WO2010093069A1 - Method for manufacturing a nanostructure - Google Patents

Method for manufacturing a nanostructure Download PDF

Info

Publication number
WO2010093069A1
WO2010093069A1 PCT/KR2009/000645 KR2009000645W WO2010093069A1 WO 2010093069 A1 WO2010093069 A1 WO 2010093069A1 KR 2009000645 W KR2009000645 W KR 2009000645W WO 2010093069 A1 WO2010093069 A1 WO 2010093069A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
manufacturing
nanoparticles
substrate
nanostructure
Prior art date
Application number
PCT/KR2009/000645
Other languages
French (fr)
Korean (ko)
Inventor
강신일
최준혁
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to PCT/KR2009/000645 priority Critical patent/WO2010093069A1/en
Publication of WO2010093069A1 publication Critical patent/WO2010093069A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer

Definitions

  • the present invention relates to a method for manufacturing nanostructures, and more particularly, to a method for manufacturing nanostructures using a combination of nanoparticles.
  • nanostructures are increasingly growing in applications and demand.
  • many conventional methods are known. For example, by forming a nanostructure that mimics the moth eye on a substrate to produce an antireflection film required in the display field. Even in the case of a super water-repellent functional film applied to the outer wall of a building, a nanostructure is formed on a substrate and manufactured.
  • nano / micro diameter structures can be easily created.
  • processing in large areas not only the cost and processing time are quite high, but also the processing area is limited.
  • Holographic lithography is a process that utilizes the difference in the interference between beams, which enables high speed and large area, and has been widely applied to the fabrication of periodic nanostructures.
  • Holographic lithography can serve as a breakthrough for the area limitations of electron beam lithography.
  • expensive equipment is required, and process stability is very important, and large-scale system construction is required.
  • the particles should be evenly distributed in a single layer, and for this purpose, optimization of the process conditions such as controlling the density of the particles, the rotational speed of the spin coating, and the like should be made. The optimization is very difficult and the process stability is low.
  • the present invention has been made to solve the above problems, an object of the present invention is to stably provide a nanostructure large area.
  • an object of the present invention is to provide a method for manufacturing nanostructures excellent in terms of cost and productivity by simplifying the process and reducing the cost.
  • an object of the present invention is to provide a variety of nanostructures suitable for each use by making nanostructures having excellent chemical / physical durability and from another nanostructures therefrom.
  • an object of the present invention is to provide a method for manufacturing a nanopattern of low cost and high productivity by using the fabricated nanostructure for pattern replication.
  • the present invention comprises a first step of applying nanoparticles on a substrate; And through heat treatment, it provides a nanostructure manufacturing method comprising a second step of bonding the nanoparticles on the substrate with nano irregularities.
  • the nanoparticles are metal nanoparticles.
  • the nanoparticles have a diameter of 1 to 100 nm, and the nano irregularities have a diameter of 10 to 1000 nm.
  • the nanoparticles may be mixed with a solvent and applied onto the substrate in a solution state.
  • the second step includes the step of sintering the nanoparticles above the sintering temperature of the nanoparticles.
  • the heat treatment is started at a temperature lower than the sintering temperature of the nanoparticles.
  • the substrate may be etched using the nano irregularities as a mask, and a third step of removing the nano irregularities may be included.
  • the method may include a third step of applying a target material on the substrate on which the nano-evenness is formed, and then performing a lift-off process of removing the nano-evenness.
  • It may include a third step of selectively applying a target material on the nano irregularities.
  • the present invention provides a nano-pattern manufacturing method comprising a replication step of replicating the produced nanostructures.
  • At least one of electroplating, imprinting, injection molding, and compression molding may be performed at least one time.
  • the present invention has the effect that it is possible to stably provide a nanostructure in a large area.
  • the present invention aims to simplify the process and reduce the cost, and there is an effect that a large amount of nanostructures can be manufactured with high mass production and low production cost.
  • the present invention has the effect of providing a variety of nanostructures suitable for each purpose by forming a nanostructure having a chemical / physically excellent durability, from which to produce another nanostructure.
  • the present invention has the effect of providing a low cost, high productivity nano pattern manufacturing method by using the fabricated nanostructures for pattern replication.
  • the nanostructure is replicated through electroplating, and the nano-molding using the obtained highly durable nanopattern as a mold has a very excellent advantage in terms of cost and productivity.
  • FIG. 1 is a process flowchart showing a method of manufacturing a nanostructure according to a first embodiment of the present invention.
  • FIG. 2 is a view illustrating a substrate on which a nanostructure manufactured by the method of FIG. 1 is formed.
  • FIG. 3 is an enlarged plan view illustrating an arrangement state of nanostructures manufactured by the fabrication method of FIG. 1.
  • FIG. 4 is an enlarged perspective view illustrating an arrangement state of the nanostructure of FIG. 3.
  • 5 to 8 are process flowcharts showing a method for manufacturing nanostructures according to the second to fifth embodiments of the present invention.
  • FIG. 9 is a process flowchart showing a method of manufacturing a nano pattern according to a sixth embodiment of the present invention.
  • nanostructures in FIGS. 1 to 8 in order to name an array of three-dimensional structures such as nano pillars, nano holes, and the like, they are referred to as nano structures in FIGS. 1 to 8 and nano patterns in FIG. 9.
  • the nanostructure and the nanopattern may have the same geometric shape.
  • the nanostructure of Figure 1 is referred to in particular as nano irregularities, this is also to clarify the indication in the claims.
  • FIG. 1 is a process flowchart showing a method of manufacturing a nanostructure according to a first embodiment of the present invention.
  • the nanostructure fabrication method of Figure 1 is uniformly applying the nanoparticles on the substrate 10, through the heat treatment, the nanoparticles are bonded to the nano-concave (23) on the substrate 10 ( aggregation).
  • the substrate 10 includes at least one of silicon, quartz, glass, plastic, oxide, and metal. According to the heat treatment process conditions to be described later, a plastic substrate to be heat treated at a low temperature, a substrate such as glass, quartz, silicon, which can be heat treated at a high temperature is possible.
  • Oxides, metals, and the like may be formed in the form of a film on the surface of the substrate 10.
  • the oxide film having an antireflection effect is formed in a single layer or multiple layers on the surface of the substrate 10 and the antireflection nanostructure is formed thereon, the antireflection effect can be doubled.
  • a metal film may be formed on the surface of the substrate 10 to be used as a seed layer for electroplating described later.
  • the substrate 10 may be a two-dimensional flat surface, or may be a three-dimensional solid surface on which an optical lens, a flow channel, and the like are formed.
  • nanoparticles are applied to these substrates 10, where the present invention may be distinguished from the prior art described above.
  • the nanostructures formed by dewetting have a disadvantage in that they are very vulnerable to dry etching, etc., thereby limiting subsequent processes.
  • the nanostructures of the present invention have excellent chemical / physical durability and can be applied to various subsequent processes. Has an advantage.
  • metal nanoparticles are preferably used.
  • the metal nanoparticles include at least one of silver, aluminum, copper, iron, platinum, lead, gold, and mercury.
  • Nanoparticles may comprise a single or two or more materials.
  • silica (SiO 2 ) nanoparticles, and the like may also be used.
  • the nanoparticles are 1-100 nm in diameter.
  • the nanoparticles may be mixed with an organic solvent or a polymer resin solvent and applied to the substrate 10 in a solution state. That is, the solution 21 in which the nanoparticles are mixed may be applied to the substrate 10. However, the nanoparticle solution 21 is already dried at the time when the heat treatment starts, the heat treatment can be started in a solid state.
