WO2015183008A1 - Coating method using particle alignment - Google Patents

Coating method using particle alignment Download PDF

Info

Publication number
WO2015183008A1
WO2015183008A1 PCT/KR2015/005350 KR2015005350W WO2015183008A1 WO 2015183008 A1 WO2015183008 A1 WO 2015183008A1 KR 2015005350 W KR2015005350 W KR 2015005350W WO 2015183008 A1 WO2015183008 A1 WO 2015183008A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
polymer substrate
adhesive polymer
coating
coating film
Prior art date
Application number
PCT/KR2015/005350
Other languages
French (fr)
Korean (ko)
Inventor
김재호
김효섭
박정균
최미연
Original Assignee
아주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교 산학협력단 filed Critical 아주대학교 산학협력단
Publication of WO2015183008A1 publication Critical patent/WO2015183008A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only

Definitions

  • the present invention relates to a coating method using particle alignment, and more particularly, to a coating method using particle alignment capable of coating a plurality of fine particles at a single layer level at high density using particle alignment.
  • such coating techniques include memory devices, linear and nonlinear optical devices, photovoltaic devices, photo masks, deposition masks, chemical sensors, biochemical sensors, sensors for medical molecular detection, dye-sensitized solar cells, thin film solar cells, cell culture, It can be applied to the implant surface and the like.
  • LB method The Langmuir-Blodgett (LB) method (hereinafter referred to as "LB method”) is well known as a technique for aligning and coating fine particles on a substrate.
  • LB method a solution in which fine particles are dispersed in a solvent is floated on the surface of the water and then compressed by a physical method to form a thin film.
  • the technique using this LB method is disclosed in Korean Patent Publication No. 10-2006-2146.
  • the LB method temperature, humidity, and the like must be precisely controlled so that particles can be self-assembled in a solvent. It may also affect particle migration by the surface properties (eg, hydrophobicity, charge properties, surface roughness) of the particles on the substrate. As a result, the particles may aggregate together and may not be evenly applied on the substrate. That is, there may be many areas where the particles are not applied, and where the aggregated particles meet each other, grain boundaries may be formed and many defects may be located.
  • surface properties eg, hydrophobicity, charge properties, surface roughness
  • the present invention is to solve the problems of the prior art as described above, an object of the present invention is to provide a coating method using a particle alignment that can be evenly applied particles on a substrate by a simple method.
  • Another object of the present invention is to provide a coating method using particle alignment which can form a coating film in which a plurality of particles are aligned in a predetermined pattern by a simple method.
  • Still another object of the present invention is to provide a coating method using particle alignment which can form a coating film in which heterogeneous particles are aligned in a predetermined pattern by a simple method.
  • Coating method using a particle alignment for achieving the above object, (a) preparing an adhesive polymer substrate; (b) applying a plurality of particles onto the adhesive polymer substrate to form a coating layer by coating the plurality of recesses corresponding to the plurality of particles on the surface of the adhesive polymer substrate; And (c) extending the coating film by increasing a distance between the particles of the adhesive polymer substrate on which the coating film is formed.
  • Coating method using a particle alignment in accordance with another aspect of the present invention for achieving the above object, (a) preparing an adhesive polymer substrate; (b) applying a plurality of particles onto the adhesive polymer substrate to form a coating layer by coating the plurality of recesses corresponding to the plurality of particles on the surface of the adhesive polymer substrate; (c) the adhesive force of the exposed part irradiated with the light on the surface of the adhesive polymer substrate by partially irradiating the coating film on the surface of the adhesive polymer substrate by irradiating light toward the adhesive polymer substrate with the mask having the mask pattern formed thereon; Changing the; (d) the degree of impregnation of the particles and the particles disposed in the non-exposed or exposed portions of the plurality of particles forming the coating film using the difference in adhesion between the irradiated and unirradiated portions of the adhesive polymer substrate; Removing from the adhesive polymer substrate by using an adhesive force of the removal member; And (e) extending the coating film
  • Coating method using a particle alignment for achieving the above object, (a) preparing an adhesive polymer substrate; (b) applying a plurality of first particles to the adhesive polymer substrate to apply a pressure to form a first coating layer on the surface of the adhesive polymer substrate while forming a plurality of first recesses corresponding to the plurality of first particles, respectively; step; (c) exposure to which the light on the surface of the adhesive polymer substrate is irradiated by partially exposing a region where the primary coating layer is formed on the surface of the adhesive polymer substrate by irradiating light toward the adhesive polymer substrate with a mask having a mask pattern formed thereon; Changing the adhesion of the negatives; (d) first particles disposed in the non-exposed part or the exposed part of the plurality of first particles forming the coating film by using a difference in adhesion between the irradiated and unirradiated portions of the adhesive polymer substrate; Removing from the adhesive polymer substrate by using the degree of
  • Coating method using a particle alignment for achieving the above object, (a) preparing an adhesive polymer substrate; (b) changing the adhesion of the exposed part to which the light on the surface of the adhesive polymer substrate is irradiated by applying light toward the adhesive polymer substrate with the mask on which the mask pattern is formed; (c) forming a primary coating film by coating a plurality of first particles on the adhesive polymer substrate; (d) first particles disposed in the non-exposed portion or the exposed portion of the plurality of first particles forming the primary coating layer by using a difference in adhesion between the irradiated and unirradiated portions of the adhesive polymer substrate; Removing from the adhesive polymer substrate by using the degree of impregnation of the particles and the degree of adhesion of the particle removing member; (e) applying a plurality of second particles to a place where the first particles of the adhesive polymer substrate are removed, and coating a plurality of second recesses corresponding to the plurality of second
  • Coating method using a particle alignment for achieving the above object, (a) preparing an adhesive polymer substrate; (b) applying a plurality of first particles to the adhesive polymer substrate by applying pressure to form a plurality of first recesses respectively corresponding to the plurality of first particles on the surface of the adhesive polymer substrate; (c) extending the coating film by increasing a distance between the first particles of the adhesive polymer substrate on which the coating film is formed; (d) irradiating light to the adhesive polymer substrate to expose the adhesive polymer substrate, thereby increasing the bonding force between the adhesive polymer substrate and the plurality of first particles; (e) applying a plurality of second particles to a region between the plurality of first particles on the surface of the adhesive polymer substrate, wherein the plurality of second recesses respectively correspond to the plurality of second particles on the surface of the adhesive polymer substrate; Coating to form an addition; And (f) transferring at least one of the first particles and the second particles to the transfer substrate through a difference in adh
  • a coating film is formed by applying pressure on the adhesive polymer substrate to dry particles without using a solvent or an adhesion aid.
  • the surface of the flexible adhesive polymer substrate having flexibility is deformed to surround a part of the particles under the influence of the surface tension.
  • recesses corresponding to the particles are formed on the surface of the adhesive polymer substrate, thereby improving bonding properties.
  • the reversible nature of the shape deformation of the adhesive polymer substrate surface facilitates two-dimensional movement of the particles in contact on the substrate so that the particle distribution can be easily rearranged.
  • Enhancement of particle adhesion through such shape modification lowers the dependence of the particle surface properties and the type of the polymer substrate so that particles of various surface properties can be coated in a single layer. Therefore, it is not necessary to control the environment such as temperature, humidity, and particle concentration required for self-assembly and spin coating when forming a coating film as in the prior art, and to easily coat particles having various surface properties in a wide range of environments and conditions. Can be. In addition, even when the particles exhibit a charge or easy hydrogen bonding, a single layer particle coating may be uniformly performed at a high density even when the materials are non-chargeable and hydrophobic.
  • the particles are evenly distributed on the adhesive polymer substrate by a simple method, thereby easily forming a coating layer having a high density.
  • the coating method using the particle alignment according to the present invention forms a coating film by applying pressure in a state in which dry particles are in direct contact with the adhesive polymer substrate without using a solvent, and the adhesive polymer substrate is stretched to attach to the adhesive polymer substrate.
  • the gaps between the plurality of particles it is possible to form an expanded coating film made up of a plurality of particles spaced apart from each other.
  • the extended coating film can be used by transferring to another transfer substrate.
  • the coating method using the particle alignment according to the present invention by using a mask to partially irradiate light on the adhesive polymer substrate to change the adhesion of the exposed portion of the light irradiation, using the degree of impregnation of the particles and the adhesion of the particle removal member By partially removing the particles, coating films of various patterns can be easily formed.
  • the coating method using the particle alignment according to the present invention comprises the steps of partially increasing the adhesion of the adhesive polymer substrate by exposing the adhesive polymer substrate using a mask, partially removing the particles of the adhesive polymer substrate, and new particles By repeatedly coating, increasing the adhesive polymer substrate, transferring the particles, and the like, it is possible to easily form various coating films in which various kinds of particles are arranged in a specific pattern on the adhesive polymer substrate.
  • FIG. 1A to 1G show step by step a coating method using particle alignment according to an embodiment of the present invention.
  • 2a to 2i show step by step a coating method using particle alignment according to another embodiment of the present invention.
  • Figure 3 shows another embodiment in which a coating film is formed on a transfer substrate by using a coating method using particle alignment according to the present invention.
  • Figure 4 shows another embodiment of forming a secondary coating film on the adhesive polymer substrate in the coating method using the particle alignment according to the present invention.
  • 5a to 5d show step by step another embodiment of forming a coating film of a predetermined pattern on the adhesive polymer substrate in the coating method using the particle alignment according to the present invention.
  • 6A-6D illustrate some steps of a coating method using particle alignment according to another embodiment of the present invention.
  • FIG. 7 is a photograph schematically showing an apparatus for increasing a PDMS substrate in Experimental Example 1 of the present invention.
  • FIG. 10 is a scanning electron microscope (SEM) measurement result for comparing the increased coating film and the unexpanded coating film in Experimental Example 2 of the present invention.
  • Example 11 is a SEM photograph for comparing the coating film stretched and the non-stretched coating film in Experimental Example 2 of the present invention.
  • Figure 1a to 1g is a step-by-step showing the coating method using a particle alignment according to an embodiment of the present invention, with reference to Figures 1a to 1g in detail the coating method using a particle alignment according to an embodiment of the present invention.
  • the explanation is as follows.
  • an adhesive polymer substrate 10 having a smooth surface is prepared.
  • the surface of the adhesive polymer substrate 10 may have a state in which a specific pattern or curve is not formed, and does not restrict the movement of the particles 20 (see FIG. 1C) forming the coating layer 22 (see FIG. 1C) thereon. Level of surface roughness and structure.
  • the adhesive polymer substrate 10 has a property that can be increased by the pulling force or the like.
  • the adhesive polymer substrate 10 includes various adhesive polymer materials in which adhesion is present.
  • Adhesive polymers are generally distinguished from adhesives because they do not have commonly used adhesive properties. At least the adhesive polymer has an adhesive force lower than about 0.6 kg / inch of the adhesive force of the Scotch Magic Tape (ASTM D 3330 evaluation). In addition, the adhesive polymer can maintain the shape of a solid state (substrate or film) at room temperature without a separate support.
  • the adhesive polymer material may be a silicone-based polymer material such as polydimethylsiloxane (PDMS), or a polymer for wrap, adhesion or sealing, including polyethylene (PE) or polyvinyl chloride (PVC).
  • PDMS polydimethylsiloxane
  • PVC polyvinyl chloride
  • a protective film containing a substance, a film having a gloss easily deformable in surface shape, and the like can be used.
  • PDMS which is easily controlled in hardness and easily manufactured in various forms, may be used.
  • the polymer substrate 10 may be manufactured by coating an adhesive polymer on a base substrate or by attaching an adhesive polymer in a sheet or film form.
  • the surface of the adhesive polymer substrate 10 may be provided with a pattern of a three-dimensional three-dimensional structure.
  • the adhesive polymer material generally refers to an organic polymer material including silicon in a solid state or endowed with adhesion properties through plasticizer addition or surface treatment.
  • the adhesive polymer material is generally characterized by having a low surface tension and easy deformation of the form by the linear molecular structure.
  • the excellent adhesion of such an adhesive polymer material is due to the soft (flexible) surface material and low surface tension and the like that the surface deformation in the fine region is easy.
  • the low surface tension of the adhesive polymer material has the property of broadly adhering to the particles 20 and 24 to be attached (similar to the solution wetting phenomenon), and the flexible surface is the particles 20 and 24 to be attached. Make sure there is a tight contact with the. This results in an adhesive polymer that is easily removable on a solid surface without complementary bonding strength.
  • the surface tension of silicon-based polymer materials such as PDMS is about 20 to 23 dynes / cm, close to Teflon (18 dynes / cm), which is known as the lowest surface tension material.
  • the surface tension of silicon-based polymers such as PDMS is most organic polymers (35-50 dynes / cm), natural materials ( ⁇ , 73 dynes / cm), metals (eg silver (Ag, 890 dynes /) cm), aluminum (Al, 500 dynes / cm)), inorganic oxides (eg, glass (1000 dynes / cm), iron oxide (1357 dynes / cm). Even in wraps, a large amount of plasticizer is added to improve adhesion, resulting in low surface tension.
  • the plurality of particles 20 are aligned to form the coating film 22 on the adhesive polymer substrate 10. do. This will be described in more detail as follows.
  • the plurality of particles 20 dried on the adhesive polymer substrate 10 is placed.
  • the particles dispersed in the solution are difficult to make direct contact with the adhesive polymer surface, so that the coating is not well made. Therefore, only a small amount of a solution or a volatile solvent less than the mass of the particles to be used may dry the particles during the coating operation to allow the coating operation.
  • the particles 20 may include various materials for forming the coating layer 22. That is, the particles 20 may include a polymer, an inorganic material, a metal, a magnetic material, a semiconductor, a biological material, and the like. In addition, a mixture of particles having different properties may be used as the particle 20.
  • Polymers that can be used as the particles 20 include polystyrene (PS), polymethyl methacrylate (PMMA), polyacrylate, polyvinyl chloride (PVC), polyalphastyrene, polybenzyl methacrylate, polyphenylmeta Acrylate, polydiphenyl methacrylate, polycyclohexyl methacrylate, styrene-acrylonitrile copolymer, styrene-methyl methacrylate copolymer and the like.
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • PVC polyvinyl chloride
  • PVC polyalphastyrene
  • polybenzyl methacrylate polybenzyl methacrylate
  • polyphenylmeta Acrylate polydiphenyl methacrylate
  • polycyclohexyl methacrylate polycyclohexyl methacrylate
  • styrene-acrylonitrile copolymer sty
  • Inorganic materials that can be used as the particles 20 include silicon oxide (for example, SiO 2 ), silver phosphate (for example, Ag 3 PO 4 ), titanium oxide (for example, TiO 2 ), iron oxide (for example , Fe 2 O 3 ), zinc oxide, cerium oxide, tin oxide, thallium oxide, barium oxide, aluminum oxide, yttrium oxide, zirconium oxide, copper oxide, nickel oxide and the like.
  • Metals that can be used as the particles 20 include gold, silver, copper, iron, platinum, aluminum, platinum, zinc, cerium, thallium, barium, yttrium, zirconium, tin, titanium, or alloys thereof. .
  • Semiconductors that can be used as the particles 20 include silicon, germanium, or compound semiconductors (eg, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, InSb, etc.).
  • Biomaterials that can be used as the particles 20 include coatings on particles or surfaces of proteins, peptides, ribonucleic acid (RNA), deoxyribonucleic acid (DNA), polysaccharides, oligosaccharides, lipids, cells and complex materials thereof. Particles, and particles contained therein.
  • a polymer particle coated with an antibody binding protein called protein A may be used as the particle 20.
  • Particles 20 may have a symmetrical shape, asymmetrical shape, amorphous, porous shape.
  • the particles 20 may have a spherical shape, an ellipse shape, a hemispherical shape, a cube shape, a tetrahedron, a pentagonal surface, a hexahedron, an octahedron, a columnar shape, a horn shape, and the like.
  • spherical or elliptical is preferable as the form of the particle 20 compared with other forms.
  • Such particles 20 preferably have an average particle diameter of 10 nm to 100.
  • the average particle diameter is less than 10 nm, it may be in the form of being entirely wrapped by the adhesive polymer substrate 10 during coating, it may be difficult to coat the particles 20 to a single layer level.
  • the average particle diameter of the particles 20 is less than 10 nm, the particles may agglomerate with each other even in a dry state, and it may be difficult for the particles to individually move only by a rubbing force. If the average particle diameter of the particles 20 exceeds 100, the adhesion of the particles may appear weak.
  • the present invention is not limited thereto, and the average particle diameter of the particles 20 may vary depending on a material constituting the particles 20 or a material constituting the adhesive polymer substrate 10.
  • the diameter of the particle 20 may be used as the particle diameter.
  • various measurement methods may be used. For example, average values of long and short axes may be used as particle diameters.
  • a pressure is applied on the plurality of particles 20 to form a coating film 22.
  • a method of applying pressure to the particles 20 a method of rubbing using a latex, a sponge, a hand, a rubber plate, a plastic plate, a material having a smooth surface, or the like may be used.
  • the present invention is not limited thereto, and pressure may be applied to the particles 20 by various methods.
  • the particles 20 when the particles 20 are placed on the surface of the adhesive polymer substrate 10 and then pressure is applied, the particles 20 in the pressure-applied portion are attached through the deformation of the adhesive polymer substrate 10. As a result, a plurality of recesses 12 corresponding to the particles 20 are formed in corresponding portions. Therefore, the particles 20 are aligned on the adhesive polymer substrate 10 in a state in which the particles 20 are wrapped in the recess 12.
  • the recess 12 is reversible as formed by the interaction between the particles and the substrate. That is, it may be extinguished and the position may be moved. For example, when the particles move in the rubbing process, the recesses 12 may disappear due to the elastic restoring force of the adhesive polymer substrate 10, or the positions of the recesses 12 may also be changed according to the movement of the particles 20. have. Due to this reversible action, the particles 20 can be evenly aligned ("reversible" here is a property generated by the flexibility and elastic restoring force of the surface of the adhesive polymer substrate during coating, so that the restoring force of the adhesive polymer substrate is changed over time). Broader meaning also includes weakening or extinction).
  • Particles 20 that are not bonded to the adhesive polymer substrate 10 are moved to an area where the particles 20 of the adhesive polymer substrate 10 are not coated by a rubbing force, and the like.
  • the recessed part 12 is formed by the 20.
  • the adhesive polymer substrate 10 and the particle 20 are bonded in the state in which the particle 20 is wrapped in the newly formed recess 12. Through this process, the coating film 22 having a single layer level is formed on the adhesive polymer substrate 10 at a high density.
  • the concave portion 12 may have a shape corresponding to the outer shape of the particle 20 to surround a part of the particle 20.
  • the recesses 12 may also have a spherical shape, and a portion of the particles 20 may be in close contact with the recesses 12.
  • the depth L1 of the recess 12 may vary depending on the hardness of the adhesive polymer substrate 10, the shape of the particles 20, the hardness, and environmental factors (eg, temperature). That is, as the hardness of the adhesive polymer substrate 10 increases, the depth L1 of the concave portion 12 may decrease, and as the temperature increases, the depth L1 of the concave portion 12 may increase.
  • grain 20 is 0.02-0.98.
  • the ratio L1 / D is less than 0.02, the binding force between the particles 20 and the adhesive polymer substrate 10 may not be sufficient, and when the ratio L1 / D exceeds 0.98, the particles 20 may be coated at a monolayer level. It can be difficult.
  • the ratio (L1 / D) is more preferably 0.05 to 0.6, more specifically, 0.08 to 0.4.
  • the particle 20 and the adhesive polymer substrate 10 may be better bonded.
  • the particles 20 bonded to the adhesive polymer substrate 10 may also move to an uncoated portion of the surrounding, so that the new particles 20 may be partially disposed in the hollow recesses 12 on the surface of the adhesive polymer substrate 10.
  • the coating layer 22 may be coated at a single layer level at a high density.
  • the particles 20 may be disposed such that each center has a hexagonal shape.
  • the particle 20 is non-spherical (for example, Ag 3 PO 4 ) it can be determined whether the level is a monolayer by a variety of methods. For example, when the ratio of the average value of the thickness of the coating film 22 to the average particle diameter of the top 10% of the particles 20 (that is, particles having a particle diameter of less than 10%) is 1.9 or less, the coating is performed at a single layer level. You can see that.
  • the adhesive polymer substrate 10 having the coating film 22 formed thereon is extended to extend its width. As shown in the drawing, the edges of the adhesive polymer substrate 10 are clamped by a plurality of clamps 30, and then the adhesive polymer substrate 10 is uniformly applied. Pulling in all directions can be used.
  • the two clamps 30 are shown to extend by holding both edges of the adhesive polymer substrate 10.
  • the adhesive polymer substrate 10 may be formed by four clamps 30. By holding the four edges of the), the adhesive polymer substrate 10 can be stretched.
  • the shape of the adhesive polymer substrate 10 or the shape of increasing the adhesive polymer substrate 10 may vary depending on the spacing or alignment pattern between the plurality of particles 20 as a final target.
  • the adhesive polymer substrate 10 may be uniformly expanded in all directions, the adhesive polymer substrate 10 may be extended only in the longitudinal direction, or the adhesive polymer substrate 10 may be extended only in the width direction.
  • the coating film 22 is applied by applying pressure in a state in which the dry particles 20 are in direct contact with the adhesive polymer substrate 10 without using a solvent. And forming an adhesive polymer substrate 10 to expand the interval between the plurality of particles 20 attached to the adhesive polymer substrate 10, thereby expanding the coating film composed of the plurality of particles 20 which are spaced apart from each other. (22) can be formed.
  • the extended coating film 22 may be transferred to another transfer substrate 35 and used.
  • the O 2 plasma is irradiated to etch the remaining space except for the portion where the particles are transferred.
  • a film (transfer film) of a Moth-Eye type may be manufactured.
  • the coating method using the particle alignment according to the present invention since the self-assembly of the particles in the solvent is not required when forming the coating film, it is not necessary to precisely control the temperature, humidity and the like and have a great influence on the surface properties of the particles. Do not receive. That is, the coating can be uniformly made at a high density not only when the particles are chargeable materials, but also when they are non-chargeable (ie, near charge neutral) materials. In addition, not only hydrophilic particles but also hydrophobic particles can be uniformly coated. As described above, according to the present invention, the particles 20 may be evenly distributed on the adhesive polymer substrate 10 by a simple method to form a coating layer 22 and an expanded coating layer 22 ′ having a high density. .
  • Figures 2a to 2i shows step by step the coating method using the particle alignment according to another embodiment of the present invention.
  • the adhesive polymer substrate 10 is prepared to form a primary coating layer 22 including a plurality of first particles 20 on the adhesive polymer substrate 10.
  • the process of forming the primary coating film 22 is the same as the process of forming the coating film 22 made of a plurality of particles 20 on the adhesive polymer substrate 10 in a coating method using particle alignment.
  • the surface of the adhesive polymer substrate 10 may be irradiated with light by applying a mask 40 on which the mask pattern 41 is formed, as shown in FIG. 2A.
  • the region in which the primary coating film 22 is formed is partially exposed.
  • the surface of the adhesive polymer substrate 10 is covered with the primary coating film 22 composed of the plurality of first particles 20, the irradiated light is exposed through the gap between the plurality of first particles 20. (10) can be reached and the adhesive polymer substrate 10 can be exposed.
  • the first particles 20 are made of a material that can transmit light
  • the irradiated light may pass through the first particles 20 to reach the adhesive polymer substrate 10.
  • the light includes visible light, ultraviolet light, and the like.
  • the mask 40 when the mask 40 is disposed on the adhesive polymer substrate 10, light is irradiated onto the adhesive polymer substrate 10. As shown in FIG. 2B, the light on the surface of the adhesive polymer substrate 10 is irradiated.
  • the adhesion of the exposed exposure portion 14 is greater than that of the non-exposed portion 15 that is not irradiated with light. This is because the solubility is poor and the thermal properties and the chemical resistance are significantly increased while the molecular weight is greatly increased by a reaction such as crosslinking or photodimerization by exposure upon exposure to the site. Therefore, the first particles 20 positioned in the exposed portion 14 may maintain a state of being attached to the adhesive polymer substrate 10 with a stronger bonding force than the first particles 20 disposed in the non-exposed portion 15.
  • PDMS is known to damage the methyl portion of the chemical structure when exposed to UV light, and thus, reactive groups are temporarily formed in the polymer.
  • Such functional groups have improved properties that can have adhesion with particles such as hydrogen bonds, compared to methyl groups, and chemical covalent bonds can be formed through dehydration condensation bonds.
  • the particle removing member 43 having the adhesion greater than the adhesion of the non-exposed portion 15 of the adhesive polymer substrate 10 and smaller than the adhesion of the exposed portion 14 may be formed using a primary coating film ( 22) Touch above and remove.
  • the first particles 20 disposed in the non-exposed part 15 among the plurality of first particles 20 forming the primary coating layer 22 may have a particle removal member 43. Attached to and removed from the adhesive polymer substrate 10.
  • a difference between polymer materials and adhesive strength such as polydimethylsiloxane (PDMS), polyethylene (PE, PE), polyvinyl chloride (PVC), etc.
  • the particle removing member 43 may be a general adhesive tape having an adhesive force that does not damage the substrate coated with particles, or a rubber-like material such as PDMS having a lower hardness. Do.
  • the exposed part 14 may be exposed to the adhesive polymer substrate 10. Only the first particles 20 positioned at are left, so that the first coating film 22 having a predetermined pattern is formed on the adhesive polymer substrate 10.
  • the first particles 20 and the other second particles 24 are coated on the surface of the adhesive polymer substrate 10 coated with the plurality of first particles 20.
  • the method of coating the plurality of second particles 24 is the same as the method of coating the plurality of first particles 20 on the adhesive polymer substrate 10, and the specific method thereof is as follows.
  • a plurality of dried second particles 24 are placed on the adhesive polymer substrate 10 on which the primary coating layer 22 is formed.
  • the second particles 24 a polymer, an inorganic material, a metal, a magnetic material, a semiconductor, a biological material, or the like may be used, and the specific types thereof are the same as described above.
  • pressure is applied on the plurality of second particles 24 to coat the second particles 24 on the non-exposed part 15 where the first particles 20 are not disposed.
  • the method of applying pressure to the second particles 24 is the same as the method used to coat the first particles 20 as described above, and includes latex, sponges, hands, rubber plates, plastic plates, materials having a smooth surface, and the like. A method of rubbing using may be used.
  • the mechanism in which the plurality of second particles 24 are coated on the adhesive polymer substrate 10 is the same as that of the aforementioned first particles 20 is coated on the adhesive polymer substrate 10.
  • the second particles 24 when the second particles 24 are placed on the adhesive polymer substrate 10 and then pressure is applied, the second particles 24 in the portion to which the pressure is applied are attached through the deformation of the adhesive polymer substrate 10.
  • a plurality of second recesses 17 corresponding to the second particles 24 are formed in corresponding portions of the polymer substrate 10. Accordingly, while the second particles 24 are aligned with the non-exposed portions 15 of the adhesive polymer substrate 10 while the second particles 24 are wrapped in the second recessed portions 17, the non-exposed portions 15
  • a secondary coating film 25 composed of a plurality of second particles 24 is formed.
  • the second particles 24 may be aligned and coated on the adhesive polymer substrate 10 while the second particles 24 are partially accommodated in the empty first recesses 12 from which the first particles 20 are removed. have.
  • the primary coating film 22 and the secondary coating film 25 are formed on the adhesive polymer substrate 10, as shown in FIGS. 2F and 2G, the primary coating film 22 and the secondary coating film 25 are formed.
  • the adhesive polymer substrate 10 is formed to extend its width. The method of extending the width of the adhesive polymer substrate 10 is as described above.
  • the expanded coating film 25 'consisting of a plurality of second particles 24 spaced at regular intervals, as shown in FIG. 2I. ) Can be transferred to the transfer substrate 45.
  • the adhesive polymer substrate 10 having the primary coating layer 22 formed through partial exposure and partial particle removal may be applied to the secondary coating layer 25.
  • the coating film 25 ' may be repeatedly formed.
  • the expanded primary coating layer 22 ′ and the expanded secondary coating layer 25 ′ formed on the adhesive polymer substrate 10 may be transferred together to another substrate. That is, after the adhesive polymer substrate 10 is stretched to form the expanded primary coating film 22 and the expanded secondary coating film 25, the adhesive polymer substrate 10 has a larger adhesion than the exposed portion 14 of the adhesive polymer substrate 10.
  • the transfer substrate 49 is brought into contact with the extended primary coating layer 22 and the expanded secondary coating layer 25 and removed, as shown in FIG. 3, the expanded primary coating layer 22 and the expanded secondary layer are shown.
  • the coating film in which the coating film 25 is combined in a specific pattern may be transferred to another transfer substrate 49.
  • the coating method using the particle alignment according to another embodiment of the present invention is carried out by repeatedly performing the exposure step, partial particle removal step, new particle coating step, coating film expansion step, transfer step and the like as described above, Various types of particles may be formed on the polymer substrate 10 with various coating layers each arranged in a specific pattern.
  • the alignment pattern of each particle can be varied by varying the mask pattern 41 of the mask 40 used in the exposure step.
  • the first coating film 22 is formed on the adhesive polymer substrate 10, and the plurality of first coating films 22 constituting the first coating film 22 after exposure.
  • the adhesive polymer substrate 10 is stretched in a state in which the secondary coating layer 25 is not formed thereon, thereby expanding the expanded primary.
  • the coating film 22 ' may be formed.
  • the expanded primary coating film 22 ′ may be transferred to another transfer substrate having an adhesive force greater than that of the exposure part 14.
  • FIG. 4 shows another embodiment in which the second particles 24 are coated on the adhesive polymer substrate 10 in the coating method using the particle alignment according to the present invention.
  • the concave portion is formed in the adhesive polymer substrate 10 by elastic deformation, when the particles accommodated in the concave portion are removed, the surface of the adhesive polymer substrate 10 as shown in (a) of FIG. 4. This recess may disappear and return to the smooth surface.
  • the plurality of second particles 24 are placed on the adhesive polymer substrate 10 and pressure is applied thereto.
  • the second particles 24 may be coated while the second recesses 17 (see FIG. 2E) corresponding to the second particles 24 are formed in the non-exposed parts 15.
  • the first particle 20 when the first particle 20 is removed from the first recess 12 after a long time after the primary coating film 22 is formed, as shown in FIG. Traces of the first recesses 12 or the first recesses 12 may remain on the surface of the adhesive polymer substrate 10. In this case, the newly coated second particles 24 are partially wrapped in the first recesses 12, or the adhesive polymer substrates are penetrated by digging into the adhesive polymer substrate 10 at a position corresponding to the first recesses 12. 10 may be attached.
  • Figure 5a to 5d is a step showing another embodiment of forming a coating film of a predetermined pattern on the adhesive polymer substrate in the coating method using the particle alignment according to the present invention, to form a coating film of a predetermined pattern on the adhesive polymer substrate
  • the specific method of another embodiment is as follows.
  • an adhesive polymer substrate 10 having a smooth surface is prepared, and the surface of the adhesive polymer substrate 10 is irradiated by applying light to the mask 50 on which the mask pattern 51 is formed. Partially exposed.
  • the adhesive polymer substrate 10 is the same as described above, and the light exposing the adhesive polymer substrate 10 is also the same as described above.
  • the mask 50 when the mask 50 is disposed on the adhesive polymer substrate 10, light is irradiated onto the adhesive polymer substrate 10, and as shown in FIG. 5B, light is emitted on the surface of the adhesive polymer substrate 10.
  • the adhesion of the exposed exposure portion 14 is greater than the adhesion of the non-exposed portion 15 that is not irradiated with light.
  • the plurality of particles 20 After exposing the adhesive polymer substrate 10 to light to form the exposed portion 14, as shown in FIG. 5C, the plurality of particles 20 are aligned to form a coating film 22 on the adhesive polymer substrate 10. To form.
  • the kind of particle 20 and the specific method of forming the coating film 22 from the some particle 20 are as having mentioned above.
  • the particles 20 are positioned on the exposed portion 14.
  • the binding force of the particles 20 to the adhesive polymer substrate 10 is greater than the bonding force of the particles 20 positioned on the non-exposed part 15 to the adhesive polymer substrate 10, and thus the particles positioned on the exposed part 14. 20 is more firmly bonded to the adhesive polymer substrate 10 than the particles 20 located in the non-exposed part 15.
  • the particle removing member 43 (see FIG. 2C) having an adhesion force greater than that of the non-exposed portion 15 of the adhesive polymer substrate 10 and smaller than that of the exposure portion 14 is provided. If the particles 20 disposed on the non-exposed part 15 are removed from the plurality of particles 20 forming the coating film 22 by using the coating film 22, the coating film 22 having a pattern corresponding to the exposure pattern may be formed.
  • various kinds of particles are arranged on the adhesive polymer substrate 10 in a specific pattern.
  • a coating film may be formed, or the coating film made of various particles or formed in various patterns may be transferred to another substrate.
  • stretching the adhesive polymer substrate 10 only the expanded secondary coating film 25 '(see FIG. 2G) is transferred to another substrate, or the expanded primary Both the coating film 22 '(see FIG. 2G) and the expanded secondary coating film 25' (see FIG. 2G) can be transferred to another substrate.
  • Figures 6a to 6d shows some steps of the coating method using a particle alignment according to another embodiment of the present invention.
  • a primary coating layer 22 including a plurality of first particles 20 is formed on the adhesive polymer substrate 10, and the adhesive polymer substrate 10 is stretched to increase adhesion.
  • a process of forming the expanded primary coating layer 22 ′ consisting of a plurality of first particles 20 having a spaced apart from each other on the polymer substrate 10 is as shown in FIGS. 1A to 1E.
  • the adhesive polymer substrate 10 is stretched to form an expanded primary coating film 22 ′ on the adhesive polymer substrate 10, and then shown in FIG. 6A. As shown, light is directed toward the expanded primary coating layer 22 ′ on the adhesive polymer substrate 10. At this time, the adhesive force of the exposed portion 14 irradiated with light on the surface of the adhesive polymer substrate 10 is increased to increase the bonding force of the plurality of first particles 20 in the adhesive polymer substrate 10. In this state, as shown in FIG.
  • An adhesive polymer substrate made of PDMS formed from Sylgard 184 (Dow Corning, USA) containing 20 wt% of a curing agent was prepared in a 15 cm diameter Petri dish.
  • UV was applied under an air atmosphere for 30 minutes to improve the surface hardness of the adhesive polymer substrate for uniform coating of the particles.
  • 120 nm SiO 2 particles were placed on the adhesive polymer substrate, and then the particles were coated on the surface of the adhesive polymer substrate by a single layer using a sponge wrapped with a latex film.
  • a 120 nm SiO 2 coating film was blown with nitrogen gas to remove particles in a portion where a multi layer was formed.
  • the adhesive polymer substrate is removed in a petri dish, and then fixed between the devices 1 and 2 of FIG. 7 and then coupled with the device 3 and 4 of FIG. 7 to increase the substrate.
  • the resin containing the ultraviolet curable resin was placed on the adhesive polymer substrate and the SiO 2 coating layer, and then the resin was cured by covering the OHP film and curing in an oven for 5 minutes and then irradiating with UV for 60 minutes.
  • the adhesive polymer substrate was removed to complete the manufacture of an embossed coating substrate in which SiO 2 particles on an OHP film were transferred while the SiO 2 coating layer coated on the substrate and the substrate were elongated.
  • FIG. 8 is a result of measuring a scanning electron microscope (SEM) to compare the coating film and the uncoated coating film.
  • SEM scanning electron microscope
  • An adhesive polymer substrate made of PDMS formed from Sylgard 184 (Dow Corning, USA) containing 3 wt% of a curing agent was prepared in a 15 cm diameter Petri dish.
  • UV was applied under an air atmosphere for 30 minutes to improve the surface hardness of the adhesive polymer substrate for uniform coating of the particles.
  • the adhesive polymer substrate was removed in a petri dish, and then fixed between the devices 1 and 2 of FIG. 7 and then combined with the device 3 and 4 of FIG. 7 to increase the substrate.
  • the resin containing the ultraviolet curable resin was placed on the adhesive polymer substrate and the SiO 2 coating layer, and then the resin was cured by covering the OHP film and curing in an oven for 5 minutes and then irradiating with UV for 60 minutes.
  • the adhesive polymer substrate was removed to complete the manufacture of an embossed coating substrate in which SiO 2 particles on an OHP film were transferred while the SiO 2 coating layer coated on the substrate and the substrate were elongated.
  • FIG. 10 is a result of measuring a scanning electron microscope (SEM) to compare the coating film and the coating film not stretched, and as shown in the results of FIG. 10, in the case of the present invention, after the particles are coated on the adhesive polymer substrate, It was confirmed that the coated substrate which was transferred after being stretched could be prepared.
  • SEM image on the right side of FIG. 11, which was extended by transferring the substrate was increased compared to the SEM image on the left side of FIG.
  • a coating layer composed of a plurality of particles is patterned, an adhesive polymer substrate is exposed using a mask, the patterned coating layer is firmly attached onto the adhesive polymer substrate, and then new particles are patterned coating layer.
  • the various types of particles can be easily formed on the adhesive polymer substrate, each of which is arranged in a specific pattern, and the various coating films formed can be transferred to another transfer substrate, which is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to a coating method using particle alignment, capable of coating, at a high density, a plurality of fine particles in a single layer by using particle alignment. The coating method using particle alignment, according to the present invention, comprises the steps of: (a) preparing a tight adhesion-type polymer substrate; (b) forming a coating film by coating while forming, on the surface of the tight adhesion-type substrate, a plurality of concave parts which respectively correspond to each of the plurality of particles, by applying pressure to the plurality of particles; (c) expanding the coating film by extending the tight adhesion-type polymer substrate on which the coating film has been formed to increase the gap between the plurality of particles coated on the tight adhesion-type polymer substrate; and (d) transferring the expanded coating film on a transfer substrate having greater adhesive force than the tight adhesion-type polymer substrate.

