WO2017078301A1 - Method of preparing triboelectric film with intagliated, embossed or dual embossed pattern, triboelectric film prepared thereby, and high-performance triboelectric nanogenerator comprising same - Google Patents

Method of preparing triboelectric film with intagliated, embossed or dual embossed pattern, triboelectric film prepared thereby, and high-performance triboelectric nanogenerator comprising same Download PDF

Info

Publication number
WO2017078301A1
WO2017078301A1 PCT/KR2016/011790 KR2016011790W WO2017078301A1 WO 2017078301 A1 WO2017078301 A1 WO 2017078301A1 KR 2016011790 W KR2016011790 W KR 2016011790W WO 2017078301 A1 WO2017078301 A1 WO 2017078301A1
Authority
WO
WIPO (PCT)
Prior art keywords
triboelectric
film
embossed
pattern
polydimethylsiloxane
Prior art date
Application number
PCT/KR2016/011790
Other languages
French (fr)
Korean (ko)
Inventor
조진한
장동진
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2017078301A1 publication Critical patent/WO2017078301A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/30Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using agents to prevent the granules sticking together; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the present invention relates to a method of manufacturing a triboelectric film having an intaglio, an embossed or a double embossed pattern, a triboelectric film produced thereby and a high performance triboelectric device comprising the same.
  • TENGs triboelectric nanogenerators
  • TENGs uses the generated triboelectric charge as a charge drive source for current generation.
  • the generation and movement of an electrostatic charge causes a potential difference between the electrodes that can cause the flow of electrons through an external circuit. While much research is being done to improve the electrical performance of TENGs, these studies are mainly focused on the selection of triboelectric materials and the periodic switching of contact / dissociation.
  • the present invention has been made to solve the above-mentioned problems, the present invention is to provide a method of manufacturing a triboelectric film formed in an intaglio, embossed or double-embossed pattern, based on the colloidal monolayer film formed through a forced assembly on the substrate. .
  • the present invention is to provide a high-performance triboelectric device exhibiting high electrical performance, moisture resistance and mechanical stability by applying the triboelectric film formed in the intaglio, embossed or double-embossed pattern to the triboelectric device.
  • the present invention to solve the above problems,
  • the intaglio pattern triboelectric film may have a intaglio pattern including a plurality of dome-shaped recesses recessed in one surface.
  • the diameter of the colloidal particles may be 0.1 to 10 ⁇ m.
  • the manufacturing method according to the present invention comprises the steps of peeling the intaglio pattern triboelectric film of step (c) from the second polydimethylsiloxane substrate; And preparing a relief pattern triboelectric film by pouring and curing a mixture of a prepolymer of polydimethylsiloxane and a crosslinking agent on the exfoliated intaglio pattern triboelectric film.
  • the embossed pattern triboelectric film may have an embossed pattern including a plurality of dome-shaped convex parts protruding convexly on one surface thereof.
  • the manufacturing method according to the present invention comprises the steps of depositing colloidal particles having a smaller diameter than the colloidal particles on the colloidal particles between the step (b) and (c) when the bivalent pattern triboelectric film is manufactured It may further include;
  • the embossed triboelectric film has a plurality of dome-shaped first convex portions projecting convexly on one surface and a plurality of second convex portions smaller in size than the first convex portion on the first convex portion.
  • the double-embossed pattern may be formed.
  • the diameter of the deposited colloidal particles may be 0.03 to 3 ⁇ m.
  • the manufacturing method according to the present invention after manufacturing the embossed pattern triboelectric film, trichloroperfluorooctylsilane (trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane), purple on the surface of the embossed pattern triboelectric film
  • Fluorosilane organic material selected from the group consisting of urooctyltriethoxysilane (1H, 1H, 2H, 2H-perfluorotriethoxysilane), perfluorodecyltriethoxysilane (1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane)
  • the step of modifying the surface of the embossed triboelectric film by hydrophobic treatment may be further included.
  • the present invention provides a triboelectric film and a triboelectric element including the same produced according to the manufacturing method.
  • the triboelectric film having the intaglio, embossed, or double-embossed pattern prepared according to the manufacturing method of the present invention has not only excellent electrical performance but also high moisture resistance and high mechanical stability in large scale. Can be.
  • FIG. 1 is a view schematically showing a manufacturing process of the intaglio and embossed pattern triboelectric film according to the present invention.
  • the intaglio pattern triboelectric film (IV) and the embossed pattern triboelectric film (VI) according to the present invention were made of a substrate (II) on which a polystyrene colloidal monolayer film was formed and an intaglio pattern triboelectric film (IV) as a template.
  • FIG. 2 is a photograph and SEM image of a PS colloidal monolayer film in which 1, 2, and 5 mm diameter PS colloidal particles formed on a 4-inch silicon wafer are arranged in hexagonally-packed form.
  • Figure 3 is a photograph and SEM image of the negative pattern PDMS triboelectric film prepared from a substrate coated with 1, 2, 5 mm PS monolayer.
  • FIG. 5 is a view schematically showing the structure of the triboelectric element FTENG based on the intaglio and embossed triboelectric film.
  • FIG. 6 is a graph showing output voltages with time of a flat triboelectric element (Flat-TENG) and a 5 ⁇ m engraved triboelectric element (5 ⁇ m-intaglio-FTENG).
  • FIG. 7 is a graph showing the current density over time of the planar triboelectric element (Flat-TENG) and the 5- ⁇ m negative-angle triboelectric element (5 ⁇ m-intaglio-FTENG).
  • FIG. 9 is a schematic representation of the electrical energy generation mechanism of FTENGs.
  • (a) shows the initial position without mechanical compressive force
  • (b) shows the contact between the upper contact electrode and the PDMS film under compressive force
  • (c) shows between the upper contact electrode and the PDMS film after the external force is removed.
  • (D) represents the return of the separated distance to the initial position.
  • (e) shows the decrease in separation distance when the compressive force is applied again. More specifically, when the two triboelectric plates (contact electrode and PDMS film) are first separated by the initial distance d 0 , the surface is contacted by external compressive force, and electrons are injected from the contact electrode (strong electrons).
  • Fig. 10 shows the change of the output voltage according to the size of the recess of the intanglio-FTENGs under the given compressive force.
  • FIG. 11 shows the change in output current according to the size (0.9, 1.9, 4.8 ⁇ m) of the recess of intanglio-FTENGs, under a compressive force of 10 to 90 N.
  • Fig. 12 shows the change of the output voltage according to the size of the convex portion of the embossed triboelectric elements (embossed-FTENGs).
  • Figure 13 shows the variation of the output current with the size of the embossed-FTENGs convex portion.
  • FIG. 14 is a view schematically illustrating a manufacturing process of a PDMS triboelectric film having a dual embossed pattern.
  • 16 shows the output voltages of Flat-TENG, 1 ⁇ m, 2 ⁇ m embossed-FTENGs and dual embossed-FTENGs.
  • FIG. 17 shows current densities of Flat-TENG, 1, 2, 5 ⁇ m embossed-FTENGs and dual embossed-FTENGs under a compression force of 90 N.
  • FIG. 19 shows simulation results for the triboelectric potential difference of Flat, 1 ⁇ m embossed and dual embossed PDMS triboelectric films using COMSOL multiphysics software under the same compressive force. As a result of the measurement, it was confirmed that the dual embossed PDMS triboelectric film exhibited the largest potential difference.
  • Figure 21 shows the effect of relative humidity on the output voltage of Flat-TENG and FTENG according to the present invention. At this time, a cyclic compression force of 90 N was used for the triboelectric measurement.
  • FIG. 22 is a diagram illustrating a process of lighting 50 LEDs using electric energy generated by dual embossed-FTENGs.
  • the present invention based on the colloidal monolayer film formed through a forced assembly on the substrate, to provide a method of manufacturing a triboelectric film formed with an intaglio, embossed or double-embossed pattern.
  • the present invention is to apply a triboelectric film to the triboelectric device, to provide a high-performance triboelectric device exhibiting high electrical performance, moisture resistance and mechanical stability.
  • a method of manufacturing a triboelectric film in which an intaglio, embossed or double-embossed pattern is formed by using a substrate coated with a colloidal monolayer film formed using a force assembly of colloidal particles based on mechanical friction is provided. to provide.
  • a method of manufacturing a triboelectric film according to the present invention includes the following steps.
  • the steps (a) and (b) is to prepare a mold for manufacturing a triboelectric film having an intaglio, embossed or double-embossed pattern, polydimethylsiloxane through the steps (a) and (b) Colloidal particles are forcibly assembled on the substrate to form a colloidal monolayer film.
  • colloidal powder was placed on one of the substrates as described in step (b), and then mechanically rubbed the colloidal particles onto the other substrate. As the colloidal particles move to the other substrate, they are densely arranged on the substrate in a hexagonal dense structure through forced assembly to form a colloidal monolayer (FIG. 2).
  • the colloidal particles are preferably polystyrene (PS) or silica (Si) colloidal particles.
  • the polydimethylsiloxane substrate on which the colloidal monolayer film is formed is used as a mold for the production of the intaglio pattern triboelectric film.
  • the polydimethylsiloxane substrate is formed by pouring and curing a mixture of the prepolymer and the crosslinking agent of the polydimethylsiloxane.
  • a triboelectric film is produced.
  • the intaglio pattern triboelectric film is peeled from the mold and used as a triboelectric film, wherein the intaglio pattern triboelectric film corresponds to the surface shape of colloidal particles forming the colloidal monolayer film, and is concave recessed in one surface of the film.
  • an intaglio pattern including a plurality of parts is formed, and as shown in FIG. 3, the intaglio pattern triboelectric PDMS film is perfectly replicated without remaining PS colloids on the polydimethylsiloxane substrate on which the colloidal monolayer film is used as a template, and has a hexagonal dense structure. It will form an intaglio pattern of.
  • the diameter of the concave portion provided on the intaglio pattern is determined by the diameter of the colloidal particles forming the colloidal monolayer film, as can be seen from the results of the following examples, the diameter of the colloidal particles is 0.1 to 10 ⁇ m It is preferable.
  • the diameter of the concave portion provided on the intaglio pattern is slightly reduced than the diameter of the colloidal particles due to shrinkage of the cross-linked polydimethylsiloxane (PDMS) in the pattern formation process, specifically, shown in Figure 3 below As shown, when the diameter of the colloidal particles is 1, 2, 5 ⁇ m it can be seen that the diameter of the recess is reduced to about 0.9, 1.9, 4.8 ⁇ m.
  • PDMS cross-linked polydimethylsiloxane
  • the produced intaglio pattern triboelectric film is used as a mold for the manufacture of the embossed pattern triboelectric film, specifically, the embossed pattern triboelectric film is a second polydimethylsiloxane substrate to the intaglio pattern triboelectric film of step (c) Exfoliating from; And preparing a relief pattern triboelectric film by pouring and curing a mixture of a prepolymer of polydimethylsiloxane and a crosslinking agent on the exfoliated negative pattern triboelectric film.
  • the embossed pattern triboelectric film is peeled from the mold and used as a triboelectric film.
  • the embossed pattern triboelectric film corresponds to a surface shape of a recess of the intaglio pattern triboelectric film, protruding convexly on one surface of the film.
  • An embossed pattern including a plurality of convex portions is formed.
  • the diameter of the convex portion provided on the embossed pattern is determined by the diameter of the concave portion, and as described in the diameter of the concave portion, due to the shrinkage of the crosslinked polydimethylsiloxane (PDMS) in the pattern formation process
  • the diameter of the concave portion is slightly reduced, specifically, as shown in FIG. 4, when the diameter of the colloidal particles is 1, 2, and 5 ⁇ m, the diameter of the convex portion decreases to about 0.8, 1.8, and 4.6 ⁇ m. have.
  • the present invention provides a triboelectric film formed with a double-embossed pattern in which an additional nano-projection is integrally implemented in the convex portion of the embossed pattern, which is the colloidal particle phase between the steps (b) and (c) Preparing colloidal particles having a diameter smaller than that of the colloidal particles;
  • a double embossed pattern is formed on one surface of the triboelectric film.
  • the double embossed pattern is formed on one surface of the triboelectric film.
  • the diameter of the colloidal particles deposited is smaller than the diameter of the colloidal particles forming the colloidal monolayer, it is not limited thereto, but preferably has a diameter of 0.03 to 3 ⁇ m.
  • the present invention is trichloro perfluoro octyl silane (trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane), perfluorooctyl trier on the surface of the triboelectric film to enhance the moisture resistance of the triboelectric film Embossed pattern by treating a fluorine silane-based organic material selected from the group consisting of oxysilane (1H, 1H, 2H, 2H-perfluorotriethoxysilane), perfluorodecyltriethoxysilane (1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane)
  • the method may further include hydrophobic modification of the surface of the triboelectric film.
  • the present invention provides a triboelectric element comprising a triboelectric film produced through the manufacturing method, the triboelectric element (FTENGs) according to the present invention, as shown in Figure 5 below, aluminum plate and bone It consists of a triboelectric film (15 mm x 15 mm) according to the invention, wherein the aluminum plate is used as contact electrode and bipolar triboelectric material.
  • FTENGs triboelectric element
  • the electrical performance of the triboelectric element depends on the contact area and the morphological characteristics of the triboelectric film, and the triboelectric film according to the present invention is manufactured using a colloidal monolayer film in which colloids are forcibly assembled to control the diameter of the colloid.
  • the triboelectric film according to the present invention has improved the hydrophobicity of the surface through the hydrophobic modification step, as can be seen from the results of the following examples can maintain a high electrical output level in a wide humidity range, in addition to this
  • the double-embossed triboelectric film according to the present invention is embodied on a substrate with convex portions of different sizes integrally, so that its performance can be maintained without electrical deterioration for a long time as can be seen from the results of the following examples.
  • the manufacturing method according to the present invention can provide a large-area triboelectric element having high performance regardless of the size and shape of the substrate, high reproducibility and cost-effectively.
  • Dimethylsiloxane, PDMS (Sylgard), and PS colloids having a diameter of 0.6, 1, 2, and 5 ⁇ m used in the present invention were purchased from Sigma-Aldrich, Dow Corning, and Microparticles GmbH, respectively.
  • the polydimethylsiloxane (PDMS) prepolymer and the crosslinker were mixed in a weight ratio of 10: 1 and stirred for 30 minutes. After the mixture was spin coated on the Si wafer at 3000 rpm for 30 seconds, the formed PDMS coated substrate was cured at 80 ° C. for 5 hours. After the curing process, negatively charged 1, 2, 5 ⁇ m diameter polystyrene (PS) colloidal dry powders were placed on PDMS coated Si wafers and then mechanically rubbed onto other PDMS coated substrates. Through this forced assembly process, a colloidal monolayer film in which the colloids are arranged in a hexagonal dense structure on the PDMS substrate was formed.
  • PS polystyrene
  • the cured PDMS film was peeled from the PDMS template, and then immersed in acetone for 24 hours to completely remove the remaining PS colloid on the separated PDMS surface. intanglio-PDMS) was prepared.
  • PDMS prepolymer crosslinking agent 10: 1, w / w
  • PS-colloid monolayer (diameter ⁇ 2 mm) negatively charged with cationic polyethyleneimine (PEI) to produce a double embossed PDMS film with a double-embossed pattern ) was electrostatically adsorbed onto the coated substrate.
  • PEI cationic polyethyleneimine
  • a negatively charged PS colloid concentration of the PS colloidal solution of ⁇ 1 wt%) of approximately 607 nm diameter was deposited on a PEI coated substrate on an aqueous solvent. The formed substrate was soaked in water for 5 minutes to remove the weakly bound PS colloid and then dried in vacuo for 2 hours.
  • a dual embossed PDMS film was manufactured through the same process as the above-described method of manufacturing the intaglio and embossed pattern triboelectric film.
  • trichloro 1H, 1H, 2H, 2H-perfluorooctyl silane was treated.
  • a flat PDMS triboelectric film (Flat PDMS) and a triboelectric device (Flat-TENG) having no pattern were used as comparative examples.
  • FIG. 6 is a graph showing output voltage and current density of a planar triboelectric element (Flat-TENG) and a 5 ⁇ m engraved triboelectric element (5 ⁇ m-intaglio-FTENG) with time.
  • the electrical outputs were approximately 57 V and 33 mA ⁇ m ⁇ 2 .
  • the output voltage and current density of the 5 mm -intaglio-FTENGs according to the invention were measured very high, approximately 103 V and 48 mA ⁇ m ⁇ 2 .
  • These high output voltages and current densities were derived from periodic contact and separation between the contact electrode and PDMS through the polarity switching test shown in FIG. 8 (FIG. 8).
  • the surface area means that intanglio-PDMS generates more triboelectric charges than flat-PDMS.
  • the intaglio pattern structure may interfere with contact between the electrode and the PDMS plate, but may cause deformation of the intaglio pattern PDMS triboelectric film under high compressive force to provide a larger contact area between the two plates.
  • electrostatic induction can contribute to the generation of triboelectric charges in the non-contact region.
  • the size of the convex portion of the embossed-PDMS decreases from 4.6 (for 5 ⁇ m embossed-FTENG) to 0.8 ⁇ m (for 1 ⁇ m embossed-FTENG), and as the compression force increases from 10 to 90 N, the output voltage and current density are 171.
  • V and 104 mA ⁇ m -2 increased significantly, which was almost the same as measured with 1 ⁇ m intaglio-FTENG.
  • the present invention introduced Dual embossed-PDMS (Figs. 14 and 15), specifically colloid colloidal array of PS particles of 2 ⁇ m diameter After electrostatic adsorption of cationic polyethyleneimine (PEI) on a PDMS substrate having a monolayer film, a PS colloid having a diameter of about 600 nm was deposited on the PS colloidal particles forming the colloidal monolayer film, thereby preparing a dual embossed-PDMS film.
  • the pattern of the dual embossed-PDMS film is formed by integrally fusing convex portions of different sizes on the PDMS substrate, and thus exhibits high mechanical stability under cyclic compressive force.
  • the output voltage and current density of the triboelectric element in which the Dual embossed-PDMS is introduced are approximately 207 V and 141 mA / m 2 under a compression force of 90 N, according to the present invention. It exhibits higher electrical performance compared to the triboelectric element in which the embossed triboelectric film is introduced. In addition, it can be seen that the electrical performance of the triboelectric element in which the Dual embossed-PDMS is introduced is stably maintained for about 18,000 cycles under 5 Hz (FIG. 18).
  • the contact angles for the water droplets of the flat-PDMS, 1 ⁇ m embossed-PDMS, 2 ⁇ m embossed-PDMS and dual embossed-PDMS films were 106, 125, 125 and 136 °, respectively (Fig. 20).
  • the high contact angle at the surface of the dual, dual embossed-PDMS film is due to the hierarchical double relief pattern and the low surface energy of the PDMS.
  • Dual embossed-FTENG is less sensitive to humidity than other devices. This means that the surface of the Dual embossed-FTENG with superhydrophobic surface can effectively prevent the formation of a moisture layer that emits triboelectric charges.
  • triboelectric device having excellent electrical performance as well as moisture resistance and high mechanical stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

