WO2011099575A1 - ホウ酸化合物、二次電池用正極、及び二次電池の製造方法 - Google Patents

ホウ酸化合物、二次電池用正極、及び二次電池の製造方法 Download PDF

Info

Publication number
WO2011099575A1
WO2011099575A1 PCT/JP2011/052920 JP2011052920W WO2011099575A1 WO 2011099575 A1 WO2011099575 A1 WO 2011099575A1 JP 2011052920 W JP2011052920 W JP 2011052920W WO 2011099575 A1 WO2011099575 A1 WO 2011099575A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
boric acid
acid compound
secondary battery
formula
Prior art date
Application number
PCT/JP2011/052920
Other languages
English (en)
French (fr)
Inventor
義久 別府
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020127016723A priority Critical patent/KR20120131154A/ko
Priority to JP2011553897A priority patent/JPWO2011099575A1/ja
Priority to CN201180009214XA priority patent/CN102753480A/zh
Publication of WO2011099575A1 publication Critical patent/WO2011099575A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/127Borates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/126Borates of alkaline-earth metals, beryllium, aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/128Borates containing plural metal or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0483Processes of manufacture in general by methods including the handling of a melt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a boric acid compound, a positive electrode for a secondary battery, and a method for producing a secondary battery.
  • lithium ion secondary batteries have been widely used as power sources for portable electronic devices such as mobile phones and notebook computers, and power tools.
  • boric acid compounds having an olivine type crystal structure have been proposed from the viewpoints of resources, safety, cost, stability, etc., and their production methods have been studied. Yes.
  • M 2-2x B 2x O 3 (M is one or more metal atoms selected from transition metals, x is 0 ⁇ x ⁇ 1), An electrode active material mainly composed of a crystalline metal complex is described, and a method for producing the amorphous metal complex represented by M 2-2x B 2x O 3 by mechanical milling, M Describes a method of rapidly solidifying a mixture containing a metal oxide having boron as a constituent metal atom and a boron oxide from a molten state. Amorphization of a metal complex requires a lot of energy and is not suitable for mass production.
  • Patent Document 1 describes that a lithium compound is further added to a mixture containing a metal oxide and a boron oxide, but this description is only for a system containing V 2 O 5 , such as FeO and the like. No examples are given for systems containing these transition metals.
  • Non-Patent Document 1 describes a method for producing LiMBO 3 by a solid-phase reaction represented by the following formula (5).
  • Non-Patent Document 2 describes a method for producing LiFeBO 3 by a solid-phase reaction represented by the following formula (6), and structural analysis of the product has been made.
  • Non-Patent Document 1 uses expensive oxalate as a compound containing atom M, and has a drawback that the manufacturing cost of LiMBO 3 increases.
  • a large amount of gas is generated due to decomposition of the raw material.
  • the generation of gas not only includes gas species that require processing, but also inhibits the generation of LiMBO 3 and grain growth, so that two-stage heating, that is, the raw material mixture is first heated to generate gas, then crushed, After carrying out steps such as pulverization and molding, it is necessary to synthesize LiMBO 3 particles by heating again at a high temperature.
  • the manufacturing method described in Non-Patent Document 2 is also the same.
  • the present inventor follows a method described in Patent Document 1 by heating triiron tetroxide (Fe 3 O 4 ), lithium carbonate (Li 2 CO 3 ), and boron oxide (B 2 O 3 ). Production of LiFeBO x was attempted under atmospheric pressure. However, a uniform melt of triiron tetroxide, lithium carbonate, and boron oxide could not be obtained.
  • An object of the present invention is to produce a boric acid compound that enables inexpensive and efficient production of a boric acid compound having excellent battery characteristics and reliability by controlling the composition and particle size of the boric acid compound. It is to provide a method.
  • the present invention also provides a positive electrode for a secondary battery excellent in electrical characteristics and reliability and a method for producing the secondary battery.
  • a first compound having a composition represented by the following formula (1) and a second compound containing at least one atom A selected from Li, Na, and K are represented by the following formula (2):
  • A: M: B a: b: 1 (2)
  • a and M represent the same kind of atoms as described above, a is 0 ⁇ a ⁇ 2, and b is 0.8 ⁇ b ⁇ 1.2.
  • a a M b BO c (3) (Wherein, A and M have the same kind of atoms and the valence of M is less than or N 1 equal to the N 1, a and b have the same numerical value as the, c is a, b And the number depending on the valence of M.)
  • the first compound is selected from at least one selected from M oxide, M oxyhydroxide, and M metal, and boric acid, boron oxide, ammonium borate, and ammonium hydrogen borate.
  • M and B have the composition represented by the formula (1) to obtain a raw material mixture, pulverizing the raw material mixture and heating to obtain a melt.
  • the manufacturing method of the boric acid compound of [1] including the process of obtaining the 1st compound which has a composition represented by Formula (1).
  • the second compound comprises A carbonate (A 2 CO 3 ), A hydrogen carbonate (AHCO 3 ), A hydroxide (AOH), A nitrate (ANO 3 ), A Chloride (ACl), A sulfate (A 2 SO 4 ), A acetate (CH 3 COOA) and A oxalate ((COOA) 2 ) (however, these compounds are hydrated salts, respectively)
  • the method for producing a boric acid compound according to [1] to [7] wherein a heating temperature in the step of obtaining the boric acid compound having the composition represented by the formula (3) by heating is 400 to 800 ° C.
  • the formulation contains at least one carbon source selected from an organic compound and carbon powder, and the amount of the carbon source is determined according to the formulation and the carbon in the carbon source.
  • a boric acid compound having a composition represented by the formula (3) is a particle containing LiFe d Mn 1-d BO 3 (d is 0 ⁇ d ⁇ 1) having an olivine type crystal structure.
  • a and M have the same kind of atoms and the valence of M is less than or N 1 equal to the N 1, a and b show the same value as above.
  • [14] Obtaining a boric acid compound by the production method of [1] to [13], and then producing a positive electrode for a secondary battery using the boric acid compound as a positive electrode material for a secondary battery.
  • a method for producing a positive electrode for a secondary battery comprising: obtaining a positive electrode for a secondary battery by the production method of [14], and then producing a secondary battery using the positive electrode for a secondary battery.
  • the production method of the present invention is a method that makes it easy to control the composition and particle size of the boric acid compound. Therefore, a boric acid compound having excellent battery characteristics and reliability can be produced at low cost and efficiently. Moreover, the positive electrode for secondary batteries and secondary battery which are excellent in a battery characteristic and reliability can be manufactured by using the boric-acid compound obtained by this invention.
  • FIG. 3 is a diagram showing an X-ray diffraction pattern of the first compound (flaky solidified product) produced in Examples 1 to 6.
  • FIG. 4 is a diagram showing an X-ray diffraction pattern of boric acid compound (having an olivine type crystal structure) particles produced in Examples 1 to 3.
  • FIG. 4 is a diagram showing an X-ray diffraction pattern of boric acid compound (having an olivine type crystal structure) particles produced in Examples 4 to 6.
  • FIG. 4 is a view showing an X-ray diffraction pattern of a first compound (flaky solidified product) produced in Examples 20 to 25.
  • FIG. 3 is a diagram showing an X-ray diffraction pattern of boric acid compound (having an olivine type crystal structure) particles produced in Examples 20 to 22.
  • FIG. 6 is a view showing an X-ray diffraction pattern of boric acid compound (having an olivine type crystal structure) particles produced in Examples 23 to 25.
  • A represents at least one atom selected from Li, Na, and K.
  • A represents an atom of the above three alkali metal elements.
  • A may consist of a combination of two or more atoms.
  • M represents at least one atom selected from Fe, Mn, Co and Ni.
  • M represents an atom of the above four transition metal elements.
  • M may consist of a combination of two or more atoms.
  • chemical formulas, such as Formula (1) and Formula (3) represent an average composition.
  • a crystal having an olivine structure is hereinafter referred to as an olivine crystal, and a particle containing the olivine crystal is also referred to as an olivine crystal particle.
  • the olivine-type crystal particle may partially include a crystal structure other than the olivine-type crystal structure, or may partially include an amorphous structure. It is preferable that substantially all of the olivine type crystal particles are made of olivine type crystals.
  • the boric acid compound having the composition represented by the formula (3) which is an object of the production method of the present invention, is also referred to as a boric acid compound (3).
  • step (I), step (II), and step (III) are performed in this order. Other steps may be performed before, between, and after the steps (I) to (III) as long as each step is not affected.
  • the compound containing M and the compound containing B are prepared so that M and B may become a composition represented by Formula (1), a raw material mixture is obtained, and this raw material mixture is grind
  • the step of producing the first compound is hereinafter referred to as step (IV).
  • the first compound is particularly selected from at least one selected from M oxide, M oxyhydroxide and M metal, and boric acid, boron oxide, ammonium borate and ammonium hydrogen borate.
  • the boric acid compound produced by the production method of the present invention is a useful compound as a positive electrode material for a secondary battery, and particularly useful as a positive electrode material for a lithium ion secondary battery.
  • a boric acid compound having a desired composition could not be obtained.
  • a mixture of raw materials prepared by mixing a compound containing M and the like and a compound containing boron so as to have a composition represented by the formula (1) is melted by heating.
  • the desired boric acid compound (3) can be obtained.
  • the melting means that the carbonate of A, the oxide of M, and boric acid are melted and become a transparent state visually.
  • a compound having the composition represented by formula (1) is used as the first compound, and a second compound is blended with the first compound at a predetermined ratio to produce a formulation, and the formulation is heated. By doing so, it becomes possible to obtain a desired boric acid compound (3).
  • the method described in Patent Document 1 requires a lot of energy for amorphization of the metal complex and is not suitable for mass production. On the other hand, according to the present invention, the method requires less energy. Since a boric acid compound having a desired composition can be obtained, the production method is advantageous for mass production.
  • Step (I) is a step of obtaining a preparation by preparing the first compound and the second compound so as to have an atomic ratio represented by the formula (2).
  • the first compound is preferably prepared after pulverization.
  • the pulverization is preferably performed by a dry method or a wet method using a mixer, a ball mill, a jet mill, a planetary mill or the like, and a dry method is preferable because solvent removal is unnecessary.
  • M is at least one atom selected from Fe, Mn, Co and Ni.
  • M is preferably at least one selected from Fe and Mn from the viewpoint of cost. Fe is particularly preferable because the theoretical capacity of the positive electrode material for a secondary battery is easily developed. From the viewpoint of increasing the operating voltage, at least one selected from Co and Ni is preferable.
  • the valence of M is a numerical value that can vary in each step of the production method of the present invention, and is in the range of +2 to +4. Therefore, the valence N 1 of M in the first compound is + 2 ⁇ N 1 ⁇ + 4.
  • M is Fe, +2, +8/3, or +3, when Mn is +2, +3, or +4, when Co is +8/3, when Ni is +2 or +4 is preferable.
  • X and y in the formula (1) are arbitrary numbers satisfying 0.8 ⁇ x / y ⁇ 1.2.
  • the boric acid compound (3) can be obtained by satisfying this formula.
  • x and y in Formula (1) it is preferable that x / y is 1.
  • M x B y O z is M 2 B 2 O 5
  • the valence N 1 of M is +2, easily obtained boric acid compound having an olivine-type crystal structure (3).
  • M 2 B 2 O 5 is mixed with an oxide of A as the second compound (eg, A 2 O) and heated, the solid phase reaction represented by the following formula (7) is stoichiometrically Since it proceeds, AMBO 3 is easily obtained.
  • the value of z is generally obtained from the formula (x + yN 1 +3) / 2.
  • M is Mn, Co, and Ni
  • the first compound preferably contains an amorphous substance.
  • the next step (II) can be easily performed, and the composition of the boric acid compound can be easily controlled.
  • the product can be prevented from becoming agglomerated, and the particle size of the product can be easily controlled.
  • the crystallized product becomes a crystal nucleus in step (III), and it is easy to crystallize.
  • the amount of the crystallized product in the first compound is preferably 0 to 20% by mass with respect to the total mass of the first compound. If the crystalline portion is 20% by mass or less, the reaction becomes a crystal nucleus in step (III) and promotes the reaction without reducing the ease of crushing the first compound and the reactivity with the second compound. It is preferable because it has the effect of
  • the first compound is not limited to only M, boron (B), and oxygen (O), but includes at least one atom X selected from V, Si, P, Al, Mg, and Zn. Also good. By containing X in the first compound, the reactivity between the first compound and the second compound can be improved. In addition, when an amorphous material is used as the first compound, the first compound can be made amorphous.
  • the content of X (the total amount when X consists of a plurality of atoms) is the atomic ratio of X to the total amount of boron (B) and X (X / (B + X)) is 0.01 to 0.2. It is preferable to set it as the range.
  • the atomic ratio of Y to the total amount of boron (B) and Y (Y / (B + Y)) of the element Y acting as a reducing agent (for example, carbon (C)) is 0.01 to 0.1. It may be included in the range.
  • the first compound is preferably flaky or fibrous.
  • the average thickness is preferably 200 ⁇ m or less, particularly preferably 100 ⁇ m or less.
  • the average diameter of the surface perpendicular to the average thickness in the case of flakes is not particularly limited.
  • the average diameter is preferably 50 ⁇ m or less, particularly preferably 30 ⁇ m or less.
  • the average thickness and average diameter can be measured with a caliper or a micrometer. The average diameter can also be measured by microscopic observation.
  • the second compound is a compound containing at least one atom A selected from Li, Na, and K, as long as it is a compound that is thermally decomposed by heating and changes to A 2 O.
  • the second compound is preferably a compound that changes to A 2 O in step (III).
  • the boric acid compound (3) can be obtained efficiently.
  • the second compound include A carbonate (A 2 CO 3 ), A hydrogen carbonate (AHCO 3 ), A hydroxide (AOH), A nitrate (ANO 3 ), A chloride ( ACl), A sulfate (A 2 SO 4 ), A acetate (CH 3 COOA) and A oxalate ((COOA) 2 ) (however, these compounds each form a hydrated salt).
  • At least one selected from the group consisting of At least one selected from A 2 CO 3 , AHCO 3, and AOH is particularly preferable because it is inexpensive and easily available, and easily becomes A 2 O by heating.
  • a 2 O is not preferable because it easily reacts with H 2 O and CO 2 and has low chemical stability.
  • a constituting the second compound is suitable as a positive electrode material for a secondary battery, it is preferable that Li is essential, and only Li is particularly preferable.