Description

입자 정렬을 이용한 코팅 방법Coating Method Using Particle Alignment
본 발명은 입자 정렬을 이용한 코팅 방법에 관한 것으로, 더욱 상세하게는, 입자 정렬을 이용하여 높은 밀도로 복수의 미세 입자를 단층 수준으로 코팅할 수 있는 입자 정렬을 이용한 코팅 방법에 관한 것이다.The present invention relates to a coating method using particle alignment, and more particularly, to a coating method using particle alignment capable of coating a plurality of fine particles at a single layer level at high density using particle alignment.
나노미터 수준 또는 마이크로미터 수준의 미세 입자를 기재 위에 정렬하여 코팅하는 기술이 다양한 분야에서 요구되어 있다. 일례로, 이러한 코팅 기술은 기억 소자, 선형 및 비선형 광학 소자, 광전기 소자, 포토 마스크, 증착 마스크, 화학적 센서, 생화학적 센서, 의학적 분자 검출용 센서, 염료 감응 태양 전지, 박막 태양 전지, 세포 배양, 임플란트 표면 등에 적용될 수 있다.There is a need in the art for a technique of arranging and coating nanoparticle-level or micrometer-level fine particles on a substrate. In one example, such coating techniques include memory devices, linear and nonlinear optical devices, photovoltaic devices, photo masks, deposition masks, chemical sensors, biochemical sensors, sensors for medical molecular detection, dye-sensitized solar cells, thin film solar cells, cell culture, It can be applied to the implant surface and the like.
미세 입자를 기재 위에서 정렬하여 코팅하는 기술로는 랭뮤어-블로드젯(Langmuir-Blodgett, LB) 방법(이하 "LB 방법")이 잘 알려져 있다. LB 방법에서는 용매 내에 미세 입자를 분산시킨 용액을 수면 위에 띄운 후에 물리적인 방법으로 압축하여 박막을 형성한다. 이러한 LB 방법을 이용한 기술은 국내공개특허 제10-2006-2146호 등에 개시되어 있다.The Langmuir-Blodgett (LB) method (hereinafter referred to as "LB method") is well known as a technique for aligning and coating fine particles on a substrate. In the LB method, a solution in which fine particles are dispersed in a solvent is floated on the surface of the water and then compressed by a physical method to form a thin film. The technique using this LB method is disclosed in Korean Patent Publication No. 10-2006-2146.
그런데 LB 방법에서는 용매 내에서 입자들이 자기 조립될 수 있도록 온도, 습도 등을 정밀하게 조절하여야 한다. 또한 기재 위에서 입자들의 표면 특성(예를 들어, 소수성, 전하 특성, 표면 거칠기) 등에 의하여 입자 이동에 영향을 미칠 수 있다. 이에 따라 입자가 서로 뭉쳐서 기판 위에 고르게 도포되지 않을 수 있다. 즉, 입자가 도포되지 않은 영역이 많을 수 있고, 뭉쳐진 입자가 서로 만나는 곳에서는 결정립계(grain boundary)가 형성되어 많은 결함이 위치할 수 있다.However, in the LB method, temperature, humidity, and the like must be precisely controlled so that particles can be self-assembled in a solvent. It may also affect particle migration by the surface properties (eg, hydrophobicity, charge properties, surface roughness) of the particles on the substrate. As a result, the particles may aggregate together and may not be evenly applied on the substrate. That is, there may be many areas where the particles are not applied, and where the aggregated particles meet each other, grain boundaries may be formed and many defects may be located.
본 발명은 상술한 것과 같은 종래 기술의 문제를 해결하기 위한 것으로, 본 발명의 목적은 간단한 방법에 의하여 입자를 기판 위에 고르게 도포할 수 있는 입자 정렬을 이용한 코팅 방법을 제공하는 것이다.The present invention is to solve the problems of the prior art as described above, an object of the present invention is to provide a coating method using a particle alignment that can be evenly applied particles on a substrate by a simple method.
본 발명의 다른 목적은 간단한 방법에 의하여 복수의 입자가 일정한 패턴으로 정렬된 코팅막을 형성할 수 있는 입자 정렬을 이용한 코팅 방법을 제공하는 것이다.Another object of the present invention is to provide a coating method using particle alignment which can form a coating film in which a plurality of particles are aligned in a predetermined pattern by a simple method.
본 발명의 또 다른 목적은 간단한 방법에 의하여 이종의 입자들이 각각 일정한 패턴으로 정렬된 코팅막을 형성할 수 있는 입자 정렬을 이용한 코팅 방법을 제공하는 것이다.Still another object of the present invention is to provide a coating method using particle alignment which can form a coating film in which heterogeneous particles are aligned in a predetermined pattern by a simple method.
상기 목적을 달성하기 위한 본 발명의 일측면에 따른 입자 정렬을 이용한 코팅 방법은, (a) 밀착성 고분자 기판을 준비하는 준비 단계; (b) 상기 밀착성 고분자 기판 위에 복수의 입자를 압력을 가하여 상기 밀착성 고분자 기판 표면에 상기 복수의 입자에 각기 대응하는 복수의 오목부가 형성되도록 하면서 코팅하여 코팅막을 형성하는 단계; 및 (c) 상기 코팅막이 형성된 상기 밀착성 고분자 기판의 상기 입자 간 사이간격을 늘려 상기 코팅막을 확장시키는 단계를 포함한다.Coating method using a particle alignment according to an aspect of the present invention for achieving the above object, (a) preparing an adhesive polymer substrate; (b) applying a plurality of particles onto the adhesive polymer substrate to form a coating layer by coating the plurality of recesses corresponding to the plurality of particles on the surface of the adhesive polymer substrate; And (c) extending the coating film by increasing a distance between the particles of the adhesive polymer substrate on which the coating film is formed.
상기 목적을 달성하기 위한 본 발명의 다른 측면에 따른 입자 정렬을 이용한 코팅 방법은, (a) 밀착성 고분자 기판을 준비하는 준비 단계; (b) 상기 밀착성 고분자 기판 위에 복수의 입자를 압력을 가하여 상기 밀착성 고분자 기판 표면에 상기 복수의 입자에 각기 대응하는 복수의 오목부가 형성되도록 하면서 코팅하여 코팅막을 형성하는 단계; (c) 마스크 패턴이 형성된 마스크를 대고 상기 밀착성 고분자 기판을 향해 빛을 조사하여 상기 밀착성 고분자 기판 표면의 상기 코팅막이 형성된 영역을 부분적으로 노광함으로써, 상기 밀착성 고분자 기판 표면의 빛이 조사된 노광부의 부착력을 변화시키는 단계; (d) 상기 밀착성 고분자 기판의 빛이 조사된 부분과 조사되지 않은 부분의 부착력 차이를 이용하여 상기 코팅막을 형성하는 상기 복수의 입자에서 비노광부 또는 노광부에 배치된 입자들을 입자의 함침정도 및 입자 제거부재의 부착력 정도를 이용하여 상기 밀착성 고분자 기판으로부터 제거하는 단계; 및 (e) 상기 코팅막이 형성된 상기 밀착성 고분자 기판의 상기 입자 간 사이간격을 늘려 상기 코팅막을 확장시키는 단계를 포함한다.Coating method using a particle alignment in accordance with another aspect of the present invention for achieving the above object, (a) preparing an adhesive polymer substrate; (b) applying a plurality of particles onto the adhesive polymer substrate to form a coating layer by coating the plurality of recesses corresponding to the plurality of particles on the surface of the adhesive polymer substrate; (c) the adhesive force of the exposed part irradiated with the light on the surface of the adhesive polymer substrate by partially irradiating the coating film on the surface of the adhesive polymer substrate by irradiating light toward the adhesive polymer substrate with the mask having the mask pattern formed thereon; Changing the; (d) the degree of impregnation of the particles and the particles disposed in the non-exposed or exposed portions of the plurality of particles forming the coating film using the difference in adhesion between the irradiated and unirradiated portions of the adhesive polymer substrate; Removing from the adhesive polymer substrate by using an adhesive force of the removal member; And (e) extending the coating film by increasing a distance between the particles of the adhesive polymer substrate on which the coating film is formed.
상기 목적을 달성하기 위한 본 발명의 또 다른 측면에 따른 입자 정렬을 이용한 코팅 방법은, (a) 밀착성 고분자 기판을 준비하는 준비 단계; (b) 상기 밀착성 고분자 기판 위에 복수의 제 1 입자를 압력을 가하여 상기 밀착성 고분자 기판 표면에 상기 복수의 제 1 입자에 각기 대응하는 복수의 제 1 오목부가 형성되도록 하면서 코팅하여 1차 코팅막을 형성하는 단계; (c) 마스크 패턴이 형성된 마스크를 대고 상기 밀착성 고분자 기판을 향해 빛을 조사하여 상기 밀착성 고분자 기판 표면의 상기 1차 코팅막이 형성된 영역을 부분적으로 노광함으로써, 상기 밀착성 고분자 기판 표면의 빛이 조사된 노광부의 부착력을 변화시키는 단계; (d) 상기 밀착성 고분자 기판의 빛이 조사된 부분과 조사되지 않은 부분의 부착력 차이를 이용하여 상기 코팅막을 형성하는 상기 복수의 제 1 입자에서 비노광부 또는 노광부에 배치된 제 1 입자들을 입자의 함침정도 및 입자 제거부재의 부착력 정도를 이용하여 상기 밀착성 고분자 기판으로부터 제거하는 단계; (e) 상기 밀착성 고분자 기판의 상기 제 1 입자가 제거된 곳에 복수의 제 2 입자를 압력을 가하여 상기 복수의 제 2 입자에 각기 대응하는 복수의 제 2 오목부가 형성되도록 하면서 코팅하여 2차 코팅막을 형성하는 단계; (f) 상기 1차 코팅막 및 상기 2차 코팅막이 형성된 상기 밀착성 고분자 기판의 상기 입자간 사이 간격을 늘려 상기 1차 코팅막 및 상기 2차 코팅막을 확장시키는 단계; 및 (g) 상기 밀착성 고분자 기판의 비노광부와 노광부의 부착력 차이를 통해 전사 기판에 상기 확장된 1차 코팅막 및 2차 코팅막 중 적어도 하나를 전사하는 단계를 포함한다.Coating method using a particle alignment according to another aspect of the present invention for achieving the above object, (a) preparing an adhesive polymer substrate; (b) applying a plurality of first particles to the adhesive polymer substrate to apply a pressure to form a first coating layer on the surface of the adhesive polymer substrate while forming a plurality of first recesses corresponding to the plurality of first particles, respectively; step; (c) exposure to which the light on the surface of the adhesive polymer substrate is irradiated by partially exposing a region where the primary coating layer is formed on the surface of the adhesive polymer substrate by irradiating light toward the adhesive polymer substrate with a mask having a mask pattern formed thereon; Changing the adhesion of the negatives; (d) first particles disposed in the non-exposed part or the exposed part of the plurality of first particles forming the coating film by using a difference in adhesion between the irradiated and unirradiated portions of the adhesive polymer substrate; Removing from the adhesive polymer substrate by using the degree of impregnation and the degree of adhesion of the particle removing member; (e) applying a plurality of second particles to a place where the first particles of the adhesive polymer substrate are removed, and coating a plurality of second recesses corresponding to the plurality of second particles to form a second coating layer. Forming; (f) extending the primary coating film and the secondary coating film by increasing a distance between the particles of the adhesive polymer substrate on which the primary coating film and the secondary coating film are formed; And (g) transferring at least one of the extended primary coating layer and the secondary coating layer to the transfer substrate through a difference in adhesion between the non-exposed portion and the exposed portion of the adhesive polymer substrate.
상기 목적을 달성하기 위한 본 발명의 또 다른 측면에 따른 입자 정렬을 이용한 코팅 방법은, (a) 밀착성 고분자 기판을 준비하는 준비 단계; (b) 마스크 패턴이 형성된 마스크를 대고 상기 밀착성 고분자 기판을 향해 빛을 조사하여 상기 밀착성 고분자 기판 표면의 빛이 조사된 노광부의 부착력을 변화시키는 단계; (c) 상기 밀착성 고분자 기판 위에 복수의 제 1 입자를 코팅하여 1차 코팅막을 형성하는 단계; (d) 상기 밀착성 고분자 기판의 빛이 조사된 부분과 조사되지 않은 부분의 부착력 차이를 이용하여 상기 1차 코팅막을 형성하는 상기 복수의 제 1 입자에서 비노광부 또는 노광부에 배치된 제 1 입자들을 입자의 함침정도 및 입자 제거부재의 부착력 정도를 이용해 상기 밀착성 고분자 기판으로부터 제거하는 단계; (e) 상기 밀착성 고분자 기판의 상기 제 1 입자가 제거된 곳에 복수의 제 2 입자를 압력을 가하여 상기 복수의 제 2 입자에 각기 대응하는 복수의 제 2 오목부가 형성되도록 하면서 코팅하여 2차 코팅막을 형성하는 단계; (f) 상기 1차 코팅막 및 상기 2차 코팅막이 형성된 상기 밀착성 고분자 기판의 상기 입자간 사이간격을 늘려 상기 1차 코팅막 및 상기 2차 코팅막을 확장하는 단계; 및 (g) 상기 밀착성 고분자 기판의 비노광부와 노광부의 부착력 차이를 통해 전사 기판에 상기 확장된 1차 코팅막 및 2차 코팅막 중 적어도 하나를 전사하는 단계를 포함한다.Coating method using a particle alignment according to another aspect of the present invention for achieving the above object, (a) preparing an adhesive polymer substrate; (b) changing the adhesion of the exposed part to which the light on the surface of the adhesive polymer substrate is irradiated by applying light toward the adhesive polymer substrate with the mask on which the mask pattern is formed; (c) forming a primary coating film by coating a plurality of first particles on the adhesive polymer substrate; (d) first particles disposed in the non-exposed portion or the exposed portion of the plurality of first particles forming the primary coating layer by using a difference in adhesion between the irradiated and unirradiated portions of the adhesive polymer substrate; Removing from the adhesive polymer substrate by using the degree of impregnation of the particles and the degree of adhesion of the particle removing member; (e) applying a plurality of second particles to a place where the first particles of the adhesive polymer substrate are removed, and coating a plurality of second recesses corresponding to the plurality of second particles to form a second coating layer. Forming; (f) extending the primary coating layer and the secondary coating layer by increasing the distance between the particles of the adhesive polymer substrate on which the primary coating layer and the secondary coating layer are formed; And (g) transferring at least one of the extended primary coating layer and the secondary coating layer to the transfer substrate through a difference in adhesion between the non-exposed portion and the exposed portion of the adhesive polymer substrate.
상기 목적을 달성하기 위한 본 발명의 또 다른 측면에 따른 입자 정렬을 이용한 코팅 방법은, (a) 밀착성 고분자 기판을 준비하는 준비 단계; (b) 상기 밀착성 고분자 기판 위에 복수의 제 1 입자를 압력을 가하여 상기 밀착성 고분자 기판 표면에 상기 복수의 제 1 입자에 각기 대응하는 복수의 제 1 오목부가 형성되도록 하면서 코팅하는 단계; (c) 상기 코팅막이 형성된 상기 밀착성 고분자 기판의 상기 제 1 입자간 사이간격을 늘려 상기 코팅막을 확장시키는 단계; (d) 상기 밀착성 고분자 기판에 빛을 조사하여 상기 밀착성 고분자 기판을 노광함으로써, 상기 밀착성 고분자 기판과 상기 복수의 제 1 입자 사이의 결합력을 증가시키는 단계; (e) 상기 밀착성 고분자 기판 표면의 상기 복수의 제 1 입자들 사이의 영역에 복수의 제 2 입자를 압력을 가하여 상기 밀착성 고분자 기판 표면에 상기 복수의 제 2 입자에 각기 대응하는 복수의 제 2 오목부가 형성되도록 코팅하는 단계; 및 (f) 상기 밀착성 고분자 기판의 상기 제 1 입자 및 상기 제 2 입자들의 부착력 및 함침도 차이를 통해 전사 기판에 상기 제 1 입자 및 상기 제 2 입자중 적어도 하나를 전사하는 단계;를 포함한다.Coating method using a particle alignment according to another aspect of the present invention for achieving the above object, (a) preparing an adhesive polymer substrate; (b) applying a plurality of first particles to the adhesive polymer substrate by applying pressure to form a plurality of first recesses respectively corresponding to the plurality of first particles on the surface of the adhesive polymer substrate; (c) extending the coating film by increasing a distance between the first particles of the adhesive polymer substrate on which the coating film is formed; (d) irradiating light to the adhesive polymer substrate to expose the adhesive polymer substrate, thereby increasing the bonding force between the adhesive polymer substrate and the plurality of first particles; (e) applying a plurality of second particles to a region between the plurality of first particles on the surface of the adhesive polymer substrate, wherein the plurality of second recesses respectively correspond to the plurality of second particles on the surface of the adhesive polymer substrate; Coating to form an addition; And (f) transferring at least one of the first particles and the second particles to the transfer substrate through a difference in adhesion and impregnation of the first particles and the second particles of the adhesive polymer substrate.
본 발명에 의한 입자 정렬을 이용한 코팅 방법에서는 용매 또는 부착 보조제를 사용하지 않고 건조 상태의 입자들을 밀착성 고분자 기판 위에서 압력을 가하는 과정을 통해 코팅막을 형성한다. 이 과정에서, 밀착성 고분자 기판에 입자가 접촉하면, 유연성을 지닌 밀착성 고분자 기판의 표면이 표면 장력의 영향으로 입자의 일부를 감싸는 형태로 변형이 된다. 이에 따라 밀착성 고분자 기판의 표면 상에서 입자에 대응하는 오목부가 형성되어 결합 특성이 향상된다. 밀착성 고분자 기판 표면의 형태 변형의 가역적인 특성은 기판 상에 접촉된 입자들의 이차원적인 움직임을 용이하게 하여 입자의 분포가 쉽게 재배열될 수 있도록 한다.In the coating method using the particle alignment according to the present invention, a coating film is formed by applying pressure on the adhesive polymer substrate to dry particles without using a solvent or an adhesion aid. In this process, when the particles come into contact with the adhesive polymer substrate, the surface of the flexible adhesive polymer substrate having flexibility is deformed to surround a part of the particles under the influence of the surface tension. As a result, recesses corresponding to the particles are formed on the surface of the adhesive polymer substrate, thereby improving bonding properties. The reversible nature of the shape deformation of the adhesive polymer substrate surface facilitates two-dimensional movement of the particles in contact on the substrate so that the particle distribution can be easily rearranged.
이러한 형태 변형을 통한 입자 부착성의 향상은 입자 표면 특성 및 고분자 기판의 종류에 따른 의존성을 낮추어 다양한 표면 특성의 입자를 단층으로 코팅할 수 있도록 한다. 따라서 종래와 같이 코팅막 형성 시, 자기조립 및 스핀코팅 시에 요구되는 세밀한 온도, 습도, 입자농도 등의 환경 조절이 필요하지 않으며, 폭 넓은 환경 및 조건에서 다양한 표면 특성을 지닌 입자들을 용이하게 코팅할 수 있다. 그리고 입자가 전하성을 띄거나 수소결합이 용이한 물질인 경우뿐만 아니라, 비전하성 및 소수성인 물질인 경우에도 높은 밀도로 균일하게 단층 입자 코팅이 이루어질 수 있다.Enhancement of particle adhesion through such shape modification lowers the dependence of the particle surface properties and the type of the polymer substrate so that particles of various surface properties can be coated in a single layer. Therefore, it is not necessary to control the environment such as temperature, humidity, and particle concentration required for self-assembly and spin coating when forming a coating film as in the prior art, and to easily coat particles having various surface properties in a wide range of environments and conditions. Can be. In addition, even when the particles exhibit a charge or easy hydrogen bonding, a single layer particle coating may be uniformly performed at a high density even when the materials are non-chargeable and hydrophobic.
이와 같이 본 실시예에 따르면 단순한 방법에 의하여 밀착성 고분자 기판 위에 입자들이 고르게 분포되어 높은 밀도를 가지는 단층 수준의 코팅막을 손쉽게 형성할 수 있다.As described above, according to the present exemplary embodiment, the particles are evenly distributed on the adhesive polymer substrate by a simple method, thereby easily forming a coating layer having a high density.
