WO2015156533A1 - Coating method using particle alignment and particle-coated substrate produced thereby - Google Patents

Coating method using particle alignment and particle-coated substrate produced thereby Download PDF

Info

Publication number
WO2015156533A1
WO2015156533A1 PCT/KR2015/003196 KR2015003196W WO2015156533A1 WO 2015156533 A1 WO2015156533 A1 WO 2015156533A1 KR 2015003196 W KR2015003196 W KR 2015003196W WO 2015156533 A1 WO2015156533 A1 WO 2015156533A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
adhesive polymer
polymer substrate
particle
substrate
Prior art date
Application number
PCT/KR2015/003196
Other languages
French (fr)
Korean (ko)
Inventor
김재호
김효섭
Original Assignee
아주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교 산학협력단 filed Critical 아주대학교 산학협력단
Publication of WO2015156533A1 publication Critical patent/WO2015156533A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0751Silicon-containing compounds used as adhesion-promoting additives or as means to improve adhesion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/34Imagewise removal by selective transfer, e.g. peeling away
    • G03F7/343Lamination or delamination methods or apparatus for photolitographic photosensitive material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/32Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention relates to a coating method using a particle alignment, and to a particle coated substrate produced by the same, and more particularly, to a single layer of a plurality of fine particles at a high density by using a particle alignment using a particle alignment A coating method and a particle coated substrate produced thereby.
  • such coating techniques include memory devices, linear and nonlinear optical devices, photovoltaic devices, photo masks, deposition masks, chemical sensors, biochemical sensors, sensors for medical molecular detection, dye-sensitized solar cells, thin film solar cells, cell culture, It can be applied to the implant surface and the like.
  • LB method The Langmuir-Blodgett (LB) method (hereinafter referred to as "LB method”) is well known as a technique for aligning and coating fine particles on a substrate.
  • LB method a solution in which fine particles are dispersed in a solvent is floated on the surface of the water and then compressed by a physical method to form a thin film.
  • the technique using this LB method is disclosed in Korean Patent Publication No. 10-2006-2146.
  • the LB method temperature, humidity, and the like must be precisely controlled so that particles can be self-assembled in a solvent. It may also affect particle migration by the surface properties (eg, hydrophobicity, charge properties, surface roughness) of the particles on the substrate. As a result, the particles may aggregate together and may not be evenly applied on the substrate. That is, there may be many areas where the particles are not applied, and where the aggregated particles meet each other, grain boundaries may be formed and many defects may be located.
  • surface properties eg, hydrophobicity, charge properties, surface roughness
  • the present invention is to solve the problems of the prior art as described above, an object of the present invention is to provide a coating method using a particle alignment that can be evenly applied on the substrate by a simple method and a particle coated substrate produced thereby To provide.
  • Another object of the present invention is to provide a coating method using a particle alignment and a particle coated substrate produced thereby, which can form a coating film in which a plurality of particles are aligned in a predetermined pattern by a simple method.
  • Still another object of the present invention is to provide a coating method using particle alignment and a particle coated substrate produced thereby, which can form a coating film in which heterogeneous particles are aligned in a predetermined pattern by a simple method.
  • the object is (a) coating a plurality of first particles on the adhesive polymer substrate to form a primary coating film; (b) changing the adhesion of the exposed part irradiated with light or active gas on the surface of the adhesive polymer substrate by irradiating light or active gas onto the adhesive polymer substrate with the mask on which the mask pattern is formed; And (c) a non-exposure portion or an exposure portion in the plurality of first particles forming the primary coating layer by using an adhesive force difference between a portion irradiated with light or an active gas of the adhesive polymer substrate and a portion not irradiated. And selectively removing the first particles from the adhesive polymer substrate by using the degree of impregnation of the particles and the degree of adhesion of the particle removing member.
  • the object is to (a) the light or active gas on the surface of the adhesive polymer substrate by partially exposing or exposing the surface of the adhesive polymer substrate by irradiating light or active gas toward the adhesive polymer substrate with the mask on which the mask pattern is formed. Changing the adhesion of the irradiated area; (b) forming a first coating layer by coating a plurality of first particles on the adhesive polymer substrate; And (c) a non-exposure portion or an exposure portion in the plurality of first particles forming the primary coating layer by using an adhesive force difference between a portion irradiated with light or an active gas of the adhesive polymer substrate and a portion not irradiated. And selectively removing the first particles from the adhesive polymer substrate by using the degree of impregnation of the particles and the degree of adhesion of the particle removing member.
  • the purpose of the present invention is to provide an adhesion part including an exposed part region in which adhesion force is increased by irradiating light or an active gas on a surface, and a non-exposed part region in which light or active gas is not irradiated on the surface and having a relatively small adhesive force compared to the exposed part region.
  • a coating film is formed by applying pressure on the adhesive polymer substrate to dry particles without using a solvent or an adhesion aid.
  • the surface of the flexible adhesive polymer substrate having flexibility is deformed to surround a part of the particles under the influence of the surface tension.
  • recesses corresponding to the particles are formed on the surface of the adhesive polymer substrate, thereby improving bonding properties.
  • the reversible nature of the shape deformation of the adhesive polymer substrate surface facilitates two-dimensional movement of the particles in contact on the substrate so that the particle distribution can be easily rearranged.
  • Enhancement of particle adhesion through such shape modification lowers the dependence of the particle surface properties and the type of the polymer substrate so that particles of various surface properties can be coated in a single layer. Therefore, it is not necessary to control the environment such as temperature, humidity, and particle concentration required for self-assembly and spin coating when forming a coating film as in the prior art, and to easily coat particles having various surface properties in a wide range of environments and conditions. Can be. In addition to the case where the particles are chargeable or easy to bond with hydrogen, even when the material is non-chargeable and hydrophobic, single layer particle coating may be uniformly performed at high density.
  • the particles are evenly distributed on the adhesive polymer substrate by a simple method, thereby easily forming a coating layer having a high density.
  • the coating method using the particle alignment according to the present invention by using a mask to partially irradiate light or active gas on the adhesive polymer substrate to change the adhesion of the area irradiated with light or active gas, the non-exposed portion that is relatively weak adhesion By removing the particles located in the, it is possible to easily form a coating film of various patterns.
  • the coating method using the particle alignment according to the present invention comprises the step of partially changing the adhesion of the adhesive polymer substrate by exposing the adhesive polymer substrate using a mask, and partially placing the particles located in the unexposed portion of the adhesive polymer substrate By repeatedly removing and coating new particles, it is possible to easily form various coating films in which various kinds of particles are arranged in a specific pattern on the adhesive polymer substrate.
  • 1a to 1j show step by step a coating method using particle alignment according to an embodiment of the present invention.
  • FIG. 2 shows another embodiment in which a coating film is formed on a transfer substrate by using a coating method using particle alignment according to the present invention.
  • Figure 3 shows another embodiment of forming a secondary coating film on the adhesive polymer substrate in the coating method using the particle alignment according to an embodiment of the present invention.
  • 4A to 4D show step by step a coating method using particle alignment according to another embodiment of the present invention.
  • 5A, 5B, 5C, 5D, 5E, and 5F are electron micrographs of a coating film made of SiO 2 having an average particle diameter of 300 nm and 750 nm on a substrate in Experimental Example 1 of the present invention.
  • 6A and 6B are electron micrographs of a coating film made of SiO 2 having an average particle diameter of 750 nm on a substrate in Experimental Example 2 of the present invention.
  • 7A and 7B are electron micrographs of a coating film made of SiO 2 having an average particle diameter of 120 nm on a substrate in Experimental Example 3 of the present invention.
  • 10a, 10b, 10c, 11a and 11b is that the adhesion of the particles is controlled by adjusting the temperature and the irradiation time of the light or active gas when the particle coating on the adhesive polymer substrate in Experimental Example 5 of the present invention It is a figure which shows.
  • 12A and 12B are electron micrographs of a coating film made of SiO 2 having an average particle diameter of 750 nm and 300 nm on a substrate in Experimental Example 6 of the present invention.
  • FIGS. 1A to 1J illustrate step by step coating methods using particle alignment according to an embodiment of the present invention.
  • a coating method using particle alignment according to an embodiment of the present invention will be described in detail. The explanation is as follows.
  • an adhesive polymer substrate 10 having a smooth surface is prepared.
  • the surface of the adhesive polymer substrate 10 may have a state in which a specific pattern or curvature is not formed, and the particles 20 (see FIG. 1C) forming the coating layer 22 (see FIG. 1C) (see FIG. 1C) thereon. It may have a level of surface roughness and structure that does not limit the movement of () (see FIG. 1H).
  • the adhesive polymer substrate 10 includes various adhesive polymer materials in which adhesion exists.
  • Adhesive polymers are generally distinguished from adhesives because they do not have commonly used adhesive properties. At least the adhesive polymer has an adhesive force lower than about 0.6 kg / inch of the adhesive force of the Scotch Magic TM tape (ASTM D 3330 evaluation).
  • the adhesive polymer can maintain the shape of a solid state (substrate or film) at room temperature without a separate support.
  • the adhesive polymer material may be a silicone-based polymer material such as polydimethylsiloxane (PDMS), or a wrap, adhesive or sealing material including polyethylene (PE), polyvinyl chloride (PVC), or the like.
  • PDMS polydimethylsiloxane
  • PVC polyvinyl chloride
  • a protective film containing a high molecular material can be used.
  • the adhesive polymer substrate 10 may be manufactured by coating an adhesive polymer material on a base substrate or by attaching an adhesive polymer material in a sheet or film form.
  • the adhesive polymer material generally refers to an organic polymer material including silicon in a solid state or endowed with adhesion properties through plasticizer addition or surface treatment.
  • the adhesive polymer material is generally characterized by having a low surface tension and easy deformation of the form by the linear molecular structure.
  • the excellent adhesion of such an adhesive polymer material is due to the soft (flexible) surface material and low surface tension, which is easy to deform the surface in the fine region.
  • the low surface tension of the adhesive polymer material has the property of broadly adhering to the particles (20, 24) to be attached (similar to the solution wetting phenomenon), and the flexible surface is tight with the particles (20, 24) to be attached. Ensure that no contact is made. Through this, it has the characteristics of the adhesive polymer which is easily detachable to the solid surface without the complementary bonding force.
  • the surface tension of silicon-based polymer materials such as PDMS is about 20 to 23 dynes / cm, close to Teflon (18 dynes / cm), which is known as the lowest surface tension material.
  • the surface tension of silicon-based polymers such as PDMS is most organic polymers (35-50 dynes / cm), natural materials ( ⁇ , 73 dynes / cm), metals (eg silver (Ag, 890 dynes /) cm)), aluminum (Al, 500 dynes / cm), inorganic oxides (eg, glass (1000 dynes / cm)), iron oxides (1357 dynes / cm).
  • a wrap including PE, PVC, etc. a large amount of plasticizer is added to improve adhesion, and thus has a low surface tension.
  • the adhesion of the adhesive polymer substrate 10 can be controlled using chemical bonding made through additional light or active gas.
  • the adhesive force may be controlled depending on whether the adhesive polymer substrate 10 is irradiated with light or whether the active gas is supplied.
  • the adhesive polymer substrate 10 is made of a silicon-based polymer material such as polydimethylsiloxane (PDMS)
  • adhesion control by light or active gas as described above becomes easier.
  • the adhesive force of the adhesive polymer substrate 10 may be controlled by introducing a photosensitive functional group into the adhesive polymer material or by mixing the photosensitive material with the adhesive polymer material.
  • the adhesive force of the adhesive polymer substrate 10 will be described on the basis of the case of being controlled by light or an active gas.
  • the plurality of first particles 20 are aligned to form a primary coating film on the adhesive polymer substrate 10. 22). This will be described in more detail as follows.
  • the plurality of first particles 20 dried on the adhesive polymer substrate 10 is placed.
  • the particles dispersed in the solution are difficult to make direct contact with the adhesive polymer surface, so that the coating is not well made. Therefore, only a small amount of a solution or a volatile solvent less than the mass of the particles to be used may dry the particles during the coating operation to allow the coating operation.
  • the first particles 20 may include various materials for forming the primary coating layer 22. That is, the first particle 20 may include a polymer, an inorganic material, a metal, a magnetic material, a semiconductor, a biological material, and the like. In addition, a mixture of particles having different properties may be used as the first particle 20, and the second particle may be similarly applicable.
  • Polymers that can be used as the first particles 20 include polystyrene (PS), polymethyl methacrylate (PMMA), polyacrylate, polyvinyl chloride (PVC), polyalphastyrene, polybenzyl methacrylate, poly Phenyl methacrylate, polydiphenyl methacrylate, polycyclohexyl methacrylate, styrene-acrylonitrile copolymer, styrene-methyl methacrylate copolymer and the like.
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • PVC polyvinyl chloride
  • PVC polyalphastyrene
  • polybenzyl methacrylate polybenzyl methacrylate
  • poly Phenyl methacrylate polydiphenyl methacrylate
  • polycyclohexyl methacrylate polycyclohexyl methacrylate
  • styrene-acrylonitrile copolymer st
  • Inorganic materials that can be used as the first particles 20 include silicon oxide (for example, SiO 2 ), silver phosphate (for example, Ag 3 PO 4 ), titanium oxide (for example, TiO 2 ), iron oxide (for example, Fe 2 O 3 ), zinc oxide, cerium oxide, tin oxide, thallium oxide, barium oxide, aluminum oxide, yttrium oxide, zirconium oxide, copper oxide, nickel oxide and the like.
  • Examples of the metal that can be used as the first particles 20 include gold, silver, copper, iron, platinum, aluminum, platinum, zinc, cerium, thallium, barium, yttrium, zirconium, tin, titanium, alloys thereof, and the like. There is this.
  • Examples of semiconductors that can be used as the first particles 20 include silicon, germanium, or compound semiconductors (eg, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, InSb, etc.). .
  • Biomaterials that can be used as the first particles 20 include particles, surfaces of proteins, peptides, ribonucleic acid (RNA), deoxyribonucleic acid (DNA), polysaccharides, oligosaccharides, lipids, cells and complex materials thereof. Particles coated on the inside, and particles included therein. For example, a polymer particle coated with an antibody binding protein called protein A may be used as the first particle 20.
  • the first particle 20 may have a symmetrical shape, an asymmetrical shape, an amorphous shape, or a porous shape.
  • the first particle 20 may have a spherical shape, an ellipse shape, a hemispherical shape, a cube shape, a tetrahedron, a pentagonal surface, a hexahedron, an octahedron, a pillar shape, a horn shape, and the like.
  • spherical or elliptical is preferable as the form of the 1st particle 20 compared with another form.
  • the first particles 20 preferably have an average particle diameter of 10 nm to 100 ⁇ m.
  • the average particle diameter is less than 10 nm, it may be in the form of being entirely wrapped by the adhesive polymer substrate 10 during coating, it may be difficult to coat the first particles 20 to a single layer level.
  • the average particle diameter of the first particles 20 is less than 10 nm, the particles may agglomerate with each other even in a dry state, and it may be difficult for the particles to individually move by only a rubbing force.
  • the average particle diameter of the first particles 20 exceeds 100 ⁇ m, adhesion of the particles may appear weak.
  • the present invention is not limited thereto, and the average particle diameter of the first particles 20 may vary depending on a material constituting the first particles 20 or a material constituting the adhesive polymer substrate 10.
  • the diameter of the first particles 20 may be used as the particle diameter.
  • various measurement methods may be used. For example, average values of long and short axes may be used as particle diameters.
  • a pressure is applied on the plurality of first particles 20 to form the primary coating film 22.
  • a method of applying pressure to the first particles 20 a method of rubbing using a latex, a sponge, a hand, a rubber plate, a plastic plate, a material having a smooth surface, or the like may be used.
  • the present invention is not limited thereto, and pressure may be applied to the first particles 20 by various methods.
  • the first particles 20 when the first particles 20 are raised on the surface of the adhesive polymer substrate 10 and then pressure is applied, the first particles 20 in the portion to which the pressure is applied are attached through the deformation of the adhesive polymer substrate 10. do. As a result, a plurality of first recesses 12 respectively corresponding to the first particles 20 are formed in the corresponding portion. Therefore, the first particles 20 are aligned on the adhesive polymer substrate 10 in a state in which the first particles 20 are wrapped in the first recesses 12.
  • the first recesses 12 are reversible to be formed by the interaction between the first particles 20 and the adhesive polymer substrate 10. That is, it may be extinguished and the position may be moved. For example, when the particles move in the rubbing process, the first concave portion 12 disappears due to the elastic restoring force of the adhesive polymer substrate 10, or the first concave portion 12 moves according to the movement of the first particle 20. The position can also be changed. Due to this reversible action, the first particles 20 can be evenly aligned (where “reversible” is a property generated by the flexibility and elastic restoring force of the surface of the adhesive polymer substrate during coating, so that the resilience of the adhesive polymer substrate is time-dependent). Broader meaning includes weakening or extinction over time).
  • the first particles 20 which are not bonded to the adhesive polymer substrate 10 are moved to an uncoated area where the first particles 20 of the adhesive polymer substrate 10 are not coated by rubbing force or the like. As described above, the first concave portion 12 is formed by the first particles 20 in the portion not provided. In addition, the adhesive polymer substrate 10 and the first particles 20 are bonded in the state where the first particles 20 are wrapped in the newly formed first recesses 12. Through this process, the primary coating film 22 having a single density is formed on the adhesive polymer substrate 10 at a high density.
  • the first concave portion 12 may have a shape corresponding to the outer shape of the first particle 20 to surround a portion of the first particle 20.
  • the first recesses 12 may also have a spherical shape, and a part of the first particles 20 may be in close contact with the first recesses 12. have.
  • the depth L1 of the first concave portion 12 may vary depending on the hardness of the adhesive polymer substrate 10, the shape of the first particles 20, the hardness, and environmental factors (eg, temperature). That is, as the hardness of the adhesive polymer substrate 10 increases, the depth L1 of the first concave portion 12 may decrease, and as the temperature increases, the depth L1 of the first concave portion 12 may increase.
  • grains 20 is 0.02-0.98. If the ratio L1 / D is less than 0.02, the bonding force between the first particles 20 and the adhesive polymer substrate 10 may not be sufficient, and when the ratio L1 / D exceeds 0.98, the first particles 20 may be monolayer. It can be difficult to coat to levels. In consideration of the bonding force and coating properties, etc., the ratio (L1 / D) is preferably 0.05 to 0.6, more preferably 0.08 to 0.4.
  • the primary coating layer 22 may be coated at a single layer level at a high density.
  • the first particles 20 may be disposed such that each center thereof has a hexagonal shape.
  • the first particle 20 is non-spherical (for example, Ag 3 PO 4 ) it can be determined whether or not it is a monolayer level by a variety of methods. For example, when the ratio of the average value of the thickness of the primary coating layer 22 to the average particle diameter of the top 10% of the first particles 20 (ie, particles having a particle size of less than 10%) is 1.9 or less, a single layer You can see the coating at the level.
  • the adhesive is irradiated with light or an active gas on the mask 30 having the mask pattern 31 formed thereon.
  • the region where the primary coating layer 22 is formed on the surface of the polymer substrate 10 is partially exposed to exposure or gas.
  • the surface of the adhesive polymer substrate 10 is covered with the primary coating film 22 composed of the plurality of first particles 20, the light irradiated as an example may be adhered through a gap between the plurality of first particles 20.
  • the adhesive polymer substrate 10 may be exposed by reaching the polymer substrate 10.
  • the first particles 20 are made of a material through which light or active gas can pass, the irradiated light or active gas can pass through the first particles 20 to reach the adhesive polymer substrate 10. .
  • the adhesive polymer substrate 10 is made of a PDMS material
  • the above-described light may be specifically applied to ultraviolet rays, but the present invention is not limited thereto, and the visible light or infrared rays may be determined depending on the material of the adhesive polymer substrate 10. Of course, it is also applicable.
  • the adhesive polymer substrate 10 is irradiated with light or an active gas. As shown in FIG. 1E, the surface of the adhesive polymer substrate 10 may be removed.
  • the adhesion of the exposed portion 14 irradiated with light or active gas is greater than that of the non-exposed portion 15 not irradiated with light or active gas. This is because the solubility is poor and the thermal properties and chemical resistance are significantly improved while the molecular weight is greatly increased by a reaction such as crosslinking or light dimerization by irradiation of the light or the active gas.
  • the hardness of PDMS is changed by the irradiation of light or active gas, or the bonding is performed with functional groups on the surface of the particle. Therefore, the first particles 20 positioned in the exposed portion 14 may maintain a state of being attached to the adhesive polymer substrate 10 with a stronger bonding force than the first particles 20 disposed in the non-exposed portion 15.
  • the particle removing member 35 having an adhesion force greater than that of the non-exposed portion 15 of the adhesive polymer substrate 10 and smaller than the adhesion force of the exposure portion 14 may be formed using a primary coating film ( 22) Touch above and remove.
  • the first particles 20 disposed in the non-exposed part 15 may be the particle removing member 35. Attached to and removed from the adhesive polymer substrate 10.
  • the particle removal member 35 As the particle removal member 35, a difference between polymer materials such as polydimethylsiloxane (PDMS), polyethylene (polyethylene, PE), and polyvinyl chloride (PVC) and adhesive force, which have a difference in adhesion and relative adhesion on one surface, may be obtained. Branches may be used in various kinds such as Scotch Tape TM .
  • the particle removing member 35 may be applied as a low hardness 2 ⁇ 7% PDMS adhesive tape to utilize the removed particles.
  • the exposed part 14 may be exposed to the adhesive polymer substrate 10. Only the first particles 20 positioned in the remaining portion may be left to form the particle coating substrate 40 on which the primary coating layer 22 of a predetermined pattern is formed.
  • the primary coating layer 22 formed in a predetermined pattern as described above may be used in a state of being bonded to the adhesive polymer substrate 10, or may be transferred to another substrate and the like.
  • a transfer substrate having an adhesive force greater than that of the exposed portion 14 of the adhesive polymer substrate 10 is brought into contact with the primary coating layer 22, and then detached from the primary coating layer coated on the adhesive polymer substrate 10. It is possible to transfer the 22 to a new transfer substrate as it is.
  • Coating method using a particle alignment can make a particle coating substrate 40 having a primary coating film 22 of a predetermined pattern through the steps (Fig. 1a to 1g) as described above. .
  • various subsequent steps may be additionally performed to form another pattern of coating film.
  • the first particles 20 and the other second particles 24 are coated on the surface of the adhesive polymer substrate 10 on which the plurality of first particles 20 are coated. It is also possible to form a new coating film in which the particles 20 and 24 are aligned in a predetermined pattern, respectively.
  • the method of coating the plurality of second particles 24 is the same as the method of coating the plurality of first particles 20 on the adhesive polymer substrate 10, and the specific method thereof is as follows.
  • a plurality of dried second particles 24 are placed on the adhesive polymer substrate 10 on which the primary coating layer 22 is formed.
  • the second particles 24 a polymer, an inorganic material, a metal, a magnetic material, a semiconductor, a biological material, or the like may be used, and the specific types thereof are the same as described above.
  • pressure is applied on the plurality of second particles 24 to coat the second particles 24 on the non-exposed part 15 where the first particles 20 are not disposed.
  • the method of applying pressure to the second particles 24 is the same as the method used to coat the first particles 20 as described above, and includes latex, sponges, hands, rubber plates, plastic plates, materials having a smooth surface, and the like. A method of rubbing using may be used.
  • the mechanism in which the plurality of second particles 24 are coated on the adhesive polymer substrate 10 is the same as that of the aforementioned first particles 20 is coated on the adhesive polymer substrate 10.
  • the second particles 24 when the second particles 24 are placed on the adhesive polymer substrate 10 and then pressure is applied, the second particles 24 in the portion to which the pressure is applied are attached through the deformation of the adhesive polymer substrate 10.
  • a plurality of second recesses 17 corresponding to the second particles 24 are formed in corresponding portions of the polymer substrate 10. Accordingly, while the second particles 24 are aligned with the non-exposed portions 15 of the adhesive polymer substrate 10 while the second particles 24 are wrapped in the second recessed portions 17, the non-exposed portions 15
  • a secondary coating film 25 composed of a plurality of second particles 24 is formed.
  • the second particles 24 may be aligned and coated on the adhesive polymer substrate 10 while the second particles 24 are partially accommodated in the empty first recesses 12 from which the first particles 20 are removed. have.
  • the ratio (sedimentation rate) of the depth of the 2nd recessed part 17 with respect to the average particle diameter D of the 2nd particle 24 is 0.02-0.98 similarly.
  • the secondary coating film 25 formed on the adhesive polymer substrate 10 may be used as it is bonded to the adhesive polymer substrate 10 or may be transferred to another substrate. That is, as illustrated in FIG. 1I, the second coating layer 25 may be formed of another transfer substrate 42 having an adhesion force greater than that of the non-exposed portion 15 of the adhesive polymer substrate 10 and less than that of the exposure portion 14. When the contact layer is contacted and removed, the secondary coating film 25 can be transferred to the transfer substrate 42 as shown in FIG. 1J.
  • the particle coating substrate 40 having the primary coating layer 22 formed on the adhesive polymer substrate 10 may be used as a mold for forming the secondary coating layer 25. That is, as described above, after the second coating layer 25 is transferred to another transfer substrate 42, the second particles 24 are coated on the adhesive polymer substrate 10, and the second particles 24 are coated with the second particles 24. By repeating the step of transferring the made secondary coating film 25 to another transfer substrate 42, a plurality of secondary coating film 25 can be repeatedly formed with one particle coating substrate 40.
  • the secondary coating layer 25 formed on the adhesive polymer substrate 10 may be transferred to another substrate together with the primary coating layer 22. That is, after forming the primary coating film 22 and the secondary coating film 25 on the adhesive polymer substrate 10, the other transfer substrate 44 having a greater adhesion than the exposed portion 14 of the adhesive polymer substrate 10 After contacting the primary coating film 22 and the secondary coating film 25 on the peeled off, as shown in Figure 2, the coating film in which the primary coating film 22 and the secondary coating film 25 combined in a specific pattern is different The transfer substrate 44 can be transferred.
  • the coating method using the particle alignment by repeatedly performing the exposure step, the partial particle removal step, the new particle coating step, the transfer step and the like as described above, the adhesive polymer substrate 10
  • Various types of particles may be formed on the coating layer in which various kinds of particles are arranged in a specific pattern.
  • the alignment pattern of each particle can be varied by varying the mask pattern 31 of the mask 30 used in the exposure step.
  • FIG. 3 shows another embodiment in which the second particles 24 are coated on the adhesive polymer substrate 10 in the coating method using the particle alignment according to the present invention.
  • the concave portion is formed in the adhesive polymer substrate 10 by elastic deformation, when the particles accommodated in the concave portion are removed, the surface of the adhesive polymer substrate 10 as shown in FIG. This recess may disappear and return to the smooth surface.
  • the plurality of second particles 24 are placed on the adhesive polymer substrate 10 and pressure is applied thereto.
  • the second particles 24 may be coated while the second recesses 17 corresponding to the second particles 24 are formed in the non-exposed parts 15.
  • the first recesses 12 or the first The traces of the first recesses 12 may remain on the surface of the adhesive polymer substrate 10.
  • the newly coated second particles 24 are partially wrapped in the first recesses 12, or the adhesive polymer substrates are penetrated by digging into the adhesive polymer substrate 10 at a position corresponding to the first recesses 12. 10 may be attached.
  • the coating method using the particle alignment according to the present invention is applied by applying a pressure in a state in which the dry particles (20, 24) in direct contact on the adhesive polymer substrate 10 without using a solvent ( 22,25). Accordingly, since the self-assembly of the particles in the solvent is not required when forming the coating film as compared with the related art, it is not necessary to precisely control the temperature, humidity, and the like, and does not significantly affect the surface properties of the particles. That is, the coating can be uniformly made at a high density not only when the particles are chargeable materials, but also when they are non-chargeable (ie, near charge neutral) materials. In addition, not only hydrophilic particles but also hydrophobic particles can be uniformly coated. As described above, according to the present invention, the particles 20 and 24 may be evenly distributed on the adhesive polymer substrate 10 by a simple method to form the coating layers 22 and 25 having a single density.
  • the adhesive force of the region 14 irradiated with light or active gas is changed by partially irradiating light or active gas onto the adhesive polymer substrate 10 using the mask 30.
  • a coating film having various patterns can be formed.
  • the coating method using the particle alignment comprises the step of partially changing the adhesion of the adhesive polymer substrate 10 by exposing the adhesive polymer substrate 10 using the mask 30, the adhesive polymer substrate 10 By repeatedly performing the steps of partially removing the particles 20 located in the unexposed portions of the coating, coating the new particles 24, and the like, a plurality of particles are respectively identified on the adhesive polymer substrate 10.
  • Various coating films arranged in a pattern can be formed.
  • Figures 4a to 4d shows step by step coating method using the particle alignment according to another embodiment of the present invention.
  • the coating method using particle alignment according to another embodiment of the present invention will be described in detail as follows.
  • the adhesive polymer substrate 10 having a smooth surface is prepared, and the adhesive polymer substrate 10 is irradiated with light or an active gas on the mask 50 on which the mask pattern 51 is formed. The surface of is partially exposed.
  • the adhesive polymer substrate 10 is as described above.
  • the adhesive polymer substrate 10 when the mask 50 is disposed on the adhesive polymer substrate 10, the adhesive polymer substrate 10 is irradiated with light or an active gas, and as shown in FIG. 4B, the surface of the adhesive polymer substrate 10 may be removed.
  • the adhesion of the exposed portion 14 irradiated with light or active gas is greater than that of the non-exposed portion 15 not irradiated with light or active gas.
  • a plurality of particles 20 are aligned to form a coating film on the adhesive polymer substrate 10. To form (22).
  • the kind of particle 20 and the specific method of forming the coating film 22 from the some particle 20 are as having mentioned above.
  • the particles 20 are positioned on the exposed portion 14.
  • the binding force of the particles 20 to the adhesive polymer substrate 10 is greater than the bonding force of the particles 20 positioned on the non-exposed part 15 to the adhesive polymer substrate 10, and thus the particles positioned on the exposed part 14. 20 is more firmly bonded to the adhesive polymer substrate 10 than the particles 20 located in the non-exposed part 15.
  • a particle removal member 35 (see FIG. 1F) having an adhesion force greater than that of the non-exposed portion 15 of the adhesive polymer substrate 10 and smaller than the adhesion force of the exposed portion 14 is provided. If the particles 20 disposed on the non-exposed part 15 are removed from the plurality of particles 20 forming the coating film 22 by using the coating film 22, the coating film 22 having a pattern corresponding to the exposure pattern may be formed.
  • each of the various types of particles arranged in a specific pattern on the adhesive polymer substrate 10 may be transferred to another substrate.
  • An adhesive polymer substrate made of PDMS formed in Sylgard 184 (Dow Corning, USA) was prepared containing 20 wt% of a curing agent.
  • 5A and 5C show a state in which a mask pattern is formed by depositing Au on a quartz substrate.
  • the mask pattern is applied onto the adhesive polymer substrate on which the 300 nm SiO 2 coating film is formed and irradiated with UV of 185 nm under an air atmosphere.
  • the 3M scotch tape is adhered and then pressurized with a roller and the 3M scotch tape is removed to remove only the weakly adherent areas (non-exposed areas) that are not irradiated with UV.
  • the area to be stabilized varies depending on the irradiation time, which can be confirmed through the coating area of the substrate irradiated with UV of FIG. 5D for 10 minutes and the substrate irradiated with UV of FIG. 5E for 20 minutes.
  • Figure 5f is the result of measuring the substrate through a confocal microscope, as can be seen in the results of Figure 5f in the case of the present invention particles of different sizes (750nm, 300nm) can be coated on the same substrate as a single layer and the coating site It can be seen that the mask pattern can be selectively determined. Specifically, in FIG. 5F, particles having a size of 750 nm are coated on the circular portion, and particles having a size of 300 nm are coated on the periphery thereof.
  • An adhesive polymer substrate made of PDMS formed in Sylgard 184 (Dow Corning, USA) was prepared containing 20 wt% of a curing agent.
  • the 3M scotch tape is bonded and then pressurized with a roller and the 3M scotch tape is removed to remove only the weakly adherent areas (non-exposed areas) that are not irradiated with UV. A picture thereof is shown in FIG. 6B.
  • 750 nm SiO 2 particles are placed on the substrate, and then rubbed while applying pressure by hand using a sponge wrapped with a latex film to form a recess in the surface of the adhesive polymer substrate where the particles are removed.
  • the 750 nm SiO 2 particles were combined with the adhesive polymer substrate in the region where the particles were removed to form a 750 nm SiO 2 coating film, followed by blowing nitrogen gas for single layer coating to remove the particles in the part where the multi layer was formed. 6a.
  • the present invention can be confirmed that the light-sensitive particles such as photospecific (photosensitive) particles can be coated on a substrate without damaging even a single layer, and the particle coating site can be selectively determined through exposure using a mask pattern. there was.
  • An adhesive polymer substrate in the form of a negative lens consisting of PDMS formed in Sylgard 184 (Dow Corning, USA) containing 20 wt% of a curing agent was prepared.
  • the particles are then transferred through the UV curable resin to form the embossed microstructure of FIG. 7A. If irradiated with UV under an air atmosphere for 30 minutes before the transition to increase the adhesion between the particles and the adhesive polymer substrate and then transferred through the UV curable resin, the particles do not transfer, thereby forming a negative microstructure as shown in FIG. 7B. It can be seen that the PDMS adhesive polymer substrate can be transferred not only in the planar shape but also in the curved lens structure.
  • the particles can be coated on the adhesive polymer substrate that already has a three-dimensional structure pattern instead of a plane.
  • the adhesive polymer substrate has a flat surface
  • a plurality of separate protrusion structures are already provided to form a three-dimensional structure pattern on the adhesive polymer substrate.
  • the present invention can additionally form a coating film by coating the particles on the surface of the plurality of protrusions.
  • the plurality of protrusions are made of the same material as the adhesive polymer substrate.
  • An adhesive pyramidal substrate in the form of an intaglio pyramid made of PDMS formed in Sylgard 184 (Dow Corning, USA) containing 20 wt% of a curing agent was prepared.
  • the adhesive polymer substrate has a three-dimensional three-dimensional prism film optical form, not a plane.
  • the substrate was irradiated with UV at 185 nm for 60 minutes in an air atmosphere, and then 120 nm SiO 2 particles were placed on the substrate, and rubbed several times with pressure by hand using a sponge wrapped with a latex film. Form a recess in the.
  • the 120 nm SiO 2 particles and the adhesive polymer substrate are combined to form a 120 nm SiO 2 coating film.
  • the particles are then transferred through the UV curable resin to form the embossed microstructure of FIG. 8.
  • the PDMS adhesive polymer substrate can be transferred not only in the planar shape but also in the three-dimensional pyramidal structure. Specifically, referring to FIG. 9, it can be seen that the particles are uniformly coated on all parts of the pattern such as the upper surface of the protrusion of the prism film having the protrusion and the recess of the three-dimensional structure, the lower surface of the recess, and the inclined surface thereof.
  • An adhesive polymer substrate made of PDMS formed in Sylgard 184 (Dow Corning, USA) was prepared containing 20 wt% of a curing agent.
  • the particles are the type of particles to coat each 750nm SiO 2, amine
  • 750nm SiO 2, 800nm PS which is modified 750nm SiO 2
  • the RGD is modified adhesion to polymer substrates such as table of Figure 10b, 10c and ratio is the 750nm SiO 2
  • RGD is 750nm, which is modified SiO 2 10% + amine is 90% 750nm SiO 2 that is modified, 50% 750nm SiO 2 that RGD is modified + amine
  • Six types of modified 750 nm SiO 2 50%, RGD modified 750 nm SiO 2 90% + amine modified 750 nm SiO 2 10%, RGD modified 750 nm SiO 2 , and 800 nm PS were used.
  • each adhesive polymer substrate is stabilized at 55 ° C. after irradiating the particles for 5 minutes and 10 minutes under UV atmosphere with PDMS without particle coating as shown in FIGS. 10A, 10B, and 10C.
  • PDMS uncoated particles were irradiated with UV for 5 minutes and 10 minutes under an air atmosphere, and the particles were coated and stabilized at room temperature dry conditions, and PDMS without particles coated with PDMS for 5 minutes and 10 minutes under an air atmosphere The particles were irradiated and coated, and then stabilized under vacuum temperature conditions, and tested under a total of six conditions.
  • the stabilization time was given for 5 hours, and in FIG.
  • PDMS without particles were irradiated with UV for 5 minutes under an air atmosphere, and after the particles were coated, the stabilization time was changed to a stabilization temperature of 37 ° C. for 5 hours and 20 hours.
  • the numbers 1 to 5 represent the extent to which the particles are removed when the 3M scotch tape is removed. 5 indicates no damage and 1 indicates that many particles are removed.
  • FIG. 10b it can be seen that the particle adhesion increased in all the particles except the 800nm PS under the increased temperature conditions, it can be seen that UV treatment is suitable for improving the particle adhesion.
  • FIG. 10c which has only a stabilization time under the same conditions
  • FIG. 10c where the stabilization time is long, the particle adhesion of all the conditions is increased except for 800 nm PS, and stabilization at a relatively high temperature is very effective. .
  • FIG. 12A three adhesive polymer substrates including PDMS formed of Sylgard 184 (Dow Corning, USA) including 20 wt%, 10 wt%, and 5 wt% of a curing agent were prepared.
  • PDMS formed of Sylgard 184 (Dow Corning, USA) including 20 wt%, 10 wt%, and 5 wt% of a curing agent were prepared.
  • 750nm SiO 2 particles were placed on the adhesive polymer substrate and rubbed while applying pressure by hand using a sponge wrapped with a latex film to form recesses on the surface of the adhesive polymer substrate, thereby combining the 750nm SiO 2 particles and the adhesive polymer substrate to form 750nm SiO 2 particles. 2 After forming a coating film, nitrogen gas was blown and the particle
  • the UV cured resin is poured onto the substrate coated with each particle, and then cured to transfer the particles. 12a, it can be seen that the impregnation degree of the particles transferred to the UV curing resin according to the PDMS concentration, respectively.
  • an adhesive polymer substrate made of PDMS including 20 wt% of a curing agent based on Sylgard 184 (Dow Corning, USA) was prepared. 3min, 10min, 30min time.
  • 300nm SiO 2 particles were placed on the adhesive polymer substrate and rubbed while applying pressure by hand using a sponge wrapped with a latex film to form recesses on the surface of the adhesive polymer substrate, thereby combining 300nm SiO 2 particles and the adhesive polymer substrate to form 300nm SiO 2 particles. 2 After forming a coating film, nitrogen gas was blown and the particle
  • each mold is irradiated with UV under an air atmosphere for 10 minutes to stabilize, and then each UV-cured resin is poured onto a substrate coated with each particle and cured to form a negative mold. It can be seen from Figure 12b that the depth of the intaglio mold formed on the UV curing resin according to the initial UV irradiation time.
  • the impregnation degree of the particles can be controlled by controlling the hardness or temperature of the adhesive polymer substrate itself, and also controlling the impregnation of the particles by controlling the irradiation time of light or active gas. It can be seen that this is possible.
  • the particle impregnation can also be adjusted in the embossed form as well as the particle impregnation in the engraved form.
  • a light or active gas is partially irradiated onto the adhesive polymer substrate using a mask to change the adhesion of the area irradiated with light or the active gas, and to a non-exposed area having relatively weak adhesion.