  • the boric acid compound containing Li can increase the capacity per unit volume (mass) of the secondary battery.
  • the purity of the first compound or the second compound is not particularly limited, and is preferably 99% by mass or more in consideration of reactivity, characteristics of the obtained boric acid compound (3) (for example, characteristics of the positive electrode material), and the like.
  • the first compound and the second compound are preferably particles.
  • the average particle diameter of the particles is not particularly limited, and any of the average particle diameters is preferably 1 nm to 100 ⁇ m, more preferably 10 nm to 10 ⁇ m, and particularly preferably 10 nm to 1 ⁇ m, in terms of volume median diameter. When the average particle size is in the above range, the reaction between the first compound and the second compound can be promoted.
  • the average particle diameter of a 1st compound or a 2nd compound is the said range when it is used as a raw material of process (I). That is, for example, in the case of producing the first compound by the step (IV), even if the average particle size of the obtained first compound is outside the above range, it is pulverized in advance before the preparation in the step (I). It only needs to be adjusted within the above range. In addition, it is not necessary to remove particularly the fine particles generated by the pulverization.
  • the particle size can be measured by a sedimentation method or a laser diffraction / scattering particle size measuring device.
  • the first compound and the second compound have an atomic ratio represented by the above formula (2), that is, a in formula (2) is 0 ⁇ a ⁇ 2, and b is 0.8. ⁇ B ⁇ 1.2.
  • a boric acid compound (3) is obtained by making a and b into the said range.
  • the boric acid compound (3) obtained by the present invention is preferably a particle, more preferably a crystalline particle, and particularly preferably an olivine type crystal particle.
  • the atomic ratio of oxygen atoms in the preparation (when it is assumed that an oxide is formed, boron (B )
  • the value of the atomic ratio of oxygen atoms when the atom is 1 is a value that can be changed in the subsequent step (III), and is a value that becomes c after the step (III).
  • the value of the oxygen atomic ratio increases or decreases due to oxidation / reduction or volatilization of the components in the step (III)
  • the value of the atomic ratio of oxygen atoms when the boron (B) atom is 1 in the preparation should be 100% or more and 103% or less with respect to the value of c of the target boric acid compound (3). preferable.
  • the preparation of the first compound and the second compound may contain at least one carbon source selected from an organic compound and carbon powder described later.
  • a carbon source is included in the preparation. Is preferred.
  • the carbon source functions as a reducing agent when heated, and further functions as a conductive material after heating.
  • the carbon powder contained in the preparation adheres to the surface of the boric acid compound (3) particles and improves the conductivity of the powder, which is an aggregate of the boric acid compound (3) particles.
  • organic compounds are also thermally decomposed by, for example, the step (III), and further carbonized to become carbides. 3) The conductivity is improved. Accordingly, it is preferable that the organic compound has a property of undergoing a thermal decomposition reaction in step (III), for example, a hydrogen atom or an oxygen atom is desorbed and carbonized, whereby the reactant in the organic compound step (III) is converted into a conductive material.
  • carbon powder When carbon powder is used as the carbon source, it is preferable to use it together with an organic compound in order to increase the binding strength to the boric acid compound (3). That is, it is preferable that the preparation contains an organic compound alone or contains an organic compound and carbon powder.
  • the organic compound and carbon powder have a function of promoting the reduction reaction between the first compound and the second compound in the step (III).
  • MBO 3 the valence of M is +3
  • a 2 O are heated and an organic compound (C m H n ) is included
  • AMBO 3 M has a valence of +2
  • An organic compound decomposes and carbonizes at a temperature higher than the reaction temperature between the first compound and the second compound (including the generation of crystal nuclei and the grain growth temperature when the first compound is amorphous).
  • the organic compound itself functions as a binder for the boric acid compound (3) of the carbon powder, it is preferably used in combination with the carbon powder. Further, it is preferable to use an organic compound having reducibility in order to prevent oxidation of the preparation during pulverization and further promote reduction.
  • the organic compound is preferably at least one selected from saccharides, amino acids, peptides, aldehydes and ketones, and saccharides, amino acids and peptides are particularly preferable.
  • sugars include monosaccharides such as glucose, fructose and galactose, oligosaccharides such as sucrose, maltose, cellobiose and trehalose, invert sugar, polysaccharides such as dextrin, amylose, amylopectin and cellulose, and similar substances such as ascorbic acid. Is mentioned. Monosaccharides and some oligosaccharides are preferred because of their strong reducing properties.
  • amino acids examples include amino acids such as alanine and glycine.
  • Peptides include low molecular weight peptides having a molecular weight of 1,000 or less.
  • organic compounds having a reducing functional group such as an aldehyde group or a ketone group are also included.
  • the organic compound glucose, sucrose, glucose-fructose invert sugar, caramel, starch, pregelatinized starch, carboxymethyl cellulose and the like are particularly preferable.
  • carbon powder carbon black, graphite, acetylene black or the like is preferably used.
  • the carbon powder at the time of pulverizing the preparation it is not necessary to separately provide a step of mixing the carbon powder after generating the olivine type particles of the boric acid compound (3) in the step (III).
  • the carbon powder together with the organic compound at the time of pulverizing the preparation the distribution of the carbon powder in the boric acid compound (3) powder becomes uniform, and the organic compound or its pyrolyzate (carbide) The contact area increases. This makes it possible to increase the binding force of the carbon powder to the boric acid compound (3).
  • the amount of the carbon source is preferably such that the ratio of the carbon equivalent (mass) to the total mass of the preparation and the carbon equivalent (mass) in the carbon source is 0.1 to 20% by mass. An amount of mass% is particularly preferred.
  • a commercial item may be used for the 1st compound, and it may manufacture it.
  • the 1st compound containing the said atom X and the atom Y it can manufacture by using the compound containing X and the compound containing Y with the compound containing M, and the compound containing B.
  • the compound containing M in the raw material mixture includes oxides of M (FeO, Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , CoO, Co 3 O 4 , Co 2 O 3 and NiO). And at least one compound selected from M oxyhydroxides (MO (OH)). It is also possible to use M in the metal state instead of the compound containing M. Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , Co 3 O 4 and NiO are particularly preferred from the viewpoint of availability and cost.
  • Compounds containing B in the raw material mixture include boric acid (H 3 BO 3 ), boron oxide (B 2 O 3 ), ammonium borate (NH 4 B 5 O 8 ), and ammonium hydrogen borate (NH 4 HB 4 O At least one selected from 7 ) is preferred.
  • B 2 O 3 and H 3 BO 3 are particularly preferable from the viewpoint of easy availability and handling.
  • Preferred combinations of the compound containing M and the compound containing B are Fe 3 O 4 , Fe 2 O 3 , MnO, Mn 2 O 3 , MnO 2 , Co 3 O 4, NiO, and B 2 O in terms of easy availability. 3 and H 3 BO 3 .
  • the pulverization of the raw material mixture is preferably performed using a ball mill, a jet mill, a planetary mill or the like.
  • the pulverization step is carried out dry or wet, and it is preferable to pulverize in a dry manner in that it is not necessary to remove the dispersion medium.
  • pulverization a pulverized product in which raw materials having smaller particle diameters are uniformly and intimately mixed is obtained.
  • the pulverized product after the raw material mixture is pulverized may be heated in air, in an inert gas, or in a reducing gas. Melting of the pulverized product in air is preferable in terms of cost. Even if it is a compound manufactured in the air, M which comprises a compound is reduce
  • the inert gas refers to a gas containing 99% by volume or more of at least one inert gas selected from nitrogen gas (N 2 ) and rare gases such as helium gas (He) and argon gas (Ar).
  • the reducing gas refers to a gas that is substantially free of oxygen by adding a reducing gas to the above-described inert gas.
  • the reducing gas include hydrogen gas (H 2 ), carbon monoxide gas (CO), and ammonia gas (NH 3 ).
  • the amount of the reducing gas in the inert gas is preferably 0.1% by volume or more, and particularly preferably 1 to 10% by volume of the reducing gas contained in the total gas volume.
  • the oxygen content is preferably 1% by volume or less, and particularly preferably 0.1% by volume or less in the gas volume.
  • the heating temperature of the pulverized material mixture is preferably 1,000 to 1,500 ° C, particularly preferably 1,200 to 1,400 ° C. When it is at least the lower limit of the above range, melting becomes easy, and when it is at most the upper limit of the above range, the raw material is difficult to volatilize.
  • the heating time of the pulverized material mixture is preferably 0.2 to 4 hours, particularly preferably 0.5 to 2 hours. By setting it as the said range, the uniformity of the melt of a raw material mixture becomes sufficient, and a raw material component does not volatilize easily.
  • the melt obtained by heating is cooled to obtain a glassy substance.
  • a method for producing a sol, a hydrothermal method and a sol-gel method are used.
  • a method of producing a glassy substance by cooling a melt obtained by heating is preferable in that an amorphous material can be produced in a large amount at a low cost.
  • a method for cooling the melt a method in which the melt is dropped between the twin rollers rotating at high speed and the melt is cooled, a method in which the melt is dropped on the rotating single roller to cool, and a carbon plate on which the melt is cooled.
  • a method of cooling by pressing on a metal plate is preferable.
  • a cooling method using a twin roller is particularly preferable because the cooling rate is high and a large amount of processing can be performed.
  • the double roller it is preferable to use one made of metal, carbon or ceramic.
  • a cooling method there is also a method in which the melt is directly poured into water, but this method is difficult to control, it is difficult to obtain an amorphous material, the solidified product becomes a lump, and the disadvantage of requiring a lot of labor for grinding There is.
  • a cooling method there is also a method in which a melt is directly added to liquid nitrogen, and the cooling rate can be made faster than in the case of water, but there are problems similar to the method using water, and the cost is high.
  • the cooling of the melt is preferably performed in air, in an inert gas, or in a reducing gas because the equipment is simple. According to this cooling method, an amorphous substance can be obtained more easily.
  • the cooling rate of the melt is preferably not less than -1 ⁇ 10 3 °C / sec, -1 ⁇ 10 4 °C / sec or more is particularly preferable.
  • a temperature change per unit time (ie, cooling rate) in the case of cooling is indicated by a negative value
  • a temperature change per unit time in case of heating ie, the heating rate
  • the upper limit of the cooling rate is preferably about ⁇ 1 ⁇ 10 10 ° C./second from the viewpoint of manufacturing equipment and mass productivity, and 1 ⁇ 10 8 ° C./second is particularly preferable from the viewpoint of practicality.
  • Step (II) is a step of obtaining a pulverized product by mixing and pulverizing the preparation obtained in step (I). Grinding gives a pulverized product of the formulation in which the smaller particle size compounds are uniformly and intimately mixed. Moreover, you may mix the said carbon source in the formulation which does not contain a carbon source at this process instead of using the formulation containing a carbon source. When a carbon source is mixed in this step, the type and amount of the carbon source may be the same as in the case of producing a preparation containing the carbon source.
  • the pulverization of the preparation is preferably carried out dry or wet using a ball mill, jet mill, planetary mill or the like.
  • a preparation containing a carbon source is used or when a carbon source is mixed in this step, it is preferable to wet pulverize the carbon source evenly on the surface of the pulverized product.
  • the carbon source is an organic compound
  • wet pulverization using a dispersion medium capable of dissolving the organic compound is preferable.
  • the average particle size of the pulverized product at the end of the step (II) is preferably 1 nm to 100 ⁇ m in terms of volume median diameter in order to promote the reaction between the first compound and the second compound, and more preferably 10 nm to 10 ⁇ m. 10 nm to 1 ⁇ m is particularly preferable. When the average particle size is in the above range, the reaction between the first compound and the second compound can be promoted.
  • a small particle size of the pulverized product is preferable because the heating temperature and heating time in step (III) can be reduced.
  • the step (II) is carried out in a wet manner, it is preferable to carry out the step (III) after removing the dispersion medium by sedimentation, filtration, drying under reduced pressure, heat drying or the like.
  • Step (III) is a step of reacting the first compound and the second compound to obtain a boric acid compound (3), preferably crystalline particles thereof, more preferably olivine type crystal particles.
  • the step (III) preferably includes a thermal decomposition reaction step of the second compound, a crystal nucleus generation step and a grain growth step in the case where the first compound is an amorphous substance.
  • a pulverized product containing a carbon source it is preferable that the carbon source or a thermally decomposed product thereof be bonded to the surface of the generated boric acid compound (3) particles.
  • the step (II) is performed by a wet method, the dispersion medium may be removed by heating in the step (III).
  • Step (III) is performed in an inert gas or a reducing gas.
  • the pressure may be normal pressure, increased pressure (1.1 ⁇ 10 5 Pa or more), and reduced pressure (0.9 ⁇ 10 5 Pa or less).
  • the container containing the reducing agent for example, graphite
  • the pulverized material is loaded in the heating furnace, reduction of M ions in the pulverized material (for example, change from M 3+ to M 2+ ). Can be promoted.
  • the valence N 3 of M in the boric acid compound (3) is equal to the valence N 1 of M in the first compound or M 1 smaller than the valence N 1 of.
  • the valence N 3 of M in the boric acid compound (3) is preferably smaller than the valence N 1 of M of the first compound as the raw material (N 3 ⁇ N 1 ) as an average value. It is particularly preferred that substantially all of M in the first compound is reduced (N 3 ⁇ N 1 ⁇ 1) by the step (III). Further, the valence N 3 of M in the boric acid compound (3) is preferably N 1 -1.
  • the heating temperature is preferably 400 to 800 ° C, particularly preferably 500 to 700 ° C.
  • a compound containing an amorphous part particularly a compound having an amorphous part of 80 to 100% by mass
  • it may be heated at a temperature lower than the heating temperature of a normal solid phase reaction. it can.
  • the heating temperature is not less than the lower limit of the above range, the reaction is likely to occur. If it is below the upper limit of the above range, the pulverized product will not melt.
  • the heating may be held at a constant temperature or may be performed by changing the temperature in multiple stages. As the heating temperature is increased, the diameter of the generated particles tends to increase. Therefore, it is preferable to set the heating temperature according to the desired particle diameter.