  • the nanoparticles are applied according to the conditions such as the rotation speed and rotation time of the spin coating (when using spin coating), the temperature, the size of the nanoparticles, the concentration of the solution 21, the type of the solution 21, and the like. Uniformity is determined, which affects the size and distribution of the nano irregularities 23 formed after the heat treatment.
  • the nanoparticles are thinly coated on the substrate 10 and then heat treated, the nanoparticles are combined by thermal energy to form nanoconvex and convexities 23.
  • the size of the nano-concave-convex 23 is determined according to the process conditions, such as the heat treatment temperature, the type of nanoparticles, the surrounding environment.
  • the diameter of the nano irregularities 23 is 10 to 1000 nm.
  • the heat treatment includes sintering the nanoparticles above the sintering temperature of the nanoparticles.
  • the heat treatment is preferably started at a temperature lower than the sintering temperature of the nanoparticles.
  • the mechanism by which nanoparticles are aggregated is as follows. If the heat treatment is started at a temperature lower than the sintering temperature, the isolation phenomenon is started. Subsequently, when the temperature is increased to a sintering temperature or higher, the isolated particles are sintered to form nano irregularities.
  • the heat treatment is started at 200 ° C to raise the temperature to 250 ° C, the heat treatment is started at 180 ° C and the temperature is increased to 250 ° C, and the heat treatment is started at 150 ° C.
  • the size of the nano irregularities obtained is different. Starting the heat treatment at a lower temperature will result in a larger nano bumps. Because enough time is given for isolation. These characteristics can be used to control the size of the nano irregularities.
  • the heat treatment may be performed at an extremely low temperature as compared to the heat treatment of the metal thin film described above.
  • the 20-30 nm Ag nanoparticles may be heat-treated at 250 ° C. for 10 minutes to obtain nano irregularities 23 as illustrated in FIG. 1B.
  • the melting point of Ag is 961 ° C., by using Ag in a fine particle state, the Ag can be produced at a temperature much lower than the melting point, thereby producing the nanoconcave-convex (23).
  • a method using an oven a method using a hot plate, a method using a sintering furnace, a method using an infrared heater, and the like can be used.
  • a vacuum atmosphere a nitrogen atmosphere, an argon atmosphere, a general atmospheric atmosphere, or the like can be used as the process atmosphere.
  • the heat treatment may improve the bonding properties of the nanoparticles through multiple conditions, rather than a single condition to form a uniform nano irregularities (23).
  • FIG. 2 is a diagram illustrating a state in which nanostructures are formed by the fabrication method of FIG. 1 on the substrate 10, and
  • FIG. 3 is an enlarged plan view illustrating an arrangement state of the nanostructures fabricated by the fabrication method of FIG. 1.
  • 4 is an enlarged perspective view illustrating an arrangement state of the nanostructure of FIG. 3.
  • uniform nano irregularities 23 can be obtained by the nanostructure fabrication method of the present invention.
  • Various nanostructures may be obtained by using the nano-concave-convex 23 manufactured in FIG. 1 in a subsequent process.
  • FIG. 5 is a process flowchart showing a method of manufacturing a nanostructure according to a second embodiment of the present invention.
  • the nanostructures 23 may be etched using the nanoconcave-convex 23 manufactured as shown in FIG. 1 as a mask, and the nanoconcave-convex 23 may be removed. Dry etching, wet etching, and the like can be used.
  • a chemical substance that reacts only with the substrate 10 without reacting with the nano irregularities 23 or a chemical substance having a difference in reaction speed between the nano irregularities 23 and the substrate 10 is used. Can be etched.
  • nano-concave-convex (23) and etching can be produced a variety of nanostructures, such as nanostructures, triangular nanostructures of high-grade equipment.
  • FIG. 6 is a process flowchart showing a method of manufacturing a nanostructure according to a third embodiment of the present invention.
  • the nano-structure may be manufactured through a lift-off process of removing the nano-concave-convex 23. .
  • the target material is coated with a material different from the nano-concave-convex (23) such as oxide, metal, polymer, etc., and then the nano-convex (23) is melted to manufacture a nano-hole.
  • a material different from the nano-concave-convex (23) such as oxide, metal, polymer, etc.
  • the manufacturing method of FIG. 6 is used to make the nanostructure having the lower end or the upper end of the flat surface by removing the upper end of the nano-concave-convex 23.
  • FIG. 7 is a process flowchart showing a method of manufacturing a nanostructure according to a fourth embodiment of the present invention
  • Figure 8 is a process flowchart showing a method of manufacturing a nanostructure according to a fifth embodiment of the present invention.
  • the target material may be selectively coated on the nano-convexities 23 or the substrate 10 of FIG. 1 to impart a special effect.
  • the nano unevenness 23 functions as a mask to selectively apply the target material 26 to substrate portions other than the nano unevenness 23 and remove the nano unevenness 23.
  • Nanostructures coated with TiO 2 on silver nano irregularities absorb ultraviolet rays and can be applied to keypads of mobile phones.
  • the metal nano bumps may be coated with metals, oxides, polymers, and the like having different dielectric constants to impart desired optical properties.
  • Biochips require nanostructures to attach / grow cells. Depending on the size, cycle, height, material, etc. of the nanostructures, various applications are possible by changing the attachment and growth mechanisms of the cells.
  • the nanostructures may be selectively coated on the nano-concave-convex 23 to manufacture nanostructures, and may be used as filters by inducing a selective reaction by the fabricated nanostructures.
  • the target materials 26 and 27 may be selectively coated on the nano irregularities 23 or the substrate 10 by using the surface energy difference, and then the secondary reaction may be induced using the target materials 26 and 27.
  • the self-assembled monolayer may be selectively coated on the substrate 10 or the nano unevenness 23.
  • thiol-based materials are coated on materials such as gold, platinum, nickel, copper, etc., but not coated on silicon, glass, quartz, and polymer materials, and have reactive nano irregularities 23 such as gold or platinum.
  • the thiol-based organic material may be coated and applied to a bio device.
  • the substrate 10 may be selectively reacted with the target material 26 which does not react with the nano unevenness 23, and the nano unevenness 23 may be removed to form nano holes at a portion thereof.
  • the nanostructures may be manufactured by duplicating the nanostructures manufactured by the method of FIGS. 5 to 8.
  • various replication methods such as electroplating, imprinting, injection molding, compression molding, and the like may be used, and one or more replication may be performed.
  • the nanostructures having the opposite shape as the nanostructures may be manufactured by imprinting the fabricated nanostructures, or the nanostructures having the same shape as the nanostructures may be manufactured by two imprinting, or the nanostructures may be formed by preplating and imprinting. It can be applied to various applications, such as manufacturing a nano pattern of the same shape.
  • the process speed may be greatly improved.
  • the nanopattern can be mass produced at low cost.
  • FIG. 9 is a process flowchart showing a method of manufacturing a nano pattern according to a sixth embodiment of the present invention.
  • FIG. 9 shows an embodiment in which electroplating is performed as a subsequent process of the manufacturing method of FIG. 5.
  • the electroplating may be performed as a subsequent process of the other manufacturing method.
  • the seed layer 31 is formed on the nanostructure, and then electroplating is performed.
  • Nano pattern 33 produced by electroplating is very excellent in durability, it is suitable for use as a mold for manufacturing other nano patterns. In this case, it brings the advantage of mass-producing nanopatterns at even lower cost.
  • nanostructures or nanopatterns can be manufactured at low cost in large areas such as biochips, optical filters for display devices, optical devices for solar cells, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The present invention provides a method for manufacturing a nanostructure, which comprises a first step for applying nanoparticles on a substrate and a second step for binding the nanoparticles on the substrate to create nano-sized unevenness through heat treatment. Particularly, the nanoparticles are metallic. More particularly, the nanoparticles have a diameter of 1-100 nm and the diameter of the nano-sized unevenness is 10-1000 nm. In addition, the present invention provides a method for manufacturing nanopatterns, which comprises: manufacturing the nanostructure by the method for manufacturing the nanostructure; and replicating the manufactured nanostructure.