The present invention relates to a method for preparing a triboelectric film having an intagliated, embossed or dual embossed pattern on the basis of a colloid single-layer film formed by forced assembly on a substrate, a triboelectric film prepared thereby, and a high-performance triboelectric nanogenerator comprising the same. When applying a triboelectric film having an intagliated, embossed or dual embossed pattern prepared by the preparation method of the present invention to a triboelectric nanogenerator, it is possible to achieve not only excellent electrical performances, but also moisture resistance and high mechanical stability in a large scale.

Description

음각, 양각 또는 이중양각 패턴이 형성된 마찰전기필름의 제조방법, 이에 의해 제조된 마찰전기필름 및 이를 포함하는 고성능 마찰전기소자Method for producing triboelectric film having intaglio, embossed or double-embossed pattern, triboelectric film produced thereby and high performance triboelectric element comprising the same
본 발명은 음각, 양각 또는 이중양각 패턴이 형성된 마찰전기필름의 제조방법, 이에 의해 제조된 마찰전기필름 및 이를 포함하는 고성능 마찰전기소자에 관한 것이다.The present invention relates to a method of manufacturing a triboelectric film having an intaglio, an embossed or a double embossed pattern, a triboelectric film produced thereby and a high performance triboelectric device comprising the same.
최근, 다양한 무선 전자 기기 사용의 급속한 확장 및 발전으로 인해 지속적이고 재생가능하며, 정비가 필요 없는(maintenance-free) 에너지원이 요구되고 있다. 자가발전(self-power generation)은 생태학적 문제와 화석 연료 사용의 감소라는 현대 사회의 요구에 부합하는 에너지원으로서 큰 관심을 받고 있다.Recently, due to the rapid expansion and development of the use of various wireless electronic devices, there is a demand for a sustainable, renewable, maintenance-free energy source. Self-power generation is of great interest as an energy source that meets the needs of modern societies for ecological problems and the reduction of fossil fuel use.
빛, 열, 기계적 힘을 이용한 다양한 종류의 자가 발전기 중, 마찰전기소자(triboelectric nanogenerator, TENGs)는 그린 나노 기술 분야에서 에너지 생산과 재생 가능한 자원으로서 주목할 만한 대안으로 큰 관심을 받고 있다. TENGs는 우리의 일상 생활 주변에 존재하는 다양한 불규칙적인 소스들로부터 쉽게 이용 가능한 기계적 에너지를 지속 가능한 전기에너지로 효과적으로 변환할 수 있다Among various types of self-generators using light, heat, and mechanical forces, triboelectric nanogenerators (TENGs) are receiving considerable attention as notable alternatives to energy production and renewable resources in the field of green nanotechnology. TENGs can effectively convert readily available mechanical energy into sustainable electrical energy from various irregular sources that exist around our daily lives.
TENGs는 생성된 마찰 대전을 전류 생성을 위한 전하 구동원으로 사용한다. 전자 공여체 및 수용체 물질의 표면이 주기적으로 접촉 및 분리될 때, 정전기 전하의 생성 및 이동은 외부 회로를 통한 전자의 흐름을 유발할 수 있는 전극 간의 전위차를 유발한다. TENGs의 전기적 성능을 개선하기 위한 많은 연구가 진행되고 있지만, 이들 연구는 주로 마찰전기 물질의 선택과 접촉/분리의 주기적인 스위칭에 집중되어 있다.TENGs uses the generated triboelectric charge as a charge drive source for current generation. When the surfaces of the electron donor and acceptor materials are periodically contacted and separated, the generation and movement of an electrostatic charge causes a potential difference between the electrodes that can cause the flow of electrons through an external circuit. While much research is being done to improve the electrical performance of TENGs, these studies are mainly focused on the selection of triboelectric materials and the periodic switching of contact / dissociation.
그러나 상대적으로, 전하 발생에 중요한 영향을 끼치는, 마찰대전(frictional electrification), 습한 환경에서의 디바이스의 안정성 및 표면 형태의 제어에 대한 연구는 미진한 실정이다. 최근, Si-몰드 베이스의 포토리소그래피(F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z. L. Wang, Nano Lett . 2012, 12, 3109.) 및 전착 공정(G. Zhu, C. Pan, W. Guo, C. Y. Chen, Y. Zhou, R. Yu, Z. L. Wang, Nano Lett . 2012, 12, 4960.)을 이용하여 서로 다른 두 마찰 플레이트 사이의 접촉면적을 증가시켜 전기적 성능을 향상시킨 마이크로패턴의 TENGs가 보고되었다. 또한, 다양한 자기조립 공정(ex: 용매 증발법(K. Y. Lee, J. Chun, J.-H. Lee, K. N. Kim, N.-R. Kang, J.-Y. Kim, M. H. Kim, K.-S. Shin, M. K. Gupta, J. M. Baik, S.-W. Kim, Adv . Mater. 2014, 29, 5037.), 자발적 블록 공중합체 템플레이트의 선택적 에칭(C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park, G.-T. Hwang, M. Byun, Z. L. Wang, Y. S. Jung, K. J. Lee, Nano Lett . 2014, 14, 7031.), 나노입자의 자기조립(G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, Z. L. Wang, Nano Lett . 2013, 13, 847., Z.-H. Lin, G. Zhu, Y. S. Zhou, Y. Yang, P. Bai, J. Chen, Z. L. Wang, Angew . Chem . Int . Ed. 2013, 52, 5065.)을 이용하여 마이크로 또는 나노구조를 갖는 마찰전기필름을 이용하여 TENGs의 전기 출력을 향상시키는 연구들이 보고된 바 있다. 그러나, 상술한 방법들은 상대적으로 복잡하고 미세 영역에 걸친 섬세한 가공이 요구되는바, 대면적 TENGs에 적용할 경우, 실용적이고 재현 가능한 디자인 구조의 구현, 기계적 안정성의 유지 및 제조비용 관점에서 문제점이 있다. 이러한 관점에서, 사이즈의 확장을 제어할 수 있고, 효율적으로 제조가 가능하며 내습성, 기계적 안정성 및 높은 전기적 성능을 가진 TENGs의 개발이 절실한 상황이다.Relatively, however, studies on frictional electrification, device stability in wet environments, and control of surface morphology, which have a significant effect on charge generation, are poorly studied. Recently, photolithography based on Si-molded (F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, ZL Wang, Nano Lett . 2012 , 12 , 3109.) and electrodeposition processes (G. Zhu, C. Pan, W. Guo, CY Chen, Y. Zhou, R. Yu, ZL Wang, Nano Lett . 2012 , 12 , 4960.) TENGs of micropatterns have been reported to improve the electrical performance by increasing the contact area between two different friction plates. In addition, various self-assembly processes (ex: solvent evaporation method (KY Lee, J. Chun, J.-H. Lee, KN Kim, N.-R. Kang, J.-Y. Kim, MH Kim, K.- S. Shin, MK Gupta, JM Baik, S.-W. Kim, Adv . Mater. 2014 , 29 , 5037.), selective etching of spontaneous block copolymer templates (CK Jeong, KM Baek, S. Niu, TW Nam) , YH Hur, DY Park, G.-T. Hwang, M. Byun, ZL Wang, YS Jung, KJ Lee, Nano Lett . 2014 , 14 , 7031.), self-assembly of nanoparticles (G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, ZL Wang, Nano Lett . 2013 , 13 , 847., Z.-H. Lin, G. Zhu, YS Zhou, Y. Yang, P. Bai, J. Chen, ZL Wang, Angew . Chem . Int . Ed. 2013 , 52 , 5065.) have been reported to improve the electrical output of TENGs using triboelectric films with micro or nanostructures. However, the above-described methods require relatively complex and delicate processing over a small area, and when applied to large-area TENGs, there are problems in terms of implementation of practical and reproducible design structures, maintenance of mechanical stability, and manufacturing cost. . In this regard, the development of TENGs that can control the expansion of the size, can be manufactured efficiently and has moisture resistance, mechanical stability and high electrical performance is urgently needed.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 본 발명에서는 기판 상에 강제조립을 통해 형성된 콜로이드 단층막을 기반으로, 음각, 양각 또는 이중양각 패턴이 형성된 마찰전기필름의 제조방법을 제공하고자 한다.The present invention has been made to solve the above-mentioned problems, the present invention is to provide a method of manufacturing a triboelectric film formed in an intaglio, embossed or double-embossed pattern, based on the colloidal monolayer film formed through a forced assembly on the substrate. .
또한, 본 발명은 상기 제조된 음각, 양각 또는 이중양각 패턴이 형성된 마찰전기필름을 마찰전기소자에 적용시켜, 높은 전기적 성능, 내습성 및 기계적 안정성을 나타내는 고성능 마찰전기소자를 제공하고자 한다.In addition, the present invention is to provide a high-performance triboelectric device exhibiting high electrical performance, moisture resistance and mechanical stability by applying the triboelectric film formed in the intaglio, embossed or double-embossed pattern to the triboelectric device.
본 발명은 상기 과제를 해결하기 위하여,The present invention to solve the above problems,
(a) 폴리디메틸실록산의 프리폴리머와 가교제의 혼합물을 실리콘 웨이퍼 상에 스핀코팅하여 복수의 폴리디메틸실록산 기판을 형성하는 단계; (b) 상기 복수의 폴리디메틸실록산 기판 중 제1 폴리디메틸실록산 기판 상에 음으로 전하된 콜로이드 입자를 위치시킨 후, 상기 복수의 폴리디메틸실록산 기판 중 제2 폴리디메틸실록산 기판으로 러빙(rubbing)하여 상기 제2 폴리디메틸실록산 기판 상에 상기 콜로이드 입자가 배열된 콜로이드 단층막을 형성하는 단계; 및 (c) 상기 콜로이드 단층막이 형성된 제2 폴리디메틸실록산 기판 상에 폴리디메틸실록산의 프리폴리머와 가교제의 혼합물을 푸어링(pouring)한 후 경화시켜 음각패턴 마찰전기필름을 제조하는 단계;를 포함하는 마찰전기필름의 제조방법을 제공한다.(a) spin coating a mixture of a prepolymer of polydimethylsiloxane and a crosslinking agent onto a silicon wafer to form a plurality of polydimethylsiloxane substrates; (b) placing negatively charged colloidal particles on a first polydimethylsiloxane substrate of the plurality of polydimethylsiloxane substrates, and then rubbing to a second polydimethylsiloxane substrate of the plurality of polydimethylsiloxane substrates. Forming a colloidal monolayer film in which the colloidal particles are arranged on the second polydimethylsiloxane substrate; And (c) preparing a negative pattern triboelectric film by pouring and curing a mixture of a prepolymer of polydimethylsiloxane and a crosslinking agent on the second polydimethylsiloxane substrate on which the colloidal monolayer film is formed. It provides a method for producing an electrical film.
이때, 상기 음각패턴 마찰전기필름은 일면에 오목하게 함몰된 돔(dome)형의 오목부를 다수 개 포함하는 음각패턴이 형성된 것일 수 있다.In this case, the intaglio pattern triboelectric film may have a intaglio pattern including a plurality of dome-shaped recesses recessed in one surface.
본 발명의 바람직한 일 실시예에 의하면, 상기 콜로이드 입자의 직경은 0.1 내지 10 ㎛일 수 있다.According to a preferred embodiment of the present invention, the diameter of the colloidal particles may be 0.1 to 10 ㎛.
또한, 본 발명에 따른 제조방법은 상기 (c) 단계의 음각패턴 마찰전기필름을 상기 제2 폴리디메틸실록산 기판으로부터 박리시키는 단계; 및 상기 박리된 음각패턴 마찰전기필름 상에 폴리디메틸실록산의 프리폴리머와 가교제의 혼합물을 푸어링(pouring)한 후 경화시켜 양각패턴 마찰전기필름을 제조하는 단계;를 더 포함할 수 있다.In addition, the manufacturing method according to the present invention comprises the steps of peeling the intaglio pattern triboelectric film of step (c) from the second polydimethylsiloxane substrate; And preparing a relief pattern triboelectric film by pouring and curing a mixture of a prepolymer of polydimethylsiloxane and a crosslinking agent on the exfoliated intaglio pattern triboelectric film.
이때, 상기 양각패턴 마찰전기필름은 일면에 볼록하게 돌출된 돔(dome)형의 볼록부를 다수 개 포함하는 양각패턴이 형성된 것일 수 있다.In this case, the embossed pattern triboelectric film may have an embossed pattern including a plurality of dome-shaped convex parts protruding convexly on one surface thereof.
또한, 본 발명에 따른 제조방법은 상기 양가패턴 마찰전기필름을 제조할 때, 상기 (b) 단계와 (c) 단계 사이에 상기 콜로이드 입자 상에 상기 콜로이드 입자보다 직경이 작은 콜로이드 입자를 증착시키는 단계;를 더 포함할 수 있다.In addition, the manufacturing method according to the present invention comprises the steps of depositing colloidal particles having a smaller diameter than the colloidal particles on the colloidal particles between the step (b) and (c) when the bivalent pattern triboelectric film is manufactured It may further include;
