WO2011099416A1 - 非対称自己循環ケーシングトリートメントを有する遠心圧縮機 - Google Patents

非対称自己循環ケーシングトリートメントを有する遠心圧縮機 Download PDF

Info

Publication number
WO2011099416A1
WO2011099416A1 PCT/JP2011/052269 JP2011052269W WO2011099416A1 WO 2011099416 A1 WO2011099416 A1 WO 2011099416A1 JP 2011052269 W JP2011052269 W JP 2011052269W WO 2011099416 A1 WO2011099416 A1 WO 2011099416A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring groove
casing
self
suction ring
centrifugal compressor
Prior art date
Application number
PCT/JP2011/052269
Other languages
English (en)
French (fr)
Inventor
シンチェン ゼン
ルィン リン
ヤンジウィン ザン
ミンヤン ヤン
隆弘 馬場
秀明 玉木
Original Assignee
株式会社Ihi
清華大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201010110273 external-priority patent/CN101761513B/zh
Priority claimed from CN 201010110230 external-priority patent/CN101761512B/zh
Application filed by 株式会社Ihi, 清華大学 filed Critical 株式会社Ihi
Priority to EP11742160.2A priority Critical patent/EP2535595B1/en
Priority to US13/578,101 priority patent/US9151297B2/en
Priority to JP2011553812A priority patent/JP5430683B2/ja
Publication of WO2011099416A1 publication Critical patent/WO2011099416A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/73Shape asymmetric