  • the heating time (holding time depending on the heating temperature) is preferably 2 to 72 hours in consideration of the desired particle size.
  • the cooling rate in the cooling is preferably ⁇ 30 ° C./hour to ⁇ 300 ° C./hour.
  • the cooling rate is preferably ⁇ 30 ° C./hour to ⁇ 300 ° C./hour.
  • the cooling may be left to cool to room temperature. Cooling is preferably performed in an inert gas or a reducing gas.
  • the organic compound and carbon powder adhering to the surface of the pulverized product in the step (II) are bonded to the particle surface of the boric acid compound (3) generated in the step (III) and function as a conductive material.
  • the organic compound is thermally decomposed in the step (III), and further becomes at least a part of a carbide to function as a conductive material.
  • the thermal decomposition of the organic compound is preferably performed at 400 ° C. or lower, and the carbonization is preferably performed at 600 ° C. or lower.
  • volume change associated with the pyrolysis reaction can be reduced, so that the carbide and carbon powder are uniformly and firmly bonded to the surface of the boric acid compound (3). it can.
  • the boric acid compound (3) obtained by the production method of the present invention is a boric acid compound particularly useful as a positive electrode material for a secondary battery.
  • the solid composed of the boric acid compound (3) preferably includes an olivine type crystal structure, and particularly preferably olivine type crystal particles.
  • the particles include both primary particles and secondary particles.
  • the conductive material based on the organic compound or carbon powder is uniformly and firmly bonded to the surface of the boric acid compound (3) at the same time as the crystalline particles are formed.
  • a powder material can be produced. This powder material is suitable for a positive electrode material for a secondary battery.
  • the boric acid compound can be produced inexpensively and efficiently.
  • olivine-type crystal particles having excellent chemical composition and particle size uniformity and high crystallinity can be obtained.
  • Such olivine-type crystal particles of the boric acid compound (3) can improve the characteristics and reliability based on the chemical composition and the uniformity of the particle diameter.
  • the obtained olivine type crystal particles have high crystallinity, when applied to a positive electrode material for a secondary battery, it is possible to suppress functional deterioration in repeated use. Therefore, it is possible to provide a positive electrode material for a secondary battery having excellent characteristics and reliability at a low cost.
  • the conductive material can be uniformly and firmly bonded to the surface of the boric acid compound (3) particles. For this reason, the electroconductivity of the positive electrode material which consists of powder of a boric-acid compound (3), and its reliability can be improved. That is, a positive electrode material for a secondary battery that is excellent in characteristics including conductivity and reliability can be obtained with good reproducibility. Therefore, while improving the capacity
  • the boric acid compound (3) obtained by the production method of the present invention is preferably a boric acid compound having a composition represented by the following formula (4).
  • a a M b BO (0.5a + b + 1.5) (4) (In the formula, A and M represent the same kind of atoms as described above, and a and b represent the same numerical values as described above.)
  • the boric acid compound (3) is more preferably a boric acid compound having a composition represented by LiMBO 3 , and boric acid having a composition represented by LiFe d Mn 1-d BO 3 (0 ⁇ d ⁇ 1).
  • a compound is further preferable, and a boric acid compound having a composition represented by LiFeBO 3 is particularly preferable.
  • These boric acid compounds are preferably olivine type crystal particles, and a powder comprising the olivine type crystal particles is suitable as a positive electrode material for a secondary battery.
  • the average particle size of the boric acid compound (3) particles of the present invention is preferably from 10 nm to 10 ⁇ m, particularly preferably from 10 nm to 2 ⁇ m, in terms of volume median diameter.
  • the average particle diameter can be determined by, for example, observation with an electron microscope or measurement with a laser diffraction particle size distribution meter.
  • the specific surface area of the powder consisting of boric acid compound (3) is preferably 0.2 ⁇ 200m 2 / g, 1 ⁇ 200m 2 / g is particularly preferred. By making a specific surface area into this range, the electroconductivity of the powder which consists of a boric acid compound (3) becomes high.
  • the specific surface area can be measured by, for example, a specific surface area measuring apparatus using a nitrogen adsorption method.
  • the first compound is preferably a compound that easily becomes amorphous.
  • M x B y O z using at least one selected from Fe and Mn as M, that is, (Fe e Mn 1-e ) x B y O z (0 ⁇ e ⁇ 1) is exemplified.
  • the second compound is preferably Li carbonate or bicarbonate.
  • the obtained boric acid compound is preferably a crystalline material.
  • Fe f Mn 2-f B 2 O 5 (0 ⁇ f ⁇ 2) is used as the first compound, and Li 2 CO 3 and LiHCO 3 are used as the second compound.
  • a method for producing particles containing LiFe d Mn 1-d BO 3 (0 ⁇ d ⁇ 1) having an olivine type crystal structure As a second specific example, Fe g Mn 1-g BO 3 (0 ⁇ g ⁇ 1) is used as the first compound, and at least one selected from Li 2 CO 3 and LiHCO 3 is used as the second compound.
  • a method for producing particles containing LiFe d Mn 1-d BO 3 (0 ⁇ d ⁇ 1) having an olivine type crystal structure by using seeds is mentioned.
  • a positive electrode for a secondary battery and a secondary battery can be produced using the boric acid compound (3) obtained by the production method of the present invention as a positive electrode material for a secondary battery.
  • the secondary battery include a metal lithium secondary battery, a lithium ion secondary battery, and a lithium polymer secondary battery, and a lithium ion secondary battery is preferable.
  • the battery shape is not limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.
  • the positive electrode for a secondary battery of the present invention can be manufactured according to a known electrode manufacturing method except that the boric acid compound (3) obtained by the manufacturing method of the present invention is used.
  • a powder of boric acid compound (3) may be added to a known binder (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluorine if necessary.
  • the mixed powder thus obtained may be press-molded on a support made of stainless steel or filled in a metal container.
  • the mixed powder is mixed with an organic solvent (N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran. Etc.) can also be employed such as applying the slurry obtained by mixing with a metal substrate such as aluminum, nickel, stainless steel, or copper.
  • organic solvent N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran. Etc.
  • Etc. can also be employed such as applying the slurry obtained by mixing with
  • the structure of the secondary battery a structure in a known secondary battery can be adopted except that the positive electrode for a secondary battery obtained by the production method of the present invention is used as an electrode.
  • the negative electrode a known negative electrode active material can be used as the active material, and it is preferable to use at least one selected from the group consisting of alkali metal materials and alkaline earth metal materials.
  • the electrolytic solution a non-aqueous electrolytic solution is preferable. That is, as the secondary battery obtained by the production method of the present invention, a non-aqueous electrolyte lithium ion secondary battery is preferable.
  • Table 1 shows triiron tetroxide (Fe 3 O 4 ), manganese dioxide (MnO 2 ), tricobalt tetroxide (Co 3 O 4 ), nickel oxide (NiO), and boron oxide (B 2 O 3 ).
  • the raw material mixture was weighed so as to have the composition of the first compound, and the raw material mixture was pulverized by a dry method. These pulverized products were each filled in a platinum alloy crucible containing 20% by mass of rhodium. Next, the crucible was placed in an electric furnace (manufactured by Motoyama Co., Ltd., apparatus name: NH3045F) equipped with a heating element made of molybdenum silicide. The electric furnace was heated by heating at 1,350 ° C. for 0.5 hours while flowing N 2 gas at a flow rate of 2 L / min. Each melt was obtained after confirming that it became transparent visually.
  • the molten material in the crucible is cooled at ⁇ 1 ⁇ 10 5 ° C./second by passing through a stainless steel double roller having a diameter of about 15 cm rotating at 400 revolutions per minute, and the black or brownish flaky solidified product is obtained. Obtained.
  • the obtained solidified product was a glassy substance. It was found from the X-ray diffraction pattern that the flaky solidified product obtained in each example was mainly composed of an amorphous part. The ratio of the amorphous part was 90% by mass or more.
  • the first compound was produced as described above.
  • the X-ray diffraction patterns of the flaky solidified products obtained in Examples 1 to 6 are shown in FIG. FIG.
  • a) is an X-ray diffraction pattern of the flaky solidified product obtained in Example 1.
  • b) to f) are X-ray diffraction patterns of the flaky solidified product obtained in Examples 2 to 6, respectively. It is.
  • the flaky solidified product obtained in each example was pulverized in advance by dry process, and these and lithium carbonate (second compound) were prepared so as to have a molar ratio of 1: 1 based on the oxide, and then the formulation was ethanol.
  • Each pulverized product was heated in 3% by volume H 2 —Ar gas at 600 ° C. for 8 hours to obtain boric acid compound particles each having a composition represented by LiMBO 3 .
  • each pulverized product was heated at 500 ° C. ⁇ 8 hours in 3% by volume H 2 —Ar gas, and heated at 700 ° C. ⁇ 8 hours, and at any temperature, the above 600 ° C. ⁇ Boric acid compound particles having the same composition represented by LiMBO 3 as in the case of heating for 8 hours were obtained.
  • Example 12 The first compound is Fe 2 B 2 O 5 , the second compound is Li 2 CO 3, and the molar ratio of these oxide standards is 1: 0.8 (Example 12) and 1: 1.2 (implemented).
  • Example 13) was pulverized in the same manner as in Example 1 and the pulverized product was heated at 600 ° C. for 8 hours in 3% by volume H 2 —Ar gas to thereby obtain Li 0.8 MBO 2. 9 and boric acid compound particles having a composition represented by Li 1.2 MBO 3.1 were obtained.
  • the particle size distribution of the boric acid compounds obtained in Examples 1 and 6 was measured with a laser diffraction / scattering particle size distribution analyzer (manufactured by Horiba, Ltd., apparatus name: LA-920).
  • the median diameters in terms of volume were 0.68 ⁇ m (Example 1) and 0.75 ⁇ m (Example 6), respectively. Furthermore, it was 24 m ⁇ 2 > / g (Example 1) and 22 micrometers (Example 6) when the specific surface area was measured with the specific surface area measuring apparatus (The Shimadzu Corporation Corp. make, apparatus name: ASAP2020).
  • Example 14 to 19 The flaky solidified products obtained in Examples 1 to 6 were previously pulverized in a dry manner, and these and lithium carbonate (second compound) were blended so that the molar ratio based on the oxide was 1: 1. In addition, carbon black was added to the formulation so that the mass ratio of the formulation to carbon black was 90:10. These were pulverized wet in the same manner as in Example 1. Each pulverized product was heated in N 2 gas at 600 ° C. for 8 hours to obtain boric acid compound particles each having a composition represented by carbon-containing LiMBO 3 .
  • the mineral phase of each particle obtained was identified with an X-ray diffractometer. As a result, diffraction patterns of existing LiFeBO 3 (PDF No. 01-070-8321) and / or LiMnBO 3 (PDF No. 01-053-0371) were all found. A similar diffraction pattern was obtained. Furthermore, when the carbon content of the boric acid compound particles obtained in Examples 14, 16 and 19 was measured with a carbon analyzer, it was 8.5% (Example 14) and 8.2% (implementation) on a C mass basis, respectively. Example 16) and 8.7% (Example 19).
  • Example 20 to 25 Triiron tetroxide (Fe 3 O 4 ), manganese dioxide (MnO 2 ), and boron oxide (B 2 O 3 ) are weighed and mixed so as to have the composition of the first compound shown in Table 2, respectively, The mixture was pulverized in the same manner as in Example 1 and then heated at 1,350 ° C. for 0.5 hour. Next, the melt was cooled in the same manner as in Example 1 to produce a flaky solidified product.
  • FIGS. 4A to 4F are X-ray diffraction patterns of the flaky solidified products obtained in Examples 20 to 25.
  • FIG. 4A to 4F are X-ray diffraction patterns of the flaky solidified products obtained in Examples 20 to 25.
  • the flaky solidified product obtained in each example was previously pulverized in a dry manner, and these and lithium carbonate (second compound) were prepared so as to have a molar ratio based on oxide of 1: 1 to obtain a formulation, Furthermore, carbon black and glucose (10% aqueous solution) were added to the formulation so that the mass ratio of the formulation to carbon black and glucose was 90: 5: 5. These were pulverized wet in the same manner as in Example 1. Each pulverized product was heated in 3% by volume H 2 —Ar gas at 600 ° C. for 8 hours to obtain boric acid compound particles each having a composition represented by carbon-containing LiMBO 3 . Also, similar boric acid compound particles were obtained by heating each pulverized product in 3 volume% H 2 —Ar gas at 700 ° C. for 8 hours.
  • Example 26 to 29 ⁇ Manufacture of positive electrode for Li ion secondary battery and battery for evaluation> Boric acid compound particles having a composition represented by LiMBO 3 obtained by heating at 600 ° C. for 8 hours in Examples 1, 14, 16 and 19, or a boric acid compound having a composition represented by carbon-containing LiMBO 3
  • the particles were active materials.
  • the active material powder, polyvinylidene fluoride resin (binder), and acetylene black (conductive material) were weighed so as to have a mass ratio of 85: 5: 10, and then in N-methylpyrrolidone (solvent).
  • the slurry was prepared by mixing until uniform. Next, the slurry was applied to an aluminum foil having a thickness of 30 ⁇ m with a bar coater. After these were dried at 120 ° C. in air to remove the solvent, the coating layer was consolidated by a roll press, and then cut into strips having a width of 10 mm and a length of 40 mm.
  • the coating layer was peeled off leaving a 10 ⁇ 10 mm tip of strip-shaped aluminum foil, which was used as an electrode.
  • the coating thickness of the obtained electrode after roll pressing was 20 ⁇ m.
  • the obtained electrode was vacuum-dried at 150 ° C., then carried into a glove box filled with purified argon gas, and opposed to a counter electrode in which lithium foil was pressure-bonded to a nickel mesh with a porous polyethylene film separator, Both sides were fixed with a polyethylene plate.
  • This charge / discharge cycle was repeated 10 cycles.
  • the discharge capacities of the 10th cycle of the half-cells using the active materials of Examples 1, 14, 16 and 19 were 130 mAh / g (Example 1), 141 mAh / g (Example 14), and 122 mAh / g (implemented), respectively.
  • the half battery using the active material of Example 1 was put into a 60 degreeC thermostat, and the same charging / discharging test was done.
  • the discharge capacity at the 10th cycle was 165 mAh / g.
  • the boric acid compound obtained by the present invention is useful as a positive electrode material used for manufacturing a positive electrode of a secondary battery such as a lithium ion secondary battery. It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application 2010-028572 filed on February 12, 2010 is cited herein as the disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 特性や信頼性に優れるホウ酸化合物を安価にかつ簡便に製造することを可能にしたホウ酸化合物の製造方法を提供する。 Mxyz(ただし、MはFe、Mn、Co及びNiから選択される少なくとも1種の原子、Mの価数Nは+2≦N≦+4、0.8≦x/y≦1.2)の組成を有する第1の化合物と、Li、Na及びKから選択される少なくとも1種の原子Aを含む第2の化合物とを、AとMとBの原子比(A:M:B)がa:b:1(ただし、0<a<2、0.8<b<1.2)となるように調合する。第1の化合物と第2の化合物との調合物を混合しつつ粉砕した後、不活性ガス中又は還元ガス中で加熱し、AabBOc(ただし、Mの価数はNと等しいかNより小さく、cはa、bの数値及びMの価数に依存する数)で表される組成を有するホウ酸化合物を製造する。

