destination surface is reduced. Referring toFIG. 42 ,print head 4202 is moved in the direction ofarrow 4002 to reduce adistance 4208 betweentransfer surface 206 anddestination surface 210. - In
step 4406, a fluid is received through at least one opening in the transfer surface from between the transfer surface and the destination surface duringstep 4404. As indicated byarrows 4206 inFIGS. 42 and 43 ,solution 4004 betweentransfer surface 206 anddestination surface 210 flows outward from a central region of transfer surface 2006 due totransfer surface 206 moving towarddestination surface 210. Furthermore, as indicated byarrows 4210 shown inFIG. 42 ,solution 4004 flows intoopenings transfer surface 206.Openings nanowire 1702 by receivingsolution 4004. - In
step 4408, a nanowire associated with the transfer surface is deposited to the destination surface. For instance,FIG. 45 shows a view ofsystem 4200 ofFIG. 42 , wheretransfer surface 206 is proximate todestination surface 210, such thatnanowire 1702 may be deposited todestination surface 210.Nanowire 1702 may be deposited fromtransfer surface 206 todestination surface 210 in any manner described elsewhere herein, including as described above with respect toflowchart 300 shown inFIG. 3 . Subsequent to the deposition ofnanowire 1702,print head 4202 andsubstrate 212 may be moved apart. - Although two openings 4204 (
openings FIGS. 42 and 43 , any number of openings 4204 may be present intransfer surface 206. For example, instead of a pair of openings 4204 (as shown inFIGS. 42 and 43 ), an array of openings 4204 of any number may be present at the locations ofopenings - Furthermore, openings 4204 may have any distribution/geometry relative to
electrodes FIG. 43 ,openings electrodes nanowire 1702 is located midway betweenopenings solution 4004 at the location ofnanowire 1702 is created (e.g., a flow stream is parted at nanowire 1702), so that the shear force experienced bynanowire 1702 may be brought close to none. In the embodiment ofFIG. 43 , openings 4204 can be holes and/or slots that are positioned symmetrically along either side of the long axis ofnanowire 1702. - Furthermore, as shown in
FIG. 43 ,openings 4202 may have lengths that are longer than a long axis length ofnanowire 1702. Alternatively,openings 4202 may have a length that is the same or less than a long axis length ofnanowire 1702. A width ofopenings solution 4004 betweenopenings nanowire 1702 may exit throughopenings - Although openings 4204 are shown in
FIG. 42 as being located along the length ofnanowire 1702, alternatively or additionally, openings 4204 may be located ontransfer surface 206 adjacent to one or both ends ofnanowire 1702. Furthermore, althoughopenings FIG. 42 as penetrating all the way throughprint head 4202, alternatively, openings 4204 may penetrate partially through print head 4204 (e.g., may be recessed areas intransfer surface 206, of any suitable depth). - In the example of
FIGS. 42 and 43 ,solution 4004 is enabled to passively flow into openings 4204. In another embodiment,solution 4004 may be actively drawn into openings 4204. For instance, a piston/cylinder arrangement, a corkscrew, vacuum suction, and/or further mechanisms may be used to actively drawsolution 4004 into openings 4204. For example,FIG. 46 shows ananostructure transfer system 4600, according to an embodiment of the present invention.System 4600 is generally similar tosystem 4200 shown inFIG. 42 , with the addition of first andsecond pistons Pistons openings First piston 4602 a andopening 4204 a form a first piston/cylinder arrangement, andsecond piston 4602 b andopening 4204 b form a second piston/cylinder arrangement. First andsecond pistons arrows 4604 duringstep 4404 offlowchart 4400, to enablesolution 4004 to be drawn intoopenings flowchart 4400. - Nanostructures and/or contaminants may become attached to transfer surfaces of print heads, causing degradation in performance. In embodiments, the transfer surface of nanostructure print heads may be treated to prevent contaminants from sticking, and/to increase a durability of the transfer surface. Such embodiments may be particularly useful to extend a lifetime of a print head/transfer surface when print heads/transfer surfaces are expensive to replace. For example, a coating may be applied to the transfer surface, such as a coating of a non-stick material. In an embodiment, the coating may be removable. In this manner, the coating may be removed and reapplied as needed when a coating wears out, rather than having to dispose of the print head completely.
- For instance,
FIG. 47 shows a cross-sectional view of aprint head 4700, according to an example embodiment of the present invention. As shown inFIG. 47 , anon-stick material layer 4702 is formed ontransfer surface 206 ofprint head 4700.Non-stick material layer 4702 is a coating of a non-stick material that is configured to reduce nanowire and contaminate adhesion. In addition,non-stick material layer 4702 may be removed (e.g., stripped) fromtransfer surface 206, and reapplied to transfersurface 206, to provide a longer lifespan to printhead 4700. - Example advantages of
non-stick material layer 4702 ontransfer surface 206 include preventing nanowire adhesion and sticking, enabling the use of a higher nanowire capture voltage (e.g., duringstep 304 offlowchart 300 inFIG. 3 ) so that nanowires are not lost due to shear forces during the nanowire transfer process (e.g., as described above with respect toFIGS. 41 and 42 ), enhancing nanowire transfer efficiency, and/or reducing contamination and corrosion ofprint head 4700 to increase a lifetime ofprint head 4700. -
Non-stick material layer 4702 may be formed ontransfer surface 206 in any manner, including by coatingtransfer surface 206 from a solution (i.e., spin coating or dip coating) or by a vapor phase deposition process.Non-stick material layer 4702 may be configured to have weak adhesion properties, such as adhesion properties characterized through van der Waals forces.Transfer surface 206 may be treated with adhesion promoters to preventnon-stick material layer 4702 from delaminating fromtransfer surface 206. Example materials fornon-stick material layer 4702 include materials that have very low van der Waals force attraction with inorganic materials (contamination and nanowires), such as organic molecules or fluorinated organics (e.g., Teflon). A fluorinated organic material, such as Teflon, can have van der Waals forces 3 orders of magnitude lower than a typical oxide surface, thus making the strength of adhesion of contaminants to transfersurface 206 relatively weak. A thickness and/or chemistry ofnon-stick material layer 4702 may be selected as desired for the particular application. - In addition, as described above,
non-stick material layer 4702 may be removable. For instance, if nanowires and/or other contamination does adhere to transfersurface 206 after one or more uses,non-stick material layer 4702 may be removed using solvents, plasma, thermal decomposition, or other removal material or technique. After removal ofnon-stick material layer 4702, a fresh replacement coating ofnon-stick material layer 4702 may be formed ontransfer surface 206. This replacement process is simpler and less expensive than manufacturing areplacement print head 4700, which may be relatively expensive. - For instance, another type of non-stick material that may be applied to transfer
surface 206, is a film of a material such as SiO2 or Si3N4. Such a film may be deposited ontransfer surface 206 according to a plasma enhanced chemical vapor deposition (PECVD) process or other process. Such a film may prevent nanowires from sticking to transfersurface 206 by static charge. Furthermore, such a film may be removed after use, and reapplied to transfersurface 206, as needed, which may enable a lifespan oftransfer surface 206 to be increased. - Example embodiments are described in this section for nanostructure printing processes and systems. Embodiments are described for fabricating devices that incorporate nanostructures. These embodiments are provided for illustrative purposes, and are not intended to be limiting.
- For example,
FIG. 48 shows a block diagram of ananostructure printing system 4800, according to an example embodiment of the present invention. As shown inFIG. 48 ,system 4800 includes anassociation station 4802, aninspection station 4804, aprinting station 4806, acleaning station 4808, apanel repair station 4812, and apanel drying station 4814.Association station 4802,inspection station 4804,printing station 4806, andcleaning station 4808 form a print head pipeline portion ofsystem 4800, andprinting station 4806,panel repair station 4812, andpanel drying station 4814 form a panel pipeline portion ofsystem 4800. -
System 4800 is described with respect toflowcharts FIGS. 49 and 50 , respectively.Flowchart 4900 shows a process for the print head pipeline portion ofsystem 4800, andflowchart 5000 shows a process for the panel pipeline ofsystem 4800, according to example embodiments of the present invention. For illustrative purposes,flowcharts system 4800. Other structural and operational embodiments will be apparent to persons skilled in the relevant art(s) based on the following discussion. Not all elements ofsystem 4800 shown inFIG. 48 need be present in all embodiments, and not all steps offlowcharts -
Flowchart 4900 is first described. Instep 4902 offlowchart 4900, nanostructures are associated with transfer surfaces of print heads. For example, as shown inFIG. 48 ,association station 4802 receives a plurality ofprint heads 4818, including aprint head 4810.Association station 4802 is configured to associate nanostructures with a transfer surface of each print head of the received plurality ofprint heads 4818. The association of nanostructures withprint heads 4818 may be performed in any manner described elsewhere herein, such as described above with respect toflowchart 300 inFIG. 3 , or in other ways known to persons skilled in the relevant art(s). As shown inFIG. 48 ,association station 4802 outputs a plurality of print heads and associatednanostructures 4820. - For example,
FIG. 51 illustrates nanostructures being associated with transfer surfaces ofprint head 4810 in solution (e.g., in a liquid environment) atassociation station 4802. In an embodiment,print head 4810 is one of a plurality of print heads received atassociation station 4802. In another embodiment, asingle print head 4810 is received. In the example ofFIG. 51 ,print head 4810 has sixtransfer surfaces 206 a-206 f. In other embodiments,print head 4810 may have other numbers of transfer surfaces 206, including a two-dimensional array of transfer surfaces 206.Transfer surfaces 206 a-206 f are submerged in a nanowire solution 5106 (e.g., a nanowire ink) contained by areservoir 5104. As shown inFIG. 51 ,print head 4810 has five through-holes or openings 5108 a-5108 e, with each opening 5108 being positioned between a corresponding adjacent pair of transfer surfaces 206. Openings 5108 may be configured similarly to openings 4204 described above with respect toFIG. 42 . In embodiments,print head 4810 may include any number and configuration of openings 5108. - Although not shown in
FIG. 51 , in the current example, eachtransfer surface 206 a-206 f includes a respective pair of electrodes (e.g.,electrode pair 208 ofFIG. 2 , which may includeelectrodes FIG. 7 ). The electrodes generate an electric field (e.g.,electric field 1402 shown inFIG. 14 ) to associate one or more nanowires 5110 innanowire solution 5106 with therespective transfer surface 206. For example,FIG. 51 shows afirst nanowire 5110 a insolution 5106 that is not associated with any oftransfer surfaces 206 a-206 b. Asecond nanowire 5110 b is shown associated withsecond transfer surface 206 b. Athird nanowire 5110 c is nearby but not associated withfirst transfer surface 206 a. - During or after
step 4902,print head 4810 ofFIG. 48 may optionally be configured to flush excess nanostructures fromtransfer surfaces 206 of plurality ofprint heads 4818 atassociation station 4802. For example,FIG. 52 shows excess nanowires being flushed fromtransfer surfaces 206 a-206 f ofprint head 4810. In the example ofFIG. 51 , a fluid (e.g., solution 5106) is shown being flowed through openings 5108 a-5108 e (as indicated by arrows 5202) to flush excess nanowires 5110 fromtransfer surface 206 a-206 f. A fluid source (not shown inFIG. 52 ) configured to produce a suitable fluid pressure may be coupled to aninlet 5102 ofprint head 4810, or may be otherwise coupled toprint head 4810, to provide the fluid to flow through openings 5108 a-5108 e. A fluid velocity and flush time provided by the fluid source may be determined for a particular application. For example, fluid velocities in the range of 1-100 μm/s may be used, during a flush time of 60 minutes or less (e.g., 1 minute or less), in embodiments. - Excess nanowires 5110, such as
nanowire 5110 c, which may be desired to be flushed fromtransfer surfaces 206, are nanowires that may be weakly associated with atransfer surface 206, that may have become entangled with other nanowires 5110 that are associated, and/or that may have become otherwise attached to (but not associated with) a surface ofprint head 4810. For example,nanowire 5110 c is shown inFIG. 52 as having been flushed fromtransfer surface 206 a. - Referring back to
flowchart 4900, instep 4904, an inspection of the print heads is performed. For example, as shown inFIG. 48 ,inspection station 4804 receives plurality of print heads and associatednanostructures 4820.Inspection station 4804 is configured to perform an inspection of transfer surfaces 206 of the received plurality of print heads, and to select at least one print head of received plurality of print heads based on the inspection. As shown inFIG. 48 ,inspection station 4804 outputs at least one selected print head and associatednanostructures 4822. - For instance,