Definitions

  • the present invention relates to a centrifugal compressor having an asymmetric self-circulating casing treatment.
  • Centrifugal compressors are used in various types of turbomachines such as superchargers for vehicles and ships, industrial compressors, and aero engines.
  • a turbo compressor using a centrifugal compressor has advantages such as high efficiency, light weight, and stable operation over a reciprocating compressor, but its allowable operating range (ie, centrifugal compression).
  • the flow range of the machine is limited.
  • an unstable phenomenon such as a large fluid separation occurs in the internal flow field, resulting in stalling and thus surge.
  • the efficiency and pressure ratio of the compressor are rapidly reduced, the life is shortened, and as a result, the compressor is damaged in a short time. Therefore, by adopting various measures, instability phenomena such as the stall of the compressor are suppressed, and the stable operation range is expanded.
  • a casing treatment for a centrifugal compressor is used to expand the stable operating range.
  • Casing treatments are disclosed in Patent Documents 1 to 5, for example.
  • Patent No. 3001902 JP 2007-127109 A Japanese Patent No. 4100030 Japanese Patent No. 4107823 US Pat. No. 4,930,979
  • casing treatment is currently considered to be an effective means for expanding the stable operating range of a centrifugal compressor.
  • the conventional casing treatment is configured to be axisymmetric with respect to the rotation axis of the impeller.
  • a casing treatment that is axisymmetric with respect to the rotation axis is referred to as “axisymmetric casing treatment”
  • a casing treatment that is asymmetric with respect to the rotation axis is referred to as “asymmetric casing treatment”.
  • the scroll flow path of the casing is asymmetrically configured with respect to the rotation axis of the impeller. Circumferential distortion occurs in the flow of the compressor, affecting the upstream flow parameter, and the circumferential flow parameter inside the compressor impeller and vaneless diffuser exhibits asymmetry.
  • the configuration of the conventional axisymmetric casing treatment does not take into account the characteristics of the asymmetry of the flow field inside the compressor, so the effect of expanding the stable operation range by the casing treatment cannot be achieved in the entire circumferential direction. Therefore, it is necessary to employ an asymmetric self-circulating casing treatment in order to realize the effect of expanding the optimum stable operation range in the entire circumferential direction.
  • FIG. 1A is a half sectional view of a centrifugal compressor having a self-circulating casing treatment
  • FIG. 1B is an explanatory view of the self-circulating casing treatment.
  • the impeller 13 has an impeller full blade 11 and an impeller half blade 12.
  • ZZ is the center of rotation of the impeller 13.
  • the self-circulating casing treatment generally includes a suction ring groove 1, a ring guide path 2, and a return ring groove 3.
  • the main configuration parameters of the self-circulation casing treatment is the axial distance S r relative to the suction ring groove 1 of the impeller all the blade leading edge 4, the width b r of the suction ring groove, reflux ring groove 3 of the impeller all the blade leading edge 4 Are the axial distance S f , the width b f of the return ring groove 3, the depth h b of the return ring groove 3, the width b b of the ring guide path 2, and the like.
  • an object of the present invention is to optimize the circumferential distribution of the axial distance S r or the width b r of the suction ring groove with respect to the leading edge of the impeller blades, thereby reducing the stable operating range while maintaining efficiency. It is to provide a centrifugal compressor having an asymmetric self-circulating casing treatment that can be expanded to the side.
  • the present invention includes a suction ring groove (1), a ring guide path (2), and a return ring groove (3) on the inner peripheral surface of a casing, and a centrifugal having an asymmetric self-circulation casing treatment that forms a self-circulation flow path.
  • the position or width of the suction ring groove is distributed in an arc shape in the circumferential direction, and the center angle ⁇ of the arc is in a range of 0 ⁇ ⁇ 30 °.
  • the width is the width b r of the suction ring groove, and the ratio of the radius R of the arc and the impeller diameter D is in a range of 2 ⁇
  • the casing comprises an outer shell (5) and a core (6),
  • the suction ring groove (1) is provided on the wall surface of the core (6), and the inner wall surface of the outer shell and the outer wall surface of the core form the ring guide path (2) and the return ring groove (3). .
  • the present invention adopts an asymmetric self-circulating casing treatment in which the position or width of the suction ring groove is distributed in an arc shape, so that the stable operating range of the centrifugal compressor is more than that of an axially symmetric self-circulating casing treatment. It has been confirmed in the examples described later that the efficiency can be maintained so that the efficiency is basically unchanged.
  • FIG. 3 is a half cross-sectional view of a centrifugal compressor having a self-circulating casing treatment. It is explanatory drawing of a self-circulation casing treatment. It is a front schematic diagram of the outer shell of a casing. It is a half cross-sectional schematic diagram of the outer shell of a casing. It is a schematic diagram of the casing of a compressor. It is a structure schematic diagram of the core of a casing. It is a schematic diagram of the suction ring groove in the core. It is a position schematic diagram of initial phase angle theta 0 in an example. It is a distribution schematic axial distance S r of the suction ring groove corresponding to different initial phase angle theta 0.
  • FIG. 6 is a schematic diagram of distribution of axial distances Sr in Embodiment 1.
  • FIG. It is a related figure of the normalized mass flow rate in Example 1, and a pressure ratio.
  • FIG. 4 is a relationship diagram between normalized mass flow rate and efficiency in Example 1.
  • It is a schematic diagram of the casing of a compressor. It is a structure schematic diagram of the core of a casing. It is a schematic diagram of the suction ring groove in the core. It is a distribution schematic diagram of the width b r of the suction ring groove corresponding to different initial phase angles ⁇ 0 .
  • It is a related figure of the normalized mass flow rate in Example 2, and a pressure ratio. It is a related figure of the normalized mass flow rate in Example 2, and efficiency.
  • FIG. 2A, 2B, and 3 to 5 are schematic views showing the first embodiment of the present invention.
  • FIG. 2A is a schematic front view of the outer shell 5 of the casing
  • FIG. 2B is a schematic cross-sectional view
  • FIG. 4 is a schematic diagram of the casing
  • FIG. 4 is a schematic diagram of the configuration of the core 6 of the casing
  • FIG. 5 is a schematic diagram of the suction ring groove in the core.
  • the centrifugal compressor according to the present invention has a suction ring groove 1, a ring guide path 2, and a return ring groove 3 on the inner peripheral surface of the casing to form a self-circulation flow path.
  • the self-circulation flow path is a return path for returning fluid from a position downstream of the impeller blade front edge to an upstream position of the impeller blade front edge by the suction ring groove 1, the ring guide path 2, and the return ring groove 3. means.
  • the casing 10 of the centrifugal compressor of the first embodiment includes an outer shell 5 and a core 6, and the suction ring groove 1 is provided on the wall surface of the core 6.
  • the inner wall surface and the outer wall surface of the core 6 form the ring guide path 2 and the reflux ring groove 3.
  • the central angle of the arc of the axial distance S r alpha (not shown), 0 ⁇ a range of alpha ⁇ 30 °, arc radius R and the impeller diameter
  • the ratio with D is in the range of 2 ⁇
  • the position of the suction ring groove 1 according to the arcuate distribution by design is a curve on the circumferential cylindrical surface of the core 6 and is indicated by a dashed line in FIG.
  • the outer shell 5 of the casing is fixed, and the core 6 is rotated around the rotation axis center ZZ of the impeller 13 (see FIG. 1).
  • an arcuate distribution of the position (axial distance S r ) of the suction ring groove 1 corresponding to a different initial phase angle ⁇ 0 can be obtained. That is, the outer shell 5 and the core 6 of the casing 10 are connected by the screw 7.
  • n (four in this example) screw holes are evenly arranged in the circumferential direction, and the axial distance S r corresponding to n different initial phase angles ⁇ 0 is set. A distribution curve is obtained.