Abstract

Disclosed are a coating method using particle alignment and a particle-coated substrate produced thereby. The coating method using particle alignment according to the present invention comprises the steps of: (a) forming a primary coated film by coating an adhesive polymer substrate with a plurality of first particles; (b) irradiating light or an active gas toward the adhesive polymer substrate on which a mask having a masking pattern has been placed to change the adhesiveness of the exposed areas on the surface of the adhesive polymer substrate to which light or active gas has been irradiated; and (c) selectively removing a part of the plurality of first particles from the adhesive polymer substrate by means of the difference in degree of impregnation between the plurality of first particles due to the difference in adhesiveness between the exposed areas and non-exposed areas to which light or active gas has not been irradiated on the adhesive polymer substrate, and by means of a particle removal agent for removing the first particles from the adhesive polymer substrate. According to the present invention, a coated film can be formed by means of a simple process of applying pressure to the particles in a dry state from above the adhesive polymer substrate, without using a solvent or an adhesive supplement.

Description

입자 정렬을 이용한 코팅 방법 및 이에 의해 제조된 입자 코팅 기판Coating Method Using Particle Alignment and Particle Coating Substrate Prepared thereby
본 발명은 입자 정렬을 이용한 코팅 방법 및 이에 의해 제조된 입자 코팅 기판에 관한 것으로, 보다 상세하게는, 입자 정렬을 이용하여 높은 밀도로 복수의 미세 입자를 단층 수준으로 코팅할 수 있는 입자 정렬을 이용한 코팅 방법 및 이에 의해 제조된 입자 코팅 기판에 관한 것이다.The present invention relates to a coating method using a particle alignment, and to a particle coated substrate produced by the same, and more particularly, to a single layer of a plurality of fine particles at a high density by using a particle alignment using a particle alignment A coating method and a particle coated substrate produced thereby.
나노미터 수준 또는 마이크로미터 수준의 미세 입자를 기재 위에 정렬하여 코팅하는 기술이 다양한 분야에서 요구되고 있다. 일례로, 이러한 코팅 기술은 기억 소자, 선형 및 비선형 광학 소자, 광전기 소자, 포토 마스크, 증착 마스크, 화학적 센서, 생화학적 센서, 의학적 분자 검출용 센서, 염료 감응 태양 전지, 박막 태양 전지, 세포 배양, 임플란트 표면 등에 적용될 수 있다.BACKGROUND OF THE INVENTION There is a need in the art for a technique of sorting and coating nanoparticles or micrometer level fine particles on a substrate. In one example, such coating techniques include memory devices, linear and nonlinear optical devices, photovoltaic devices, photo masks, deposition masks, chemical sensors, biochemical sensors, sensors for medical molecular detection, dye-sensitized solar cells, thin film solar cells, cell culture, It can be applied to the implant surface and the like.
미세 입자를 기재 위에서 정렬하여 코팅하는 기술로는 랭뮤어-블로드젯(Langmuir-Blodgett, LB) 방법(이하 "LB 방법")이 잘 알려져 있다. LB 방법에서는 용매 내에 미세 입자를 분산시킨 용액을 수면 위에 띄운 후에 물리적인 방법으로 압축하여 박막을 형성한다. 이러한 LB 방법을 이용한 기술은 국내공개특허 제10-2006-2146호 등에 개시되어 있다.The Langmuir-Blodgett (LB) method (hereinafter referred to as "LB method") is well known as a technique for aligning and coating fine particles on a substrate. In the LB method, a solution in which fine particles are dispersed in a solvent is floated on the surface of the water and then compressed by a physical method to form a thin film. The technique using this LB method is disclosed in Korean Patent Publication No. 10-2006-2146.
그런데 LB 방법에서는 용매 내에서 입자들이 자기 조립될 수 있도록 온도, 습도 등을 정밀하게 조절하여야 한다. 또한 기재 위에서 입자들의 표면 특성(예를 들어, 소수성, 전하 특성, 표면 거칠기) 등에 의하여 입자 이동에 영향을 미칠 수 있다. 이에 따라 입자가 서로 뭉쳐서 기판 위에 고르게 도포되지 않을 수 있다. 즉, 입자가 도포되지 않은 영역이 많을 수 있고, 뭉쳐진 입자가 서로 만나는 곳에서는 결정립계(grain boundary)가 형성되어 많은 결함이 위치할 수 있다.However, in the LB method, temperature, humidity, and the like must be precisely controlled so that particles can be self-assembled in a solvent. It may also affect particle migration by the surface properties (eg, hydrophobicity, charge properties, surface roughness) of the particles on the substrate. As a result, the particles may aggregate together and may not be evenly applied on the substrate. That is, there may be many areas where the particles are not applied, and where the aggregated particles meet each other, grain boundaries may be formed and many defects may be located.
본 발명은 상술한 것과 같은 종래 기술의 문제를 해결하기 위한 것으로, 본 발명의 목적은 간단한 방법에 의하여 입자를 기판 위에 고르게 도포할 수 있는 입자 정렬을 이용한 코팅 방법 및 이에 의하여 제조된 입자 코팅 기판을 제공하는 것이다.The present invention is to solve the problems of the prior art as described above, an object of the present invention is to provide a coating method using a particle alignment that can be evenly applied on the substrate by a simple method and a particle coated substrate produced thereby To provide.
본 발명의 다른 목적은 간단한 방법에 의하여 복수의 입자가 일정한 패턴으로 정렬된 코팅막을 형성할 수 있는 입자 정렬을 이용한 코팅 방법 및 이에 의하여 제조된 입자 코팅 기판을 제공하는 것이다.Another object of the present invention is to provide a coating method using a particle alignment and a particle coated substrate produced thereby, which can form a coating film in which a plurality of particles are aligned in a predetermined pattern by a simple method.
본 발명의 또 다른 목적은 간단한 방법에 의하여 이종의 입자들이 각각 일정한 패턴으로 정렬된 코팅막을 형성할 수 있는 입자 정렬을 이용한 코팅 방법 및 이에 의하여 제조된 입자 코팅 기판을 제공하는 것이다.Still another object of the present invention is to provide a coating method using particle alignment and a particle coated substrate produced thereby, which can form a coating film in which heterogeneous particles are aligned in a predetermined pattern by a simple method.
상기 목적은, (a) 밀착성 고분자 기판 위에 복수의 제1 입자를 코팅하여 1차 코팅막을 형성하는 단계; (b) 마스크 패턴이 형성된 마스크를 대고 상기 밀착성 고분자 기판을 향해 빛 또는 활성기체를 조사하여 상기 밀착성 고분자 기판 표면의 빛 또는 활성기체가 조사된 노광부의 부착력을 변화시키는 단계; 및 (c) 상기 밀착성 고분자 기판의 빛 또는 활성기체가 조사된 부분과 조사되지 않은 부분의 부착력 차이를 이용하여 상기 1차 코팅막을 형성하는 상기 복수의 제 1 입자에서 비노광부 또는 노광부에 배치된 제 1 입자들을 입자의 함침정도 및 입자 제거부재의 부착력 정도를 이용해 상기 밀착성 고분자 기판으로부터 선택적으로 제거하는 단계;를 포함하는 입자 정렬을 이용한 코팅 방법에 의해 달성된다.The object is (a) coating a plurality of first particles on the adhesive polymer substrate to form a primary coating film; (b) changing the adhesion of the exposed part irradiated with light or active gas on the surface of the adhesive polymer substrate by irradiating light or active gas onto the adhesive polymer substrate with the mask on which the mask pattern is formed; And (c) a non-exposure portion or an exposure portion in the plurality of first particles forming the primary coating layer by using an adhesive force difference between a portion irradiated with light or an active gas of the adhesive polymer substrate and a portion not irradiated. And selectively removing the first particles from the adhesive polymer substrate by using the degree of impregnation of the particles and the degree of adhesion of the particle removing member.
상기 목적은, (a) 마스크 패턴이 형성된 마스크를 대고 밀착성 고분자 기판을 향해 빛 또는 활성 기체를 조사하여 상기 밀착성 고분자 기판의 표면을 부분적으로 노광 또는 노출함으로써, 상기 밀착성 고분자 기판 표면의 빛 또는 활성기체가 조사된 영역의 부착력을 변화시키는 단계; (b) 상기 밀착성 고분자 기판 위에 복수의 제1 입자를 코팅하여 1차 코팅막을 형성하는 단계; 및 (c) 상기 밀착성 고분자 기판의 빛 또는 활성기체가 조사된 부분과 조사되지 않은 부분의 부착력 차이를 이용하여 상기 1차 코팅막을 형성하는 상기 복수의 제 1 입자에서 비노광부 또는 노광부에 배치된 제 1 입자들을 입자의 함침정도 및 입자 제거부재의 부착력 정도를 이용해 상기 밀착성 고분자 기판으로부터 선택적으로 제거하는 단계;를 포함하는 입자 정렬을 이용한 코팅 방법에 의해 달성된다.The object is to (a) the light or active gas on the surface of the adhesive polymer substrate by partially exposing or exposing the surface of the adhesive polymer substrate by irradiating light or active gas toward the adhesive polymer substrate with the mask on which the mask pattern is formed. Changing the adhesion of the irradiated area; (b) forming a first coating layer by coating a plurality of first particles on the adhesive polymer substrate; And (c) a non-exposure portion or an exposure portion in the plurality of first particles forming the primary coating layer by using an adhesive force difference between a portion irradiated with light or an active gas of the adhesive polymer substrate and a portion not irradiated. And selectively removing the first particles from the adhesive polymer substrate by using the degree of impregnation of the particles and the degree of adhesion of the particle removing member.
상기 목적은, 표면에 빛 또는 활성기체를 조사받아 부착력이 증가한 노광부 영역과, 표면에 빛 또는 활성기체가 조사되지 않아 상기 노광부 영역에 비해 상대적으로 작은 부착력을 갖는 비노광부 영역을 포함하는 밀착성 고분자 기판; 상기 노광부 영역에 표면이 함몰되게 형성된 복수의 제1 오목부; 및 상기 복수의 제1 오목부 내에 각각 정렬되게 배치된 복수의 제1 입자로 이루어지는 1차 코팅막을 포함하여 이루어지는 입자 코팅 기판에 의해 달성된다. The purpose of the present invention is to provide an adhesion part including an exposed part region in which adhesion force is increased by irradiating light or an active gas on a surface, and a non-exposed part region in which light or active gas is not irradiated on the surface and having a relatively small adhesive force compared to the exposed part region. Polymer substrates; A plurality of first recesses formed to have a surface recessed in the exposed portion region; And a primary coating film comprising a plurality of first particles arranged to be aligned in the plurality of first recesses, respectively.
본 발명에 의한 입자 정렬을 이용한 코팅 방법에서는 용매 또는 부착 보조제를 사용하지 않고 건조 상태의 입자들을 밀착성 고분자 기판 위에서 압력을 가하는 과정을 통해 코팅막을 형성한다. 이 과정에서, 밀착성 고분자 기판에 입자가 접촉하면, 유연성을 지닌 밀착성 고분자 기판의 표면이 표면 장력의 영향으로 입자의 일부를 감싸는 형태로 변형이 된다. 이에 따라 밀착성 고분자 기판의 표면 상에서 입자에 대응하는 오목부가 형성되어 결합 특성이 향상된다. 밀착성 고분자 기판 표면의 형태 변형의 가역적인 특성은 기판 상에 접촉된 입자들의 이차원적인 움직임을 용이하게 하여 입자의 분포가 쉽게 재배열될 수 있도록 한다.In the coating method using the particle alignment according to the present invention, a coating film is formed by applying pressure on the adhesive polymer substrate to dry particles without using a solvent or an adhesion aid. In this process, when the particles come into contact with the adhesive polymer substrate, the surface of the flexible adhesive polymer substrate having flexibility is deformed to surround a part of the particles under the influence of the surface tension. As a result, recesses corresponding to the particles are formed on the surface of the adhesive polymer substrate, thereby improving bonding properties. The reversible nature of the shape deformation of the adhesive polymer substrate surface facilitates two-dimensional movement of the particles in contact on the substrate so that the particle distribution can be easily rearranged.
이러한 형태 변형을 통한 입자 밀착성의 향상은 입자 표면 특성 및 고분자 기판의 종류에 따른 의존성을 낮추어 다양한 표면 특성의 입자를 단층으로 코팅할 수 있도록 한다. 따라서 종래와 같이 코팅막 형성 시, 자기조립 및 스핀코팅 시에 요구되는 세밀한 온도, 습도, 입자농도 등의 환경 조절이 필요하지 않으며, 폭 넓은 환경 및 조건에서 다양한 표면 특성을 지닌 입자들을 용이하게 코팅할 수 있다. 입자가 전하성을 띄거나 수소결합이 용이한 물질인 경우뿐만 아니라, 비전하성 및 소수성인 물질인 경우에도 높은 밀도로 균일하게 단층 입자 코팅이 이루어질 수 있다.Enhancement of particle adhesion through such shape modification lowers the dependence of the particle surface properties and the type of the polymer substrate so that particles of various surface properties can be coated in a single layer. Therefore, it is not necessary to control the environment such as temperature, humidity, and particle concentration required for self-assembly and spin coating when forming a coating film as in the prior art, and to easily coat particles having various surface properties in a wide range of environments and conditions. Can be. In addition to the case where the particles are chargeable or easy to bond with hydrogen, even when the material is non-chargeable and hydrophobic, single layer particle coating may be uniformly performed at high density.
이와 같이 본 실시예에 따르면 단순한 방법에 의하여 밀착성 고분자 기판 위에 입자들이 고르게 분포되어 높은 밀도를 가지는 단층 수준의 코팅막을 손쉽게 형성할 수 있다.As described above, according to the present exemplary embodiment, the particles are evenly distributed on the adhesive polymer substrate by a simple method, thereby easily forming a coating layer having a high density.
또한 본 발명에 의한 입자 정렬을 이용한 코팅 방법은 마스크를 이용하여 밀착성 고분자 기판 위에 부분적으로 빛 또는 활성기체를 조사하여 빛 또는 활성기체가 조사된 영역의 부착력을 변화시키고, 상대적으로 부착력이 약한 비노광부에 위치하는 입자를 제거함으로써, 다양한 패턴의 코팅막을 손쉽게 형성할 수 있다. In addition, the coating method using the particle alignment according to the present invention by using a mask to partially irradiate light or active gas on the adhesive polymer substrate to change the adhesion of the area irradiated with light or active gas, the non-exposed portion that is relatively weak adhesion By removing the particles located in the, it is possible to easily form a coating film of various patterns.
또한 본 발명에 의한 입자 정렬을 이용한 코팅 방법은 마스크를 이용하여 밀착성 고분자 기판을 노광함으로써 밀착성 고분자 기판의 부착력을 부분적으로 변화시키는 단계와, 밀착성 고분자 기판의 노광되지 않은 부분에 위치하는 입자를 부분적으로 제거하는 단계와, 새로운 입자를 코팅하는 단계 등을 반복적으로 수행함으로써, 밀착성 고분자 기판 위에 여러 종류의 입자가 각각 특정한 패턴으로 정렬된 다양한 코팅막을 손쉽게 형성할 수 있다. In addition, the coating method using the particle alignment according to the present invention comprises the step of partially changing the adhesion of the adhesive polymer substrate by exposing the adhesive polymer substrate using a mask, and partially placing the particles located in the unexposed portion of the adhesive polymer substrate By repeatedly removing and coating new particles, it is possible to easily form various coating films in which various kinds of particles are arranged in a specific pattern on the adhesive polymer substrate.
도 1a 내지 도 1j는 본 발명의 일실시예에 의한 입자 정렬을 이용한 코팅 방법을 단계별로 나타낸 것이다.1a to 1j show step by step a coating method using particle alignment according to an embodiment of the present invention.
도 2는 본 발명에 의한 입자 정렬을 이용한 코팅 방법을 이용하여 전사 기판에 코팅막을 형성한 다른 실시예를 나타낸 것이다.2 shows another embodiment in which a coating film is formed on a transfer substrate by using a coating method using particle alignment according to the present invention.
도 3은 본 발명의 일실시예에 의한 입자 정렬을 이용한 코팅 방법에서 부착성 고분자 기판 위에 2차 코팅막을 형성하는 다른 실시예를 나타낸 것이다.Figure 3 shows another embodiment of forming a secondary coating film on the adhesive polymer substrate in the coating method using the particle alignment according to an embodiment of the present invention.
도 4a 내지 도 4d는 본 발명의 다른 실시예에 의한 입자 정렬을 이용한 코팅 방법을 단계별로 나타낸 것이다.4A to 4D show step by step a coating method using particle alignment according to another embodiment of the present invention.
도 5a, 5b, 5c, 5d, 5e, 5f는 본 발명의 실험예 1에서 기판 위에 평균 입경이 300nm, 750nm인 SiO2로 이루어진 코팅막의 전자 현미경 사진이다.5A, 5B, 5C, 5D, 5E, and 5F are electron micrographs of a coating film made of SiO 2 having an average particle diameter of 300 nm and 750 nm on a substrate in Experimental Example 1 of the present invention.
도 6a 및 도 6b는 본 발명의 실험예 2에서 기판 위에 평균 입경이 750nm인 SiO2로 이루어진 코팅막의 전자 현미경 사진이다.6A and 6B are electron micrographs of a coating film made of SiO 2 having an average particle diameter of 750 nm on a substrate in Experimental Example 2 of the present invention.
도 7a 및 도 7b는 본 발명의 실험예 3에서 기판 위에 평균 입경이 120nm인 SiO2로 이루어진 코팅막의 전자 현미경 사진이다.7A and 7B are electron micrographs of a coating film made of SiO 2 having an average particle diameter of 120 nm on a substrate in Experimental Example 3 of the present invention.
도 8 및 도 9는 본 발명의 실험예 4에서 기판 위에 평균 입경이 120nm인 SiO2로 이루어진 코팅막의 전자 현미경 사진이다.8 and 9 are electron micrographs of the coating film made of SiO 2 having an average particle diameter of 120 nm on the substrate in Experimental Example 4 of the present invention.
도 10a, 도 10b, 도 10c, 도 11a 및 도 11b는 본 발명의 실험예 5에서 밀착성 고분자 기판에 입자 코팅시 온도 조절 및 빛 또는 활성기체의 조사 시간 조절을 통해 입자의 부착력 정도가 조절되는 것을 나타내는 도면이다.10a, 10b, 10c, 11a and 11b is that the adhesion of the particles is controlled by adjusting the temperature and the irradiation time of the light or active gas when the particle coating on the adhesive polymer substrate in Experimental Example 5 of the present invention It is a figure which shows.
도 12a 및 도 12b는 본 발명의 실험예 6에서 기판 위에 평균 입경이 750nm, 300nm인 SiO2로 이루어진 코팅막의 전자 현미경 사진이다.12A and 12B are electron micrographs of a coating film made of SiO 2 having an average particle diameter of 750 nm and 300 nm on a substrate in Experimental Example 6 of the present invention.
<도면 부호의 설명><Description of Drawing>
10 : 밀착성 고분자 기판 12, 17 : 제 1, 2 오목부10: adhesive polymer substrate 12, 17: first, second recessed portion
14 : 노광부 15 : 비노광부14 exposure part 15 non-exposure part
20, 24 : 제 1, 2 입자 22 : 1차 코팅막20, 24: first and second particles 22: primary coating film
25 : 2차 코팅막 30, 50 : 마스크25: secondary coating film 30, 50: mask
31, 51 : 마스크 패턴 35 : 입자 제거부재31, 51: mask pattern 35: particle removal member
40 : 입자 코팅 기판 42, 44 : 전사 기판40: particle coated substrate 42, 44: transfer substrate
이하에서는 첨부된 도면을 참조하여, 본 발명에 의한 입자 정렬을 이용한 코팅 방법 및 이에 의해 제조된 입자 코팅 기판에 대하여 상세히 설명한다. Hereinafter, with reference to the accompanying drawings, it will be described in detail with respect to the coating method using a particle alignment according to the present invention and a particle coated substrate produced thereby.
본 발명을 설명함에 있어서, 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의를 위해 과장되거나 단순화되어 나타날 수 있다. 또한 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들은 본 명세서 전반에 걸친 내용을 토대로 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.In describing the present invention, the size or shape of the components shown in the drawings may be exaggerated or simplified for clarity and convenience of description. In addition, terms that are specifically defined in consideration of the configuration and operation of the present invention may vary depending on the intention or custom of the user or operator. These terms should be interpreted as meanings and concepts corresponding to the technical spirit of the present invention based on the contents throughout the specification.