이때, 상기 양각패턴 마찰전기필름은 일면에 볼록하게 돌출된 돔(dome)형의 다수개의 제1 볼록부와 상기 제1 볼록부 상에 상기 제1 볼록부보다 크기가 작은 다수개의 제2 볼록부를 구비하는 이중양각 패턴이 형성된 것일 수 있다.At this time, the embossed triboelectric film has a plurality of dome-shaped first convex portions projecting convexly on one surface and a plurality of second convex portions smaller in size than the first convex portion on the first convex portion. The double-embossed pattern may be formed.
본 발명의 바람직한 일 실시예에 의하면, 상기 증착된 콜로이드 입자의 직경은 0.03 내지 3 ㎛일 수 있다.According to a preferred embodiment of the present invention, the diameter of the deposited colloidal particles may be 0.03 to 3 ㎛.
또한 본 발명에 따른 제조방법은 상기 양각패턴 마찰전기필름을 제조 후, 상기 양각패턴 마찰전기필름의 표면에 트리클로로퍼플루오로옥틸실란(trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane), 퍼플루오로옥틸트리에톡시실란(1H, 1H, 2H, 2H-perfluorotriethoxysilane), 퍼플루오로데실트리에톡시실란(1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane)로 이루어진 군에서 선택된 불소 실란계 유기물을 처리하여 상기 양각패턴 마찰전기필름의 표면을 소수성으로 개질하는 단계;를 더 포함할 수 있다.In addition, the manufacturing method according to the present invention, after manufacturing the embossed pattern triboelectric film, trichloroperfluorooctylsilane (trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane), purple on the surface of the embossed pattern triboelectric film Fluorosilane organic material selected from the group consisting of urooctyltriethoxysilane (1H, 1H, 2H, 2H-perfluorotriethoxysilane), perfluorodecyltriethoxysilane (1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane) The step of modifying the surface of the embossed triboelectric film by hydrophobic treatment may be further included.
또한, 본 발명은 상기 제조방법에 따라 제조된 마찰전기필름 및 이를 포함하는 마찰전기소자를 제공한다.In addition, the present invention provides a triboelectric film and a triboelectric element including the same produced according to the manufacturing method.
본 발명의 제조방법에 따라 제조된 음각, 양각 또는 이중양각 패턴이 형성된 마찰전기필름을 마찰전기소자에 적용시 우수한 전기적 성능뿐만 아니라, 내습성 및 라지스케일(large scale)에서의 높은 기계적 안정성을 가질 수 있다.The triboelectric film having the intaglio, embossed, or double-embossed pattern prepared according to the manufacturing method of the present invention has not only excellent electrical performance but also high moisture resistance and high mechanical stability in large scale. Can be.
도 1은 본 발명에 따른 음각 및 양각패턴 마찰전기필름의 제조과정을 개략적으로 도시한 도면이다. 본 발명에 따른 음각패턴 마찰전기필름(IV) 및 양각패턴 마찰전기필름(VI)은 폴리스티렌(polystylene) 콜로이드 단층막이 형성된 기판(II)과 음각패턴 마찰전기필름(IV)을 주형으로 제조하였다.1 is a view schematically showing a manufacturing process of the intaglio and embossed pattern triboelectric film according to the present invention. The intaglio pattern triboelectric film (IV) and the embossed pattern triboelectric film (VI) according to the present invention were made of a substrate (II) on which a polystyrene colloidal monolayer film was formed and an intaglio pattern triboelectric film (IV) as a template.
도 2는 4-inch 실리콘 웨이퍼 상에 형성된 직경 1, 2, 5 mm의 PS 콜로이드 입자가 육각밀집구조(hexagonally-packed)로 배열된 PS 콜로이드 단층막의 사진 및 SEM 이미지이다.FIG. 2 is a photograph and SEM image of a PS colloidal monolayer film in which 1, 2, and 5 mm diameter PS colloidal particles formed on a 4-inch silicon wafer are arranged in hexagonally-packed form.
도 3은 1, 2, 5 mm PS 단층막이 코팅된 기판으로부터 제조된 음각패턴 PDMS 마찰전기필름의 사진 및 SEM 이미지이다.Figure 3 is a photograph and SEM image of the negative pattern PDMS triboelectric film prepared from a substrate coated with 1, 2, 5 mm PS monolayer.
도 4는 양각 패턴 PDMS 마찰전기필름의 기울어진 단면에 대한 SEM 이미지이다.4 is an SEM image of the inclined cross section of an embossed pattern PDMS triboelectric film.
도 5는 음각 및 양각패턴 마찰전기필름을 기반으로 한 마찰전기소자(FTENG)의 구조를 개략적으로 나타낸 도면이다.5 is a view schematically showing the structure of the triboelectric element FTENG based on the intaglio and embossed triboelectric film.
도 6은 평면 마찰전기소자(Flat-TENG)와 5 ㎛ 음각 마찰전기소자(5 ㎛-intaglio-FTENG)의 시간에 따른 출력전압을 나타낸 그래프이다.FIG. 6 is a graph showing output voltages with time of a flat triboelectric element (Flat-TENG) and a 5 μm engraved triboelectric element (5 μm-intaglio-FTENG).
도 7은 평면 마찰전기소자(Flat-TENG)와 5 ㎛ 음각 마찰전기소자(5 ㎛-intaglio-FTENG)의 시간에 따른 전류밀도를 나타낸 그래프이다.FIG. 7 is a graph showing the current density over time of the planar triboelectric element (Flat-TENG) and the 5-μm negative-angle triboelectric element (5 μm-intaglio-FTENG).
도 8은 5 mm-intanglio-FTENG의 출력 전압(a) 및 전류 밀도(b)에 대한 극성 변환 시험 결과를 나타낸다. 전압 및 전류 측정기가 처음 5 mm-intanglio-FTENG에 연결될 때, 양 펄스는 푸싱 동안 주로 기록되었다. 전압 및 전류 측정기가 역 극성에 연결될 때, 펄스 또한 역으로 기록되었다. 그러나, 두 조건에서 출력 전압 및 전류의 크기는 거의 동일하였다.8 shows the results of the polarity conversion test for the output voltage (a) and current density (b) of 5 mm -intanglio-FTENG. When the voltage and current meter was connected to the first 5 mm -intanglio-FTENG, both pulses were recorded primarily during pushing. When the voltage and current meters were connected to reverse polarity, the pulses were also recorded in reverse. However, the magnitudes of the output voltage and current were almost the same under both conditions.
도 9는 FTENGs의 전기 에너지 생성 메커니즘을 개략적으로 나타낸 도면이다. (a)는 기계적인 압축력이 없는 초기 위치를 나타내며, (b)는 압축력 하에서 상부 접촉 전극과 PDMS 필름 사이의 접촉을 나타내고, (c)는 외부 힘이 제거된 후 상부 접촉 전극과 PDMS 필름 사이의 분리를 나타내며, (d)는 분리된 거리의 초기 위치로의 복귀를 나타낸다. (e)는 압축력이 다시 가해졌을 때, 분리 거리의 감소를 나타낸다. 더 구체적으로 살펴보면, 두 개의 마찰전기 플레이트(접촉 전극 및 PDMS 필름)이 초기 거리(d0)에 의해 최초로 분리될 때, 외부 압축력에 의해 표면이 접촉하게 되고, 전자들은 접촉 전극으로부터 주입(강한 전자 공여)되어 PDMS 필름으로 전송되게 되는데(강한 전자 고정), 이는 표면 마찰전기 전하의 생성을 가져온다. 그러나, 압축된 스프링의 해제로 인해 분리된 거리가 커지면(d0로 복귀), 분리된 전하가 접촉 전극으로 향하게 되어 전기장을 발생시킨다. 이것은 접촉 전극에서 높은 전위를 유도하게 되고, 이는 후면 전극에서 흐르는 전자를 발생시키고 마찰대전 유도된 전위의 발생을 제거한다. 두 판 사이의 간극이 초기 거리(d0)로 복귀하면, Al 접촉 전극의 양의 마찰전기 전하는 완전히 차단되고, 후면 Al 전극에서 동일한 양의 양의 전하를 유도한다. 그러나, 분리된 거리가 압축력에 의해 다시 한번 감소되는 경우, 역극성의 전위차는 다시 복귀한다. 이것은 바닥 Al 전극에서 양의 마찰전기 전하를 중화하기 위해, 전하의 역류(즉, 음의 전류)를 유발하게 된다. 9 is a schematic representation of the electrical energy generation mechanism of FTENGs. (a) shows the initial position without mechanical compressive force, (b) shows the contact between the upper contact electrode and the PDMS film under compressive force, and (c) shows between the upper contact electrode and the PDMS film after the external force is removed. (D) represents the return of the separated distance to the initial position. (e) shows the decrease in separation distance when the compressive force is applied again. More specifically, when the two triboelectric plates (contact electrode and PDMS film) are first separated by the initial distance d 0 , the surface is contacted by external compressive force, and electrons are injected from the contact electrode (strong electrons). Donation) and transfer to the PDMS film (strong electronic fixation), which results in the generation of surface triboelectric charges. However, if the separated distance increases due to the release of the compressed spring (return to d 0 ), the separated charge is directed to the contact electrode to generate an electric field. This leads to a high potential at the contact electrode, which generates electrons flowing at the back electrode and eliminates the generation of the triboelectrically induced potential. When the gap between the two plates returns to the initial distance d 0 , the positive triboelectric charge of the Al contact electrode is completely blocked, leading to the same amount of positive charge at the back Al electrode. However, when the separated distance is once again reduced by the compressive force, the potential difference of reverse polarity returns again. This causes a reverse flow of the charge (ie, a negative current) to neutralize the positive triboelectric charge at the bottom Al electrode.
도 10은 주어진 압축력 하에서 intanglio-FTENGs의 오목부의 크기에 따른 출력 전압의 변화를 나타낸다.Fig. 10 shows the change of the output voltage according to the size of the recess of the intanglio-FTENGs under the given compressive force.
도 11은 10에서 90 N의 압축력 하에서, intanglio-FTENGs의 오목부의 크기 (0.9, 1.9, 4.8 ㎛)에 따른 출력 전류의 변화를 나타낸다. FIG. 11 shows the change in output current according to the size (0.9, 1.9, 4.8 μm) of the recess of intanglio-FTENGs, under a compressive force of 10 to 90 N. FIG.
도 12는 양각 마찰전기소자(embossed-FTENGs)의 볼록부의 크기에 따른 출력 전압의 변화를 나타낸다.Fig. 12 shows the change of the output voltage according to the size of the convex portion of the embossed triboelectric elements (embossed-FTENGs).
도 13은 embossed-FTENGs 볼록부의 크기에 따른 출력 전류의 변화를 나타낸다.Figure 13 shows the variation of the output current with the size of the embossed-FTENGs convex portion.
도 14는 이중양각(dual embossed) 패턴이 형성된 PDMS 마찰전기필름의 제조 과정을 개략적으로 나타낸 도면이다.FIG. 14 is a view schematically illustrating a manufacturing process of a PDMS triboelectric film having a dual embossed pattern.
도 15는 dual-embossed PDMS 마찰전기필름의 FE-SEM 이미지이다. 15 is an FE-SEM image of a dual-embossed PDMS triboelectric film.
도 16은 Flat-TENG, 1 ㎛, 2 ㎛ embossed-FTENGs 및 dual embossed-FTENGs의 출력 전압을 나타낸다. 16 shows the output voltages of Flat-TENG, 1 μm, 2 μm embossed-FTENGs and dual embossed-FTENGs.
도 17은 90 N의 압축력 하에서, Flat-TENG, 1, 2, 5 ㎛ embossed-FTENGs 및 dual embossed-FTENGs의 전류 밀도를 나타낸다.FIG. 17 shows current densities of Flat-TENG, 1, 2, 5 μm embossed-FTENGs and dual embossed-FTENGs under a compression force of 90 N. FIG.
도 18은 상대 습도 20 %에서 dual embossed-FTENGs의 전기적 안정성 테스트 결과를 나타낸다.18 shows the electrical stability test results of dual embossed-FTENGs at 20% relative humidity.
도 19는 동일 압축력 하에서 COMSOL multiphysics 소프트웨어를 이용하여 Flat, 1 ㎛ embossed 및 dual embossed PDMS 마찰전기필름의 마찰전기 전위차에 대한 시뮬레이션 결과를 나타낸다. 측정 결과, dual embossed PDMS 마찰전기필름이 가장 큰 전위차를 나타내는 것을 확인하였다.FIG. 19 shows simulation results for the triboelectric potential difference of Flat, 1 μm embossed and dual embossed PDMS triboelectric films using COMSOL multiphysics software under the same compressive force. As a result of the measurement, it was confirmed that the dual embossed PDMS triboelectric film exhibited the largest potential difference.
도 20은 Flat, 1 ㎛, 2 ㎛ embossed 및 dual embossed PDMS 마찰전기필름의의 물 접촉각을 나타낸다.20 shows water contact angles of Flat, 1 μm, 2 μm embossed and dual embossed PDMS triboelectric films.
도 21은 Flat-TENG와 본 발명에 따른 FTENG의 출력 전압에 대한 상대 습도의 영향을 나타낸다. 이때, 마찰전기 측정에 90 N의 순환 압축력이 사용되었다.Figure 21 shows the effect of relative humidity on the output voltage of Flat-TENG and FTENG according to the present invention. At this time, a cyclic compression force of 90 N was used for the triboelectric measurement.