  • the optimum initial phase angle ⁇ 0 is determined from n different initial phase angles ⁇ 0 by compressor performance tests.
  • FIG. 6 is a schematic diagram of the position of the initial phase angle ⁇ 0 in the embodiment
  • FIG. 7 is a schematic diagram of the distribution of Sr values of the suction ring grooves corresponding to different initial phase angles ⁇ 0 . 2A and 2B, since a total of four screw holes are provided in the outer shell 5 of the casing 10, the arc-shaped distribution of the axial distance Sr of the four different suction ring grooves 1 shown in FIG. can get.
  • FIG. 7 is a distribution schematic diagram of the axial distance S r of the suction ring groove 1 corresponding to different initial phase angles ⁇ 0 .
  • the solid line is an arc-shaped distribution in the circumferential direction of the axial distance S r of the suction ring groove 1, based on varying the selection of the circumferential direction of the initial phase angle theta 0, there are a variety of representations.
  • ⁇ 0 is the initial phase angle
  • the casing 10 is a circle of one circumference of 0 ° ⁇ ⁇ 0 ⁇ 360 °
  • ⁇ 0 to ⁇ 0 + 360 ° are the entire circumference angle of the casing 10 in the figure.
  • the air in the flow path of the self-circulating casing treatment flows in from the suction ring groove 1 and flows out through the ring guide path 2 and the reflux ring groove 3 in the low flow rate mode.
  • the specific operating principle is that the suction ring groove 1 of the self-circulating casing treatment sucks the gas in the impeller blade tip region and releases the gas from the return ring groove 3 through the ring guide path 2.
  • the air in the flow path of the self-circulating casing treatment is discharged from the suction ring groove 1 through the reflux ring groove 3 and the ring guide path 2.
  • the reflux ring groove 3 communicates the flow in the circumferential direction of the inlet, thereby increasing the uniformity of the flow at the compressor inlet, weakening the shock wave at the inlet, and the discharge flow of the suction ring groove 1 enhances the circulation capacity. By doing so, the occlusion boundary was expanded. However, due to the lack of suction power in the mode of operation close to blockage, the expansion of the casing treatment to the blockage boundary is less noticeable than the expansion to the stall boundary.
  • FIG. 8 is a schematic diagram of the distribution of Sr values in the example.
  • the distribution of the Sr value of the asymmetric casing treatment of the centrifugal compressor is shown as in FIG.
  • FIG. 9A is a graph showing the relationship between the normalized mass flow rate and the pressure ratio in Example 1.
  • FIG. 9B is a relationship diagram between normalized mass flow rate and efficiency in Example 1.
  • 9A and 9B show an asymmetric self-circulating casing treatment ("asymmetric self-circulating CT"), an axisymmetric self-circulating casing treatment (“axi-symmetric self-circulating CT”), and a casing treatment. It is a performance comparison figure of the compressor when there is no (“No CT”).
  • asymmetric self-circulation casing treatment asymmetric self-circulation CT
  • the groove position of the present invention is an arc distribution
  • axisymmetric self-circulating casing treatment axisymmetric self-circulating CT
  • FIG. 10 to 12 are schematic views showing a second embodiment of the present invention.
  • FIG. 10 is a schematic view of the casing 10 of the compressor.
  • FIG. 11 is a schematic view of the configuration of the core 6 of the casing 10.
  • FIG. 3 is a schematic diagram of the suction ring groove 1 in the core 6. 2A and 2B are common to the first embodiment.
  • the centrifugal compressor of the present invention has a suction ring groove 1, a ring guide path 2, and a return ring groove 3 on the inner peripheral surface of the casing, and forms an asymmetric circulation path.
  • the casing 10 of the centrifugal compressor of the second embodiment includes an outer shell 5 and a core 6, and the suction ring groove 1 is provided on the wall surface of the core 6.
  • the inner wall surface and the outer wall surface of the core 6 form the ring guide path 2 and the reflux ring groove 3.
  • the width b r of the suction ring groove 1 is distributed in an arc shape in the circumferential direction.
  • the central angle of the arc of the width b r of the suction ring groove 1 alpha (not shown) is in the range of 0 ⁇ ⁇ 30 °, and the arc of the radius R
  • the ratio with the impeller diameter D is in the range of 2 ⁇
  • the downstream end 1b of the suction ring groove 1 corresponding to the arcuate distribution by design is a curve on the circumferential cylindrical surface of the core 6.
  • the outer shell 5 of the casing 10 is fixed, and the core 6 is rotated around the rotation axis center ZZ of the impeller 13 (see FIG. 1).
  • an arcuate distribution of the width b br of the suction ring groove 1 corresponding to different initial phase angles ⁇ 0 is obtained. That is, the outer shell 5 and the core 6 of the casing are connected by screws 7, and n (four in this example) screw holes are evenly arranged in the outer shell 5 of the casing 10 in the circumferential direction.
  • Distribution curves corresponding to n different initial phase angles ⁇ 0 are obtained, and an optimum initial phase angle ⁇ 0 is determined by a performance test of the compressor.
  • FIG. 6 is common to the first embodiment and is a schematic view of the position of the initial phase angle ⁇ 0 in the example. Obtained for example, in FIGS. 2A and 2B, the so a total of four screw holes in the outer shell 5 of the casing are opened, an arc-shaped distribution in the width b r of the suction ring groove 1 having different four shown in FIG. 13 It is done.
  • FIG. 13 is a distribution schematic diagram of the width b r of the suction ring groove 1 corresponding to different initial phase angles ⁇ 0 .
  • the solid line is an arc-shaped distribution in the circumferential direction of the width b r of the suction ring groove 1, based on varying the selection of the circumferential direction of the initial phase angle theta 0, there are a variety of representations.
  • ⁇ 0 is an initial phase angle
  • the casing 10 is a circle of one circumference of 0 ° ⁇ ⁇ 0 ⁇ 360 °
  • ⁇ 0 to ⁇ 0 + 360 ° is an entire circumferential angle of the casing.
  • the air in the flow path of the self-circulating casing treatment flows in from the suction ring groove 1 and flows out through the ring guide path 2 and the reflux ring groove 3 in the low flow rate mode.
  • the specific operating principle is that the suction ring groove 1 of the self-circulating casing treatment sucks the gas in the impeller blade tip region and releases the gas from the return ring groove 3 through the ring guide path 2.
  • the air in the flow path of the self-circulating casing treatment is discharged from the suction ring groove 1 through the reflux ring groove 3 and the ring guide path 2.
  • the reflux ring groove 3 communicates the flow in the circumferential direction of the inlet, thereby increasing the uniformity of the flow at the compressor inlet, weakening the shock wave at the inlet, and the discharge flow of the suction ring groove 1 enhances the circulation capacity. By doing so, the occlusion boundary was expanded. However, due to the lack of suction power in the mode of operation close to blockage, the expansion of the casing treatment to the blockage boundary is less noticeable than the expansion to the stall boundary.
  • the width b r of the suction ring groove 1 by employing the asymmetric self-circulation casing treatment of the centrifugal compressor is arcuate distribution are examples to expand the stable operating range .
  • Figure 14 is a distribution schematic diagram of the width b r of the suction ring groove 1 in the second embodiment. Distribution in the width b r of the asymmetric casing treatment of the centrifugal compressor is as shown in FIG. 14.
  • FIG. 15A is a graph showing the relationship between the normalized mass flow rate and the pressure ratio in Example 2.
  • FIG. 15B is a graph showing the relationship between normalized mass flow rate and efficiency in Example 2.
  • 15A and 15B show a non-axisymmetric self-circulating casing treatment ("asymmetric self-circulating CT"), an axisymmetric self-circulating casing treatment "axisymmetric self-circulating CT”), and a casing treatment. It is a performance comparison figure of a compressor in case of no ("No CT").
  • asymmetric self-circulating casing treatment asymmetric self-circulating CT
  • axisymmetric self-circulating casing treatment axisymmetric self-circulating CT
  • the present invention employs an asymmetric self-circulating casing treatment in which the position (axial distance S r ) or width (width b r ) of the suction ring groove 1 is distributed in an arc shape as compared with the conventional technique.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 ケーシング10の内周面に吸引リング溝1、リング案内路2、及び還流リング溝3を有し、自己循環流路を形成する非対称自己循環ケーシングトリートメントを有する遠心圧縮機において、吸引リング溝1の位置又は幅が、周方向において円弧状に分布し、円弧の中心角αが0<α≦30°の範囲である。