FIG. 53 shows an example ofinspection station 4804, according to an embodiment of the present invention. As shown inFIG. 53 ,inspection station 4804 has received a plurality ofprint heads 4810 a-4810 c. Each ofprint heads 4810 a-4810 c has a respective plurality oftransfer surfaces 206 a-206 f. Aninspection device 5302 is present that is configured to inspect arrangements of nanowires 5110 associated withtransfer surfaces 206 ofprint heads 4810 a-4810 c.Inspection device 5302 may be an optical inspection device (e.g., a microscope, a camera, and/or other optical inspection device), an electrical inspection device, a mechanical inspection device, and/or further type of inspection device.Inspection device 5302 may be configured to determine whether a sufficient number of nanostructures is present at eachtransfer surface 206, to determine whether an unsuitable arrangement of nanostructures is present at a transfer surface 206 (e.g., determine whether sufficient contact between electrodes is made by the present nanostructures), and/or to otherwise determine the suitability and/or unsuitability of an arrangement of nanostructures at transfer surfaces 206 ofprint heads 4810 a-4810 c. - For example, in
FIG. 53 ,inspection device 5302 may determine that an insufficient number of nanowires 5110 (e.g., no nanowires) is present attransfer surface 206 c ofprint head 4810 a, while all transfer surfaces ofprint heads inspection device 5302 determined thattransfer surface 206 c ofprint head 4810 does not have a sufficient number of associated nanowires 5110,print head 4810 a may be indicated as having failed inspection, whileprint heads - In
step 4906, one or more print heads are selected based on the inspection. One or more print heads that passed inspection instep 4904 may be selected. In the current example, becauseinspection device 5302 determined thatprint heads print head 4810 a failed inspection,print heads system 4800. Note that in an embodiment, an arrangement of nanowires 5110 at aprint head 4810 that failed inspection may be repaired. For example, in the current example, aftertransfer surface 206 c was determined (in step 4904) to be lacking a sufficient number of nanowires, one or more additional nanowires 5110 may be associated withtransfer surface 206 c. Subsequently,print head 4810 a may be re-inspected (repeat step 4904). Ifprint head 4810 a passes the re-inspection,print head 4810 a may be selected instep 4906. Example embodiments for repairing arrangements of nanostructures on surfaces (e.g., transfer surfaces, destination surfaces) are described in detail further below. - In
step 4908, the nanostructures are transferred from the selected print head(s) to a destination surface. For example, as shown inFIG. 48 ,printing station 4806 receives at least one selected print head and associatednanostructures 4822. In the current example, at least one selected print head and associatednanostructures 4822 includesprint heads Printing station 4806 also receives apanel 4816, which is an example ofdestination substrate 212 shown inFIG. 2 .Printing station 4806 is configured to transfer the nanostructures from the received at least one of the plurality of print heads to a plurality of regions of a surface ofpanel 4816. As shown inFIG. 48 ,printing station 4806 outputs a plurality ofprint heads 4824 and a panel with depositednanostructures 4828. - In embodiments,
printing station 4806 may be configured to transfer nanostructures fromprint heads 4810 topanel 4816 in any manner described elsewhere herein, such as described above with respect toflowchart 300 inFIG. 3 , or in other ways known to persons skilled in the relevant art(s). For instance,FIGS. 54-56 show views ofprinting station 4806 during a nanostructure transfer process, according to an example embodiment of the present invention. In an example embodiment, transfer surfaces 206 ofprint heads 4802 anddestination surface 210 may be coated with molecules that interact via a lock and key mechanism. One oftransfers surfaces 206 orprint heads 4802 may be coated with a first molecule, and the other of transfer surfaces 206 orprint heads 4802 may be coated with a second molecule. The first and second molecules interact according to a molecular binding process that occurs in biological systems. This type of molecular recognition could be used to perform more sophisticated multi step depositions of nanowires 5110. Such a molecular coating may be used on transfer surfaces and destination surfaces in conjunction with other nanostructure transfer embodiments described elsewhere herein. -
FIG. 54 showsprint head 4810 b andpanel 4816 insolution 5106. InFIG. 54 , one or more nanowires 5110 are associated with each oftransfer surfaces 206 a-206 f ofprint head 4810 b. InFIG. 55 ,print head 4810 b is moved adjacent topanel 4816, so that each oftransfer surfaces 206 a-206 f is aligned with a corresponding one ofregions 1902 a-1902 f ofpanel 4816. InFIG. 56 ,print head 4810 b has deposited nanowires 5110 onpanel 4816, and has withdrawn frompanel 4816. For instance, as shown inFIG. 56 ,nanowire 5110 b is deposited fromtransfer surface 206 b toregion 1904 b ofdestination surface 210 ofpanel 4816. - In
step 4910, the print heads are cleaned. For example, as shown inFIG. 48 ,cleaning station 4808 receives plurality ofprint heads 4824. In the current example, plurality ofprint heads 4824 includesprint heads 4810 a-4810 c.Cleaning station 4808 is configured to clean the received plurality ofprint heads 4824.Cleaning station 4808 may be configured to cleanprint heads 4824 in any manner, to remove any remaining nanostructures (e.g., nanostructures that were not deposited from a print head at printing station 4806) and/or to remove any further contaminants. - For instance,
FIG. 57 shows an example of cleaningstation 4808, according to an embodiment of the present invention. InFIG. 57 , afluid source 5702 may be present that outputs and/or directs a fluid to transfersurfaces 206 a-206 f, as indicated byarrows 5704, to remove/dislodge contaminants fromtransfer surfaces 206 a-206 f.Fluid source 5702 may be any mechanism for providing a fluid flow of a suitable pressure. The fluid output/directed byfluid source 5702 may besolution 5106 and/or other fluid, such a fluid configured to cleantransfer surfaces 206 a-206 f. - As shown in
FIG. 48 ,cleaning station 4808 outputs plurality ofprint heads 4818. Plurality ofprint heads 4818 may be received byassociation station 4802 for a next cycle of nanostructure printing to be performed bysystem 4800. In an embodiment, a single set of print heads may proceed from station to station insystem 4800, such that at any particular time, all print heads are at the same station. In another embodiment, at any particular time, each station may be operating on a corresponding set of print heads, which shift to a next station at predetermined time intervals. -
Flowchart 5000, which relates to a pipeline of destination panels, is now described. Instep 5002 offlowchart 5000, the nanostructures are received on the destination surface. For example, as shown inFIGS. 54-56 and described above (with respect to step 4908 of flowchart 4900), nanowires 5110 are transferred todestination surface 210 ofpanel 4816. - In
step 5004, the placement of received nanostructures on the destination surface is repaired.Step 5004 is optional. For example, as shown inFIG. 48 ,panel repair station 4812 receives panel with depositednanostructures 4828.Panel repair station 4812 is configured to perform an inspection of the nanostructures transferred to the plurality of regions of the surface of the received panel. For instance,FIGS. 58 and 59 show views of an examplepanel repair station 4812, according to embodiments of the present invention. InFIG. 58 , aninspection device 5802 is present that is configured to inspect arrangements of nanowires 5110 atregions 1904 ofpanel 4816.Inspection device 5802 may be an optical inspection device (e.g., a microscope, a camera, and/or other optical inspection device), an electrical inspection device, a mechanical inspection device, and/or further type of inspection device.Inspection device 5802 may be configured to determine whether a sufficient number of nanostructures is present at eachregion 1904, to determine whether an unsuitable arrangement of nanostructures is present at a region 1904 (e.g., sufficient contact with electrical conductors onsurface 210 is not made by the present nanostructures), and/or to otherwise determine the suitability and/or unsuitability of an arrangement of nanostructures atregions 1904 ofdestination surface 210. - For example, in
FIG. 58 ,inspection device 5802 may determine that an insufficient number of nanowires 5110 (e.g., no nanowires) is present atregion 1904 c ofpanel 4816. Becauseinspection device 5802 determined thatregion 1904 c does not have a sufficient number of nanowires 5110,region 1904 c may be indicated for repair. -
FIG. 59 shows a repair of the arrangement of nanostructures atregion 1904 c being performed. In the example ofFIG. 59 , aprint head 5902 is shown repairingregion 1904 c, by depositing one or more nanostructures, including ananowire 5110 c, onregion 1904 c. Thus, in an embodiment,print head 5902 may be configured to add one or more nanostructures to aregion 1904 in need of repair. Alternatively or additionally, if nanostructures are present in aregion 1904 in need of repair,print head 5902 may be configured to rearrange the present nanostructures (e.g., move nanostructures into contact with desired electrical conductors of the region 1904), and/or to remove one or more present nanostructures, to create a sufficient nanostructure arrangement. - As shown in
FIG. 48 ,panel repair station 4812 outputs a panel with depositednano structures 4830. - In
step 5006, the destination surface is dried. For example, as shown inFIG. 48 ,panel drying station 4814 receives panel with depositednanostructures 4830.Panel drying station 4814 is configured to dry the deposited nanostructures onpanel 4814. For instance,FIG. 60 shows an example ofpanel drying station 4814, according to an embodiment of the present invention. As shown inFIG. 60 , adryer 6002 is present.Dryer 6002 is configured to dry nanowires 5110 onpanel 4814.Dryer 6002 may be configured to dry nanowires 5110 onpanel 4814 in any suitable manner, including by radiating electromagnetic energy (e.g., infrared heat), by blowing air 6004 (as shown inFIG. 60 ), and/or in any other manner. - As shown in
FIG. 48 ,panel drying station 4814outputs panel 4816 with depositednanostructures 4826.Panel 4816 may receive further processing, such as receiving a coating for environmental protection of the deposited nanostructures.Panel 4816 withnanostructures 4826 may be an electronic device, such as a display, and/or may be incorporated into an electronic device. Examples of such electronic devices are described further below. -
Nanostructure printing system 4800 includesprinting station 4806, which in the example ofFIGS. 54-56 , performs a “wet” nanostructure transfer process (e.g., nanowires 5110 are transferred inFIGS. 54-56 inreservoir 5104 containing solution 5106) (also referred to as “wet stamping”). In an alternative embodiment, a nanostructure printing system may perform a “dry” nanostructure transfer process. For example,FIG. 61 shows ananostructure printing system 6100, according to an example embodiment of the present invention.Nanostructure printing system 6100 includes anassociation station 6102, a dryingstation 6104, a printhead repair station 6106, aprinting station 6108, acleaning station 6110, and apanel repair station 6114.Printing station 6108 ofsystem 6100 is configured to perform a dry nanostructure transfer process.Association station 6102, dryingstation 6104, printhead repair station 6106,printing station 6108, andcleaning station 6110 form a print head pipeline portion ofsystem 6100, andprinting station 6108 andpanel repair station 6114 form a panel pipeline portion ofsystem 6100. -
System 6100 is described with respect toflowcharts FIGS. 62 and 63 , respectively.Flowchart 6200 shows a process for the print head pipeline portion ofsystem 6100, andflowchart 6300 shows a process for the panel pipeline ofsystem 6100, according to example embodiments of the present invention. For illustrative purposes,flowcharts system 6100. Other structural and operational embodiments will be apparent to persons skilled in the relevant art(s) based on the following discussion. Not all elements ofsystem 6100 shown inFIG. 61 need be present in all embodiments, and not all steps offlowcharts -
Flowchart 6200 is first described. Instep 6202 offlowchart 6200, nanostructures are associated with transfer surfaces of print heads. For example, as shown inFIG. 61 ,association station 6102 receives a plurality ofprint heads 6118, including aprint head 6112.Association station 6102 is configured to associate nanostructures with a transfer surface of each print head the received plurality ofprint heads 6118. The association of nanostructures withprint heads 6118 may be performed in any manner described elsewhere herein, such as described above with respect toflowchart 300 inFIG. 3 , or in other ways known to persons skilled in the relevant art(s). For instance,association station 6102 may associate nanostructures with print heads in a similar manner as described above forassociation station 4802 ofFIG. 48 . As shown inFIG. 61 ,association station 6102 outputs a plurality of print heads and associatednanostructures 6120. - In
step 6204, the print heads are dried. For example, as shown inFIG. 61 , dryingstation 6104 receives plurality of print heads and associatednanostructures 6120.Drying station 6104 is configured to dry the transfer surfaces and associated nanostructures of the received plurality of print heads. For instance, dryingstation 6104 may include a dryer similar todryer 6002 shown inFIG. 60 , and described above, to perform drying. As shown inFIG. 61 , dryingstation 6104 outputs a dried plurality of print heads and associatednanostructures 6122. - In
step 6206, placement of nanostructures on one or more print heads is repaired.Step 6206 is optional. For example, as shown inFIG. 61 , printhead repair station 6106 receives dried plurality of print heads and associatednanostructures 6122. Printhead repair station 6106 may be configured to inspect and repair the nanostructures associated with the print heads in a similar manner aspanel repair station 4812 ofFIG. 48 , and described above. For instance, printhead repair station 6106 may include an inspection device similar toinspection device 5802 shown inFIG. 58 , to determine nanostructure arrangements on print heads in need of repair. Furthermore, printhead repair station 6106 may include a print head or other repair device, such asprint head 5902 shown inFIG. 59 , which may be used repair the determined nanostructure arrangements in need of repair, in a wet or dry manner. As shown inFIG. 61 ,panel repair station 6106 outputs a plurality of print heads and associatednanostructures 6124. - In