도 22는 dual embossed-FTENGs에 의해 생성된 전기에너지를 이용하여 50 LEDs를 점등하는 과정을 나타낸 도면이다.FIG. 22 is a diagram illustrating a process of lighting 50 LEDs using electric energy generated by dual embossed-FTENGs.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명에서는 기판 상에 강제조립을 통해 형성된 콜로이드 단층막을 기반으로, 음각, 양각 또는 이중양각 패턴이 형성된 마찰전기필름의 제조방법을 제공하고자 한다. 또한, 본 발명은 상기 마찰전기필름을 마찰전기소자에 적용시켜, 높은 전기적 성능, 내습성 및 기계적 안정성을 나타내는 고성능 마찰전기소자를 제공하고자 한다.In the present invention, based on the colloidal monolayer film formed through a forced assembly on the substrate, to provide a method of manufacturing a triboelectric film formed with an intaglio, embossed or double-embossed pattern. In addition, the present invention is to apply a triboelectric film to the triboelectric device, to provide a high-performance triboelectric device exhibiting high electrical performance, moisture resistance and mechanical stability.
이를 위해, 본 발명에서는 기계적 마찰을 기반으로 한 콜로이드 입자의 강제 조립(force assembly)를 이용하여 형성된 콜로이드 단층막이 코팅된 기판을 주형으로 음각, 양각 또는 이중양각 패턴이 형성된 마찰전기필름의 제조방법을 제공한다.To this end, in the present invention, a method of manufacturing a triboelectric film in which an intaglio, embossed or double-embossed pattern is formed by using a substrate coated with a colloidal monolayer film formed using a force assembly of colloidal particles based on mechanical friction is provided. to provide.
하기 도 1에 도시된 바와 같이, 본 발명에 따른 마찰전기필름의 제조방법은 하기의 단계를 포함한다. As shown in FIG. 1, a method of manufacturing a triboelectric film according to the present invention includes the following steps.
(a) 폴리디메틸실록산의 프리폴리머와 가교제의 혼합물을 실리콘 웨이퍼 상에 스핀코팅하여 복수의 폴리디메틸실록산 기판을 형성하는 단계;(a) spin coating a mixture of a prepolymer of polydimethylsiloxane and a crosslinking agent onto a silicon wafer to form a plurality of polydimethylsiloxane substrates;
(b) 상기 복수의 폴리디메틸실록산 기판 중 제1 폴리디메틸실록산 기판 상에 음으로 전하된 콜로이드 입자를 위치시킨 후, 상기 복수의 폴리디메틸실록산 기판 중 제2 폴리디메틸실록산 기판으로 러빙(rubbing)하여 상기 제2 폴리디메틸실록산 기판 상에 상기 콜로이드 입자가 배열된 콜로이드 단층막을 형성하는 단계; 및 (b) placing negatively charged colloidal particles on a first polydimethylsiloxane substrate of the plurality of polydimethylsiloxane substrates, and then rubbing to a second polydimethylsiloxane substrate of the plurality of polydimethylsiloxane substrates. Forming a colloidal monolayer film in which the colloidal particles are arranged on the second polydimethylsiloxane substrate; And
(c) 상기 콜로이드 단층막이 형성된 제2 폴리디메틸실록산 기판 상에 폴리디메틸실록산의 프리폴리머와 가교제의 혼합물을 푸어링(pouring)한 후 경화시켜 음각패턴 마찰전기필름을 제조하는 단계;(c) preparing a negative pattern triboelectric film by pouring and curing a mixture of a prepolymer of polydimethylsiloxane and a crosslinking agent on the second polydimethylsiloxane substrate on which the colloidal monolayer film is formed;
구체적으로, 상기 (a) 및 (b) 단계는 음각, 양각 또는 이중양각 패턴을 가지는 마찰전기필름을 제조하기 위한 주형을 제조하는 단계로, 상기 (a) 및 (b) 단계를 통해 폴리디메틸실록산 기판 상에 콜로이드 입자가 강제 조립되어 콜로이드 단층막을 형성한다. 이러한 단층막의 형성을 위해 상기 (b) 단계에서 설명한 바와 같이 어느 하나의 기판상에 콜로이드 분말을 위치시킨 후, 다른 하나의 기판으로 상기 콜로이드 입자를 기계적으로 러빙(rubbing)하였으며, 이러한 러빙을 통해 상기 콜로이드 입자가 상기 다른 하나의 기판으로 이동하면서 강제조립을 통해 육각밀집구조로 기판상에 빽빽하게 배열되어 콜로이드 단층막을 형성하게 된다(도 2). 이때, 상기 콜로이드 입자는 폴리스티렌(PS) 또는 실리카(Si) 콜로이드 입자인 것이 바람직하다.Specifically, the steps (a) and (b) is to prepare a mold for manufacturing a triboelectric film having an intaglio, embossed or double-embossed pattern, polydimethylsiloxane through the steps (a) and (b) Colloidal particles are forcibly assembled on the substrate to form a colloidal monolayer film. In order to form such a monolayer film, colloidal powder was placed on one of the substrates as described in step (b), and then mechanically rubbed the colloidal particles onto the other substrate. As the colloidal particles move to the other substrate, they are densely arranged on the substrate in a hexagonal dense structure through forced assembly to form a colloidal monolayer (FIG. 2). In this case, the colloidal particles are preferably polystyrene (PS) or silica (Si) colloidal particles.
상기 콜로이드 단층막이 형성된 폴리디메틸실록산 기판은 음각패턴 마찰전기필름의 제조를 위한 주형으로 사용되며, 상기 (c) 단계에서 설명한 바와 같이 폴리디메틸실록산의 프리폴리머와 가교제의 혼합물을 푸어링 및 경화하여 음각패턴 마찰전기필름을 제조한다. 상기 음각패턴 마찰전기필름을 상기 주형으로부터 박리한 후 마찰전기필름으로 사용하며, 상기 음각패턴 마찰전기필름은 상기 콜로이드 단층막을 이루는 콜로이드 입자의 표면 형상에 대응되어, 필름의 일면에 오목하게 함몰된 오목부를 다수 개 포함하는 음각패턴이 형성되어 있으며, 도 3에 도시된 바와 같이 음각패턴 마찰전기 PDMS 필름은 주형으로 사용한 상기 콜로이드 단층막이 형성된 폴리디메틸실록산 기판 상에 잔여 PS 콜로이드 없이 완벽히 복제되어 육각밀집구조의 음각패턴을 형성하게 된다.The polydimethylsiloxane substrate on which the colloidal monolayer film is formed is used as a mold for the production of the intaglio pattern triboelectric film. As described in step (c), the polydimethylsiloxane substrate is formed by pouring and curing a mixture of the prepolymer and the crosslinking agent of the polydimethylsiloxane. A triboelectric film is produced. The intaglio pattern triboelectric film is peeled from the mold and used as a triboelectric film, wherein the intaglio pattern triboelectric film corresponds to the surface shape of colloidal particles forming the colloidal monolayer film, and is concave recessed in one surface of the film. An intaglio pattern including a plurality of parts is formed, and as shown in FIG. 3, the intaglio pattern triboelectric PDMS film is perfectly replicated without remaining PS colloids on the polydimethylsiloxane substrate on which the colloidal monolayer film is used as a template, and has a hexagonal dense structure. It will form an intaglio pattern of.
이때, 상기 음각패턴 상에 구비된 상기 오목부의 직경은 상기 콜로이드 단층막을 이루는 콜로이드 입자의 직경에 의해 결정되는바, 하기 실시예의 결과로부터 알 수 있는 바와 같이 상기 콜로이드 입자의 직경은 0.1 내지 10 ㎛인 것이 바람직하다.At this time, the diameter of the concave portion provided on the intaglio pattern is determined by the diameter of the colloidal particles forming the colloidal monolayer film, as can be seen from the results of the following examples, the diameter of the colloidal particles is 0.1 to 10 ㎛ It is preferable.
또한, 상기 음각패턴 상에 구비된 상기 오목부의 직경은 패턴형성 과정에서 가교 결합된 폴리디메틸실록산(PDMS)의 수축으로 인하여 상기 콜로이드 입자의 직경보다 약간 감소하게 되는데, 구체적으로, 하기 도 3에 도시된 바와 같이 콜로이드 입자의 직경이 1, 2, 5 ㎛인 경우 상기 오목부의 직경은 약 0.9, 1.9, 4.8 ㎛로 감소함을 확인할 수 있다. In addition, the diameter of the concave portion provided on the intaglio pattern is slightly reduced than the diameter of the colloidal particles due to shrinkage of the cross-linked polydimethylsiloxane (PDMS) in the pattern formation process, specifically, shown in Figure 3 below As shown, when the diameter of the colloidal particles is 1, 2, 5 ㎛ it can be seen that the diameter of the recess is reduced to about 0.9, 1.9, 4.8 ㎛.
상기 제조된 음각패턴 마찰전기필름은 양각패턴 마찰전기필름의 제조를 위한 주형으로 사용되며, 구체적으로 양각패턴 마찰전기필름은 상기 (c) 단계의 음각패턴 마찰전기필름을 상기 제2 폴리디메틸실록산 기판으로부터 박리시키는 단계; 및 상기 박리된 음각패턴 마찰전기필름 상에 폴리디메틸실록산의 프리폴리머와 가교제의 혼합물을 푸어링(pouring)한 후 경화시켜 양각패턴 마찰전기필름을 제조하는 단계;를 통해 제조된다.The produced intaglio pattern triboelectric film is used as a mold for the manufacture of the embossed pattern triboelectric film, specifically, the embossed pattern triboelectric film is a second polydimethylsiloxane substrate to the intaglio pattern triboelectric film of step (c) Exfoliating from; And preparing a relief pattern triboelectric film by pouring and curing a mixture of a prepolymer of polydimethylsiloxane and a crosslinking agent on the exfoliated negative pattern triboelectric film.
상기 양각패턴 마찰전기필름은 상기 주형으로부터 박리한 후 마찰전기필름으로 사용하며, 상기 양각패턴 마찰전기필름은 상기 음각패턴 마찰전기필름의 오목부의 표면 형상에 대응되어, 필름의 일면에 볼록하게 돌출된 볼록부를 다수 개 포함하는 양각패턴이 형성된다. The embossed pattern triboelectric film is peeled from the mold and used as a triboelectric film. The embossed pattern triboelectric film corresponds to a surface shape of a recess of the intaglio pattern triboelectric film, protruding convexly on one surface of the film. An embossed pattern including a plurality of convex portions is formed.
이때, 상기 양각패턴 상에 구비된 상기 볼록부의 직경은 상기 오목부의 직경에 의해 결정되며, 상기 오목부의 직경에서 설명한 바와 마찬가지로, 패턴형성 과정에서 가교 결합된 폴리디메틸실록산(PDMS)의 수축으로 인하여 상기 오목부의 직경보다 약간 감소하게 되는데, 구체적으로 하기 도 4에 도시된 바와 같이 콜로이드 입자의 직경이 1, 2, 5 ㎛인 경우 상기 볼록부의 직경은 약 0.8, 1.8, 4.6 ㎛로 감소함을 확인할 수 있다.At this time, the diameter of the convex portion provided on the embossed pattern is determined by the diameter of the concave portion, and as described in the diameter of the concave portion, due to the shrinkage of the crosslinked polydimethylsiloxane (PDMS) in the pattern formation process The diameter of the concave portion is slightly reduced, specifically, as shown in FIG. 4, when the diameter of the colloidal particles is 1, 2, and 5 μm, the diameter of the convex portion decreases to about 0.8, 1.8, and 4.6 μm. have.
또한, 본 발명은 상기 양각패턴의 볼록부에 추가적인 나노돌기가 일체형으로 구현된 이중양각 패턴이 형성된 마찰전기필름을 제공하는바, 이는 상기 (b) 단계와 (c) 단계 사이에 상기 콜로이드 입자 상에 상기 콜로이드 입자보다 직경이 작은 콜로이드 입자를 증착시키는 단계;를 통해 제조한다. 이러한 증착 공정 후, 상술한 음각패턴 및 양각패턴 마찰전기 제조방법의 제조 공정을 따르게 되면, 마찰전기필름의 일면에 이중양각 패턴이 형성되게 되며, 구체적으로 상기 이중양각 패턴은 마찰전기필름의 일면에 볼록하게 돌출된 돔(dome)형의 다수개의 제1 볼록부와 상기 제1 볼록부 상에 상기 제1 볼록부보다 크기가 작은 다수개의 제2 볼록부를 구비하는 것을 특징으로 한다. In addition, the present invention provides a triboelectric film formed with a double-embossed pattern in which an additional nano-projection is integrally implemented in the convex portion of the embossed pattern, which is the colloidal particle phase between the steps (b) and (c) Preparing colloidal particles having a diameter smaller than that of the colloidal particles; After such a deposition process, when the intaglio pattern and the embossed pattern triboelectric manufacturing method described above are followed, a double embossed pattern is formed on one surface of the triboelectric film. Specifically, the double embossed pattern is formed on one surface of the triboelectric film. And a plurality of first convex portions having a convexly protruding dome shape and a plurality of second convex portions smaller in size than the first convex portion on the first convex portion.
이때, 상기 증착된 콜로이드 입자의 직경은 상기 콜로이드 단층막을 이루는 콜로이드 입자의 직경보다 작은 것이라면, 이에 제한되는 것은 아니지만 0.03 내지 3 ㎛의 직경을 가지는 것이 바람직하다.At this time, if the diameter of the colloidal particles deposited is smaller than the diameter of the colloidal particles forming the colloidal monolayer, it is not limited thereto, but preferably has a diameter of 0.03 to 3 ㎛.