Description

非対称自己循環ケーシングトリートメントを有する遠心圧縮機
 本発明は、非対称自己循環ケーシングトリートメントを有する遠心圧縮機に関する。遠心圧縮機は、車両や船舶用過給機、産業用圧縮機、航空エンジンなど、各種用途のターボ機械に用いられる。
 遠心圧縮機を用いたターボ式圧縮機は、往復動式圧縮機に対し、効率が高く、重量が軽く、運転が安定している等の長所があるが、その許容作動範囲(すなわち、遠心圧縮機の流量範囲)が限られている。
 遠心圧縮機の小流量作動点(すなわち、圧縮機の流量が小さい場合)では、内部の流れ場において大幅な流体剥離などの不安定現象が生じて、失速ひいてはサージをもたらす。その結果、圧縮機の効率と圧力比の急速な低下を招き、寿命が短縮し、ひいては、短時間に損傷してしまう。そのため、様々な対策を採用することで、圧縮機の失速等の不安定現象を抑制して、その安定作動範囲を拡大させている。
 例えば、安定作動範囲を拡大させるために、遠心圧縮機のケーシングトリートメントが用いられている。ケーシングトリートメントは、例えば、特許文献1~5に開示されている。
 ケーシングトリートメントでは、特許文献1~5のように、遠心圧縮機のインペラを囲むケーシングの内周面において、インペラ前縁より下流の環状入口と、インペラ前縁より上流の環状出口を形成する。これにより、遠心圧縮機への流入流量が少ない場合、環状入口からケーシング内部を通って環状出口へ流体を戻すことで、インペラへの流入流量をみかけ上増加させている。その結果、失速等の不安定現象を抑制して、遠心圧縮機の安定作動範囲が拡大する。
特許第3001902号 特開2007-127109号公報 特許第4100030号 特許第4107823号 米国特許第4930979号
 上述したように、現在、ケーシングトリートメントは、遠心圧縮機の安定作動範囲を拡大する有効な手段であると考えられている。
 従来のケーシングトリートメントは、インペラの回転軸に対して軸対称に構成されている。以下、回転軸に対して軸対称のケーシングトリートメントを「軸対称ケーシングトリートメント」、回転軸に対して非対称のケーシングトリートメントを「非対称ケーシングトリートメント」と呼ぶ。
 軸対称ケーシングトリートメントを有する遠心圧縮機の場合、ケーシングのスクロール流路がインペラの回転軸に対して非対称に構成されているため、設計範囲を外れる小流量時に、スクロール流路の非対称性によってインペラ出口における流れに周方向のゆがみが生じ、上流側の流動パラメータに影響を及ぼして、圧縮機のインペラ及び羽根なしディフューザ内部の周方向流動パラメータが非対称性を呈することになる。
 従来の軸対称ケーシングトリートメントの構成は、圧縮機内部における流れ場の非対称性の特徴を考慮していないので、ケーシングトリートメントによる安定作動範囲の拡大効果を周方向全周では達成することができない。そのため、周方向全周における最適な安定作動範囲の拡大効果を実現するために、非対称の自己循環ケーシングトリートメントを採用する必要がある。
 図1Aは、自己循環ケーシングトリートメントを有する遠心圧縮機の半断面図であり、図1Bは、自己循環ケーシングトリートメントの説明図である。
 図1Aにおいて、インペラ13は、インペラ全羽根11とインペラ半羽根12とを有する。またZ-Zはインペラ13の回転軸中心である。図1Aと図1Bに示すように、自己循環ケーシングトリートメントの構成は、一般的に、吸引リング溝1、リング案内路2、及び還流リング溝3からなる。自己循環ケーシングトリートメントの主な構成パラメータは、吸引リング溝1のインペラ全羽根前縁4に対する軸方向距離Sと、吸引リング溝の幅bと、還流リング溝3のインペラ全羽根前縁4に対する軸方向距離Sと、還流リング溝3の幅bと、還流リング溝3の深さhと、リング案内路2の幅b等である。
 インペラ全羽根前縁4に対する吸引リング溝1の軸方向距離Sや吸引リング溝1の幅bが、還流圧力差と還流流量を直接決め、作動範囲の拡大効果に対する影響が大きいことが研究から明らかになった。このため、周方向における吸引リング溝の軸方向距離S又は幅bの分布を適正に設計することは、非対称自己循環ケーシングトリートメントにより遠心圧縮機の作動範囲を拡大するためのキーポイントである。
 本発明は上述した要望を満たすために創案されたものである。すなわち本発明の目的は、インペラ全羽根前縁に対する吸引リング溝の軸方向距離S又は幅bの周方向分布を最適化することによって、効率を維持したままで、安定作動範囲を低流量側に拡大することができる非対称自己循環ケーシングトリートメントを有する遠心圧縮機を提供することにある。
 本発明は、ケーシングの内周面に吸引リング溝(1)、リング案内路(2)、及び還流リング溝(3)を有し、自己循環流路を形成する非対称自己循環ケーシングトリートメントを有する遠心圧縮機において、
 前記吸引リング溝の位置又は幅が、周方向において円弧状に分布し、該円弧の中心角αが0<α≦30°の範囲である、ことを特徴とするものである。
 本発明の一実施形態において、前記位置は、前記吸引リング溝の上流側端面のインペラ全羽根前縁(4)に対する軸方向距離Sであり、前記円弧の半径Rとインペラ直径Dとの比率が、2≦|R/D|≦40の範囲である。
 また本発明の別の実施形態において、前記幅は、前記吸引リング溝の幅bであり、前記円弧の半径Rとインペラ直径Dとの比率が、2≦|R/D|≦20の範囲である。
 前記ケーシングは、外殻(5)と中子(6)からなり、
 前記吸引リング溝(1)は、中子(6)の壁面に設けられ、前記外殻の内壁面と中子の外壁面が前記リング案内路(2)と還流リング溝(3)を形成する。
 従来の技術に比べ、本発明は、吸引リング溝の位置又は幅が、円弧状に分布する非対称自己循環ケーシングトリートメントを採用することで、軸対称自己循環ケーシングトリートメントよりも遠心圧縮機の安定作動範囲を大幅に拡大すると共に、効率が基本的に変わらないように維持することができる、ことが後述する実施例で確認された。
 