Description

나노 구조물 제작방법Nano structure manufacturing method
본 발명은 나노 구조물 제작방법에 관한 것으로서, 더욱 상세하게는 나노 입자의 결합을 이용한 나노 구조물 제작방법에 관한 것이다. The present invention relates to a method for manufacturing nanostructures, and more particularly, to a method for manufacturing nanostructures using a combination of nanoparticles.
NT/IT/BT 기술이 발전함에 따라, 나노 구조물은 점차 적용 분야 및 수요가 늘어가고 있다. 다양한 분야의 나노 구조물을 제작하는데 있어, 종래의 많은 방법들이 알려져 있다. 예컨대, 나방눈을 모사한 나노 구조물을 기판 위에 형성하여 디스플레이 분야에서 필요한 반사방지필름을 제작한다. 건축물의 외벽에 적용되는 초발수 기능성 필름의 경우에도, 나노 구조물을 기판 위에 형성하여 제작한다. As NT / IT / BT technology evolves, nanostructures are increasingly growing in applications and demand. In manufacturing nanostructures of various fields, many conventional methods are known. For example, by forming a nanostructure that mimics the moth eye on a substrate to produce an antireflection film required in the display field. Even in the case of a super water-repellent functional film applied to the outer wall of a building, a nanostructure is formed on a substrate and manufactured.
하지만, 종래의 나노 구조물 제작방법인, 전자빔 리소그래피, 집속이온빔 가공, 홀로그래픽 리소그래피, 포토리소그래피, 등의 방법들은 대면적으로 나노 구조물을 제작하는데, 높은 비용과 긴 공정시간 및 공정비용이 발생하는 문제점이 있었다. However, the conventional methods for manufacturing nanostructures, such as electron beam lithography, focused ion beam processing, holographic lithography, photolithography, and the like, produce nanostructures in large areas, resulting in high cost, long process time, and process cost. There was this.
예컨대, 아르곤 플로라이드(ArF) 포토리스그래피의 경우, 대면적으로 나노 구조물을 양산하기에는, 장비 구축과 공정 비용이 매우 높아, 경제성이 있다고 보기 힘들다. For example, in the case of argon fluoride (ArF) photolithography, in order to mass produce nanostructures in large areas, equipment construction and processing costs are very high and it is hard to say that it is economical.
전자빔 리소그래피의 경우, 나노/마이크로 지름의 구조물을 쉽게 만들수 있다. 그러나, 대면적으로 가공할 시, 비용 및 공정 시간이 상당히 높을뿐 아니라, 가공 면적이 제한적이다. In electron beam lithography, nano / micro diameter structures can be easily created. However, when processing in large areas, not only the cost and processing time are quite high, but also the processing area is limited.
홀로그래픽 리소그래피는 빔간 간섭 차이를 이용한 공정으로 고속 대면적화가 가능하여 주기적인 나노 구조물 제작에 넓게 적용되고 있다. 홀로그래픽 리소그래피는 전자빔 리소그래피의 면적 제한성에 대한 돌파구로서 기능할 수 있다. 그러나, 대면적 및 초미세 나노 구조물을 제작하기 위해서는, 장비의 고가화가 필요하며, 공정 안정성이 매우 중요하여 대규모 시스템 구축이 요구된다. Holographic lithography is a process that utilizes the difference in the interference between beams, which enables high speed and large area, and has been widely applied to the fabrication of periodic nanostructures. Holographic lithography can serve as a breakthrough for the area limitations of electron beam lithography. However, in order to fabricate large-area and ultra-fine nanostructures, expensive equipment is required, and process stability is very important, and large-scale system construction is required.
한편, 나노 콜로이드 도포를 이용하여 나노 구조물을 제작하는 경우, 나노 입자 크기의 한계를 극복하기 어려우며, 대면적으로 균일하게 나노 콜로이드를 도포하는 것이 어렵다. 특히, 입자들이 단일 층으로 고르게 분포되어야 하고, 이를 위해 입자의 밀도 조절, 스핀 코팅의 회전 속도, 등의 공정 조건의 최적화가 이루어져야 하는데, 그 최적화가 매우 어려우며 공정 안정성이 낮다. On the other hand, when manufacturing nanostructures using nano-colloidal coating, it is difficult to overcome the limitations of the nanoparticle size, it is difficult to apply the nano-colloid uniformly in a large area. In particular, the particles should be evenly distributed in a single layer, and for this purpose, optimization of the process conditions such as controlling the density of the particles, the rotational speed of the spin coating, and the like should be made. The optimization is very difficult and the process stability is low.
최근에는, 액상 고분자 물질을 기판의 음각 표면에 도포하고, 고분자 물질의 유리 전이 온도 이상으로 가열하여, 디웨팅(dewetting)을 야기시켜 나노 구조물을 형성하려는 시도가 있다. 그러나, 이렇게 제작된 고분자 나노 구조물은 화학적/물리적으로 취약하고, 특히 건식 식각, 등에 매우 취약하여, 후속 공정을 진행하는데 커다란 제약 사항으로 작용하는 문제점을 가진다. Recently, attempts have been made to form nanostructures by applying a liquid polymeric material to the intaglio surface of a substrate and heating above the glass transition temperature of the polymeric material to cause dewetting. However, the polymer nanostructures fabricated in this way have a problem in that they are chemically / physically vulnerable, in particular, very vulnerable to dry etching, etc., which acts as a big limitation in the subsequent process.
또한, 스퍼터링으로 금속 박막을 형성하고 이를 열처리하여 나노 구조물을 제작하려는 시도가 있다. 그러나, 이는 대면적 적용에 있어 장비 제약이 있고, 공정 비용 및 시간이 크다는 문제점이 있다. 또한, 금속 박막 재료의 종류가 제한적이며, 구조적인 특성상 800℃ 이상의 고온 열처리 공정이 필요하여 특수 고온 시스템이 필요하다. 또한, 기판에 열충격을 주는, 등 공정 안정성이 낮고 사용 가능한 기판의 종류가 제한적이다. In addition, there is an attempt to produce a nanostructure by forming a metal thin film by sputtering and heat treatment. However, this has the problem of equipment limitations and large process cost and time in large area applications. In addition, the type of metal thin film material is limited, and due to its structural characteristics, a high temperature heat treatment process of 800 ° C. or higher is required, and thus a special high temperature system is required. In addition, the process stability, such as giving a thermal shock to the substrate is low and the kind of substrate that can be used is limited.
본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 대면적으로 나노 구조물을 안정적으로 제공하는데 목적이 있다. The present invention has been made to solve the above problems, an object of the present invention is to stably provide a nanostructure large area.
또한, 본 발명은 공정의 단순화 및 저비용화를 도모하여, 비용 및 생산성 면에서 우수한 나노 구조물 제조 방법을 제공하는데 목적이 있다. In addition, an object of the present invention is to provide a method for manufacturing nanostructures excellent in terms of cost and productivity by simplifying the process and reducing the cost.
또한, 본 발명은 화학적/물리적으로 내구성이 우수한 나노 구조물을 제작하고, 이로부터 또 다른 나노 구조물을 제작함으로써, 각각의 용도에 적합한 다양한 나노 구조물을 제공하는데 목적이 있다. In addition, an object of the present invention is to provide a variety of nanostructures suitable for each use by making nanostructures having excellent chemical / physical durability and from another nanostructures therefrom.
또한, 본 발명은 제작된 나노 구조물을 패턴 복제에 이용하여, 더 한층 저비용 고생산성의 나노 패턴 제작방법을 제공하는데 목적이 있다. In addition, an object of the present invention is to provide a method for manufacturing a nanopattern of low cost and high productivity by using the fabricated nanostructure for pattern replication.
상기한 목적을 달성하기 위하여, 본 발명은 기판 상에 나노 입자를 도포하는 제1단계; 및 열처리를 통하여, 상기 나노 입자를 상기 기판 상에 나노 요철로 결합시키는 제2단계를 포함하는 것을 특징으로 하는 나노 구조물 제작방법을 제공한다. In order to achieve the above object, the present invention comprises a first step of applying nanoparticles on a substrate; And through heat treatment, it provides a nanostructure manufacturing method comprising a second step of bonding the nanoparticles on the substrate with nano irregularities.
바람직하게, 상기 나노 입자는 금속 나노 입자이다. Preferably, the nanoparticles are metal nanoparticles.
바람직하게, 상기 나노 입자는 직경이 1~100nm이고, 상기 나노 요철은 직경이 10~1000nm이다. Preferably, the nanoparticles have a diameter of 1 to 100 nm, and the nano irregularities have a diameter of 10 to 1000 nm.
상기 나노 입자는 용매에 혼합되어 용액 상태로 상기 기판 상에 도포될 수 있다. The nanoparticles may be mixed with a solvent and applied onto the substrate in a solution state.
바람직하게, 상기 제2단계는, 상기 나노 입자의 소결 온도 이상에서 상기 나노 입자를 소결시키는 단계를 포함한다. 또한, 상기 제2단계는, 상기 나노 입자의 소결 온도보다 낮은 온도에서 열처리를 시작한다. Preferably, the second step includes the step of sintering the nanoparticles above the sintering temperature of the nanoparticles. In addition, the second step, the heat treatment is started at a temperature lower than the sintering temperature of the nanoparticles.
상기 나노 요철을 마스크로 하여 상기 기판을 식각하고, 상기 나노 요철을 제거하는 제3단계를 포함할 수 있다. The substrate may be etched using the nano irregularities as a mask, and a third step of removing the nano irregularities may be included.
상기 나노 요철이 형성된 상기 기판 위에 타켓 물질을 도포한 후, 상기 나노 요철을 제거하는 리프트-오프 공정을 수행하는 제3단계를 포함할 수 있다. The method may include a third step of applying a target material on the substrate on which the nano-evenness is formed, and then performing a lift-off process of removing the nano-evenness.