또한, 본 발명은 마찰전기필름의 내습성을 강화하기 위해 상기 마찰전기필름의 표면에 트리클로로퍼플루오로옥틸실란(trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane), 퍼플루오로옥틸트리에톡시실란(1H, 1H, 2H, 2H-perfluorotriethoxysilane), 퍼플루오로데실트리에톡시실란(1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane)로 이루어진 군에서 선택된 불소 실란계 유기물을 처리하여 상기 양각패턴 마찰전기필름의 표면을 소수성으로 개질하는 단계;를 더 포함할 수 있다.In addition, the present invention is trichloro perfluoro octyl silane (trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane), perfluorooctyl trier on the surface of the triboelectric film to enhance the moisture resistance of the triboelectric film Embossed pattern by treating a fluorine silane-based organic material selected from the group consisting of oxysilane (1H, 1H, 2H, 2H-perfluorotriethoxysilane), perfluorodecyltriethoxysilane (1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane) The method may further include hydrophobic modification of the surface of the triboelectric film.
또한, 본 발명은 상기 제조방법을 통해 제조된 마찰전기필름을 포함하는 마찰전기소자를 제공하는바, 본 발명에 따른 마찰전기소자(FTENGs)는 하기 도 5에 도시된 바와 같이, 알루미늄 플레이트 및 본 발명에 따른 마찰전기필름(15 mm x 15 mm)으로 구성되며, 이때, 상기 알루미늄 플레이트는 접촉 전극 및 양극성 마찰전기 재료로 사용된다. 또한, 폴리아크릴레이트 필름의 일면에는 음극성 마찰전기 특성을 가지는 본 발명에 따른 마찰전기필름이 접착되며, 폴리아크릴레이트의 타면에는 알루미늄 전극이 추가적으로 부착된다. 이때, 상기 마찰전기 플레이트(알루미늄 전극과 마찰전기필름)의 효율적이 접촉 및 분리를 위해 상기 알루미늄 전극과 마찰전기필름이 일정 간격을 가지도록 상기 폴리아크릴레이트 필름의 모서리에 4개의 스프링이 부착된다.In addition, the present invention provides a triboelectric element comprising a triboelectric film produced through the manufacturing method, the triboelectric element (FTENGs) according to the present invention, as shown in Figure 5 below, aluminum plate and bone It consists of a triboelectric film (15 mm x 15 mm) according to the invention, wherein the aluminum plate is used as contact electrode and bipolar triboelectric material. In addition, one side of the polyacrylate film is bonded to the triboelectric film according to the invention having a negative electrode triboelectric properties, the other side of the polyacrylate is attached to the aluminum electrode. At this time, four springs are attached to the edges of the polyacrylate film so that the aluminum electrode and the triboelectric film have a predetermined interval for efficient contact and separation of the triboelectric plate (aluminum electrode and triboelectric film).
상기 마찰전기소자의 전기적 성능은 접촉 면적과 마찰전기필름의 형태적 특징에 의존하게 되고, 본 발명에 따른 마찰전기필름은 콜로이드가 강제조립된 콜로이드 단층막을 이용하여 제조되어, 상기 콜로이드의 직경을 조절하여 음각, 양각 패턴의 형태를 조절할 수 있는바, 이러한 패턴 형태의 조절을 통해 마찰전기소자의 전기적 성능을 향상시킬 수 있다. 또한, 본 발명에 따른 마찰전기필름은 상기 소수성 개질 단계를 통해 표면의 소수성이 향상되었는바, 하기 실시예의 결과로부터 알 수 있는 바와 같이 넓은 습도 범위에서 높은 전기 출력 수준을 유지할 수 있으며, 이에 더하여 본 발명에 따른 이중양각 마찰전기필름은 서로 다른 크기의 볼록부가 일체형으로 기판상에 구현되어, 하기 실시예의 결과로부터 알 수 있는 바와 같이 장기간 동안 전기적 열화 없이 그 성능을 유지할 수 있다.The electrical performance of the triboelectric element depends on the contact area and the morphological characteristics of the triboelectric film, and the triboelectric film according to the present invention is manufactured using a colloidal monolayer film in which colloids are forcibly assembled to control the diameter of the colloid. By adjusting the shape of the intaglio, embossed pattern, by adjusting the pattern can improve the electrical performance of the triboelectric element. In addition, the triboelectric film according to the present invention has improved the hydrophobicity of the surface through the hydrophobic modification step, as can be seen from the results of the following examples can maintain a high electrical output level in a wide humidity range, in addition to this The double-embossed triboelectric film according to the present invention is embodied on a substrate with convex portions of different sizes integrally, so that its performance can be maintained without electrical deterioration for a long time as can be seen from the results of the following examples.
결론적으로, 본 발명에 따른 제조방법은 기판의 사이즈와 형태에 관계없이 높은 성능을 가지는 대면적 마찰전기소자를 높은 재현성 및 비용 효율적으로 제공할 수 있다.In conclusion, the manufacturing method according to the present invention can provide a large-area triboelectric element having high performance regardless of the size and shape of the substrate, high reproducibility and cost-effectively.
이하에서는 바람직한 실시예 등을 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예 등은 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. However, these examples and the like are intended to explain the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited thereto.
재료 material
본 발명에서 사용한 디메틸실록산, PDMS(Sylgard), 직경이 0.6, 1, 2, 5 ㎛인 PS 콜로이드는 각각 Sigma-Aldrich, Dow Corning, Microparticles GmbH 로부터 구입하였다.Dimethylsiloxane, PDMS (Sylgard), and PS colloids having a diameter of 0.6, 1, 2, and 5 μm used in the present invention were purchased from Sigma-Aldrich, Dow Corning, and Microparticles GmbH, respectively.
실시예. 본 발명에 따른 마찰전기필름의 제조Example. Preparation of triboelectric film according to the present invention
콜로이드 단층막이 형성된 PDMS 기판의 제조Preparation of PDMS Substrate with Colloidal Monolayer
폴리디메틸실록산(PDMS) 프리폴리머와 가교제를 10:1의 중량비로 혼합하고 30분 동안 교반하였다. 상기 혼합물을 Si 웨이퍼 상에서 3000 rpm으로 30 초 동안 스핀 코팅한 후, 형성된 PDMS 코팅된 기판을 80 ℃에서 5 시간 동안 경화시켰다. 경화 공정 후, 음으로 전하된 1, 2, 5 ㎛ 직경의 폴리스티렌(PS) 콜로이드 건조 분말을 PDMS 코팅된 Si 웨이퍼에 위치시킨 후, 다른 PDMS 코팅된 기판으로 기계적으로 러빙하였다. 이러한 강제조립 공정을 통해 상기 PDMS 기판 상에 상기 콜로이드가 육각밀집구조로 배열된 콜로이드 단층막을 형성시켰다.The polydimethylsiloxane (PDMS) prepolymer and the crosslinker were mixed in a weight ratio of 10: 1 and stirred for 30 minutes. After the mixture was spin coated on the Si wafer at 3000 rpm for 30 seconds, the formed PDMS coated substrate was cured at 80 ° C. for 5 hours. After the curing process, negatively charged 1, 2, 5 μm diameter polystyrene (PS) colloidal dry powders were placed on PDMS coated Si wafers and then mechanically rubbed onto other PDMS coated substrates. Through this forced assembly process, a colloidal monolayer film in which the colloids are arranged in a hexagonal dense structure on the PDMS substrate was formed.
음각패턴 마찰전기필름의 제조Fabrication of intaglio pattern triboelectric film
PDMS 프리폴리머 혼합물(PDMS prepolymer : 가교제 = 10 : 1, w/w)을 상기 PS 콜로이드 단층막이 형성된 PDMS 기판에 붓고, 150 ℃에서 40분 동안 열 경화하였다. 경화된 PDMS 필름을 PDMS 템플레이트로부터 박리한 다음, 분리된 PDMS 표면에 잔존하는 PS 콜로이드를 완전히 제거하기 위해 아세톤에 24 시간 동안 침지시켜, 미세 크기의 오목부가 다수 개 포함된 음각패턴 PDMS 마찰전기필름(intanglio-PDMS)을 제조하였다.A PDMS prepolymer mixture (PDMS prepolymer: crosslinking agent = 10: 1, w / w) was poured onto the PDMS substrate on which the PS colloidal monolayer was formed and thermally cured at 150 ° C. for 40 minutes. The cured PDMS film was peeled from the PDMS template, and then immersed in acetone for 24 hours to completely remove the remaining PS colloid on the separated PDMS surface. intanglio-PDMS) was prepared.
양각패턴 마찰전기필름의 제조Fabrication of Embossed Pattern Triboelectric Film
양각패턴 PDMS 마찰전기필름(embossed-PDMS film)은 intanglio-PDMS를 주형으로 하여 제조하였다. 먼저, trichloro (1H,1H,2H,2H-perfluorooctyl) silane을 intanglio-PDMS에 코팅한 후, PDMS 프리폴리머 혼합물(PDMS prepolymer : 가교제 = 10 : 1, w/w)을 상기 intanglio-PDMS 표면에 붓고, 150 ℃에서 40분 동안 열 경화하였다. 경화된 PDMS 필름을 PDMS 템플레이트로부터 박리한 다음, 분리된 PDMS 표면에 잔존하는 PS 콜로이드를 완전히 제거하기 위해 아세톤에 24 시간 동안 침지시켜, 양각패턴 PDMS 마찰전기필름(embossed-PDMS film)을 제조하였다.Embossed PDMS triboelectric film (embossed-PDMS film) was prepared using intanglio-PDMS as a template. First, trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane was coated on intanglio-PDMS, and then a PDMS prepolymer mixture (PDMS prepolymer crosslinking agent = 10: 1, w / w) was poured onto the intanglio-PDMS surface, Heat cured at 150 ° C. for 40 minutes. The cured PDMS film was peeled from the PDMS template and then immersed in acetone for 24 hours to completely remove the PS colloid remaining on the separated PDMS surface to prepare an embossed PDMS embossed-PDMS film.
이중양각패턴이 형성된 마찰전기필름의 제조Fabrication of triboelectric film with a double relief pattern
이중양각패턴이 형성된 PDMS 마찰전기필름(dual embossed-PDMS film)을 제조하기 위해, 양이온성 폴리에틸렌이민(poly(ethylene imine), (PEI))을 음으로 전하된 PS 콜로이드 단층막(직경 ~2 mm )이 코팅된 기판에 정전기적으로 흡착시켰다. 다음으로 수성 용매 상에서 PEI 코팅된 기판에 대략 607 nm 직경의 음으로 전하된 PS 콜로이드 (PS 콜로이드 용액의 농도는 ~1 wt%)를 증착시켰다. 형성된 기판은 약하게 결합된 PS 콜로이드의 제거를 위해 5분 동안 물에 담궈 놓은 다음 진공에서 2시간 동안 건조하였다. 다음으로, 상술한 음각 및 양각패턴 마찰전기필름의 제조방법과 동일한 과정을 통해 이중양각패턴 PDMS 마찰전기필름(dual embossed-PDMS film)을 제조하였으며, 마찰전기필름의 소수성 표면을 형성하기 위해 trichloro (1H,1H,2H,2H-perfluorooctyl) silane을 처리하였다. PS-colloid monolayer (diameter ~ 2 mm) negatively charged with cationic polyethyleneimine (PEI) to produce a double embossed PDMS film with a double-embossed pattern ) Was electrostatically adsorbed onto the coated substrate. Next, a negatively charged PS colloid (concentration of the PS colloidal solution of ˜1 wt%) of approximately 607 nm diameter was deposited on a PEI coated substrate on an aqueous solvent. The formed substrate was soaked in water for 5 minutes to remove the weakly bound PS colloid and then dried in vacuo for 2 hours. Next, a dual embossed PDMS film was manufactured through the same process as the above-described method of manufacturing the intaglio and embossed pattern triboelectric film. In order to form a hydrophobic surface of the triboelectric film, trichloro ( 1H, 1H, 2H, 2H-perfluorooctyl) silane was treated.
시험예. 본 발명에 따른 마찰전기필름 및 마찰전기소자의 성능 시험Test example. Performance test of triboelectric film and triboelectric element according to the present invention
먼저, 본 발명에 따른 마찰전기필름 및 마찰전기소자와의 성능 비교를 위하여 패턴이 형성되지 않은 평평한 PDMS 마찰전기필름(Flat PDMS) 및 마찰전기소자(Flat-TENG)를 비교예로 사용하였다.First, in order to compare the performance with the triboelectric film and the triboelectric device according to the present invention, a flat PDMS triboelectric film (Flat PDMS) and a triboelectric device (Flat-TENG) having no pattern were used as comparative examples.
본 발명에 따른 intanglio-PDMS, embossed-PDMS, Dual embossed-PDMS의 표면 형태를 필드 방사 주사 전자 현미경(FE-SEM)( Hitachi Inc., model: Hitachi S-4800)을 이용하여 측정하였다. 푸싱 테스터(Labworks Inc., model: ET-126-1)는 상부 전극과 하부 전극 사이의 거리가 450 ㎛ 및 접촉 영역은 1.5 cm x 1.5인 FTENG의 수직 압축 변형을 생성하는데 사용하였다. 또한, Tektronix DMO 3052 Digital Phosphor Oscilloscope와 low-noise current preamplifier (Stanford Research Systems, Inc. model: SR570)를 이용하여 전기적 성능을 측정하였다.Surface morphology of intanglio-PDMS, embossed-PDMS, Dual embossed-PDMS according to the present invention was measured using a field emission scanning electron microscope (FE-SEM) (Hitachi Inc., model: Hitachi S-4800). A pushing tester (Labworks Inc., model: ET-126-1) was used to create a vertical compressive strain of FTENG with a distance of 450 μm between the top and bottom electrodes and a contact area of 1.5 cm × 1.5. In addition, electrical performance was measured using a Tektronix DMO 3052 Digital Phosphor Oscilloscope and a low-noise current preamplifier (Stanford Research Systems, Inc. model: SR570).