또한 본 발명에 의한 입자 정렬을 이용한 코팅 방법은 용매를 사용하지 않고 건조 상태의 입자들이 밀착성 고분자 기판 위에 직접 접촉하도록 한 상태에서 압력을 가하여 코팅막을 형성하고, 밀착성 고분자 기판을 늘려 밀착성 고분자 기판에 부착된 복수의 입자 사이의 간격을 벌림으로써, 상호 간의 사이가 벌어진 복수의 입자로 이루어진 확장된 코팅막을 형성할 수 있다. 그리고 확장된 코팅막을 다른 전사 기판으로 전사하여 사용할 수 있다.In addition, the coating method using the particle alignment according to the present invention forms a coating film by applying pressure in a state in which dry particles are in direct contact with the adhesive polymer substrate without using a solvent, and the adhesive polymer substrate is stretched to attach to the adhesive polymer substrate. By spreading the gaps between the plurality of particles, it is possible to form an expanded coating film made up of a plurality of particles spaced apart from each other. And the extended coating film can be used by transferring to another transfer substrate.
또한 본 발명에 의한 입자 정렬을 이용한 코팅 방법은 마스크를 이용하여 밀착성 고분자 기판 위에 부분적으로 빛을 조사하여 빛이 조사된 노광부의 부착력을 변화시키고, 입자의 함침정도 및 입자 제거부재의 부착력 정도를 이용해 입자를 부분적으로 제거함으로써, 다양한 패턴의 코팅막을 손쉽게 형성할 수 있다. In addition, the coating method using the particle alignment according to the present invention by using a mask to partially irradiate light on the adhesive polymer substrate to change the adhesion of the exposed portion of the light irradiation, using the degree of impregnation of the particles and the adhesion of the particle removal member By partially removing the particles, coating films of various patterns can be easily formed.
또한 본 발명에 의한 입자 정렬을 이용한 코팅 방법은 마스크를 이용하여 밀착성 고분자 기판을 노광함으로써 밀착성 고분자 기판의 부착력을 부분적으로 증가시키는 단계와, 밀착성 고분자 기판의 입자를 부분적으로 제거하는 단계와, 새로운 입자를 코팅하는 단계와, 밀착성 고분자 기판을 늘리는 단계와, 입자를 전사하는 단계 등을 반복적으로 수행함으로써, 밀착성 고분자 기판 위에 여러 종류의 입자가 각각 특정한 패턴으로 정렬된 다양한 코팅막을 손쉽게 형성할 수 있다.In addition, the coating method using the particle alignment according to the present invention comprises the steps of partially increasing the adhesion of the adhesive polymer substrate by exposing the adhesive polymer substrate using a mask, partially removing the particles of the adhesive polymer substrate, and new particles By repeatedly coating, increasing the adhesive polymer substrate, transferring the particles, and the like, it is possible to easily form various coating films in which various kinds of particles are arranged in a specific pattern on the adhesive polymer substrate.
도 1a 내지 도 1g는 본 발명의 일실시예에 의한 입자 정렬을 이용한 코팅 방법을 단계별로 나타낸 것이다.1A to 1G show step by step a coating method using particle alignment according to an embodiment of the present invention.
도 2a 내지 도 2i는 본 발명의 다른 실시예에 의한 입자 정렬을 이용한 코팅 방법을 단계별로 나타낸 것이다.2a to 2i show step by step a coating method using particle alignment according to another embodiment of the present invention.
도 3은 본 발명에 의한 입자 정렬을 이용한 코팅 방법을 이용하여 전사 기판에 코팅막을 형성한 다른 실시예를 나타낸 것이다.Figure 3 shows another embodiment in which a coating film is formed on a transfer substrate by using a coating method using particle alignment according to the present invention.
도 4는 본 발명에 의한 입자 정렬을 이용한 코팅 방법에서 밀착성 고분자 기판 위에 2차 코팅막을 형성하는 다른 실시예를 나타낸 것이다.Figure 4 shows another embodiment of forming a secondary coating film on the adhesive polymer substrate in the coating method using the particle alignment according to the present invention.
도 5a 내지 도 5d는 본 발명에 의한 입자 정렬을 이용한 코팅 방법에서 밀착성 고분자 기판에 일정 패턴의 코팅막을 형성하는 다른 실시예를 단계별로 나타낸 것이다.5a to 5d show step by step another embodiment of forming a coating film of a predetermined pattern on the adhesive polymer substrate in the coating method using the particle alignment according to the present invention.
도 6a 내지 도 6d는 본 발명의 또 다른 실시예에 의한 입자 정렬을 이용한 코팅 방법 중 일부 단계를 나타낸 것이다.6A-6D illustrate some steps of a coating method using particle alignment according to another embodiment of the present invention.
도 7은 본 발명의 실험예 1에서 PDMS 기판을 늘리기 위한 장치를 개략적으로 나타낸 사진이다.7 is a photograph schematically showing an apparatus for increasing a PDMS substrate in Experimental Example 1 of the present invention.
도 8은 본 발명의 실험예 1에서 늘린 코팅막 및 늘리지 않은 코팅막을 비교하기 위한 SEM(scanning electron microscope) 측정 결과이다.8 is a scanning electron microscope (SEM) measurement result for comparing the coating film stretched and the non-stretched coating film in Experimental Example 1 of the present invention.
도 9는 본 발명의 실험예 1에서 늘린 코팅막 및 늘리지 않은 코팅막을 비교하기 위한 SEM 사진이다.9 is a SEM photograph for comparing the coating film stretched and the non-stretched coating film in Experimental Example 1 of the present invention.
도 10은 본 발명의 실험예 2에서 늘린 코팅막 및 늘리지 않은 코팅막을 비교하기 위한 SEM(scanning electron microscope) 측정 결과이다.FIG. 10 is a scanning electron microscope (SEM) measurement result for comparing the increased coating film and the unexpanded coating film in Experimental Example 2 of the present invention.
도 11은 본 발명의 실험예 2에서 늘린 코팅막 및 늘리지 않은 코팅막을 비교하기 위한 SEM 사진이다.11 is a SEM photograph for comparing the coating film stretched and the non-stretched coating film in Experimental Example 2 of the present invention.
< 도면 부호의 설명><Explanation of reference numerals>
10 : 밀착성 고분자 기판 12, 17 : 제 1, 2 오목부10: adhesive polymer substrate 12, 17: first, second recessed portion
14 : 노광부 15 : 비노광부14 exposure part 15 non-exposure part
20, 24 : 입자 22, 25, 27 : 코팅막20, 24: particles 22, 25, 27: coating film
30 : 클램프 32 : 지지대30: clamp 32: support
35, 45, 49, 53 : 전사 기판 40, 50 : 마스크35, 45, 49, 53: transfer substrate 40, 50: mask
이하에서는 첨부된 도면을 참조하여, 본 발명에 의한 입자 정렬을 이용한 코팅 방법에 대하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, it will be described in detail with respect to the coating method using the particle alignment according to the present invention.
본 발명을 설명함에 있어서, 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의를 위해 과장되거나 단순화되어 나타날 수 있다. 또한 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들은 본 명세서 전반에 걸친 내용을 토대로 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.In describing the present invention, the size or shape of the components shown in the drawings may be exaggerated or simplified for clarity and convenience of description. In addition, terms that are specifically defined in consideration of the configuration and operation of the present invention may vary depending on the intention or custom of the user or operator. These terms should be interpreted as meanings and concepts corresponding to the technical spirit of the present invention based on the contents throughout the specification.
도 1a 내지 도 1g는 본 발명의 일실시예에 의한 입자 정렬을 이용한 코팅 방법을 단계별로 나타낸 것으로, 도 1a 내지 도 1g를 참조하여 본 발명의 일실시예에 의한 입자 정렬을 이용한 코팅 방법을 상세히 설명하면 다음과 같다.Figure 1a to 1g is a step-by-step showing the coating method using a particle alignment according to an embodiment of the present invention, with reference to Figures 1a to 1g in detail the coating method using a particle alignment according to an embodiment of the present invention. The explanation is as follows.
먼저, 도 1a에 도시한 바와 같이, 매끈한 표면(smooth surface)을 갖는 밀착성 고분자 기판(10)을 준비한다. 밀착성 고분자 기판(10)의 표면은 특정한 패턴이나 굴곡이 형성되지 않은 상태를 가질 수 있으며, 이 위에서 코팅막(22;도 1c 참조)을 형성하는 입자(20;도 1c 참조)의 이동을 제한하지 않는 수준의 표면 거칠기 및 구조를 가질 수 있다. 또한 밀착성 고분자 기판(10)은 당기는 힘 등에 의해 늘어날 수 있는 특성을 갖는다.First, as shown in FIG. 1A, an adhesive polymer substrate 10 having a smooth surface is prepared. The surface of the adhesive polymer substrate 10 may have a state in which a specific pattern or curve is not formed, and does not restrict the movement of the particles 20 (see FIG. 1C) forming the coating layer 22 (see FIG. 1C) thereon. Level of surface roughness and structure. In addition, the adhesive polymer substrate 10 has a property that can be increased by the pulling force or the like.
본 실시예에서 밀착성 고분자 기판(10)은 부착성이 존재하는 다양한 밀착성 고분자 물질을 포함한다. 밀착성 고분자는 일반적으로 통용되는 점착성을 갖지 않으므로 점착제와는 구별된다. 적어도 밀착성 고분자는 '스카치 매직 테이프'의 (ASTM D 3330 평가) 점착제가 갖는 점착력 약 0.6 kg/inch 보다 낮은 값의 부착력을 갖는다. 또한 밀착성 고분자는 별도의 지지체 없이도 상온에서 고체상태(기판 또는 필름 등)의 형상을 유지할 수 있다.In this embodiment, the adhesive polymer substrate 10 includes various adhesive polymer materials in which adhesion is present. Adhesive polymers are generally distinguished from adhesives because they do not have commonly used adhesive properties. At least the adhesive polymer has an adhesive force lower than about 0.6 kg / inch of the adhesive force of the Scotch Magic Tape (ASTM D 3330 evaluation). In addition, the adhesive polymer can maintain the shape of a solid state (substrate or film) at room temperature without a separate support.
밀착성 고분자 물질로는 폴리디메틸실록산(polydimethylsiloxane, PDMS) 등의 실리콘 기반 고분자 물질이나, 폴리에틸렌(polyethylene, PE), 폴리비닐클로라이드(polyvinylchloride, PVC) 등을 포함하는 랩, 밀착 또는 밀봉을 목적으로 하는 고분자 물질을 포함하는 보호 필름, 표면 형상의 변형이 용이한 광택을 지닌 필름 등이 사용될 수 있다. 특히, 밀착성 고분자로는 경도 조절이 용이하며 다양한 형태로 제조가 용이한 PDMS가 사용될 수 있다. 고분자 기판(10)은 베이스 기재에 밀착성 고분자를 코팅하여 제조되거나, 시트 또는 필름 형태의 밀착성 고분자가 부착되어 제조될 수 있다.The adhesive polymer material may be a silicone-based polymer material such as polydimethylsiloxane (PDMS), or a polymer for wrap, adhesion or sealing, including polyethylene (PE) or polyvinyl chloride (PVC). A protective film containing a substance, a film having a gloss easily deformable in surface shape, and the like can be used. In particular, as the adhesive polymer, PDMS, which is easily controlled in hardness and easily manufactured in various forms, may be used. The polymer substrate 10 may be manufactured by coating an adhesive polymer on a base substrate or by attaching an adhesive polymer in a sheet or film form.
본 실시예에서, 밀착성 고분자 기판(10)의 표면에는 입체적인 3차원 구조의 패턴이 마련될 수 있다.In the present embodiment, the surface of the adhesive polymer substrate 10 may be provided with a pattern of a three-dimensional three-dimensional structure.
여기에서, 밀착성 고분자 물질은 일반적으로 고체 상태의 실리콘을 포함하거나, 가소제 첨가 또는 표면 처리를 통해 부착 특성이 부여된 유기 고분자 물질을 지칭하는 것이다. 여기에서, 밀착성 고분자 물질은 일반적으로 선형 분자구조에 의하여 형태의 변형이 용이하며 낮은 표면 장력을 가지는 것을 특징으로 한다. 이러한 밀착성 고분자 물질의 우수한 부착성은 미세 영역에서의 표면 변형이 용이한 부드러운(유연성) 표면 재질과 낮은 표면 장력 등에 기인한다. 밀착성 고분자 물질의 낮은 표면 장력은 부착하고자 하는 입자(20)(24)에 넓게 활착하려는 특성을 가져오며(용액의 젖음 현상과 유사), 유연성을 지닌 표면은 부착하고자 하는 입자(20)(24)와 빈틈 없는 접촉이 이루어지도록 한다. 이를 통해 상보적인 결합력 없이 가역적으로 고체 표면에 탈부착이 용이한 부착성 폴리머의 특성을 지니게 된다.Here, the adhesive polymer material generally refers to an organic polymer material including silicon in a solid state or endowed with adhesion properties through plasticizer addition or surface treatment. Here, the adhesive polymer material is generally characterized by having a low surface tension and easy deformation of the form by the linear molecular structure. The excellent adhesion of such an adhesive polymer material is due to the soft (flexible) surface material and low surface tension and the like that the surface deformation in the fine region is easy. The low surface tension of the adhesive polymer material has the property of broadly adhering to the particles 20 and 24 to be attached (similar to the solution wetting phenomenon), and the flexible surface is the particles 20 and 24 to be attached. Make sure there is a tight contact with the. This results in an adhesive polymer that is easily removable on a solid surface without complementary bonding strength.
대표적인 밀착성 고분자 물질인 PDMS와 같은 실리콘 기반 고분자 물질의 표면 장력은 20 ~ 23 dynes/cm 정도로, 가장 낮은 표면 장력 물질로 알려진 Teflon(18dynes/cm)에 근접한다. 그리고 PDMS와 같은 실리콘 기반 고분자 물질의 표면 장력은 대부분의 유기 폴리머(35 ~ 50 dynes/cm), 천연재료인 면(綿, 73 dynes/cm), 금속(일례로, 은(Ag, 890 dynes/cm), 알루미늄(Al, 500 dynes/cm)), 무기 산화물(일례로, 유리(1000 dynes/cm), 철 산화물(1357 dynes/cm)보다 낮은 값을 보인다. 또한 PE, PVC 등을 포함하는 랩과 같은 경우에도 부착성 향상을 위해 다량의 가소제가 첨가되어 낮은 표면 장력을 지니게 된다.The surface tension of silicon-based polymer materials such as PDMS, a typical adhesive polymer material, is about 20 to 23 dynes / cm, close to Teflon (18 dynes / cm), which is known as the lowest surface tension material. The surface tension of silicon-based polymers such as PDMS is most organic polymers (35-50 dynes / cm), natural materials (綿, 73 dynes / cm), metals (eg silver (Ag, 890 dynes /) cm), aluminum (Al, 500 dynes / cm)), inorganic oxides (eg, glass (1000 dynes / cm), iron oxide (1357 dynes / cm). Even in wraps, a large amount of plasticizer is added to improve adhesion, resulting in low surface tension.
계속해서, 앞서 설명한 것과 같이 밀착성 고분자 기판(10)을 준비한 후, 도 1b 및 도 1c에 도시한 바와 같이, 복수의 입자(20)를 정렬하여 밀착성 고분자 기판(10) 위에 코팅막(22)을 형성한다. 이를 좀더 상세하게 설명하면 다음과 같다.Subsequently, after preparing the adhesive polymer substrate 10 as described above, as shown in FIGS. 1B and 1C, the plurality of particles 20 are aligned to form the coating film 22 on the adhesive polymer substrate 10. do. This will be described in more detail as follows.
먼저, 도 1b에 도시한 바와 같이, 밀착성 고분자 기판(10) 위에 건조된 복수의 입자(20)를 올린다. 본 실시예와 달리 용액 상에 분산되어 있는 입자는 밀착성 고분자 표면과 직접적인 접촉이 이루어지기 어려워서 코팅이 잘 이루어 지지 않는다. 따라서 사용하는 입자의 질량보다 적은 미량의 용액이나 휘발성 용매를 이용한 경우에만 코팅 작업 중 입자가 건조되어 코팅 작업이 가능할 수 있다.First, as shown in FIG. 1B, the plurality of particles 20 dried on the adhesive polymer substrate 10 is placed. Unlike the present embodiment, the particles dispersed in the solution are difficult to make direct contact with the adhesive polymer surface, so that the coating is not well made. Therefore, only a small amount of a solution or a volatile solvent less than the mass of the particles to be used may dry the particles during the coating operation to allow the coating operation.
본 실시예에서 입자(20)는 코팅막(22)을 형성하기 위한 다양한 물질을 포함할 수 있다. 즉, 입자(20)는 고분자, 무기물, 금속, 자성체, 반도체, 생체 물질 등을 포함할 수 있다. 또한 다른 성질을 갖는 입자들을 혼합된 것이 입자(20)로 이용될 수 있다.In the present embodiment, the particles 20 may include various materials for forming the coating layer 22. That is, the particles 20 may include a polymer, an inorganic material, a metal, a magnetic material, a semiconductor, a biological material, and the like. In addition, a mixture of particles having different properties may be used as the particle 20.
입자(20)로 이용될 수 있는 고분자로는 폴리스티렌 (PS), 폴리메틸메타크릴레이트(PMMA), 폴리아크릴레이트, 폴리바이닐클로라이드 (PVC), 폴리알파스티렌, 폴리벤질메타크릴레이트, 폴리페닐메타클릴레이트, 폴리다이페닐메타크릴레이트, 폴리사이클로헥실메타클릴레이트, 스틸렌-아크릴로니트릴 공중합체, 스틸렌-메틸메타크릴레이트 공중합체 등이 있다.Polymers that can be used as the particles 20 include polystyrene (PS), polymethyl methacrylate (PMMA), polyacrylate, polyvinyl chloride (PVC), polyalphastyrene, polybenzyl methacrylate, polyphenylmeta Acrylate, polydiphenyl methacrylate, polycyclohexyl methacrylate, styrene-acrylonitrile copolymer, styrene-methyl methacrylate copolymer and the like.
입자(20)로 이용될 수 있는 무기물로는, 실리콘 산화물(일례로, SiO2), 인산은(일례로, Ag3PO4), 티타늄 산화물(일례로, TiO2), 철 산화물 (일례로, Fe2O3), 아연 산화물, 세륨 산화물, 주석 산화물, 탈륨 산화물, 바륨 산화물, 알루미늄 산화물, 이트륨 산화물, 지르코늄 산화물, 구리산화물, 니켈 산화물 등이 있다.Inorganic materials that can be used as the particles 20 include silicon oxide (for example, SiO 2 ), silver phosphate (for example, Ag 3 PO 4 ), titanium oxide (for example, TiO 2 ), iron oxide (for example , Fe 2 O 3 ), zinc oxide, cerium oxide, tin oxide, thallium oxide, barium oxide, aluminum oxide, yttrium oxide, zirconium oxide, copper oxide, nickel oxide and the like.
입자(20)로 이용될 수 있는 금속으로는, 금, 은, 동, 철, 백금, 알루미늄, 백금, 아연, 세륨, 탈륨, 바륨, 이트륨, 지르코늄, 주석, 티타늄, 또는 이들의 합금 등이 있다.Metals that can be used as the particles 20 include gold, silver, copper, iron, platinum, aluminum, platinum, zinc, cerium, thallium, barium, yttrium, zirconium, tin, titanium, or alloys thereof. .
입자(20)로 이용될 수 있는 반도체로는, 실리콘, 게르마늄, 또는 화합물 반도체(일례로, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, InSb 등) 등이 있다.Semiconductors that can be used as the particles 20 include silicon, germanium, or compound semiconductors (eg, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, InSb, etc.).
입자(20)로 이용될 수 있는 생체 물질로는, 단백질, 펩티드, 리보핵산(RNA), 데옥시리보핵산(DNA), 다당류, 올리고당, 지질, 세포 및 이들의 복합체 물질들의 입자 또는 표면에 코팅된 입자, 내부에 포함한 입자 등이 있다. 일례로, protein A라는 항체 결합 단백질이 코팅된 폴리머 입자가 입자(20)로 사용될 수 있다.Biomaterials that can be used as the particles 20 include coatings on particles or surfaces of proteins, peptides, ribonucleic acid (RNA), deoxyribonucleic acid (DNA), polysaccharides, oligosaccharides, lipids, cells and complex materials thereof. Particles, and particles contained therein. For example, a polymer particle coated with an antibody binding protein called protein A may be used as the particle 20.
입자(20)는 대칭 형상, 비대칭 형상, 무정형, 다공성의 형상을 가질 수 있다. 일례로, 입자(20)는 구형, 타원형, 반구형, 큐브형, 사면체, 오면체, 육면체, 팔면체, 기둥형, 뿔형 등을 가질 수 있다. 이 중에서 입자(20)의 형태로는 구형 또는 타원형이 다른 형태에 비해 바람직하다. Particles 20 may have a symmetrical shape, asymmetrical shape, amorphous, porous shape. For example, the particles 20 may have a spherical shape, an ellipse shape, a hemispherical shape, a cube shape, a tetrahedron, a pentagonal surface, a hexahedron, an octahedron, a columnar shape, a horn shape, and the like. Among these, spherical or elliptical is preferable as the form of the particle 20 compared with other forms.