Description

ホウ酸化合物、二次電池用正極、及び二次電池の製造方法
 本発明はホウ酸化合物の製造方法、二次電池用正極、及び二次電池の製造方法に関する。
 近年、携帯電話やノート型パソコン等の携帯型電子機器、電動工具等の電源として、リチウムイオン二次電池が広汎に使用されている。リチウムイオン二次電池の次世代の正極材料として、資源面、安全面、コスト面、安定性等の観点から、オリビン型結晶構造のホウ酸化合物が提案されており、その製造方法が検討されている。
 特許文献1には、M2-2x2x3(Mは遷移金属から選択される1種又は2種以上の金属原子であり、xは0<x<1である)で表され、非晶質である金属錯体を主体とする電極活物質が記載されており、その製造方法としてM2-2x2x3で表される金属錯体をメカニカルミリング法によって非晶質化する方法、Mを構成金属原子とする金属酸化物とホウ素酸化物とを含む混合物を溶融状態から急冷凝固させる方法が記載されている。金属錯体の非晶質化には多くのエネルギーを要し、また大量生産には向かないという難点がある。特許文献1には、金属酸化物とホウ素酸化物とを含む混合物にさらにリチウム化合物を添加することが記載されているが、この記載はV25が含まれる系のみについてであり、FeO等の遷移金属が含まれる系についての実施例は記載されていない。
 非特許文献1や非特許文献2には、LiMBO3(M=Mn、Fe、Co)で表されるオリビン型結晶構造のホウ酸化合物が二次電池の電極材料として使用可能であることが示されている。非特許文献1には、下式(5)で表される固相反応でLiMBO3を製造する方法が記載されている。
 LiBO2+M(COO)2・nH2
     →LiMBO3+CO+CO2+nH2O …(5)
 非特許文献2には、下式(6)で表される固相反応でLiFeBO3を製造する方法が記載されており、また生成物の構造解析がなされている。
 Li2CO3+2M(COO)2・2H2O+2H3BO3
     →2LiMBO3+2CO+4CO2+7H2O …(6)
 非特許文献1に記載された製造方法は、原子Mを含む化合物として高価なシュウ酸塩を用いており、LiMBO3の製造コストが増加するという難点がある。また、原料の分解に伴う気体の発生量が多い。気体の発生は処理を必要とする気体種を含むだけでなく、LiMBO3の生成や粒成長を阻害するため、2段階加熱、すなわち原料混合物をまず加熱して気体を発生させ、次いで解砕、粉砕、成形等の工程を実施した後、再び高温で加熱してLiMBO3粒子を合成する必要がある。非特許文献2に記載された製造方法も同様である。
特開2005-135866号公報
V.Legagneur et al., Solid State Ionics, 139, 37-46,(2001) Y.Z.Dong et al., Electrochimica Acta, 53, 2339-2345,(2008)
 本発明者は特許文献1に記載されている方法にならって、四酸化三鉄(Fe34)、炭酸リチウム(Li2CO3)、酸化ホウ素(B23)を加熱する方法によるLiFeBOxの製造を大気圧下で試みた。しかし、四酸化三鉄、炭酸リチウム、及び酸化ホウ素の均一な溶融物を得ることができなかった。
 本発明の目的は、ホウ酸化合物の組成や粒径の制御をすることによって、電池特性や信頼性に優れるホウ酸化合物を安価にかつ効率的に製造することを可能にしたホウ酸化合物の製造方法を提供することにある。本発明は、電気特性や信頼性に優れる二次電池用正極及び二次電池の製造方法も提供する。
 本発明は、下記[1]~[15]の発明である。
[1]下式(1)で表される組成を有する第1の化合物と、Li、Na、及びKから選択される少なくとも1種の原子Aを含む第2の化合物とを、下式(2)で表される原子比となるように調合して調合物を得る工程、
 前記調合物を混合しつつ粉砕して粉砕物を得る工程、
 前記粉砕物を不活性ガス中又は還元ガス中で加熱し、下式(3)で表される組成を有するホウ酸化合物を得る工程、
を含むことを特徴とするホウ酸化合物の製造方法。
 Mxyz  (1)
(式中、MはFe、Mn、Co及びNiから選択される少なくとも1種の原子であり、かつ、Mの価数Nは+2≦N≦+4であり、x及びyは0.8≦x/y≦1.2を満足する数であり、zはx、yの数値及びMの価数Nに依存する数である。)
 A:M:B=a:b:1  (2)
(式中、A及びMは前記と同じ種類の原子を示し、aは0<a<2、bは0.8<b<1.2である。)
 AabBOc  (3)
(式中、A及びMは前記と同じ種類の原子を示し、Mの価数は前記Nと等しいかNよりも小さく、a及びbは前記と同じ数値を示し、cはa、bの数値及びMの価数に依存する数である。)
[2]前記第1の化合物が、Mの酸化物、Mのオキシ水酸化物及びMの金属から選択される少なくとも1種と、ホウ酸、酸化ホウ素、ホウ酸アンモニウム及びホウ酸水素アンモニウムから選択される少なくとも1種とを、MとBが式(1)で表される組成となるように調合して原料混合物を得、該原料混合物を粉砕し、加熱して溶融物を得た後、該溶融物を冷却して得られた化合物である、[1]のホウ酸化合物の製造方法。
[3]Mの酸化物、Mのオキシ水酸化物及びMの金属から選択される少なくとも1種と、ホウ酸、酸化ホウ素、ホウ酸アンモニウム及びホウ酸水素アンモニウムから選択される少なくとも1種とを、MとBが式(1)で表される組成となるように調合して原料混合物を得、該原料混合物を粉砕し、加熱して溶融物を得た後、該溶融物を冷却して式(1)で表される組成を有する第1の化合物を得る工程を含む、[1]のホウ酸化合物の製造方法。
[4]前記溶融物の冷却速度が、-103℃/秒~-1010℃/秒である、[2]又は[3]のホウ酸化合物の製造方法。
[5]前記第1の化合物が、非晶質部分を含む固体状化合物である、[1]~[4]のホウ酸化合物の製造方法。
[6]前記第2の化合物が、加熱によりA2Oに変化する化合物である、[1]~[5]のホウ酸化合物の製造方法。
[7]前記第2の化合物が、Aの炭酸塩(A2CO3)、Aの炭酸水素塩(AHCO3)、Aの水酸化物(AOH)、Aの硝酸塩(ANO3)、Aの塩化物(ACl)、Aの硫酸塩(A2SO4)、Aの酢酸塩(CH3COOA)及びAのシュウ酸塩((COOA)2)(ただし、これらの化合物は、それぞれ水和塩を形成していてもよい。)から選択される少なくとも1種である、[1]~[6]のホウ酸化合物の製造方法。
[8]前記加熱して式(3)で表される組成を有するホウ酸化合物を得る工程における加熱温度が、400~800℃である、[1]~[7]のホウ酸化合物の製造方法。
[9]前記粉砕物を得る工程において、前記調合物に、有機化合物及び炭素粉末から選択される少なくとも1種の炭素源を含ませ、該炭素源の量は、調合物と炭素源中の炭素換算量(質量)との合計質量に対する該炭素換算量(質量)の割合が0.1~20質量%となる量である、[1]~[8]のホウ酸化合物の製造方法。
[10]式(3)で表される組成を有するホウ酸化合物が、下式(4)で表される組成を有する結晶粒子である、[1]~[9]のホウ酸化合物の製造方法。
 AabBO(0.5a+b+1.5)  (4)
(式中、A及びMは前記と同じ種類の原子を示し、a及びbは前記と同じ数値を示す。)
[11]式(3)で表される組成を有するホウ酸化合物が、オリビン型結晶構造のLiMBO3を含む粒子である、[1]~[10]のホウ酸化合物の製造方法。
[12]式(3)で表される組成を有するホウ酸化合物が、オリビン型結晶構造のLiFedMn1-dBO3(dは0≦d≦1である)を含む粒子である、[1]~[11]のホウ酸化合物の製造方法。
[13]下式(1)で表される組成を有する第1の化合物と、A2CO3、AHCO3及びAOH(式中、AはLi、Na、及びKから選択される少なくとも1種の原子である。いずれもそれぞれの水和塩を含む。)から選択される第2の化合物とを、調合して調合物を得る工程、
 前記調合物を混合しつつ粉砕して粉砕物を得る工程、
 前記粉砕物を不活性ガス中又は還元ガス中で加熱し、下式(4)で表される組成を有するホウ酸化合物を得る工程、
を含むことを特徴とするホウ酸化合物の製造方法。
 Mxyz  (1)
(式中、MはFe、Mn、Co及びNiから選択される少なくとも1種の原子であり、かつ、Mの価数Nは+2≦N≦+4であり、x及びyは0.8≦x/y≦1.2を満足する数であり、zはx、yの数値及びMの価数Nに依存する数である。)
 AabBO(0.5a+b+1.5)  (4)
(式中、A及びMは前記と同じ種類の原子を示し、Mの価数は前記Nと等しいかNよりも小さく、a及びbは前記と同じ数値を示す。)
[14]前記[1]~[13]の製造方法によってホウ酸化合物を得て、次に、該ホウ酸化合物を二次電池用正極材料として用いて、二次電池用正極を製造することを特徴とする二次電池用正極の製造方法。
[15]前記[14]の製造方法で二次電池用正極を得て、次に、該二次電池用正極を用いて二次電池を製造することを特徴とする二次電池の製造方法。
 本発明の製造方法は、ホウ酸化合物の組成や粒径の制御がしやすい方法である。従って、電池特性や信頼性に優れるホウ酸化合物を安価にかつ効率的に製造できる。また、本発明により得られるホウ酸化合物を用いることにより、電池特性や信頼性に優れる二電池用正極及び二次電池が製造できる。
実施例1~6で製造した第1の化合物(フレーク状固化物)のX線回折パターンを示す図である。 実施例1~3で製造したホウ酸化合物(オリビン型結晶構造を有する)粒子のX線回折パターンを示す図である。 実施例4~6で製造したホウ酸化合物(オリビン型結晶構造を有する)粒子のX線回折パターンを示す図である。 実施例20~25で製造した第1の化合物(フレーク状固化物)のX線回折パターンを示す図である。 実施例20~22で製造したホウ酸化合物(オリビン型結晶構造を有する)粒子のX線回折パターンを示す図である。 実施例23~25で製造したホウ酸化合物(オリビン型結晶構造を有する)粒子のX線回折パターンを示す図である。
 以下の説明において、Aは、Li、Na、及びKから選択される少なくとも1種の原子を表す。Aは、上記3種のアルカリ金属元素の原子を表す。Aは2種以上の原子の組み合わせからなっていてもよい。Mは、Fe、Mn、Co及びNiから選択される少なくとも1種の原子を表す。Mは、上記4種の遷移金属元素の原子を表す。Mは2種以上の原子の組み合わせからなっていてもよい。なお、式(1)、式(3)などの化学式は平均組成を表す。
 また、オリビン型構造の結晶を以下オリビン型結晶といい、オリビン型結晶を含む粒子を以下オリビン型結晶粒子ともいう。オリビン型結晶粒子は、オリビン型結晶構造以外の結晶構造を部分的に含んでいてもよく、非結晶構造を部分的に含んでいてもよい。オリビン型結晶粒子としては、その実質的にすべてがオリビン型結晶からなっていることが好ましい。
 さらに、本発明製造方法の目的物である、式(3)で表される組成を有するホウ酸化合物を、ホウ酸化合物(3)ともいう。
 本発明のホウ酸化合物の製造方法は、以下の工程(I)、工程(II)、及び工程(III)を、この順に行う。(I)~(III)の工程前、工程間、及び工程後には、各工程に影響を及ぼさない限り、他の工程を行ってもよい。
 工程(I):前記第1の化合物と前記第2の化合物とを、前記式(2)で表される原子比となるように調合して調合物を得る工程、
 工程(II):前記調合物を混合しつつ粉砕して粉砕物を得る工程、
 工程(III):前記粉砕物を不活性ガス中又は還元ガス中で加熱し、ホウ酸化合物(3)を得る工程。
 さらに、第1の化合物としては、Mを含む化合物及びBを含む化合物を、MとBが式(1)で表される組成となるように調合して原料混合物を得、該原料混合物を粉砕し、該粉砕物を加熱して溶融物を得た後、該溶融物を冷却して製造されたものが好ましい。この第1の化合物を製造する工程を以下工程(IV)という。
 第1の化合物としては、特に、Mの酸化物、Mのオキシ水酸化物及びMの金属から選択される少なくとも1種と、ホウ酸、酸化ホウ素、ホウ酸アンモニウム及びホウ酸水素アンモニウムから選択される少なくとも1種とを、MとBが式(1)で表される組成となるように調合して原料混合物を得、該原料混合物を粉砕し、加熱して溶融物を得た後、該溶融物を冷却して得られた化合物であることが好ましい。
 本発明の製造方法で製造されるホウ酸化合物は、二次電池用正極材料として有用な化合物であり、特にリチウムイオン二次電池用正極材料として有用である。
 本発明者は、特許文献1に記載の方法に基づいて、Aの炭酸塩とMの酸化物とホウ酸とを混合、粉砕、加熱する方法でホウ酸化合物を得ようとした。しかし、Aの炭酸塩、Mの酸化物及びホウ酸の調合物が溶融しないため、所望の組成のホウ酸化合物を得ることができなかった。これに対して、本発明の製造方法においては、Mを含む化合物等とホウ素を含む化合物とを式(1)で表される組成となるように調合した原料の混合物が、加熱により溶融するため、所望のホウ酸化合物(3)を得ることができる。ここで、溶融とは、Aの炭酸塩、Mの酸化物及びホウ酸とが融解し、目視で透明な状態になることをいう。式(1)で表される組成を有する化合物を第1の化合物として使用し、該第1の化合物に第2の化合物を所定の割合で調合して調合物を製造し、該調合物を加熱することによって、所望のホウ酸化合物(3)を得ることが可能となる。
 また、特許文献1に記載の方法では、金属錯体の非晶質化に多くのエネルギーを要し、また大量生産には向かないという難点があるのに対し、本発明によれば、少ないエネルギーで所望の組成を有するホウ酸化合物を得られることから、大量生産に有利な製造方法である。
 [工程(I)]
 工程(I)は、第1の化合物と第2の化合物とを、式(2)で表される原子比となるように調合して調合物を得る工程である。
 第1の化合物は予め粉砕してから調合するのが好ましい。粉砕は、ミキサー、ボールミル、ジェットミル、又は遊星ミル等を用いて、乾式又は湿式で行うことが好ましく、溶媒除去が不要なことから乾式が好ましい。
 第1の化合物において、MはFe、Mn、Co及びNiから選択される少なくとも1種の原子である。ホウ酸化合物を二次電池用正極材料に適用する場合、コストの点から、MとしてはFe及びMnから選択される少なくとも1種が好ましい。二次電池用正極材料の理論容量を発現し易くなる点から、Feが特に好ましい。作動電圧を高くする点からは、Co及びNiから選択される少なくとも1種が好ましい。Mの価数は本発明の製造方法の各工程において変化しうる数値であり、+2~+4の範囲である。従って、第1の化合物におけるMの価数Nは、+2≦N≦+4である。MがFeの場合は+2、+8/3、又は+3、Mnの場合は+2、+3、又は+4、Coの場合は+8/3、Niの場合は+2又は+4が好ましい。
 式(1)中のx及びyは0.8≦x/y≦1.2を満足する任意の数である。該式を満たすことで、ホウ酸化合物(3)を得ることができる。
 式(1)中のx及びyはx/yが1であることが好ましい。例えば、MxyzがM225である場合、Mの価数Nは+2であり、オリビン型結晶構造のホウ酸化合物(3)を得やすい。M225を、第2の化合物としてのAの酸化物(例えばA2O)と混合して加熱した場合、下式(7)で表される固相反応が化学量論的に進行するため、AMBO3が得られやすい。