step 6208, the nanostructures are transferred from one or more of the print heads to a destination surface. For example, as shown inFIG. 61 ,printing station 6108 receives plurality of print heads and associatednanostructures 6124.Printing station 6108 also receives apanel 6116, which is an example ofdestination substrate 212 shown inFIG. 2 .Printing station 6108 is configured to transfer the nanostructures from the received plurality of print heads to a plurality of regions of a surface ofpanel 6116. Nanostructures may be transferred from all of the received print heads, or from a selected portion of the print heads (e.g., selected in a similar manner as described above with respect to step 4906 of flowchart 4900). In embodiments,printing station 6108 may be configured to transfer nanostructures topanel 6116 according to any dry transfer process described elsewhere herein, such as described above with respect toflowchart 300 inFIG. 3 , or in other ways known to persons skilled in the relevant art(s). For example, a difference in adhesion properties of the transfer surface of the print head and of the destination surface may be used to enable a transfer of nanostructures. The destination surface may be configured to have greater adhesion (to the nanostructures) than the transfer surface. In this manner, the nanostructures associated with the transfer surface may be brought into contact with the destination surface. As the transfer surface is moved away from the destination surface, the greater adhesion of the destination surface may cause the nanostructure to remain on the destination surface. - In an embodiment,
printing station 6108 may be configured similarly toprinting station 4806 shown inFIGS. 54-56 , but without the presence ofreservoir 5104 andsolution 5106. As shown inFIG. 61 ,printing station 6108 outputs a plurality ofprint heads 6126 and a panel with depositednanostructures 6130. - In
step 6210, the print heads are cleaned. For example, as shown inFIG. 61 ,cleaning station 6110 receives plurality ofprint heads 6126.Cleaning station 6110 is configured to clean the received plurality ofprint heads 6126.Cleaning station 6110 may be configured to cleanprint heads 6126 in any manner, to remove any remaining nanostructures (e.g., nanostructures that were not deposited from a print head at printing station 6108) and/or to remove any further contaminants. For instance, cleaningstation 6110 may be configured to clean print heads in a similar fashion as cleaningstation 4808 shown inFIG. 48 . In an example embodiment, cleaningstation 6110 may include a fluid source, such asfluid source 5702 shown inFIG. 57 , to clean the transfer surfaces ofprint heads 6126. As shown inFIG. 61 ,cleaning station 6110 outputs plurality ofprint heads 6118. Plurality ofprint heads 6118 may be received byassociation station 6102 for a next cycle of nanostructure printing to be performed bysystem 6100. In an embodiment, a single set of print heads may proceed from station to station insystem 6100, such that at any particular time, all print heads are at the same station. In another embodiment, at any particular time, each station may be operating on a corresponding set of print heads, which shift forward to the next station at predetermined time intervals. -
Flowchart 6300, which relates to a pipeline of destination panels forsystem 6100, is now described. Instep 6302 offlowchart 6300, the nanostructures are received on the destination surface. For example, as described above (with respect to step 6208 of flowchart 6200), nanostructures are transferred topanel 6116 byprinting station 6108. - In
step 6302, placement of the received nanostructures is repaired on destination surface.Step 6302 is optional. For example, as shown inFIG. 61 ,panel repair station 6114 receives panel with depositednanostructures 6130.Panel repair station 6114 is configured to perform an inspection of the nanostructures transferred to the plurality of regions of the surface of the received panel. For instance,panel repair station 6114 may be configured similarly topanel repair station 4812 described above with respect toFIG. 48 , including being configured as shown inFIGS. 58 and 59 . - As shown in
FIG. 61 ,panel repair station 6114outputs panel 6116 with depositednanostructures 6128.Panel 6116 may receive further processing, such as receiving a coating for environmental protection ofnanostructures 6128.Panel 6116 withnanostructures 6128 may be an electronic device, such as a display, and/or may be incorporated into an electronic device. Examples of such electronic devices are described further below. - This section describes images captured during a nanostructure transfer process performed according to an embodiment of the present invention.
FIG. 64 shows ananostructure transfer system 6400 used to perform the nanostructure transfer and to capture the images of the transfer. As shown inFIG. 64 ,system 6400 includesprint head 702,destination substrate 212, and animage capturing microscope 6402.Transfer surface 206 ofprint head 702 includes first andsecond electrodes spacing members 2302. InFIG. 64 ,electrodes first nanowire 1702 a (and asecond nanowire 1702 b, not visible inFIG. 64 ). First andsecond nanowires second electrodes steps FIG. 3 ).FIG. 65 shows afirst image 6500 captured bymicroscope 6402 ofsystem 6400.First image 6500 shows first andsecond nanowires second electrodes transfer surface 206 ofprint head 702. Note that in the current example,destination substrate 212 is transparent tomicroscope 6402, and thusmicroscope 6402 may capture images ofnanowires substrate 212. -
FIG. 66 shows another view ofnanostructure transfer system 6400, whereprint head 702 is moved into contact with destination substrate 212 (e.g., according to step 306 offlowchart 300 ofFIG. 3 ). Spacingmembers 2302 ontransfer surface 206 ofprint head 702 are in contact withdestination surface 210 ofsubstrate 212, to maintainprint head 702 at a predetermined distance (a height of spacing members 2302) fromsubstrate 212.FIG. 67 shows asecond image 6700 captured bymicroscope 6402 of first andsecond nanowires second electrodes print head 702 in contact with destination surface 210 (as inFIG. 66 ). -
FIG. 68 shows another view ofnanostructure transfer system 6400. InFIG. 68 ,print head 702 remains in contact with destination substrate 212 (as inFIG. 66 ). Furthermore, inFIG. 68 ,nanowire 1702 a (andnanowire 1702 b, not visible inFIG. 68 ) is transferred todestination surface 210 ofsubstrate 212.Nanowires destination surface 210 in any manner described elsewhere herein, such as according to step 308 of flowchart 300 (FIG. 3 ) described above. For example, an electric field generated by first andsecond electrodes 704 and 706 (e.g., step 304 of flowchart 300) may be removed to release first andsecond nanowires destination surface 210 may have been configured to have a charge that is opposite to a charge of first andsecond nanowires nanowires FIG. 69 shows athird image 6900 captured bymicroscope 6402 of first andsecond nanowires second nanowires FIG. 68 ). -
FIG. 70 shows another view ofnanostructure transfer system 6400. InFIG. 70 ,print head 702 is moved away from destination substrate 212 (e.g., according to step 310 offlowchart 300 inFIG. 3 ).Nanowire 1702 a (andnanowire 1702 b, not visible inFIG. 68 ) remains deposited ondestination surface 210 ofsubstrate 212.FIG. 71 shows afourth image 7100 captured bymicroscope 6402 of first andsecond nanowires second nanowires destination surface 210, andprint head 702 has been moved away from destination surface 210 (as inFIG. 70 ). Note that in each ofFIGS. 65 , 67, 69, 71,microscope 6402 is focused onnanowires FIG. 71 , first andsecond nanowires surface 206 ofprint head 702 due to the increased separation betweennanowires transfer surface 206. - Example electronic devices and systems that can be formed according to embodiments of the present invention are described below.
- Numerous electronic devices and systems can incorporate semiconductor or other type devices with thin films of nanowires and/or electrical devices deposited according the methods of the present invention. Some example applications for the present invention are described below or elsewhere herein for illustrative purposes, and are not limiting. The applications described herein can include aligned or non-aligned thin films of nanowires, and can include composite or non-composite thin films of nanowires.
- Semiconductor devices (or other type devices) can be coupled to signals of other electronic circuits, and/or can be integrated with other electronic circuits. Semiconductor devices can be formed on large substrates, which can be subsequently separated or diced into smaller substrates. Furthermore, on large substrates (i.e., substrates substantially larger than conventional semiconductor wafers), semiconductor devices formed thereon can be interconnected.
- The nanowires deposited by the processes and methods of the present invention can also be incorporated in applications requiring a single semiconductor device, and in multiple semiconductor devices. For example, the nanowires deposited by the processes and methods of the present invention are particularly applicable to large area, macro electronic substrates on which a plurality of semiconductor devices are formed. Such electronic devices can include display driving circuits for active matrix liquid crystal displays (LCDs), organic LED displays, field emission displays. Other active displays can be formed from a nanowire-polymer, quantum dots-polymer composite (the composite can function both as the emitter and active driving matrix). The nanowires deposited by the processes and methods of the present invention are also applicable to smart libraries, credit cards, large area array sensors, and radio-frequency identification (RFID) tags, including smart cards, smart inventory tags, and the like.
- The nanowires deposited by the processes and methods of the present invention are also applicable to digital and analog circuit applications. In particular, the nanowires deposited by the processes and methods of the present invention are useful in applications that require ultra large-scale integration on a large area substrate. For example, a thin film of nanowires deposited by the processes and methods of the present invention can be implemented in logic circuits, memory circuits, processors, amplifiers, and other digital and analog circuits.
- The nanowires deposited by the processes and methods of the present invention can be applied to photovoltaic applications. In such applications, a clear conducting substrate is used to enhance the photovoltaic properties of the particular photovoltaic device. For example, such a clear conducting substrate can be used as a flexible, large-area replacement for indium tin oxide (ITO) or the like. A substrate can be coated with a thin film of nanowires that is formed to have a large bandgap, i.e., greater than visible light so that it would be non-absorbing, but would be formed to have either the HOMO or LUMO bands aligned with the active material of a photovoltaic device that would be formed on top of it. Clear conductors can be located on two sides of the absorbing photovoltaic material to carry away current from the photovoltaic device. Two different nanowire materials can be chosen, one having the HOMO aligned with that of the photovoltaic material HOMO band, and the other having the LUMO aligned with the LUMO band of the photovoltaic material. The bandgaps of the two nanowires materials can be chosen to be much larger than that of the photovoltaic material. The nanowires, according to this embodiment, can be lightly doped to decrease the resistance of the thin films of nanowires, while permitting the substrate to remain mostly non-absorbing.
- Hence, a wide range of military and consumer goods can incorporate the nanowires and electrical devices deposited by the processes and methods of the present invention. For example, such goods can include personal computers, workstations, servers, networking devices, handheld electronic devices such as PDAs and palm pilots, telephones (e.g., cellular and standard), radios, televisions, electronic games and game systems, home security systems, automobiles, aircraft, boats, other household and commercial appliances, and the like.
- Exemplary embodiments of the present invention have been presented. The invention is not limited to these examples. These examples are presented herein for purposes of illustration, and not limitation. Alternatives (including equivalents, extensions, variations, deviations, etc., of those described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternatives fall within the scope and spirit of the invention.
- All publications, patents and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference.
- In an embodiment, a method for transferring nanowires to a destination surface includes providing at least one nanowire proximate to an electrode pair, generating an electric field with electrodes of the electrode pair to associate the at least one nanowire with the electrodes, aligning the electrode pair with a region of the destination surface, and depositing the at least one nanowire from the electrode pair to the region.
- The transfer surface may be configured to have a first electric charge.
- The first electric charge may apply a repulsive electrostatic force to the at least one nanowire, and the electric field may be configured to attract the at least one nanowire to the transfer surface against the repulsive electrostatic force.
- The electric field may be biased with an alternating current (AC) field to attract the at least one nanowire to the transfer surface.
- The electric field may be biased with a second AC field to enable the at least one nanowire to move toward the destination surface.