이러한 입자(20)는 평균 입경이 10nm 내지 100인 것이 바람직하다. 평균 입경이 10nm 미만일 경우에는, 코팅 시 밀착성 고분자 기판(10)에 의하여 전체적으로 감싸지는 형태가 될 수 있어 입자(20)를 단층 수준으로 코팅하는 것이 어려워질 수 있다. 또한 입자(20)의 평균 입경이 10nm미만인 경우에는 건조 상태에서도 입자들이 서로 응집할 수 있어, 문지르는 힘만으로는 입자가 개별적으로 이동하는 것이 어려울 수 있다. 입자(20)의 평균 입경이 100을 초과하는 경우에는 입자의 부착이 약하게 나타날 수 있다. Such particles 20 preferably have an average particle diameter of 10 nm to 100. When the average particle diameter is less than 10 nm, it may be in the form of being entirely wrapped by the adhesive polymer substrate 10 during coating, it may be difficult to coat the particles 20 to a single layer level. In addition, when the average particle diameter of the particles 20 is less than 10 nm, the particles may agglomerate with each other even in a dry state, and it may be difficult for the particles to individually move only by a rubbing force. If the average particle diameter of the particles 20 exceeds 100, the adhesion of the particles may appear weak.
그러나 본 발명이 이에 한정되는 것은 아니며 입자(20)의 평균 입경은 입자(20)를 구성하는 물질이나, 밀착성 고분자 기판(10)을 구성하는 물질 등에 따라 달라질 수 있다. 여기에서, 입자(20)가 구형인 경우에는 입자(20)의 지름이 입경으로 사용될 수 있다. 반면, 입자(20)가 구형이 아닐 경우에는 다양한 계측법이 사용될 수 있는데, 일례로, 장축과 단축의 평균값을 입경으로 사용할 수 있다.However, the present invention is not limited thereto, and the average particle diameter of the particles 20 may vary depending on a material constituting the particles 20 or a material constituting the adhesive polymer substrate 10. Here, when the particle 20 is spherical, the diameter of the particle 20 may be used as the particle diameter. On the other hand, when the particle 20 is not spherical, various measurement methods may be used. For example, average values of long and short axes may be used as particle diameters.
계속해서, 도 1c에 도시한 바와 같이, 복수의 입자(20) 위에서 압력을 가하여 코팅막(22)을 형성한다. 입자(20)에 압력을 가하는 방법으로는 라텍스, 스폰지, 손, 고무판, 플라스틱 판, 부드러운 표면을 가지는 재료 등을 이용하여 문지르는(rubbing) 방법이 사용될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 다양한 방법에 의하여 입자(20)에 압력을 가할 수 있다.Subsequently, as shown in FIG. 1C, a pressure is applied on the plurality of particles 20 to form a coating film 22. As a method of applying pressure to the particles 20, a method of rubbing using a latex, a sponge, a hand, a rubber plate, a plastic plate, a material having a smooth surface, or the like may be used. However, the present invention is not limited thereto, and pressure may be applied to the particles 20 by various methods.
본 실시예에서 밀착성 고분자 기판(10)의 표면 위에 입자들(20)을 올린 후에 압력을 가하면 압력이 가해진 부분의 입자들(20)이 밀착성 고분자 기판(10)의 변형을 통해 부착된다. 이에 의하여 해당 부분에 입자들(20)에 각기 대응하는 복수의 오목부(12)가 형성된다. 따라서 오목부(12)에 입자(20)가 감싸인 상태에서 밀착성 고분자 기판(10)에 입자들(20)이 정렬된다.In this embodiment, when the particles 20 are placed on the surface of the adhesive polymer substrate 10 and then pressure is applied, the particles 20 in the pressure-applied portion are attached through the deformation of the adhesive polymer substrate 10. As a result, a plurality of recesses 12 corresponding to the particles 20 are formed in corresponding portions. Therefore, the particles 20 are aligned on the adhesive polymer substrate 10 in a state in which the particles 20 are wrapped in the recess 12.
오목부(12)는 입자와 기판 간 상호작용에 의해 형성되는 것으로 가역적이다. 즉, 소멸될 수도 있으며, 위치가 이동될 수 있다. 일례로, 문지르는 과정에서 입자가 이동하게 되면 밀착성 고분자 기판(10)의 탄성 복원력에 의해 오목부(12)가 사라지거나, 입자(20)의 이동에 따라 오목부(12)도 위치가 변경될 수 있다. 이러한 가역적 작용에 의해 입자(20)가 고르게 정렬될 수 있다(여기서의 "가역적"은 코팅 시 밀착성 고분자 기판 표면의 유연성 및 탄성 복원력에 의해 발생되는 특성이므로, 밀착성 고분자 기판의 복원력이 시간이 지남에 따라 약해지거나 소멸되는 경우도 포함되는 넓은 의미이다).The recess 12 is reversible as formed by the interaction between the particles and the substrate. That is, it may be extinguished and the position may be moved. For example, when the particles move in the rubbing process, the recesses 12 may disappear due to the elastic restoring force of the adhesive polymer substrate 10, or the positions of the recesses 12 may also be changed according to the movement of the particles 20. have. Due to this reversible action, the particles 20 can be evenly aligned ("reversible" here is a property generated by the flexibility and elastic restoring force of the surface of the adhesive polymer substrate during coating, so that the restoring force of the adhesive polymer substrate is changed over time). Broader meaning also includes weakening or extinction).
밀착성 고분자 기판(10)과의 결합이 이루어지지 않은 입자들(20)은 문지르는 힘 등에 의하여 밀착성 고분자 기판(10)의 입자(20)가 코팅되지 않은 영역으로 이동하게 되고, 코팅되지 않은 부분에 입자(20)에 의하여 오목부(12)가 형성된다. 그리고 새로 형성된 오목부(12)에 입자(20)가 감싸인 상태에서 밀착성 고분자 기판(10)과 입자(20)의 결합이 이루어진다. 이러한 과정을 거쳐 밀착성 고분자 기판(10)에 높은 밀도로 단층 수준의 코팅막(22)이 형성된다. Particles 20 that are not bonded to the adhesive polymer substrate 10 are moved to an area where the particles 20 of the adhesive polymer substrate 10 are not coated by a rubbing force, and the like. The recessed part 12 is formed by the 20. In addition, the adhesive polymer substrate 10 and the particle 20 are bonded in the state in which the particle 20 is wrapped in the newly formed recess 12. Through this process, the coating film 22 having a single layer level is formed on the adhesive polymer substrate 10 at a high density.
여기에서, 오목부(12)는 입자(20)의 일부를 감싸도록 입자(20)의 외곽 형상에 대응하는 형상을 가질 수 있다. 예를 들어, 입자(20)가 구형인 경우에는 오목부(12)도 구면(球面) 형상을 가져 오목부(12)에 입자(20)의 일부분이 밀착될 수 있다. 그리고 오목부(12)의 깊이(L1)는 밀착성 고분자 기판(10)의 경도, 입자(20)의 형태, 경도, 환경 요인(일례로, 온도) 등에 따라 달라질 수 있다. 즉, 밀착성 고분자 기판(10)의 경도가 커질수록 오목부(12)의 깊이(L1)가 작아지고, 온도가 증가할수록 오목부(12)의 깊이(L1)가 커질 수 있다.Here, the concave portion 12 may have a shape corresponding to the outer shape of the particle 20 to surround a part of the particle 20. For example, when the particles 20 are spherical, the recesses 12 may also have a spherical shape, and a portion of the particles 20 may be in close contact with the recesses 12. The depth L1 of the recess 12 may vary depending on the hardness of the adhesive polymer substrate 10, the shape of the particles 20, the hardness, and environmental factors (eg, temperature). That is, as the hardness of the adhesive polymer substrate 10 increases, the depth L1 of the concave portion 12 may decrease, and as the temperature increases, the depth L1 of the concave portion 12 may increase.
입자(20)의 평균 입경(D)에 대한 오목부(12)의 깊이(L1)의 비율(침하율)(L1/D)은 0.02 ~ 0.98인 것이 바람직하다. 상기 비율(L1/D)이 0.02 미만인 경우에는 입자(20)와 밀착성 고분자 기판(10)과의 결합력이 충분하지 않을 수 있고, 0.98을 초과하는 경우에는 입자들(20)이 단층 수준으로 코팅되기 어려울 수 있다. 결합력 및 코팅 특성 등을 좀더 고려하면, 상기 비율(L1/D)은 0.05 ~ 0.6, 좀더 상세하게는, 0.08 ~ 0.4인 것이 더욱 바람직하다.It is preferable that the ratio (sedimentation rate) (L1 / D) of the depth L1 of the recessed part 12 with respect to the average particle diameter D of the particle | grain 20 is 0.02-0.98. When the ratio L1 / D is less than 0.02, the binding force between the particles 20 and the adhesive polymer substrate 10 may not be sufficient, and when the ratio L1 / D exceeds 0.98, the particles 20 may be coated at a monolayer level. It can be difficult. In consideration of the bonding force and coating properties, etc., the ratio (L1 / D) is more preferably 0.05 to 0.6, more specifically, 0.08 to 0.4.
본 실시예에서와 같이, 탄성 변형에 의하여 생긴 오목부(12)에 의하여 각각의 입자(20)의 일부분이 감싸지게 되면, 입자(20)와 밀착성 고분자 기판(10)이 좀더 잘 결합할 수 있다. 그리고 밀착성 고분자 기판(10)에 결합된 입자들(20)도 주변의 코팅되지 않은 부분으로 이동이 가능하여 새로운 입자(20)가 밀착성 고분자 기판(10)의 표면의 빈 오목부(12)에 부분적으로 수용될 수 있다. 이러한 재배열 특성에 따라 코팅막(22)이 높은 밀도로 단층 수준으로 코팅될 수 있다. 일례로, 입자들(20)은 각각의 중심이 육각형의 형상을 이루도록 배치될 수 있다.As in the present embodiment, when a part of each particle 20 is wrapped by the concave portion 12 generated by the elastic deformation, the particle 20 and the adhesive polymer substrate 10 may be better bonded. . In addition, the particles 20 bonded to the adhesive polymer substrate 10 may also move to an uncoated portion of the surrounding, so that the new particles 20 may be partially disposed in the hollow recesses 12 on the surface of the adhesive polymer substrate 10. Can be accommodated. According to such rearrangement characteristics, the coating layer 22 may be coated at a single layer level at a high density. In one example, the particles 20 may be disposed such that each center has a hexagonal shape.
한편, 입자(20)가 비구형일 경우(예를 들어, Ag3PO4)에는 다양한 방법에 의하여 단층 수준인지 여부를 판별할 수 있다. 일례로, 입자들(20) 중 상위 10% 입자들(즉, 입경이 10% 이내로 큰 입자들)의 평균 입경에 대한 코팅막(22) 두께의 평균값의 비율이 1.9 이하일 경우를 단층 수준으로 코팅된 것을 볼 수 있다.On the other hand, when the particle 20 is non-spherical (for example, Ag 3 PO 4 ) it can be determined whether the level is a monolayer by a variety of methods. For example, when the ratio of the average value of the thickness of the coating film 22 to the average particle diameter of the top 10% of the particles 20 (that is, particles having a particle diameter of less than 10%) is 1.9 or less, the coating is performed at a single layer level. You can see that.
밀착성 고분자 기판(10) 위에 코팅막(22)을 형성한 후, 도 1d 및 도 1e에 도시된 것과 같이, 코팅막(22)이 형성된 밀착성 고분자 기판(10)을 늘려 그 넓이를 확장시킨다. 밀착성 고분자 기판(10)의 넓이를 확장시키는 방법으로는 도시된 것과 같이, 복수의 클램프(30)로 밀착성 고분자 기판(10)의 가장자리를 클램핑한 후, 균일한 힘으로 밀착성 고분자 기판(10)을 사방으로 잡아당기는 방법이 사용될 수 있다.After the coating film 22 is formed on the adhesive polymer substrate 10, as shown in FIGS. 1D and 1E, the adhesive polymer substrate 10 having the coating film 22 formed thereon is extended to extend its width. As shown in the drawing, the edges of the adhesive polymer substrate 10 are clamped by a plurality of clamps 30, and then the adhesive polymer substrate 10 is uniformly applied. Pulling in all directions can be used.
도면에는 두 개의 클램프(30)가 밀착성 고분자 기판(10)의 양쪽 가장자리를 잡고 늘리는 것으로 나타냈으나, 사각의 밀착성 고분자 기판(10)이 이용되는 경우 네 개의 클램프(30)로 밀착성 고분자 기판(10)의 네 가장자리를 잡고 밀착성 고분자 기판(10)을 늘릴 수 있다. 물론, 밀착성 고분자 기판(10)의 형상이나, 최종적인 목표로 하는 복수의 입자(20) 사이의 간격 또는 정렬 패턴에 따라 밀착성 고분자 기판(10)을 늘리는 형태는 달라질 수 있다. 예컨대, 밀착성 고분자 기판(10)을 사방으로 균일하게 확장시킬 수도 있고, 밀착성 고분자 기판(10)을 길이 방향으로만 늘리거나, 밀착성 고분자 기판(10)을 폭 방향으로만 늘릴 수도 있다.In the figure, the two clamps 30 are shown to extend by holding both edges of the adhesive polymer substrate 10. However, when the rectangular adhesive polymer substrate 10 is used, the adhesive polymer substrate 10 may be formed by four clamps 30. By holding the four edges of the), the adhesive polymer substrate 10 can be stretched. Of course, the shape of the adhesive polymer substrate 10 or the shape of increasing the adhesive polymer substrate 10 may vary depending on the spacing or alignment pattern between the plurality of particles 20 as a final target. For example, the adhesive polymer substrate 10 may be uniformly expanded in all directions, the adhesive polymer substrate 10 may be extended only in the longitudinal direction, or the adhesive polymer substrate 10 may be extended only in the width direction.
코팅막(22)이 형성된 밀착성 고분자 기판(10)을 늘려 그 넓이를 확장시키면, 도 1e에 도시된 것과 같이, 코팅막(22)을 형성하는 복수의 입자(20) 사이의 간격이 벌어지면서, 상호 간의 사이가 벌어진 복수의 입자(20)로 이루어지는 확장된 코팅막(22)이 형성된다. 이 상태에서 도 1f에 도시된 것과 같이, 밀착성 고분자 기판(10)의 부착력보다 큰 부착력을 갖는 전사 기판(35)을 확장된 코팅막(22) 위에 접촉시켰다 떼어내면, 도 1g에 도시된 것과 같이, 상호 간의 사이가 벌어진 복수의 입자(20)로 이루어진 확장된 코팅막(22)을 전사 기판(35)에 전사할 수 있다.When the adhesive polymer substrate 10 on which the coating film 22 is formed is extended to expand the width thereof, as shown in FIG. 1E, as the gap between the plurality of particles 20 forming the coating film 22 increases, An expanded coating film 22 composed of a plurality of gaps 20 formed therebetween is formed. In this state, as illustrated in FIG. 1F, when the transfer substrate 35 having an adhesion greater than that of the adhesive polymer substrate 10 is brought into contact with the extended coating film 22 and detached, as shown in FIG. 1G, The expanded coating film 22 made up of the plurality of particles 20 which are separated from each other may be transferred to the transfer substrate 35.
상술한 것과 같이, 본 발명에 의한 입자 정렬을 이용한 코팅 방법은 용매를 사용하지 않고 건조 상태의 입자들(20)이 밀착성 고분자 기판(10) 위에 직접 접촉하도록 한 상태에서 압력을 가하여 코팅막(22)을 형성하고, 밀착성 고분자 기판(10)을 늘려 밀착성 고분자 기판(10)에 부착된 복수의 입자(20) 사이의 간격을 벌림으로써, 상호 간의 사이가 벌어진 복수의 입자(20)로 이루어진 확장된 코팅막(22)을 형성할 수 있다. 그리고 확장된 코팅막(22)을 다른 전사 기판(35)으로 전사하여 사용할 수 있다.As described above, in the coating method using the particle alignment according to the present invention, the coating film 22 is applied by applying pressure in a state in which the dry particles 20 are in direct contact with the adhesive polymer substrate 10 without using a solvent. And forming an adhesive polymer substrate 10 to expand the interval between the plurality of particles 20 attached to the adhesive polymer substrate 10, thereby expanding the coating film composed of the plurality of particles 20 which are spaced apart from each other. (22) can be formed. The extended coating film 22 may be transferred to another transfer substrate 35 and used.
한편, 밀착성 고분자 기판(10)에 코팅된 복수의 입자(20)를 전사 기판(35), 예를 들어 레진에 전사한 후, O2 plasma를 조사해 입자가 전사된 부분을 제외한 나머지 공간을 에칭하여 도 1h에 도시한 바와 같이,Moth-Eye 형태의 필름(전사 필름)을 제조할 수 있다.Meanwhile, after transferring the plurality of particles 20 coated on the adhesive polymer substrate 10 to the transfer substrate 35, for example, the resin, the O 2 plasma is irradiated to etch the remaining space except for the portion where the particles are transferred. As illustrated in FIG. 1H, a film (transfer film) of a Moth-Eye type may be manufactured.
본 발명에 의한 입자 정렬을 이용한 코팅 방법은, 종래에 비해 코팅막 형성 시, 용매 내에서의 입자들의 자기 조립이 요구되지 않으므로 온도, 습도 등을 정밀하게 조절하지 않아도 되며 입자들의 표면 특성에 큰 영향을 받지 않는다. 즉, 입자가 전하성 물질인 경우뿐만 아니라, 비전하성(즉, 전하적으로 중성에 가까운) 물질인 경우에도 높은 밀도로 균일하게 코팅이 이루어질 수 있다. 또한 친수성 입자뿐만 아니라, 소수성 입자도 균일하게 코팅이 가능하다. 이와 같이 본 발명에 따르면 단순한 방법에 의하여 밀착성 고분자 기판(10) 위에 입자들(20)을 고르게 분포시켜 높은 밀도를 가지는 단층 수준의 코팅막(22) 및 확장된 코팅막(22')을 형성할 수 있다.In the coating method using the particle alignment according to the present invention, since the self-assembly of the particles in the solvent is not required when forming the coating film, it is not necessary to precisely control the temperature, humidity and the like and have a great influence on the surface properties of the particles. Do not receive. That is, the coating can be uniformly made at a high density not only when the particles are chargeable materials, but also when they are non-chargeable (ie, near charge neutral) materials. In addition, not only hydrophilic particles but also hydrophobic particles can be uniformly coated. As described above, according to the present invention, the particles 20 may be evenly distributed on the adhesive polymer substrate 10 by a simple method to form a coating layer 22 and an expanded coating layer 22 ′ having a high density. .
한편, 도 2a 내지 도 2i는 본 발명의 다른 실시예에 의한 입자 정렬을 이용한 코팅 방법을 단계별로 나타낸 것이다.On the other hand, Figures 2a to 2i shows step by step the coating method using the particle alignment according to another embodiment of the present invention.
본 발명의 다른 실시예에 의한 입자 정렬을 이용한 코팅 방법은, 밀착성 고분자 기판(10)을 준비하여 밀착성 고분자 기판(10) 위에 복수의 제 1 입자(20)로 이루어진 1차 코팅막(22)을 형성하는 단계를 포함하며, 1차 코팅막(22)을 형성하는 과정은 입자 정렬을 이용한 코팅 방법에서 복수의 입자(20)로 이루어진 코팅막(22)을 밀착성 고분자 기판(10) 위에 형성하는 과정과 같다.In the coating method using particle alignment according to another embodiment of the present invention, the adhesive polymer substrate 10 is prepared to form a primary coating layer 22 including a plurality of first particles 20 on the adhesive polymer substrate 10. The process of forming the primary coating film 22 is the same as the process of forming the coating film 22 made of a plurality of particles 20 on the adhesive polymer substrate 10 in a coating method using particle alignment.
밀착성 고분자 기판(10)에 1차 코팅막(22)을 형성한 후, 도 2a에 도시된 것과 같이, 마스크 패턴(41)이 형성된 마스크(40)를 대고 빛을 조사하여 밀착성 고분자 기판(10) 표면의 1차 코팅막(22)이 형성된 영역을 부분적으로 노광시킨다. 밀착성 고분자 기판(10)의 표면은 복수의 제 1 입자(20)로 이루어진 1차 코팅막(22)으로 덮여있지만, 조사되는 빛은 복수의 제 1 입자(20) 사이사이의 틈새를 통해 밀착성 고분자 기판(10)에 도달하여 밀착성 고분자 기판(10)을 노광시킬 수 있다. 그리고 제 1 입자(20)가 빛이 투과할 수 있는 물질로 이루어지는 경우에는, 조사되는 빛이 제 1 입자(20)를 투과하여 밀착성 고분자 기판(10)에 도달할 수 있다. 본 실시예에서, 빛은 가시광선, 자외선 등을 포함한다.After the primary coating layer 22 is formed on the adhesive polymer substrate 10, the surface of the adhesive polymer substrate 10 may be irradiated with light by applying a mask 40 on which the mask pattern 41 is formed, as shown in FIG. 2A. The region in which the primary coating film 22 is formed is partially exposed. Although the surface of the adhesive polymer substrate 10 is covered with the primary coating film 22 composed of the plurality of first particles 20, the irradiated light is exposed through the gap between the plurality of first particles 20. (10) can be reached and the adhesive polymer substrate 10 can be exposed. When the first particles 20 are made of a material that can transmit light, the irradiated light may pass through the first particles 20 to reach the adhesive polymer substrate 10. In this embodiment, the light includes visible light, ultraviolet light, and the like.