상기 나노 요철을 마스크로 하여 선택적으로 상기 나노 요철 이외의 상기 기판의 부위에 타켓 물질을 도포하고, 상기 나노 요철을 제거하는 제3단계를 포함할 수 있다. A third step of selectively applying a target material to a portion of the substrate other than the nano-unevenness using the nano-unevenness as a mask, and removing the nano-unevenness.
상기 나노 요철 위에 타겟물질을 선택적으로 도포하는 제3단계를 포함할 수 있다. It may include a third step of selectively applying a target material on the nano irregularities.
또한, 본 발명은, 상기 나노 구조물 제작방법에 의하여 상기 나노 구조물을 제작하는 단계; 및 제작된 상기 나노 구조물을 복제하는 복제단계를 포함하는 것을 특징으로 하는 나노 패턴 제작방법을 제공한다.In addition, the present invention, the step of manufacturing the nanostructure by the nanostructure manufacturing method; And it provides a nano-pattern manufacturing method comprising a replication step of replicating the produced nanostructures.
여기서, 상기 복제단계에서는 전주도금, 임프린팅, 사출성형 및 압축성형 중 적어도 하나를 1회 이상 수행할 수 있다. Here, in the replicating step, at least one of electroplating, imprinting, injection molding, and compression molding may be performed at least one time.
상기한 구성에 따르면, 본 발명은 대면적으로 나노 구조물을 안정적으로 제공할 수 있는 효과가 있다. According to the above configuration, the present invention has the effect that it is possible to stably provide a nanostructure in a large area.
또한, 본 발명은 공정의 단순화 및 저비용화를 도모하여, 높은 양산성과 낮은 생산단가로 나노 구조물의 대량으로 제작할 수 있는 효과가 있다. In addition, the present invention aims to simplify the process and reduce the cost, and there is an effect that a large amount of nanostructures can be manufactured with high mass production and low production cost.
또한, 본 발명은 화학적/물리적으로 내구성이 우수한 나노 구조물을 형성하고, 이로부터 또 다른 나노 구조물을 제작함으로써, 각각의 용도에 적합한 다양한 나노 구조물을 제공할 수 있는 효과가 있다. In addition, the present invention has the effect of providing a variety of nanostructures suitable for each purpose by forming a nanostructure having a chemical / physically excellent durability, from which to produce another nanostructure.
또한, 본 발명은 제작된 나노 구조물을 패턴 복제에 이용하여, 더 한층 저비용 고생산성의 나노 패턴 제작방법을 제공할 수 있는 효과가 있다. 특히, 전주도금을 통하여 나노 구조물을 복제하고, 얻어진 고내구성의 나노 패턴을 몰드로 사용하여 나노 몰딩하는 경우 비용 및 생산성 면에서 매우 우수한 이점을 갖게 된다. In addition, the present invention has the effect of providing a low cost, high productivity nano pattern manufacturing method by using the fabricated nanostructures for pattern replication. In particular, the nanostructure is replicated through electroplating, and the nano-molding using the obtained highly durable nanopattern as a mold has a very excellent advantage in terms of cost and productivity.
도 1은 본 발명의 제1실시예에 따른 나노 구조물 제작방법을 보여주는 공정 순서도이다. 1 is a process flowchart showing a method of manufacturing a nanostructure according to a first embodiment of the present invention.
도 2는 도 1의 제작방법에 의하여 제작된 나노 구조물이 형성된 기판을 보여주는 도면이다. FIG. 2 is a view illustrating a substrate on which a nanostructure manufactured by the method of FIG. 1 is formed.
도 3은 도 1의 제작방법에 의하여 제작된 나노 구조물의 배열 상태를 보여주는 확대 평면도이다. 3 is an enlarged plan view illustrating an arrangement state of nanostructures manufactured by the fabrication method of FIG. 1.
도 4는 도 3의 나노 구조물의 배열 상태를 보여주는 확대 사시도이다.4 is an enlarged perspective view illustrating an arrangement state of the nanostructure of FIG. 3.
도 5 내지 도 8은 본 발명의 제2 내지 제5실시예에 따른 나노 구조물 제작방법을 보여주는 공정 순서도이다. 5 to 8 are process flowcharts showing a method for manufacturing nanostructures according to the second to fifth embodiments of the present invention.
도 9는 본 발명의 제6실시예에 따른 나노 패턴 제작방법을 보여주는 공정 순서도이다. 9 is a process flowchart showing a method of manufacturing a nano pattern according to a sixth embodiment of the present invention.
이하, 첨부 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 명세서에서 나노 기둥, 나노 홀, 등 3차원 구조물의 배열을 명칭함에 있어, 도 1 내지 도 8에서는 나노 구조물로, 그리고 도 9에서는 나노 패턴으로 명칭한다. 그러나, 이는 특허청구범위에서 지시대상을 구별할 목적으로 달리 명칭된 것일뿐, 나노 구조물과 나노 패턴은 동일한 기하학적 형상을 가질 수 있다. 또한, 도 1의 나노 구조물을 특히 나노 요철이라 칭하나, 이 역시 특허청구범위에서 지시대상을 명확히 하기 위함이다. In the present specification, in order to name an array of three-dimensional structures such as nano pillars, nano holes, and the like, they are referred to as nano structures in FIGS. 1 to 8 and nano patterns in FIG. 9. However, it is only named differently for the purpose of distinguishing the subject matter in the claims, the nanostructure and the nanopattern may have the same geometric shape. In addition, although the nanostructure of Figure 1 is referred to in particular as nano irregularities, this is also to clarify the indication in the claims.
도 1은 본 발명의 제1실시예에 따른 나노 구조물 제작방법을 보여주는 공정 순서도이다. 1 is a process flowchart showing a method of manufacturing a nanostructure according to a first embodiment of the present invention.
도시한 바와 같이, 도 1의 나노 구조물 제작방법은 기판(10) 상에 나노 입자를 균일하게 도포하는 단계와, 열처리를 통하여, 나노 입자를 기판(10) 상에 나노 요철(23)로 결합(aggregation)시키는 단계를 포함한다. As shown, the nanostructure fabrication method of Figure 1 is uniformly applying the nanoparticles on the substrate 10, through the heat treatment, the nanoparticles are bonded to the nano-concave (23) on the substrate 10 ( aggregation).
기판(10)은 실리콘, 쿼츠(quartz), 유리, 플라스틱, 산화물, 금속 중 적어도 하나를 포함한다. 후술하는 열처리 공정조건에 따라, 낮은 온도에서 열처리가 수행되어야 하는 플라스틱 기판, 고온에서 열처리가 가능한 유리, 쿼츠, 실리콘, 등의 기판이 가능하다. The substrate 10 includes at least one of silicon, quartz, glass, plastic, oxide, and metal. According to the heat treatment process conditions to be described later, a plastic substrate to be heat treated at a low temperature, a substrate such as glass, quartz, silicon, which can be heat treated at a high temperature is possible.
산화물, 금속, 등은 기판(10)의 표면에 막의 형태로 형성될 수 있다. 반사방지 효과를 갖는 산화물 막을 기판(10)의 표면에 단층 또는 다층으로 형성하고, 여기에 반사방지 나노 구조물을 형성하는 경우, 반사방지 효과를 배가시킬 수 있다. 또 다른 예로서, 금속 막을 기판(10)의 표면에 형성하여 후술하는 전주도금을 위한 시드층(seed layer)으로 사용할 수 있다. Oxides, metals, and the like may be formed in the form of a film on the surface of the substrate 10. When the oxide film having an antireflection effect is formed in a single layer or multiple layers on the surface of the substrate 10 and the antireflection nanostructure is formed thereon, the antireflection effect can be doubled. As another example, a metal film may be formed on the surface of the substrate 10 to be used as a seed layer for electroplating described later.
기판(10)은 도시한 바와 같이, 2차원 평탄면일 수도 있고, 광학 렌즈, 유동 채널, 등이 표면에 형성된 3차원 입체면일 수도 있다. As shown, the substrate 10 may be a two-dimensional flat surface, or may be a three-dimensional solid surface on which an optical lens, a flow channel, and the like are formed.
본 발명에서는, 이들 기판(10)에 나노 입자가 도포되는데, 여기서, 본 발명은 전술한 종래 기술과 구별될 수 있을 것이다. In the present invention, nanoparticles are applied to these substrates 10, where the present invention may be distinguished from the prior art described above.
먼저, 디웨팅을 이용하여 형성된 나노 구조물은 건식 식각, 등에 매우 취약하여 후속 공정을 제약하는 단점이 있었다, 그러나, 본 발명의 나노 구조물은 화학적/물리적으로 내구성이 우수하여 다양한 후속 공정에 적용될 수 있는 이점을 갖는다. First, the nanostructures formed by dewetting have a disadvantage in that they are very vulnerable to dry etching, etc., thereby limiting subsequent processes. However, the nanostructures of the present invention have excellent chemical / physical durability and can be applied to various subsequent processes. Has an advantage.
한편, 입자가 아닌 박막 형태로 기판에 금속 박막을 형성하는 경우, 서로 긴밀하게 결합된 금속 결합을 깨뜨려 재결합을 유발하기 위해서는 많은 열에너지가 요구된다. 금속 박막에 높은 열에너지를 가하기 위해서는 소결로를 이용하여야 하며, 그 온도 분포를 균일하게 하기 위해서는 많은 어려움이 따르며 그 공정 비용도 매우 높아진다. 서로 긴밀하게 밀집된 금속 결정들을 열처리를 이용하여 균일하고 독립적인 원형의 나노 요철로 제작하기 위해서는 결정들 사이에 적절한 간극이 필요하다. 결정 사이의 간극이 너무 작을 경우 그 간극으로 인하여 얻어지는 나노 요철의 불규칙 성이 증대된다. 따라서, 금속 물질이 박막 형태보다는 입자 형태로 균일하게 도포되는 것이 낮은 온도에서 균일한 나노 요철을 얻는데 유리하다. On the other hand, when forming a metal thin film on the substrate in the form of a thin film rather than particles, a large amount of thermal energy is required to break the metal bonds closely bonded to each other to cause recombination. In order to apply high thermal energy to the metal thin film, a sintering furnace should be used. In order to make the temperature distribution uniform, many difficulties are required and the process cost is very high. Proper gaps between the crystals are necessary in order to fabricate the metal crystals that are densely packed with each other into uniform and independent circular nano irregularities using heat treatment. If the gap between the crystals is too small, the gap increases the irregularities of the obtained nano irregularities. Therefore, uniform application of the metal material in the form of particles rather than in the form of thin films is advantageous for obtaining uniform nano irregularities at low temperatures.
