WO2011096560A1 - 風力発電装置 - Google Patents

風力発電装置 Download PDF

Info

Publication number
WO2011096560A1
WO2011096560A1 PCT/JP2011/052490 JP2011052490W WO2011096560A1 WO 2011096560 A1 WO2011096560 A1 WO 2011096560A1 JP 2011052490 W JP2011052490 W JP 2011052490W WO 2011096560 A1 WO2011096560 A1 WO 2011096560A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
opening
opening area
generator according
outside air
Prior art date
Application number
PCT/JP2011/052490
Other languages
English (en)
French (fr)
Inventor
慎輔 佐藤
平井 滋登
泰輔 中村
松尾 毅
五島 忠八
靖 岡野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2011211633A priority Critical patent/AU2011211633A1/en
Priority to US13/577,853 priority patent/US20130009405A1/en
Priority to EP11739907A priority patent/EP2535580A1/en
Priority to CN2011800084976A priority patent/CN102753822A/zh
Publication of WO2011096560A1 publication Critical patent/WO2011096560A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/912Mounting on supporting structures or systems on a stationary structure on a tower
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/60Fluid transfer
    • F05B2260/64Aeration, ventilation, dehumidification or moisture removal of closed spaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the present invention relates to a wind turbine generator that cools heat generated by equipment loss during operation by introducing outside air, and more particularly, to a wind turbine generator in which an opening for introducing outside air is provided in a tower.
  • a wind power generator (hereinafter also referred to as a “windmill”) generates power by a generator driven by rotating a rotor head provided with windmill blades by receiving wind force and increasing the speed of the rotation by a speed increaser.
  • the rotor head described above is installed on a wind turbine tower (hereinafter referred to as “tower”) and attached to the end of a nacelle that can be yaw-turned so that it can rotate about a substantially horizontal lateral rotation axis. It is supported by.
  • the tower for wind turbines described above often adopts a steel monopole type using a cylindrical shell, and the base plate provided at the lower end of the tower shell is fixed to the reinforced concrete foundation with anchor bolts. It has a structure. Since such a wind power generator includes an electrical device such as a converter, it is necessary to cool the electrical device that is a heating element in order to continue stable operation. That is, since the wind power generator generates heat due to equipment loss during operation, appropriate cooling is required to keep the temperature rise of equipment within a predetermined value.
  • FIG. 18 is a conceptual diagram of a cooling structure that introduces outside air from a tower opening and cools heat generated by the equipment loss of the wind turbine generator by this outside air.
  • reference numeral 1 is a wind power generator
  • 2 is a tower
  • 3 is a nacelle
  • 4 is a rotor head
  • 10 is a door opening
  • arrows in the figure indicate the flow of outside air.
  • an object to be cooled such as an electric device is an in-nacelle device 3a installed in the nacelle 3, and the tower 2 is operated from an intake port (not shown) provided at an appropriate position of the door opening 10 by operating the ventilation fan 3b.
  • the outside air is introduced into the interior of the interior, and the outside air passes through the interior of the nacelle 3 for ventilation and cooling.
  • the outside air that has cooled the nacelle device 3a is discharged to the atmosphere from the ventilation fan 3b.
  • a refrigerant (water, oil, etc.) circulating through the nacelle device 3a and the cooling heat exchanger is used.
  • a structure in which the refrigerant is indirectly cooled by the refrigerant absorbed in the outside air by the refrigerant heat exchanger and a structure in which the direct and indirect cooling is used in combination.
  • a heat exchanger installed outside the tower is provided.
  • the cooling medium introduced into the heat exchanger outside the tower is cooled by heat exchange with the outside air passing through the heat exchanger.
  • the cooling and tower strength are in a trade-off relationship with the opening area of the tower, the increase in the tower diameter is extremely small with respect to the increase in the wind turbine output. In other words, with the recent increase in wind turbine size (increase in output), the loss of equipment (heat generation) has increased and the required cooling air flow rate has also increased. It is difficult to ensure a large opening area at the intake and exhaust ports while ensuring strength. Therefore, the trade-off relationship between the above-described cooling and tower strength becomes more severe as the wind turbine generator becomes larger.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wind turbine generator having sufficient cooling performance while ensuring a large opening area for intake and exhaust while ensuring tower strength. It is to provide.
  • the present invention employs the following means.
  • a rotor head that receives wind power from a windmill blade rotates a generator installed inside the nacelle to generate electric power, and the upper end of the tower in which the nacelle is erected on the foundation
  • the wind power generator that is installed in the section and cools the internal space by introducing outside air into the tower from the tower opening provided on the surface of the tower, the recess that extends from the tower opening to the inside of the tower or the tower opening
  • the effective opening area is larger than the actual opening area of the tower opening.
  • Such a wind turbine generator has a concave portion extending from the tower opening to the inside of the tower or a convex portion extending from the tower opening to the outside of the tower, and is installed on a part or all of the surface constituting the concave portion or the convex portion. Since the effective opening area where the pressure loss element is installed is larger than the actual opening area of the tower opening, the tower opening is minimized and the tower strength is secured. The flow rate of outside air that passes through the pressure loss element installed in the effective opening area can be reduced.
  • the recess extending from the tower opening to the inside of the tower has a structure in which the place where the pressure loss element is installed is deeper than the outer surface of the tower, so that foreign matters such as dust and rainwater hardly reach the pressure loss element.