이와 같이, 마스크(40)를 밀착성 고분자 기판(10) 위에 배치한 상태에서 밀착성 고분자 기판(10)에 빛을 조사하면, 도 2b에 도시된 것과 같이, 밀착성 고분자 기판(10) 표면의 빛을 조사받은 노광부(14)의 부착력은 빛을 조사받지 못한 비노광부(15)의 부착력보다 커진다. 이는 상기 부위에 노광시 노광에 의해 가교, 광이량화 등의 반응으로 분자량이 크게 증가하면서 용해성이 떨어지고 열적 특성, 내화학성이 현저하게 증가하기 때문이다. 따라서 노광부(14)에 위치한 제 1 입자(20)는 비노광부(15)에 위치한 제 1 입자(20)에 비해 강한 결합력으로 밀착성 고분자 기판(10)에 부착된 상태를 유지할 수 있다.As such, when the mask 40 is disposed on the adhesive polymer substrate 10, light is irradiated onto the adhesive polymer substrate 10. As shown in FIG. 2B, the light on the surface of the adhesive polymer substrate 10 is irradiated. The adhesion of the exposed exposure portion 14 is greater than that of the non-exposed portion 15 that is not irradiated with light. This is because the solubility is poor and the thermal properties and the chemical resistance are significantly increased while the molecular weight is greatly increased by a reaction such as crosslinking or photodimerization by exposure upon exposure to the site. Therefore, the first particles 20 positioned in the exposed portion 14 may maintain a state of being attached to the adhesive polymer substrate 10 with a stronger bonding force than the first particles 20 disposed in the non-exposed portion 15.
부착력 향상에 대해 부연하자면, 일 예로 PDMS의 경우 자외선에 노출시 화학 구조 중 메틸 부분의 손상이 이루어진다고 알려져 있으며, 이를 통해 일시적으로 반응성 기가 고분자에 형성된다. 이러한 기능기는 메틸기에 비하여 수소 결합 등의 입자와 부착력을 가질 수 있는 특성이 향상되며, 탈수 축합 결합 등을 통해 화학적인 공유결합의 형성도 가능하게 된다.For example, PDMS is known to damage the methyl portion of the chemical structure when exposed to UV light, and thus, reactive groups are temporarily formed in the polymer. Such functional groups have improved properties that can have adhesion with particles such as hydrogen bonds, compared to methyl groups, and chemical covalent bonds can be formed through dehydration condensation bonds.
계속해서, 도 2c에 도시된 것과 같이, 밀착성 고분자 기판(10)의 비노광부(15)의 부착력보다 크고 노광부(14)의 부착력보다 작은 부착력을 갖는 입자 제거부재(43)를 1차 코팅막(22) 위에 접촉시켰다 떼어낸다. 이때, 도 2d에 도시된 것과 같이, 1차 코팅막(22)을 형성하는 복수의 제 1 입자(20) 중에서 비노광부(15)에 배치된 제 1 입자들(20)은 입자 제거부재(43)에 부착되어 밀착성 고분자 기판(10)으로부터 제거된다. 입자 제거부재(43)로는 일면에 부착성을 갖는 부착력의 차이를 가지는 폴리메틸실록산(polydimethylsiloxane, PDMS), 폴리에틸렌(polyethylene, PE), 폴리비닐클로라이드(polyvinylchloride, PVC) 등의 고분자 물질 및 접착력의 차이를 가지는 스카치 테이프와 같은 다양한 종류의 것이 이용될 수 있다. 덧붙이자면, 입자 제거 부재(43)는 입자가 코팅된 기판에 손상을 주지 않을 정도의 접착력을 갖는 일반적인 접착성 테이프나 더욱 경도가 낮아 접착성이 존재하는 PDMS와 같은 고무 재질의 물질 등이 사용 가능하다.Subsequently, as shown in FIG. 2C, the particle removing member 43 having the adhesion greater than the adhesion of the non-exposed portion 15 of the adhesive polymer substrate 10 and smaller than the adhesion of the exposed portion 14 may be formed using a primary coating film ( 22) Touch above and remove. In this case, as illustrated in FIG. 2D, the first particles 20 disposed in the non-exposed part 15 among the plurality of first particles 20 forming the primary coating layer 22 may have a particle removal member 43. Attached to and removed from the adhesive polymer substrate 10. As the particle removal member 43, a difference between polymer materials and adhesive strength, such as polydimethylsiloxane (PDMS), polyethylene (PE, PE), polyvinyl chloride (PVC), etc. Various kinds of materials such as scotch tapes having the same may be used. In addition, the particle removing member 43 may be a general adhesive tape having an adhesive force that does not damage the substrate coated with particles, or a rubber-like material such as PDMS having a lower hardness. Do.
한편, 입자 제거부재(43)의 부착력 이외에 밀착성 고분자 기판(10)에 대한 입자의 함침정도에 따라서도 부분적으로 제거 가능하다.On the other hand, in addition to the adhesion of the particle removal member 43, depending on the degree of impregnation of the particles to the adhesive polymer substrate 10 can also be partially removed.
이와 같이, 입자 제거부재(43)를 이용하여 밀착성 고분자 기판(10)의 비노광부(15)에 위치하는 제 1 입자들(20)을 제거하면, 밀착성 고분자 기판(10)에는 노광부(14)에 위치하는 제 1 입자들(20)만 남게 되어 일정 패턴의 1차 코팅막(22)이 밀착성 고분자 기판(10) 상에 만들어진다.As such, when the first particles 20 positioned in the non-exposed part 15 of the adhesive polymer substrate 10 are removed using the particle removing member 43, the exposed part 14 may be exposed to the adhesive polymer substrate 10. Only the first particles 20 positioned at are left, so that the first coating film 22 having a predetermined pattern is formed on the adhesive polymer substrate 10.
계속해서, 도 2e에 도시된 것과 같이, 복수의 제 1 입자(20)가 코팅된 밀착성 고분자 기판(10)의 표면에 제 1 입자(20)와 다른 제 2 입자(24)를 코팅한다. 복수의 제 2 입자(24)를 코팅하는 방법은, 앞서 설명한 복수의 제 1 입자(20)를 밀착성 고분자 기판(10)에 코팅하는 방법과 같은 것으로, 그 구체적인 방법은 다음과 같다.Subsequently, as shown in FIG. 2E, the first particles 20 and the other second particles 24 are coated on the surface of the adhesive polymer substrate 10 coated with the plurality of first particles 20. The method of coating the plurality of second particles 24 is the same as the method of coating the plurality of first particles 20 on the adhesive polymer substrate 10, and the specific method thereof is as follows.
먼저, 1차 코팅막(22)이 형성된 밀착성 고분자 기판(10) 위에 건조된 복수의 제 2 입자(24)를 올린다. 제 2 입자(24)로는 고분자, 무기물, 금속, 자성체, 반도체, 생체 물질 등이 이용될 수 있으며, 이들 각각의 구체적인 종류는 상술한 것과 같다. 그리고 복수의 제 2 입자(24) 위에서 압력을 가하여 제 2 입자(24)를 제 1 입자(20)가 배치되지 않은 비노광부(15)에 코팅한다. 제 2 입자(24)에 압력을 가하는 방법은 앞서 설명한 것과 같이 제 1 입자(20)를 코팅할 때 사용하는 방법과 같은 것으로, 라텍스, 스폰지, 손, 고무판, 플라스틱 판, 부드러운 표면을 가지는 재료 등을 이용하여 문지르는 방법이 이용될 수 있다. 복수의 제 2 입자(24)가 밀착성 고분자 기판(10)에 코팅되는 메커니즘은 앞서 설명한 제 1 입자(20)가 밀착성 고분자 기판(10)에 코팅되는 원리와 같다.First, a plurality of dried second particles 24 are placed on the adhesive polymer substrate 10 on which the primary coating layer 22 is formed. As the second particles 24, a polymer, an inorganic material, a metal, a magnetic material, a semiconductor, a biological material, or the like may be used, and the specific types thereof are the same as described above. Then, pressure is applied on the plurality of second particles 24 to coat the second particles 24 on the non-exposed part 15 where the first particles 20 are not disposed. The method of applying pressure to the second particles 24 is the same as the method used to coat the first particles 20 as described above, and includes latex, sponges, hands, rubber plates, plastic plates, materials having a smooth surface, and the like. A method of rubbing using may be used. The mechanism in which the plurality of second particles 24 are coated on the adhesive polymer substrate 10 is the same as that of the aforementioned first particles 20 is coated on the adhesive polymer substrate 10.
즉, 밀착성 고분자 기판(10)의 위에 제 2 입자들(24)을 올린 후에 압력을 가하면 압력이 가해진 부분의 제 2 입자들(24)이 밀착성 고분자 기판(10)의 변형을 통해 부착되며, 밀착성 고분자 기판(10)의 해당 부분에 제 2 입자들(24)에 각기 대응하는 복수의 제 2 오목부(17)가 형성된다. 따라서 제 2 오목부(17)에 제 2 입자(24)가 감싸인 상태에서 밀착성 고분자 기판(10)의 비노광부(15)에 제 2 입자들(24)이 정렬되면서, 비노광부(15)에 복수의 제 2 입자(24)로 이루어진 2차 코팅막(25)이 형성된다. 물론, 제 1 입자(20)가 빠져나간 빈 제 1 오목부(12)에 제 2 입자(24)가 부분적으로 수용되면서 제 2 입자(24)가 밀착성 고분자 기판(10)에 정렬 및 코팅될 수도 있다.That is, when the second particles 24 are placed on the adhesive polymer substrate 10 and then pressure is applied, the second particles 24 in the portion to which the pressure is applied are attached through the deformation of the adhesive polymer substrate 10. A plurality of second recesses 17 corresponding to the second particles 24 are formed in corresponding portions of the polymer substrate 10. Accordingly, while the second particles 24 are aligned with the non-exposed portions 15 of the adhesive polymer substrate 10 while the second particles 24 are wrapped in the second recessed portions 17, the non-exposed portions 15 A secondary coating film 25 composed of a plurality of second particles 24 is formed. Of course, the second particles 24 may be aligned and coated on the adhesive polymer substrate 10 while the second particles 24 are partially accommodated in the empty first recesses 12 from which the first particles 20 are removed. have.
밀착성 고분자 기판(10) 위에 1차 코팅막(22) 및 2차 코팅막(25)을 형성한 후, 도 2f 및 도 2g에 도시된 것과 같이, 1차 코팅막(22) 및 2차 코팅막(25)이 형성된 밀착성 고분자 기판(10)을 늘려 그 넓이를 확장시킨다. 밀착성 고분자 기판(10)의 넓이를 확장시키는 방법은 상술한 것과 같다.After the primary coating film 22 and the secondary coating film 25 are formed on the adhesive polymer substrate 10, as shown in FIGS. 2F and 2G, the primary coating film 22 and the secondary coating film 25 are formed. The adhesive polymer substrate 10 is formed to extend its width. The method of extending the width of the adhesive polymer substrate 10 is as described above.
1차 코팅막(22)이 형성된 밀착성 고분자 기판(10)을 늘려 그 넓이를 확장시키면, 도 2g에 도시된 것과 같이, 1차 코팅막(22)을 형성하는 복수의 제 1 입자(20) 사이의 간격 및 2차 코팅막(25)을 형성하는 복수의 제 2 입자(24) 사이이 벌어진다. 그리고 밀착성 고분자 기판(10) 상에는 상호 간의 사이가 벌어진 복수의 제 1 입자(20)로 이루어지는 확장된 1차 코팅막(22')과, 상호 간의 사이가 벌어진 복수의 제 2 입자(24)로 이루어지는 확장된 2차 코팅막(25')이 형성된다. 이 상태에서 도 2h에 도시된 것과 같이, 밀착성 고분자 기판(10)의 비노광부(15)의 부착력보다는 크고, 노광부(14)의 부착력보다는 작은 부착력을 갖는 전사 기판(45)을 확장된 1차 코팅막(22') 및 확장된 2차 코팅막(25') 위에 접촉시켰다 떼어내면, 도 2i에 도시된 것과 같이, 일정한 간격으로 이격된 복수의 제 2 입자(24)로 이루어진 확장된 코팅막(25')을 전사 기판(45)에 전사할 수 있다.When the adhesive polymer substrate 10 on which the primary coating film 22 is formed is extended to expand its width, the gap between the plurality of first particles 20 forming the primary coating film 22 as shown in FIG. 2G. And a plurality of second particles 24 forming the secondary coating film 25. On the adhesive polymer substrate 10, an expanded primary coating film 22 ′ composed of a plurality of first particles 20 spaced apart from each other, and an expansion made up of a plurality of second particles 24 spaced apart from each other. Secondary coating film 25 'is formed. In this state, as illustrated in FIG. 2H, the transfer substrate 45 having the adhesion greater than the adhesion of the non-exposed portion 15 of the adhesive polymer substrate 10 and less than the adhesion of the exposed portion 14 is expanded. When contacted and removed on the coating film 22 'and the expanded secondary coating film 25', the expanded coating film 25 'consisting of a plurality of second particles 24 spaced at regular intervals, as shown in FIG. 2I. ) Can be transferred to the transfer substrate 45.
이와 같이, 본 발명의 다른 실시예에 의한 입자 정렬을 이용한 코팅 방법에 있어서, 부분적 노광 및 부분적 입자 제거를 통해 형성된 1차 코팅막(22)을 갖는 밀착성 고분자 기판(10)을 2차 코팅막(25)을 형성하는 몰드처럼 사용할 수 있다. 즉, 앞서 설명한 것과 같이 밀착성 고분자 기판(10)에 코팅된 복수의 제 2 입자(24)를 다른 전사 기판(45)으로 전사시킨 후, 밀착성 고분자 기판(10)에 대한 외력을 제거하여 밀착성 고분자 기판(10)을 일정 패턴의 1차 코팅막(22)만 형성된 원래 상태로 복원시키고, 제 2 입자(24)를 밀착성 고분자 기판(10) 위에 코팅하는 단계와, 밀착성 고분자 기판(10)을 늘리는 단계와, 제 2 입자(24)로 이루어진 2차 코팅막(25)을 다른 전사 기판(45)으로 전사하는 단계를 반복 수행함으로써, 상호 간의 간격이 벌어진 복수의 제 2 입자(24)로 이루어진 확장된 2차 코팅막(25')을 반복적으로 형성할 수 있다.As described above, in the coating method using the particle alignment according to another embodiment of the present invention, the adhesive polymer substrate 10 having the primary coating layer 22 formed through partial exposure and partial particle removal may be applied to the secondary coating layer 25. Can be used as a mold to form a. That is, as described above, after transferring the plurality of second particles 24 coated on the adhesive polymer substrate 10 to another transfer substrate 45, the external force on the adhesive polymer substrate 10 is removed to remove the adhesive polymer substrate. Restoring (10) to the original state in which only the primary coating layer 22 of a predetermined pattern is formed, coating the second particles 24 on the adhesive polymer substrate 10, and increasing the adhesive polymer substrate 10; By repeating the step of transferring the secondary coating film 25 made of the second particles 24 to the other transfer substrate 45, the expanded secondary made of the plurality of second particles 24 having a gap therebetween. The coating film 25 'may be repeatedly formed.
다른 예로, 밀착성 고분자 기판(10) 위에 형성된 확장된 1차 코팅막(22')과 확장된 2차 코팅막(25')은 함께 다른 기판으로 전사되어 사용될 수도 있다. 즉, 밀착성 고분자 기판(10)을 늘려 확장된 1차 코팅막(22)과 확장된 2차 코팅막(25)을 형성한 후에, 밀착성 고분자 기판(10)의 노광부(14)보다 큰 부착력을 갖는 다른 전사 기판(49)을 확장된 1차 코팅막(22) 및 확장된 2차 코팅막(25) 위에 접촉시켰다 떼어내면, 도 3에 도시된 것과 같이, 확장된 1차 코팅막(22)과 확장된 2차 코팅막(25)이 특정 패턴으로 조합된 코팅막을 다른 전사 기판(49)으로 전사할 수 있다.As another example, the expanded primary coating layer 22 ′ and the expanded secondary coating layer 25 ′ formed on the adhesive polymer substrate 10 may be transferred together to another substrate. That is, after the adhesive polymer substrate 10 is stretched to form the expanded primary coating film 22 and the expanded secondary coating film 25, the adhesive polymer substrate 10 has a larger adhesion than the exposed portion 14 of the adhesive polymer substrate 10. When the transfer substrate 49 is brought into contact with the extended primary coating layer 22 and the expanded secondary coating layer 25 and removed, as shown in FIG. 3, the expanded primary coating layer 22 and the expanded secondary layer are shown. The coating film in which the coating film 25 is combined in a specific pattern may be transferred to another transfer substrate 49.
이 밖에, 본 발명의 다른 실시예에 의한 입자 정렬을 이용한 코팅 방법은 앞서 설명한 것과 같은 노광 단계, 부분적인 입자 제거 단계, 새로운 입자 코팅 단계, 코팅막 확장 단계, 전사 단계 등을 반복적으로 수행함으로써, 밀착성 고분자 기판(10) 위에 여러 종류의 입자가 각각 특정한 패턴으로 정렬된 다양한 코팅막을 형성할 수 있다. 각 입자의 정렬 패턴은 노광 단계에서 이용되는 마스크(40)의 마스크 패턴(41)을 다양화함으로써 다양하게 변화시킬 수 있다.In addition, the coating method using the particle alignment according to another embodiment of the present invention is carried out by repeatedly performing the exposure step, partial particle removal step, new particle coating step, coating film expansion step, transfer step and the like as described above, Various types of particles may be formed on the polymer substrate 10 with various coating layers each arranged in a specific pattern. The alignment pattern of each particle can be varied by varying the mask pattern 41 of the mask 40 used in the exposure step.
또한 본 발명의 다른 실시예에 의한 입자 정렬을 이용한 코팅 방법에 있어서, 밀착성 고분자 기판(10)에 1차 코팅막(22)을 형성하고, 노광 후 1차 코팅막(22)을 구성하는 복수의 제 1 입자(20) 중에서 비노광부(15)에 위치한 제 1 입자들(20)을 제거한 후, 이에 2차 코팅막(25)을 형성하지 않은 상태에서 밀착성 고분자 기판(10)을 늘림으로써, 확장된 1차 코팅막(22')을 형성할 수 있다. 그리고 확장된 1차 코팅막(22')을 노광부(14)의 부착력보다 큰 부착력을 갖는 다른 전사 기판에 전사할 수도 있다.In addition, in the coating method using the particle alignment according to another embodiment of the present invention, the first coating film 22 is formed on the adhesive polymer substrate 10, and the plurality of first coating films 22 constituting the first coating film 22 after exposure. After removing the first particles 20 located in the non-exposure portion 15 among the particles 20, the adhesive polymer substrate 10 is stretched in a state in which the secondary coating layer 25 is not formed thereon, thereby expanding the expanded primary. The coating film 22 'may be formed. In addition, the expanded primary coating film 22 ′ may be transferred to another transfer substrate having an adhesive force greater than that of the exposure part 14.
한편, 도 4는 상술한 본 발명에 의한 입자 정렬을 이용한 코팅 방법에 있어서, 제 2 입자(24)를 밀착성 고분자 기판(10)에 코팅하는 다른 실시예를 나타낸 것이다. 본 발명에 있어서, 탄성 변형에 의하여 밀착성 고분자 기판(10)에 오목부가 형성되므로, 오목부에 수용되었던 입자가 제거되면, 도 4의 (a)에 도시된 것과 같이 밀착성 고분자 기판(10)의 표면이 오목부가 소멸되어 매끈한면으로 복귀될 수 있다. 이렇게 제 1 입자(20)가 수용되었던 제 1 오목부(12;도 2d 참조)가 가역적으로 소멸된 상태에서, 복수의 제 2 입자(24)를 밀착성 고분자 기판(10) 위에 올리고 이에 압력을 가해 비노광부(15)에 제 2 입자(24)에 대응하는 제 2 오목부(17;도 2e 참조)를 형성하면서 제 2 입자(24)를 코팅할 수도 있다.Meanwhile, FIG. 4 shows another embodiment in which the second particles 24 are coated on the adhesive polymer substrate 10 in the coating method using the particle alignment according to the present invention. In the present invention, since the concave portion is formed in the adhesive polymer substrate 10 by elastic deformation, when the particles accommodated in the concave portion are removed, the surface of the adhesive polymer substrate 10 as shown in (a) of FIG. 4. This recess may disappear and return to the smooth surface. In such a state that the first concave portion 12 (see FIG. 2D) in which the first particles 20 are accommodated is reversibly dissipated, the plurality of second particles 24 are placed on the adhesive polymer substrate 10 and pressure is applied thereto. The second particles 24 may be coated while the second recesses 17 (see FIG. 2E) corresponding to the second particles 24 are formed in the non-exposed parts 15.