나노 입자로 바람직하게는, 금속 나노 입자가 사용된다. 여기서, 금속 나노 입자는, 은, 알루미늄, 구리, 철, 백금, 납, 금 및 수은 중 적어도 하나가 포함된다. 나노 입자는 단일 또는 2종 이상의 물질을 포함할 수 있다. 이 밖에도, 실리카(SiO2) 나노 입자, 등도 사용될 수 있다. As nanoparticles, metal nanoparticles are preferably used. Here, the metal nanoparticles include at least one of silver, aluminum, copper, iron, platinum, lead, gold, and mercury. Nanoparticles may comprise a single or two or more materials. In addition, silica (SiO 2 ) nanoparticles, and the like may also be used.
바람직하게, 나노 입자는 직경이 1~100nm이다. Preferably, the nanoparticles are 1-100 nm in diameter.
나노 입자는 유기 용매 또는 폴리머 수지 용매에 혼합되어 용액상태로 기판(10)에 도포될 수 있다. 즉, 나노 입자가 혼합된 용액(21)을 기판(10)에 도포할 수 있다. 그러나 나노 입자 용액(21)은 열처리가 시작되는 시점에서 이미 건조되어, 고상의 상태에서 열처리가 시작될 수 있다. The nanoparticles may be mixed with an organic solvent or a polymer resin solvent and applied to the substrate 10 in a solution state. That is, the solution 21 in which the nanoparticles are mixed may be applied to the substrate 10. However, the nanoparticle solution 21 is already dried at the time when the heat treatment starts, the heat treatment can be started in a solid state.
용액(21)의 도포에는 스핀 코팅, 바 코팅, 스프레이 코팅, 담금 코팅(deep coating), 등을 이용할 수 있다. 이들 도포 방법으로, 대면적에 나노 입자를 균일하게 도포할 수 있으며, 낮은 공정 비용의 장점을 갖는다. Spin coating, bar coating, spray coating, deep coating, or the like may be used for the application of the solution 21. With these coating methods, nanoparticles can be uniformly applied to a large area, which has the advantage of low process cost.
구체적으로는, 스핀 코팅의 회전 속도 및 회전 시간 (스핀 코팅을 이용할 경우), 온도, 나노 입자의 크기, 용액(21)의 농도, 용액(21)의 종류, 등의 조건에 따라 나노 입자의 도포 균일도가 결정되며, 이는 열처리 후 형성되는 나노 요철(23)의 크기 및 분포에 영향을 미친다. Specifically, the nanoparticles are applied according to the conditions such as the rotation speed and rotation time of the spin coating (when using spin coating), the temperature, the size of the nanoparticles, the concentration of the solution 21, the type of the solution 21, and the like. Uniformity is determined, which affects the size and distribution of the nano irregularities 23 formed after the heat treatment.
기판(10)에 나노 입자를 얇게 도포한 후, 열처리를 하면 나노 입자들이 열에너지에 의하여 결합하여 나노 요철(23)을 형성하게 된다. 이때, 열처리 온도, 나노 입자의 종류, 주변 환경, 등의 공정 조건에 따라 나노 요철(23)의 크기가 결정된다. 바람직하게, 나노 요철(23)의 직경은 10~1000nm이다. After the nanoparticles are thinly coated on the substrate 10 and then heat treated, the nanoparticles are combined by thermal energy to form nanoconvex and convexities 23. At this time, the size of the nano-concave-convex 23 is determined according to the process conditions, such as the heat treatment temperature, the type of nanoparticles, the surrounding environment. Preferably, the diameter of the nano irregularities 23 is 10 to 1000 nm.
열처리는, 나노 입자의 소결 온도 이상에서 나노 입자를 소결(sintering) 시키는 단계를 포함한다. 여기서, 열처리는, 나노 입자의 소결 온도보다 낮은 온도에서 시작되는 것이 바람직하다. The heat treatment includes sintering the nanoparticles above the sintering temperature of the nanoparticles. Here, the heat treatment is preferably started at a temperature lower than the sintering temperature of the nanoparticles.
나노 입자가 결합(aggregation)되는 메커니즘은 다음과 같다. 소결 온도보다 낮은 온도에서 열처리를 시작하면 군데군데 입자끼리 뭉쳐지는 아이솔레이션(isolation) 현상이 시작된다. 이후, 소결 온도 또는 그보다 높은 온도까지 온도가 상승되면, 아이솔레이션된 입자들이 소결되면서 나노 요철을 형성하게 된다. The mechanism by which nanoparticles are aggregated is as follows. If the heat treatment is started at a temperature lower than the sintering temperature, the isolation phenomenon is started. Subsequently, when the temperature is increased to a sintering temperature or higher, the isolated particles are sintered to form nano irregularities.
예컨대, 소결 온도가 250℃라 가정할 때, 200℃에서 열처리를 시작하여 250℃ 까지 온도를 올리는 경우와, 180℃에서 열처리를 시작하여 250℃ 까지 온도를 올리는 경우와, 150℃에서 열처리를 시작하여 250℃까지 온도를 올리는 경우에 있어, 얻어지는 나노 요철의 크기가 다르게 된다. 낮은 온도에서 열처리를 시작하는 것이 나노 요철의 크기가 더 커지게 된다. 왜냐하면, 아이솔레이션에 충분한 시간이 주어지기 때문이다. 이러한 특성을 이용하여 나노 요철의 크기를 제어할 수 있다. For example, assuming that the sintering temperature is 250 ° C, the heat treatment is started at 200 ° C to raise the temperature to 250 ° C, the heat treatment is started at 180 ° C and the temperature is increased to 250 ° C, and the heat treatment is started at 150 ° C. In the case of raising the temperature to 250 ° C., the size of the nano irregularities obtained is different. Starting the heat treatment at a lower temperature will result in a larger nano bumps. Because enough time is given for isolation. These characteristics can be used to control the size of the nano irregularities.
열처리는 전술한 금속 박막을 열처리하는 것과 대비하여 월등히 낮은 온도에서 수행될 수 있다. 예컨대, 20~30nm Ag 나노 입자를 250℃에서 10분간 열처리하여 도 1b와 같은 나노 요철(23)을 얻을 수 있다. Ag의 녹는점은 961℃이나, 미세 입자 상태의 Ag를 이용함으로써 녹는점보다 월등히 낮은 온도에서 결합을 발생시켜 나노 요철(23)을 제작할 수 있게 된다. The heat treatment may be performed at an extremely low temperature as compared to the heat treatment of the metal thin film described above. For example, the 20-30 nm Ag nanoparticles may be heat-treated at 250 ° C. for 10 minutes to obtain nano irregularities 23 as illustrated in FIG. 1B. Although the melting point of Ag is 961 ° C., by using Ag in a fine particle state, the Ag can be produced at a temperature much lower than the melting point, thereby producing the nanoconcave-convex (23).
열처리는 오븐을 이용하는 방법, 핫플레이트를 이용하는 방법, 소결로를 이용하는 방법, 적외선 가열기를 이용하는 방법, 등을 이용할 수 있다. As the heat treatment, a method using an oven, a method using a hot plate, a method using a sintering furnace, a method using an infrared heater, and the like can be used.
열처리 조건에 따라, 공정 분위기로 진공 분위기, 질소 분위기, 아르곤 분위기, 일반 대기 분위기, 등을 사용할 수 있다. Depending on the heat treatment conditions, a vacuum atmosphere, a nitrogen atmosphere, an argon atmosphere, a general atmospheric atmosphere, or the like can be used as the process atmosphere.
공정 조건에 따라, 열처리는 단일 조건이 아닌, 다중 조건을 통해 나노 입자의 결합 특성을 향상시켜 균일한 나노 요철(23)을 형성할 수 있다. Depending on the process conditions, the heat treatment may improve the bonding properties of the nanoparticles through multiple conditions, rather than a single condition to form a uniform nano irregularities (23).
도 2는 기판(10) 상에 도 1의 제작방법에 의하여 나노 구조물이 형성된 상태를 도식화한 도면이고, 도 3은 도 1의 제작방법에 의하여 제작된 나노 구조물의 배열 상태를 보여주는 확대 평면도이며, 도 4는 도 3의 나노 구조물의 배열 상태를 보여주는 확대 사시도이다.FIG. 2 is a diagram illustrating a state in which nanostructures are formed by the fabrication method of FIG. 1 on the substrate 10, and FIG. 3 is an enlarged plan view illustrating an arrangement state of the nanostructures fabricated by the fabrication method of FIG. 1. 4 is an enlarged perspective view illustrating an arrangement state of the nanostructure of FIG. 3.
도시한 바와 같이, 본 발명의 나노 구조물 제작방법에 의하여 균일한 나노 요철(23)을 얻을 수 있다. As shown, uniform nano irregularities 23 can be obtained by the nanostructure fabrication method of the present invention.
도 1에서 제작된 나노 요철(23)을 후속 공정에 이용하여 다양한 나노 구조물을 얻을 수 있다. Various nanostructures may be obtained by using the nano-concave-convex 23 manufactured in FIG. 1 in a subsequent process.
도 5는 본 발명의 제2실시예에 따른 나노 구조물 제작방법을 보여주는 공정 순서도이다. 5 is a process flowchart showing a method of manufacturing a nanostructure according to a second embodiment of the present invention.
도시한 바와 같이, 도 1에서 제작된 나노 요철(23)을 마스크로 하여 기판(10)을 식각하고 나노 요철(23)을 제거하여 나노 구조물을 제작할 수 있다. 건식식각, 습식식각, 등을 이용할 수 있다. As shown in FIG. 1, the nanostructures 23 may be etched using the nanoconcave-convex 23 manufactured as shown in FIG. 1 as a mask, and the nanoconcave-convex 23 may be removed. Dry etching, wet etching, and the like can be used.