自己循環ケーシングトリートメントを有する遠心圧縮機の半断面図である。 自己循環ケーシングトリートメントの説明図である。 ケーシングの外殻の正面模式図である。 ケーシングの外殻の半断面模式図である。 圧縮機のケーシングの模式図である。 ケーシングの中子の構成模式図である。 中子における吸引リング溝の模式図である。 実施例における初期位相角θの位置模式図である。 異なる初期位相角θに対応する吸引リング溝の軸方向距離Sの分布模式図である。 実施例1における軸方向距離Sの分布模式図である。 実施例1における正規化質量流量と圧力比の関係図である。 実施例1における正規化質量流量と効率の関係図である。 圧縮機のケーシングの模式図である。 ケーシングの中子の構成模式図である。 中子における吸引リング溝の模式図である。 異なる初期位相角θに対応する吸引リング溝の幅bの分布模式図である。 実施例2における幅bの分布模式図である。 実施例2における正規化質量流量と圧力比の関係図である。 実施例2における正規化質量流量と効率の関係図である。
 以下、本発明を実施するための形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
(第1実施形態)
 図2A、図2B、図3~図5は、本発明の第1実施形態を示す模式図であり、図2Aはケーシングの外殻5の正面模式図、図2Bは半断面模式図、図3はケーシングの模式図、図4はケーシングの中子6の構成模式図、図5は中子における吸引リング溝の模式図である。
 本発明の遠心圧縮機は、図1に示したように、ケーシングの内周面に、吸引リング溝1、リング案内路2、及び還流リング溝3を有し自己循環流路を形成する非対称自己循環ケーシングトリートメントを有する。
 自己循環流路とは、吸引リング溝1、リング案内路2、及び還流リング溝3により、インペラ全羽根前縁より下流側位置からインペラ全羽根前縁より上流側位置へ流体を戻す還流路を意味する。
 また、第1実施形態の遠心圧縮機のケーシング10は、図3に示すように、外殻5と中子6からなり、吸引リング溝1は、中子6の壁面に設けられ、外殻5の内壁面と中子6の外壁面がリング案内路2と還流リング溝3を形成する。
 第1実施形態の非対称自己循環ケーシングトリートメントは、吸引リング溝1の位置、すなわちインペラ全羽根前縁4に対する、吸引リング溝1の上流側端面1aの軸方向距離Sが、周方向において円弧状に分布している。
 また図3に示すように、第1実施形態において、軸方向距離Sの円弧の中心角α(図示せず)は、0<α≦30°の範囲であり、円弧の半径Rとインペラ直径Dとの比率は、2≦|R/D|≦40の範囲である。
 設計による円弧状分布に応じた吸引リング溝1の位置は、中子6の周方向円柱面において曲線であり、図5において一点鎖線で示されている。
 図2A、図2B、図3において、ケーシングの外殻5を固定し、かつ中子6をインペラ13(図1参照)の回転軸中心Z-Zのまわりに回転して、組み立て時の両者の対向位置を変更することで、異なる初期位相角θに対応する吸引リング溝1の位置(軸方向距離S)の円弧状分布が得られる。
 すなわち、ケーシング10の外殻5と中子6は、ネジ7によって連結される。ケーシング10の外殻5には、周方向にn個(この例では4つ)のネジ孔が均等に配置されており、n個の異なる初期位相角θに対応する軸方向距離Sの分布曲線が得られる。圧縮機の性能試験によって、n個の異なる初期位相角θから最適な初期位相角θを確定する。
 図6は、実施例における初期位相角θの位置模式図であり、図7は、異なる初期位相角θに対応する吸引リング溝のS値の分布模式図である。
 図2Aと図2Bにおいて、ケーシング10の外殻5に合計4つのネジ孔が設けられているので、図7に示される4種の異なる吸引リング溝1の軸方向距離Sの円弧状分布が得られる。
 図7は、異なる初期位相角θに対応する吸引リング溝1の軸方向距離Sの分布模式図である。
 図7において、実線は、吸引リング溝1の軸方向距離Sの周方向における円弧状分布であり、周方向の初期位相角θの選定を変えることに基づき、多様な表現形式がある。そのうち、θは初期位相角であり、ケーシング10は0°≦θ≦360°の1周の円であり、図中、θ~θ+360°はケーシング10の全周角度である。
 本発明の遠心圧縮機の作動において、低流量モード時に、自己循環ケーシングトリートメントの流路内の空気は、吸引リング溝1から流入し、リング案内路2と還流リング溝3を経て流出する。
 具体的な作動原理は、自己循環ケーシングトリートメントの吸引リング溝1がインペラ翼端領域の気体を吸引し、リング案内路2を経て、還流リング溝3から気体を放出することにある。
 還流リング溝3から気体を放出することにより、(1)吸引リング溝1の溝位置(軸方向距離S)におけるインペラ翼端領域の気体に対する吸引作用が、インペラ翼端の隙間の漏れ渦が吸引リング溝1に吸い取られることを引き起こして、漏れ流動流路が遮断され、(2)還流が圧縮機入口に放出され、還流リング溝3内の流動の連通により、圧縮機入口の流れの均等性を実現し、流路の衝撃波を取り除き、(3)還流が入口流量を増大させ、インペラ翼入口の正の迎角を小さくすると共に、吸引リング溝1の吸引作用が、圧縮機出口の背圧を低減し、逆圧勾配が小さくなって、インペラ翼表面の境界層の分離を効果的に抑制した。
 周方向上の対応する位置で還流効果がより良くなるように、周方向において円弧状に分布した吸引リング溝1の溝位置(軸方向距離S)を用いることで、還流の作用をより効果的に用いて、圧縮機の安定作動範囲を拡大する。
 閉塞に近い作動モードにおいて、自己循環ケーシングトリートメントの流路内の空気は、還流リング溝3とリング案内路2を経て、吸引リング溝1より放出される。還流リング溝3は、入口の周方向における流動を連通させることで、圧縮機入口の流動の均等性を増加させて、入口の衝撃波を弱め、吸引リング溝1の放出流は、流通能力を強化することで、閉塞境界を拡大した。ただし、閉塞に近い作動モードの吸引動力の不足により、該ケーシングトリートメントの閉塞境界に対する拡大は、失速境界に対する拡大より著しくない。
 以下は、あるサイズの遠心圧縮機に対し、溝位置が円弧状分布である遠心圧縮機の非対称自己循環ケーシングトリートメントを採用することで、安定作動範囲を拡大する例である。
 図8は、実施例におけるS値の分布模式図である。
 遠心圧縮機の非対称ケーシングトリートメントのS値の分布は、図8のように示される。初期位相角θは図6において、θ=90°の位置である。
 図9Aは、実施例1における正規化質量流量と圧力比の関係図である。また、図9Bは、実施例1における正規化質量流量と効率の関係図である。
 図9Aと図9Bは、溝位置が円弧状分布である非対称自己循環ケーシングトリートメント(「非対称自己循環CT」)と、軸対称自己循環ケーシングトリートメント(「軸対称自己循環CT」)と、ケーシングトリートメントのない(「CTなし」)の場合の圧縮機の性能比較図である。
 図9Aと図9Bの性能比較によって、本発明の溝位置が円弧状分布である遠心圧縮機の非対称自己循環ケーシングトリートメント(非対称自己循環CT)を採用することにより、ケーシングトリートメントのない場合(CTなし)及び軸対称自己循環ケーシングトリートメント(軸対称自己循環CT)を採用する場合に対し、圧縮機の安定作動範囲を低流量側に拡大できると共に、効率が基本的に変わらないように維持することができることが確認された。
 