도 1a 내지 도 1j는 본 발명의 일실시예에 의한 입자 정렬을 이용한 코팅 방법을 단계별로 나타낸 것으로, 도 1a 내지 도 1j를 참조하여 본 발명의 일실시예에 의한 입자 정렬을 이용한 코팅 방법을 상세히 설명하면 다음과 같다.1A to 1J illustrate step by step coating methods using particle alignment according to an embodiment of the present invention. Referring to FIGS. 1A to 1J, a coating method using particle alignment according to an embodiment of the present invention will be described in detail. The explanation is as follows.
먼저, 도 1a에 도시한 바와 같이, 매끈한 표면(smooth surface)을 갖는 밀착성 고분자 기판(10)을 준비한다. 밀착성 고분자 기판(10)의 표면은 특정한 패턴이나 굴곡이 형성되지 않은 상태를 가질 수 있으며, 이 위에서 코팅막(22;도 1c 참조)(25;도 1h 참조)을 형성하는 입자(20;도 1c 참조)(24;도 1h 참조)의 이동을 제한하지 않는 수준의 표면 거칠기 및 구조를 가질 수 있다.First, as shown in FIG. 1A, an adhesive polymer substrate 10 having a smooth surface is prepared. The surface of the adhesive polymer substrate 10 may have a state in which a specific pattern or curvature is not formed, and the particles 20 (see FIG. 1C) forming the coating layer 22 (see FIG. 1C) (see FIG. 1C) thereon. It may have a level of surface roughness and structure that does not limit the movement of () (see FIG. 1H).
본 실시예에서 밀착성 고분자 기판(10)은 밀착성이 존재하는 다양한 밀착성 고분자 물질을 포함한다. 밀착성 고분자는 일반적으로 통용되는 점착성을 갖지 않으므로 점착제와는 구별된다. 적어도 밀착성 고분자는'스카치 매직TM테이프'의 (ASTM D 3330 평가) 점착제가 갖는 점착력 약 0.6 kg/inch 보다 낮은 수치의 부착력을 갖는다. 또한 밀착성 고분자는 별도의 지지체 없이도 상온에서 고체상태(기판 또는 필름 등)의 형상을 유지할 수 있다.In this embodiment, the adhesive polymer substrate 10 includes various adhesive polymer materials in which adhesion exists. Adhesive polymers are generally distinguished from adhesives because they do not have commonly used adhesive properties. At least the adhesive polymer has an adhesive force lower than about 0.6 kg / inch of the adhesive force of the Scotch Magic TM tape (ASTM D 3330 evaluation). In addition, the adhesive polymer can maintain the shape of a solid state (substrate or film) at room temperature without a separate support.
이러한 밀착성 고분자 물질로는 폴리디메틸실록산(polydimethylsiloxane, PDMS) 등의 실리콘 기반 고분자 물질이나, 폴리에틸렌(polyethylene, PE), 폴리비닐클로라이드(polyvinylchloride, PVC) 등을 포함하는 랩, 밀착 또는 밀봉을 목적으로 하는 고분자 물질을 포함하는 보호 필름 등이 사용될 수 있다. 여기서, 밀착성 고분자 기판(10)은 베이스 기재에 밀착성 고분자 물질을 코팅하여 제조되거나, 시트 또는 필름 형태의 밀착성 고분자 물질이 부착되어 제조 가능하다.The adhesive polymer material may be a silicone-based polymer material such as polydimethylsiloxane (PDMS), or a wrap, adhesive or sealing material including polyethylene (PE), polyvinyl chloride (PVC), or the like. A protective film containing a high molecular material can be used. Here, the adhesive polymer substrate 10 may be manufactured by coating an adhesive polymer material on a base substrate or by attaching an adhesive polymer material in a sheet or film form.
여기에서, 밀착성 고분자 물질은 일반적으로 고체 상태의 실리콘을 포함하거나, 가소제 첨가 또는 표면 처리를 통해 부착 특성이 부여된 유기 고분자 물질을 지칭하는 것이다. 여기에서, 밀착성 고분자 물질은 일반적으로 선형 분자구조에 의하여 형태의 변형이 용이하며 낮은 표면 장력을 가지는 것을 특징으로 한다. 이러한 밀착성 고분자 물질의 우수한 밀착성은 미세 영역에서의 표면 변형이 용이한 부드러운(유연성) 표면 재질과 낮은 표면 장력 등에 기인한다. 밀착성 고분자 물질의 낮은 표면 장력은 부착하고자 하는 입자(20,24)에 넓게 활착하려는 특성을 가져오며(용액의 젖음 현상과 유사), 유연성을 지닌 표면은 부착하고자 하는 입자(20,24)와 빈틈 없는 접촉이 이루어지도록 한다. 이를 통해 상보적인 결합력 없이 가역적으로 고체 표면에 탈부착이 용이한 밀착성 폴리머의 특성을 지니게 된다.Here, the adhesive polymer material generally refers to an organic polymer material including silicon in a solid state or endowed with adhesion properties through plasticizer addition or surface treatment. Here, the adhesive polymer material is generally characterized by having a low surface tension and easy deformation of the form by the linear molecular structure. The excellent adhesion of such an adhesive polymer material is due to the soft (flexible) surface material and low surface tension, which is easy to deform the surface in the fine region. The low surface tension of the adhesive polymer material has the property of broadly adhering to the particles (20, 24) to be attached (similar to the solution wetting phenomenon), and the flexible surface is tight with the particles (20, 24) to be attached. Ensure that no contact is made. Through this, it has the characteristics of the adhesive polymer which is easily detachable to the solid surface without the complementary bonding force.
대표적인 밀착성 고분자 물질인 PDMS와 같은 실리콘 기반 고분자 물질의 표면 장력은 20 ~ 23 dynes/cm 정도로, 가장 낮은 표면 장력 물질로 알려진 Teflon(18dynes/cm)에 근접한다. 그리고 PDMS와 같은 실리콘 기반 고분자 물질의 표면 장력은 대부분의 유기 폴리머(35 ~ 50 dynes/cm), 천연재료인 면(綿, 73 dynes/cm), 금속(일례로, 은(Ag, 890 dynes/cm)), 알루미늄(Al, 500 dynes/cm), 무기 산화물(일례로, 유리(1000 dynes/cm)), 철 산화물(1357 dynes/cm)의 표면 장력보다 상대적으로 낮은 값을 갖는다. 또한 PE, PVC 등을 포함하는 랩과 같은 경우에도 밀착성 향상을 위해 다량의 가소제가 첨가되어 낮은 표면 장력을 지니게 된다.The surface tension of silicon-based polymer materials such as PDMS, a typical adhesive polymer material, is about 20 to 23 dynes / cm, close to Teflon (18 dynes / cm), which is known as the lowest surface tension material. The surface tension of silicon-based polymers such as PDMS is most organic polymers (35-50 dynes / cm), natural materials (綿, 73 dynes / cm), metals (eg silver (Ag, 890 dynes /) cm)), aluminum (Al, 500 dynes / cm), inorganic oxides (eg, glass (1000 dynes / cm)), iron oxides (1357 dynes / cm). In addition, in the case of a wrap including PE, PVC, etc., a large amount of plasticizer is added to improve adhesion, and thus has a low surface tension.
본 실시예에서, 밀착성 고분자 기판(10)의 부착력은 추가적인 빛 또는 활성기체를 통해 이루어지는 화학적인 결합을 이용하여 제어 가능하다. 부연하자면, 밀착성 고분자 기판(10)에 빛이 조사되는 지의 여부 또는 활성기체가 공급되는 지의 여부에 따라 부착력이 제어 가능하다. 특히, 밀착성 고분자 기판(10)은 그 재질이 폴리디메틸실록산(polydimethylsiloxane, PDMS) 등의 실리콘 기반 고분자 물질로 이루어지는 경우, 전술한 바와 같은 빛 또는 활성기체에 의한 부착력 제어가 더욱 용이해진다.In this embodiment, the adhesion of the adhesive polymer substrate 10 can be controlled using chemical bonding made through additional light or active gas. In other words, the adhesive force may be controlled depending on whether the adhesive polymer substrate 10 is irradiated with light or whether the active gas is supplied. In particular, when the adhesive polymer substrate 10 is made of a silicon-based polymer material such as polydimethylsiloxane (PDMS), adhesion control by light or active gas as described above becomes easier.
그러나, 이에 한정되지 않으며, 광 감응성 기능기를 밀착성 고분자 물질에 도입하거나 광 감응성 재료를 밀착성 고분자 물질과 혼합하여 밀착성 고분자 기판(10)의 부착력을 제어하는 것도 가능하다. 이하에서는, 밀착성 고분자 기판(10)의 부착력이 빛 또는 활성기체에 의해 제어되는 경우를 기준으로 설명한다.However, the present invention is not limited thereto, and the adhesive force of the adhesive polymer substrate 10 may be controlled by introducing a photosensitive functional group into the adhesive polymer material or by mixing the photosensitive material with the adhesive polymer material. Hereinafter, the adhesive force of the adhesive polymer substrate 10 will be described on the basis of the case of being controlled by light or an active gas.
계속해서, 앞서 설명한 것과 같이 밀착성 고분자 기판(10)을 준비한 후, 도 1b 및 도 1c에 도시한 바와 같이, 복수의 제 1 입자(20)를 정렬하여 밀착성 고분자 기판(10) 위에 1차 코팅막(22)을 형성한다. 이를 좀더 상세하게 설명하면 다음과 같다.Subsequently, after preparing the adhesive polymer substrate 10 as described above, as shown in FIGS. 1B and 1C, the plurality of first particles 20 are aligned to form a primary coating film on the adhesive polymer substrate 10. 22). This will be described in more detail as follows.
먼저, 도 1b에 도시한 바와 같이, 밀착성 고분자 기판(10) 위에 건조된 복수의 제 1 입자(20)를 올린다. 본 실시예와 달리 용액 상에 분산되어 있는 입자는 밀착성 고분자 표면과 직접적인 접촉이 이루어지기 어려워서 코팅이 잘 이루어 지지 않는다. 따라서 사용하는 입자의 질량보다 적은 미량의 용액이나 휘발성 용매를 이용한 경우에만 코팅 작업 중 입자가 건조되어 코팅 작업이 가능할 수 있다.First, as shown in FIG. 1B, the plurality of first particles 20 dried on the adhesive polymer substrate 10 is placed. Unlike the present embodiment, the particles dispersed in the solution are difficult to make direct contact with the adhesive polymer surface, so that the coating is not well made. Therefore, only a small amount of a solution or a volatile solvent less than the mass of the particles to be used may dry the particles during the coating operation to allow the coating operation.
본 실시예에서 제 1 입자(20)는 1차 코팅막(22)을 형성하기 위한 다양한 물질을 포함할 수 있다. 즉, 제 1 입자(20)는 고분자, 무기물, 금속, 자성체, 반도체, 생체 물질 등을 포함할 수 있다. 또한 서로 다른 성질을 갖는 입자들이 혼합된 것이 제 1 입자(20)로 이용될 수 있으며 제2 입자 또한 마찬가지로 적용 가능하다.In the present embodiment, the first particles 20 may include various materials for forming the primary coating layer 22. That is, the first particle 20 may include a polymer, an inorganic material, a metal, a magnetic material, a semiconductor, a biological material, and the like. In addition, a mixture of particles having different properties may be used as the first particle 20, and the second particle may be similarly applicable.
제 1 입자(20)로 이용될 수 있는 고분자로는 폴리스티렌 (PS), 폴리메틸메타크릴레이트(PMMA), 폴리아크릴레이트, 폴리바이닐클로라이드 (PVC), 폴리알파스티렌, 폴리벤질메타크릴레이트, 폴리페닐메타클릴레이트, 폴리다이페닐메타크릴레이트, 폴리사이클로헥실메타클릴레이트, 스틸렌-아크릴로니트릴 공중합체, 스틸렌-메틸메타크릴레이트 공중합체 등이 있다.Polymers that can be used as the first particles 20 include polystyrene (PS), polymethyl methacrylate (PMMA), polyacrylate, polyvinyl chloride (PVC), polyalphastyrene, polybenzyl methacrylate, poly Phenyl methacrylate, polydiphenyl methacrylate, polycyclohexyl methacrylate, styrene-acrylonitrile copolymer, styrene-methyl methacrylate copolymer and the like.
제 1 입자(20)로 이용될 수 있는 무기물로는, 실리콘 산화물(일례로, SiO2), 인산은(일례로, Ag3PO4), 티타늄 산화물(일례로, TiO2), 철 산화물 (일례로, Fe2O3), 아연 산화물, 세륨 산화물, 주석 산화물, 탈륨 산화물, 바륨 산화물, 알루미늄 산화물, 이트륨 산화물, 지르코늄 산화물, 구리산화물, 니켈 산화물 등이 있다.Inorganic materials that can be used as the first particles 20 include silicon oxide (for example, SiO 2 ), silver phosphate (for example, Ag 3 PO 4 ), titanium oxide (for example, TiO 2 ), iron oxide ( For example, Fe 2 O 3 ), zinc oxide, cerium oxide, tin oxide, thallium oxide, barium oxide, aluminum oxide, yttrium oxide, zirconium oxide, copper oxide, nickel oxide and the like.
제 1 입자(20)로 이용될 수 있는 금속으로는, 금, 은, 동, 철, 백금, 알루미늄, 백금, 아연, 세륨, 탈륨, 바륨, 이트륨, 지르코늄, 주석, 티타늄, 또는 이들의 합금 등이 있다.Examples of the metal that can be used as the first particles 20 include gold, silver, copper, iron, platinum, aluminum, platinum, zinc, cerium, thallium, barium, yttrium, zirconium, tin, titanium, alloys thereof, and the like. There is this.
제 1 입자(20)로 이용될 수 있는 반도체로는, 실리콘, 게르마늄, 또는 화합물 반도체(일례로, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, InSb 등) 등이 있다.Examples of semiconductors that can be used as the first particles 20 include silicon, germanium, or compound semiconductors (eg, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, InSb, etc.). .
제 1 입자(20)로 이용될 수 있는 생체 물질로는, 단백질, 펩티드, 리보핵산(RNA), 데옥시리보핵산(DNA), 다당류, 올리고당, 지질, 세포 및 이들의 복합체 물질들의 입자 또는 표면에 코팅된 입자, 내부에 포함한 입자 등이 있다. 일례로, protein A라는 항체 결합 단백질이 코팅된 폴리머 입자가 제 1 입자(20)로 사용될 수 있다.Biomaterials that can be used as the first particles 20 include particles, surfaces of proteins, peptides, ribonucleic acid (RNA), deoxyribonucleic acid (DNA), polysaccharides, oligosaccharides, lipids, cells and complex materials thereof. Particles coated on the inside, and particles included therein. For example, a polymer particle coated with an antibody binding protein called protein A may be used as the first particle 20.
제 1 입자(20)는 대칭 형상, 비대칭 형상, 무정형, 다공성의 형상을 가질 수 있다. 일례로, 제 1 입자(20)는 구형, 타원형, 반구형, 큐브형, 사면체, 오면체, 육면체, 팔면체, 기둥형, 뿔형 등을 가질 수 있다. 이 중에서 제 1 입자(20)의 형태로는 구형 또는 타원형이 다른 형태에 비해 바람직하다.The first particle 20 may have a symmetrical shape, an asymmetrical shape, an amorphous shape, or a porous shape. For example, the first particle 20 may have a spherical shape, an ellipse shape, a hemispherical shape, a cube shape, a tetrahedron, a pentagonal surface, a hexahedron, an octahedron, a pillar shape, a horn shape, and the like. Among these, spherical or elliptical is preferable as the form of the 1st particle 20 compared with another form.
이러한 제 1 입자(20)는 평균 입경이 10nm 내지 100㎛인 것이 바람직하다. 평균 입경이 10nm 미만일 경우에는, 코팅 시 밀착성 고분자 기판(10)에 의하여 전체적으로 감싸지는 형태가 될 수 있어 제 1 입자(20)를 단층 수준으로 코팅하는 것이 어려워질 수 있다. 또한 제 1 입자(20)의 평균 입경이 10nm미만인 경우에는 건조 상태에서도 입자들이 서로 응집할 수 있어, 문지르는 힘만으로는 입자가 개별적으로 이동하는 것이 어려울 수 있다. 제 1 입자(20)의 평균 입경이 100㎛를 초과하는 경우에는 입자의 부착이 약하게 나타날 수 있다. The first particles 20 preferably have an average particle diameter of 10 nm to 100 μm. When the average particle diameter is less than 10 nm, it may be in the form of being entirely wrapped by the adhesive polymer substrate 10 during coating, it may be difficult to coat the first particles 20 to a single layer level. In addition, when the average particle diameter of the first particles 20 is less than 10 nm, the particles may agglomerate with each other even in a dry state, and it may be difficult for the particles to individually move by only a rubbing force. When the average particle diameter of the first particles 20 exceeds 100 μm, adhesion of the particles may appear weak.
그러나 본 발명이 이에 한정되는 것은 아니며 제 1 입자(20)의 평균 입경은 제 1 입자(20)를 구성하는 물질이나, 밀착성 고분자 기판(10)을 구성하는 물질 등에 따라 달라질 수 있다. 여기에서, 제 1 입자(20)가 구형인 경우에는 제 1 입자(20)의 지름이 입경으로 사용될 수 있다. 반면, 제 1 입자(20)가 구형이 아닐 경우에는 다양한 계측법이 사용될 수 있는데, 일례로, 장축과 단축의 평균값을 입경으로 사용할 수 있다.However, the present invention is not limited thereto, and the average particle diameter of the first particles 20 may vary depending on a material constituting the first particles 20 or a material constituting the adhesive polymer substrate 10. Here, when the first particles 20 are spherical, the diameter of the first particles 20 may be used as the particle diameter. On the other hand, when the first particle 20 is not spherical, various measurement methods may be used. For example, average values of long and short axes may be used as particle diameters.
계속해서, 도 1c에 도시한 바와 같이, 복수의 제 1 입자(20) 위에서 압력을 가하여 1차 코팅막(22)을 형성한다. 제 1 입자(20)에 압력을 가하는 방법으로는 라텍스, 스폰지, 손, 고무판, 플라스틱 판, 부드러운 표면을 가지는 재료 등을 이용하여 문지르는(rubbing) 방법이 사용될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 다양한 방법에 의하여 제 1 입자(20)에 압력을 가할 수 있다.Subsequently, as shown in FIG. 1C, a pressure is applied on the plurality of first particles 20 to form the primary coating film 22. As a method of applying pressure to the first particles 20, a method of rubbing using a latex, a sponge, a hand, a rubber plate, a plastic plate, a material having a smooth surface, or the like may be used. However, the present invention is not limited thereto, and pressure may be applied to the first particles 20 by various methods.
본 실시예에서 밀착성 고분자 기판(10)의 표면 위에 제 1 입자들(20)을 올린 후에 압력을 가하면 압력이 가해진 부분의 제 1 입자들(20)이 밀착성 고분자 기판(10)의 변형을 통해 부착된다. 이에 의하여 해당 부분에 제 1 입자들(20)에 각기 대응하는 복수의 제 1 오목부(12)가 형성된다. 따라서 제 1 오목부(12)에 제 1 입자(20)가 감싸인 상태에서 밀착성 고분자 기판(10)에 제 1 입자들(20)이 정렬된다.In the present exemplary embodiment, when the first particles 20 are raised on the surface of the adhesive polymer substrate 10 and then pressure is applied, the first particles 20 in the portion to which the pressure is applied are attached through the deformation of the adhesive polymer substrate 10. do. As a result, a plurality of first recesses 12 respectively corresponding to the first particles 20 are formed in the corresponding portion. Therefore, the first particles 20 are aligned on the adhesive polymer substrate 10 in a state in which the first particles 20 are wrapped in the first recesses 12.
제 1 오목부(12)는 제1 입자(20)와 밀착성 고분자 기판(10) 간 상호작용에 의해 형성되는 것으로 가역적이다. 즉, 소멸될 수도 있으며, 위치가 이동될 수 있다. 일례로, 문지르는 과정에서 입자가 이동하게 되면 밀착성 고분자 기판(10)의 탄성 복원력에 의해 제 1 오목부(12)가 사라지거나, 제 1 입자(20)의 이동에 따라 제 1 오목부(12)도 위치가 변경될 수 있다. 이러한 가역적 작용에 의해 제 1 입자(20)가 고르게 정렬될 수 있다(여기서 "가역적"이란 말은 코팅 시 밀착성 고분자 기판 표면의 유연성 및 탄성 복원력에 의해 발생하는 특성이므로, 밀착성 고분자 기판의 복원력이 시간이 지남에 따라 약해지거나 소멸되는 경우도 포함되는 넓은 의미이다).The first recesses 12 are reversible to be formed by the interaction between the first particles 20 and the adhesive polymer substrate 10. That is, it may be extinguished and the position may be moved. For example, when the particles move in the rubbing process, the first concave portion 12 disappears due to the elastic restoring force of the adhesive polymer substrate 10, or the first concave portion 12 moves according to the movement of the first particle 20. The position can also be changed. Due to this reversible action, the first particles 20 can be evenly aligned (where “reversible” is a property generated by the flexibility and elastic restoring force of the surface of the adhesive polymer substrate during coating, so that the resilience of the adhesive polymer substrate is time-dependent). Broader meaning includes weakening or extinction over time).
밀착성 고분자 기판(10)과의 결합이 이루어지지 않은 제 1 입자들(20)은 문지르는 힘 등에 의하여 밀착성 고분자 기판(10)의 제 1 입자(20)가 코팅되지 않은 영역으로 이동하게 되고, 코팅되지 않은 부분에 전술한 바와 같이 제 1 입자(20)에 의해 제 1 오목부(12)가 형성된다. 그리고 새로 형성된 제 1 오목부(12)에 제 1 입자(20)가 감싸인 상태에서 밀착성 고분자 기판(10)과 제 1 입자(20)의 결합이 이루어진다. 이러한 과정을 거쳐 밀착성 고분자 기판(10)에 높은 밀도로 단층 수준의 1차 코팅막(22)이 형성된다.The first particles 20 which are not bonded to the adhesive polymer substrate 10 are moved to an uncoated area where the first particles 20 of the adhesive polymer substrate 10 are not coated by rubbing force or the like. As described above, the first concave portion 12 is formed by the first particles 20 in the portion not provided. In addition, the adhesive polymer substrate 10 and the first particles 20 are bonded in the state where the first particles 20 are wrapped in the newly formed first recesses 12. Through this process, the primary coating film 22 having a single density is formed on the adhesive polymer substrate 10 at a high density.