- The destination surface may be configured to have a second electric charge that is opposite the first electric charge.
- The at least one nanowire may be enabled to be attracted to the destination surface by an attractive electrostatic force of the second electric charge by reducing a distance between the at least one nanowire and the destination surface.
- The at least one nanowire may be attracted toward the destination surface with the second electric charge.
- The transfer surface may be ultrasonically vibrated to enable an attractive electrostatic force of the second electric charge to attract the at least one nanowire toward the destination surface.
- Both the transfer surface and destination surface may be ultrasonically vibrated.
- The transfer surface and destination surface may be ultrasonically vibrated synchronously.
- A vacuum may be applied from the destination surface to the transfer surface to move the at least one nanowire toward the destination surface.
- A second electric field associated with the destination surface may be generated to attract the at least one nanowire toward the destination surface.
- Generation of the electric field may be ceased.
- The destination surface may be configured to have a hydrophilic property to attract a solution containing the at least one nanowire toward the destination surface.
- The transfer surface may be configured to have a hydrophobic property to repel a solution containing the at least one nanowire.
- A solution containing the at least one nanowire may be flowed on the electrode pair.
- A rate of flow of the solution on the electrode pair may be varied.
- The electrode pair may include a first electrode and a second electrode, and the at least one nanowire may include a first nanowire. A first end of the first nanowire may be caused to be positioned adjacent to a surface of the first electrode, and a second end of the first nanowire may be caused to be positioned adjacent to a surface of the second electrode.
- The at least one nanowire may be caused to align substantially in parallel with an axis through the first and second electrodes.
- The at least one nanowire may be positioned such that the first and second ends are not in contact with the first and second electrodes.
- The region may include an electrical contact pair. The electrode pair may be contacted with the electrical contact pair.
- The electrode pair may be contacted with the destination surface.
- A cantilever that mounts a first electrode of the electrode pair may be caused to flex due to the contacting.
- A pair of cantilevers that mount the electrode pair may be caused to flex due to the contacting.
- The electrode pair may be positioned adjacent to the surface.
- The electrode pair may be removed from alignment with the region of the destination surface.
- A second at least one nanowire may be provided proximate to the electrode pair.
- A second electric field may be generated with the electrodes of the electrode pair to associate the second at least one nanowire with the electrodes. The electrode pair may be aligned with a second region of the surface. The at least one nanowire may be deposited from the electrode pair to the second region.
- The first electrode pair and a second electrode pair may be on a common transfer surface. In parallel with the providing the first at least one nanowire proximate to the first electrode pair, a second at least one nanowire proximate may be provided to the second electrode pair. In parallel with the generating the first electric field, a second electric field may be generated with second electrodes of the second electrode pair to associate the second at least one nanowire with the second electrodes. In parallel with the aligning the first electrode pair with the first region of the surface, the second electrode pair may be aligned with a second region of the surface. In parallel with the depositing the first at least one nanowire from the first electrode pair to the first region, the second at least one nanowire may be deposited from the second electrode pair to the second region.
- Uncoupled nanowires may be removed from the electrode pair.
- In another embodiment, a system for transferring nanowires to a destination may include a body having a transfer surface, an electrode pair on the transfer surface, a suspension that includes a plurality of nanowires provided proximate to the electrode pair, a signal generator coupled to the electrode pair, wherein the signal generator is configured to enable electrodes of the electrode pair to generate an electric field to associate at least one nanowire of the plurality of nanowires with the electrodes, and an alignment mechanism configured to align the electrode pair with a region of the destination surface to enable the associated at least one nanowire to be deposited from the electrode pair to the region.
- The transfer surface may have a first electric charge.
- The first electric charge may apply a repulsive electrostatic force to the at least one nanowire, and the electric field may attract the at least one nanowire to the transfer surface against the repulsive electrostatic force.
- The signal generator may bias the electric field with an alternating current (AC) field to attract the at least one nanowire to the transfer surface.
- The signal generator may bias the electric field with a second AC field to enable the associated at least one nanowire to move toward the destination surface.
- The destination surface may have a second electric charge that is opposite the first electric charge.
- The alignment mechanism may be configured to reduce a distance between the at least one nanowire and the destination surface to enable the associated at least one nanowire to be attracted to the destination surface by an attractive electrostatic force of the second electric charge.
- The associated at least one nanowire may be attracted toward the destination surface by the second electric charge.
- The system may further include an ultrasonic vibration source configured to vibrate the transfer surface to enable an attractive electrostatic force of the second electric charge to attract the associated at least one nanowire toward the destination surface.
- The ultrasonic vibration source may be configured to vibrate both the transfer surface and destination surface.
- The ultrasonic vibration source may be configured to vibrate the transfer surface and destination surface synchronously.
- The system may further include a vacuum source configured to apply a vacuum from the destination surface to the transfer surface to move the associated at least one nanowire toward the destination surface.
- The system may further include an electric field source configured to generate a second electric field associated with the destination surface to attract the associated at least one nanowire toward the destination surface.
- The signal generator may be configured to reduce an intensity of the electric field to enable the associated at least one nanowire to be attracted toward the destination surface.
- The destination surface may be configured to have a hydrophilic property to attract a fluid containing the associated at least one nanowire toward the destination surface.
- The transfer surface may be configured to have a hydrophobic property to repel the fluid containing the associated at least one nanowire.
- The system may further include a container that contains the suspension and the electrode pair.
- The suspension may be flowed over the electrode pair.
- The electrode pair may include a first electrode and a second electrode, and the at least one nanowire may include a first nanowire. The electric field may cause a first end of the first nanowire to be positioned adjacent to a surface of the first electrode, and a second end of the first nanowire to be positioned adjacent to a surface of the second electrode.
- The electric field may align the at least one nanowire substantially in parallel with an axis through the first and second electrodes.
- The electric field may position the at least one nanowire such that the first and second ends are not in contact with the first and second electrodes.
- The region may include an electrical contact pair. The alignment mechanism may be configured to contact the electrode pair with the electrical contact pair.
- The alignment mechanism may be configured contact the electrode pair with the destination surface.
- The transfer surface may have a cantilever that mounts a first electrode of the electrode pair. The cantilever is configured to flex if the electrode pair contacts the destination surface.
- The transfer surface may have a pair of cantilevers that mount first and second electrodes of the electrode pair. The pair of cantilevers is configured to flex if the electrode pair contacts the destination surface.
- The alignment mechanism may be configured to position the electrode pair adjacent to the surface.
- The system may further include a plurality of spacers on the transfer surface.
- The alignment mechanism may be configured to remove the electrode pair from alignment with the region of the destination surface after the associated at least one nanowire is deposited.
- A second electrode pair may be on the transfer surface.
- In another embodiment, a method for applying nanowires to a destination surface may include aligning an electrode pair having an associated at least one nanowire with a region of the destination surface, and depositing the at least one nanowire from the electrode pair to the region.
- In another embodiment, a system for transferring electrical devices to a destination surface may include a body having a transfer surface, an electrode pair on the transfer surface, a suspension that includes a plurality of electrical devices provided proximate to the electrode pair, a signal generator coupled to the electrode pair, wherein the signal generator is configured to enable electrodes of the electrode pair to generate an electric field to associate an electrical device of the plurality of electrical devices with the electrodes, and an alignment mechanism configured to align the electrode pair with a region of the destination surface to enable the associated electrical device to be deposited from the electrode pair to the region.
- The system may further include an ultrasonic vibration source configured to vibrate the transfer surface to enable an attractive electrostatic force to attract the associated electrical device toward the destination surface.
- The ultrasonic vibration source may be configured to vibrate both the transfer surface and destination surface.
- The ultrasonic vibration source may be configured to vibrate the transfer surface and destination surface synchronously.
- The system may further include an ultrasonic vibration source configured to vibrate the transfer surface to enable an attractive electrostatic force to attract the associated electrical device toward the destination surface.
- The ultrasonic vibration source may be configured to vibrate both the transfer surface and destination surface.
- The ultrasonic vibration source may be configured to vibrate the transfer surface and destination surface synchronously.
- In another embodiment, a method for transferring nanowires to a destination surface may include positioning a transfer surface of a print head adjacent to a destination surface, wherein a nanowire is associated with the transfer surface, reducing a distance between the transfer surface and the destination surface, receiving a fluid in at least one opening in the transfer surface from between the transfer surface and the destination surface during the reducing, and depositing the nanowire from the transfer surface to the destination surface.
- The fluid may be received in first and second openings in the transfer surface, the nanowire being associated with the transfer surface at a location substantially midway between the first and second openings.
- The first and second openings may each have a length that is greater than a length of a long axis of the nanowire.
- The lengths of the first and second openings may be positioned in the transfer surface in parallel with the long axis of the nanowire.
- A piston may be moved within each of the first and second openings to draw the fluid from between the transfer surface and the destination surface into the first and second openings.
- In another embodiment, a system for transferring nanowires to a destination surface may include a body having a transfer surface, at least one opening in the transfer surface, and an electrode pair formed on the transfer surface. The electrode pair may be configured to generate an electric field to associate a nanowire with the electrode pair. The at least one opening may be configured to receive a fluid from between the transfer surface and the destination surface.
- The at least one opening may be configured to receive the fluid from between the transfer surface and the destination surface when the transfer surface is being moved toward the destination surface.
- The at least one opening may include a first opening and a second opening. The electrode pair may be configured to associate the nanowire with the transfer surface at a location substantially midway between the first and second openings.
- The first and second openings may each have a length that is greater than a length of a long axis of the nanowire.
- The first and second openings may be positioned in the transfer surface such that the lengths of the first and second openings are configured to be parallel with the long axis of the nanowire.
- The system may further include a first piston in the first opening and a second piston in the second opening. The first and second pistons may be configured to draw the fluid from between the transfer surface and the destination surface into the first and second openings.
- In another embodiment, a method for transferring nanowires to a destination substrate may include associating nanostructures with transfer surfaces of a plurality of print heads, performing an inspection of the transfer surfaces of the plurality of print heads, selecting at least one print head of the plurality of print heads based on the inspection, and transferring the nanostructures from the selected at least one print head to a plurality of regions of a surface of a destination substrate.
- Excess nanostructures may be flushed from the transfer surfaces of the plurality of print heads.
- The selected at least one print head may be cleaned after the transferring.
- An inspection may be performed of the nanostructures transferred to the plurality of regions of the surface of the destination substrate.
- An arrangement of nanostructures transferred to a region of the surface of the destination substrate in need of repair may be determined, and the determined arrangement of nanostructures may be repaired.
- The transfer surfaces may be positioned in a suspension containing a plurality of nanostructures, and an electric field may be generated with electrodes of an electrode pair of each transfer surface to associate nanostructures with the electrode pair of each transfer surface.
- The associated nanostructures may be deposited from at least one electrode pair of the selected at least one print head to the surface of the destination substrate.
- In another embodiment, a method for transferring nanowires to a destination substrate may include associating nanostructures with transfer surfaces of a plurality of print heads, drying the transfer surfaces having associated nanostructures, performing an inspection of the dried transfer surfaces having associated nanostructures, and transferring the nanostructures from the dried transfer surfaces to a plurality of regions of a surface of the destination substrate.
- An arrangement of nanostructures associated with a transfer surface of a print head in need of repair may be determined, and the determined arrangement of nanostructures may be repaired.
- Excess nanostructures may be flushed from the transfer surfaces of the plurality of print heads prior to the drying.
- The plurality of print heads may be cleaned after the transferring.
- An inspection of the nanostructures transferred to the plurality of regions of the surface of the destination substrate may be performed.
- An arrangement of nanostructures transferred to a region of the surface of the destination substrate in need of repair may be determined, and the determined arrangement of nanostructures may be repaired.
- The transfer surfaces may be positioned in a suspension containing a plurality of nanostructures, and an electric field may be generated with electrodes of an electrode pair of each transfer surface to associate nanostructures with the electrode pair of each transfer surface.
- The associated nanostructures may be deposited from at least one electrode pair of the selected at least one print head to the surface of the destination substrate.
- In another embodiment, a system for transferring nanowires to a destination substrate may include an association station configured to receive a plurality of print heads, and to associate nanostructures with a transfer surface of each of the received plurality of print heads, a printing station configured to receive a destination substrate and at least one of the plurality of print heads, and to transfer the nanostructures from the received at least one of the plurality of print heads to a plurality of regions of a surface of the destination substrate, and a cleaning station configured to receive the plurality of print heads from the printing station, and to clean the received plurality of print heads.