 M(II)225+A2O→2AM(II)BO3 …(7)
 また、x/y=1であるMxyzがMBO3である場合、オリビン型結晶構造のホウ酸化合物(3)を得やすいと共に、空気中等で効率的に製造できるので好ましい。MBO3を、第2の化合物としてのAの酸化物(例えばA2O)と混合して不活性ガス中又は還元ガス中で加熱した場合、下式(8)で表される固相反応が化学量論的に進行するため、AMBO3が得やすい。
 2M(III)BO3+A2O→2AM(II)BO3+0.5O2 …(8)
 式(1)中のzの値は、x、yの値及びMの価数Nに依存し、これらの値により変化する数値である。例えば、MがFeであり、そのMの価数Nが+2、x及びyの値がそれぞれ2、x/y=1であり、二量体(ピロホウ酸塩)であると、zの値は5となる。zの値は一般に、式(x+yN+3)/2から求められる。MがMn、Co及びNiの場合も、価数Nがそれぞれ+2、x及びyの値がそれぞれ2、x/y=1/1であり、二量体であると、zの値は全て5となる。
 第1の化合物は、非晶質物を含むのが好ましい。第1の化合物が非晶質物を含むことにより、次工程の工程(II)が実施しやすくなり、ホウ酸化合物の組成を制御しやすくなる。さらに、後工程の工程(III)において、生成物が塊状になるのを防ぐことができ、かつ生成物の粒度が制御しやすくなる。
 第1の化合物が結晶化物を含む場合、工程(III)で結晶化物が結晶核となり、結晶化しやすくなる。第1の化合物中の結晶化物の量は、第1の化合物の全質量に対して0~20質量%であることが好ましい。結晶質部分が20質量%以下であると、第1の化合物の粉砕のしやすさと、第2の化合物との反応性を低下させることなく、工程(III)で結晶核となって反応を促進する効果を有するので好ましい。
 第1の化合物は、M、ホウ素(B)及び酸素(O)のみからなるものに限らず、V、Si、P、Al、Mg及びZnから選択される少なくとも1種の原子Xを含んでいてもよい。第1の化合物にXを含有させることで、第1の化合物と第2の化合物との反応性を改善することができる。また、第1の化合物として非晶質物を適用する場合には、第1の化合物の非晶質化を促進することができる。Xの含有量(Xが複数の原子からなる場合には合計量)は、ホウ素(B)とXとの合計量に対するXの原子比(X/(B+X))を0.01~0.2の範囲とすることが好ましい。また、還元剤として作用する元素(例えば炭素(C))の原子Yを、ホウ素(B)とYとの合計量に対するYの原子比(Y/(B+Y))が0.01~0.1となる範囲で含んでいてもよい。
 第1の化合物は、フレーク状又は繊維状が好ましい。フレーク状の場合には、平均厚さが200μm以下が好ましく、100μm以下が特に好ましい。フレーク状の場合の平均厚さに垂直な面の平均直径は、特に限定されない。繊維状の場合には、平均直径が50μm以下が好ましく、30μm以下が特に好ましい。平均厚さや平均直径の上限値以下であると、工程(II)の手間を低減することができ、結晶化効率を高くすることができる。平均厚さ及び平均直径は、ノギスやマイクロメータにより測定することができる。平均直径は、顕微鏡観察により測定することもできる。
 第2の化合物は、Li、Na、及びKから選択される少なくとも1種の原子Aを含む化合物であり、加熱により熱分解してA2Oに変化する化合物であれればよい。第2の化合物としては、工程(III)でA2Oに変化する化合物であることが好ましい。このような化合物を使用することで、ホウ酸化合物(3)を効率的に得ることができる。第2の化合物としては、Aの炭酸塩(A2CO3)、Aの炭酸水素塩(AHCO3)、Aの水酸化物(AOH)、Aの硝酸塩(ANO3)、Aの塩化物(ACl)、Aの硫酸塩(A2SO4)、Aの酢酸塩(CH3COOA)及びAのシュウ酸塩((COOA)2)(ただし、これらの化合物は、それぞれ水和塩を形成していてもよい。)から選択される少なくとも1種が好ましい。安価で入手しやすく、また加熱によりA2Oになりやすい点から、A2CO3、AHCO3及びAOHから選択される少なくとも1種が特に好ましい。なお、A2OはH2OやCO2と反応しやすく、化学的安定性が低いために好ましくない。
 第2の化合物を構成するAは、二次電池用正極材料として適しているため、Liを必須とするのが好ましく、Liのみであることが特に好ましい。Liを含むホウ酸化合物は、二次電池の単位体積(質量)当たりの容量が高くできる。
 第1の化合物や第2の化合物の純度は特に限定されず、反応性や得られるホウ酸化合物(3)の特性(例えば正極材料の特性)等を考慮すると、99質量%以上が好ましい。
 第1の化合物や第2の化合物は粒子であることが好ましい。該粒子の平均粒径は特に限定されず、いずれの平均粒径も体積換算のメディアン径で1nm~100μmが好ましく、10nm~10μmがより好ましく、10nm~1μmが特に好ましい。平均粒径が上記範囲であると、第1の化合物と第2の化合物との反応を促進できる。平均粒径が小さい場合には、還元反応が促進され、工程(III)の加熱温度や時間を低減できるために好ましい。なお、第1の化合物や第2の化合物の平均粒径は、工程(I)の原料として使用される際に上記範囲であるのが好ましい。すなわち、例えば工程(IV)によって第1の化合物を製造する場合、得られた第1の化合物の平均粒径は上記範囲外であっても、工程(I)において調合する前に予め粉砕して上記範囲に調整できていればよい。なお、粉砕によって生じた微粒子等は、特に除去する必要はない。粒径の測定は、沈降法やレーザ回折/散乱式粒子径測定装置で測定できる。
 第1の化合物と第2の化合物とは、前述した式(2)で表される原子比となるように、すなわち式(2)中のaが0<a<2で、bが0.8<b<1.2となるように調合される。a及びbを上記範囲にすることにより、ホウ酸化合物(3)が得られる。本発明により得られるホウ酸化合物(3)は、粒子であることが好ましく、結晶質粒子であることがより好ましく、オリビン型結晶粒子であることが特に好ましい。第1の化合物と第2の化合物とを式(2)で表される原子比となるように調合することにより、ホウ酸化合物(3)のオリビン型結晶粒子を得やすい。さらに、AMBO3の組成を有するホウ酸化合物(3)のオリビン型結晶粒子が得やすい。
 AとMとBを式(2)で表される原子比となるように調合して調合物とする際、調合物における酸素原子の原子比(酸化物となったと仮定した場合、ホウ素(B)原子を1とした場合の酸素原子の原子比)の値は後の工程(III)で変化しうる値であり、工程(III)の後にcとなる値である。例えば、工程(III)で成分の酸化還元、揮発等により酸素原子比の値が増減する場合には、該増減を考慮に入れた値とするのが好ましい。調合物においてホウ素(B)原子を1とした場合の酸素原子の原子比の値は、目的とするホウ酸化合物(3)のcの値に対して、100%以上103%以内とするのが好ましい。
 第1の化合物と第2の化合物とを調合する手段としては、特定量の2以上の化合物を合わせる手段から採用され、混合することにより合わせることが好ましい。第1の化合物と第2の化合物との調合物には、後述する有機化合物及び炭素粉末から選択される少なくとも1種の炭素源を含ませてもよい。特にホウ酸化合物(3)のオリビン型結晶は絶縁物質であるため、ホウ酸化合物(3)の粒子からなる粉末を二次電池用正極材料として用いる場合に、調合物に炭素源を含ませるのが好ましい。炭素源は加熱時に還元剤として機能し、さらに加熱後に導電材として機能する。ホウ酸化合物(3)を二次電池用正極材料として用いる場合には、ホウ酸化合物(3)の粒子からなる粉末が導電材を含むことによって、二次電池用正極材料の導電性を高めることができる。
 調合物に含まされた炭素粉末は、ホウ酸化合物(3)の粒子の表面に固着し、ホウ酸化合物(3)の粒子の集合体である粉末の導電性を向上させる。有機化合物はホウ酸化合物に対する炭素粉末の結合材として機能することに加えて、例えばそれ自体も工程(III)により熱分解し、さらに炭化して炭化物となり、それ自体が導電材としてホウ酸化合物(3)の導電性を向上させる。従って、有機化合物は工程(III)で熱分解反応し、例えば水素原子や酸素原子が離脱して炭化する性質を有するものが好ましく、これによって有機化合物の工程(III)での反応物を導電材として機能させることができる。有機化合物及び炭素粉末はいずれも導電材として機能するため、それらの少なくとも1種を添加すればよい。
 炭素源として炭素粉末を使用する場合には、ホウ酸化合物(3)に対する結合力を高める上で有機化合物と併用することが好ましい。すなわち、調合物には有機化合物を単独で含ませるか、あるいは有機化合物と炭素粉末とを含ませることが好ましい。
 有機化合物や炭素粉末は、工程(III)での第1の化合物と第2の化合物との還元反応を促進する機能を有する。例えば、MBO3(Mの価数は+3とする)とA2Oとを加熱する際に、有機化合物(Cmn)を含ませた場合には、下式(9)で表される還元反応が促進され、AMBO3(Mの価数は+2とする)が得られやすくなる。
 2M(III)BO3+A2O+Cmn
     →2AM(II)BO3+mCO2+n/2H2O …(9)
 有機化合物は第1の化合物と第2の化合物との反応温度(第1の化合物が非晶質物の場合、その結晶核の生成及び粒成長温度を含む)より高い温度で分解、炭化するものが好ましい。有機化合物はそれ自体が炭素粉末のホウ酸化合物(3)に対する結合材として機能するため、炭素粉末と併用されることが好ましい。さらに、粉砕時に調合物の酸化を防止し、さらに還元を促進する上で、還元性を有する有機化合物を用いることが好ましい。
 有機化合物としては、糖類、アミノ酸類、ペプチド類、アルデヒド類及びケトン類から選択される少なくとも1種であることが好ましく、糖類、アミノ酸類及びペプチド類が特に好ましい。糖類としては、グルコース、フラクトース、ガラクトース等の単糖類、スクロース、マルトース、セロビオース、トレハロース等のオリゴ糖、転化糖、デキストリン、アミロース、アミロペクチン、セルロース等の多糖類、及びアスコルビン酸等のこれらの類縁物質が挙げられる。単糖類及び一部のオリゴ糖は還元性が強くて好ましい。
 アミノ酸類としては、アラニン、グリシン等のアミノ酸が挙げられる。ペプチド類としては、分子量が1,000以下の低分子ペプチドが挙げられる。さらに、アルデヒド基やケトン基等の還元性の官能基を有する有機化合物も挙げられる。有機化合物としては、とりわけグルコース、スクロース、グルコース-フラクトース転化糖、カラメル、澱粉、α化した澱粉、カルボキシメチルセルロース等が好適である。
 炭素粉末としては、カーボンブラック、グラファイト、アセチレンブラック等を用いることが好ましい。炭素粉末を調合物の粉砕時に含ませることによって、工程(III)でホウ酸化合物(3)のオリビン型粒子を生成させた後に、炭素粉末を混合する工程を別途に設ける必要がなくなる。さらに、炭素粉末を有機化合物と共に調合物の粉砕時に含ませることによって、ホウ酸化合物(3)の粉末内での炭素粉末の分布が均一となり、また有機化合物又はその熱分解物(炭化物)との接触面積が大きくなる。これによって、炭素粉末のホウ酸化合物(3)に対する結合力を高めることが可能となる。
 炭素源の量は、調合物と炭素源中の炭素換算量(質量)との合計質量に対する該炭素換算量(質量)の割合が0.1~20質量%となる量が好ましく、2~10質量%となる量が特に好ましい。炭素源を上記範囲の下限値以上にすることにより、ホウ酸化合物(3)を二次電池用正極材料として用いる場合の導電性を充分に高めることができる。上記範囲の上限値以下にすることにより、ホウ酸化合物(3)を二次電池用正極材料として用いる場合に、二次電池用正極材料としての特性を高いまま保持できる。
[第1の化合物の製造]
 第1の化合物は、市販品を使用してもよいし、製造してもよい。製造する場合には、前記工程(IV)で製造することが好ましい。すなわち、まずMを含む化合物及びBを含む化合物を、MとBが式(1)で表される組成となるように調合して原料混合物を得、該原料混合物を粉砕し、該粉砕物を加熱して溶融物を得た後、該溶融物を冷却して第1の化合物を製造するのが好ましい。また、前記原子Xや原子Yを含む第1の化合物を製造する場合には、Xを含む化合物やYを含む化合物をMを含む化合物及びBを含む化合物とともに使用することにより、製造できる。
 原料混合物におけるMを含む化合物としては、Mの酸化物(FeO、Fe34、Fe23、MnO、Mn23、MnO2、CoO、Co34、Co23及びNiO)、及びMのオキシ水酸化物(MO(OH))から選択される少なくとも1種の化合物が好ましい。Mを含む化合物の代わりに金属状態のMを使用することもできる。入手のし易さやコストの点から、Fe34、Fe23、MnO、Mn23、MnO2、Co34及びNiOが特に好ましい。
 原料混合物におけるBを含む化合物としては、ホウ酸(H3BO3)、酸化ホウ素(B23)、ホウ酸アンモニウム(NH458)及びホウ酸水素アンモニウム(NH4HB47)から選択される少なくとも1種が好ましい。入手のし易さや取扱い易さの点から、B23及びH3BO3が特に好ましい。
 Mを含む化合物とBを含む化合物の好ましい組み合わせは、入手容易な点からFe34、Fe23、MnO、Mn23、MnO2、Co34及びNiOと、B23及びH3BO3とである。
 原料混合物の粉砕は、ボールミル、ジェットミル、遊星ミル等を用いて行うことが好ましい。粉砕工程は乾式又は湿式で行い、分散媒の除去が不要である点で、乾式で粉砕することが好ましい。粉砕により、より小さな粒径の原料が均一にかつ密に混合した粉砕物が得られる。
 原料混合物を粉砕した後の粉砕物の加熱は、空気中、不活性ガス中、還元ガス中のいずれでもよい。空気中での粉砕物の溶融がコストの点で好ましい。空気中で製造した化合物であっても、後工程(工程(III))で不活性ガス中又は還元ガス中で加熱することによって、化合物を構成するMが還元される。
 不活性ガスとは、窒素ガス(N2)、及びヘリウムガス(He)及びアルゴンガス(Ar)等の希ガスから選択される少なくとも1種の不活性ガスを99体積%以上含む気体をいう。還元ガスとは、上記した不活性ガスに、還元性を有するガスを添加し、実質的に酸素を含まない気体をいう。還元性を有するガスとしては、水素ガス(H2)、一酸化炭素ガス(CO)及びアンモニアガス(NH3)等が挙げられる。不活性ガス中の還元性を有するガスの量は、全気体体積中に含まれる還元性を有するガスの量が0.1体積%以上であるのが好ましく、1~10体積%が特に好ましい。酸素の含有量は、該気体体積中に1体積%以下が好ましく、0.1体積%以下が特に好ましい。
 原料混合物の粉砕物の加熱温度は1,000~1,500℃が好ましく、1,200~1,400℃が特に好ましい。上記範囲の下限値以上であると溶融が容易になり、上記範囲の上限値以下であると原料の揮発がしにくくなる。
 また、原料混合物の粉砕物の加熱時間は0.2~4時間が好ましく、0.5~2時間が特に好ましい。上記範囲とすることにより原料混合物の溶融物の均一性が充分になり、また原料成分が揮発しにくい。
 第1の化合物として非晶質部分を含む固体状化合物、特に非晶質部分が80~100質量%である固体状化合物を得るためには、加熱で得た溶融物を冷却してガラス状物質を製造する方法、水熱法、ゾル-ゲル法を用いる。非晶質物を安価にかつ大量に製造できる点で、加熱で得た溶融物を冷却してガラス状物質を製造する方法が好ましい。