도 6은 평면 마찰전기소자(Flat-TENG)와 5 ㎛ 음각 마찰전기소자(5 ㎛-intaglio-FTENG)의 시간에 따른 출력전압 및 전류밀도를 나타낸 그래프이다. Flat-TENG의 경우, 전기 출력은 대략 57 V 및 33 mA·m-2이었다. 그러나, 동일한 기계적 힘 하에서, 본 발명에 따른 5mm-intaglio-FTENGs의 출력 전압 및 전류 밀도는 대략 103 V 와 48mA·m-2로 매우 높게 측정되었다. 이러한 높은 출력 전압과 전류밀도는 하기 도 8에 나타난 극성 전환 실험(polarity switching test)을 통해 접촉 전극과 PDMS 사이의 주기적인 접촉 및 분리에 의해 유래된 것으로 나타났다(도 8).FIG. 6 is a graph showing output voltage and current density of a planar triboelectric element (Flat-TENG) and a 5 μm engraved triboelectric element (5 μm-intaglio-FTENG) with time. For Flat-TENG, the electrical outputs were approximately 57 V and 33 mA · m −2 . However, under the same mechanical force, the output voltage and current density of the 5 mm -intaglio-FTENGs according to the invention were measured very high, approximately 103 V and 48 mA · m −2 . These high output voltages and current densities were derived from periodic contact and separation between the contact electrode and PDMS through the polarity switching test shown in FIG. 8 (FIG. 8).
Flat-TENG와 5㎛-intaglio-FTENGs의 전기 에너지 생성이 마찰전기 효과와 정전기 유도의 커플링에 의한 것임을 고려할 때(도 9), 5㎛-intaglio-FTENGs의 향상된 전기적 출력은 같은 기계적 힘 하에서, 표면적이 intanglio-PDMS이 flat-PDMS에 비해 더 많은 마찰전기 전하를 생성함을 의미한다. 상기 음각패턴 구조는 전극과 PDMS 플레이트 사이의 접촉을 방해할 수 있지만, 높은 압축력 하에서 음각패턴 PDMS 마찰전기필름의 변형을 유발하여 두 플레이트 사이의 더 큰 접촉 면적을 제공할 수 있다. 이러한 접촉 면적 증가에 더하여, 정전 유도는 비접촉 영역에서의 마찰전기 전하의 생성에 기여할 수 있다.Given that the electrical energy generation of Flat-TENG and 5 μm-intaglio-FTENGs is due to the coupling of the triboelectric effect and electrostatic induction (FIG. 9), the improved electrical output of 5 μm-intaglio-FTENGs under the same mechanical force, The surface area means that intanglio-PDMS generates more triboelectric charges than flat-PDMS. The intaglio pattern structure may interfere with contact between the electrode and the PDMS plate, but may cause deformation of the intaglio pattern PDMS triboelectric film under high compressive force to provide a larger contact area between the two plates. In addition to this increase in contact area, electrostatic induction can contribute to the generation of triboelectric charges in the non-contact region.
다음으로, intanglio-PDMS(1.5 cm x 1.5 cm)의 오목부의 크기와 압축력에 따른 출력 전압과 전류 밀도를 측정하였다(도 10, 도 11). 측정 결과, 오목부의 크기가 대략 0.9 ㎛(from 1 ㎛ intaglio-FTENG)로 작아지고, 압축력이 10 에서 90 N으로 커질수록, 출력전압과 전류 밀도는 170 V and 103 mA·m-2로 매우 크게 증가함을 확인하였다. 이러한 높은 전기적 성능은 intanglio-PDMS을 주형으로 제조된 embossed-PDMS에서도 동일하게 관찰되었다(도 12, 도 13). 특히, embossed-PDMS의 볼록부의 크기가 4.6(for 5 ㎛ embossed-FTENG)에서 0.8 ㎛(for 1 ㎛ embossed-FTENG)로 작아지고, 압축력이 10에서 90 N으로 커질수록 출력 전압과 전류 밀도는 171 V and 104 mA·m-2로 매우 크게 증가하였으며, 이는 1 ㎛ intaglio-FTENG에서 측정한 값과 거의 동일하였다. 이러한 결과는 마찰전기필름이 동일 압축력 하에서 표면적의 유의적인 증가가 있는 경우 높은 전기 출력을 나타낼 수 있음을 의미한다.Next, the output voltage and the current density according to the size and the compressive force of the concave portion of the intanglio-PDMS (1.5 cm x 1.5 cm) were measured (Figs. 10 and 11). As a result of the measurement, the size of the recess is reduced to about 0.9 μm (from 1 μm intaglio-FTENG), and as the compressive force increases from 10 to 90 N, the output voltage and current density become very large, 170 V and 103 mA · m −2 . It was confirmed to increase. This high electrical performance was also observed in embossed-PDMS prepared with intanglio-PDMS template (Fig. 12, Fig. 13). In particular, the size of the convex portion of the embossed-PDMS decreases from 4.6 (for 5 μm embossed-FTENG) to 0.8 μm (for 1 μm embossed-FTENG), and as the compression force increases from 10 to 90 N, the output voltage and current density are 171. V and 104 mA · m -2 increased significantly, which was almost the same as measured with 1 μm intaglio-FTENG. These results indicate that the triboelectric film can exhibit high electrical output when there is a significant increase in surface area under the same compressive force.
또한, 본 발명에 따른 FTENGs의 접촉 면적 증가를 통한 전기적 성능의 향상을 위해, 본 발명에서는 Dual embossed-PDMS를 도입하였으며(도 14 및 15), 구체적으로 2 ㎛ 직경의 PS 콜로이드 입자가 배열된 콜로이드 단층막이 형성된 PDMS 기판 상에 양이온 폴리에틸렌이민(PEI)를 정전 흡착시킨 후에, 약 600 nm 직경의 PS 콜로이드를 상기 콜로이드 단층막을 이루는 PS 콜로이드 입자 상에 증착시켜, Dual embossed-PDMS 필름을 제조하였다. 상기 Dual embossed-PDMS 필름의 패턴은 크기가 서로 다른 볼록부가 PDMS 기판상에 일체로 융합되어 형성되었는바, 순환 압축력 하에서 높은 기계적 안정성을 나타낸다. 하기 도 16 및 도 17에 도시된 바와 같이, 상기 Dual embossed-PDMS이 도입된 마찰전기소자의 출력전압 및 전류밀도는 90 N의 압축력 하에서 대략 207 V 및 141 mA/m2로서, 본 발명에 따른 양각패턴 마찰전기필름이 도입된 마찰전기소자에 비해 더 높은 전기적 성능을 나타낸다. 또한, 상기 Dual embossed-PDMS가 도입된 마찰전기소자의 전기적 성능은 5 Hz하에서 대략 18,000사이클에 걸쳐 안정적으로 유지됨을 확인할 수 있다(도 18). In addition, in order to improve the electrical performance by increasing the contact area of the FTENGs according to the present invention, the present invention introduced Dual embossed-PDMS (Figs. 14 and 15), specifically colloid colloidal array of PS particles of 2 ㎛ diameter After electrostatic adsorption of cationic polyethyleneimine (PEI) on a PDMS substrate having a monolayer film, a PS colloid having a diameter of about 600 nm was deposited on the PS colloidal particles forming the colloidal monolayer film, thereby preparing a dual embossed-PDMS film. The pattern of the dual embossed-PDMS film is formed by integrally fusing convex portions of different sizes on the PDMS substrate, and thus exhibits high mechanical stability under cyclic compressive force. 16 and 17, the output voltage and current density of the triboelectric element in which the Dual embossed-PDMS is introduced are approximately 207 V and 141 mA / m 2 under a compression force of 90 N, according to the present invention. It exhibits higher electrical performance compared to the triboelectric element in which the embossed triboelectric film is introduced. In addition, it can be seen that the electrical performance of the triboelectric element in which the Dual embossed-PDMS is introduced is stably maintained for about 18,000 cycles under 5 Hz (FIG. 18).
다음으로, Dual embossed-PDMS의 효과를 측정하기 위해, COMSOL multiphysics 소프트웨어를 이용한 분석 시뮬레이션을 실시하였다(도 19). 측정 결과, Dual embossed-PDMS 필름의 마찰전기 전위는 접촉 면적이 증가할수록 현저히 증가됨을 확인하였으며, 이는 flat-PDMS와 embossed-PDMS 필름에 비해 표면에서 더 높은 전하밀도가 발생함을 의미한다. 마찰전기 전하 밀도의 증가가 전송된 전하의 증가 및 전극 사이의 높은 마찰전기 전위 차이와 직접적으로 관련되어 있음을 고려하면, Dual embossed-PDMS의 높은 전기 성능은 이중양각 패턴의 형태와 밀접한 관련이 있음을 알 수 있다.Next, in order to measure the effect of Dual embossed-PDMS, analytical simulation using COMSOL multiphysics software was performed (FIG. 19). As a result, the triboelectric potential of the dual embossed-PDMS film was significantly increased as the contact area was increased, which means that higher charge density was generated on the surface than the flat-PDMS and embossed-PDMS films. Considering that the increase in triboelectric charge density is directly related to the increase in transferred charge and the high triboelectric potential difference between electrodes, the high electrical performance of Dual embossed-PDMS is closely related to the shape of the double-embossed pattern. It can be seen.
또한, 습한 환경에서 초소수성이 유도된 표면이 마찰전기소자의 전기적 성능에 미치는 영향을 조사하였다. flat-PDMS, 1 ㎛ embossed-PDMS, 2 ㎛ embossed-PDMS 및 dual embossed-PDMS 필름의 물방울에 대한 접촉각을 측정한 겨로가 각각 106°, 125°, 125°및 136°로 나타났다(도 20). 이중, dual embossed-PDMS 필름의 표면에서의 높은 접촉각은 계층구조를 가진 이중양각패턴 및 PDMS의 낮은 표면 에너지에 기인한다. 이러한 소수성은 마찰 대전 능력의 감소를 초래하는 물 수분층의 형성을 효과적으로 선별할 수 있게 하는바, 이는 마찰전기소자의 전기적 성능을 유지하는데에 매우 유용하게 사용될 수 있음을 의미한다. 이러한 결과에 기초하여, flat-TENG, 1 ㎛ embossed-FTENG, 2㎛ embossed-FTENG 및 Dual embossed-FTENG의 출력 전압에 대한 상대 습도의 영향을 측정하였다. 도 21에 도시된 바와 같이, 상대 습도가 증가함에 따라 마찰전기 전하의 손실로 인해 모든 장치의 출력 전압이 급격히 감소되는 것에 비해, 본 발명에 따른 Dual embossed-FTENG는 상대습도 80%에서 출력전압이 대략 174 V로 높게 측정되었다. 이러한 결과는 Dual embossed-FTENG의 전기적 성능이 다른 소자들에 비해 습도에 덜 민감하다는 것을 입증한다. 이는 초소수성 표면을 가진 Dual embossed-FTENG의 표면이 마찰전기 전하를 방출하는 수분층의 형성을 효과적으로 방지할 수 있음을 의미한다.In addition, the effect of the superhydrophobic surface on the electrical performance of the triboelectric element in a humid environment was investigated. The contact angles for the water droplets of the flat-PDMS, 1 μm embossed-PDMS, 2 μm embossed-PDMS and dual embossed-PDMS films were 106, 125, 125 and 136 °, respectively (Fig. 20). The high contact angle at the surface of the dual, dual embossed-PDMS film is due to the hierarchical double relief pattern and the low surface energy of the PDMS. This hydrophobicity makes it possible to effectively sort out the formation of a water moisture layer which results in a decrease in the triboelectric charge ability, which means that it can be very useful for maintaining the electrical performance of the triboelectric element. Based on these results, the influence of relative humidity on the output voltage of flat-TENG, 1 μm embossed-FTENG, 2 μm embossed-FTENG and Dual embossed-FTENG was measured. As shown in FIG. 21, as the relative humidity increases, the output voltage of all devices is rapidly decreased due to the loss of triboelectric charge, whereas the dual embossed-FTENG according to the present invention has an output voltage at 80% relative humidity. It was measured as high as approximately 174 V. These results demonstrate that the electrical performance of Dual embossed-FTENG is less sensitive to humidity than other devices. This means that the surface of the Dual embossed-FTENG with superhydrophobic surface can effectively prevent the formation of a moisture layer that emits triboelectric charges.
본 발명에 따른 Dual embossed-FTENG의 실용성을 조사하기 위해, 커패시터 없이 50 LEDs와 전원으로 구성된 직류 회로를 설계하였으며(도 22), 본 발명에 따른 Dual embossed-FTENG를 이용하여 그린 LED가 점등됨을 확인하였으며, 이를 통해 본 발명에 따른 Dual embossed-FTENG는 낭비되는 기계적 에너지를 사용하여 전력을 제공할 수 있음을 확인하였다.In order to investigate the practicality of the dual embossed-FTENG according to the present invention, a DC circuit composed of 50 LEDs and a power supply was designed without a capacitor (FIG. 22), and the green LED was turned on using the dual embossed-FTENG according to the present invention. Through this, it was confirmed that the dual embossed-FTENG according to the present invention can provide power by using wasted mechanical energy.
본 발명에 따르면 우수한 전기적 성능뿐만 아니라 내습성 및 높은 기계적 안정성을 가진 마찰전기소자를 제공할 수 있다.According to the present invention, it is possible to provide a triboelectric device having excellent electrical performance as well as moisture resistance and high mechanical stability.