물론, 앞서 설명한 것과 같이, 1차 코팅막(22)이 형성된 후 오랜 시간이 지난 후에 제 1 입자(20)가 제 1 오목부(12)에서 제거된 경우에는, 도 2d에 도시된 것과 같이, 제 1 오목부(12) 또는 제 1 오목부(12)의 흔적이 밀착성 고분자 기판(10)의 표면에 남아있을 수도 있다. 이 경우, 새로 코팅되는 제 2 입자(24)는 제 1 오목부(12)에 부분적으로 감싸지거나, 제 1 오목부(12)에 대응하는 위치에서 밀착성 고분자 기판(10)을 파고들어 밀착성 고분자 기판(10)에 부착될 수 있다.Of course, as described above, when the first particle 20 is removed from the first recess 12 after a long time after the primary coating film 22 is formed, as shown in FIG. Traces of the first recesses 12 or the first recesses 12 may remain on the surface of the adhesive polymer substrate 10. In this case, the newly coated second particles 24 are partially wrapped in the first recesses 12, or the adhesive polymer substrates are penetrated by digging into the adhesive polymer substrate 10 at a position corresponding to the first recesses 12. 10 may be attached.
한편, 도 5a 내지 도 5d는 본 발명에 의한 입자 정렬을 이용한 코팅 방법에서 밀착성 고분자 기판에 일정 패턴의 코팅막을 형성하는 다른 실시예를 단계별로 나타낸 것으로, 밀착성 고분자 기판에 일정 패턴의 코팅막을 형성하는 다른 실시예의 구체적인 방법은 다음과 같다.On the other hand, Figure 5a to 5d is a step showing another embodiment of forming a coating film of a predetermined pattern on the adhesive polymer substrate in the coating method using the particle alignment according to the present invention, to form a coating film of a predetermined pattern on the adhesive polymer substrate The specific method of another embodiment is as follows.
먼저, 도 5a에 도시한 바와 같이, 매끈한 표면을 갖는 밀착성 고분자 기판(10)을 준비하고, 마스크 패턴(51)이 형성된 마스크(50)를 대고 빛을 조사하여 밀착성 고분자 기판(10)의 표면을 부분적으로 노광시킨다. 밀착성 고분자 기판(10)은 상술한 것과 같으며, 밀착성 고분자 기판(10)을 노광시키는 빛도 상술한 것과 같다.First, as shown in FIG. 5A, an adhesive polymer substrate 10 having a smooth surface is prepared, and the surface of the adhesive polymer substrate 10 is irradiated by applying light to the mask 50 on which the mask pattern 51 is formed. Partially exposed. The adhesive polymer substrate 10 is the same as described above, and the light exposing the adhesive polymer substrate 10 is also the same as described above.
이와 같이, 마스크(50)를 밀착성 고분자 기판(10) 위에 배치한 상태에서 밀착성 고분자 기판(10)에 빛을 조사하면, 도 5b에 도시된 것과 같이, 밀착성 고분자 기판(10) 표면의 빛을 조사받은 노광부(14)의 부착력이 빛을 조사받지 못한 비노광부(15)의 부착력보다 커진다. 이렇게 밀착성 고분자 기판(10)에 빛을 조사하여 노광부(14)를 형성한 후, 도 5c에 도시된 것과 같이, 복수의 입자(20)를 정렬하여 밀착성 고분자 기판(10) 위에 코팅막(22)을 형성한다.As such, when the mask 50 is disposed on the adhesive polymer substrate 10, light is irradiated onto the adhesive polymer substrate 10, and as shown in FIG. 5B, light is emitted on the surface of the adhesive polymer substrate 10. The adhesion of the exposed exposure portion 14 is greater than the adhesion of the non-exposed portion 15 that is not irradiated with light. After exposing the adhesive polymer substrate 10 to light to form the exposed portion 14, as shown in FIG. 5C, the plurality of particles 20 are aligned to form a coating film 22 on the adhesive polymer substrate 10. To form.
여기에서, 입자(20)의 종류나 복수의 입자(20)로 코팅막(22)을 형성하는 구체적인 방법을 상술한 것과 같다. 다만, 본 실시예에서 복수의 입자(20)를 노광부(14)가 형성된 밀착성 고분자 기판(10) 위에 올리고 이에 압력을 가하여 밀착성 고분자 기판(10)에 부착시킬 때, 노광부(14)에 위치하는 입자(20)의 밀착성 고분자 기판(10)과의 결합력은 비노광부(15)에 위치하는 입자(20)의 밀착성 고분자 기판(10)과의 결합력보다 커서, 노광부(14)에 위치하는 입자(20)가 비노광부(15)에 위치하는 입자(20)에 비해 밀착성 고분자 기판(10)에 더 단단히 결합된다.Here, the kind of particle 20 and the specific method of forming the coating film 22 from the some particle 20 are as having mentioned above. However, in the present exemplary embodiment, when the plurality of particles 20 are placed on the adhesive polymer substrate 10 having the exposed portion 14 and are applied to the adhesive polymer substrate 10 by applying pressure thereto, the particles 20 are positioned on the exposed portion 14. The binding force of the particles 20 to the adhesive polymer substrate 10 is greater than the bonding force of the particles 20 positioned on the non-exposed part 15 to the adhesive polymer substrate 10, and thus the particles positioned on the exposed part 14. 20 is more firmly bonded to the adhesive polymer substrate 10 than the particles 20 located in the non-exposed part 15.
계속해서, 도 5d에 도시된 것과 같이, 밀착성 고분자 기판(10)의 비노광부(15)의 부착력보다 크고 노광부(14)의 부착력보다 작은 부착력을 갖는 입자 제거부재(43;도 2c 참조)를 이용하여 코팅막(22)을 형성하는 복수의 입자(20) 중에서 비노광부(15)에 배치된 입자들(20)을 제거하면, 노광 패턴에 대응하는 패턴의 코팅막(22)을 형성할 수 있다.Subsequently, as shown in FIG. 5D, the particle removing member 43 (see FIG. 2C) having an adhesion force greater than that of the non-exposed portion 15 of the adhesive polymer substrate 10 and smaller than that of the exposure portion 14 is provided. If the particles 20 disposed on the non-exposed part 15 are removed from the plurality of particles 20 forming the coating film 22 by using the coating film 22, the coating film 22 having a pattern corresponding to the exposure pattern may be formed.
이후, 앞서 설명한 것과 같은 2차 코팅막 형성, 코팅막 확장, 코팅막 전사 등의 단계(도 2e ~ 도 2i)를 더 수행하면, 밀착성 고분자 기판(10) 위에 여러 종류의 입자가 각각 특정한 패턴으로 정렬된 다양한 코팅막을 형성하거나, 다양한 입자로 이루어지거나 다양한 패턴으로 형성된 코팅막을 다른 기판으로 전사할 수 있다. 예컨대, 2차 코팅막(25;도 2e 참조)을 형성하고, 밀착성 고분자 기판(10)을 늘린 후, 확장된 2차 코팅막(25';도 2g 참조)만 다른 기판으로 전사하거나, 확장된 1차 코팅막(22';도 2g 참조)과 확장된 2차 코팅막(25';도 2g 참조)을 모두 다른 기판으로 전사할 수 있다.Subsequently, when the secondary coating film formation, coating film expansion, coating film transfer, and the like are further performed as described above (FIGS. 2E to 2I), various kinds of particles are arranged on the adhesive polymer substrate 10 in a specific pattern. A coating film may be formed, or the coating film made of various particles or formed in various patterns may be transferred to another substrate. For example, after forming the secondary coating film 25 (see FIG. 2E), stretching the adhesive polymer substrate 10, only the expanded secondary coating film 25 '(see FIG. 2G) is transferred to another substrate, or the expanded primary Both the coating film 22 '(see FIG. 2G) and the expanded secondary coating film 25' (see FIG. 2G) can be transferred to another substrate.
한편, 도 6a 내지 도 6d는 본 발명의 또 다른 실시예에 의한 입자 정렬을 이용한 코팅 방법 중 일부 단계를 나타낸 것이다.On the other hand, Figures 6a to 6d shows some steps of the coating method using a particle alignment according to another embodiment of the present invention.
도 6a 내지 도 6d에 나타낸 입자 정렬을 이용한 코팅 방법은 밀착성 고분자 기판(10) 위에 복수의 제 1 입자(20)로 이루어진 1차 코팅막(22)을 형성하고, 밀착성 고분자 기판(10)을 늘려 밀착성 고분자 기판(10) 상에 상호 간의 간격이 벌어진 복수의 제 1 입자(20)로 이루어진 확장된 1차 코팅막(22')을 형성하는 과정은 도 1a 내지 도 1e에 나타낸 것과 같다.In the coating method using particle alignment shown in FIGS. 6A to 6D, a primary coating layer 22 including a plurality of first particles 20 is formed on the adhesive polymer substrate 10, and the adhesive polymer substrate 10 is stretched to increase adhesion. A process of forming the expanded primary coating layer 22 ′ consisting of a plurality of first particles 20 having a spaced apart from each other on the polymer substrate 10 is as shown in FIGS. 1A to 1E.
본 발명의 또 다른 실시예에 의한 입자 정렬을 이용한 코팅 방법은 밀착성 고분자 기판(10)을 늘려 밀착성 고분자 기판(10) 상에 확장된 1차 코팅막(22')을 형성한 후, 도 6a에 도시된 것과 같이, 밀착성 고분자 기판(10) 상의 확장된 1차 코팅막(22')을 향해 빛을 조사한다. 이때, 밀착성 고분자 기판(10) 표면의 빛을 조사 받은 노광부(14)의 부착력이 증가하여 밀착성 고분자 기판(10)에서 복수의 제 1 입자(20)의 결합력이 커진다. 이 상태에서 도 6b에 도시된 것과 같이, 복수의 제 2 입자(24)를 밀착성 고분자 기판(10) 위에 올리고, 앞서 설명한 것과 같은 방법으로 복수의 제 2 입자(24)를 압력을 가하면서 문지르면, 복수의 제 2 입자(24)가 제 1 입자(20)가 없는 부분으로 파고들어 코팅된다. 이후, 도 6c 및 도 6d에 도시된 것과 같이 확장된 1차 코팅막(22')과 복수의 제 1 입자(20) 사이에 놓이는 복수의 제 2 입자(24)로 이루어지는 2차 코팅막(27) 위에 밀착성 고분자 기판(10)의 노광부(14)의 부착력보다 큰 부착력을 갖는 전사 기판(53)을 접촉시켰다 떼어내면, 전사 기판(53)에 1차 코팅막(22)과 2차 코팅막(27)이 혼재하는 코팅막을 전사할 수 있다.In the coating method using the particle alignment according to another embodiment of the present invention, the adhesive polymer substrate 10 is stretched to form an expanded primary coating film 22 ′ on the adhesive polymer substrate 10, and then shown in FIG. 6A. As shown, light is directed toward the expanded primary coating layer 22 ′ on the adhesive polymer substrate 10. At this time, the adhesive force of the exposed portion 14 irradiated with light on the surface of the adhesive polymer substrate 10 is increased to increase the bonding force of the plurality of first particles 20 in the adhesive polymer substrate 10. In this state, as shown in FIG. 6B, when the plurality of second particles 24 are placed on the adhesive polymer substrate 10 and rubbed with the pressure applying the plurality of second particles 24 in the same manner as described above, A plurality of second particles 24 are drilled into the absence of the first particles 20 and coated. Subsequently, as shown in FIGS. 6C and 6D, the expanded primary coating layer 22 ′ and the plurality of second particles 24 disposed between the plurality of first particles 20 are disposed on the secondary coating layer 27. When the transfer substrate 53 having a larger adhesion than the adhesion of the exposed portion 14 of the adhesive polymer substrate 10 is brought into contact with and removed, the primary coating film 22 and the secondary coating film 27 are attached to the transfer substrate 53. The mixed coating film can be transferred.
이하, 본 발명의 실험예를 참조하여 본 발명을 좀더 상세하게 설명한다. 이러한 실험예는 본 발명을 상세하게 설명하기 위하여 예시한 것일 뿐, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to experimental examples of the present invention. These experimental examples are only illustrated to explain the present invention in detail, but the present invention is not limited thereto.
<실험예 1>Experimental Example 1
실가드(Sylgard) 184 (미국, 다우코닝) 제품에 20wt%의 경화제를 포함하여 형성된 PDMS로 이루어진 밀착성 고분자 기판을 15cm 지름의 페트리 디쉬에 준비하였다. An adhesive polymer substrate made of PDMS formed from Sylgard 184 (Dow Corning, USA) containing 20 wt% of a curing agent was prepared in a 15 cm diameter Petri dish.
입자의 균일한 코팅을 위해 상기 밀착성 고분자 기판의 표면경도를 향상시키는 UV를 30분 동안 공기분위기 하에서 조사하였다. UV was applied under an air atmosphere for 30 minutes to improve the surface hardness of the adhesive polymer substrate for uniform coating of the particles.
상기 밀착성 고분자 기판 위에 120nm SiO2 입자를 올려놓은 후 라텍스 필름으로 감싼 스폰지를 이용하여 손으로 잡고 문질러서 밀착성 고분자 기판의 표면에 입자를 단층으로 코팅하였다. 단층 코팅을 위해 120nm SiO2 코팅막을 질소 가스로 불어 멀티층이 형성되어있는 부분의 입자를 제거하였다.120 nm SiO 2 particles were placed on the adhesive polymer substrate, and then the particles were coated on the surface of the adhesive polymer substrate by a single layer using a sponge wrapped with a latex film. For monolayer coating, a 120 nm SiO 2 coating film was blown with nitrogen gas to remove particles in a portion where a multi layer was formed.
상기 밀착성 고분자 기판을 페트리 디쉬에 제거한 후 도 7의 장치 1과 2 사이에 고정시킨 후 도 7의 장치 3과 장치 4가 결합된 장치와 결합해 기판을 늘린다.The adhesive polymer substrate is removed in a petri dish, and then fixed between the devices 1 and 2 of FIG. 7 and then coupled with the device 3 and 4 of FIG. 7 to increase the substrate.
상기 밀착성 고분자 기판 및 상기 SiO2 코팅막 상에 자외선 경화 수지를 포함하는 레진을 위치시킨 다음에 OHP필름을 덮고 60 오븐에 5분 동안 경화시킨 다음 60분 동안 UV를 조사하여 레진을 경화시켰다. The resin containing the ultraviolet curable resin was placed on the adhesive polymer substrate and the SiO 2 coating layer, and then the resin was cured by covering the OHP film and curing in an oven for 5 minutes and then irradiating with UV for 60 minutes.
그 후, 상기 밀착성 고분자 기판을 제거하여 기판과 기판에 코팅되어있는 상기 SiO2 코팅막이 늘려진 상태로 OHP 필름상 SiO2 입자가 전이된 양각형태의 코팅 기재의 제조를 완료하였다.Thereafter, the adhesive polymer substrate was removed to complete the manufacture of an embossed coating substrate in which SiO 2 particles on an OHP film were transferred while the SiO 2 coating layer coated on the substrate and the substrate were elongated.
도 8은 상기 코팅막 및 늘리지 않은 코팅막을 비교하기 위해 SEM(scanning electron microscope)을 측정한 결과이며, 도 8의 결과에서 알 수 있듯이 본 발명의 경우 입자가 밀착성 고분자 기판에 코팅된 후 밀착성 고분자 기판을 늘린 뒤 전이시킨 코팅 기재를 제조할 수 있음을 알 수 있었다. 또한 기존 늘리지 않은 기판을 사용한 도 9의 왼쪽 SEM 사진과 비교해서 기판을 늘려서 전이시킨 도 9의 오른쪽 SEM 사진이 입자 간 간격이 늘어나 있음을 확인할 수 있다.FIG. 8 is a result of measuring a scanning electron microscope (SEM) to compare the coating film and the uncoated coating film. As can be seen from the results of FIG. 8, in the case of the present invention, the adhesive polymer substrate is coated after the particles are coated on the adhesive polymer substrate. It can be seen that it is possible to produce coated substrates which are stretched and then transferred. In addition, the SEM image on the right side of FIG. 9, in which the substrate is stretched and transferred, may be compared with the SEM image on the left side of FIG.
<실험예 2>Experimental Example 2
실가드(Sylgard) 184 (미국, 다우코닝) 제품에 3wt%의 경화제를 포함하여 형성된 PDMS로 이루어진 밀착성 고분자 기판을 15cm 지름의 페트리 디쉬에 준비하였다. An adhesive polymer substrate made of PDMS formed from Sylgard 184 (Dow Corning, USA) containing 3 wt% of a curing agent was prepared in a 15 cm diameter Petri dish.
입자의 균일한 코팅을 위해 상기 밀착성 고분자 기판의 표면경도를 향상시키는 UV를 30분 동안 공기분위기 하에서 조사하였다. UV was applied under an air atmosphere for 30 minutes to improve the surface hardness of the adhesive polymer substrate for uniform coating of the particles.
상기 밀착성 고분자 기판 위에 1200nm SiO2 입자를 올려놓은 후 라텍스 필름으로 감싼 스폰지를 이용하여 손으로 잡고 문질러서 밀착성 고분자 기판의 표면에 입자를 단층으로 코팅한다. 단층 코팅을 위해 1200nm SiO2 코팅막을 질소 가스로 불어 멀티층이 형성되어있는 부분의 입자를 제거하였다.After placing 1200 nm SiO 2 particles on the adhesive polymer substrate, using a sponge wrapped with a latex film, using a sponge and rubbed to coat the particles with a single layer on the surface of the adhesive polymer substrate. For monolayer coating, a 1200 nm SiO 2 coating film was blown with nitrogen gas to remove particles in a portion where a multi layer was formed.
상기 밀착성 고분자 기판을 페트리 디쉬에 제거한 후 도 7의 장치 1과 2 사이에 고정시킨 후 도 7의 장치 3과 장치 4가 결합된 장치와 결합해 기판을 늘렸다.The adhesive polymer substrate was removed in a petri dish, and then fixed between the devices 1 and 2 of FIG. 7 and then combined with the device 3 and 4 of FIG. 7 to increase the substrate.
상기 밀착성 고분자 기판 및 상기 SiO2 코팅막 상에 자외선 경화 수지를 포함하는 레진을 위치시킨 다음에 OHP필름을 덮고 60 오븐에 5분 동안 경화시킨 다음 60분 동안 UV를 조사하여 레진을 경화시켰다. The resin containing the ultraviolet curable resin was placed on the adhesive polymer substrate and the SiO 2 coating layer, and then the resin was cured by covering the OHP film and curing in an oven for 5 minutes and then irradiating with UV for 60 minutes.
그 후, 상기 밀착성 고분자 기판을 제거하여 기판과 기판에 코팅되어있는 상기 SiO2 코팅막이 늘려진 상태로 OHP 필름상 SiO2 입자가 전이된 양각형태의 코팅 기재의 제조를 완료하였다.Thereafter, the adhesive polymer substrate was removed to complete the manufacture of an embossed coating substrate in which SiO 2 particles on an OHP film were transferred while the SiO 2 coating layer coated on the substrate and the substrate were elongated.
도 10은 상기 코팅막 및 늘리지 않은 코팅막을 비교하기 위해 SEM(scanning electron microscope)을 측정한 결과이며, 도 10의 결과에서 알 수 있듯이 본 발명의 경우 입자가 밀착성 고분자 기판에 코팅된 후 밀착성 고분자 기판을 늘린 뒤 전이시킨 코팅 기재를 제조할 수 있음을 확인할 수 있었다. 또한 기존 늘리지 않은 기판을 사용한 도 11의 왼쪽 SEM 사진과 비교해서 기판을 늘려서 전이시킨 도 11의 오른쪽 SEM 사진이 입자 간 간격이 늘어나 있음을 확인할 수 있었다.10 is a result of measuring a scanning electron microscope (SEM) to compare the coating film and the coating film not stretched, and as shown in the results of FIG. 10, in the case of the present invention, after the particles are coated on the adhesive polymer substrate, It was confirmed that the coated substrate which was transferred after being stretched could be prepared. In addition, the SEM image on the right side of FIG. 11, which was extended by transferring the substrate, was increased compared to the SEM image on the left side of FIG.
앞에서 설명되고 도면에 도시된 본 발명의 실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 특허청구범위에 기재된 사항에 의해서만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 및 변경하는 것이 가능하다. 따라서, 이러한 개량 및 변경은 해당 기술분야에서 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.Embodiments of the present invention described above and illustrated in the drawings should not be construed as limiting the technical spirit of the present invention. The protection scope of the present invention is limited only by the matters described in the claims, and those skilled in the art can improve and change the technical idea of the present invention in various forms. Accordingly, such improvements and modifications will fall within the protection scope of the present invention as long as it will be apparent to those skilled in the art.
본 발명에 의한 입자 정렬을 이용한 코팅 방법에서는 복수의 입자로 이루어진 코팅층을 패터닝하고, 마스크를 이용하여 밀착성 고분자 기판을 노광하여 패터닝된 코팅층을 밀착성 고분자 기판 위에 단단히 부착시킨 후, 새로운 입자를 패터닝된 코팅층 사이에 코팅함으로써, 밀착성 고분자 기판 위에 여러 종류의 입자가 각각 특정한 패턴으로 정렬된 다양한 코팅막을 손쉽게 형성할 수 있고, 형성된 다양한 코팅막을 다른 전사 기판으로 전사할 수 있어 산업적으로 유용하다.In the coating method using particle alignment according to the present invention, a coating layer composed of a plurality of particles is patterned, an adhesive polymer substrate is exposed using a mask, the patterned coating layer is firmly attached onto the adhesive polymer substrate, and then new particles are patterned coating layer. By coating in between, the various types of particles can be easily formed on the adhesive polymer substrate, each of which is arranged in a specific pattern, and the various coating films formed can be transferred to another transfer substrate, which is industrially useful.