 溶融物の冷却方法としては、高速で回転する双ローラの間に溶融物を滴下して冷却する方法、回転する単ローラに溶融物を滴下して冷却する方法、及び溶融物を冷却したカーボン板や金属板にプレスして冷却する方法が好ましい。中でも、双ローラを用いた冷却方法が、冷却速度が速く、大量に処理できるので特に好ましい。双ローラとしては、金属製、カーボン製、セラミックス製のものを用いることが好ましい。
 なお、冷却方法としては、溶融物を水に直接投入する方法もあるが、該方法は制御が難しく、非晶質物を得るのが難しく、固化物が塊状となり、粉砕に多くの労力を要する欠点がある。冷却方法としては、液体窒素に溶融物を直接投入する方法もあり、水の場合よりも冷却速度を速くできるが、水を使用する方法と同様な問題があり、高コストである。
 溶融物の冷却は、空気中、不活性ガス中又は還元ガス中で行うのが、設備が簡便であることから好ましい。該冷却方法によれば、非晶質物をより簡便に得ることができる。
 溶融物の冷却速度は-1×103℃/秒以上が好ましく、-1×104℃/秒以上が特に好ましい。本明細書では、冷却する場合の単位時間当たりの温度変化(すなわち冷却速度)を負の値で示し、加熱する場合の単位時間当たりの温度変化(すなわち加熱速度)を正の値で示す。冷却速度を該値以上にすると非晶質物が得られやすい。冷却速度の上限値は製造設備や大量生産性の点から-1×1010℃/秒程度が好ましく、実用性の点からは1×108℃/秒が特に好ましい。
 [工程(II)]
 工程(II)は、工程(I)で得た調合物を混合しつつ粉砕して粉砕物を得る工程である。粉砕により、より小さな粒径の化合物が均一にかつ密に混合した、調合物の粉砕物が得られる。また、炭素源を含む調合物を使用する代わりに、この工程で炭素源を含まない調合物に前記炭素源を混入してもよい。この工程で炭素源を混入する場合、炭素源の種類や量などは前記炭素源を含む調合物を製造する場合と同じでよい。調合物の粉砕はボールミル、ジェットミル、遊星ミル等を用いて、乾式又は湿式で行うことが好ましい。炭素源を含む調合物を用いた場合やこの工程で炭素源を混入する場合には、炭素源を粉砕物の表面に均一に分散させる上で、湿式で粉砕することが好ましい。特に炭素源が有機化合物の場合、該有機化合物を溶解しうる分散媒を使用した湿式粉砕が好ましい。
 湿式粉砕の際の分散媒としては、水、又はエタノール、イソプロピルアルコール、アセトン、ヘキサン、トルエン等の有機溶媒を用いることができる。水及び有機溶媒の混液を用いることもできる。工程(II)終了時の粉砕物の平均粒径は、第1の化合物と第2の化合物との反応を促進するために、体積換算のメディアン径で1nm~100μmが好ましく、10nm~10μmがより好ましく、10nm~1μmが特に好ましい。平均粒径が上記範囲であると、第1の化合物と第2の化合物との反応を促進できる。粉砕物の粒径が小さいと、工程(III)における加熱温度や加熱時間を低減できるために好ましい。工程(II)を湿式で行った場合には、分散媒を沈降、濾過、減圧乾燥、加熱乾燥等で除去した後に、工程(III)を実施することが好ましい。
 [工程(III)]
 工程(III)は、第1の化合物と第2の化合物とを反応させて、ホウ酸化合物(3)、好ましくはその結晶質粒子、さらに好ましくはオリビン型結晶粒子を得る工程である。工程(III)は、第2の化合物の熱分解反応工程や、第1の化合物が非晶質物である場合の結晶核生成工程及び粒成長工程を含むことが好ましい。さらに、炭素源を含む粉砕物を使用した場合には、生成するホウ酸化合物(3)の粒子の表面に炭素源やその熱分解物を結合させる工程であることが好ましい。工程(II)を湿式で行った場合には、工程(III)における加熱により分散媒の除去を行ってもよい。
 工程(III)は、不活性ガス中又は還元ガス中で行う。
 圧力は、常圧、加圧(1.1×105Pa以上)、減圧(0.9×105Pa以下)のいずれでもよい。また、還元剤(例えばグラファイト)と粉砕物とを入れた容器を加熱炉内に装填して実施した場合には、粉砕物中のMイオンの還元(例えばM3+からM2+への変化)を促進することができる。
 工程(III)においてMの一部又は全部が還元されるのが好ましく、ホウ酸化合物(3)におけるMの価数Nは、前記第1の化合物におけるMの価数Nと等しいかMの価数Nより小さくなる。ホウ酸化合物(3)におけるMの価数Nは、平均値として、その原料である第1の化合物のMの価数Nよりも小さくなること(N<N)が好ましい。工程(III)により、第1の化合物におけるMの実質的にすべてが還元されること(N≦N-1)が特に好ましい。また、ホウ酸化合物(3)におけるMの価数Nは、N-1であることが好ましい。
 加熱温度は、400~800℃が好ましく、500~700℃が特に好ましい。第1の化合物として非晶質部分を含む化合物、特に非晶質部分が80~100質量%である化合物を用いた場合には、通常の固相反応の加熱温度より低い温度で加熱することができる。加熱温度が上記範囲の下限値以上であると、反応が生じ易くなる。上記範囲の上限値以下であると、粉砕物が融解しない。
 加熱は一定温度で保持しても、多段階に温度を変化させて行ってもよい。加熱温度を高くするほど、生成する粒子の径が大きくなる傾向があるため、所望の粒子径に応じて加熱温度を設定することが好ましい。
 また、加熱時間(加熱温度による保持時間)は所望の粒子径を考慮して2~72時間が好ましい。
 工程(III)の加熱が終了した後、通常は常温まで冷却する。該冷却における冷却速度は、-30℃/時間~-300℃/時間が好ましい。冷却速度を該範囲にすることにより、加熱による歪みを除去でき、生成物が結晶質粒子である場合は、結晶構造を保ったまま目的物を得ることができる。また、冷却手段を用いずに冷却できる利点もある。冷却は放置して常温まで冷却させてもよい。冷却は、不活性ガス中又は還元ガス中で行うのが好ましい。
 工程(II)で調合物の粉砕物の表面に付着した有機化合物や炭素粉末は、工程(III)で生成したホウ酸化合物(3)の粒子表面に結合して導電材として機能する。有機化合物は工程(III)で熱分解され、さらに少なくとも一部が炭化物となって導電材として機能する。有機化合物の熱分解は400℃以下で行うことが好ましく、炭化は600℃以下で行うことが好ましい。熱分解を600℃以下で行うと、炭素粉末の炭化に加えて、熱分解反応に伴う体積変化を小さくできるため、炭化物及び炭素粉末がホウ酸化合物(3)の粒子表面に均一かつ強固に結合できる。
[ホウ酸化合物(3)]
 本発明の製造方法により得られるホウ酸化合物(3)は、特に二次電池用正極材料として有用なホウ酸化合物である。該ホウ酸化合物(3)からなる固体はオリビン型結晶構造を含むことが好ましく、特にオリビン型結晶粒子であることが好ましい。該粒子としては、一次粒子及び二次粒子の双方を含む。また、調合物に炭素源を含ませた場合には、ホウ酸化合物(3)の結晶質粒子の生成と同時に、その表面に有機化合物や炭素粉末に基づく導電材が均一にかつ強固に結合した粉末材料を製造することができる。この粉末材料は二次電池用正極材料に好適である。得られたホウ酸化合物(3)の粒子やそれを含む粉末材料中に二次粒子が存在する場合、一次粒子が破壊されない程度の範囲で解砕及び粉砕してもよい。
 本発明の製造方法は、ホウ酸化合物の組成制御がしやすくかつ均一な粒子を得やすいため、ホウ酸化合物を安価にかつ効率的に製造することができる。特に、ホウ酸化合物(3)のオリビン型粒子の組成制御がしやすくかつ均一な粒子を得やすい。さらに、化学組成や粒子径の均一性に優れ、かつ高い結晶性を有するオリビン型結晶粒子を得ることができる。このようなホウ酸化合物(3)のオリビン型結晶粒子は、化学組成や粒子径の均一性に基づいて特性や信頼性の向上を図ることができる。また、得られるオリビン型結晶粒子は高い結晶性を有しているため、二次電池用正極材料に適用した際に、繰返し使用における機能低下を抑制することができる。従って、特性や信頼性に優れる二次電池用正極材料を安価に提供することが可能となる。
 さらに、炭素源を使用した場合には、ホウ酸化合物(3)の粒子の表面に導電材を均一にかつ強固に結合させることができる。このため、ホウ酸化合物(3)の粉末からなる正極材料の導電性やその信頼性を高めうる。すなわち、導電性を含む特性や信頼性に優れる二次電池用正極材料を再現性よく得られる。従って、リチウムイオン二次電池等の容量の向上を図ると共に、電池特性や信頼性を長期にわたって維持できる二次電池用正極材料を提供できる。
 本発明の製造方法で得られるホウ酸化合物(3)は、下式(4)で表される組成を有するホウ酸化合物が好ましい。
 AabBO(0.5a+b+1.5)  (4)
(式中、A及びMは前記と同じ種類の原子を示し、a及びbは前記と同じ数値を示す。)
 特に、AとしてLiを使用すると共に、MとしてFe及びMnから選択される少なくとも1種を使用した組成を有することが好ましい。
 ホウ酸化合物(3)はLiMBO3で表される組成を有するホウ酸化合物であることがより好ましく、LiFedMn1-dBO3(0≦d≦1)で表される組成を有するホウ酸化合物がさらに好ましく、LiFeBO3で表される組成を有するホウ酸化合物が特に好ましい。これらのホウ酸化合物はオリビン型結晶粒子であることが好ましく、該オリビン型結晶粒子からなる粉末は二次電池用正極材料として好適である。
 本発明のホウ酸化合物(3)の粒子の平均粒径は、体積換算のメディアン径で10nm~10μmが好ましく、10nm~2μmが特に好ましい。平均粒径を該範囲とすることにより、ホウ酸化合物(3)粒子の粉末の導電性がより高くなる。平均粒径は、例えば電子顕微鏡による観察やレーザ回折式粒度分布計による測定等によって求められる。ホウ酸化合物(3)からなる粉末の比表面積は、0.2~200m2/gが好ましく、1~200m2/gが特に好ましい。比表面積を該範囲とすることにより、ホウ酸化合物(3)からなる粉末の導電性が高くなる。比表面積は、例えば窒素吸着法による比表面積測定装置で測定できる。
 本発明の特に好ましい製造方法の態様を以下に記すが、本発明はこれに限定されない。第1の化合物は非晶質化し易い化合物が好ましい。非晶質化し易い第1の化合物としては、MとしてFe及びMnから選択される少なくとも1種を用いたMxyz、すなわち(FeeMn1-exyz(0≦e≦1)が例示される。第2の化合物はLiの炭酸塩や炭酸水素塩が好ましい。得られるホウ酸化合物は結晶質物であることが好ましい。
 特に好ましい態様の第1の具体例としては、第1の化合物としてFefMn2-f25(0≦f≦2)を用いると共に、第2の化合物としてLi2CO3及びLiHCO3から選択される少なくとも1種を用いて、オリビン型結晶構造のLiFedMn1-dBO3(0≦d≦1)を含む粒子を製造する方法が挙げられる。
 第2の具体例としては、第1の化合物としてFegMn1-gBO3(0≦g≦1)を用いると共に、第2の化合物としてLi2CO3及びLiHCO3から選択される少なくとも1種を用いて、オリビン型結晶構造のLiFedMn1-dBO3(0≦d≦1)を含む粒子を製造する方法が挙げられる。
[二次電池用正極及び二次電池の製造方法]
 本発明の製造方法により得られたホウ酸化合物(3)を、二次電池用正極材料として用いて、二次電池用正極及び二次電池を製造できる。二次電池としては、金属リチウム二次電池、リチウムイオン二次電池、リチウムポリマー二次電池等が挙げられるが、リチウムイオン二次電池が好ましい。電池形状は制限されることはなく、例えば円筒状、角型、コイン型等の種々の形状及びサイズを適宜採用できる。
 本発明の二次電池用正極は、本発明の製造方法で得られるホウ酸化合物(3)を用いる以外は、公知の電極の製造方法に従って製造できる。例えば、ホウ酸化合物(3)の粉末を必要に応じて公知の結着材(ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等)、さらに必要に応じて公知の導電材(アセチレンブラック、カーボン、グラファイト、天然黒鉛、人造黒鉛、ニードルコークス等)と混合した後、得られた混合粉末をステンレス鋼製等の支持体上に圧着成形したり、金属製容器に充填すればよい。また、例えば、該混合粉末を有機溶剤(N-メチルピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N-N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等)と混合して得られたスラリーをアルミニウム、ニッケル、ステンレス、又は銅等の金属基板上に塗布する等の方法も採用できる。
 二次電池の構造は、本発明の製造方法で得られる二次電池用正極を電極として用いる以外は、公知の二次電池における構造を採用することができる。セパレータ、電池ケース等についても同様である。負極としては、活物質として公知の負極用活物質を使用でき、アルカリ金属材料及びアルカリ土類金属材料からなる群から選ばれる少なくとも1種を用いることが好ましい。電解液としては、非水系の電解液が好ましい。すなわち、本発明の製造方法で得られる二次電池としては、非水電解質リチウムイオン二次電池が好ましい。
 本発明を実施例を挙げて具体的に説明するが、本発明は以下の説明に限定されない。
(実施例1~11)
 四酸化三鉄(Fe34)、二酸化マンガン(MnO2)、四酸化三コバルト(Co34)、酸化ニッケル(NiO)及び酸化ホウ素(B23)を、それぞれ表1に示す第1の化合物の組成となるように秤量して原料混合物を得、該原料混合物を乾式で粉砕した。これらの粉砕物を、ロジウムを20質量%含む白金合金製のるつぼにそれぞれ充填した。次に、該るつぼをケイ化モリブデン製の発熱体を備える電気炉(株式会社モトヤマ社製、装置名:NH3045F)の中に入れた。該電気炉を、流量2L/分でN2ガスを流通しつつ、1,350℃で0.5時間加熱し加熱した。目視で透明になったことを確認して、それぞれの溶融物を得た。
 次に、るつぼ中の溶融物を、毎分400回転する直径約15cmのステンレス製双ローラを通すことによって、-1×105℃/秒で冷却し、黒色又は茶褐色のフレーク状の固化物を得た。得られた固化物はガラス状物質であった。各例で得たフレーク状固化物は、X線回折パターンから、いずれも非晶質部分を主体とすることがわかった。非晶質部分の割合は、いずれも90質量%以上であった。以上のようにして第1の化合物を製造した。実施例1~6で得たフレーク状固化物のX線回折パターンを図1に示す。図1のa)は実施例1で得たフレーク状固化物のX線回折パターンであり、同様にb)~f)はそれぞれ実施例2~6で得たフレーク状固化物のX線回折パターンである。
 各例で得たフレーク状固化物を予め乾式で粉砕し、これらと炭酸リチウム(第2の化合物)とを酸化物基準のモル比で1:1となるように調合した後、調合物をエタノールを媒体として湿式で粉砕した。各粉砕物を3体積%H2-Arガス中にて、600℃で8時間加熱することによって、それぞれLiMBO3で表される組成を有するホウ酸化合物粒子を得た。さらに、各例において、各粉砕物を3体積%H2-Arガス中にて、500℃×8時間の加熱により、また700℃×8時間の加熱により、いずれの温度においてもそれぞれ上記600℃×8時間の加熱の場合と同様のLiMBO3で表される組成を有するホウ酸化合物粒子を得た。