  • the recessed part or convex part in this invention includes a cylindrical shape with a circular cross section or a rectangular cross section, a box shape with a hollow inside, a stepped box shape, or the like.
  • the opening for the door for installing the door for entering and exiting the tower is used as the tower opening.
  • the opening part for doors which is necessarily required for the tower can be effectively used, and an effective opening area larger than the actual opening area of the tower opening can be easily formed.
  • the concave portion or the convex portion is provided with an opening / closing port that can be opened and closed at any position on its constituent surface.
  • the concave portion or the convex portion is formed to spread from the tower opening. This facilitates securing a large effective opening area.
  • the concave portion is inclined upward from the tower opening toward the center of the tower axis. This makes it difficult for foreign matter (dust, rainwater, etc.) to reach the pressure loss element.
  • a cross-sectional shape of the concave portion or the convex portion includes a straight portion.
  • suitable shapes including a straight portion include a square, a rectangle, a substantially oval shape, and the like, and in particular, if the opening is formed in a vertically long shape, the tower strength is ensured as compared with a square shape of a circle or a square. Becomes easier.
  • the convex portion is an outer box protruding from the periphery of the door opening, and the effective opening area is secured on an exposed surface of the outer box. Thereby, a large effective opening area can be easily ensured. It is also possible to form a stair that rises up to the door opening that becomes the tower entrance in the outer box.
  • the concave portion or the convex portion is a stepped outer box protruding from the lower end side of the door opening, the lower end side of the door opening is the actual opening area, and
  • the effective opening area may be secured in all or part of the constituent surface of the stepped outer box.
  • a space may be formed between a bottom surface of the outer box or the stepped outer box and the ground, and the effective opening area may be secured on the bottom surface. Thereby, foreign substance penetration
  • a device installation space including an independent outside air circulation channel may be formed inside the outer box or the stepped outer box.
  • a fan for sucking outside air may be installed by providing a partition in the tower on the downstream side of the effective opening area. As a result, it is possible to prevent the short circuit at the fan inlet / outlet and take in the outside air.
  • a fan for sucking outside air may be installed inside the surface forming the effective opening area. Thereby, outside air can be actively taken in.
  • a bypass flow path for outside air that branches from the surface of the effective opening area and communicates with the atmosphere is provided, and a heat exchanger that cools the cooling medium by heat exchange with the outside air is installed in the bypass flow path.
  • outside air can be introduce
  • the operation noise of the heat exchanger fan generated during operation of the heat exchanger can be reduced.
  • the outlet side of the bypass channel may be extended and opened toward the ground. Thereby, it can suppress that the operation noise of the heat exchanger fan generated at the time of operation of the heat exchanger spreads to the surroundings.
  • an effective opening area having a large area ratio with respect to the actual open port area of the tower opening vacated on the surface of the tower can be secured, so that the suction is performed while securing the tower strength. It becomes possible to ensure a large opening area for exhaust.
  • FIG. 1st Embodiment which concerns on the wind power generator of this invention (a) is a perspective view which shows the real opening area and effective opening area of the tower opening provided in the tower surface, (b) is (a).
  • FIG. It is a side view which shows the outline
  • FIG. 1 (a) is a longitudinal cross-sectional view which shows a 1st modification
  • (b) is a horizontal sectional view which shows a 2nd modification.
  • FIG. 1 It is a front view which shows the example of a shape of the actual opening area of the tower opening provided in a tower surface, (a) is a square, (b) is a vertically long rectangle, (c) is a substantially ellipse shape.
  • It is a longitudinal cross-sectional view which shows the structural example of the actual opening area and effective opening area which provided the ventilation fan as 2nd Embodiment which concerns on the wind power generator of this invention.
  • It is a longitudinal cross-sectional view which shows the 1st modification of the structural example shown in FIG.
  • FIG. 9 is a longitudinal sectional view showing a first modification of the configuration example shown in FIG. 8, (a) is a longitudinal sectional view, and (b) is a CC sectional view of (a). It is a longitudinal cross-sectional view which shows the 2nd modification of the structural example shown in FIG. It is a figure which shows 4th Embodiment which concerns on the wind power generator of this invention, (a) is a perspective view which shows the real opening area and effective opening area of the tower opening provided in the tower surface, (b) is (a).
  • FIG. FIG. 12A is a perspective view showing an actual opening area and an effective opening area
  • FIG. 12B is a cross-sectional view taken along line EE of FIG. 11A.
  • FIG. 12A is a perspective view showing an actual opening area and an effective opening area
  • FIG. 12B is a cross-sectional view taken along line FF in FIG. 11A.
  • FIG. It is a figure which shows the 3rd modification based on 4th Embodiment shown in FIG. 11, (a) is a side view which shows an actual opening area and an effective opening area, (b) is a perspective view of (a). .
  • It is a side view which shows the 6th modification based on 4th Embodiment shown in FIG.
  • In the conventional wind power generator it is a conceptual diagram which cools an apparatus loss by circulation of the external air introduced from the tower opening part.
  • a wind turbine generator 1 shown in FIG. 2 includes a wind turbine tower (hereinafter referred to as “tower”) 2 erected on a foundation B, a nacelle 3 installed at the upper end of the tower 2, and a substantially horizontal lateral direction. And a rotor head 4 provided on the front end side of the nacelle 3 so as to be rotatable around the rotation axis of the nacelle 3.
  • tower wind turbine tower
  • nacelle 3 installed at the upper end of the tower 2
  • a substantially horizontal lateral direction and a rotor head 4 provided on the front end side of the nacelle 3 so as to be rotatable around the rotation axis of the nacelle 3.