- The association station may be configured to flush excess nanostructures from the transfer surfaces of the plurality of print heads.
- The system may further include a repair station configured to receive the destination substrate, and to perform an inspection of the nanostructures transferred to the plurality of regions of the surface of the destination substrate.
- The repair station may be configured to determine an arrangement of nanostructures transferred to a region of the surface of the destination substrate in need of repair based on the inspection, and to repair the determined arrangement of nano structures.
- The printing station may be configured to perform a wet transfer of the nano structures.
- The system may further include an inspection station configured to receive the plurality of print heads from the association station, to perform an inspection of the transfer surfaces of the plurality of print heads, and to select at least one print head of the plurality of print heads based on the inspection. The printing station may be configured to transfer the nanostructures from the selected at least one print head to the plurality of regions of the surface of the destination substrate.
- The system may further include a panel drying station configured to receive the destination substrate, and to dry the nanostructures transferred to the plurality of regions of the surface of the destination substrate.
- The printing station may be configured to perform a dry transfer of the nano structures.
- The system may further include a print head drying station configured to receive the plurality of print heads, and to dry the transfer surfaces and the nanostructures associated with the transfer surfaces of the plurality of print heads.
- The system may further include a repair station configured to perform an inspection of the dried transfer surfaces having associated nanostructures, to determine an arrangement of nanostructures associated with a transfer surface of a print head in need of repair based on the inspection, and to repair the determined arrangement of nano structures.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/009,675 US20110165337A1 (en) | 2007-05-07 | 2011-01-19 | Method and system for printing aligned nanowires and other electrical devices |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US91633707P | 2007-05-07 | 2007-05-07 | |
US12/114,446 US7892610B2 (en) | 2007-05-07 | 2008-05-02 | Method and system for printing aligned nanowires and other electrical devices |
US13/009,675 US20110165337A1 (en) | 2007-05-07 | 2011-01-19 | Method and system for printing aligned nanowires and other electrical devices |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/114,446 Division US7892610B2 (en) | 2007-05-07 | 2008-05-02 | Method and system for printing aligned nanowires and other electrical devices |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110165337A1 true US20110165337A1 (en) | 2011-07-07 |
Family
ID=39969798
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/114,446 Active 2029-04-28 US7892610B2 (en) | 2007-05-07 | 2008-05-02 | Method and system for printing aligned nanowires and other electrical devices |
US13/009,675 Abandoned US20110165337A1 (en) | 2007-05-07 | 2011-01-19 | Method and system for printing aligned nanowires and other electrical devices |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/114,446 Active 2029-04-28 US7892610B2 (en) | 2007-05-07 | 2008-05-02 | Method and system for printing aligned nanowires and other electrical devices |
Country Status (6)
Country | Link |
---|---|
US (2) | US7892610B2 (en) |
JP (1) | JP5606905B2 (en) |
KR (1) | KR101502870B1 (en) |
CN (1) | CN101711421A (en) |
TW (1) | TWI359784B (en) |
WO (1) | WO2009023305A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090255465A1 (en) * | 2004-08-18 | 2009-10-15 | Sheehan Paul E | Thermal control of deposition in dip pen nanolithography |
US20110309323A1 (en) * | 2010-06-21 | 2011-12-22 | Industry-Academic Cooperation Foundation, Yonsei University | Method of manufacturing nano device by arbitrarily printing nanowire devices thereon and intermediate building block useful for the method |
US20120231151A1 (en) * | 2009-11-30 | 2012-09-13 | Kyung Byung Yoon | Arrangement Apparatus and Arrangement Method for Forming Nano Particles in Shape of Pillar |
WO2022046306A3 (en) * | 2020-07-14 | 2022-04-07 | The Regents Of The University Of California | Miniature ion traps for fast, high-fidelity and scalable quantum computations |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8958917B2 (en) | 1998-12-17 | 2015-02-17 | Hach Company | Method and system for remote monitoring of fluid quality and treatment |
US9056783B2 (en) | 1998-12-17 | 2015-06-16 | Hach Company | System for monitoring discharges into a waste water collection system |
US7454295B2 (en) | 1998-12-17 | 2008-11-18 | The Watereye Corporation | Anti-terrorism water quality monitoring system |
US8920619B2 (en) | 2003-03-19 | 2014-12-30 | Hach Company | Carbon nanotube sensor |
US7892610B2 (en) | 2007-05-07 | 2011-02-22 | Nanosys, Inc. | Method and system for printing aligned nanowires and other electrical devices |
US8004018B2 (en) * | 2008-12-29 | 2011-08-23 | Nokia Corporation | Fabrication method of electronic devices based on aligned high aspect ratio nanoparticle networks |
JP2012528020A (en) * | 2009-05-26 | 2012-11-12 | ナノシス・インク. | Methods and systems for electric field deposition of nanowires and other devices |
US8029869B2 (en) * | 2009-07-10 | 2011-10-04 | Korea University Research And Business Foundation | Structure fabrication using nanoparticles |
CN102770367B (en) * | 2009-12-22 | 2015-08-19 | 昆南诺股份有限公司 | For the preparation of the method for nano thread structure |
US8377729B2 (en) * | 2010-01-19 | 2013-02-19 | Eastman Kodak Company | Forming II-VI core-shell semiconductor nanowires |
CN102372256A (en) * | 2010-08-23 | 2012-03-14 | 鸿富锦精密工业(深圳)有限公司 | Method for making nanowire element |
TWI490832B (en) * | 2010-12-16 | 2015-07-01 | Hon Hai Prec Ind Co Ltd | Self-luminous display and method for manufacturing same |
CN102229284B (en) * | 2011-04-26 | 2012-10-03 | 上海西辉机电科技有限公司 | Code printing press for pressing horizontal/vertical tear lines |
CN102244002B (en) * | 2011-07-14 | 2013-01-09 | 合肥工业大学 | Preparation method of heterojunction with metal/semiconductor nanometer wire crossing structure |
EP2562135A1 (en) * | 2011-08-22 | 2013-02-27 | ETH Zurich | Method for producing and aligning nanowires and applications of such a method |
US9968549B2 (en) * | 2012-03-23 | 2018-05-15 | King Abdullah University Of Science And Technology | Magnetically controlled permeability membranes |
US9105492B2 (en) * | 2012-05-08 | 2015-08-11 | LuxVue Technology Corporation | Compliant micro device transfer head |
US8415771B1 (en) * | 2012-05-25 | 2013-04-09 | LuxVue Technology Corporation | Micro device transfer head with silicon electrode |
US9034754B2 (en) | 2012-05-25 | 2015-05-19 | LuxVue Technology Corporation | Method of forming a micro device transfer head with silicon electrode |
DE112013003408T5 (en) * | 2012-07-06 | 2015-04-09 | Luxvue Technoly Corporation | Compliant bipolar micro device transfer head with silicon electrodes |
US8569115B1 (en) | 2012-07-06 | 2013-10-29 | LuxVue Technology Corporation | Method of forming a compliant bipolar micro device transfer head with silicon electrodes |
US9255001B2 (en) | 2012-12-10 | 2016-02-09 | LuxVue Technology Corporation | Micro device transfer head array with metal electrodes |
US9793417B2 (en) | 2013-04-12 | 2017-10-17 | The Regents Of The University Of California | Nanowire nanoelectromechanical field-effect transistors |
US20160118157A1 (en) * | 2013-05-24 | 2016-04-28 | Los Alamos National Security, Llc | Carbon nanotube composite conductors |
KR20170018718A (en) | 2015-08-10 | 2017-02-20 | 삼성전자주식회사 | Transparent electrode using amorphous alloy and method for manufacturing the same |
GB201604818D0 (en) * | 2016-03-22 | 2016-05-04 | Xtpl Sp Z O O | Method for forming structures upon a substrate |
WO2018170530A1 (en) * | 2017-03-21 | 2018-09-27 | Seachange Technology Holdings Pty Ltd | Antenna arrangement for a water craft |
CN107538012A (en) * | 2017-07-17 | 2018-01-05 | 哈尔滨工业大学深圳研究生院 | A kind of nano wire or nano-device and the metallurgical method being connected of nano metal electrode |
US10748608B2 (en) * | 2018-10-12 | 2020-08-18 | At&T Intellectual Property I, L.P. | Memristive device and method based on ion migration over one or more nanowires |
KR20210040684A (en) * | 2019-10-04 | 2021-04-14 | (주)포인트엔지니어링 | Micro led display manufacturing device and method of manufacturing micro led display |
KR102715331B1 (en) | 2019-12-17 | 2024-10-10 | 삼성디스플레이 주식회사 | Inkjet printing apparatus, method of printing dipolar elements and method of fabricating display device |
CN112378973B (en) * | 2020-10-21 | 2023-12-22 | 清华-伯克利深圳学院筹备办公室 | Production method of electronic component, preparation method of sensor and application |
Citations (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3873359A (en) * | 1971-11-26 | 1975-03-25 | Western Electric Co | Method of depositing a metal on a surface of a substrate |
US3873360A (en) * | 1971-11-26 | 1975-03-25 | Western Electric Co | Method of depositing a metal on a surface of a substrate |
US3900614A (en) * | 1971-11-26 | 1975-08-19 | Western Electric Co | Method of depositing a metal on a surface of a substrate |
US4673474A (en) * | 1984-10-16 | 1987-06-16 | Matsushita Electric Industrial Co., Ltd. | Molecular controlled structure and method of producing the same |
US4939556A (en) * | 1986-07-10 | 1990-07-03 | Canon Kabushiki Kaisha | Conductor device |
US5023139A (en) * | 1989-04-04 | 1991-06-11 | Research Corporation Technologies, Inc. | Nonlinear optical materials |
US5089545A (en) * | 1989-02-12 | 1992-02-18 | Biotech International, Inc. | Switching and memory elements from polyamino acids and the method of their assembly |
US5252835A (en) * | 1992-07-17 | 1993-10-12 | President And Trustees Of Harvard College | Machining oxide thin-films with an atomic force microscope: pattern and object formation on the nanometer scale |
US5274602A (en) * | 1991-10-22 | 1993-12-28 | Florida Atlantic University | Large capacity solid-state memory |
US5453970A (en) * | 1993-07-13 | 1995-09-26 | Rust; Thomas F. | Molecular memory medium and molecular memory disk drive for storing information using a tunnelling probe |
US5475341A (en) * | 1992-06-01 | 1995-12-12 | Yale University | Sub-nanoscale electronic systems and devices |
US5505928A (en) * | 1991-11-22 | 1996-04-09 | The Regents Of University Of California | Preparation of III-V semiconductor nanocrystals |
US5512131A (en) * | 1993-10-04 | 1996-04-30 | President And Fellows Of Harvard College | Formation of microstamped patterns on surfaces and derivative articles |
US5524092A (en) * | 1995-02-17 | 1996-06-04 | Park; Jea K. | Multilayered ferroelectric-semiconductor memory-device |
US5537075A (en) * | 1993-12-17 | 1996-07-16 | Sony Corporation | Semiconductor integrated circuit having isolated supply paths for circuit blocks |
US5539214A (en) * | 1995-02-06 | 1996-07-23 | Regents Of The University Of California | Quantum bridges fabricated by selective etching of superlattice structures |
US5581091A (en) * | 1994-12-01 | 1996-12-03 | Moskovits; Martin | Nanoelectric devices |
US5607876A (en) * | 1991-10-28 | 1997-03-04 | Xerox Corporation | Fabrication of quantum confinement semiconductor light-emitting devices |
US5620850A (en) * | 1994-09-26 | 1997-04-15 | President And Fellows Of Harvard College | Molecular recognition at surfaces derivatized with self-assembled monolayers |