Figure JPOXMLDOC01-appb-T000001
(実施例12~13)
 第1の化合物をFe、第2の化合物をLiCOとし、これらの酸化物基準のモル比で1:0.8(実施例12)及び1:1.2(実施例13)となるように実施例1と同様にして粉砕し、粉砕物を3体積%H2-Arガス中にて、600℃で8時間加熱することによって、それぞれLi0.8MBO2.9及びLi1.2MBO3.1で表される組成を有するホウ酸化合物粒子を得た。
 得られた各粒子の鉱物相をX線回折装置で同定したところ、実施例1~8、12及び13で得た粒子は既存のLiFeBO3(PDF番号01-070-8321)及び/又はLiMnBO3(PDF番号01-053-0371)の回折パターンと類似した回折パターンが得られた。また、実施例9~11で得た粒子は既存のLiFeBO3(PDF番号01-070-8321)の回折パターンと類似した回折パターンが得られた。実施例1~6において、600℃で8時間加熱して得たLiMBO3粒子のX線回折パターンを図2及び図3に示す。図2のa)~c)は実施例1~3で得た粒子のX線回折パターンであり、図3のa)~c)は実施例4~6で得た粒子のX線回折パターンである。
 上記X線回折パターンは、いずれの粒子もオリビン型結晶粒子であることを示している。
 実施例1及び6で得たホウ酸化合物の粒径分布を、レーザ回折/散乱式粒度分布測定装置(堀場製作所社製、装置名:LA-920)で測定した。体積換算のメディアン径は、それぞれ0.68μm(実施例1)、0.75μm(実施例6)であった。さらに、比表面積を比表面積測定装置(島津製作所社製、装置名:ASAP2020)で測定したところ、24m2/g(実施例1)、22μm(実施例6)であった。
(実施例14~19)
 実施例1~6で得たフレーク状固化物を予め乾式で粉砕し、これらと炭酸リチウム(第2の化合物)とを酸化物基準のモル比で1:1となるように調合して調合物を得、さらに該調合物に対してカーボンブラックを、該調合物とカーボンブラックとの質量比が90:10となるように添加した。これらを実施例1と同様に湿式で粉砕した。各粉砕物をN2ガス中にて600℃で8時間加熱することによって、それぞれ炭素含有のLiMBO3で表される組成を有するホウ酸化合物粒子を得た。
 得られた各粒子の鉱物相をX線回折装置で同定したところ、いずれも既存のLiFeBO3(PDF番号01-070-8321)及び/又はLiMnBO3(PDF番号01-053-0371)の回折パターンと類似した回折パターンが得られた。さらに、実施例14、16及び19で得たホウ酸化合物粒子の炭素含有量を炭素分析計で測定したところ、それぞれC質量基準で8.5%(実施例14)、8.2%(実施例16)、8.7%(実施例19)であった。
(実施例20~25)
 四酸化三鉄(Fe34)、二酸化マンガン(MnO2)及び酸化ホウ素(B23)を、それぞれ表2に示す第1の化合物の組成となるように秤量して混合し、該混合物を実施例1と同様に乾式で粉砕した後、1,350℃で0.5時間加熱した。次いで、実施例1と同様にして溶融物を冷却して、フレーク状固化物を製造した。実施例20~25で得たフレーク状固化物のX線回折パターンを図4に示す。図4のa)~f)は実施例20~25で得たフレーク状固化物のX線回折パターンである。
 各例で得たフレーク状固化物を予め乾式で粉砕し、これらと炭酸リチウム(第2の化合物)とを酸化物基準のモル比で1:1となるように調合して調合物を得、さらに該調合物に対してカーボンブラックとグルコース(10%水溶液)とを、該調合物とカーボンブラックとグルコースとの質量比が90:5:5となるように添加した。これらを実施例1と同様に湿式で粉砕した。各粉砕物を3体積%H2-Arガス中にて600℃で8時間加熱することで、それぞれ炭素含有のLiMBO3で表される組成を有するホウ酸化合物粒子を得た。また、各粉砕物を3体積%H2-Arガス中にて700℃で8時間の加熱によっても、同様のホウ酸化合物粒子を得た。
Figure JPOXMLDOC01-appb-T000002
 得られた各粒子の鉱物相をX線回折装置で同定したところ、いずれも既存のLiFeBO3(PDF番号01-070-8321)及び/又はLiMnBO3(PDF番号01-053-0371)の回折パターンと類似した回折パターンが得られた。各例にて600℃で8時間加熱して得たLiMBO3粒子のX線回折パターンを図5及び図6に示す。図5のa)~c)は実施例20~22で得た粒子のX線回折パターンであり、図6のa)~c)は実施例23~25で得た粒子のX線回折パターンである。さらに、実施例20、22及び25で得たLiMBO3粒子の炭素含有量を炭素分析計で測定したところ、それぞれC質量基準で5.0%(実施例20)、4.7%(実施例22)、4.6%(実施例25)であった。
(比較例1)
 炭酸リチウム(Li2CO3)、四酸化三鉄(Fe34)、及び酸化ホウ素(B23)を、LiFeBO3で表される組成となるように秤量して混合し、混合物を実施例1と同様に乾式で粉砕した後、1,400℃で加熱したが、完全に溶融させることはできなかった。すなわち、第1の化合物を予め製造しておかなかったので、完全に溶融させることはできなかった。
(実施例26~29)
<Liイオン二次電池用正極及び評価用電池の製造>
 実施例1、14、16及び19にて600℃で8時間加熱して得たLiMBO3で表される組成を有するホウ酸化合物粒子又は炭素含有のLiMBO3で表される組成を有するホウ酸化合物粒子を活物質とした。該活物質の粉末とポリフッ化ビニリデン樹脂(結着剤)とアセチレンブラック(導電材)とを、質量比で85:5:10の比率となるように秤量し、N-メチルピロリドン(溶媒)中で均一になるまで混合してスラリーを調製した。次いで、該スラリーをバーコーターで厚さ30μmのアルミニウム箔に塗布した。これらを空気中にて120℃で乾燥させて溶媒を除去した後、ロールプレスで塗工層を圧密化した後、幅10mm×長さ40mmの短冊状に切り出した。
 塗工層は短冊状アルミニウム箔の先端10×10mmの部分を残して剥離し、これを電極とした。得られた電極のロールプレス後の塗工層厚は20μmであった。得られた電極は150℃で真空乾燥した後、精製アルゴンガスが満たされたグローブボックス中に搬入し、ニッケルメッシュにリチウム箔を圧着した対極と多孔質ポリエチレンフィルム製セパレータを介して対向させ、さらに両側をポリエチレン板で挟んで固定した。
 対向電極をポリエチレン製ビーカに入れ、六フッ化リン酸リチウムをエチレンカーボネートとエチルメチルカーボネートの混合溶媒(1:1体積比)に1mol/Lの濃度で溶解した非水電解液を注入して充分に含浸させた。電解液含浸後の電極をビーカから取り出し、アルミニウムラミネートフィルム袋に入れ、リード線部を取り出して封止して半電池を構成した。これらの半電池の特性を以下のようにして測定した。
<Liイオン二次電池用正極の充放電特性評価>
 得られた半電池を25℃の恒温槽に入れ、定電流充放電試験機(北斗電工社製、装置名:HJ201B)に接続して充放電試験を行った。電流密度は電極活物質の質量(導電材と結着剤とを除いた質量)当たりの電流値を85mA/gとして充放電を行った。充電終止電位はLi対極基準で4.2Vとし、終止電圧に到達後即座に放電を開始した。放電終止電圧はLi対極基準で2.0Vとした。この充放電サイクルを10サイクル繰り返した。実施例1、14、16及び19の活物質を用いた半電池の10サイクル目の放電容量は、それぞれ130mAh/g(実施例1)、141mAh/g(実施例14)、122mAh/g(実施例16)、78mAh/g(実施例19)であった。さらに、実施例1の活物質を用いた半電池を60℃の恒温槽に入れ同様の充放電試験を行った。この10サイクル目の放電容量は、165mAh/gであった。
 本発明により得られるホウ酸化合物は、リチウムイオン二次電池などの二次電池の正極の製造に用いられる正極材料として有用である。
 なお、2010年2月12日に出願された日本特許出願2010-028572号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  下式(1)で表される組成を有する第1の化合物と、Li、Na、及びKから選択される少なくとも1種の原子Aを含む第2の化合物とを、下式(2)で表される原子比となるように調合して調合物を得る工程、
     前記調合物を混合しつつ粉砕して粉砕物を得る工程、
     前記粉砕物を不活性ガス中又は還元ガス中で加熱し、下式(3)で表される組成を有するホウ酸化合物を得る工程、
    を含むことを特徴とするホウ酸化合物の製造方法。
     Mxyz  (1)
    (式中、MはFe、Mn、Co及びNiから選択される少なくとも1種の原子であり、かつ、Mの価数Nは+2≦N≦+4であり、x及びyは0.8≦x/y≦1.2を満足する数であり、zはx、yの数値及びMの価数Nに依存する数である。)
     A:M:B=a:b:1  (2)
    (式中、A及びMは前記と同じ種類の原子を示し、aは0<a<2、bは0.8<b<1.2である。)
     AabBOc  (3)
    (式中、A及びMは前記と同じ種類の原子を示し、Mの価数は前記Nと等しいかNよりも小さく、a及びbは前記と同じ数値を示し、cはa、bの数値及びMの価数に依存する数である。)
  2.  前記第1の化合物が、
     Mの酸化物、Mのオキシ水酸化物及びMの金属から選択される少なくとも1種と、ホウ酸、酸化ホウ素、ホウ酸アンモニウム及びホウ酸水素アンモニウムから選択される少なくとも1種とを、MとBが式(1)で表される組成となるように調合して原料混合物を得、該原料混合物を粉砕し、加熱して溶融物を得た後、該溶融物を冷却して得られた化合物である、請求項1に記載のホウ酸化合物の製造方法。
  3.  Mの酸化物、Mのオキシ水酸化物及びMの金属から選択される少なくとも1種と、ホウ酸、酸化ホウ素、ホウ酸アンモニウム及びホウ酸水素アンモニウムから選択される少なくとも1種とを、MとBが式(1)で表される組成となるように調合して原料混合物を得、該原料混合物を粉砕し、加熱して溶融物を得た後、該溶融物を冷却して式(1)で表される組成を有する第1の化合物を得る工程を含む、請求項1に記載のホウ酸化合物の製造方法。
  4.  前記溶融物の冷却速度が、-103℃/秒~-1010℃/秒である、請求項2又は3に記載のホウ酸化合物の製造方法。
  5.  前記第1の化合物が、非晶質部分を含む固体状化合物である、請求項1~4のいずれか一項記載のホウ酸化合物の製造方法。
  6.  前記第2の化合物が、加熱によりA2Oに変化する化合物である、請求項1~5のいずれか一項記載のホウ酸化合物の製造方法。
  7.  前記第2の化合物が、Aの炭酸塩(A2CO3)、Aの炭酸水素塩(AHCO3)、Aの水酸化物(AOH)、Aの硝酸塩(ANO3)、Aの塩化物(ACl)、Aの硫酸塩(A2SO4)、Aの酢酸塩(CH3COOA)及びAのシュウ酸塩((COOA)2)(ただし、これらの化合物は、それぞれ水和塩を形成していてもよい。)から選択される少なくとも1種である、請求項1~6のいずれか一項記載のホウ酸化合物の製造方法。
  8.  前記加熱して式(3)で表される組成を有するホウ酸化合物を得る工程における加熱温度が、400~800℃である、請求項1~7のいずれか一項記載のホウ酸化合物の製造方法。
  9.  前記粉砕物を得る工程において、前記調合物に、有機化合物及び炭素粉末から選択される少なくとも1種の炭素源を含ませ、該炭素源の量は、調合物と炭素源中の炭素換算量(質量)との合計質量に対する該炭素換算量(質量)の割合が0.1~20質量%となる量である、請求項1~8のいずれか一項記載のホウ酸化合物の製造方法。
  10.  式(3)で表される組成を有するホウ酸化合物が、下式(4)で表される組成を有する結晶粒子である、請求項1~9のいずれか一項記載のホウ酸化合物の製造方法。
     AabBO(0.5a+b+1.5)  (4)
    (式中、A及びMは前記と同じ種類の原子を示し、a及びbは前記と同じ数値を示す。)
  11.  式(3)で表される組成を有するホウ酸化合物が、オリビン型結晶構造のLiMBO3を含む粒子である、請求項1~10のいずれか一項記載のホウ酸化合物の製造方法。
  12.  式(3)で表される組成を有するホウ酸化合物が、オリビン型結晶構造のLiFedMn1-dBO3(dは0≦d≦1である)を含む粒子である、請求項1~11のいずれか一項記載のホウ酸化合物の製造方法。
  13.  下式(1)で表される組成を有する第1の化合物と、A2CO3、AHCO3及びAOH(式中、AはLi、Na、及びKから選択される少なくとも1種の原子である。いずれもそれぞれの水和塩を含む。)から選択される第2の化合物とを、調合して調合物を得る工程、
     前記調合物を混合しつつ粉砕して粉砕物を得る工程、
     前記粉砕物を不活性ガス中又は還元ガス中で加熱し、下式(4)で表される組成を有するホウ酸化合物を得る工程、
    を含むことを特徴とするホウ酸化合物の製造方法。
     Mxyz  (1)
    (式中、MはFe、Mn、Co及びNiから選択される少なくとも1種の原子であり、かつ、Mの価数Nは+2≦N≦+4であり、x及びyは0.8≦x/y≦1.2を満足する数であり、zはx、yの数値及びMの価数Nに依存する数である。)
     AabBO(0.5a+b+1.5)  (4)
    (式中、A及びMは前記と同じ種類の原子を示し、Mの価数は前記Nと等しいかNよりも小さく、a及びbは前記と同じ数値を示す。)
  14.  請求項1~13のいずれか一項記載の製造方法によってホウ酸化合物を得て、次に、該ホウ酸化合物を二次電池用正極材料として用いて、二次電池用正極を製造することを特徴とする二次電池用正極の製造方法。
  15.  請求項14記載の製造方法で二次電池用正極を得て、次に、該二次電池用正極を用いて二次電池を製造することを特徴とする二次電池の製造方法。
PCT/JP2011/052920 2010-02-12 2011-02-10 ホウ酸化合物、二次電池用正極、及び二次電池の製造方法 WO2011099575A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127016723A KR20120131154A (ko) 2010-02-12 2011-02-10 붕산 화합물, 이차 전지용 정극, 및 이차 전지의 제조 방법
JP2011553897A JPWO2011099575A1 (ja) 2010-02-12 2011-02-10 ホウ酸化合物、二次電池用正極、及び二次電池の製造方法
CN201180009214XA CN102753480A (zh) 2010-02-12 2011-02-10 硼酸化合物、二次电池用正极、以及二次电池的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-028572 2010-02-12
JP2010028572 2010-02-12