  • a plurality of (for example, three) wind turbine blades 5 are attached to the rotor head 4 in a radial pattern around its rotational axis.
  • the force of the wind striking the wind turbine blade 5 from the direction of the rotation axis of the rotor head 4 is converted into power for rotating the rotor head 4 around the rotation axis.
  • a door 6 for entering and exiting the tower is provided.
  • An anemometer 7 for measuring the peripheral wind speed value, an anemometer 8 for measuring the wind direction, and the like are installed at appropriate positions (for example, the upper part) of the outer surface of the nacelle 3.
  • the rotor head 4 that receives wind power from the wind turbine blades 5 and rotates around a substantially horizontal rotation axis drives a generator (not shown) installed in the nacelle 3 to generate power.
  • the nacelle 3 is installed at the upper end portion of the tower 2 erected on the foundation B made of reinforced concrete so that the yaw can be turned.
  • the tower 2 shown in the figure is a steel monopole type, and a cylindrical tower having a required length (height) is secured by connecting a plurality of tower section flanges (not shown).
  • the wind power generator 1 described above introduces outside air into the tower through a tower opening 20 provided on the surface of the tower 2, and cools the internal air whose temperature has risen due to heat generated due to equipment loss. It has become.
  • the heat generated due to the device loss includes, for example, heat generated during operation by electric devices such as converters and rotating devices such as gearboxes. These heat generating devices are generally used in the tower 2 and the nacelle 3. Arranged inside.
  • the cylindrical portion 21 that is a recess extending from the tower opening 20 to the inside of the tower is formed, and a part or all of the surface constituting the cylindrical portion 21 is formed.
  • the effective opening area Se for installing the pressure loss element is secured.
  • the effective opening area Se is configured to allow ventilation through the installed pressure loss element, and the effective opening area Se where the pressure loss element is installed is larger than the actual opening area S of the tower opening 20 (Se> S). Yes. That is, in the present embodiment, it is recessed (recessed) from the tower opening 20 into the tower so that the peripheral area to be the effective opening area Se is larger than the actual opening area S (Se> S). )
  • the cylindrical portion 21 is formed.
  • All or part of the peripheral surface 21a and the tower inner end surface 21b constituting the cylindrical portion 21 are used as the effective opening area Se.
  • the part shown with the broken line in the cylindrical part 21 in a figure is an area
  • the cylindrical portion 21 shown in FIG. 1 has a cylindrical shape extending from the tower opening 20 that opens to the outer surface of the tower 2 toward the inside of the tower.
  • the cylindrical portion 21 is formed in a cylindrical shape directed in the axial center direction of the tower 2, but the cylindrical cross-sectional shape and the extending direction are not limited to this.
  • the cylindrical part 21 mentioned above forms a cylinder shape, combining a frame
  • the opening of the cylindrical portion 21 formed in this way is the whole or part of the peripheral surface 21a and the tower inner end surface 21b as the actual opening area Se. It can be used, and is used for installing a louver, a filter, a salt removal filter, and the like that are pressure loss elements. Note that the pressure loss element can be fixedly supported easily using, for example, the skeleton member described above.
  • the effective opening area Se is substantially equal to the area of the peripheral surface 21a. It becomes larger than the opening area S.
  • the area of the tower inner end surface 21b is also the actual opening area Se.
  • the actual opening area S is calculated from the area of the peripheral surface 21a.
  • the subtracted area is the effective opening area Se.
  • the peripheral surface 21a of the cylindrical portion 21 can be adjusted in area as appropriate by changing the axial length and diameter. Strictly speaking, the effective opening area Se of the cylindrical portion 21 is reduced by the amount of the skeleton member, but the area covered by the skeleton member is usually sufficiently smaller than the area of the peripheral surface 21a. Become.
  • the tower opening 20 and the cylindrical portion 21 may be provided at appropriate positions on the tower 2.
  • the tower opening 20 and the cylindrical portion 21 are provided using a door opening 10 for installing the door 6.
  • the door opening 10 is normally an opening provided in the tower 2 because the door 6 that enters and exits the tower 2 is necessary for the purpose of maintenance work and the like. Therefore, at least a part of the door opening 10 can be effectively used, and an effective opening area Se larger than the actual opening area S of the tower opening 20 can be easily formed.
  • the door opening 10 has a vertically long substantially oval shape, and the tower opening 20 is disposed using a substantially semi-elliptical space remaining in the upper portion of the door 6.
  • the door 6 serving as the entrance to the tower 2 can be installed using the constituent surface of the cylindrical portion 21 that is a concave portion extending from the tower opening 20 to the inside of the tower, and can be installed on any of the constituent surfaces. What is necessary is just to attach the door 6 which can be opened and closed.
  • the wind turbine generator 1 of the present embodiment forms the cylindrical portion 21 that is a recess extending from the tower opening 20 to the inside of the tower, and uses the configuration surface of the cylindrical portion 21 to form the tower opening 20. Since the effective opening area Se for installing the pressure loss element larger than the actual opening area S is secured, the tower opening 20 is minimized to secure the tower strength, and the pressure loss element installed in the large effective opening area Se is installed. The flow rate of the outside air that flows through can be reduced. In this way, the cylindrical portion 21 that is recessed from the tower opening 20 is located at the position where the pressure loss element is installed inward from the outer surface of the tower 2, so that foreign matters such as dust and rainwater reach the pressure loss element. It becomes a difficult structure.