US5640343A (en) * | 1996-03-18 | 1997-06-17 | International Business Machines Corporation | Magnetic memory array using magnetic tunnel junction devices in the memory cells |
US5690807A (en) * | 1995-08-03 | 1997-11-25 | Massachusetts Institute Of Technology | Method for producing semiconductor particles |
US5726524A (en) * | 1996-05-31 | 1998-03-10 | Minnesota Mining And Manufacturing Company | Field emission device having nanostructured emitters |
US5739057A (en) * | 1995-11-06 | 1998-04-14 | Tiwari; Sandip | Method of making self-aligned dual gate MOSFET with an ultranarrow channel |
US5747180A (en) * | 1995-05-19 | 1998-05-05 | University Of Notre Dame Du Lac | Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays |
US5751018A (en) * | 1991-11-22 | 1998-05-12 | The Regents Of The University Of California | Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers |
US5751156A (en) * | 1995-06-07 | 1998-05-12 | Yale University | Mechanically controllable break transducer |
US5776748A (en) * | 1993-10-04 | 1998-07-07 | President And Fellows Of Harvard College | Method of formation of microstamped patterns on plates for adhesion of cells and other biological materials, devices and uses therefor |
US5824470A (en) * | 1995-05-30 | 1998-10-20 | California Institute Of Technology | Method of preparing probes for sensing and manipulating microscopic environments and structures |
US5830538A (en) * | 1993-12-23 | 1998-11-03 | International Business Machines Corporation | Method to form a polycrystalline film on a substrate |
US5840435A (en) * | 1993-07-15 | 1998-11-24 | President And Fellows Of Harvard College | Covalent carbon nitride material comprising C2 N and formation method |
US5847565A (en) * | 1997-03-31 | 1998-12-08 | Council Of Scientific And Industrial Research | Logic device |
US5858862A (en) * | 1996-09-25 | 1999-01-12 | Sony Corporation | Process for producing quantum fine wire |
US5864823A (en) * | 1997-06-25 | 1999-01-26 | Virtel Corporation | Integrated virtual telecommunication system for E-commerce |
US5897945A (en) * | 1996-02-26 | 1999-04-27 | President And Fellows Of Harvard College | Metal oxide nanorods |
US5900160A (en) * | 1993-10-04 | 1999-05-04 | President And Fellows Of Harvard College | Methods of etching articles via microcontact printing |
US5903010A (en) * | 1997-10-29 | 1999-05-11 | Hewlett-Packard Company | Quantum wire switch and switching method |
US5908692A (en) * | 1997-01-23 | 1999-06-01 | Wisconsin Alumni Research Foundation | Ordered organic monolayers and methods of preparation thereof |
US5916642A (en) * | 1995-11-22 | 1999-06-29 | Northwestern University | Method of encapsulating a material in a carbon nanotube |
US5942443A (en) * | 1996-06-28 | 1999-08-24 | Caliper Technologies Corporation | High throughput screening assay systems in microscale fluidic devices |
US5990479A (en) * | 1997-11-25 | 1999-11-23 | Regents Of The University Of California | Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes |
US5997832A (en) * | 1997-03-07 | 1999-12-07 | President And Fellows Of Harvard College | Preparation of carbide nanorods |
US6038060A (en) * | 1997-01-16 | 2000-03-14 | Crowley; Robert Joseph | Optical antenna array for harmonic generation, mixing and signal amplification |
US6036774A (en) * | 1996-02-26 | 2000-03-14 | President And Fellows Of Harvard College | Method of producing metal oxide nanorods |
US6048616A (en) * | 1993-04-21 | 2000-04-11 | Philips Electronics N.A. Corp. | Encapsulated quantum sized doped semiconductor particles and method of manufacturing same |
US6060121A (en) * | 1996-03-15 | 2000-05-09 | President And Fellows Of Harvard College | Microcontact printing of catalytic colloids |
US6069380A (en) * | 1997-07-25 | 2000-05-30 | Regents Of The University Of Minnesota | Single-electron floating-gate MOS memory |
US6123819A (en) * | 1997-11-12 | 2000-09-26 | Protiveris, Inc. | Nanoelectrode arrays |
US6128214A (en) * | 1999-03-29 | 2000-10-03 | Hewlett-Packard | Molecular wire crossbar memory |
US6136156A (en) * | 1996-03-01 | 2000-10-24 | Virginia Commonwealth University | Nanoparticles of silicon oxide alloys |
US6143184A (en) * | 1999-03-02 | 2000-11-07 | United States Filter Corporation | Air and water purification using continuous breakpoint halogenation |
US6149819A (en) * | 1999-03-02 | 2000-11-21 | United States Filter Corporation | Air and water purification using continuous breakpoint halogenation and peroxygenation |
US6159742A (en) * | 1998-06-05 | 2000-12-12 | President And Fellows Of Harvard College | Nanometer-scale microscopy probes |
US6180239B1 (en) * | 1993-10-04 | 2001-01-30 | President And Fellows Of Harvard College | Microcontact printing on surfaces and derivative articles |
US6187165B1 (en) * | 1997-10-02 | 2001-02-13 | The John Hopkins University | Arrays of semi-metallic bismuth nanowires and fabrication techniques therefor |
US6190634B1 (en) * | 1995-06-07 | 2001-02-20 | President And Fellows Of Harvard College | Carbide nanomaterials |
US6203864B1 (en) * | 1998-06-08 | 2001-03-20 | Nec Corporation | Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube |
US6207392B1 (en) * | 1997-11-25 | 2001-03-27 | The Regents Of The University Of California | Semiconductor nanocrystal probes for biological applications and process for making and using such probes |
US6211464B1 (en) * | 1998-05-20 | 2001-04-03 | Yazaki Corporation | Grommet having resilient flange for mounting on a panel |
US6225198B1 (en) * | 2000-02-04 | 2001-05-01 | The Regents Of The University Of California | Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process |
US6231744B1 (en) * | 1997-04-24 | 2001-05-15 | Massachusetts Institute Of Technology | Process for fabricating an array of nanowires |
US6256767B1 (en) * | 1999-03-29 | 2001-07-03 | Hewlett-Packard Company | Demultiplexer for a molecular wire crossbar network (MWCN DEMUX) |
US6270074B1 (en) * | 1999-04-14 | 2001-08-07 | Hewlett-Packard Company | Print media vacuum holddown |
US6278231B1 (en) * | 1998-03-27 | 2001-08-21 | Canon Kabushiki Kaisha | Nanostructure, electron emitting device, carbon nanotube device, and method of producing the same |
US6287765B1 (en) * | 1998-05-20 | 2001-09-11 | Molecular Machines, Inc. | Methods for detecting and identifying single molecules |
US6286226B1 (en) * | 1999-09-24 | 2001-09-11 | Agere Systems Guardian Corp. | Tactile sensor comprising nanowires and method for making the same |
US6306736B1 (en) * | 2000-02-04 | 2001-10-23 | The Regents Of The University Of California | Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process |
US6314019B1 (en) * | 1999-03-29 | 2001-11-06 | Hewlett-Packard Company | Molecular-wire crossbar interconnect (MWCI) for signal routing and communications |
US6333200B1 (en) * | 1998-07-27 | 2001-12-25 | University Of Delaware | Miniaturized immunosensor assembled from colloidal particles between micropatterned electrodes |
US20020005876A1 (en) * | 2000-04-07 | 2002-01-17 | Grimes Craig A. | Apparatus and method for dispersing nano-elements to assemble a device |
US20020005294A1 (en) * | 2000-06-06 | 2002-01-17 | The Penn State Research Foundation | Electro-fluidic assembly process for integration of electronic devices onto a substrate |
US6340822B1 (en) * | 1999-10-05 | 2002-01-22 | Agere Systems Guardian Corp. | Article comprising vertically nano-interconnected circuit devices and method for making the same |
US20020013031A1 (en) * | 1999-02-09 | 2002-01-31 | Kuen-Jian Chen | Method of improving the reliability of gate oxide layer |
US6346189B1 (en) * | 1998-08-14 | 2002-02-12 | The Board Of Trustees Of The Leland Stanford Junior University | Carbon nanotube structures made using catalyst islands |
US6355198B1 (en) * | 1996-03-15 | 2002-03-12 | President And Fellows Of Harvard College | Method of forming articles including waveguides via capillary micromolding and microtransfer molding |
US20030102222A1 (en) * | 2001-11-30 | 2003-06-05 | Zhou Otto Z. | Deposition method for nanostructure materials |
US6579139B1 (en) * | 1998-02-13 | 2003-06-17 | Canon Kabushiki Kaisha | Film formation method, method for fabricating electron emitting element employing the same film, and method for manufacturing image forming apparatus employing the same element |
US20030186522A1 (en) * | 2002-04-02 | 2003-10-02 | Nanosys, Inc. | Methods of positioning and/or orienting nanostructures |
US7067328B2 (en) * | 2003-09-25 | 2006-06-27 | Nanosys, Inc. | Methods, devices and compositions for depositing and orienting nanostructures |
US7067867B2 (en) * | 2002-09-30 | 2006-06-27 | Nanosys, Inc. | Large-area nonenabled macroelectronic substrates and uses therefor |
US7100430B2 (en) * | 1994-12-22 | 2006-09-05 | Kla-Tencor Corporation | Dual stage instrument for scanning a specimen |
US7105428B2 (en) * | 2004-04-30 | 2006-09-12 | Nanosys, Inc. | Systems and methods for nanowire growth and harvesting |
US20070012980A1 (en) * | 2002-09-30 | 2007-01-18 | Nanosys, Inc. | Large-area nanoenabled macroelectronic substrates and uses therefor |
US20070026686A1 (en) * | 2005-05-27 | 2007-02-01 | Chou Stephen Y | Self-repair and enhancement of nanostructures by liquification under guiding conditions |
US20070116627A1 (en) * | 2005-01-25 | 2007-05-24 | California Institute Of Technology | Carbon nanotube compositions and devices and methods of making thereof |
US20070269924A1 (en) * | 2006-05-18 | 2007-11-22 | Basf Aktiengesellschaft | Patterning nanowires on surfaces for fabricating nanoscale electronic devices |
US20080041814A1 (en) * | 2004-07-07 | 2008-02-21 | Nanosys, Inc. | Systems and Methods for Harvesting and Integrating Nanowires |
US7338613B2 (en) * | 2001-09-10 | 2008-03-04 | Surface Logix, Inc. | System and process for automated microcontact printing |
US20090202605A1 (en) * | 2004-08-11 | 2009-08-13 | California Institute Of Technology | High aspect ratio template and method for producing same for central and peripheral nerve repair |
US20090317943A1 (en) * | 2006-07-27 | 2009-12-24 | Kyung Soo Park | Alignment of Semiconducting Nanowires on Metal Electrodes |
US20100133511A1 (en) * | 2008-11-24 | 2010-06-03 | Chongwu Zhou | Integrated Circuits Based on Aligned Nanotubes |
US7741204B2 (en) * | 2006-10-30 | 2010-06-22 | Hewlett-Packard Development Company, L.P. | Mixed-scale electronic interfaces |
US7786736B2 (en) * | 2003-08-06 | 2010-08-31 | University Of Delaware | Method and system for detecting damage in aligned carbon nanotube fiber composites using networks |
US7837913B2 (en) * | 2004-08-11 | 2010-11-23 | California Institute Of Technology | High aspect ratio template and method for producing same |
US7838865B2 (en) * | 2006-12-22 | 2010-11-23 | Palo Alto Research Center Incorporated | Method for aligning elongated nanostructures |
US20100295019A1 (en) * | 2007-02-27 | 2010-11-25 | The Regents Of The University Of California | Nanowire photodetector and image sensor with internal gain |
US20110027498A1 (en) * | 2006-05-26 | 2011-02-03 | Korea Advanced Institute Of Science And Technology | Method for fabricating field emitter electrode using array of carbon nanotubes |
US7892610B2 (en) * | 2007-05-07 | 2011-02-22 | Nanosys, Inc. | Method and system for printing aligned nanowires and other electrical devices |
US20110094315A1 (en) * | 2003-09-22 | 2011-04-28 | Mark Anthony Darty | Method and apparatus for sensing applied forces |
US8030186B2 (en) * | 2002-09-30 | 2011-10-04 | Nanosys, Inc. | Large-area nanoenabled macroelectronic substrates and uses therefor |
US20110284380A1 (en) * | 2006-11-09 | 2011-11-24 | Samuel Martin | Methods for Nanowire Alignment and Deposition |
US8871295B2 (en) * | 2006-03-08 | 2014-10-28 | Canatu Oy | Method for separating high aspect ratio molecular structures |