여기에서, 제 1 오목부(12)는 제 1 입자(20)의 일부를 감싸도록 제 1 입자(20)의 외곽 형상에 대응하는 형상을 가질 수 있다. 예를 들어, 제 1 입자(20)가 구형인 경우에는 제 1 오목부(12)도 구면(球面) 형상을 가져 제 1 오목부(12)에 제 1 입자(20)의 일부분이 밀착될 수 있다. 그리고 제 1 오목부(12)의 깊이(L1)는 밀착성 고분자 기판(10)의 경도, 제 1 입자(20)의 형태, 경도, 환경 요인(일례로, 온도) 등에 따라 달라질 수 있다. 즉, 밀착성 고분자 기판(10)의 경도가 커질수록 제 1 오목부(12)의 깊이(L1)가 작아지고, 온도가 증가할수록 제 1 오목부(12)의 깊이(L1)가 커질 수 있다.Here, the first concave portion 12 may have a shape corresponding to the outer shape of the first particle 20 to surround a portion of the first particle 20. For example, when the first particles 20 are spherical, the first recesses 12 may also have a spherical shape, and a part of the first particles 20 may be in close contact with the first recesses 12. have. The depth L1 of the first concave portion 12 may vary depending on the hardness of the adhesive polymer substrate 10, the shape of the first particles 20, the hardness, and environmental factors (eg, temperature). That is, as the hardness of the adhesive polymer substrate 10 increases, the depth L1 of the first concave portion 12 may decrease, and as the temperature increases, the depth L1 of the first concave portion 12 may increase.
제1 입자(20)의 평균 입경(D)에 대한 제 1 오목부(12)의 깊이(L1)의 비율(침하율)(L1/D)은 0.02 ~ 0.98인 것이 바람직하다. 상기 비율(L1/D)이 0.02 미만인 경우에는 제 1 입자(20)와 밀착성 고분자 기판(10)과의 결합력이 충분하지 않을 수 있고, 0.98을 초과하는 경우에는 제 1 입자들(20)이 단층 수준으로 코팅되기 어려울 수 있다. 결합력 및 코팅 특성 등을 좀더 고려하면, 상기 비율(L1/D)은 0.05 ~ 0.6인 것이 바람직하고, 0.08 ~ 0.4인 것이 더욱 바람직하다.It is preferable that the ratio (sedimentation rate) (L1 / D) of the depth L1 of the 1st recessed part 12 with respect to the average particle diameter D of the 1st particle | grains 20 is 0.02-0.98. If the ratio L1 / D is less than 0.02, the bonding force between the first particles 20 and the adhesive polymer substrate 10 may not be sufficient, and when the ratio L1 / D exceeds 0.98, the first particles 20 may be monolayer. It can be difficult to coat to levels. In consideration of the bonding force and coating properties, etc., the ratio (L1 / D) is preferably 0.05 to 0.6, more preferably 0.08 to 0.4.
본 실시예에서와 같이, 밀착성 고분자 기판(10)의 탄성 변형에 의하여 생긴 제 1 오목부(12)에 의하여 각각의 제 1 입자(20)의 일부분이 감싸지게 되면, 제 1 입자(20)와 밀착성 고분자 기판(10)의 결합력이 보다 증대될 수 있다. 그리고 밀착성 고분자 기판(10)에 결합된 제 1 입자들(20)도 주변의 코팅되지 않은 부분으로 이동이 가능하여 새로운 제 1 입자(20)가 밀착성 고분자 기판(10)의 표면의 빈 제 1 오목부(12)에 부분적으로 수용될 수 있다. 이러한 재배열 특성에 따라 1차 코팅막(22)이 높은 밀도로 단층 수준으로 코팅될 수 있다. 일례로, 제 1 입자들(20)은 각각의 중심이 육각형의 형상을 이루도록 배치될 수 있다.As in the present embodiment, when a portion of each first particle 20 is wrapped by the first concave portion 12 generated by the elastic deformation of the adhesive polymer substrate 10, the first particle 20 and The bonding force of the adhesive polymer substrate 10 may be increased. In addition, the first particles 20 bonded to the adhesive polymer substrate 10 may also move to an uncoated portion of the surroundings, such that the new first particles 20 are hollow first concave on the surface of the adhesive polymer substrate 10. It may be partially accommodated in the part 12. According to such rearrangement characteristics, the primary coating layer 22 may be coated at a single layer level at a high density. For example, the first particles 20 may be disposed such that each center thereof has a hexagonal shape.
한편, 제 1 입자(20)가 비구형일 경우(예를 들어, Ag3PO4)에는 다양한 방법에 의하여 단층 수준인지 여부를 판별할 수 있다. 일례로, 제 1 입자들(20) 중 상위 10% 입자들(즉, 입경이 10% 이내로 큰 입자들)의 평균 입경에 대한 1차 코팅막(22) 두께의 평균값의 비율이 1.9 이하일 경우를 단층 수준으로 코팅된 것을 볼 수 있다.On the other hand, when the first particle 20 is non-spherical (for example, Ag 3 PO 4 ) it can be determined whether or not it is a monolayer level by a variety of methods. For example, when the ratio of the average value of the thickness of the primary coating layer 22 to the average particle diameter of the top 10% of the first particles 20 (ie, particles having a particle size of less than 10%) is 1.9 or less, a single layer You can see the coating at the level.
계속해서, 밀착성 고분자 기판(10)에 1차 코팅막(22)을 형성한 후, 도 1d에 도시된 것과 같이, 마스크 패턴(31)이 형성된 마스크(30)를 대고 빛 또는 활성기체를 조사하여 밀착성 고분자 기판(10) 표면의 1차 코팅막(22)이 형성된 영역을 부분적으로 노광 또는 기체에 노출시킨다. 밀착성 고분자 기판(10)의 표면은 복수의 제 1 입자(20)로 이루어진 1차 코팅막(22)으로 덮여있지만, 일 예로 조사되는 빛은 복수의 제 1 입자(20) 사이사이의 틈새를 통해 밀착성 고분자 기판(10)에 도달하여 밀착성 고분자 기판(10)을 노광시킬 수 있다. 그리고 제 1 입자(20)가 빛 또는 활성기체가 투과할 수 있는 물질로 이루어지는 경우에는, 조사되는 빛 또는 활성기체가 제 1 입자(20)를 투과하여 밀착성 고분자 기판(10)에 도달할 수 있다. Subsequently, after the primary coating film 22 is formed on the adhesive polymer substrate 10, as shown in FIG. 1D, the adhesive is irradiated with light or an active gas on the mask 30 having the mask pattern 31 formed thereon. The region where the primary coating layer 22 is formed on the surface of the polymer substrate 10 is partially exposed to exposure or gas. Although the surface of the adhesive polymer substrate 10 is covered with the primary coating film 22 composed of the plurality of first particles 20, the light irradiated as an example may be adhered through a gap between the plurality of first particles 20. The adhesive polymer substrate 10 may be exposed by reaching the polymer substrate 10. When the first particles 20 are made of a material through which light or active gas can pass, the irradiated light or active gas can pass through the first particles 20 to reach the adhesive polymer substrate 10. .
본 실시예에서, 일 예로 밀착성 고분자 기판(10)이 PDMS 재질로 이루어진 경우 전술한 빛은 구체적으로 자외선으로 적용 가능하지만, 이에 한정되는 것은 아니며 밀착성 고분자 기판(10)의 재질에 따라 가시광선 또는 적외선으로도 적용 가능함은 물론이다.In the present embodiment, for example, when the adhesive polymer substrate 10 is made of a PDMS material, the above-described light may be specifically applied to ultraviolet rays, but the present invention is not limited thereto, and the visible light or infrared rays may be determined depending on the material of the adhesive polymer substrate 10. Of course, it is also applicable.
이와 같이, 마스크(30)를 밀착성 고분자 기판(10) 위에 배치한 상태에서 밀착성 고분자 기판(10)에 빛 또는 활성기체를 조사하면, 도 1e에 도시된 것과 같이, 밀착성 고분자 기판(10) 표면의 빛 또는 활성기체를 조사받은 노광부(14)의 부착력은 빛 또는 활성기체를 조사받지 못한 비노광부(15)의 부착력보다 커진다. 이는 상기 빛 또는 활성기체의 조사에 의해 가교, 광이량화 등의 반응으로 분자량이 크게 증가하면서 용해성이 떨어지고 열적 특성, 내화학성이 현저하게 좋아지기 때문이다. 또한 빛 또는 활성기체의 조사에 의해 PDMS의 경도가 변화되거나 입자표면의 작용기들과 결합이 이루어지게 된다. 따라서 노광부(14)에 위치한 제 1 입자(20)는 비노광부(15)에 위치한 제 1 입자(20)에 비해 강한 결합력으로 밀착성 고분자 기판(10)에 부착된 상태를 유지할 수 있다.As such, when the mask 30 is disposed on the adhesive polymer substrate 10, the adhesive polymer substrate 10 is irradiated with light or an active gas. As shown in FIG. 1E, the surface of the adhesive polymer substrate 10 may be removed. The adhesion of the exposed portion 14 irradiated with light or active gas is greater than that of the non-exposed portion 15 not irradiated with light or active gas. This is because the solubility is poor and the thermal properties and chemical resistance are significantly improved while the molecular weight is greatly increased by a reaction such as crosslinking or light dimerization by irradiation of the light or the active gas. In addition, the hardness of PDMS is changed by the irradiation of light or active gas, or the bonding is performed with functional groups on the surface of the particle. Therefore, the first particles 20 positioned in the exposed portion 14 may maintain a state of being attached to the adhesive polymer substrate 10 with a stronger bonding force than the first particles 20 disposed in the non-exposed portion 15.
계속해서, 도 1f에 도시된 것과 같이, 밀착성 고분자 기판(10)의 비노광부(15)의 부착력보다 크고 노광부(14)의 부착력보다 작은 부착력을 갖는 입자 제거부재(35)를 1차 코팅막(22) 위에 접촉시켰다 떼어낸다. 이때, 도 1g에 도시된 것과 같이, 1차 코팅막(22)을 형성하는 복수의 제 1 입자(20) 중에서 비노광부(15)에 배치된 제 1 입자들(20)은 입자 제거부재(35)에 부착되어 밀착성 고분자 기판(10)으로부터 제거된다. 입자 제거부재(35)로는 일면에 밀착성 및 상대적인 부착력의 차이를 가지는 폴리메틸실록산(polydimethylsiloxane, PDMS), 폴리에틸렌(polyethylene, PE), 폴리비닐클로라이드(polyvinylchloride, PVC)등의 고분자 물질 및 접착력의 차이를 가지는 스카치 테이프TM와 같은 다양한 종류의 것이 이용될 수 있다. 일 예로, 입자 제거부재(35)는 제거된 입자를 활용하기 위해서 경도가 낮은 2 ~ 7% PDMS 접착 테이프로 적용 가능하다.Subsequently, as illustrated in FIG. 1F, the particle removing member 35 having an adhesion force greater than that of the non-exposed portion 15 of the adhesive polymer substrate 10 and smaller than the adhesion force of the exposure portion 14 may be formed using a primary coating film ( 22) Touch above and remove. In this case, as illustrated in FIG. 1G, among the plurality of first particles 20 forming the primary coating layer 22, the first particles 20 disposed in the non-exposed part 15 may be the particle removing member 35. Attached to and removed from the adhesive polymer substrate 10. As the particle removal member 35, a difference between polymer materials such as polydimethylsiloxane (PDMS), polyethylene (polyethylene, PE), and polyvinyl chloride (PVC) and adhesive force, which have a difference in adhesion and relative adhesion on one surface, may be obtained. Branches may be used in various kinds such as Scotch Tape . For example, the particle removing member 35 may be applied as a low hardness 2 ~ 7% PDMS adhesive tape to utilize the removed particles.
이와 같이, 입자 제거부재(35)를 이용하여 밀착성 고분자 기판(10)의 비노광부(15)에 위치하는 제 1 입자들(20)을 제거하면, 밀착성 고분자 기판(10)에는 노광부(14)에 위치하는 제 1 입자들(20)만 남게 되어 일정 패턴의 1차 코팅막(22)이 형성된 입자 코팅 기판(40)을 만들 수 있다.As such, when the first particles 20 positioned in the non-exposed part 15 of the adhesive polymer substrate 10 are removed using the particle removing member 35, the exposed part 14 may be exposed to the adhesive polymer substrate 10. Only the first particles 20 positioned in the remaining portion may be left to form the particle coating substrate 40 on which the primary coating layer 22 of a predetermined pattern is formed.
그리고 상술한 것과 같은 일정 패턴으로 형성된 1차 코팅막(22)은 밀착성 고분자 기판(10)에 결합한 상태로 사용될 수도 있고, 다른 기판 등에 전사되어 사용될 수도 있다. 도시되지는 않았으나, 밀착성 고분자 기판(10)의 노광부(14)의 부착력보다 큰 부착력을 갖는 전사 기판을 1차 코팅막(22)에 접촉시켰다 떼어내면 밀착성 고분자 기판(10)에 코팅된 1차 코팅막(22)을 새로운 전사 기판에 그대로 전사할 수 있다.In addition, the primary coating layer 22 formed in a predetermined pattern as described above may be used in a state of being bonded to the adhesive polymer substrate 10, or may be transferred to another substrate and the like. Although not shown, a transfer substrate having an adhesive force greater than that of the exposed portion 14 of the adhesive polymer substrate 10 is brought into contact with the primary coating layer 22, and then detached from the primary coating layer coated on the adhesive polymer substrate 10. It is possible to transfer the 22 to a new transfer substrate as it is.
본 발명의 일실시예에 의한 입자 정렬을 이용한 코팅 방법은 상술한 것과 같은 단계(도 1a ~ 도 1g)를 통해 일정 패턴의 1차 코팅막(22)을 갖는 입자 코팅 기판(40)을 만들 수 있다. 그리고 이러한 단계 이후에 다양한 후속 단계를 추가로 수행함으로써 또 다른 패턴의 코팅막을 형성할 수도 있다.Coating method using a particle alignment according to an embodiment of the present invention can make a particle coating substrate 40 having a primary coating film 22 of a predetermined pattern through the steps (Fig. 1a to 1g) as described above. . In addition, after this step, various subsequent steps may be additionally performed to form another pattern of coating film.
즉, 도 1h에 도시된 것과 같이, 복수의 제 1 입자(20)가 코팅된 밀착성 고분자 기판(10)의 표면에 제 1 입자(20)와 다른 제 2 입자(24)를 코팅하여 2종의 입자(20,24)가 각각 일정 패턴으로 정렬된 새로운 코팅막을 형성할 수도 있다. 복수의 제 2 입자(24)를 코팅하는 방법은, 앞서 설명한 복수의 제 1 입자(20)를 밀착성 고분자 기판(10)에 코팅하는 방법과 같은 것으로, 그 구체적인 방법은 다음과 같다.That is, as shown in FIG. 1H, the first particles 20 and the other second particles 24 are coated on the surface of the adhesive polymer substrate 10 on which the plurality of first particles 20 are coated. It is also possible to form a new coating film in which the particles 20 and 24 are aligned in a predetermined pattern, respectively. The method of coating the plurality of second particles 24 is the same as the method of coating the plurality of first particles 20 on the adhesive polymer substrate 10, and the specific method thereof is as follows.
먼저, 1차 코팅막(22)이 형성된 밀착성 고분자 기판(10) 위에 건조된 복수의 제 2 입자(24)를 올린다. 제 2 입자(24)로는 고분자, 무기물, 금속, 자성체, 반도체, 생체 물질 등이 이용될 수 있으며, 이들 각각의 구체적인 종류는 상술한 것과 같다. 그리고 복수의 제 2 입자(24) 위에서 압력을 가하여 제 2 입자(24)를 제 1 입자(20)가 배치되지 않은 비노광부(15)에 코팅한다. 제 2 입자(24)에 압력을 가하는 방법은 앞서 설명한 것과 같이 제 1 입자(20)를 코팅할 때 사용하는 방법과 같은 것으로, 라텍스, 스폰지, 손, 고무판, 플라스틱 판, 부드러운 표면을 가지는 재료 등을 이용하여 문지르는 방법이 이용될 수 있다. 복수의 제 2 입자(24)가 밀착성 고분자 기판(10)에 코팅되는 메커니즘은 앞서 설명한 제 1 입자(20)가 밀착성 고분자 기판(10)에 코팅되는 원리와 같다.First, a plurality of dried second particles 24 are placed on the adhesive polymer substrate 10 on which the primary coating layer 22 is formed. As the second particles 24, a polymer, an inorganic material, a metal, a magnetic material, a semiconductor, a biological material, or the like may be used, and the specific types thereof are the same as described above. Then, pressure is applied on the plurality of second particles 24 to coat the second particles 24 on the non-exposed part 15 where the first particles 20 are not disposed. The method of applying pressure to the second particles 24 is the same as the method used to coat the first particles 20 as described above, and includes latex, sponges, hands, rubber plates, plastic plates, materials having a smooth surface, and the like. A method of rubbing using may be used. The mechanism in which the plurality of second particles 24 are coated on the adhesive polymer substrate 10 is the same as that of the aforementioned first particles 20 is coated on the adhesive polymer substrate 10.
즉, 밀착성 고분자 기판(10)의 위에 제 2 입자들(24)을 올린 후에 압력을 가하면 압력이 가해진 부분의 제 2 입자들(24)이 밀착성 고분자 기판(10)의 변형을 통해 부착되며, 밀착성 고분자 기판(10)의 해당 부분에 제 2 입자들(24)에 각기 대응하는 복수의 제 2 오목부(17)가 형성된다. 따라서 제 2 오목부(17)에 제 2 입자(24)가 감싸인 상태에서 밀착성 고분자 기판(10)의 비노광부(15)에 제 2 입자들(24)이 정렬되면서, 비노광부(15)에 복수의 제 2 입자(24)로 이루어진 2차 코팅막(25)이 형성된다. 물론, 제 1 입자(20)가 빠져나간 빈 제 1 오목부(12)에 제 2 입자(24)가 부분적으로 수용되면서 제 2 입자(24)가 밀착성 고분자 기판(10)에 정렬 및 코팅될 수도 있다. 한편, 제2 입자(24)의 평균 입경(D)에 대한 제2 오목부(17)의 깊이의 비율(침하율)은 마찬가지로 0.02 ~ 0.98인 것이 바람직하다.That is, when the second particles 24 are placed on the adhesive polymer substrate 10 and then pressure is applied, the second particles 24 in the portion to which the pressure is applied are attached through the deformation of the adhesive polymer substrate 10. A plurality of second recesses 17 corresponding to the second particles 24 are formed in corresponding portions of the polymer substrate 10. Accordingly, while the second particles 24 are aligned with the non-exposed portions 15 of the adhesive polymer substrate 10 while the second particles 24 are wrapped in the second recessed portions 17, the non-exposed portions 15 A secondary coating film 25 composed of a plurality of second particles 24 is formed. Of course, the second particles 24 may be aligned and coated on the adhesive polymer substrate 10 while the second particles 24 are partially accommodated in the empty first recesses 12 from which the first particles 20 are removed. have. On the other hand, it is preferable that the ratio (sedimentation rate) of the depth of the 2nd recessed part 17 with respect to the average particle diameter D of the 2nd particle 24 is 0.02-0.98 similarly.
이렇게 밀착성 고분자 기판(10) 위에 형성된 2차 코팅막(25)은 밀착성 고분자 기판(10)에 결합한 상태 그대로 사용될 수도 있고, 다른 기판 등에 전사되어 사용될 수도 있다. 즉, 도 1i에 도시된 것과 같이, 밀착성 고분자 기판(10)의 비노광부(15)의 부착력보다는 크고 노광부(14)의 부착력보다는 작은 부착력을 갖는 다른 전사 기판(42)을 2차 코팅막(25) 위에 접촉시켰다 떼어내면, 도 1j에 도시된 것과 같이 2차 코팅막(25)을 전사 기판(42)으로 전사할 수 있다.The secondary coating film 25 formed on the adhesive polymer substrate 10 may be used as it is bonded to the adhesive polymer substrate 10 or may be transferred to another substrate. That is, as illustrated in FIG. 1I, the second coating layer 25 may be formed of another transfer substrate 42 having an adhesion force greater than that of the non-exposed portion 15 of the adhesive polymer substrate 10 and less than that of the exposure portion 14. When the contact layer is contacted and removed, the secondary coating film 25 can be transferred to the transfer substrate 42 as shown in FIG. 1J.
이 경우, 밀착성 고분자 기판(10) 위에 1차 코팅막(22)이 형성된 입자 코팅 기판(40)을 2차 코팅막(25)을 형성하는 몰드처럼 사용할 수 있다. 즉, 앞서 설명한 것과 같이 2차 코팅막(25)을 다른 전사 기판(42)으로 전사시킨 후, 제 2 입자(24)를 밀착성 고분자 기판(10) 위에 코팅하는 단계와, 제 2 입자(24)로 이루어진 2차 코팅막(25)을 다른 전사 기판(42)으로 전사하는 단계를 반복 수행함으로써, 하나의 입자 코팅 기판(40)으로 복수의 2차 코팅막(25)을 반복적으로 형성할 수 있다.In this case, the particle coating substrate 40 having the primary coating layer 22 formed on the adhesive polymer substrate 10 may be used as a mold for forming the secondary coating layer 25. That is, as described above, after the second coating layer 25 is transferred to another transfer substrate 42, the second particles 24 are coated on the adhesive polymer substrate 10, and the second particles 24 are coated with the second particles 24. By repeating the step of transferring the made secondary coating film 25 to another transfer substrate 42, a plurality of secondary coating film 25 can be repeatedly formed with one particle coating substrate 40.