  • the actual opening area S and the effective opening area Se of the above-described embodiment are the cylindrical portions 21A and 21B as in the first modified example shown in FIG. 4A and the second modified example shown in FIG. It is good.
  • the cylindrical portion 21A of the first modification shown in FIG. 4A is formed to be a concave portion that is inclined upward from the opening of the tower 2 toward the center of the tower axis. That is, the cylindrical portion 21A of the first modified example is a cylindrical shape formed so as to be retracted (recessed) while being inclined obliquely upward from the tower opening 20 opened on the outer surface of the tower 2 to the inside of the tower 2. It has become.
  • the cylindrical part 21B of the 2nd modification shown in FIG.4 (b) is formed so that it may become a recessed part which spreads from the tower opening 20 of the tower 2 to the tower axis center direction.
  • the end spread is preferably a truncated cone shape that expands toward the inside of the tower.
  • the end spread may be limited to only one of the horizontal direction and the vertical direction.
  • the tower opening 20 may have a circular shape corresponding to the cylindrical tubular portion 21, but preferably includes a straight portion.
  • Specific examples of the shape of the tower opening 20 having the actual opening area include, for example, a square 20A, a rectangle 20B, and a substantially elliptical shape 20C as shown in FIGS. 5 (a) to 5 (c).
  • the cylindrical part provided with these tower openings is good to form a recessed part with the same cross-sectional shape as each tower opening. Further, when the tower opening having the actual opening area includes the straight portion, it is easy to install a general duct or the like that forms the cylindrical portion.
  • the ratio of the length ratio is adjusted compared to the case where a circular or square square shape with the same area is opened. Since the ratio of the opening diameter to the tower diameter is reduced, the factor for lowering the tower strength is reduced, which is effective in securing the tower strength.
  • a partition member 2a is provided inside the tower 2 on the downstream side of the effective opening area Se to partition it vertically, and a fan 30 for sucking outside air is installed in the partition member 2a.
  • the fan 30 When the fan 30 is operated, outside air is sucked from the tower opening 20 and passes through the pressure loss member of the cylindrical portion 21. The outside air further passes through the fan 30 and the tower 2 and is supplied to the nacelle 3.
  • a fan 30 for sucking outside air is installed inside the surface forming the effective opening area Se (the space side of the tower 2) so as to actively take in outside air. It may be. That is, since the fan 30 is directly installed at a position on the inner side of the tower 2 (on the nacelle 3 side) with respect to the peripheral surface 21a of the cylindrical portion 21, there is no need to newly provide a partition member 2a.
  • a bypass channel 40 for outside air that branches from the surface of the effective opening area Se and communicates with the atmosphere is provided, and a heat exchanger 50 that cools the cooling medium by heat exchange with the outside air in the bypass channel 40. Is installed.
  • bypass channel 40 that branches off from the peripheral surface 21 a of the cylindrical portion 21 and communicates with the outside air is formed, and a heat exchanger 50 that absorbs heat from the cooling medium and cools is installed in the bypass channel 40.
  • the inlet of the bypass flow path 40 branched from the peripheral surface 21a of the cylindrical part 21 and communicating with the outside air may not have a pressure loss element.
  • the heat exchanger 50 described above cools a cooling medium such as oil or water that circulates through the cooling target device with outside air. That is, a part of the low temperature outside air introduced into the cylindrical portion 21 from the tower opening 20 flows into the bypass channel 40 and absorbs heat from the cooling medium when passing through the heat exchanger 50. As a result, the cooling medium whose temperature has been increased by cooling the device to be cooled dissipates heat to the outside air and decreases in temperature, so that it is possible to perform cooling by always supplying a low-temperature cooling medium to the device to be cooled. Further, since this heat exchanger 50 is installed in the bypass flow path 40, the high-temperature outside air that has absorbed heat by the heat exchanger 50 flows out from the bypass outlet 41 to the atmosphere.
  • a cooling medium such as oil or water that circulates through the cooling target device with outside air. That is, a part of the low temperature outside air introduced into the cylindrical portion 21 from the tower opening 20 flows into the bypass channel 40 and absorbs heat from the cooling medium when passing through the heat exchange
  • the exhaust heat of the heat exchanger 50 does not short circuit to the inside of the tower 2, and accordingly, the low temperature outside air introduced into the cylindrical portion 21 from the tower opening 20 flows into the bypass flow path 40. Except for the part, it passes through the pressure loss element and is introduced to the nacelle 3.
  • a sound absorbing material 42 is attached to the inside of the bypass channel 40 as in the first modification shown in FIG.
  • a sound absorbing material 42 is effective in reducing operation noise of the heat exchanger fan 51 that is generated when the heat exchanger 50 is in operation.
  • the heat exchanger fan 51 a is a fan for introducing a part of the outside air from the cylindrical portion 21 into the bypass flow path 40 and allowing the heat exchanger 51 to pass through.
  • the heat exchanger fan 51 a is upstream or downstream of the heat exchanger 51. It is installed adjacent to the side.
  • the second modification shown in FIG. 10 if the outlet side of the bypass channel 40 is extended downward and the bypass outlet 41 is opened toward the ground, the heat exchanger 50 is generated during operation. It is possible to suppress the operation noise of the heat exchanger fan 51 from spreading to the surroundings.
  • a cylindrical portion 21A is formed.
  • the cylindrical portion 21A shown in FIG. 11 has a cylindrical shape that protrudes from the tower opening 20 that opens to the outer surface of the tower 2 toward the outside of the tower.