Claims (19)

  1. (a) 밀착성 고분자 기판을 준비하는 준비 단계;(a) preparing an adhesive polymer substrate;
    (b) 상기 밀착성 고분자 기판 위에 복수의 입자를 압력을 가하여 상기 밀착성 고분자 기판 표면에 상기 복수의 입자에 각기 대응하는 복수의 오목부가 형성되도록 하면서 코팅하여 코팅막을 형성하는 단계; 및(b) applying a plurality of particles onto the adhesive polymer substrate to form a coating layer by coating the plurality of recesses corresponding to the plurality of particles on the surface of the adhesive polymer substrate; And
    (c) 상기 코팅막이 형성된 상기 밀착성 고분자 기판의 상기 입자 간 사이간격을 늘려 상기 코팅막을 확장시키는 단계를 포함하는 입자 정렬을 이용한 코팅 방법.(c) expanding the coating film by increasing the spacing between the particles of the adhesive polymer substrate on which the coating film is formed.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 (c)단계 후,After the step (c),
    (d) 상기 밀착성 고분자 기판의 부착력과 상이한 부착력을 갖는 전사 기판에 상기 확장된 코팅막을 전사하는 단계;를 포함하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.(d) transferring the expanded coating film to a transfer substrate having an adhesive force different from that of the adhesive polymer substrate.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 밀착성 고분자 기판은 실리콘 기반 고분자 물질, 랩, 표면 보호용 필름, 표면 형상의 변형이 용이한 광택을 지닌 필름 중에서 선택되는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.The adhesive polymer substrate is a coating method using a particle alignment, characterized in that selected from a silicon-based polymer material, wraps, a film for protecting the surface, a film having a gloss easy to change the surface shape.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 밀착성 고분자 기판은 폴리메틸실록산(polydimethylsiloxane, PDMS), 폴리에틸렌(polyethylene, PE), 폴리비닐클로라이드(polyvinylchloride, PVC) 중에서 적어도 하나를 포함하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.The adhesive polymer substrate is a coating method using particle alignment, characterized in that it comprises at least one of polydimethylsiloxane (PDMS), polyethylene (PE, PE), polyvinyl chloride (PVC).
  5. 제 1 항에 있어서,The method of claim 1,
    상기 (b) 단계에서 상기 복수의 입자는 상기 밀착성 고분자 기판에 직접 접촉하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.The coating method using the particle alignment, characterized in that in the step (b) the plurality of particles are in direct contact with the adhesive polymer substrate.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 (b) 단계에서 상기 코팅막은 상기 복수의 입자가 단층으로 코팅되어 이루어진 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.The coating method in the step (b) is the coating method using a particle alignment, characterized in that the plurality of particles are made of a single layer coating.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 (b) 단계에서 상기 복수의 입자가 비구형일 경우에는, 상기 복수의 입자 중 입경이 상위 10% 입자의 평균 입경에 대한 상기 코팅막 두께의 평균값의 비율이 1.9 이하인 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.In the step (b), when the plurality of particles are non-spherical, the ratio of the average value of the thickness of the coating film to the average particle diameter of the upper 10% particles of the plurality of particles is 1.9 or less, using the particle alignment, Coating method.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 (b) 단계에서 상기 입자의 평균 입경에 대한 상기 오목부의 깊이 비율이 0.02 ~ 0.98인 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.The coating method using the particle alignment, characterized in that the depth ratio of the concave portion to the average particle diameter of the particles in step (b) is 0.02 ~ 0.98.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 (b) 단계에서 상기 복수의 입자의 평균 입경이 10nm 내지 100인 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.The coating method using a particle alignment, characterized in that the average particle diameter of the plurality of particles in step (b) is 10nm to 100.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 (b) 단계에서 상기 밀착성 고분자 기판에는 상기 밀착성 고분자 기판의 변형에 의해 상기 복수의 입자에 각각 대응하도록 복수의 오목부가 함몰되게 마련되며, 상기 복수의 오목부는 가역적인 상태로 마련되는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.In the step (b), the adhesive polymer substrate is provided with a plurality of recesses recessed to correspond to the plurality of particles by deformation of the adhesive polymer substrate, and the plurality of recesses are provided in a reversible state. Coating method using the particle alignment to be.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 복수의 입자는 각각, 전하성 물질 및 비전하성 물질, 소수성 물질 및 친수성 물질 중 적어도 하나를 포함하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.Wherein each of the plurality of particles comprises at least one of a chargeable material and a non-chargeable material, a hydrophobic material, and a hydrophilic material.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 밀착성 고분자 기판의 표면에는 입체적인 3차원 구조의 패턴이 마련되는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.Coating method using a particle alignment, characterized in that the surface of the adhesive polymer substrate is provided with a pattern of three-dimensional three-dimensional structure.
  13. 제 1 항에 있어서,The method of claim 1,
    상기 (c)단계 후, 상기 밀착성 고분자 기판에 코팅된 복수의 입자를 레진에 전사한 후, O2 plasma를 조사해 상기 입자가 전사된 부분을 제외한 나머지 공간을 에칭하여 Moth-Eye 형태의 필름을 제조하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.After the step (c), after transferring the plurality of particles coated on the adhesive polymer substrate to the resin, by irradiating O 2 plasma to etch the remaining space except the portion where the particles are transferred to produce a Moth-Eye type film Coating method using a particle alignment, characterized in that.
  14. 제 1 항에 있어서,The method of claim 1,
    상기 (c)단계에서,In the step (c),
    상기 밀착성 고분자 기판은, 사방으로 균일하게 확장되거나, 길이 방향으로만 확장되거나, 폭 방향으로만 확장되는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.The adhesive polymer substrate is uniformly expanded in all directions, only in the longitudinal direction, or the coating method using a particle alignment, characterized in that only extend in the width direction.
  15. (a) 밀착성 고분자 기판을 준비하는 준비 단계;(a) preparing an adhesive polymer substrate;
    (b) 상기 밀착성 고분자 기판 위에 복수의 입자를 압력을 가하여 상기 밀착성 고분자 기판 표면에 상기 복수의 입자에 각기 대응하는 복수의 오목부가 형성되도록 하면서 코팅하여 코팅막을 형성하는 단계;(b) applying a plurality of particles onto the adhesive polymer substrate to form a coating layer by coating the plurality of recesses corresponding to the plurality of particles on the surface of the adhesive polymer substrate;
    (c) 마스크 패턴이 형성된 마스크를 대고 상기 밀착성 고분자 기판을 향해 빛을 조사하여 상기 밀착성 고분자 기판 표면의 상기 코팅막이 형성된 영역을 부분적으로 노광함으로써, 상기 밀착성 고분자 기판 표면의 빛이 조사된 노광부의 부착력을 변화시키는 단계;(c) the adhesive force of the exposed part irradiated with the light on the surface of the adhesive polymer substrate by partially irradiating the coating film on the surface of the adhesive polymer substrate by irradiating light toward the adhesive polymer substrate with the mask having the mask pattern formed thereon; Changing the;
    (d) 상기 밀착성 고분자 기판의 빛이 조사된 부분과 조사되지 않은 부분의 부착력 차이를 이용하여 상기 코팅막을 형성하는 상기 복수의 입자에서 비노광부 또는 노광부에 배치된 입자들을 입자의 함침정도 및 입자 제거부재의 부착력 정도를 이용하여 상기 밀착성 고분자 기판으로부터 제거하는 단계; 및(d) the degree of impregnation of the particles and the particles disposed in the non-exposed or exposed portions of the plurality of particles forming the coating film using the difference in adhesion between the irradiated and unirradiated portions of the adhesive polymer substrate; Removing from the adhesive polymer substrate by using an adhesive force of the removal member; And
    (e) 상기 코팅막이 형성된 상기 밀착성 고분자 기판의 상기 입자 간 사이간격을 늘려 상기 코팅막을 확장시키는 단계를 포함하는 입자 정렬을 이용한 코팅 방법.(e) expanding the coating film by increasing the spacing between the particles of the adhesive polymer substrate on which the coating film is formed.
  16. (a) 밀착성 고분자 기판을 준비하는 준비 단계;(a) preparing an adhesive polymer substrate;
    (b) 상기 밀착성 고분자 기판 위에 복수의 제 1 입자를 압력을 가하여 상기 밀착성 고분자 기판 표면에 상기 복수의 제 1 입자에 각기 대응하는 복수의 제 1 오목부가 형성되도록 하면서 코팅하여 1차 코팅막을 형성하는 단계;(b) applying a plurality of first particles to the adhesive polymer substrate to apply a pressure to form a first coating layer on the surface of the adhesive polymer substrate while forming a plurality of first recesses corresponding to the plurality of first particles, respectively; step;
    (c) 마스크 패턴이 형성된 마스크를 대고 상기 밀착성 고분자 기판을 향해 빛을 조사하여 상기 밀착성 고분자 기판 표면의 상기 1차 코팅막이 형성된 영역을 부분적으로 노광함으로써, 상기 밀착성 고분자 기판 표면의 빛이 조사된 노광부의 부착력을 변화시키는 단계;(c) exposure to which the light on the surface of the adhesive polymer substrate is irradiated by partially exposing a region where the primary coating layer is formed on the surface of the adhesive polymer substrate by irradiating light toward the adhesive polymer substrate with a mask having a mask pattern formed thereon; Changing the adhesion of the negatives;
    (d) 상기 밀착성 고분자 기판의 빛이 조사된 부분과 조사되지 않은 부분의 부착력 차이를 이용하여 상기 코팅막을 형성하는 상기 복수의 제 1 입자에서 비노광부 또는 노광부에 배치된 제 1 입자들을 입자의 함침정도 및 입자 제거부재의 부착력 정도를 이용하여 상기 밀착성 고분자 기판으로부터 제거하는 단계;(d) first particles disposed in the non-exposed part or the exposed part of the plurality of first particles forming the coating film by using a difference in adhesion between the irradiated and unirradiated portions of the adhesive polymer substrate; Removing from the adhesive polymer substrate by using the degree of impregnation and the degree of adhesion of the particle removing member;
    (e) 상기 밀착성 고분자 기판의 상기 제 1 입자가 제거된 곳에 복수의 제 2 입자를 압력을 가하여 상기 복수의 제 2 입자에 각기 대응하는 복수의 제 2 오목부가 형성되도록 하면서 코팅하여 2차 코팅막을 형성하는 단계;(e) applying a plurality of second particles to a place where the first particles of the adhesive polymer substrate are removed, and coating a plurality of second recesses corresponding to the plurality of second particles to form a second coating layer. Forming;
    (f) 상기 1차 코팅막 및 상기 2차 코팅막이 형성된 상기 밀착성 고분자 기판의 상기 입자간 사이 간격을 늘려 상기 1차 코팅막 및 상기 2차 코팅막을 확장시키는 단계; 및(f) extending the primary coating film and the secondary coating film by increasing a distance between the particles of the adhesive polymer substrate on which the primary coating film and the secondary coating film are formed; And
    (g) 상기 밀착성 고분자 기판의 비노광부와 노광부의 부착력 차이를 통해 전사 기판에 상기 확장된 1차 코팅막 및 2차 코팅막 중 적어도 하나를 전사하는 단계를 포함하는 입자 정렬을 이용한 코팅 방법.(g) transferring at least one of the extended primary coating film and the secondary coating film to a transfer substrate through a difference in adhesion between the non-exposed part and the exposed part of the adhesive polymer substrate.
  17. (a) 밀착성 고분자 기판을 준비하는 준비 단계;(a) preparing an adhesive polymer substrate;
    (b) 마스크 패턴이 형성된 마스크를 대고 상기 밀착성 고분자 기판을 향해 빛을 조사하여 상기 밀착성 고분자 기판 표면의 빛이 조사된 노광부의 부착력을 변화시키는 단계;(b) changing the adhesion of the exposed part to which the light on the surface of the adhesive polymer substrate is irradiated by applying light toward the adhesive polymer substrate with the mask on which the mask pattern is formed;
    (c) 상기 밀착성 고분자 기판 위에 복수의 제 1 입자를 코팅하여 1차 코팅막을 형성하는 단계;(c) forming a primary coating film by coating a plurality of first particles on the adhesive polymer substrate;
    (d) 상기 밀착성 고분자 기판의 빛이 조사된 부분과 조사되지 않은 부분의 부착력 차이를 이용하여 상기 1차 코팅막을 형성하는 상기 복수의 제 1 입자에서 비노광부 또는 노광부에 배치된 제 1 입자들을 입자의 함침정도 및 입자 제거부재의 부착력 정도를 이용해 상기 밀착성 고분자 기판으로부터 제거하는 단계;(d) first particles disposed in the non-exposed portion or the exposed portion of the plurality of first particles forming the primary coating layer by using a difference in adhesion between the irradiated and unirradiated portions of the adhesive polymer substrate; Removing from the adhesive polymer substrate by using the degree of impregnation of the particles and the degree of adhesion of the particle removing member;
    (e) 상기 밀착성 고분자 기판의 상기 제 1 입자가 제거된 곳에 복수의 제 2 입자를 압력을 가하여 상기 복수의 제 2 입자에 각기 대응하는 복수의 제 2 오목부가 형성되도록 하면서 코팅하여 2차 코팅막을 형성하는 단계;(e) applying a plurality of second particles to a place where the first particles of the adhesive polymer substrate are removed, and coating a plurality of second recesses corresponding to the plurality of second particles to form a second coating layer. Forming;
    (f) 상기 1차 코팅막 및 상기 2차 코팅막이 형성된 상기 밀착성 고분자 기판의 상기 입자간 사이간격을 늘려 상기 1차 코팅막 및 상기 2차 코팅막을 확장하는 단계; 및(f) extending the primary coating layer and the secondary coating layer by increasing the distance between the particles of the adhesive polymer substrate on which the primary coating layer and the secondary coating layer are formed; And
    (g) 상기 밀착성 고분자 기판의 비노광부와 노광부의 부착력 차이를 통해 전사 기판에 상기 확장된 1차 코팅막 및 2차 코팅막 중 적어도 하나를 전사하는 단계를 포함하는 입자 정렬을 이용한 코팅 방법.(g) transferring at least one of the extended primary coating film and the secondary coating film to a transfer substrate through a difference in adhesion between the non-exposed part and the exposed part of the adhesive polymer substrate.
  18. (a) 밀착성 고분자 기판을 준비하는 준비 단계;(a) preparing an adhesive polymer substrate;
    (b) 상기 밀착성 고분자 기판 위에 복수의 제 1 입자를 압력을 가하여 상기 밀착성 고분자 기판 표면에 상기 복수의 제 1 입자에 각기 대응하는 복수의 제 1 오목부가 형성되도록 하면서 코팅하는 단계;(b) applying a plurality of first particles to the adhesive polymer substrate by applying pressure to form a plurality of first recesses respectively corresponding to the plurality of first particles on the surface of the adhesive polymer substrate;
    (c) 상기 코팅막이 형성된 상기 밀착성 고분자 기판의 상기 제 1 입자간 사이간격을 늘려 상기 코팅막을 확장시키는 단계;(c) extending the coating film by increasing a distance between the first particles of the adhesive polymer substrate on which the coating film is formed;
    (d) 상기 밀착성 고분자 기판에 빛을 조사하여 상기 밀착성 고분자 기판을 노광함으로써, 상기 밀착성 고분자 기판과 상기 복수의 제 1 입자 사이의 결합력을 증가시키는 단계;(d) irradiating light to the adhesive polymer substrate to expose the adhesive polymer substrate, thereby increasing the bonding force between the adhesive polymer substrate and the plurality of first particles;
    (e) 상기 밀착성 고분자 기판 표면의 상기 복수의 제 1 입자들 사이의 영역에 복수의 제 2 입자를 압력을 가하여 상기 밀착성 고분자 기판 표면에 상기 복수의 제 2 입자에 각기 대응하는 복수의 제 2 오목부가 형성되도록 코팅하는 단계; 및(e) applying a plurality of second particles to a region between the plurality of first particles on the surface of the adhesive polymer substrate, wherein the plurality of second recesses respectively correspond to the plurality of second particles on the surface of the adhesive polymer substrate; Coating to form an addition; And
    (f) 상기 밀착성 고분자 기판의 상기 제 1 입자 및 상기 제 2 입자들의 부착력 및 함침도 차이를 통해 전사 기판에 상기 제 1 입자 및 상기 제 2 입자중 적어도 하나를 전사하는 단계;를 포함하는 입자 정렬을 이용한 코팅 방법.(f) transferring at least one of the first particles and the second particles to the transfer substrate through a difference in adhesion and impregnation degree between the first particles and the second particles of the adhesive polymer substrate. Coating method using.
  19. 제 18항에 있어서,The method of claim 18,
    상기 (f)단계에서 상기 밀착성 고분자 기판의 상기 제 1 입자 및 상기 제 2 입자들의 부착력 및 함침도 차이를 통해 전사 기판에 상기 제 1 입자 및 상기 제 2 입자를 전사하는 단계를 포함하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.And transferring the first particles and the second particles to the transfer substrate through a difference in adhesion and impregnation degree between the first particles and the second particles of the adhesive polymer substrate in the step (f). Coating method using the particle alignment to be.
PCT/KR2015/005350 2014-05-28 2015-05-28 Coating method using particle alignment WO2015183008A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0064337 2014-05-28
KR1020140064337A KR102389946B1 (en) 2014-05-28 2014-05-28 Coating method using particle alignment