다른 예로, 밀착성 고분자 기판(10) 위에 형성된 2차 코팅막(25)은 1차 코팅막(22)과 함께 다른 기판으로 전사되어 사용될 수도 있다. 즉, 밀착성 고분자 기판(10) 위에 1차 코팅막(22)과 2차 코팅막(25)을 형성한 후에, 밀착성 고분자 기판(10)의 노광부(14)보다 큰 부착력을 갖는 다른 전사 기판(44)을 1차 코팅막(22) 및 2차 코팅막(25) 위에 접촉시켰다 떼어내면, 도 2에 도시된 것과 같이, 1차 코팅막(22)과 2차 코팅막(25)이 특정 패턴으로 조합된 코팅막을 다른 전사 기판(44)으로 전사할 수 있다.As another example, the secondary coating layer 25 formed on the adhesive polymer substrate 10 may be transferred to another substrate together with the primary coating layer 22. That is, after forming the primary coating film 22 and the secondary coating film 25 on the adhesive polymer substrate 10, the other transfer substrate 44 having a greater adhesion than the exposed portion 14 of the adhesive polymer substrate 10 After contacting the primary coating film 22 and the secondary coating film 25 on the peeled off, as shown in Figure 2, the coating film in which the primary coating film 22 and the secondary coating film 25 combined in a specific pattern is different The transfer substrate 44 can be transferred.
이 밖에, 본 발명의 일실시예에 의한 입자 정렬을 이용한 코팅 방법은 앞서 설명한 것과 같은 노광 단계, 부분적인 입자 제거 단계, 새로운 입자 코팅 단계, 전사 단계 등을 반복적으로 수행함으로써, 밀착성 고분자 기판(10) 위에 여러 종류의 입자가 각각 특정한 패턴으로 정렬된 다양한 코팅막을 형성할 수 있다. 각 입자의 정렬 패턴은 노광 단계에서 이용되는 마스크(30)의 마스크 패턴(31)을 다양화함으로써 다양하게 변화시킬 수 있다.In addition, the coating method using the particle alignment according to an embodiment of the present invention by repeatedly performing the exposure step, the partial particle removal step, the new particle coating step, the transfer step and the like as described above, the adhesive polymer substrate 10 Various types of particles may be formed on the coating layer in which various kinds of particles are arranged in a specific pattern. The alignment pattern of each particle can be varied by varying the mask pattern 31 of the mask 30 used in the exposure step.
한편, 도 3은 상술한 본 발명에 의한 입자 정렬을 이용한 코팅 방법에 있어서, 제 2 입자(24)를 밀착성 고분자 기판(10)에 코팅하는 다른 실시예를 나타낸 것이다. 본 발명에 있어서, 탄성 변형에 의하여 밀착성 고분자 기판(10)에 오목부가 형성되므로, 오목부에 수용되었던 입자가 제거되면, 도 3의 (a)에 도시된 것과 같이 밀착성 고분자 기판(10)의 표면이 오목부가 소멸되어 매끈한면으로 복귀될 수 있다. 이렇게 제 1 입자(20)가 수용되었던 제 1 오목부(12;도 1g 참조)가 가역적으로 소멸된 상태에서, 복수의 제 2 입자(24)를 밀착성 고분자 기판(10) 위에 올리고 이에 압력을 가해 비노광부(15)에 제 2 입자(24)에 대응하는 제 2 오목부(17)를 형성하면서 제 2 입자(24)를 코팅할 수도 있다.Meanwhile, FIG. 3 shows another embodiment in which the second particles 24 are coated on the adhesive polymer substrate 10 in the coating method using the particle alignment according to the present invention. In the present invention, since the concave portion is formed in the adhesive polymer substrate 10 by elastic deformation, when the particles accommodated in the concave portion are removed, the surface of the adhesive polymer substrate 10 as shown in FIG. This recess may disappear and return to the smooth surface. In this state in which the first concave portion 12 (see FIG. 1G) in which the first particles 20 are accommodated is reversibly dissipated, the plurality of second particles 24 are placed on the adhesive polymer substrate 10 and pressure is applied thereto. The second particles 24 may be coated while the second recesses 17 corresponding to the second particles 24 are formed in the non-exposed parts 15.
물론, 1차 코팅막(22)이 형성된 후 오랜 시간이 지난 후에 제 1 입자(20)가 제 1 오목부(12)에서 제거된 경우에는, 앞서 설명한 것과 같이, 제 1 오목부(12) 또는 제 1 오목부(12)의 흔적이 밀착성 고분자 기판(10)의 표면에 남아있을 수도 있다. 이 경우, 새로 코팅되는 제 2 입자(24)는 제 1 오목부(12)에 부분적으로 감싸지거나, 제 1 오목부(12)에 대응하는 위치에서 밀착성 고분자 기판(10)을 파고들어 밀착성 고분자 기판(10)에 부착될 수 있다.Of course, when the first particles 20 are removed from the first recesses 12 after a long time after the primary coating layer 22 is formed, as described above, the first recesses 12 or the first The traces of the first recesses 12 may remain on the surface of the adhesive polymer substrate 10. In this case, the newly coated second particles 24 are partially wrapped in the first recesses 12, or the adhesive polymer substrates are penetrated by digging into the adhesive polymer substrate 10 at a position corresponding to the first recesses 12. 10 may be attached.
상술한 것과 같이, 본 발명에 의한 입자 정렬을 이용한 코팅 방법은 용매를 사용하지 않고 건조 상태의 입자들(20,24)이 밀착성 고분자 기판(10) 위에 직접 접촉하도록 한 상태에서 압력을 가하여 코팅막(22,25)을 형성한다. 이에 따라 종래에 비해 코팅막 형성 시, 용매 내에서의 입자들의 자기 조립이 요구되지 않으므로 온도, 습도 등을 정밀하게 조절하지 않아도 되며 입자들의 표면 특성에 큰 영향을 받지 않는다. 즉, 입자가 전하성 물질인 경우뿐만 아니라, 비전하성(즉, 전하적으로 중성에 가까운) 물질인 경우에도 높은 밀도로 균일하게 코팅이 이루어질 수 있다. 또한 친수성 입자뿐만 아니라, 소수성 입자도 균일하게 코팅이 가능하다. 이와 같이 본 발명에 따르면 단순한 방법에 의하여 밀착성 고분자 기판(10) 위에 입자들(20,24)을 고르게 분포시켜 높은 밀도를 가지는 단층 수준의 코팅막(22,25)을 형성할 수 있다.As described above, the coating method using the particle alignment according to the present invention is applied by applying a pressure in a state in which the dry particles (20, 24) in direct contact on the adhesive polymer substrate 10 without using a solvent ( 22,25). Accordingly, since the self-assembly of the particles in the solvent is not required when forming the coating film as compared with the related art, it is not necessary to precisely control the temperature, humidity, and the like, and does not significantly affect the surface properties of the particles. That is, the coating can be uniformly made at a high density not only when the particles are chargeable materials, but also when they are non-chargeable (ie, near charge neutral) materials. In addition, not only hydrophilic particles but also hydrophobic particles can be uniformly coated. As described above, according to the present invention, the particles 20 and 24 may be evenly distributed on the adhesive polymer substrate 10 by a simple method to form the coating layers 22 and 25 having a single density.
또한 본 발명에 의한 입자 정렬을 이용한 코팅 방법은 마스크(30)를 이용하여 밀착성 고분자 기판(10) 위에 부분적으로 빛 또는 활성기체를 조사하여 빛 또는 활성기체가 조사된 영역(14)의 부착력을 변화시키고, 상대적으로 부착력이 약한 비노광부(15)에 위치하는 입자(20)를 제거함으로써, 다양한 패턴의 코팅막을 형성할 수 있다. In addition, in the coating method using particle alignment according to the present invention, the adhesive force of the region 14 irradiated with light or active gas is changed by partially irradiating light or active gas onto the adhesive polymer substrate 10 using the mask 30. By removing the particles 20 located in the non-exposure portion 15 having a relatively weak adhesive force, a coating film having various patterns can be formed.
또한 본 발명에 의한 입자 정렬을 이용한 코팅 방법은 마스크(30)를 이용하여 밀착성 고분자 기판(10)을 노광함으로써 밀착성 고분자 기판(10)의 부착력을 부분적으로 변화시키는 단계와, 밀착성 고분자 기판(10)의 노광되지 않은 부분에 위치하는 입자(20)를 부분적으로 제거하는 단계와, 새로운 입자(24)를 코팅하는 단계 등을 반복적으로 수행함으로써, 밀착성 고분자 기판(10) 위에 여러 종류의 입자가 각각 특정한 패턴으로 정렬된 다양한 코팅막을 형성할 수 있다.In addition, the coating method using the particle alignment according to the present invention comprises the step of partially changing the adhesion of the adhesive polymer substrate 10 by exposing the adhesive polymer substrate 10 using the mask 30, the adhesive polymer substrate 10 By repeatedly performing the steps of partially removing the particles 20 located in the unexposed portions of the coating, coating the new particles 24, and the like, a plurality of particles are respectively identified on the adhesive polymer substrate 10. Various coating films arranged in a pattern can be formed.
한편, 도 4a 내지 도 4d는 본 발명의 다른 실시예에 의한 입자 정렬을 이용한 코팅 방법을 단계별로 나타낸 것이다. 도 4a 내지 도 4d를 참조하여 본 발명의 다른 실시예에 의한 입자 정렬을 이용한 코팅 방법을 상세히 설명하면 다음과 같다.On the other hand, Figures 4a to 4d shows step by step coating method using the particle alignment according to another embodiment of the present invention. 4A to 4D, the coating method using particle alignment according to another embodiment of the present invention will be described in detail as follows.
먼저, 도 4a에 도시한 바와 같이, 매끈한 표면을 갖는 밀착성 고분자 기판(10)을 준비하고, 마스크 패턴(51)이 형성된 마스크(50)를 대고 빛 또는 활성기체를 조사하여 밀착성 고분자 기판(10)의 표면을 부분적으로 노광시킨다. 밀착성 고분자 기판(10)은 상술한 것과 같다.First, as shown in FIG. 4A, the adhesive polymer substrate 10 having a smooth surface is prepared, and the adhesive polymer substrate 10 is irradiated with light or an active gas on the mask 50 on which the mask pattern 51 is formed. The surface of is partially exposed. The adhesive polymer substrate 10 is as described above.
이와 같이, 마스크(50)를 밀착성 고분자 기판(10) 위에 배치한 상태에서 밀착성 고분자 기판(10)에 빛 또는 활성기체를 조사하면, 도 4b에 도시된 것과 같이, 밀착성 고분자 기판(10) 표면의 빛 또는 활성기체를 조사받은 노광부(14)의 부착력이 빛 또는 활성기체를 조사받지 못한 비노광부(15)의 부착력보다 커진다. 이렇게 밀착성 고분자 기판(10)에 빛 또는 활성기체를 조사하여 노광부(14)를 형성한 후, 도 4c에 도시된 것과 같이, 복수의 입자(20)를 정렬하여 밀착성 고분자 기판(10) 위에 코팅막(22)을 형성한다.As such, when the mask 50 is disposed on the adhesive polymer substrate 10, the adhesive polymer substrate 10 is irradiated with light or an active gas, and as shown in FIG. 4B, the surface of the adhesive polymer substrate 10 may be removed. The adhesion of the exposed portion 14 irradiated with light or active gas is greater than that of the non-exposed portion 15 not irradiated with light or active gas. After exposing the adhesive polymer substrate 10 to light or an active gas to form the exposed portion 14, as shown in FIG. 4C, a plurality of particles 20 are aligned to form a coating film on the adhesive polymer substrate 10. To form (22).
여기에서, 입자(20)의 종류나 복수의 입자(20)로 코팅막(22)을 형성하는 구체적인 방법을 상술한 것과 같다. 다만, 본 실시예에서 복수의 입자(20)를 노광부(14)가 형성된 밀착성 고분자 기판(10) 위에 올리고 이에 압력을 가하여 밀착성 고분자 기판(10)에 부착시킬 때, 노광부(14)에 위치하는 입자(20)의 밀착성 고분자 기판(10)과의 결합력은 비노광부(15)에 위치하는 입자(20)의 밀착성 고분자 기판(10)과의 결합력보다 커서, 노광부(14)에 위치하는 입자(20)가 비노광부(15)에 위치하는 입자(20)에 비해 밀착성 고분자 기판(10)에 더 단단히 결합된다.Here, the kind of particle 20 and the specific method of forming the coating film 22 from the some particle 20 are as having mentioned above. However, in the present exemplary embodiment, when the plurality of particles 20 are placed on the adhesive polymer substrate 10 having the exposed portion 14 and are applied to the adhesive polymer substrate 10 by applying pressure thereto, the particles 20 are positioned on the exposed portion 14. The binding force of the particles 20 to the adhesive polymer substrate 10 is greater than the bonding force of the particles 20 positioned on the non-exposed part 15 to the adhesive polymer substrate 10, and thus the particles positioned on the exposed part 14. 20 is more firmly bonded to the adhesive polymer substrate 10 than the particles 20 located in the non-exposed part 15.
계속해서, 도 4d에 도시된 것과 같이, 밀착성 고분자 기판(10)의 비노광부(15)의 부착력보다 크고 노광부(14)의 부착력보다 작은 부착력을 갖는 입자 제거부재(35;도 1f 참조)를 이용하여 코팅막(22)을 형성하는 복수의 입자(20) 중에서 비노광부(15)에 배치된 입자들(20)을 제거하면, 노광 패턴에 대응하는 패턴의 코팅막(22)을 형성할 수 있다.Subsequently, as shown in FIG. 4D, a particle removal member 35 (see FIG. 1F) having an adhesion force greater than that of the non-exposed portion 15 of the adhesive polymer substrate 10 and smaller than the adhesion force of the exposed portion 14 is provided. If the particles 20 disposed on the non-exposed part 15 are removed from the plurality of particles 20 forming the coating film 22 by using the coating film 22, the coating film 22 having a pattern corresponding to the exposure pattern may be formed.
한편, 앞서 설명한 것과 같은 2차 코팅막 형성, 코팅막 전사 등의 단계(도 1h ~ 도 1j)를 더 수행하면, 밀착성 고분자 기판(10) 위에 여러 종류의 입자가 각각 특정한 패턴으로 정렬된 다양한 코팅막을 형성하거나, 다양한 입자로 이루어지거나 다양한 패턴으로 형성된 코팅막을 다른 기판으로 전사할 수 있다.On the other hand, by performing the steps (FIG. 1H to 1J), such as secondary coating film formation, coating film transfer, as described above, to form a variety of coating film, each of the various types of particles arranged in a specific pattern on the adhesive polymer substrate 10 Alternatively, the coating film made of various particles or formed in various patterns may be transferred to another substrate.
이하, 본 발명의 실험예를 참조하여 본 발명을 보다 상세하게 설명한다. 이러한 실험예는 본 발명을 상세하게 설명하기 위하여 예시한 것일 뿐, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to experimental examples of the present invention. These experimental examples are only illustrated to explain the present invention in detail, but the present invention is not limited thereto.
<실험예 1>Experimental Example 1
실가드(Sylgard) 184 (미국, 다우코닝) 제품에 20wt%의 경화제를 포함하여 형성된 PDMS로 이루어진 밀착성 고분자 기판을 준비하였다. An adhesive polymer substrate made of PDMS formed in Sylgard 184 (Dow Corning, USA) was prepared containing 20 wt% of a curing agent.
밀착성 고분자 기판 위에 300nm SiO2 입자를 올려놓은 후 라텍스 필름으로 감싼 스폰지를 이용하여 손으로 압력을 가하면서 문질러서 밀착성 고분자 기판의 표면에 오목부를 형성한다. 300nm SiO2 입자와 밀착성 고분자 기판을 결합하여 300nm SiO2 코팅막을 형성한 후 질소 가스를 불어서 단층 코팅을 위해 멀티층이 형성되어있는 부분의 입자를 제거한다.After placing 300 nm SiO 2 particles on the adhesive polymer substrate, using a sponge wrapped with a latex film, rubbing while applying pressure by hand to form a recess in the surface of the adhesive polymer substrate. The 300 nm SiO 2 particles and the adhesive polymer substrate are combined to form a 300 nm SiO 2 coating film, and then nitrogen gas is blown to remove the particles in the part where the multi layer is formed for the single layer coating.
도 5a 및 도 5c에는 석영 기판에 Au를 증착시켜 마스크 패턴을 형성한 상태가 도시되어 있다. 이러한 마스크 패턴을 300nm SiO2 코팅막이 형성되어 있는 상기 밀착성 고분자 기판 위에 대고 공기분위기 하에서 185nm의 UV를 조사시킨다. 5A and 5C show a state in which a mask pattern is formed by depositing Au on a quartz substrate. The mask pattern is applied onto the adhesive polymer substrate on which the 300 nm SiO 2 coating film is formed and irradiated with UV of 185 nm under an air atmosphere.
그 후, 하루 동안 안정화시킨 후, 3M스카치테이프를 접착한 다음 롤러로 압력을 가하고 3M스카치테이프를 제거하여 UV가 조사되지 않은 부착력이 약한 부분(비노광부)만 제거한다. 이때 조사시간에 따라 안정화되는 면적이 달라지며 이는 도 5d의 UV를 10분 조사한 기판과 도 5e의 UV를 20분 조사한 기판의 코팅 면적을 통해 확인할 수 있다.Then, after stabilizing for one day, the 3M scotch tape is adhered and then pressurized with a roller and the 3M scotch tape is removed to remove only the weakly adherent areas (non-exposed areas) that are not irradiated with UV. At this time, the area to be stabilized varies depending on the irradiation time, which can be confirmed through the coating area of the substrate irradiated with UV of FIG. 5D for 10 minutes and the substrate irradiated with UV of FIG. 5E for 20 minutes.
이후 도 5e의 20분 조건으로 조사한 기판위에 750nm SiO2 입자를 올려 놓은 후 라텍스 필름으로 감싼 스폰지를 이용하여 손으로 압력을 가하면서 문질러서 입자가 제거된 부위의 밀착성 고분자 기판의 표면에 750nm SiO2 코팅막을 형성한 후 질소 가스를 불어서 멀티층이 형성되어있는 부분의 입자를 제거하여 300nm와 750nm의 SiO2 입자가 단층으로 코팅되어 있는 기판을 제조하였고, 이의 측정결과를 도 5f에 도시하였다. 도 5f는 상기 기판을 confocal microscope를 통해 측정한 결과이며, 도 5f의 결과에서 알 수 있듯이 본 발명의 경우 서로 다른 사이즈(750nm, 300nm)의 입자가 같은 기판에 단층으로 코팅될 수 있으며 코팅부위를 마스크 패턴을 통해 선택적으로 정할 수 있음을 확인할 수 있었다. 구체적으로, 도 5f에서는 원형 부위에 750nm 사이즈의 입자가 코팅되어 있고, 그 주변부에는 300nm 사이즈의 입자가 코팅되어 있다.After the 750nm SiO 2 particles were placed on the substrate irradiated under the condition of FIG. 5E for 20 minutes, 750 nm SiO 2 coating film was deposited on the surface of the adhesive polymer substrate where the particles were removed by rubbing while applying pressure by hand using a sponge wrapped with a latex film. After the formation of nitrogen, blowing the nitrogen gas to remove the particles of the portion where the multi-layer is formed to prepare a substrate coated with a single layer of SiO 2 particles of 300nm and 750nm, the measurement results are shown in Figure 5f. Figure 5f is the result of measuring the substrate through a confocal microscope, as can be seen in the results of Figure 5f in the case of the present invention particles of different sizes (750nm, 300nm) can be coated on the same substrate as a single layer and the coating site It can be seen that the mask pattern can be selectively determined. Specifically, in FIG. 5F, particles having a size of 750 nm are coated on the circular portion, and particles having a size of 300 nm are coated on the periphery thereof.
<실험예 2>Experimental Example 2
실가드(Sylgard) 184 (미국, 다우코닝) 제품에 20wt%의 경화제를 포함하여 형성된 PDMS로 이루어진 밀착성 고분자 기판을 준비하였다.An adhesive polymer substrate made of PDMS formed in Sylgard 184 (Dow Corning, USA) was prepared containing 20 wt% of a curing agent.
구멍 패턴이 존재하는 알루미늄 마스크 패턴을 기판 위에 대고 공기분위기 하에서 185nm의 UV를 10분 조사시킨 뒤 FITC(Fluorescein isothiocyanate)를 개질한 750nm SiO2 입자를 밀착성 고분자 기판 위에 올려놓는다. 이후 라텍스 필름으로 감싼 스폰지를 이용하여 손으로 압력을 가하면서 문질러서 밀착성 고분자 기판의 표면에 오목부를 형성하면서 FITC(Fluorescein isothiocyanate)를 개질한 750nm SiO2 입자와 밀착성 고분자 기판을 결합하여 FITC(Fluorescein isothiocyanate)를 개질한 750nm SiO2 입자 코팅막을 형성한 후 단층 코팅을 위해 질소 가스를 불어 멀티층이 형성되어있는 부분의 입자를 제거했다.An aluminum mask pattern having a hole pattern was applied to the substrate, and 185 nm UV was irradiated for 10 minutes under an air atmosphere, and then 750 nm SiO 2 particles modified with FITC (Fluorescein isothiocyanate) were placed on the adhesive polymer substrate. After wrapping a latex film with a sponge to combine the modified a 750nm SiO 2 particles and the adhesion between a polymer substrate for, forming parts of a while rubbing the concave on the surface of adhesion between the polymer substrate pressure FITC (Fluorescein isothiocyanate) by hand (Fluorescein isothiocyanate) FITC by After the modified 750 nm SiO 2 particle coating film was formed, nitrogen gas was blown for the single layer coating to remove particles in the part where the multi layer was formed.
그 후 하루 동안 안정화시킨 후 3M스카치테이프를 접착한 다음 롤러로 압력을 가하고 3M스카치테이프를 제거하여 UV가 조사되지 않은 부착력이 약한 부분(비노광부)만 제거한다. 이의 사진을 도 6b에 도시하였다.After stabilization for 1 day, the 3M scotch tape is bonded and then pressurized with a roller and the 3M scotch tape is removed to remove only the weakly adherent areas (non-exposed areas) that are not irradiated with UV. A picture thereof is shown in FIG. 6B.