  • the cylindrical cross-sectional shape and the protruding direction of the cylindrical portion 21A are not particularly limited.
  • the above-described cylindrical portion 21A is formed into a cylindrical shape by combining, for example, skeleton members (not shown) in a lattice shape, and the peripheral surface and both end surfaces thereof are opened.
  • the peripheral surface 21a and the tower outer end surface 21c can be used as the actual opening area Se except for the tower-side cylindrical end surface (tower-side end surface) that becomes the tower opening 20, and the pressure loss Used for element installation.
  • the effective opening area Se in this case is substantially equal to the area of the peripheral surface 21a. It becomes larger than the opening area S.
  • the area of the tower outer end surface 21c is excluded from the actual opening area Se, but when the area of the tower outer end surface 21c can be used as the actual opening area Se, as in the above-described embodiment,
  • the area of the peripheral surface 21a is the effective opening area Se.
  • the peripheral surface 21a of the cylindrical portion 21A can be adjusted in area as appropriate by changing the axial length and diameter.
  • Such a tower opening 20 and the cylindrical portion 21A may be provided at an appropriate position of the tower 2.
  • the tower opening 20 and the cylindrical portion 21 ⁇ / b> A are provided using a door opening 10 for installing the door 6. Also good.
  • the wind turbine generator 1 forms the cylindrical portion 21A serving as a convex portion extending from the tower opening 20 to the outside of the tower, and part or all of the surface constituting the cylindrical portion 21A.
  • the effective opening area Se for installing the pressure loss element larger than the actual opening area S of the tower opening 20, so that the tower opening 20 is minimized to ensure the tower strength and the pressure loss installed in the large effective opening area Se.
  • the flow rate of outside air flowing through the element can be reduced.
  • the above-described cylindrical portion 21 ⁇ / b> A is an outer box 22 that protrudes outward from the periphery of the door opening 10, and is exposed on the exposed surface of the outer box 22.
  • the effective opening area Se is ensured. That is, the outer box 22 extends to the outside of the tower so as to surround the door opening 10.
  • the outer box 22 since the outer box 22 has a substantially prismatic shape and is linearly inclined from the ground toward the door opening 10, the four surrounding surfaces including the bottom surface are used as the effective opening area Se. it can. Therefore, a larger effective opening area Se can be easily ensured than the actual opening area S defined by the door opening 10.
  • the inclination arrangement of the outer box 22 is not limited to the linear inclination shown in the figure, and may be a plurality of inclinations having a horizontal portion in the middle.
  • a door (not shown) is attached to the end surface 22a on the ground installation side of the outer box 22, and the door opening 10 is always open as an outside air passage.
  • the outer box 22 that is, in the space of the outer box 22, it is also possible to form a stair that rises to the door opening 10 serving as a tower entrance.
  • the shape of the outer box 22 is not limited to a substantially prismatic shape, and may be, for example, a cylindrical shape having the same cross-sectional shape as the door opening 10.
  • the above-described cylindrical portion 21 ⁇ / b> A is a stepped outer box 23 protruding from the lower end side of the door opening 10,
  • the lower end side is the actual opening area S
  • the effective opening area Se is secured on both side surfaces of the stepped outer box 23.
  • the staircase-shaped outer box 23 is a hollow box-shaped member having a top surface with a staircase (talp) 23a, and both side surfaces 23b serve as pressure drop element installation surfaces.
  • the upper region 10a of the door opening 10 is closed as a door installation surface, and the lower region 10b below the staircase 23a is always opened as a flow path through which outside air passes.
  • a space in which outside air can flow is formed between the bottom surface 22b of the outer box 22A and the ground, and an effective opening area Se is secured on the bottom surface 22b.
  • a pressure loss element 24 may be installed.
  • a space in which outside air can flow is formed between the bottom surface 23c of the stepped outer box 23A and the ground, and an effective opening area Se is secured on the bottom surface 23c. Then, the pressure loss element 24 may be installed.
  • an independent outside air circulation channel 25 indicated by an arrow in the drawing is provided inside the outer box 22B or the stepped outer box 23B.
  • the heat exchanger 50 may be installed in the device installation space 26.