Claims (11)

  1. (a) 폴리디메틸실록산의 프리폴리머와 가교제의 혼합물을 실리콘 웨이퍼 상에 스핀코팅하여 복수의 폴리디메틸실록산 기판을 형성하는 단계;(a) spin coating a mixture of a prepolymer of polydimethylsiloxane and a crosslinking agent onto a silicon wafer to form a plurality of polydimethylsiloxane substrates;
    (b) 상기 복수의 폴리디메틸실록산 기판 중 제1 폴리디메틸실록산 기판 상에 음으로 전하된 콜로이드 입자를 위치시킨 후, 상기 복수의 폴리디메틸실록산 기판 중 제2 폴리디메틸실록산 기판으로 러빙(rubbing)하여 상기 제2 폴리디메틸실록산 기판 상에 상기 콜로이드 입자가 배열된 콜로이드 단층막을 형성하는 단계; 및 (b) placing negatively charged colloidal particles on a first polydimethylsiloxane substrate of the plurality of polydimethylsiloxane substrates, and then rubbing to a second polydimethylsiloxane substrate of the plurality of polydimethylsiloxane substrates. Forming a colloidal monolayer film in which the colloidal particles are arranged on the second polydimethylsiloxane substrate; And
    (c) 상기 콜로이드 단층막이 형성된 제2 폴리디메틸실록산 기판 상에 폴리디메틸실록산의 프리폴리머와 가교제의 혼합물을 푸어링(pouring)한 후 경화시켜 음각패턴 마찰전기필름을 제조하는 단계;를 포함하는 마찰전기필름의 제조방법.(c) preparing a negative pattern triboelectric film by pouring and curing a mixture of a prepolymer of polydimethylsiloxane and a crosslinking agent on a second polydimethylsiloxane substrate on which the colloidal monolayer film is formed; Method for producing a film.
  2. 제1항에 있어서,The method of claim 1,
    상기 음각패턴 마찰전기필름은 일면에 오목하게 함몰된 돔(dome)형의 오목부를 다수 개 포함하는 음각패턴이 형성된 것을 특징으로 하는 마찰전기필름의 제조방법.The intaglio pattern triboelectric film manufacturing method of the triboelectric film, characterized in that the intaglio pattern including a plurality of dome (dome) concave recessed recessed on one surface is formed.
  3. 제1항에 있어서,The method of claim 1,
    상기 콜로이드 입자의 직경은 0.1 내지 10 ㎛인 것을 특징으로 하는 마찰전기필름의 제조방법.The diameter of the colloidal particles is a method of producing a triboelectric film, characterized in that 0.1 to 10 ㎛.
  4. 제1항에 있어서,The method of claim 1,
    상기 (c) 단계의 음각패턴 마찰전기필름을 상기 제2 폴리디메틸실록산 기판으로부터 박리시키는 단계; 및Peeling the intaglio pattern triboelectric film of step (c) from the second polydimethylsiloxane substrate; And
    상기 박리된 음각패턴 마찰전기필름 상에 폴리디메틸실록산의 프리폴리머와 가교제의 혼합물을 푸어링(pouring)한 후 경화시켜 양각패턴 마찰전기필름을 제조하는 단계;를 포함하는 마찰전기필름의 제조방법.A method of manufacturing a triboelectric film, comprising: preparing a relief pattern triboelectric film by pouring and curing a mixture of a prepolymer of polydimethylsiloxane and a crosslinking agent on the exfoliated intaglio triboelectric film.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 양각패턴 마찰전기필름은 일면에 볼록하게 돌출된 돔(dome)형의 볼록부를 다수 개 포함하는 양각패턴이 형성된 것을 특징으로 하는 마찰전기필름의 제조방법.The embossed pattern triboelectric film is a triboelectric film manufacturing method characterized in that the embossed pattern comprising a plurality of dome (dome) convex portion protruded convexly formed on one surface.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 (b) 단계와 (c) 단계 사이에 상기 콜로이드 입자 상에 상기 콜로이드 입자보다 직경이 작은 콜로이드 입자를 증착시키는 단계;를 포함하는 마찰전기필름의 제조방법.And depositing colloidal particles having a smaller diameter than the colloidal particles on the colloidal particles between the steps (b) and (c).
  7. 제6항에 잇어서,In accordance with claim 6,
    상기 양각패턴 마찰전기필름은 일면에 볼록하게 돌출된 돔(dome)형의 다수개의 제1 볼록부와 상기 제1 볼록부 상에 상기 제1 볼록부보다 크기가 작은 다수개의 제2 볼록부를 구비하는 이중양각 패턴이 형성된 것을 특징으로 하는 마찰전기필름의 제조방법.The embossed pattern triboelectric film includes a plurality of dome-shaped first convex portions protruding from one surface and a plurality of second convex portions smaller in size than the first convex portion on the first convex portion. Method for producing a triboelectric film characterized in that the double-embossed pattern is formed.
  8. 제6항에 있어서,The method of claim 6,
    상기 증착된 콜로이드 입자의 직경은 0.03 내지 3 ㎛인 것을 특징으로 하는 마찰전기필름의 제조방법.The diameter of the deposited colloidal particles is a method of producing a triboelectric film, characterized in that 0.03 to 3 ㎛.
  9. 제6항에 있어서,The method of claim 6,
    상기 양각패턴 마찰전기필름의 표면에 트리클로로퍼플루오로옥틸실란(trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane), 퍼플루오로옥틸트리에톡시실란(1H, 1H, 2H, 2H-perfluorotriethoxysilane), 퍼플루오로데실트리에톡시실란(1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane)로 이루어진 군에서 선택된 불소 실란계 유기물을 처리하여 상기 양각패턴 마찰전기필름의 표면을 소수성으로 개질하는 단계;를 더 포함하는 마찰전기필름의 제조방법.Trichloroperfluorooctylsilane (trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane), perfluorooctyltriethoxysilane (1H, 1H, 2H, 2H-perfluorotriethoxysilane) on the surface of the relief pattern triboelectric film , Hydrophobically modifying the surface of the relief pattern triboelectric film by treating a fluorine silane-based organic material selected from the group consisting of perfluorodecyltriethoxysilane (1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane); Method for producing a triboelectric film further comprising.
  10. 제1항 내지 제9항 중 어느 한 항의 제조방법에 따라 제조된 마찰전기필름.A triboelectric film produced according to any one of claims 1 to 9.
  11. 제10항에 따른 마찰전기필름을 포함하는 마찰전기소자.A triboelectric element comprising a triboelectric film according to claim 10.
PCT/KR2016/011790 2015-11-05 2016-10-20 Method of preparing triboelectric film with intagliated, embossed or dual embossed pattern, triboelectric film prepared thereby, and high-performance triboelectric nanogenerator comprising same WO2017078301A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150155084A KR101694638B1 (en) 2015-11-05 2015-11-05 Method of preparing triboelectric films with intaglio, embossed or dual embossed pattern, and triboelectric films prepared thereby, and triboelectric nanogenerator
KR10-2015-0155084 2015-11-05