Publications (1)

Publication Number Publication Date
WO2015183008A1 true WO2015183008A1 (en) 2015-12-03

Family

ID=54699272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005350 WO2015183008A1 (en) 2014-05-28 2015-05-28 Coating method using particle alignment

Country Status (2)

Country Link
KR (1) KR102389946B1 (en)
WO (1) WO2015183008A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312090B (en) 2016-06-07 2021-12-03 株式会社Lg化学 Method for applying particles
WO2017213405A1 (en) * 2016-06-07 2017-12-14 주식회사 엘지화학 Application method for particles
KR101980212B1 (en) * 2017-11-13 2019-05-20 아주대학교산학협력단 Method for producing film of uniform thickness using heterogeneous particle and film produced by the same
JP7415366B2 (en) 2018-08-06 2024-01-17 三菱ケミカル株式会社 Photocurable adhesive sheets, adhesive sheet laminates, laminates for image display devices, and image display devices
CN112513212B (en) 2018-08-09 2022-11-18 三菱化学株式会社 Photocurable adhesive sheet, laminate for image display device, and image display device
KR102283056B1 (en) * 2019-10-11 2021-07-29 숭실대학교 산학협력단 Adhesion and desorption transfer device for transferring by changing the arrangement of the target elements
WO2021199571A1 (en) 2020-03-31 2021-10-07 三菱ケミカル株式会社 Active energy ray-curable adhesive sheet, adhesive sheet, laminate for image display device, image display device, and method for producing laminate for constituting image display device
CN116745378A (en) 2021-01-20 2023-09-12 三菱化学株式会社 Active energy ray-curable adhesive sheet, adhesive sheet laminate with release film, adhesive sheet, laminate for image display device construction, and image display device
JPWO2023054218A1 (en) 2021-09-28 2023-04-06

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838394B2 (en) * 2006-02-16 2010-11-23 Casio Computer Co., Ltd. Method of manufacturing semiconductor device
KR20120017917A (en) * 2010-08-20 2012-02-29 서강대학교산학협력단 Porous thin film having holes and producing method of the same
KR20120022876A (en) * 2009-04-09 2012-03-12 서강대학교산학협력단 Method for manufacturing printed product by aligning and printing fine particles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4551625B2 (en) 2003-03-31 2010-09-29 大日本印刷株式会社 Method for producing pattern forming body
JP4346017B2 (en) 2003-12-12 2009-10-14 大日本印刷株式会社 Manufacturing method of microarray chip
TW200937043A (en) 2008-02-29 2009-09-01 Eternal Chemical Co Ltd Brightness enhancement reflective film
KR101416625B1 (en) * 2012-06-11 2014-07-08 한국전기연구원 Manufacturing method of polymer mold for forming fine pattern, polymer mold manufactured by the same, and method for forming fine pattern using the smae

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838394B2 (en) * 2006-02-16 2010-11-23 Casio Computer Co., Ltd. Method of manufacturing semiconductor device
KR20120022876A (en) * 2009-04-09 2012-03-12 서강대학교산학협력단 Method for manufacturing printed product by aligning and printing fine particles
KR20120017917A (en) * 2010-08-20 2012-02-29 서강대학교산학협력단 Porous thin film having holes and producing method of the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI, X. ET AL.: "Modulating two-dimensional non-close-packed colloidal crystal arrays by deformable soft lithography", LANGMUIR, vol. 26, no. 4, 28 August 2009 (2009-08-28), pages 2930 - 2936, XP055241537 *
PARK, C. ET AL.: "Quick, large-area assembly of a single-crystal monolayer of spherical particles by unidirectional rubbing", ADVANCED MATERIALS, vol. 26, 7 April 2014 (2014-04-07), pages 4633 - 4638, XP055230207 *
YAN, X. ET AL.: "Fabrication of non-close-packed arrays of colloidal spheres by soft lithography", JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 127, 5 May 2005 (2005-05-05), pages 7688 - 7689, XP055241539 *

Also Published As

Publication number Publication date
KR102389946B1 (en) 2022-05-10
KR20150137178A (en) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2015183008A1 (en) Coating method using particle alignment
US6770721B1 (en) Polymer gel contact masks and methods and molds for making same
WO2012023724A2 (en) Porous thin film having holes and a production method therefor
WO2013042819A1 (en) Production method for a graphene thin film
WO2014084590A1 (en) Coating method using particle alignment and particle coated substrate manufactured thereby
JP6650879B2 (en) Ordering of block copolymer
Wan et al. Asymmetric Janus adhesive tape prepared by interfacial hydrosilylation for wet/dry amphibious adhesion
WO2014109619A1 (en) Graphene transfer method using self-adhesive film
WO2020096122A1 (en) Method for preparing hierarchical wrinkle structure by using sacrificial layer, and hierarchical wrinkle structure prepared thereby
WO2015183007A1 (en) Coating method using particle alignment
WO2017217619A1 (en) Temperature-sensitive smart adhesive pad
WO2011016651A9 (en) Photocurable resin composition for imprint lithography and method for manufacturing an imprint mold using same
WO2017078301A1 (en) Method of preparing triboelectric film with intagliated, embossed or dual embossed pattern, triboelectric film prepared thereby, and high-performance triboelectric nanogenerator comprising same
WO2015156533A1 (en) Coating method using particle alignment and particle-coated substrate produced thereby
Jayadev et al. Adaptive wettability-enhanced surfaces ordered on molded etched substrates using shrink film
Kim et al. Enhanced directional adhesion behavior of mushroom-shaped microline arrays
WO2015163596A1 (en) Coating method using particle alignment, and particle-coated substrate prepared thereby
US20130174973A1 (en) Microfluidic devices and methods of manufacturing
WO2019112141A1 (en) Thin film electrode separation method using thermal expansion coefficient
WO2018186600A1 (en) Electronic device manufacturing method using large-area transfer method
US20090015928A1 (en) Method for the deformation of surfaces and articles formed thereby
WO2016200227A1 (en) Laminate
WO2012087075A2 (en) Method for forming fine pattern in large area using laser interference exposure, method for non-planar transfer of the fine pattern formed by the method, and article to which the fine pattern is transferred by the transfer method
WO2020197365A2 (en) Method for producing microparticles
WO2015182867A1 (en) Substrate partially exposing particles and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15800635

Country of ref document: EP

Kind code of ref document: A1