  • the equipment installation space 26 is separated from the space for guiding outside air to the door opening 10 of the tower 2 by the partition member 27, and heat exchange with the heat exchanger 50 is performed at an appropriate place on the end face on the ground installation side, an appropriate place on the stairs 23a, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

タワー強度を確保しつつ吸排気用の大きな開口面積を確保し、十分な冷却性能を有する風力発電装置を提供する。風車翼に風力を受けて回転するロータヘッドがナセルの内部に設置された発電機を駆動して発電し、ナセルが基礎上に立設されたタワー(2)の上端部に設置されるとともに、タワー(2)の表面に設けたタワー開口(20)からタワー内部に外気を導入して内部空間を冷却する風力発電装置において、タワー開口(20)からタワー内側に延在する凹部の筒形状部(21)を有し、筒形状部(21)を構成する面の一部または全部に設置された圧損要素を介して通気可能に構成されるとともに、圧損要素を設置した有効開口面積をタワー開口(20)の実開口面積よりも大きくした。

Description

風力発電装置
 本発明は、運転時の機器損失による発熱を外気の導入により冷却する風力発電装置に係り、特に、外気を導入する開口がタワーに設けられている風力発電装置に関する。
 風力発電装置(以下では「風車」とも呼ぶ)は、風車翼を備えたロータヘッドが風力を受けて回転し、この回転を増速機により増速するなどして駆動される発電機により発電する装置である。
 上述したロータヘッドは、風車用タワー(以下、「タワー」と呼ぶ)上に設置されてヨー旋回可能なナセルの端部に取り付けられ、略水平な横方向の回転軸線周りに回転可能となるように支持されている。
 一般的に、上述した風車用のタワーは、円筒形状のシェルを用いた鋼製モノポール式を採用する場合が多く、タワーシェルの下端部に設けたベースプレートを鉄筋コンクリートの基礎にアンカーボルトで固定する構造となっている。
 このような風力発電装置は、コンバータ等の電気機器を備えているので、安定した運転を継続するためには、発熱体である電気機器等を冷却する必要がある。すなわち、風力発電装置は、運転に伴う機器損失の発熱が生じるので、機器類の温度上昇を所定値以内に抑えるためには適切な冷却が必要となる。
 図18に示す従来例は、タワー開口部から外気を導入し、この外気により風力発電装置の機器損失に伴う発熱を冷却する冷却構造の概念図である。図において、符号の1は風力発電装置、2はタワー、3はナセル、4はロータヘッド、10はドア用開口部であり、図中の矢印は外気の流れを示している。
 この場合、電気機器等の冷却対象はナセル3内に設置されたナセル内機器3aであり、換気ファン3bを運転してドア用開口部10の適所に設けた吸気口(不図示)からタワー2の内部に外気を導入し、この外気がナセル3の内部を通過して換気及び冷却をする。なお、ナセル内機器3aを冷却した外気は、換気ファン3bより大気へ排出される。
 また、ナセル内機器3aの冷却構造としては、ナセル3内を循環する外気により直接冷却する構造の他、ナセル内機器3a及び冷却用熱交換器を循環する冷媒(水やオイル等)を用い、冷媒用熱交換器で外気に吸熱された冷媒により間接的に冷却する構造、そして、直接及び間接の冷却を併用して冷却する構造がある。
 この他にも、従来の風力発電装置においては、電気機器等の発熱体を冷却するため、たとえば冷却媒体を循環させて冷却する冷却装置として、タワーの外部に設置した熱交換器を備えたものがある。この場合、タワー外部の熱交換器に導入した冷却媒体は、熱交換器を通過する外気との熱交換により冷却される。(たとえば、特許文献1参照)
米国特許第7168251号明細書
 ところで、風力発電装置のタワー内に外気を導入して冷却する場合、タワー内に外気を導入するためには、タワーの表面に吸排気口となる開口部を設けることが必要となる。このような吸排気口には、空気中の液滴、塵及び塩分等を取り払うため、ガラリ、フィルタ、除塩フィルタ等の圧損要素が設置されている。
 このため、タワー強度を確保するために開口を小さく設定すると、開口を通過する際の流速が増加するので、圧損要素における圧力損失(流速の二乗に比例)が大きくなる。従って、自然換気する場合には、十分な換気風量の確保が困難になり、結果的にはタワー内部の温度が上昇するという問題を有している。
 また、換気ファンにより強制換気する場合には、圧力損失が大きいために使用するファンの動力も大きくなり、結果として所内動力を消費することになって好ましくない。
 しかも、タワーの開口面積に対し、冷却及びタワー強度はトレードオフの関係になっているが、風車出力の増加量に対してタワー径の増加量は極めて小さなものとなる。すなわち、近年の風車大型化(出力増加)に伴い、機器損失(発熱量)が増加して必要となる冷却空気流量も増大しているので、それほど大きな増加を望めないタワー径に対して、タワー強度を確保しつつ吸排気口に大きな開口面積を確保することは困難になる。従って、上述した冷却及びタワー強度におけるトレードオフの関係は、風力発電装置が大型化するほどシビアになってくる。
 本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、タワー強度を確保しつつ吸排気用の大きな開口面積を確保し、十分な冷却性能を有する風力発電装置を提供することにある。