US8957690B2 (en) * | 2008-09-17 | 2015-02-17 | Korea Institute Of Machinery & Materials | Micro contact probe coated with nanostructure and method for manufacturing the same |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6413489B1 (en) | 1997-04-15 | 2002-07-02 | Massachusetts Institute Of Technology | Synthesis of nanometer-sized particles by reverse micelle mediated techniques |
JP2003504857A (en) | 1999-07-02 | 2003-02-04 | プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ | Apparatus using nanoscopic wire, array, and method of manufacturing the same |
US6422077B1 (en) | 2000-04-06 | 2002-07-23 | The University Of Chicago | Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor |
CA2417992C (en) | 2000-08-22 | 2010-10-19 | President And Fellows Of Harvard College | Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices |
EP1342075B1 (en) * | 2000-12-11 | 2008-09-10 | President And Fellows Of Harvard College | Device contaning nanosensors for detecting an analyte and its method of manufacture |
US6416190B1 (en) | 2001-04-27 | 2002-07-09 | University Of Chicago | Apparatus for using optical tweezers to manipulate materials |
US7455757B2 (en) * | 2001-11-30 | 2008-11-25 | The University Of North Carolina At Chapel Hill | Deposition method for nanostructure materials |
US20040026684A1 (en) | 2002-04-02 | 2004-02-12 | Nanosys, Inc. | Nanowire heterostructures for encoding information |
US6941033B2 (en) | 2002-06-25 | 2005-09-06 | National Research Council Of Canada | Method and device for manipulating microscopic quantities of material |
US6897950B2 (en) | 2002-07-16 | 2005-05-24 | East Carolina University | Laser tweezers and Raman spectroscopy systems and methods for the study of microscopic particles |
JP3880560B2 (en) * | 2003-04-07 | 2007-02-14 | 三井化学株式会社 | Carbon nanotube alignment method and composition |
US7082683B2 (en) | 2003-04-24 | 2006-08-01 | Korea Institute Of Machinery & Materials | Method for attaching rod-shaped nano structure to probe holder |
AU2003903295A0 (en) | 2003-06-30 | 2003-07-10 | Raustech Pty Ltd | Substrate for combinatorial chemistry |
WO2005017962A2 (en) | 2003-08-04 | 2005-02-24 | Nanosys, Inc. | System and process for producing nanowire composites and electronic substrates therefrom |
US7748343B2 (en) * | 2004-11-22 | 2010-07-06 | The Board Of Trustees Of The University Of Illinois | Electrohydrodynamic spraying system |
CN1830753A (en) * | 2005-03-10 | 2006-09-13 | 清华大学 | Assembling method of carbon nanometer pipe and carbon nanometer pipe device |
US7776384B2 (en) * | 2005-03-25 | 2010-08-17 | Institut National De La Recherche Scientifique | Methods and apparatuses for depositing nanometric filamentary structures |
US20060223225A1 (en) | 2005-03-29 | 2006-10-05 | Symbol Technologies, Inc. | Method, system, and apparatus for transfer of integrated circuit dies using an attractive force |
KR100740531B1 (en) * | 2005-09-22 | 2007-07-18 | 전자부품연구원 | Fabrication method for a nanowire device |
-
2008
- 2008-05-02 US US12/114,446 patent/US7892610B2/en active Active
- 2008-05-05 KR KR1020097025545A patent/KR101502870B1/en active IP Right Grant
- 2008-05-05 JP JP2010507581A patent/JP5606905B2/en active Active
- 2008-05-05 CN CN200880014974A patent/CN101711421A/en active Pending
- 2008-05-05 WO PCT/US2008/062623 patent/WO2009023305A2/en active Application Filing
- 2008-05-06 TW TW097116662A patent/TWI359784B/en active
-
2011
- 2011-01-19 US US13/009,675 patent/US20110165337A1/en not_active Abandoned
Patent Citations (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3873360A (en) * | 1971-11-26 | 1975-03-25 | Western Electric Co | Method of depositing a metal on a surface of a substrate |
US3900614A (en) * | 1971-11-26 | 1975-08-19 | Western Electric Co | Method of depositing a metal on a surface of a substrate |
US3873359A (en) * | 1971-11-26 | 1975-03-25 | Western Electric Co | Method of depositing a metal on a surface of a substrate |
US4673474A (en) * | 1984-10-16 | 1987-06-16 | Matsushita Electric Industrial Co., Ltd. | Molecular controlled structure and method of producing the same |
US4939556A (en) * | 1986-07-10 | 1990-07-03 | Canon Kabushiki Kaisha | Conductor device |
US5089545A (en) * | 1989-02-12 | 1992-02-18 | Biotech International, Inc. | Switching and memory elements from polyamino acids and the method of their assembly |
US5023139A (en) * | 1989-04-04 | 1991-06-11 | Research Corporation Technologies, Inc. | Nonlinear optical materials |
US5274602A (en) * | 1991-10-22 | 1993-12-28 | Florida Atlantic University | Large capacity solid-state memory |
US5607876A (en) * | 1991-10-28 | 1997-03-04 | Xerox Corporation | Fabrication of quantum confinement semiconductor light-emitting devices |
US5505928A (en) * | 1991-11-22 | 1996-04-09 | The Regents Of University Of California | Preparation of III-V semiconductor nanocrystals |
US5751018A (en) * | 1991-11-22 | 1998-05-12 | The Regents Of The University Of California | Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers |
US5589692A (en) * | 1992-06-01 | 1996-12-31 | Yale University | Sub-nanoscale electronic systems and devices |
US5475341A (en) * | 1992-06-01 | 1995-12-12 | Yale University | Sub-nanoscale electronic systems and devices |
US5252835A (en) * | 1992-07-17 | 1993-10-12 | President And Trustees Of Harvard College | Machining oxide thin-films with an atomic force microscope: pattern and object formation on the nanometer scale |
US6048616A (en) * | 1993-04-21 | 2000-04-11 | Philips Electronics N.A. Corp. | Encapsulated quantum sized doped semiconductor particles and method of manufacturing same |
US5453970A (en) * | 1993-07-13 | 1995-09-26 | Rust; Thomas F. | Molecular memory medium and molecular memory disk drive for storing information using a tunnelling probe |
US5840435A (en) * | 1993-07-15 | 1998-11-24 | President And Fellows Of Harvard College | Covalent carbon nitride material comprising C2 N and formation method |
US5512131A (en) * | 1993-10-04 | 1996-04-30 | President And Fellows Of Harvard College | Formation of microstamped patterns on surfaces and derivative articles |
US6180239B1 (en) * | 1993-10-04 | 2001-01-30 | President And Fellows Of Harvard College | Microcontact printing on surfaces and derivative articles |
US5900160A (en) * | 1993-10-04 | 1999-05-04 | President And Fellows Of Harvard College | Methods of etching articles via microcontact printing |
US5776748A (en) * | 1993-10-04 | 1998-07-07 | President And Fellows Of Harvard College | Method of formation of microstamped patterns on plates for adhesion of cells and other biological materials, devices and uses therefor |
US5537075A (en) * | 1993-12-17 | 1996-07-16 | Sony Corporation | Semiconductor integrated circuit having isolated supply paths for circuit blocks |
US5830538A (en) * | 1993-12-23 | 1998-11-03 | International Business Machines Corporation | Method to form a polycrystalline film on a substrate |
US5620850A (en) * | 1994-09-26 | 1997-04-15 | President And Fellows Of Harvard College | Molecular recognition at surfaces derivatized with self-assembled monolayers |
US5581091A (en) * | 1994-12-01 | 1996-12-03 | Moskovits; Martin | Nanoelectric devices |
US7100430B2 (en) * | 1994-12-22 | 2006-09-05 | Kla-Tencor Corporation | Dual stage instrument for scanning a specimen |
US5539214A (en) * | 1995-02-06 | 1996-07-23 | Regents Of The University Of California | Quantum bridges fabricated by selective etching of superlattice structures |
US5524092A (en) * | 1995-02-17 | 1996-06-04 | Park; Jea K. | Multilayered ferroelectric-semiconductor memory-device |
US5747180A (en) * | 1995-05-19 | 1998-05-05 | University Of Notre Dame Du Lac | Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays |
US5824470A (en) * | 1995-05-30 | 1998-10-20 | California Institute Of Technology | Method of preparing probes for sensing and manipulating microscopic environments and structures |
US6190634B1 (en) * | 1995-06-07 | 2001-02-20 | President And Fellows Of Harvard College | Carbide nanomaterials |
US5751156A (en) * | 1995-06-07 | 1998-05-12 | Yale University | Mechanically controllable break transducer |
US5690807A (en) * | 1995-08-03 | 1997-11-25 | Massachusetts Institute Of Technology | Method for producing semiconductor particles |
US5739057A (en) * | 1995-11-06 | 1998-04-14 | Tiwari; Sandip | Method of making self-aligned dual gate MOSFET with an ultranarrow channel |
US5916642A (en) * | 1995-11-22 | 1999-06-29 | Northwestern University | Method of encapsulating a material in a carbon nanotube |
US6036774A (en) * | 1996-02-26 | 2000-03-14 | President And Fellows Of Harvard College | Method of producing metal oxide nanorods |
US5897945A (en) * | 1996-02-26 | 1999-04-27 | President And Fellows Of Harvard College | Metal oxide nanorods |
US6136156A (en) * | 1996-03-01 | 2000-10-24 | Virginia Commonwealth University | Nanoparticles of silicon oxide alloys |
US6355198B1 (en) * | 1996-03-15 | 2002-03-12 | President And Fellows Of Harvard College | Method of forming articles including waveguides via capillary micromolding and microtransfer molding |
US6060121A (en) * | 1996-03-15 | 2000-05-09 | President And Fellows Of Harvard College | Microcontact printing of catalytic colloids |
US5640343A (en) * | 1996-03-18 | 1997-06-17 | International Business Machines Corporation | Magnetic memory array using magnetic tunnel junction devices in the memory cells |
US5726524A (en) * | 1996-05-31 | 1998-03-10 | Minnesota Mining And Manufacturing Company | Field emission device having nanostructured emitters |
US5942443A (en) * | 1996-06-28 | 1999-08-24 | Caliper Technologies Corporation | High throughput screening assay systems in microscale fluidic devices |
US5858862A (en) * | 1996-09-25 | 1999-01-12 | Sony Corporation | Process for producing quantum fine wire |
US6038060A (en) * | 1997-01-16 | 2000-03-14 | Crowley; Robert Joseph | Optical antenna array for harmonic generation, mixing and signal amplification |
US5908692A (en) * | 1997-01-23 | 1999-06-01 | Wisconsin Alumni Research Foundation | Ordered organic monolayers and methods of preparation thereof |
US5997832A (en) * | 1997-03-07 | 1999-12-07 | President And Fellows Of Harvard College | Preparation of carbide nanorods |
US5847565A (en) * | 1997-03-31 | 1998-12-08 | Council Of Scientific And Industrial Research | Logic device |
US6231744B1 (en) * | 1997-04-24 | 2001-05-15 | Massachusetts Institute Of Technology | Process for fabricating an array of nanowires |
US5864823A (en) * | 1997-06-25 | 1999-01-26 | Virtel Corporation | Integrated virtual telecommunication system for E-commerce |
US6069380A (en) * | 1997-07-25 | 2000-05-30 | Regents Of The University Of Minnesota | Single-electron floating-gate MOS memory |
US6187165B1 (en) * | 1997-10-02 | 2001-02-13 | The John Hopkins University | Arrays of semi-metallic bismuth nanowires and fabrication techniques therefor |
US5903010A (en) * | 1997-10-29 | 1999-05-11 | Hewlett-Packard Company | Quantum wire switch and switching method |
US6060724A (en) * | 1997-10-29 | 2000-05-09 | Hewlett-Packard Company | Quantum wire logic gate |
US6123819A (en) * | 1997-11-12 | 2000-09-26 | Protiveris, Inc. | Nanoelectrode arrays |
US6325904B1 (en) * | 1997-11-12 | 2001-12-04 | Protiveris, Inc. | Nanoelectrode arrays |
US6207392B1 (en) * | 1997-11-25 | 2001-03-27 | The Regents Of The University Of California | Semiconductor nanocrystal probes for biological applications and process for making and using such probes |
US5990479A (en) * | 1997-11-25 | 1999-11-23 | Regents Of The University Of California | Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes |
US6579139B1 (en) * | 1998-02-13 | 2003-06-17 | Canon Kabushiki Kaisha | Film formation method, method for fabricating electron emitting element employing the same film, and method for manufacturing image forming apparatus employing the same element |