이후 기판 위에 750nm SiO2 입자를 올려놓은 후 라텍스 필름으로 감싼 스폰지를 이용하여 손으로 압력을 가하면서 문질러서 입자가 제거된 부위의 밀착성 고분자 기판의 표면에 오목부를 형성한다. 750nm SiO2 입자와 입자가 제거된 부위의 밀착성 고분자 기판을 결합하여 750nm SiO2 코팅막을 형성한 후 단층 코팅을 위해 질소 가스를 불어 멀티층이 형성되어있는 부분의 입자를 제거하였고, 이의 사진을 도 6a에 나타내었다.Thereafter, 750 nm SiO 2 particles are placed on the substrate, and then rubbed while applying pressure by hand using a sponge wrapped with a latex film to form a recess in the surface of the adhesive polymer substrate where the particles are removed. The 750 nm SiO 2 particles were combined with the adhesive polymer substrate in the region where the particles were removed to form a 750 nm SiO 2 coating film, followed by blowing nitrogen gas for single layer coating to remove the particles in the part where the multi layer was formed. 6a.
이의 결과로부터 본 발명은 광특이성(광민감성) 입자와 같은 빛에 민감한 입자 또한 손상시키지 않고 기판에 단층으로 코팅할 수 있으며 입자 코팅부위를 마스크 패턴을 이용한 노광을 통해 선택적으로 정할 수 있음을 확인할 수 있었다.From the results, the present invention can be confirmed that the light-sensitive particles such as photospecific (photosensitive) particles can be coated on a substrate without damaging even a single layer, and the particle coating site can be selectively determined through exposure using a mask pattern. there was.
<실험예 3>Experimental Example 3
실가드(Sylgard) 184 (미국, 다우코닝) 제품에 20wt%의 경화제를 포함하여 형성된 PDMS로 이루어진 음각 렌즈 형태의 밀착성 고분자 기판을 준비하였다.An adhesive polymer substrate in the form of a negative lens consisting of PDMS formed in Sylgard 184 (Dow Corning, USA) containing 20 wt% of a curing agent was prepared.
공기분위기 하에서 음각 렌즈 형태의 밀착성 고분자 기판에 254nm의 UV를 60분간 조사한 후, 기판 위에 120nm SiO2 입자를 올려놓고, 라텍스 필름으로 감싼 스폰지를 이용하여 손으로 압력을 가하면서 수차례 빈틈없이 문질러서 밀착성 고분자 기판의 표면에 오목부를 형성하면서 120nm SiO2 입자와 밀착성 고분자 기판을 결합하여 120nm SiO2 코팅막을 형성하였다. 이후 질소 가스를 불어 멀티층이 형성되어있는 부분의 입자를 제거한다. 이후 렌즈의 오목부에 존재하는 멀티부분을 완벽하게 제거하기 위해 에탄올을 통해 세척한 후 에탄올을 기판의 코팅된 부분에 채워놓고 Sonicator를 10분 작동시킨 다음 물로 세척 후 질소로 물기를 제거한다.After irradiating 254nm UV for 60 minutes to the intaglio-type adhesive polymer substrate under air atmosphere, put 120nm SiO 2 particles on the substrate and rub it tightly several times while applying pressure by hand using a sponge wrapped with a latex film. While forming recesses on the surface of the polymer substrate, 120 nm SiO 2 particles and the adhesive polymer substrate were bonded to form a 120 nm SiO 2 coating film. Nitrogen gas is then blown to remove particles from the part where the multi-layer is formed. After washing through ethanol to completely remove the multi-parts present in the concave portion of the lens, ethanol is filled in the coated portion of the substrate, the Sonicator is operated for 10 minutes, washed with water and then dried with nitrogen.
그 후 UV 경화수지를 통해 입자를 전이시켜 도 7a의 양각 미세구조를 형성한다. 전이 전에 공기분위기 하에서 UV를 30분간 조사하여 입자와 밀착성 고분자 기판 간의 부착력을 증가시킨 다음 UV 경화수지를 통해 전이시킨다면 입자가 전이되지 않아 도 7b와 같은 음각 미세구조를 형성하게 된다. 이는 PDMS 밀착성 고분자 기판이 평면 형태뿐만이 아니라 곡면형태의 렌즈 구조에서도 전이가 될 수 있는 것을 알 수 있다.The particles are then transferred through the UV curable resin to form the embossed microstructure of FIG. 7A. If irradiated with UV under an air atmosphere for 30 minutes before the transition to increase the adhesion between the particles and the adhesive polymer substrate and then transferred through the UV curable resin, the particles do not transfer, thereby forming a negative microstructure as shown in FIG. 7B. It can be seen that the PDMS adhesive polymer substrate can be transferred not only in the planar shape but also in the curved lens structure.
즉, 본 발명의 경우 평면이 아닌 입체적인 3차원 구조의 패턴을 이미 가지고 있는 밀착성 고분자 기판에도 입자를 코팅할 수 있음을 알 수 있다. 전술한 내용에서는 밀착성 고분자 기판이 편평한 면을 갖는 경우를 설명하였지만, 도 7a, 7b에 도시한 경우는 밀착성 고분자 기판에 3차원 구조의 패턴을 형성하기 위한 별도의 돌기 구조가 복수로 이미 마련되어 있다. 본 실험예를 통하여 본 발명은 이러한 복수의 돌기 표면에 입자를 코팅하여 코팅막을 추가적으로 형성할 수 있음을 알 수 있다. 여기서, 복수의 돌기는 밀착성 고분자 기판과 동일한 재질로 이루어진다.That is, in the case of the present invention it can be seen that the particles can be coated on the adhesive polymer substrate that already has a three-dimensional structure pattern instead of a plane. In the above description, the case where the adhesive polymer substrate has a flat surface has been described. However, in the case of FIGS. 7A and 7B, a plurality of separate protrusion structures are already provided to form a three-dimensional structure pattern on the adhesive polymer substrate. Through the present experimental example it can be seen that the present invention can additionally form a coating film by coating the particles on the surface of the plurality of protrusions. Here, the plurality of protrusions are made of the same material as the adhesive polymer substrate.
<실험예 4>Experimental Example 4
실가드(Sylgard) 184 (미국, 다우코닝) 제품에 20wt%의 경화제를 포함하여 형성된 PDMS로 이루어진 음각 피라미드 형태의 밀착성 고분자 기판을 준비하였다. 여기서 밀착성 고분자 기판은 평면이 아닌 입체적인 3차원 구조의 프리즘 필름 광학 형태를 가지고 있다.An adhesive pyramidal substrate in the form of an intaglio pyramid made of PDMS formed in Sylgard 184 (Dow Corning, USA) containing 20 wt% of a curing agent was prepared. Here, the adhesive polymer substrate has a three-dimensional three-dimensional prism film optical form, not a plane.
공기분위기 하에서 상기 기판에 185nm의 UV를 60분간 조사시킨 다음, 기판 위에 120nm SiO2 입자를 올려놓고, 라텍스 필름으로 감싼 스폰지를 이용하여 손으로 압력을 가하면서 수차례 빈틈없이 문질러서 밀착성 고분자 기판의 표면에 오목부를 형성한다. 120nm SiO2 입자와 밀착성 고분자 기판을 결합하여 120nm SiO2 코팅막을 형성한다. 이후 질소 가스를 불어서 멀티층이 형성되어있는 부분의 입자를 제거한 후 렌즈의 오목부에 존재하는 멀티부분을 완벽하게 제거하기 위해 에탄올을 통해 세척한 후 에탄올을 기판의 코팅된 부분에 채워놓고 Sonicator를 10분 작동시킨 다음 물로 세척후 질소로 물기를 제거한다. 그 후 UV 경화수지를 통해 입자를 전이시켜 도 8의 양각 미세구조를 형성한다.The substrate was irradiated with UV at 185 nm for 60 minutes in an air atmosphere, and then 120 nm SiO 2 particles were placed on the substrate, and rubbed several times with pressure by hand using a sponge wrapped with a latex film. Form a recess in the. The 120 nm SiO 2 particles and the adhesive polymer substrate are combined to form a 120 nm SiO 2 coating film. After blowing the nitrogen gas to remove the particles in the multi-layered part, and washing through ethanol to completely remove the multi-parts in the concave part of the lens, and then fill the coated part of the substrate with ethanol and the Sonicator Run for 10 minutes, wash with water and dry with nitrogen. The particles are then transferred through the UV curable resin to form the embossed microstructure of FIG. 8.
이는 PDMS 밀착성 고분자 기판이 평면 형태뿐만이 아니라 입체적인 3차원 형태의 피라미드 구조에서도 전이가 될 수 있는 것을 알 수 있다. 구체적으로, 도 9를 살펴보면, 3차원 구조의 돌출부와 오목부를 갖는 프리즘 필름의 돌출부 상면, 오목부 하면 및 그 연결 부분인 경사면 등 패턴의 모든 부분에 입자가 균일하게 코팅된 상태를 확인할 수 있다.It can be seen that the PDMS adhesive polymer substrate can be transferred not only in the planar shape but also in the three-dimensional pyramidal structure. Specifically, referring to FIG. 9, it can be seen that the particles are uniformly coated on all parts of the pattern such as the upper surface of the protrusion of the prism film having the protrusion and the recess of the three-dimensional structure, the lower surface of the recess, and the inclined surface thereof.
<실험예 5>Experimental Example 5
실가드(Sylgard) 184 (미국, 다우코닝) 제품에 20wt%의 경화제를 포함하여 형성된 PDMS로 이루어진 밀착성 고분자 기판을 준비하였다.An adhesive polymer substrate made of PDMS formed in Sylgard 184 (Dow Corning, USA) was prepared containing 20 wt% of a curing agent.
밀착성 고분자 기판 위에 입자를 올려놓은 후 라텍스 필름으로 감싼 스폰지를 이용하여 손으로 압력을 가하면서 문질러서 밀착성 고분자 기판의 표면에 오목부를 형성하면서 입자와 밀착성 고분자 기판을 결합하여 코팅막을 형성한 후 질소 가스를 불어서 멀티층이 형성되어있는 부분의 입자를 제거하였다.After placing the particles on the adhesive polymer substrate, using a sponge wrapped with a latex film, rub with pressure by hand to form a recess on the surface of the adhesive polymer substrate to form a coating film by combining the particles and the adhesive polymer substrate to form a coating film. Blowing was performed to remove particles from the part where the multi-layer was formed.
이때, 입자는 도 10b, 10c의 표와 같이 각각 750nm SiO2, amine이 개질되어있는 750nm SiO2, RGD가 개질되어있는 750nm SiO2, 800nm PS를 사용했으며 밀착성 고분자 기판에 코팅하는 입자의 종류 및 비율은 750nm SiO2, amine이 개질되어 있는 750nm SiO2, RGD가 개질되어 있는 750nm SiO2 10% + amine이 개질되어 있는 750nm SiO2 90%, RGD가 개질되어 있는 750nm SiO2 50% + amine이 개질되어 있는 750nm SiO2 50%, RGD가 개질되어 있는 750nm SiO2 90% + amine이 개질되어 있는 750nm SiO2 10%, RGD가 개질되어 있는 750nm SiO2, 800nm PS 총 6가지를 사용하였다.At this time, the particles are the type of particles to coat each 750nm SiO 2, amine This was used for 750nm SiO 2, 800nm PS, which is modified 750nm SiO 2, the RGD is modified adhesion to polymer substrates such as table of Figure 10b, 10c and ratio is the 750nm SiO 2, amine this is modified 750nm SiO 2, RGD is 750nm, which is modified SiO 2 10% + amine is 90% 750nm SiO 2 that is modified, 50% 750nm SiO 2 that RGD is modified + amine Six types of modified 750 nm SiO 2 50%, RGD modified 750 nm SiO 2 90% + amine modified 750 nm SiO 2 10%, RGD modified 750 nm SiO 2 , and 800 nm PS were used.
또한, 각각의 밀착성 고분자 기판은 도 10a, 도 10b, 10c에 도시한 바와 같이 입자를 코팅시키지 않은 PDMS를 공기분위기 하에서 UV를 5분과 10분을 조사하여 입자를 코팅한 후 55℃에서 안정화시킨 것, 입자를 코팅시키지 않은 PDMS를 공기분위기 하에서 UV를 5분과 10분을 조사하여 입자를 코팅한 후 실온 Dry 조건에서 안정화시킨 것, 입자를 코팅시키지 않은 PDMS를 공기분위기 하에서 UV를 5분과 10분을 조사하여 입자를 코팅한 후 진공 온도 조건에서 안정화시킨 것, 총 6가지 조건으로 테스트하였다. 도 10b에서는 5시간 안정화 시간을 주었고, 도 10c에서는 24시간 안정화 시간을 주었다.In addition, each adhesive polymer substrate is stabilized at 55 ° C. after irradiating the particles for 5 minutes and 10 minutes under UV atmosphere with PDMS without particle coating as shown in FIGS. 10A, 10B, and 10C. , PDMS uncoated particles were irradiated with UV for 5 minutes and 10 minutes under an air atmosphere, and the particles were coated and stabilized at room temperature dry conditions, and PDMS without particles coated with PDMS for 5 minutes and 10 minutes under an air atmosphere The particles were irradiated and coated, and then stabilized under vacuum temperature conditions, and tested under a total of six conditions. In FIG. 10B, the stabilization time was given for 5 hours, and in FIG.
이와는 별개로 도 11a 및 도 11b에 도시한 바와 같이 입자를 코팅시키지 않은 PDMS를 공기분위기 하에서 UV를 5분간 조사하고, 입자 코팅한 후 37℃의 안정화 온도로 안정화 시간을 5시간과 20시간으로 변화를 두어 실험했다.Separately, as shown in FIGS. 11A and 11B, PDMS without particles were irradiated with UV for 5 minutes under an air atmosphere, and after the particles were coated, the stabilization time was changed to a stabilization temperature of 37 ° C. for 5 hours and 20 hours. Experimented.
입자 코팅 후 각각 조건에 맞는 5시간, 20시간으로 안정화시킨 다음 3M스카치테이프를 접착한 다음 롤러로 압력을 가하고 3M스카치테이프를 제거하는 행위를 통해 온도와 조건에 따른 각 조건의 입자 부착력 차이를 확인해 보았다.After particle coating, stabilize to 5 hours and 20 hours according to each condition, and then attach 3M scotch tape, pressurize with a roller, and remove 3M scotch tape to check the difference in particle adhesion between each condition according to temperature and condition. saw.
도 10b, 도 10c 및 도 11b에서 숫자 1~5는 3M스카치테이프를 제거하는 행위를 행했을 때 입자가 제거되는 정도를 숫자로 표현한 것이다. 5의 경우 손상이 되지 않음을 나타내며 1의 경우 많은 입자가 제거됨을 나타낸다.In Figs. 10B, 10C, and 11B, the numbers 1 to 5 represent the extent to which the particles are removed when the 3M scotch tape is removed. 5 indicates no damage and 1 indicates that many particles are removed.
도 10b를 살펴보면 온도가 올라간 조건일수록 800nm PS를 제외한 모든 입자에서 입자 부착력이 상승했음을 알 수 있고, UV 처리가 입자 부착력 향상에 적합함을 알 수 있다. 그리고 같은 조건에 안정화 시간만 다른 도 10c와 비교해봤을 때 안정화 시간이 긴 도 10c에서는 800nm PS를 제외하고는 전체적으로 모든 조건의 입자 부착력이 상승하였으며 상대적으로 높은 온도에서의 안정화가 매우 효과적임을 알 수 있다.Looking at Figure 10b it can be seen that the particle adhesion increased in all the particles except the 800nm PS under the increased temperature conditions, it can be seen that UV treatment is suitable for improving the particle adhesion. In comparison with FIG. 10c, which has only a stabilization time under the same conditions, in FIG. 10c, where the stabilization time is long, the particle adhesion of all the conditions is increased except for 800 nm PS, and stabilization at a relatively high temperature is very effective. .
즉, 밀착성 고분자 기판에 입자 코팅시 온도 조절 및 빛 또는 활성기체의 조사 시간 조절을 통해 입자의 부착력 정도를 조절할 수 있으며 입자를 여러가지 사용하고 혼합시킴으로써 다양한 표면 특성을 가지게 할 수 있다. That is, it is possible to control the degree of adhesion of the particles by controlling the temperature and the irradiation time of light or active gas when coating the particles on the adhesive polymer substrate, and can have a variety of surface properties by using and mixing the particles in various ways.
<실험예 6>Experimental Example 6
도 12a에서는 실가드(Sylgard) 184 (미국, 다우코닝) 제품에 20wt%, 10wt%, 5wt%의 경화제를 포함하여 형성된 PDMS로 이루어진 밀착성 고분자 기판을 3개 준비하였다. In FIG. 12A, three adhesive polymer substrates including PDMS formed of Sylgard 184 (Dow Corning, USA) including 20 wt%, 10 wt%, and 5 wt% of a curing agent were prepared.
밀착성 고분자 기판 위에 750nm SiO2 입자를 올려놓은 후 라텍스 필름으로 감싼 스폰지를 이용하여 손으로 압력을 가하면서 문질러서 밀착성 고분자 기판의 표면에 오목부를 형성하면서 750nm SiO2 입자와 밀착성 고분자 기판을 결합하여 750nm SiO2 코팅막을 형성한 후 질소 가스를 불어서 멀티층이 형성되어있는 부분의 입자를 제거했다.750nm SiO 2 particles were placed on the adhesive polymer substrate and rubbed while applying pressure by hand using a sponge wrapped with a latex film to form recesses on the surface of the adhesive polymer substrate, thereby combining the 750nm SiO 2 particles and the adhesive polymer substrate to form 750nm SiO 2 particles. 2 After forming a coating film, nitrogen gas was blown and the particle | grains of the part in which the multi layer is formed were removed.
그 후, 각각의 입자가 코팅된 기판에 UV 경화수지를 부은 후 경화시켜 입자를 옮긴다. 도 12a를 통해 각각 PDMS 농도에 따른 UV 경화수지에 전이된 입자의 함침도가 다름을 알 수 있다.Thereafter, the UV cured resin is poured onto the substrate coated with each particle, and then cured to transfer the particles. 12a, it can be seen that the impregnation degree of the particles transferred to the UV curing resin according to the PDMS concentration, respectively.
도 12b의 경우 음각 몰드 형성시 우선 실가드(Sylgard) 184 (미국, 다우코닝)제품 기준 20wt%의 경화제를 포함하여 형성된 PDMS로 이루어진 밀착성 고분자 기판을 준비한 후, 공기분위기 하에서 UV 조사를 각각 0min, 3min, 10min, 30min 시간 하였다.In the case of FIG. 12B, when preparing an intaglio mold, first, an adhesive polymer substrate made of PDMS including 20 wt% of a curing agent based on Sylgard 184 (Dow Corning, USA) was prepared. 3min, 10min, 30min time.
밀착성 고분자 기판 위에 300nm SiO2 입자를 올려놓은 후 라텍스 필름으로 감싼 스폰지를 이용하여 손으로 압력을 가하면서 문질러서 밀착성 고분자 기판의 표면에 오목부를 형성하면서 300nm SiO2 입자와 밀착성 고분자 기판을 결합하여 300nm SiO2 코팅막을 형성한 후 질소 가스를 불어서 멀티층이 형성되어있는 부분의 입자를 제거했다.300nm SiO 2 particles were placed on the adhesive polymer substrate and rubbed while applying pressure by hand using a sponge wrapped with a latex film to form recesses on the surface of the adhesive polymer substrate, thereby combining 300nm SiO 2 particles and the adhesive polymer substrate to form 300nm SiO 2 particles. 2 After forming a coating film, nitrogen gas was blown and the particle | grains of the part in which the multi layer is formed were removed.
입자 코팅 후, 각각의 몰드에 공기분위기 하에서 UV를 10분 조사해 안정화시킨 후 각각의 입자가 코팅된 기판에 UV 경화수지를 부은 후 경화시켜 음각 몰드를 형성한다. 도 12b를 통해 초기 UV 조사 시간에 따른 UV 경화수지에 형성된 음각 몰드의 깊이가 다름을 알 수 있다.After particle coating, each mold is irradiated with UV under an air atmosphere for 10 minutes to stabilize, and then each UV-cured resin is poured onto a substrate coated with each particle and cured to form a negative mold. It can be seen from Figure 12b that the depth of the intaglio mold formed on the UV curing resin according to the initial UV irradiation time.
즉, 도 12a 및 도 12b의 결과로부터 밀착성 고분자 기판 자체의 경도 조절 또는 온도 조절을 통해 입자의 함침도를 조절 가능함을 알 수 있으며, 또한 빛 또는 활성기체의 조사시간 조절을 통해 입자의 함침도 조절이 가능함을 알 수 있다. That is, it can be seen from the results of FIGS. 12a and 12b that the impregnation degree of the particles can be controlled by controlling the hardness or temperature of the adhesive polymer substrate itself, and also controlling the impregnation of the particles by controlling the irradiation time of light or active gas. It can be seen that this is possible.
또한 음각형태의 입자 함침도 조절 뿐만 아니라 양각형태에서도 입자 함침도 조절이 가능함을 알 수 있다.In addition, it can be seen that the particle impregnation can also be adjusted in the embossed form as well as the particle impregnation in the engraved form.
앞에서 설명되고 도면에 도시된 본 발명의 실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 특허청구범위에 기재된 사항에 의해서만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 및 변경하는 것이 가능하다. 따라서, 이러한 개량 및 변경은 해당 기술분야에서 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.Embodiments of the present invention described above and illustrated in the drawings should not be construed as limiting the technical spirit of the present invention. The protection scope of the present invention is limited only by the matters described in the claims, and those skilled in the art can improve and change the technical idea of the present invention in various forms. Accordingly, such improvements and modifications will fall within the protection scope of the present invention as long as it will be apparent to those skilled in the art.
본 실시예 따른 입자 정렬을 이용한 코팅 방법은 마스크를 이용하여 밀착성 고분자 기판 위에 부분적으로 빛 또는 활성기체를 조사하여 빛 또는 활성기체가 조사된 영역의 부착력을 변화시키고, 상대적으로 부착력이 약한 비노광부에 위치하는 입자를 제거함으로써, 다양한 패턴의 코팅막을 손쉽게 형성할 수 있다. 또한 밀착성 고분자 기판 위에 여러 종류의 입자가 각각 특정한 패턴으로 정렬된 다양한 코팅막을 손쉽게 형성할 수 있어 산업적으로 유용하다.In the coating method using the particle alignment according to the present embodiment, a light or active gas is partially irradiated onto the adhesive polymer substrate using a mask to change the adhesion of the area irradiated with light or the active gas, and to a non-exposed area having relatively weak adhesion. By removing the particles that are located, it is possible to easily form a coating film of various patterns. In addition, it is useful industrially because it is possible to easily form a variety of coating film in which a plurality of particles are arranged in a specific pattern on the adhesive polymer substrate.