(第2実施形態)
 図10~図12は、本発明の第2実施形態を示す模式図であり、図10は圧縮機のケーシング10の模式図、図11はケーシング10の中子6の構成模式図、図12は、中子6における吸引リング溝1の模式図である。
 また、図2Aと図2Bは第1実施形態と共通である。
 本発明の遠心圧縮機は、図1に示したように、ケーシングの内周面に、吸引リング溝1、リング案内路2、及び還流リング溝3を有し、自己循環流路を形成する非対称自己循環ケーシングトリートメントを有する。
 また、第2実施形態の遠心圧縮機のケーシング10は、図10に示すように、外殻5と中子6からなり、吸引リング溝1は、中子6の壁面に設けられ、外殻5の内壁面と中子6の外壁面がリング案内路2と還流リング溝3を形成する。
 第2実施形態の非対称自己循環ケーシングトリートメントは、吸引リング溝1の幅bが、周方向において円弧状に分布している。
 また図10に示すように、第2実施形態において、吸引リング溝1の幅bの円弧の中心角α(図示せず)は0<α≦30°の範囲であり、円弧の半径Rとインペラ直径Dとの比率は、2≦|R/D|≦20の範囲である。
 図12において、設計による円弧状分布に応じた吸引リング溝1の下流端1bは、中子6の周方向円柱面において曲線である。
 図2A、図2B、図10、図11において、ケーシング10の外殻5を固定し、かつ中子6をインペラ13(図1参照)の回転軸中心Z-Zのまわりに回転して、組み立て時の両者の対向位置を変更することで、異なる初期位相角θに対応する吸引リング溝1の幅bの円弧状分布が得られる。
 すなわち、ケーシングの外殻5と中子6は、ネジ7によって連結され、ケーシング10の外殻5には、周方向にn個(この例では4つ)のネジ孔が均等に配置されており、n個の異なる初期位相角θに対応する分布曲線が得られ、圧縮機の性能試験によって、最適な初期位相角θを確定する。
 図6は、第1実施形態と共通であり、実施例における初期位相角θの位置模式図である。
 例えば、図2Aと図2Bにおいて、ケーシングの外殻5に合計4つのネジ孔が開けられているので、図13に示される4種の異なる吸引リング溝1の幅bの円弧状分布が得られる。
 図13は、異なる初期位相角θに対応する吸引リング溝1の幅bの分布模式図である。
 図13において、実線は、吸引リング溝1の幅bの周方向における円弧状の分布であり、周方向の初期位相角θの選定を変えることに基づき、多様な表現形式がある。そのうち、θは初期位相角であり、ケーシング10は0°≦θ≦360°の1周の円であり、図中、θ~θ+360°はケーシングの全周角度である。
 本発明の遠心圧縮機の作動において、低流量モード時に、自己循環ケーシングトリートメントの流路内の空気は、吸引リング溝1から流入し、リング案内路2と還流リング溝3を経て流出する。
 具体的な作動原理は、自己循環ケーシングトリートメントの吸引リング溝1がインペラ翼端領域の気体を吸引し、リング案内路2を経て、還流リング溝3から気体を放出することにある。
 還流リング溝3から気体を放出することにより、(1)吸引リング溝1の溝幅bにおけるインペラ翼端領域の気体に対する吸引作用が、インペラ翼端の隙間の漏れ渦が吸引リング溝1に吸い取られることを引き起こして、漏れ流動の流路が遮断され、(2)還流が圧縮機入口に放出され、還流リング溝3内の流動の連通により、圧縮機入口の流れの均等性を実現し、流路の衝撃波を取り除き、(3)還流が入口流量を増大させ、インペラ翼入口の正の迎角を小さくすると共に、吸引リング溝1の吸引作用が、圧縮機出口の背圧を低減し、逆圧勾配が小さくなって、インペラ翼表面の境界層の分離を効果的に抑制した。
 周方向上の対応する溝幅で還流効果がより良くなるように、周方向において円弧状に分布した吸引リング溝1の溝幅bを用いることで、還流の作用をより効果的に用いて、圧縮機の安定した作動範囲を拡大するようにする。
 閉塞に近い作動モードにおいて、自己循環ケーシングトリートメントの流路内の空気は、還流リング溝3とリング案内路2を経て、吸引リング溝1より放出される。還流リング溝3は、入口の周方向における流動を連通させることで、圧縮機入口の流動の均等性を増加させて、入口の衝撃波を弱め、吸引リング溝1の放出流は、流通能力を強化することで、閉塞境界を拡大した。ただし、閉塞に近い作動モードの吸引動力の不足により、該ケーシングトリートメントの閉塞境界に対する拡大は、失速境界に対する拡大より著しくない。
 以下は、あるサイズの遠心圧縮機に対し、吸引リング溝1の幅bが円弧状分布である遠心圧縮機の非対称自己循環ケーシングトリートメントを採用することで、安定作動範囲を拡大する例である。
 図14は、実施例2における吸引リング溝1の幅bの分布模式図である。
 遠心圧縮機の非対称ケーシングトリートメントの幅bの分布は、図14のように示される。初期位相角θは図6において、θ=90°の位置である。
 図15Aは、実施例2における正規化質量流量と圧力比の関係図である。また、図15Bは、実施例2における正規化質量流量と効率の関係図である。
 図15Aと図15Bは、溝幅が円弧状分布である非軸対称自己循環ケーシングトリートメント(「非対称自己循環CT」)と、軸対称自己循環ケーシングトリートメント「軸対称自己循環CT」)と、ケーシングトリートメントのない(「CTなし」)の場合の圧縮機の性能比較図である。
 図15Aと図15Bの性能比較によって、本発明の溝幅が円弧状分布である遠心圧縮機の非対称自己循環ケーシングトリートメント(非対称自己循環CT)を採用することにより、ケーシングトリートメントのない場合(CTなし)及び軸対称自己循環ケーシングトリートメント(軸対称自己循環CT)を採用する場合に対し、圧縮機の安定作動範囲を低流量側に拡大できると共に、効率が基本的に変わらないように維持することができることが確認された。
 上述したように、従来の技術に比べ、本発明は、吸引リング溝1の位置(軸方向距離S)又は幅(幅b)が、円弧状に分布する非対称自己循環ケーシングトリートメントを採用することで、軸対称自己循環ケーシングトリートメントよりも遠心圧縮機の安定作動範囲を大幅に拡大すると共に、効率が基本的に変わらないように維持することができる、ことが実施例1,2で確認された。
 なお本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。
1 吸引リング溝、
1a 上流側端面、1b 下流側端面、
2 リング案内路、
3 還流リング溝、4 インペラ全羽根前縁、
5 外殻、6 中子、7 ネジ、
10 ケーシング、11 インペラ全羽根、
12 インペラ半羽根、13 インペラ
 