US6278231B1 (en) * | 1998-03-27 | 2001-08-21 | Canon Kabushiki Kaisha | Nanostructure, electron emitting device, carbon nanotube device, and method of producing the same |
US6211464B1 (en) * | 1998-05-20 | 2001-04-03 | Yazaki Corporation | Grommet having resilient flange for mounting on a panel |
US6287765B1 (en) * | 1998-05-20 | 2001-09-11 | Molecular Machines, Inc. | Methods for detecting and identifying single molecules |
US6159742A (en) * | 1998-06-05 | 2000-12-12 | President And Fellows Of Harvard College | Nanometer-scale microscopy probes |
US6203864B1 (en) * | 1998-06-08 | 2001-03-20 | Nec Corporation | Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube |
US6333200B1 (en) * | 1998-07-27 | 2001-12-25 | University Of Delaware | Miniaturized immunosensor assembled from colloidal particles between micropatterned electrodes |
US6346189B1 (en) * | 1998-08-14 | 2002-02-12 | The Board Of Trustees Of The Leland Stanford Junior University | Carbon nanotube structures made using catalyst islands |
US20020013031A1 (en) * | 1999-02-09 | 2002-01-31 | Kuen-Jian Chen | Method of improving the reliability of gate oxide layer |
US6149819A (en) * | 1999-03-02 | 2000-11-21 | United States Filter Corporation | Air and water purification using continuous breakpoint halogenation and peroxygenation |
US6143184A (en) * | 1999-03-02 | 2000-11-07 | United States Filter Corporation | Air and water purification using continuous breakpoint halogenation |
US6314019B1 (en) * | 1999-03-29 | 2001-11-06 | Hewlett-Packard Company | Molecular-wire crossbar interconnect (MWCI) for signal routing and communications |
US6128214A (en) * | 1999-03-29 | 2000-10-03 | Hewlett-Packard | Molecular wire crossbar memory |
US6256767B1 (en) * | 1999-03-29 | 2001-07-03 | Hewlett-Packard Company | Demultiplexer for a molecular wire crossbar network (MWCN DEMUX) |
US6270074B1 (en) * | 1999-04-14 | 2001-08-07 | Hewlett-Packard Company | Print media vacuum holddown |
US6286226B1 (en) * | 1999-09-24 | 2001-09-11 | Agere Systems Guardian Corp. | Tactile sensor comprising nanowires and method for making the same |
US6340822B1 (en) * | 1999-10-05 | 2002-01-22 | Agere Systems Guardian Corp. | Article comprising vertically nano-interconnected circuit devices and method for making the same |
US6306736B1 (en) * | 2000-02-04 | 2001-10-23 | The Regents Of The University Of California | Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process |
US6225198B1 (en) * | 2000-02-04 | 2001-05-01 | The Regents Of The University Of California | Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process |
US20020005876A1 (en) * | 2000-04-07 | 2002-01-17 | Grimes Craig A. | Apparatus and method for dispersing nano-elements to assemble a device |
US20020005294A1 (en) * | 2000-06-06 | 2002-01-17 | The Penn State Research Foundation | Electro-fluidic assembly process for integration of electronic devices onto a substrate |
US7338613B2 (en) * | 2001-09-10 | 2008-03-04 | Surface Logix, Inc. | System and process for automated microcontact printing |
US20030102222A1 (en) * | 2001-11-30 | 2003-06-05 | Zhou Otto Z. | Deposition method for nanostructure materials |
US20030186522A1 (en) * | 2002-04-02 | 2003-10-02 | Nanosys, Inc. | Methods of positioning and/or orienting nanostructures |
US6872645B2 (en) * | 2002-04-02 | 2005-03-29 | Nanosys, Inc. | Methods of positioning and/or orienting nanostructures |
US6962823B2 (en) * | 2002-04-02 | 2005-11-08 | Nanosys, Inc. | Methods of making, positioning and orienting nanostructures, nanostructure arrays and nanostructure devices |
US7067867B2 (en) * | 2002-09-30 | 2006-06-27 | Nanosys, Inc. | Large-area nonenabled macroelectronic substrates and uses therefor |
US8030186B2 (en) * | 2002-09-30 | 2011-10-04 | Nanosys, Inc. | Large-area nanoenabled macroelectronic substrates and uses therefor |
US20070012980A1 (en) * | 2002-09-30 | 2007-01-18 | Nanosys, Inc. | Large-area nanoenabled macroelectronic substrates and uses therefor |
US7786736B2 (en) * | 2003-08-06 | 2010-08-31 | University Of Delaware | Method and system for detecting damage in aligned carbon nanotube fiber composites using networks |
US20110094315A1 (en) * | 2003-09-22 | 2011-04-28 | Mark Anthony Darty | Method and apparatus for sensing applied forces |
US20100075468A1 (en) * | 2003-09-25 | 2010-03-25 | Nanosys, Inc. | Methods, devices and compositions for depositing and orienting nanostructures |
US7754524B2 (en) * | 2003-09-25 | 2010-07-13 | Nanosys, Inc. | Methods, devices and compositions for depositing and orienting nanostructures |
US7067328B2 (en) * | 2003-09-25 | 2006-06-27 | Nanosys, Inc. | Methods, devices and compositions for depositing and orienting nanostructures |
US7105428B2 (en) * | 2004-04-30 | 2006-09-12 | Nanosys, Inc. | Systems and methods for nanowire growth and harvesting |
US20080041814A1 (en) * | 2004-07-07 | 2008-02-21 | Nanosys, Inc. | Systems and Methods for Harvesting and Integrating Nanowires |
US7339184B2 (en) * | 2004-07-07 | 2008-03-04 | Nanosys, Inc | Systems and methods for harvesting and integrating nanowires |
US7767102B2 (en) * | 2004-07-07 | 2010-08-03 | Nanosys, Inc. | Systems and methods for harvesting and integrating nanowires |
US7837913B2 (en) * | 2004-08-11 | 2010-11-23 | California Institute Of Technology | High aspect ratio template and method for producing same |
US20090202605A1 (en) * | 2004-08-11 | 2009-08-13 | California Institute Of Technology | High aspect ratio template and method for producing same for central and peripheral nerve repair |
US20070116627A1 (en) * | 2005-01-25 | 2007-05-24 | California Institute Of Technology | Carbon nanotube compositions and devices and methods of making thereof |
US7282456B2 (en) * | 2005-05-27 | 2007-10-16 | Princeton University | Self-repair and enhancement of nanostructures by liquification under guiding conditions |
US20070026686A1 (en) * | 2005-05-27 | 2007-02-01 | Chou Stephen Y | Self-repair and enhancement of nanostructures by liquification under guiding conditions |
US20080248276A1 (en) * | 2005-05-27 | 2008-10-09 | Chou Stephen Y | Self-Repair and Enhancement of Nanostructures by Liquification Under Guiding Conditions |
US8871295B2 (en) * | 2006-03-08 | 2014-10-28 | Canatu Oy | Method for separating high aspect ratio molecular structures |
US20070269924A1 (en) * | 2006-05-18 | 2007-11-22 | Basf Aktiengesellschaft | Patterning nanowires on surfaces for fabricating nanoscale electronic devices |
US20110027498A1 (en) * | 2006-05-26 | 2011-02-03 | Korea Advanced Institute Of Science And Technology | Method for fabricating field emitter electrode using array of carbon nanotubes |
US20090317943A1 (en) * | 2006-07-27 | 2009-12-24 | Kyung Soo Park | Alignment of Semiconducting Nanowires on Metal Electrodes |
US7741204B2 (en) * | 2006-10-30 | 2010-06-22 | Hewlett-Packard Development Company, L.P. | Mixed-scale electronic interfaces |
US20110284380A1 (en) * | 2006-11-09 | 2011-11-24 | Samuel Martin | Methods for Nanowire Alignment and Deposition |
US7838865B2 (en) * | 2006-12-22 | 2010-11-23 | Palo Alto Research Center Incorporated | Method for aligning elongated nanostructures |
US20100295019A1 (en) * | 2007-02-27 | 2010-11-25 | The Regents Of The University Of California | Nanowire photodetector and image sensor with internal gain |
US7892610B2 (en) * | 2007-05-07 | 2011-02-22 | Nanosys, Inc. | Method and system for printing aligned nanowires and other electrical devices |
US8957690B2 (en) * | 2008-09-17 | 2015-02-17 | Korea Institute Of Machinery & Materials | Micro contact probe coated with nanostructure and method for manufacturing the same |
US20100133511A1 (en) * | 2008-11-24 | 2010-06-03 | Chongwu Zhou | Integrated Circuits Based on Aligned Nanotubes |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090255465A1 (en) * | 2004-08-18 | 2009-10-15 | Sheehan Paul E | Thermal control of deposition in dip pen nanolithography |
US20120231151A1 (en) * | 2009-11-30 | 2012-09-13 | Kyung Byung Yoon | Arrangement Apparatus and Arrangement Method for Forming Nano Particles in Shape of Pillar |
US20110309323A1 (en) * | 2010-06-21 | 2011-12-22 | Industry-Academic Cooperation Foundation, Yonsei University | Method of manufacturing nano device by arbitrarily printing nanowire devices thereon and intermediate building block useful for the method |
US8399334B2 (en) * | 2010-06-21 | 2013-03-19 | Industry-Academic Cooperation Foundation, Yonsei University | Method of manufacturing nano device by arbitrarily printing nanowire devices thereon and intermediate building block useful for the method |
WO2022046306A3 (en) * | 2020-07-14 | 2022-04-07 | The Regents Of The University Of California | Miniature ion traps for fast, high-fidelity and scalable quantum computations |
Also Published As
Publication number | Publication date |
---|---|
TWI359784B (en) | 2012-03-11 |
US20080280069A1 (en) | 2008-11-13 |
WO2009023305A3 (en) | 2009-05-22 |
JP2010530810A (en) | 2010-09-16 |
TW200914367A (en) | 2009-04-01 |
CN101711421A (en) | 2010-05-19 |
KR101502870B1 (en) | 2015-03-17 |
JP5606905B2 (en) | 2014-10-15 |
US7892610B2 (en) | 2011-02-22 |
KR20100039276A (en) | 2010-04-15 |
WO2009023305A2 (en) | 2009-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7892610B2 (en) | Method and system for printing aligned nanowires and other electrical devices | |
US8252164B2 (en) | Methods for nanowire alignment and deposition | |
US9390951B2 (en) | Methods and systems for electric field deposition of nanowires and other devices | |
US7943491B2 (en) | Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp | |
JP5701331B2 (en) | Pattern transfer printing with dynamic control of adhesion to elastomeric stamps | |
CN101023026B (en) | Methods, devices and compositions for depositing and orienting nanostructures | |
Long et al. | Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics | |
TWI420237B (en) | Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp | |
KR100798431B1 (en) | Pattern Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp | |
US7741197B1 (en) | Systems and methods for harvesting and reducing contamination in nanowires | |
US8093494B2 (en) | Methods of making functionalized nanorods | |
EP2483919B1 (en) | Method for fabricating nanoscale interconnects | |
KR101029995B1 (en) | High Integrating Method of 1 Dimensional or 2 Dimensional Conductive Nanowires Using Charged Materials, and High Integrated Conductive Nanowires by the Same | |
KR101917927B1 (en) | Transfer method of nanostructure | |
Dattoli et al. | Hierarchical 3D Nanostructure Organization for Next-Generation Devices | |
JP2013188661A (en) | Method for manufacturing particle arranged membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NANOSYS, INC., CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:PRVP HOLDINGS, LLC;REEL/FRAME:030285/0829 Effective date: 20121221 |
|
AS | Assignment |
Owner name: NANOSYS, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:NANOSYS, INC.;REEL/FRAME:030599/0907 Effective date: 20130611 |
|
AS | Assignment |
Owner name: ONED MATERIAL LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NANOSYS, INC.;REEL/FRAME:032264/0148 Effective date: 20131231 |
|
AS | Assignment |
Owner name: MPEG LA, L.L.C., COLORADO Free format text: SECURITY INTEREST;ASSIGNOR:ONED MATERIAL LLC;REEL/FRAME:032447/0937 Effective date: 20131231 |
|
AS | Assignment |
Owner name: MPEG LA, L.L.C., MARYLAND Free format text: SECURITY INTEREST;ASSIGNOR:ONED MATERIAL LLC;REEL/FRAME:034171/0227 Effective date: 20140801 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ONED MATERIAL LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MPEG LA, L.L.C;REEL/FRAME:040373/0380 Effective date: 20161005 Owner name: ONED MATERIAL LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MPEG LA, L.L.C;REEL/FRAME:040373/0484 Effective date: 20161005 |