Claims (19)

  1. (a) 밀착성 고분자 기판 위에 복수의 제1 입자를 코팅하여 1차 코팅막을 형성하는 단계;(a) coating a plurality of first particles on the adhesive polymer substrate to form a primary coating film;
    (b) 마스크 패턴이 형성된 마스크를 대고 상기 밀착성 고분자 기판을 향해 빛 또는 활성기체를 조사하여 상기 밀착성 고분자 기판 표면의 빛 또는 활성기체가 조사된 노광부의 부착력을 변화시키는 단계; 및(b) changing the adhesion of the exposed part irradiated with light or active gas on the surface of the adhesive polymer substrate by irradiating light or active gas onto the adhesive polymer substrate with the mask on which the mask pattern is formed; And
    (c) 상기 밀착성 고분자 기판의 빛 또는 활성기체가 조사된 부분과 조사되지 않은 부분의 부착력 차이를 이용하여 상기 1차 코팅막을 형성하는 상기 복수의 제 1 입자에서 비노광부 또는 노광부에 배치된 제 1 입자들을 입자의 함침정도 및 입자 제거부재의 부착력 정도를 이용해 상기 밀착성 고분자 기판으로부터 선택적으로 제거하는 단계;를 포함하는 입자 정렬을 이용한 코팅 방법.(c) a non-exposed portion or an exposed portion disposed in the non-exposed portion or the exposed portion of the plurality of first particles forming the primary coating film by using a difference in adhesion between the irradiated portion of the adhesive polymer substrate and the irradiated portion of the light or active gas; And selectively removing the particles from the adhesive polymer substrate using the degree of impregnation of the particles and the degree of adhesion of the particle removing member.
  2. (a) 마스크 패턴이 형성된 마스크를 대고 밀착성 고분자 기판을 향해 빛 또는 활성 기체를 조사하여 상기 밀착성 고분자 기판의 표면을 부분적으로 노광 또는 노출함으로써, 상기 밀착성 고분자 기판 표면의 빛 또는 활성기체가 조사된 영역의 부착력을 변화시키는 단계;(a) a region in which light or an active gas is irradiated on the surface of the adhesive polymer substrate by partially exposing or exposing the surface of the adhesive polymer substrate by irradiating light or an active gas toward the adhesive polymer substrate with a mask having a mask pattern formed thereon; Changing the adhesion of the;
    (b) 상기 밀착성 고분자 기판 위에 복수의 제1 입자를 코팅하여 1차 코팅막을 형성하는 단계; 및(b) forming a first coating layer by coating a plurality of first particles on the adhesive polymer substrate; And
    (c) 상기 밀착성 고분자 기판의 빛 또는 활성기체가 조사된 부분과 조사되지 않은 부분의 부착력 차이를 이용하여 상기 1차 코팅막을 형성하는 상기 복수의 제 1 입자에서 비노광부 또는 노광부에 배치된 제 1 입자들을 입자의 함침정도 및 입자 제거부재의 부착력 정도를 이용해 상기 밀착성 고분자 기판으로부터 선택적으로 제거하는 단계;를 포함하는 입자 정렬을 이용한 코팅 방법.(c) a non-exposed portion or an exposed portion disposed in the non-exposed portion or the exposed portion of the plurality of first particles forming the primary coating film by using a difference in adhesion between the irradiated portion of the adhesive polymer substrate and the irradiated portion of the light or active gas; And selectively removing the particles from the adhesive polymer substrate using the degree of impregnation of the particles and the degree of adhesion of the particle removing member.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 (c)단계 이후,After the step (c),
    상기 밀착성 고분자 기판상의 상기 제1 입자가 제거된 영역에 복수의 제2 입자를 코팅하여 2차 코팅막을 형성하는 단계가 더 마련되는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.And forming a secondary coating layer by coating a plurality of second particles on a region where the first particles are removed on the adhesive polymer substrate.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 빛 또는 활성기체의 조사 시간 또는 조사 세기에 따라 상기 밀착성 고분자 기판의 부착력 및 부착력이 변화된 면적을 조절 가능한 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.Coating method using the particle alignment, characterized in that the adhesion area and the adhesion area of the adhesive polymer substrate can be adjusted according to the irradiation time or the irradiation intensity of the light or active gas.
  5. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 밀착성 고분자 기판에 상기 복수의 제1 입자를 코팅한 후 안정화시키는 온도의 변화를 통해 상기 복수의 제1 입자와 상기 밀착성 고분자 기판 간의 부착력을 조절 가능한 것을 특징으로 하는 입자 정렬을 이용한 코팅방법.Coating method using a particle alignment, characterized in that the adhesion between the plurality of first particles and the adhesive polymer substrate can be adjusted by changing the temperature to stabilize after coating the plurality of first particles on the adhesive polymer substrate.
  6. 제3항에 있어서,The method of claim 3,
    상기 복수의 제1 입자 및 복수의 제2 입자 중 적어도 하나를 상기 밀착성 고분자 기판상에서 문질러서 압력을 가하여 상기 밀착성 고분자 기판에 상기 복수의 제1 입자 및 복수의 제2 입자 중 적어도 하나를 코팅하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.At least one of the plurality of first particles and the plurality of second particles is rubbed onto the adhesive polymer substrate to apply pressure to coat the adhesive polymer substrate with at least one of the plurality of first particles and the plurality of second particles. Coating method using particle alignment to be.
  7. 제3항에 있어서,The method of claim 3,
    상기 2차 코팅막의 형성 이후,After the formation of the secondary coating film,
    상기 밀착성 고분자 기판의 상기 비노광부 및 노광부의 부착력 차이를 이용해 다른 전사 기판에 상기 1차 코팅막 및 상기 2차 코팅막 중 적어도 하나를 전사하는 단계를 더 포함하는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.And transferring at least one of the primary coating film and the secondary coating film to another transfer substrate using a difference in adhesion between the non-exposed part and the exposed part of the adhesive polymer substrate.
  8. 제3항에 있어서,The method of claim 3,
    상기 1차 코팅막 및 상기 2차 코팅막은 각각, 상기 복수의 제1 입자 및 상기 복수의 제2 입자가 단층으로 코팅되어 이루어지는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.The primary coating film and the secondary coating film, the coating method using a particle alignment, characterized in that the plurality of first particles and the plurality of second particles are each coated with a single layer.
  9. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 1차 코팅막 형성단계에서 상기 밀착성 고분자 기판에는, 상기 밀착성 고분자 기판의 변형에 의해 상기 복수의 제1 입자에 각각 대응하도록 복수의 제1 오목부가 함몰되게 마련되며,In the first coating film forming step, the adhesive polymer substrate is provided with a plurality of first recesses recessed to correspond to the plurality of first particles by deformation of the adhesive polymer substrate,
    상기 제1 오목부는 가역적인 상태로 마련되는 것을 특징으로 하는 입자 정렬을 이용한 코팅 방법.And the first concave portion is provided in a reversible state.
  10. 표면에 빛 또는 활성기체를 조사받아 부착력이 증가한 노광부 영역과, 표면에 빛 또는 활성기체가 조사되지 않아 상기 노광부 영역에 비해 상대적으로 작은 부착력을 갖는 비노광부 영역을 포함하는 밀착성 고분자 기판;An adhesive polymer substrate including an exposed part region in which adhesion force is increased by irradiating light or active gas on a surface, and a non-exposed part region in which light or active gas is not irradiated on the surface and having a relatively small adhesive force compared to the exposed part region;
    상기 노광부 영역에 표면이 함몰되게 형성된 복수의 제1 오목부; 및A plurality of first recesses formed to have a surface recessed in the exposed portion region; And
    상기 복수의 제1 오목부 내에 각각 정렬되게 배치된 복수의 제1 입자로 이루어지는 1차 코팅막을 포함하여 이루어지는 입자 코팅 기판.Particle coating substrate comprising a primary coating film consisting of a plurality of first particles arranged to be aligned in each of the plurality of first recesses.
  11. 제10항에 있어서,The method of claim 10,
    상기 비노광부 영역에 표면이 함몰되게 형성된 복수의 제2 오목부; 및A plurality of second concave portions formed to have a surface recessed in the non-exposed portion region; And
    상기 제2 오목부 내에 각각 정렬되게 배치되는 복수의 제2 입자로 이루어지는 2차 코팅막을 더 포함하는 것을 특징으로 하는 입자 코팅 기판.Particle coating substrate further comprises a secondary coating film made of a plurality of second particles arranged to be aligned in each of the second recess.
  12. 제10항에 있어서,The method of claim 10,
    상기 밀착성 고분자 기판은 실리콘 기반 고분자 물질, 랩, 표면 보호용 필름, 표면 형상의 변형이 용이한 광택을 지닌 필름 중에서 선택되는 것을 특징으로 하는 입자 코팅 기판.The adhesive polymer substrate is a particle-coated substrate, characterized in that selected from silicon-based polymer material, wraps, a film for protecting the surface, a film having a gloss easy to change the surface shape.
  13. 제10항에 있어서,The method of claim 10,
    상기 밀착성 고분자 기판은 폴리메틸실록산(polydimethylsiloxane, PDMS), 폴리에틸렌(polyethylene, PE), 폴리비닐클로라이드(polyvinylchloride, PVC) 중 적어도 하나를 포함하는 것을 특징으로 하는 입자 코팅 기판.The adhesive polymer substrate is a particle coating substrate comprising at least one of polydimethylsiloxane (PDMS), polyethylene (PE, PE), polyvinyl chloride (PVC).
  14. 제11항에 있어서,The method of claim 11,
    상기 복수의 제1 입자와 상기 복수의 제2 입자 중 적어도 하나는 상기 밀착성 고분자 기판에 직접 접촉하는 것을 특징으로 하는 입자 코팅 기판.At least one of the plurality of first particles and the plurality of second particles is in direct contact with the adhesive polymer substrate.
  15. 제11항에 있어서,The method of claim 11,
    상기 1차 코팅막 및 상기 2차 코팅막은 각각, 상기 복수의 제1 입자 및 상기 복수의 제2 입자가 단층으로 코팅되어 이루어지는 것을 특징으로 하는 입자 코팅 기판.Particle coating substrate, characterized in that the primary coating film and the secondary coating film is formed by coating the plurality of first particles and the plurality of second particles in a single layer, respectively.
  16. 제11항에 있어서,The method of claim 11,
    상기 복수의 제1 입자 및 상기 복수의 제2 입자가 각각 비구형일 경우, 상기 복수의 제1 입자 및 상기 복수의 제2 입자 중 입경이 상위 10% 입자의 평균 입경에 대한 상기 1차 코팅막 및 상기 2차 코팅막 두께의 평균값의 비율이 각각 1.9 이하인 것을 특징으로 하는 입자 코팅 기판.When the plurality of first particles and the plurality of second particles are each non-spherical, the primary coating film and the average particle diameter of the particles having the highest 10% particle diameter among the plurality of first particles and the plurality of second particles Particle-coated substrate, characterized in that the ratio of the average value of the secondary coating film thickness is 1.9 or less, respectively.
  17. 제11항에 있어서,The method of claim 11,
    상기 제1 입자 및 상기 제2 입자의 평균 입경에 대한 상기 제1 오목부 및 상기 제2 오목부의 깊이 비율이 각각 0.02 ~ 0.98인 것을 특징으로 하는 입자 코팅 기판.And a depth ratio of the first concave portion and the second concave portion to an average particle diameter of the first particle and the second particle is 0.02 to 0.98, respectively.
  18. 제11항에 있어서,The method of claim 11,
    상기 복수의 제1 입자 및 상기 복수의 제2 입자가 각각, 전하성 물질 및 비전하성 물질, 소수성 물질 및 친수성 물질 중 적어도 하나를 포함하는 것을 특징으로 하는 입자 코팅 기판.And wherein the plurality of first particles and the plurality of second particles each comprise at least one of a chargeable material and a non-chargeable material, a hydrophobic material and a hydrophilic material.
  19. 제10항에 있어서,The method of claim 10,
    상기 밀착성 고분자 기판의 표면에는 입체적인 3차원 구조의 패턴이 마련되는 것을 특징으로 하는 입자 코팅 기판.Particle-coated substrate, characterized in that the three-dimensional pattern of the three-dimensional structure is provided on the surface of the adhesive polymer substrate.
PCT/KR2015/003196 2014-04-09 2015-03-31 Coating method using particle alignment and particle-coated substrate produced thereby WO2015156533A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0042354 2014-04-09
KR1020140042354A KR102264386B1 (en) 2014-04-09 2014-04-09 Coating method using particle alignment and particle coated substrate manufactured by the same