 

Claims (4)

  1.  ケーシングの内周面に吸引リング溝(1)、リング案内路(2)、及び還流リング溝(3)を有し、自己循環流路を形成する非対称自己循環ケーシングトリートメントを有する遠心圧縮機において、
     前記吸引リング溝の位置又は幅が、周方向において円弧状に分布し、該円弧の中心角αが0<α≦30°の範囲である、ことを特徴とする非対称自己循環ケーシングトリートメントを有する遠心圧縮機。
  2.  前記位置は、前記吸引リング溝の上流側端面のインペラ全羽根前縁(4)に対する軸方向距離Sであり、前記円弧の半径Rとインペラ直径Dとの比率が、2≦|R/D|≦40の範囲である、ことを特徴とする請求項1に記載の遠心圧縮機。
  3.  前記幅は、前記吸引リング溝の幅bであり、前記円弧の半径Rとインペラ直径Dとの比率が、2≦|R/D|≦20の範囲である、ことを特徴とする請求項1に記載の遠心圧縮機。
  4.  前記ケーシングは、外殻(5)と中子(6)からなり、
     前記吸引リング溝(1)は、中子(6)の壁面に設けられ、前記外殻の内壁面と中子の外壁面が前記リング案内路(2)と還流リング溝(3)を形成する、ことを特徴とする請求項1乃至3のいずれかに記載の遠心圧縮機。
     
     
PCT/JP2011/052269 2010-02-09 2011-02-03 非対称自己循環ケーシングトリートメントを有する遠心圧縮機 WO2011099416A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11742160.2A EP2535595B1 (en) 2010-02-09 2011-02-03 Centrifugal compressor using an asymmetric self-recirculating casing treatment
US13/578,101 US9151297B2 (en) 2010-02-09 2011-02-03 Centrifugal compressor having an asymmetric self-recirculating casing treatment
JP2011553812A JP5430683B2 (ja) 2010-02-09 2011-02-03 非軸対称自己循環ケーシングトリートメントを有する遠心圧縮機

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010110273.3 2010-02-09
CN201010110230.5 2010-02-09
CN 201010110273 CN101761513B (zh) 2010-02-09 2010-02-09 开槽宽度为圆弧分布的离心压气机非对称自循环处理机匣
CN 201010110230 CN101761512B (zh) 2010-02-09 2010-02-09 开槽位置为圆弧分布的离心压气机非对称自循环处理机匣

Publications (1)

Publication Number Publication Date
WO2011099416A1 true WO2011099416A1 (ja) 2011-08-18

Family

ID=44367691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052269 WO2011099416A1 (ja) 2010-02-09 2011-02-03 非対称自己循環ケーシングトリートメントを有する遠心圧縮機

Country Status (4)