기판(10)을 식각하기 위하여, 나노 요철(23)에는 반응하지 않고 기판(10)하고만 반응하는 화학물질, 혹은 나노 요철(23)과 기판(10)과 반응 속도 차이가 나는 화학물질을 이용하여 식각을 할 수 있다. In order to etch the substrate 10, a chemical substance that reacts only with the substrate 10 without reacting with the nano irregularities 23 or a chemical substance having a difference in reaction speed between the nano irregularities 23 and the substrate 10 is used. Can be etched.
나노 요철(23) 및 식각을 이용하여 고세장비의 나노 구조물, 삼각형 나노 구조물, 등 다양한 나노 구조물을 제작할 수 있다. Using nano-concave-convex (23) and etching can be produced a variety of nanostructures, such as nanostructures, triangular nanostructures of high-grade equipment.
도 6은 본 발명의 제3실시예에 따른 나노 구조물 제작방법을 보여주는 공정 순서도이다. 6 is a process flowchart showing a method of manufacturing a nanostructure according to a third embodiment of the present invention.
도 1의 나노 요철(23)이 형성된 기판(10) 위에 타겟물질(25)을 도포한 후, 나노 요철(23)을 제거하는 리프트-오프(lift-off) 공정을 통하여 나노 구조물을 제작할 수 있다. After applying the target material 25 on the substrate 10 having the nano-concave-convex 23 of FIG. 1, the nano-structure may be manufactured through a lift-off process of removing the nano-concave-convex 23. .
타켓 물질로 산화물, 금속, 폴리머, 등 나노 요철(23)과는 다른 물질을 코팅한 후 나노 요철(23)을 녹여 나노 홀을 제작한다. The target material is coated with a material different from the nano-concave-convex (23) such as oxide, metal, polymer, etc., and then the nano-convex (23) is melted to manufacture a nano-hole.
도 6의 제작방법은 나노 요철(23)의 상단부가 곡면인 것을 없애, 하단부 또는 상단부가 평탄면인 나노 구조물을 만드는데 이용된다. The manufacturing method of FIG. 6 is used to make the nanostructure having the lower end or the upper end of the flat surface by removing the upper end of the nano-concave-convex 23.
도 7은 본 발명의 제4실시예에 따른 나노 구조물 제작방법을 보여주는 공정 순서도이고, 도 8은 본 발명의 제5실시예에 따른 나노 구조물 제작방법을 보여주는 공정 순서도이다. 7 is a process flowchart showing a method of manufacturing a nanostructure according to a fourth embodiment of the present invention, Figure 8 is a process flowchart showing a method of manufacturing a nanostructure according to a fifth embodiment of the present invention.
도 1의 나노 요철(23) 또는 기판(10) 위에 타켓 물질을 선택적으로 도포하여 특수한 효과를 부여할 수 있다. The target material may be selectively coated on the nano-convexities 23 or the substrate 10 of FIG. 1 to impart a special effect.
도 7의 실시예에서는, 나노 요철(23)이 마스크로 기능하여, 나노 요철(23) 이외의 기판 부위에 타겟물질(26)을 선택적으로 도포하고, 나노 요철(23)을 제거한다. In the embodiment of FIG. 7, the nano unevenness 23 functions as a mask to selectively apply the target material 26 to substrate portions other than the nano unevenness 23 and remove the nano unevenness 23.
은 나노 요철에 TiO2를 코팅한 나노 구조물은 자외선을 흡수하여, 휴대폰의 키패드에 적용될 수 있다. 이와 같이, 금속 나노 요철에 다른 유전율을 가지는 금속, 산화물, 폴리머, 등을 코팅하여 소기의 광학적 특성을 부여할 수 있다. Nanostructures coated with TiO 2 on silver nano irregularities absorb ultraviolet rays and can be applied to keypads of mobile phones. As such, the metal nano bumps may be coated with metals, oxides, polymers, and the like having different dielectric constants to impart desired optical properties.
바이오칩에는 세포를 부착/성장 시키기 위해 나노 구조물이 요구되고 있다. 나노 구조물의 크기, 주기, 높이, 재료, 등에 따라, 세포의 부착 및 성장 메커니즘을 변화시켜 다양한 응용이 가능하다. 나노 요철(23) 위에 선택적으로 타켓물질을 코팅하여 나노 구조물을 제작하고, 제작된 나노 구조물에 의해 선택적 반응을 유도하여 필터로 사용할 수 있다. 이와 같이, 표면 에너지 차이를 이용하여 타겟물질(26, 27)을 선택적으로 나노 요철(23) 또는 기판(10)에 코팅한 후 이를 이용하여 2차 반응을 유도할 수 있다. Biochips require nanostructures to attach / grow cells. Depending on the size, cycle, height, material, etc. of the nanostructures, various applications are possible by changing the attachment and growth mechanisms of the cells. The nanostructures may be selectively coated on the nano-concave-convex 23 to manufacture nanostructures, and may be used as filters by inducing a selective reaction by the fabricated nanostructures. As such, the target materials 26 and 27 may be selectively coated on the nano irregularities 23 or the substrate 10 by using the surface energy difference, and then the secondary reaction may be induced using the target materials 26 and 27.
자기조립단분자막을 기판(10) 또는 나노 요철(23)에 선택적으로 코팅할 수 있다. 예컨대, thiol 계열의 물질은 금, 백금, 니켈, 구리, 등과 같은 물질에는 코팅이 되지만, 실리콘, 유리, 쿼츠, 폴리머 물질에는 코팅이 되지 않아 금이나 백금과 같은 반응성 있는 나노 요철(23)을 가진 경우, thiol 계열의 유기물을 코팅하여 바이오 소자에 응용할 수 있다. 또한, 기판(10)에는 선택적으로 반응하면서 나노 요철(23)에는 반응하지 않는 타겟물질(26)을 코팅하고 나노 요철(23)을 제거하여 그 부위에 나노 홀을 형성하는 공정이 가능하다. The self-assembled monolayer may be selectively coated on the substrate 10 or the nano unevenness 23. For example, thiol-based materials are coated on materials such as gold, platinum, nickel, copper, etc., but not coated on silicon, glass, quartz, and polymer materials, and have reactive nano irregularities 23 such as gold or platinum. In this case, the thiol-based organic material may be coated and applied to a bio device. In addition, the substrate 10 may be selectively reacted with the target material 26 which does not react with the nano unevenness 23, and the nano unevenness 23 may be removed to form nano holes at a portion thereof.
도 1 그리고 도 5 내지 도 8의 제작방법에 의하여 제작된 나노 구조물을 복제하여 나노 패턴을 제작할 수 있다. 여기서, 복제방법으로는, 전주도금, 임프린팅, 사출성형, 압축성형, 등 다양한 복제 방법이 사용될 수 있으며, 1회 이상 복제가 수행될 수 있다. 예컨대, 제작된 나노 구조물을 임프린팅하여 나노 구조물과 반대 형상의 나노 패턴을 제작하거나, 2회의 임프린팅을 통하여 나노 구조물과 동일 형상의 나노 패턴을 제작하거나, 전주도금 및 임프린팅을 통하여 나노 구조물과 동일 형상의 나노 패턴을 제작하는, 등 다양하게 응용될 수 있다. 1 and the nanostructures may be manufactured by duplicating the nanostructures manufactured by the method of FIGS. 5 to 8. Here, as the replication method, various replication methods such as electroplating, imprinting, injection molding, compression molding, and the like may be used, and one or more replication may be performed. For example, the nanostructures having the opposite shape as the nanostructures may be manufactured by imprinting the fabricated nanostructures, or the nanostructures having the same shape as the nanostructures may be manufactured by two imprinting, or the nanostructures may be formed by preplating and imprinting. It can be applied to various applications, such as manufacturing a nano pattern of the same shape.
특히, 제작된 나노 구조물 또는 나노 패턴을 사용하여 롤 임프린팅을 수행하는 경우, 공정 속도 향상에 크게 기여할 수 있다. In particular, when performing roll imprinting using the fabricated nanostructures or nanopatterns, the process speed may be greatly improved.
제작된 나노 구조물을 사용하여 나노 패턴을 계속적으로 복제하여 제작함으로써, 저비용으로 나노 패턴을 양산할 수 있다. By continuously replicating the nanopattern using the fabricated nanostructure, the nanopattern can be mass produced at low cost.
도 9는 본 발명의 제6실시예에 따른 나노 패턴 제작방법을 보여주는 공정 순서도이다. 9 is a process flowchart showing a method of manufacturing a nano pattern according to a sixth embodiment of the present invention.
도 9에서는 도 5의 제작방법의 후속공정으로 전주도금이 수행되는 실시예를 보여준다. 그러나, 기타 제작방법의 후속공정으로 전주도금이 수행될 수도 있음은 물론이다. 9 shows an embodiment in which electroplating is performed as a subsequent process of the manufacturing method of FIG. 5. However, of course, the electroplating may be performed as a subsequent process of the other manufacturing method.
구체적으로 살펴보면, 먼저 나노 구조물에 시드층(31)을 형성한 후, 전주도금을 수행한다. In detail, first, the seed layer 31 is formed on the nanostructure, and then electroplating is performed.
전주도금에 의하여 제작된 나노 패턴(33)은 내구성이 매우 우수하므로, 다른 나노 패턴을 제작하기 위한 몰드로 사용하기에 적합하다. 이 경우, 더욱 더 저비용으로 나노 패턴을 양산할 수 있는 이점을 가져다 준다. Nano pattern 33 produced by electroplating is very excellent in durability, it is suitable for use as a mold for manufacturing other nano patterns. In this case, it brings the advantage of mass-producing nanopatterns at even lower cost.
본 발명의 제작방법을 기반으로, 바이오칩, 디스플레이 장치용 광학필터, 태양전지용 광소자, 등에 대면적으로 나노 구조물 또는 나노 패턴을 저비용으로 제작할 수 있다. Based on the fabrication method of the present invention, nanostructures or nanopatterns can be manufactured at low cost in large areas such as biochips, optical filters for display devices, optical devices for solar cells, and the like.