Publications (1)

Publication Number Publication Date
WO2015156533A1 true WO2015156533A1 (en) 2015-10-15

Family

ID=54288063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003196 WO2015156533A1 (en) 2014-04-09 2015-03-31 Coating method using particle alignment and particle-coated substrate produced thereby

Country Status (2)

Country Link
KR (1) KR102264386B1 (en)
WO (1) WO2015156533A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020212286A1 (en) * 2019-04-16 2020-10-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for forming a film of particles on the surface of a substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102428978B1 (en) * 2017-07-24 2022-08-03 주식회사 엘지화학 Touch screen panel and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090076568A (en) * 2008-01-09 2009-07-13 고려대학교 산학협력단 A method for manufacturing nanosphere typed template for nanoimprint, a method for forming nanosphere single layer pattern using the same and an application method using the nanosphere signle layer pattern
KR20120017917A (en) * 2010-08-20 2012-02-29 서강대학교산학협력단 Porous thin film having holes and producing method of the same
KR20120022876A (en) * 2009-04-09 2012-03-12 서강대학교산학협력단 Method for manufacturing printed product by aligning and printing fine particles
KR20120115849A (en) * 2011-04-11 2012-10-19 서강대학교산학협력단 Bowl-typed structure, preparing method of the same, and bowl array

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4551625B2 (en) 2003-03-31 2010-09-29 大日本印刷株式会社 Method for producing pattern forming body
JP4346017B2 (en) 2003-12-12 2009-10-14 大日本印刷株式会社 Manufacturing method of microarray chip
TW200937043A (en) 2008-02-29 2009-09-01 Eternal Chemical Co Ltd Brightness enhancement reflective film
KR101416625B1 (en) * 2012-06-11 2014-07-08 한국전기연구원 Manufacturing method of polymer mold for forming fine pattern, polymer mold manufactured by the same, and method for forming fine pattern using the smae

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090076568A (en) * 2008-01-09 2009-07-13 고려대학교 산학협력단 A method for manufacturing nanosphere typed template for nanoimprint, a method for forming nanosphere single layer pattern using the same and an application method using the nanosphere signle layer pattern
KR20120022876A (en) * 2009-04-09 2012-03-12 서강대학교산학협력단 Method for manufacturing printed product by aligning and printing fine particles
KR20120017917A (en) * 2010-08-20 2012-02-29 서강대학교산학협력단 Porous thin film having holes and producing method of the same
KR20120115849A (en) * 2011-04-11 2012-10-19 서강대학교산학협력단 Bowl-typed structure, preparing method of the same, and bowl array

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASUDA, Y. ET AL.: "Two-Dimensional Self-Assembly of Spherical Particles Using a Liquid Mold and Its Drying Process", LANGMUIR, vol. 19, no. 13, 31 May 2003 (2003-05-31), pages 5179 - 5183, XP055230208, ISSN: 0743-7463 *
PARK, C. ET AL.: "Quick, Large-Area Assembly of a Single-Crystal Monolayer of Spherical Particles by Unidirectional Rubbing", ADVANCED MATERIALS, vol. 26, no. 27, 7 April 2014 (2014-04-07), pages 4633 - 4638, XP055230207, ISSN: 0935-9648 *
YE, X. ET AL.: "Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications", NANO TODAY, vol. 6, no. 6, 18 November 2011 (2011-11-18), pages 608 - 631, XP028337237 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020212286A1 (en) * 2019-04-16 2020-10-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for forming a film of particles on the surface of a substrate
FR3095138A1 (en) * 2019-04-16 2020-10-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives PROCESS FOR FORMING A PARTICLE FILM ON THE SURFACE OF A SUBSTRATE

Also Published As

Publication number Publication date
KR102264386B1 (en) 2021-06-16
KR20150117331A (en) 2015-10-20

Similar Documents

Publication Publication Date Title
WO2015183008A1 (en) Coating method using particle alignment
US6770721B1 (en) Polymer gel contact masks and methods and molds for making same
WO2012023724A2 (en) Porous thin film having holes and a production method therefor
WO2014084590A1 (en) Coating method using particle alignment and particle coated substrate manufactured thereby
US20160059473A1 (en) Method for Producing Patterned Materials
WO2013042819A1 (en) Production method for a graphene thin film
WO2012070833A2 (en) Radiation curable resin composition, and method for producing self-replicatable mold using same
WO2011016651A9 (en) Photocurable resin composition for imprint lithography and method for manufacturing an imprint mold using same
WO2015156533A1 (en) Coating method using particle alignment and particle-coated substrate produced thereby
WO2017217619A1 (en) Temperature-sensitive smart adhesive pad
WO2015183007A1 (en) Coating method using particle alignment
WO2015163596A1 (en) Coating method using particle alignment, and particle-coated substrate prepared thereby
Kim et al. Enhanced directional adhesion behavior of mushroom-shaped microline arrays
WO2019112141A1 (en) Thin film electrode separation method using thermal expansion coefficient
WO2015182867A1 (en) Substrate partially exposing particles and method for manufacturing same
WO2016200227A1 (en) Laminate
KR101599540B1 (en) Controlling impregnation method of micrometer level&#39;s particle and particle coated substrate manufactured by the same
Hsu et al. Micro/nano-patterned metal transfer using UV-curable polymers
WO2022145962A1 (en) Method for fabricating microparticle by using degassed gas-permeable micro-mold and discontinuous dewetting
KR20200064793A (en) Method for transferring a plurality of micro LED chips
WO2010093069A1 (en) Method for manufacturing a nanostructure
WO2012102498A2 (en) Photocuring resin composition for imprint lithography
WO2016085053A1 (en) Random mosaic identification code
WO2023219356A1 (en) Flexible anisotropic conductive film including conductive balls and manufacturing method therefor
WO2013012230A2 (en) Light curable resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15777376

Country of ref document: EP

Kind code of ref document: A1