Country Link
US (1) US9151297B2 (ja)
EP (1) EP2535595B1 (ja)
JP (1) JP5430683B2 (ja)
WO (1) WO2011099416A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9482240B2 (en) 2013-07-31 2016-11-01 Honeywell International Inc. Compressor housing assembly for a turbocharger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930979A (en) 1985-12-24 1990-06-05 Cummins Engine Company, Inc. Compressors
JPH031902B2 (ja) 1979-05-23 1991-01-11 Bosch Gmbh Robert
JP2001263296A (ja) * 2000-03-17 2001-09-26 Hitachi Ltd ターボ機械
JP2004332734A (ja) * 2003-04-30 2004-11-25 Holset Eng Co Ltd 圧縮機
JP2007127109A (ja) 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のコンプレッサ
JP2007224789A (ja) * 2006-02-22 2007-09-06 Toyota Motor Corp 遠心圧縮機
JP4100030B2 (ja) 2002-04-18 2008-06-11 株式会社Ihi 遠心圧縮機
JP4107823B2 (ja) 2001-09-28 2008-06-25 三菱重工業株式会社 流体機械

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH675279A5 (ja) * 1988-06-29 1990-09-14 Asea Brown Boveri
DE4027174A1 (de) * 1990-08-28 1992-03-05 Kuehnle Kopp Kausch Ag Kennfeldstabilisierung bei einem radialverdichter
US6290458B1 (en) 1999-09-20 2001-09-18 Hitachi, Ltd. Turbo machines
DE10355240A1 (de) 2003-11-26 2005-07-07 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit Fluidentnahme
CN100520085C (zh) * 2004-06-15 2009-07-29 霍尼韦尔国际公司 与压气机外壳制成整体的消音器
GB0600532D0 (en) * 2006-01-12 2006-02-22 Rolls Royce Plc A blade and rotor arrangement
EP1862641A1 (de) * 2006-06-02 2007-12-05 Siemens Aktiengesellschaft Ringförmiger Strömungskanal für eine in Axialrichtung von einem Hauptstrom durchströmbare Strömungsmaschine
US20080044273A1 (en) * 2006-08-15 2008-02-21 Syed Arif Khalid Turbomachine with reduced leakage penalties in pressure change and efficiency
WO2008100844A1 (en) * 2007-02-14 2008-08-21 Borgwarner Inc. Compressor housing
FR2912789B1 (fr) 2007-02-21 2009-10-02 Snecma Sa Carter avec traitement de carter, compresseur et turbomachine comportant un tel carter.
JP5039673B2 (ja) * 2008-02-27 2012-10-03 三菱重工業株式会社 ターボ型圧縮機のストラット構造
DE102008026744A1 (de) * 2008-06-04 2009-01-22 Daimler Ag Verdichter, insbesondere für einen Abgasturbolader einer Brennkraftmaschine
DE102008031982A1 (de) * 2008-07-07 2010-01-14 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit Nut an einem Laufspalt eines Schaufelendes
JP5948892B2 (ja) 2012-01-23 2016-07-06 株式会社Ihi 遠心圧縮機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031902B2 (ja) 1979-05-23 1991-01-11 Bosch Gmbh Robert
US4930979A (en) 1985-12-24 1990-06-05 Cummins Engine Company, Inc. Compressors
JP2001263296A (ja) * 2000-03-17 2001-09-26 Hitachi Ltd ターボ機械
JP4107823B2 (ja) 2001-09-28 2008-06-25 三菱重工業株式会社 流体機械
JP4100030B2 (ja) 2002-04-18 2008-06-11 株式会社Ihi 遠心圧縮機
JP2004332734A (ja) * 2003-04-30 2004-11-25 Holset Eng Co Ltd 圧縮機
JP2007127109A (ja) 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のコンプレッサ
JP2007224789A (ja) * 2006-02-22 2007-09-06 Toyota Motor Corp 遠心圧縮機

Also Published As

Publication number Publication date
EP2535595A4 (en) 2018-03-21
EP2535595A1 (en) 2012-12-19
US9151297B2 (en) 2015-10-06
EP2535595B1 (en) 2019-04-17
JP5430683B2 (ja) 2014-03-05
JPWO2011099416A1 (ja) 2013-06-13
US20120308371A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5430685B2 (ja) 非軸対称自己循環ケーシングトリートメントを有する遠心圧縮機
JP5430684B2 (ja) 非軸対称自己循環ケーシングトリートメントを有する遠心圧縮機
US11408439B2 (en) Centrifugal compressor and turbocharger
US9771856B2 (en) Centrifugal compressor
US5707205A (en) Fan device
WO2011007467A1 (ja) インペラおよび回転機械
WO2018105423A1 (ja) 遠心圧縮機及びターボチャージャ
US9816522B2 (en) Centrifugal compressor having an asymmetric self-recirculating casing treatment
JP2017519154A (ja) 遠心圧縮機用のディフューザ
JP2014047775A (ja) ディフューザ、そのディフューザが備わる遠心圧縮機および送風機
JP2009133267A (ja) 圧縮機のインペラ
JP2012149619A (ja) 遠心圧縮機
JP3841391B2 (ja) ターボ機械
JP2008208753A (ja) 遠心圧縮機
US11187242B2 (en) Multi-stage centrifugal compressor
JP5430683B2 (ja) 非軸対称自己循環ケーシングトリートメントを有する遠心圧縮機
JP2018135836A (ja) 遠心圧縮機
JP2008202415A (ja) 遠心圧縮機
CN113738696B (zh) 一种后向离心叶轮以及包含该叶轮的后向离心通风机
CN101761513B (zh) 开槽宽度为圆弧分布的离心压气机非对称自循环处理机匣
JP2011021503A (ja) 遠心圧縮機の吸込ケーシング及び遠心圧縮機の吸込ケーシングの設計方法
JP2018091299A (ja) ターボチャージャ
JP2003293992A (ja) 多段遠心圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011553812

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011742160

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201003992

Country of ref document: TH

Ref document number: 13578101

Country of ref document: US