Claims (19)

  1. 기판 상에 나노 입자를 도포하는 제1단계;Applying a nanoparticle to a substrate;
    열처리를 통하여, 상기 나노 입자를 상기 기판 상에 나노 요철로 결합시키는 제2단계를 포함하는 것을 특징으로 하는 나노 구조물 제작방법. Through the heat treatment, the nanostructure fabrication method comprising the step of bonding the nanoparticles on the substrate with nano irregularities.
  2. 제1항에 있어서,The method of claim 1,
    상기 나노 입자는 금속 나노 입자인 것을 특징으로 하는 나노 구조물 제작방법. The nanoparticles are nanostructures manufacturing method characterized in that the metal nanoparticles.
  3. 제2항에 있어서,The method of claim 2,
    상기 금속 나노 입자는, 은, 알루미늄, 구리, 철, 백금, 납, 금 및 수은 중 적어도 하나를 포함하는 것을 특징으로 하는 나노 구조물 제작방법. The metal nanoparticles, nanostructure manufacturing method comprising at least one of silver, aluminum, copper, iron, platinum, lead, gold and mercury.
  4. 제1항에 있어서, The method of claim 1,
    상기 나노 입자는 직경이 1~100nm인 것을 특징으로 하는 나노 구조물 제작방법. The nanoparticles are nanostructures manufacturing method characterized in that the diameter of 1 ~ 100nm.
  5. 제1항에 있어서, The method of claim 1,
    상기 나노 요철은 직경이 10~1000nm인 것을 특징으로 하는 나노 구조물 제작방법. The nano irregularities are nanostructures manufacturing method characterized in that the diameter of 10 ~ 1000nm.
  6. 제1항에 있어서, The method of claim 1,
    상기 나노 입자는 용매에 혼합되어 용액 상태로 상기 기판 상에 도포되는 것을 특징으로 하는 나노 구조물 제작방법. The nanoparticles are mixed in a solvent and nanostructures manufacturing method characterized in that the coating on the substrate in a solution state.
  7. 제1항에 있어서, The method of claim 1,
    상기 용매는 유기 용매 또는 폴리머 수지 용매인 것을 특징으로 하는 나노 구조물 제작방법. The solvent is a nano-structure manufacturing method characterized in that the organic solvent or polymer resin solvent.
  8. 제1항에 있어서, The method of claim 1,
    상기 기판은 2차원 평탄면 또는 3차원 입체면을 가지는 것을 특징으로 하는 나노 구조물 제작방법. The substrate has a two-dimensional flat surface or three-dimensional solid surface manufacturing method characterized in that it has a three-dimensional solid surface.
  9. 제1항에 있어서, The method of claim 1,
    상기 제2단계는, 상기 나노 입자의 소결 온도 이상에서 상기 나노 입자를 소결시키는 단계를 포함하는 것을 특징으로 하는 나노 구조물 제작방법. The second step, the nanostructure fabrication method comprising the step of sintering the nanoparticles at the sintering temperature of the nanoparticles.
  10. 제9항에 있어서, The method of claim 9,
    상기 제2단계는, 상기 나노 입자의 소결 온도보다 낮은 온도에서 열처리를 시작하는 것을 특징으로 하는 나노 구조물 제작방법. The second step, the nanostructure fabrication method characterized in that the heat treatment is started at a temperature lower than the sintering temperature of the nanoparticles.
  11. 제1항에 있어서,The method of claim 1,
    상기 기판은 실리콘, 유리, 쿼츠, 플라스틱, 산화물 및 금속 중 적어도 하나를 포함하는 것을 특징으로 하는 나노 구조물 제작방법. The substrate is a nanostructure manufacturing method comprising at least one of silicon, glass, quartz, plastic, oxide and metal.
  12. 제11항에 있어서, The method of claim 11,
    상기 산화물 및 금속은 상기 기판의 표면에 막을 이루어 형성되는 것을 특징으로 하는 나노 구조물 제작방법. The oxide and metal is a nanostructure manufacturing method characterized in that formed by forming a film on the surface of the substrate.
  13. 제1항에 있어서, The method of claim 1,
    상기 나노 요철을 마스크로 하여 상기 기판을 식각하고, 상기 나노 요철을 제거하는 제3단계를 포함하는 것을 특징으로 하는 나노 구조물 제작방법. And etching the substrate using the nano irregularities as a mask and removing the nano irregularities.
  14. 제1항에 있어서, The method of claim 1,
    상기 나노 요철이 형성된 상기 기판 위에 타켓 물질을 도포한 후, 상기 나노 요철을 제거하는 리프트-오프 공정을 수행하는 제3단계를 포함하는 것을 특징으로 하는 나노 구조물 제작방법. And applying a target material on the substrate on which the nano-evenness is formed, and then performing a lift-off process of removing the nano-evenness.
  15. 제1항에 있어서, The method of claim 1,
    상기 나노 요철을 마스크로 하여 선택적으로 상기 나노 요철 이외의 상기 기판의 부위에 타켓 물질을 도포하고, 상기 나노 요철을 제거하는 제3단계를 포함하는 것을 특징으로 하는 나노 구조물 제작방법.And a third step of selectively applying a target material to a portion of the substrate other than the nano irregularities using the nano irregularities as a mask, and removing the nano irregularities.
  16. 제1항에 있어서, The method of claim 1,
    상기 나노 요철 위에 타겟물질을 선택적으로 도포하는 제3단계를 포함하는 것을 특징으로 하는 나노 구조물 제작방법.And a third step of selectively applying a target material on the nano-unevenness.
  17. 제14항 내지 제16항 중 어느 한 항에 있어서,The method according to any one of claims 14 to 16,
    상기 타켓 물질은 산화물, 금속 또는 폴리머인 것을 특징으로 하는 나노 구조물 제작방법. The target material is a nanostructure manufacturing method, characterized in that the oxide, metal or polymer.
  18. 제1항 내지 제16항 중 어느 한 항의 나노 구조물 제작방법에 의하여 상기 나노 구조물을 제작하는 단계; 및17. A method for manufacturing a nanostructure according to any one of claims 1 to 16; And
    제작된 상기 나노 구조물을 복제하는 복제단계를 포함하는 것을 특징으로 하는 나노 패턴 제작방법. Nano pattern fabrication method comprising the step of replicating the nanostructures produced.
  19. 제18항에 있어서, The method of claim 18,
    상기 복제단계에서는 전주도금, 임프린팅, 사출성형 및 압축성형 중 적어도 하나를 1회 이상 수행하는 것을 특징으로 하는 나노 패턴 제작방법. In the replicating step, a nano-pattern manufacturing method comprising performing at least one of electroplating, imprinting, injection molding and compression molding at least one time.
PCT/KR2009/000645 2009-02-12 2009-02-12 Method for manufacturing a nanostructure WO2010093069A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/000645 WO2010093069A1 (en) 2009-02-12 2009-02-12 Method for manufacturing a nanostructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/000645 WO2010093069A1 (en) 2009-02-12 2009-02-12 Method for manufacturing a nanostructure