Publications (1)

Publication Number Publication Date
WO2011099575A1 true WO2011099575A1 (ja) 2011-08-18

Family

ID=44367845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052920 WO2011099575A1 (ja) 2010-02-12 2011-02-10 ホウ酸化合物、二次電池用正極、及び二次電池の製造方法

Country Status (4)

Country Link
JP (1) JPWO2011099575A1 (ja)
KR (1) KR20120131154A (ja)
CN (1) CN102753480A (ja)
WO (1) WO2011099575A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241682A (ja) * 1997-02-25 1998-09-11 Mitsubishi Cable Ind Ltd リチウム二次電池用の正極活物質およびその製造方法
JP2003157841A (ja) * 2001-11-19 2003-05-30 Central Glass Co Ltd 電極活物質およびそれを用いた電池
JP2003157842A (ja) * 2001-11-19 2003-05-30 Central Glass Co Ltd 電極活物質の製造方法
JP2004207051A (ja) * 2002-12-25 2004-07-22 Junko Shigehara 正極材料、それを利用したリチウム二次電池及びリチウムイオン二次電池
JP2004356048A (ja) * 2003-05-30 2004-12-16 Canon Inc リチウム二次電池用電極材料、前記電極材料を有する電極構造体及び前記電極構造体を有するリチウム二次電池
JP2005135866A (ja) * 2003-10-31 2005-05-26 Toyota Motor Corp 電極活物質およびその製造方法ならびに非水電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241682A (ja) * 1997-02-25 1998-09-11 Mitsubishi Cable Ind Ltd リチウム二次電池用の正極活物質およびその製造方法
JP2003157841A (ja) * 2001-11-19 2003-05-30 Central Glass Co Ltd 電極活物質およびそれを用いた電池
JP2003157842A (ja) * 2001-11-19 2003-05-30 Central Glass Co Ltd 電極活物質の製造方法
JP2004207051A (ja) * 2002-12-25 2004-07-22 Junko Shigehara 正極材料、それを利用したリチウム二次電池及びリチウムイオン二次電池
JP2004356048A (ja) * 2003-05-30 2004-12-16 Canon Inc リチウム二次電池用電極材料、前記電極材料を有する電極構造体及び前記電極構造体を有するリチウム二次電池
JP2005135866A (ja) * 2003-10-31 2005-05-26 Toyota Motor Corp 電極活物質およびその製造方法ならびに非水電解質二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
V. LEGAGNEUR ET AL.: "LiMB03(M=Mn, Fe, Co): synthesis, crystal structure and lithium deinsertion/insertion properties", SOLID STATE IONICS, vol. 139, 2001, pages 37 - 46 *
Y.Z. DONG ET AL.: "The structure and electrochemical performance of LiFeB03 as a novel Li-battery cathode material", ELECTROCHIMICA ACTA, vol. 53, 2008, pages 2339 - 2345, XP022401072 *

Also Published As

Publication number Publication date
JPWO2011099575A1 (ja) 2013-06-17
KR20120131154A (ko) 2012-12-04
CN102753480A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
WO2011111628A1 (ja) リン酸化合物、二次電池用正極、及び二次電池の製造方法
WO2010114104A1 (ja) リン酸鉄リチウム粒子の製造方法および二次電池の製造方法
WO2011162348A1 (ja) ケイ酸化合物、二次電池用正極、および二次電池の製造方法
WO2010150889A1 (ja) 二次電池用正極材料の製造方法と二次電池用正極材料
JP2014056722A (ja) リン酸化合物、二次電池用正極材料、および二次電池の製造方法
WO2011138964A1 (ja) ケイ酸-リン酸化合物、二次電池用正極、および二次電池の製造方法
Kim et al. Supersonically sprayed rGO− Zn2SnO4 composites as flexible, binder-free, scalable, and high-capacity lithium ion battery anodes
US20120217451A1 (en) Process for producing phosphate compound and method for producing secondary battery
WO2012133584A1 (ja) 二次電池用正極活物質、二次電池用正極、および二次電池の製造方法
WO2012067249A1 (ja) ケイ酸化合物、二次電池用正極、二次電池、およびそれらの製造方法
Liu et al. Comparative study of the cathode and anode performance of Li2MnSiO4 for lithium-ion batteries
JP2013067543A (ja) ケイ酸化合物、二次電池用正極および二次電池の製造方法
WO2012086722A1 (ja) ケイ酸-バナジン酸化合物、二次電池用正極、および二次電池の製造方法
WO2012057341A1 (ja) ケイ酸化合物、二次電池用正極、二次電池、およびそれらの製造方法
Chen et al. Highly efficient synthesis of nano LiMn0. 90Fe0. 10PO4/C composite via mechanochemical activation assisted calcination
JP2013047162A (ja) ケイ酸化合物、二次電池用正極および二次電池の製造方法
WO2012057340A1 (ja) ケイ酸-リン酸化合物、二次電池用正極、二次電池、およびそれらの製造方法
WO2011138965A1 (ja) ケイ酸-ホウ酸化合物およびケイ酸-ホウ酸-リン酸化合物、二次電池用正極、および二次電池の製造方法
JP2013047161A (ja) ケイ酸化合物、二次電池用正極および二次電池の製造方法
JP2012126589A (ja) フッ素含有リン酸化合物、二次電池用正極、および二次電池の製造方法
WO2012067250A1 (ja) ケイ酸化合物、二次電池用正極、二次電池、およびそれらの製造方法
WO2011099575A1 (ja) ホウ酸化合物、二次電池用正極、及び二次電池の製造方法
JP2014055085A (ja) リン酸化合物、二次電池用正極材料、および二次電池の製造方法
JP2014056721A (ja) リン酸化合物、二次電池用正極材料、および二次電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009214.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011553897

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127016723

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742318

Country of ref document: EP

Kind code of ref document: A1