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明に係る風力発電装置は、風車翼に風力を受けて回転するロータヘッドがナセルの内部に設置された発電機を駆動して発電し、前記ナセルが基礎上に立設されたタワーの上端部に設置されるとともに、前記タワーの表面に設けたタワー開口からタワー内部に外気を導入して内部空間を冷却する風力発電装置において、前記タワー開口からタワー内側に延在する凹部または前記タワー開口からタワー外側に延在する凸部を有し、前記凹部または前記凸部を構成する面の一部または全部に設置された圧損要素を介して通気可能に構成されるとともに、前記圧損要素を設置した有効開口面積が前記タワー開口の実開口面積よりも大きいことを特徴とするものである。
 このような風力発電装置は、タワー開口からタワー内側に延在する凹部またはタワー開口からタワー外側に延在する凸部を有し、凹部または凸部を構成する面の一部または全部に設置された圧損要素を介して通気可能に構成されるとともに、圧損要素を設置した有効開口面積がタワー開口の実開口面積よりも大きいので、タワー開口を最小限に抑えてタワー強度を確保するとともに、大きな有効開口面積に設置した圧損要素を通過する外気の流速を小さくすることができる。特に、タワー開口からからタワー内側に延在する凹部は、圧損要素を設置する場所がタワー外面より奥まった位置となるため、粉塵や雨水等の異物は圧損要素まで到達しにくい構造となる。
 なお、本発明における凹部または凸部は、円形断面や矩形断面の筒状形や、内部が中空の箱形や階段状箱形等を包含する。
 上記の発明において、前記タワー開口は、タワー内部に出入りするためのドアを設置するドア用開口部の少なくとも一部が利用されることが好ましい。これにより、タワーに必ず必要となるドア用開口部を有効に利用し、タワー開口の実開口面積より大きな有効開口面積を容易に形成することができる。
 上記の発明において、前記凹部または前記凸部は、その構成面の何れかの位置に開閉可能な出入り口を備えたものが望ましい。
 上記の発明において、前記凹部または前記凸部は、前記タワー開口から末広がりに形成されていることが好ましい。これにより、大きな有効開口面積の確保が容易になる。
 前記凹部は、前記タワー開口からタワー軸中心方向へ上向きに傾斜していることが好ましい。これにより、異物(粉塵や雨水等)は圧損要素まで到達しにくくなる。
 上記の発明において、前記凹部または前記凸部の断面形状が直線部を含んでいることが好ましい。これにより、ダクト等の接続及び設置が容易になる。この場合、直線部を含む好適な形状としては、正方形、長方形及び略楕円形等があり、特に、開口部を縦長の形状にすれば、円形や正方形の角形状と比較してタワー強度の確保が容易になる。
 上記の発明において、前記凸部が前記ドア用開口部の周囲から突出する外箱とされ、該外箱の露出面に前記有効開口面積を確保することが好ましい。これにより、大きな有効開口面積を容易に確保することができる。また、外箱の中には、タワー入口となるドア用開口部まで昇る階段を形成することも可能である。
 また、上記の発明において、前記凹部または凸部が、前記ドア用開口部の下端部側から突出する階段状外箱であり、前記ドア用開口部の下端部側を前記実開口面積とし、かつ、前記階段状外箱の構成面の全部または一部に前記有効開口面積を確保してもよい。
 上記の発明において、前記外箱または前記階段状外箱の底面と地面との間に空間を形成し、前記底面に前記有効開口面積を確保してもよい。これにより、粉塵や雨水等の異物侵入を抑制できる。
 上記の発明において、前記外箱または前記階段状外箱の内部に独立した外気循環流路を備えた機器設置空間を形成してもよい。
 上記の発明において、大きな面積を確保した前記有効開口面積には、低圧力損失のフィルタを取り付けることが望ましい。
 また、上記の発明において、前記有効開口面積より下流側となる前記タワー内に仕切りを設けて外気吸引用のファンを設置してもよい。これにより、ファン出入口のショートサーキットを防止して外気を取り込むことができる。
 また、上記の発明において、前記有効開口面積を形成する面の内側に外気吸引用のファンを設置してもよい。これにより、積極的に外気を取り込むことができる。
 上記の発明において、前記有効開口面積の面から分岐して大気に連通する外気のバイパス流路を設け、該バイパス流路内に外気との熱交換により冷却媒体を冷却する熱交換器を設置してもよい。これにより、熱交換器の排熱がタワー内へショートサーキットすることなく外気を導入できる。
 この場合、前記バイパス流路内に吸音材を取り付けることが好ましい。これにより、熱交換器の稼働時に発生する熱交換器ファンの運転騒音を低減できる。
 さらに、前記バイパス流路の出口側を延長して地面に向けて開口させてもよい。これにより、熱交換器の稼働時に発生する熱交換器ファンの運転騒音が周囲に広がることを抑制できる。
 上述した本発明の風力発電装置によれば、タワーの表面に空けたタワー開口の実開港面積に対して大きな面積比を有する有効開口面積を確保できるようになるので、タワー強度を確保しつつ吸排気用の大きな開口面積を確保することが可能になる。
本発明の風力発電装置に係る第1の実施形態を示す図であり、(a)はタワー表面に設けたタワー開口の実開口面積及び有効開口面積を示す斜視図、(b)は(a)のA-A断面図である。 風力発電装置の概要を示す側面図である。 タワー開口の設置例を示す図2のB部拡大図である。 図1に示す実開口面積及び有効開口面積の変形例を示す図であり、(a)は第1変形例を示す縦断面図、(b)は第2変形例を示す水平断面図である。 タワー表面に設けるタワー開口の実開口面積の形状例を示す正面図であり、(a)は正方形、(b)は縦長の長方形、(c)は略楕円形状である。 本発明の風力発電装置に係る第2の実施形態として、換気ファンを備えた実開口面積及び有効開口面積の構成例を示す縦断面図である。 図6に示した構成例の第1変形例を示す縦断面図である。 本発明の風力発電装置に係る第3の実施形態として、熱交換器を備えた構成例を示す縦断面図である。 図8に示した構成例の第1変形例を示す縦断面図であり、(a)は縦断面図、(b)は(a)のC-C断面図である。 