Publications (1)

Publication Number Publication Date
WO2010093069A1 true WO2010093069A1 (en) 2010-08-19

Family

ID=42561904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000645 WO2010093069A1 (en) 2009-02-12 2009-02-12 Method for manufacturing a nanostructure

Country Status (1)

Country Link
WO (1) WO2010093069A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130078750A1 (en) * 2010-08-02 2013-03-28 Gwangju Institute Of Science And Technology Fabricating method of nano structure for antireflection and fabricating method of photo device integrated with antireflection nano structure
KR101994666B1 (en) * 2018-01-02 2019-09-30 한국세라믹기술원 Superhydrophobic structure using selective etching process, and method of fabricating of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119790A (en) * 2002-09-27 2004-04-15 Harima Chem Inc Method of forming fine wiring pattern using dispersed nano-sized particles in supercritical fluid
KR20070025519A (en) * 2005-09-02 2007-03-08 삼성전자주식회사 Nanodot memory and method for fabrication thereof
KR20080020827A (en) * 2006-09-01 2008-03-06 삼성전자주식회사 Method of manufacturing nano-template for the pattern media and storing media thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119790A (en) * 2002-09-27 2004-04-15 Harima Chem Inc Method of forming fine wiring pattern using dispersed nano-sized particles in supercritical fluid
KR20070025519A (en) * 2005-09-02 2007-03-08 삼성전자주식회사 Nanodot memory and method for fabrication thereof
KR20080020827A (en) * 2006-09-01 2008-03-06 삼성전자주식회사 Method of manufacturing nano-template for the pattern media and storing media thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHOU, KAN-SEN ET AL.: "Fabrication and sintering effect on the morphologies and conductivity of nano-Ag particle films by the spin coating method", NANOTECHNOLOGY, vol. 16, 2005, pages 779 - 784, XP020091084, DOI: doi:10.1088/0957-4484/16/6/027 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130078750A1 (en) * 2010-08-02 2013-03-28 Gwangju Institute Of Science And Technology Fabricating method of nano structure for antireflection and fabricating method of photo device integrated with antireflection nano structure
US9123832B2 (en) * 2010-08-02 2015-09-01 Gwangju Institute Of Science And Technology Fabricating method of nano structure for antireflection and fabricating method of photo device integrated with antireflection nano structure
KR101994666B1 (en) * 2018-01-02 2019-09-30 한국세라믹기술원 Superhydrophobic structure using selective etching process, and method of fabricating of the same

Similar Documents

Publication Publication Date Title
WO2014131259A1 (en) Conductive glass substrate and method for manufacture thereof
WO2013042819A1 (en) Production method for a graphene thin film
WO2011090262A2 (en) Lithography method using tilted evaporation
JP6446132B2 (en) Transparent conductor and method for producing the same
WO2006036196A9 (en) Surface and composition enhancements to high aspect ratio c-mems
KR20090028246A (en) Blockcopolymer nonostructures formed on a pattern whose shape is not coincide with that of the blockcopolymer nonostructures and method for preparing thereof
CN108882661B (en) Transparent flexible stretchable electromagnetic shielding film and preparation method thereof
KR20070113763A (en) Method for preparing a patterned carbon nanotube array and patterned carbon nanotube array preparaed by the same
KR20050001111A (en) Fabrication Method of Patterned Polymer Film with Nanometer Scale
WO2012141484A2 (en) Bowl-shaped structure, method for manufacturing same, and bowl array
WO2015183008A1 (en) Coating method using particle alignment
WO2012086986A2 (en) Method for manufacturing a ceramic template having micro patterns, and ceramic template manufactured by same
WO2012173324A1 (en) Method for manufacturing reflective polarizer
WO2012070908A2 (en) Organic/inorganic hybrid hierarchical structure and method for manufacturing a superhydrophobic or superhydrophilic surface using same
CN103172019A (en) Preparation process of dry adhesive micro-nano compound two-stage inclined structure
KR20100092091A (en) Method of fabricting a nano-structure
CN100495640C (en) Making method of self-limited boundary film graphics
WO2010093069A1 (en) Method for manufacturing a nanostructure
KR20090087353A (en) Fabrication of nanostructure using self-assembled block copolymer
WO2013089388A1 (en) Nanowire grid structure and method of manufacturing nanowire
WO2016178452A1 (en) Chemical etching method for silicon using graphene as catalyst
JP6838246B2 (en) Array board, display board manufacturing method and display panel
WO2016114501A2 (en) Method for preparing vertical cylindrical or lamellar structure of organic molecules arranged into large-size single domain
KR20130009213A (en) Method for manufacturing implint resin and implinting method
KR20140024025A (en) Method of forming pattern using carbon nano tube langmuir-blodgett film and control of growth and differentiation of stem cell using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840059

Country of ref document: EP

Kind code of ref document: A1