Publications (1)

Publication Number Publication Date
WO2017078301A1 true WO2017078301A1 (en) 2017-05-11

Family

ID=57811416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011790 WO2017078301A1 (en) 2015-11-05 2016-10-20 Method of preparing triboelectric film with intagliated, embossed or dual embossed pattern, triboelectric film prepared thereby, and high-performance triboelectric nanogenerator comprising same

Country Status (2)

Country Link
KR (1) KR101694638B1 (en)
WO (1) WO2017078301A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109167529A (en) * 2018-08-31 2019-01-08 内蒙古科技大学 A kind of nano generator mimetic bio-membrane layer and preparation method thereof
CN116655968A (en) * 2023-05-23 2023-08-29 北京科技大学 Method for improving performance of friction nano generator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102173895B1 (en) * 2018-01-18 2020-11-04 한양대학교 산학협력단 Tunable Colloidal Crystalline Patterns on Micro-Patterned Curved Surfaces and Method for Fabricating the Same
KR102331366B1 (en) 2020-01-02 2021-11-25 충남대학교산학협력단 Triboelectric nanogenerator and its performance improvement method
KR102680489B1 (en) * 2021-12-16 2024-07-03 한국화학연구원 Film-type friction layer for triboelectric nano power generator and manufacturing method thereof
CN116239812B (en) * 2023-02-09 2023-07-21 北京纳米能源与系统研究所 Modified friction electrification material for friction nano generator, preparation method of modified friction electrification material and friction nano generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124810A (en) * 1999-10-29 2001-05-11 Canon Inc Method of measuring frictional electrification amount and device of measuring frictional electrification amount
US20110171430A1 (en) * 2009-07-27 2011-07-14 Nano Terra Inc. Microadhesive systems and methods of making and using the same
CN104660095A (en) * 2015-02-13 2015-05-27 京东方科技集团股份有限公司 Friction power generation device and preparation method thereof
KR20150108453A (en) * 2014-03-17 2015-09-30 연세대학교 산학협력단 Triboelectric energy harvesting device and method for manufacturing the same
KR20150111774A (en) * 2014-03-26 2015-10-06 연세대학교 산학협력단 Fabric Type Independent Power Plant for Frictional Electricity, and Fabric Product Having the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124810A (en) * 1999-10-29 2001-05-11 Canon Inc Method of measuring frictional electrification amount and device of measuring frictional electrification amount
US20110171430A1 (en) * 2009-07-27 2011-07-14 Nano Terra Inc. Microadhesive systems and methods of making and using the same
KR20150108453A (en) * 2014-03-17 2015-09-30 연세대학교 산학협력단 Triboelectric energy harvesting device and method for manufacturing the same
KR20150111774A (en) * 2014-03-26 2015-10-06 연세대학교 산학협력단 Fabric Type Independent Power Plant for Frictional Electricity, and Fabric Product Having the Same
CN104660095A (en) * 2015-02-13 2015-05-27 京东方科技集团股份有限公司 Friction power generation device and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109167529A (en) * 2018-08-31 2019-01-08 内蒙古科技大学 A kind of nano generator mimetic bio-membrane layer and preparation method thereof
CN116655968A (en) * 2023-05-23 2023-08-29 北京科技大学 Method for improving performance of friction nano generator

Also Published As

Publication number Publication date
KR101694638B1 (en) 2017-01-09

Similar Documents

Publication Publication Date Title
WO2017078301A1 (en) Method of preparing triboelectric film with intagliated, embossed or dual embossed pattern, triboelectric film prepared thereby, and high-performance triboelectric nanogenerator comprising same
Jang et al. Force-assembled triboelectric nanogenerator with high-humidity-resistant electricity generation using hierarchical surface morphology
WO2012023724A2 (en) Porous thin film having holes and a production method therefor
WO2016048026A1 (en) Triboelectric energy harvester including coating charged layer, and method of producing same
Kim et al. Layer-by-layer assembly-induced triboelectric nanogenerators with high and stable electric outputs in humid environments
Lee et al. Fully Packaged Self-Powered Triboelectric Pressure Sensor Using Hemispheres-Array.
Kim et al. High-performance nanopattern triboelectric generator by block copolymer lithography
WO2015183008A1 (en) Coating method using particle alignment
Yao et al. Patterning colloidal crystals by lift‐up soft lithography
CN108165058B (en) Preparation method of silicon-based micro-nano secondary structure super-hydrophobic surface
WO2014084590A1 (en) Coating method using particle alignment and particle coated substrate manufactured thereby
CN105765457A (en) Mould with mould pattern, and method for producing same
CN108162425A (en) Manufacturing method of large-size splicing-free micro-nano soft mold
KR20080104947A (en) Method for focusing patterning charged particles using a mask with patterned holes and the electrodynamic focusing mask used therein
WO2015183007A1 (en) Coating method using particle alignment
Choi et al. Synergetic Enhancement of Triboelectric Nanogenerators’ Performance Based on Patterned Membranes Fabricated by Phase‐Inversion Process
CN103466539A (en) Super-lyophobic surface and preparation method thereof
He et al. Bioinspired adhesive manufactured by projection microstereolithography 3D printing technology and its application
Mertens et al. Scalable microaccordion mesh for deformable and stretchable metallic films
Li et al. Enhancing Performance of Triboelectric Nanogenerator via Surface Structure Coupling by Light-Cured 3-D Printing
WO2019124658A1 (en) Self-powered toy
CN105378562B (en) Stamp and its manufacturing device and method with printing mould structure
WO2018131820A1 (en) Fully biodegradable supercapacitor and method for manufacturing same
WO2015156533A1 (en) Coating method using particle alignment and particle-coated substrate produced thereby
KR101207504B1 (en) Channel structure of organic thin-film solar cell manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862317

Country of ref document: EP

Kind code of ref document: A1