図8に示した構成例の第2変形例を示す縦断面図である。 本発明の風力発電装置に係る第4の実施形態を示す図であり、(a)はタワー表面に設けたタワー開口の実開口面積及び有効開口面積を示す斜視図、(b)は(a)のD-D断面図である。 図11に示した第4の実施形態に係る第1変形例を示す図であり、(a)は実開口面積及び有効開口面積を示す斜視図、(b)は(a)のE-E断面図である。 図11に示した第4の実施形態に係る第2変形例を示す図であり、(a)は実開口面積及び有効開口面積を示す斜視図、(b)は(a)のF-F断面図である。 図11に示した第4の実施形態に係る第3変形例を示す図であり、(a)は実開口面積及び有効開口面積を示す側面図、(b)は(a)の斜視図である。 図11に示した第4の実施形態に係る第4変形例を示す図であり、(a)は実開口面積及び有効開口面積を示す斜視図、(b)は(a)の側面図である。 図11に示した第4の実施形態に係る第5変形例を示す側面図である。 図11に示した第4の実施形態に係る第6変形例を示す側面図である。 従来の風力発電装置において、機器損失をタワー開口部から導入した外気の循環により冷却する概念図である。
 以下、本発明に係る風力発電装置の一実施形態を図面に基づいて説明する。
 図2に示す風力発電装置1は、基礎B上に立設される風車用タワー(以下では「タワー」と呼ぶ)2と、タワー2の上端に設置されるナセル3と、略水平な横方向の回転軸線周りに回転可能に支持されてナセル3の前端部側に設けられるロータヘッド4とを有している。
 ロータヘッド4には、その回転軸線周りに放射状にして複数枚(たとえば3枚)の風車翼5が取り付けられている。これにより、ロータヘッド4の回転軸線方向から風車翼5に当たった風の力が、ロータヘッド4を回転軸線周りに回転させる動力に変換されるようになっている。
 タワー2の下端部付近には、タワー内へ出入りするためのドア6が設けられている。
 ナセル3の外周面適所(たとえば上部等)には、周辺の風速値を測定する風速計7や、風向を測定する風向計8等が設置されている。
 すなわち、風力発電装置1は、風車翼5に風力を受けて略水平な回転軸線周りに回転するロータヘッド4がナセル3の内部に設置された発電機(不図示)を駆動して発電するとともに、ナセル3が鉄筋コンクリート製の基礎B上に立設されたタワー2の上端部に設置されてヨー旋回可能とされる。
 なお、図示のタワー2は鋼製のモノポール式とされ、複数に分割したタワーセクションのフランジ(不図示)を接続することにより、必要な長さ(高さ)を確保した円筒タワーとなる。
<第1の実施形態>
 上述した風力発電装置1は、たとえば図1に示すように、タワー2の表面に設けたタワー開口20からタワー内部に外気を導入し、機器損失に伴う発熱により温度上昇した内部空気を冷却するようになっている。この場合の機器損失に伴う発熱としては、たとえばコンバータ等の電気機器類や増速機等の回転機器類による運転時の発熱があり、これらの発熱機器類は一般的にタワー2やナセル3の内部に配設されている。
 本実施形態では、上述した機器損失の冷却を行うため、タワー開口20からタワー内側に延在する凹部となる筒形状部21を形成し、筒形状部21を構成する面の一部または全部を圧損要素設置用の有効開口面積Seとして確保する。この有効開口面積Seは、設置された圧損要素を介して通気可能に構成され、圧損要素を設置した有効開口面積Seがタワー開口20の実開口面積Sよりも大(Se>S)となっている。すなわち、本実施形態では、有効開口面積Seとなる周面積が実開口面積Sより大(Se>S)となるように、タワー開口20からタワー内部へ引っ込むようにして入り込んでいる(凹んでいる)筒形状部21を形成する。この筒形状部21を構成する周面21a及びタワー内端面21bの全部または一部が有効開口面積Seとして使用される。なお、図中の筒形状部21で破線表示した部分は、圧損要素の設置により外気の流通が可能となる領域である。
 具体的に説明すると、図1に示す筒形状部21は、タワー2のタワー外表面に開口するタワー開口20からタワー内部へ向けて延在する円筒形状とされる。図示の構成例では、筒形状部21をタワー2の軸中心方向へ向けた円筒形状としているが、筒断面形状や延在方向がこれに限定されることはない。
 また、上述した筒形状部21は、たとえば骨格部材(不図示)を格子状に組み合わせて筒形状を形成し、その周面及び両端面を開口させている。こうして形成された筒形状部21の開口は、タワー開口20となるタワー外の円筒端面(タワー外端面)を除いて、周面21a及びタワー内端面21bの全部または一部を実開口面積Seとして使用することが可能であり、圧損要素となるガラリ、フィルタ及び除塩フィルタ等の設置に利用される。なお、圧損要素の固定支持は、たとえば上述した骨格部材を使用して容易に実施可能である。
 この結果、タワー開口20の開口面積と略一致する筒形状部21のタワー外端面の面積が実開口面積Sとなり、従って、この場合の有効開口面積Seは、略周面21aの面積分だけ実開口面積Sより大となる。図示の構成例では、タワー内端面21bの面積も実開口面積Seとなるが、タワー内端面21bの面積を実開口面積Seとして使用できない場合には、周面21aの面積から実開口面積Sを差し引いた面積が有効開口面積Seとなる。このような筒形状部21の周面21aは、軸方向長さや径を変更して適宜面積を調整することが可能である。
 なお、筒形状部21の有効開口面積Seは、厳密には骨格部材の分だけ小さくなるが、骨格部材により塞がれる面積は、通常は周面21aの面積と比較して十分に小さいものとなる。
 このようなタワー開口20及び筒形状部21は、タワー2の適所に設ければよいが、たとえば図3に示すように、ドア6を設置するためのドア用開口部10を利用して設けてもよい。このドア用開口部10は、メンテナンス作業等の目的でタワー2の内部に出入りするドア6が必要になるため、通常はタワー2に必ず設けられている開口部である。このため、ドア用開口部10を少なくとも一部を有効に利用し、タワー開口20の実開口面積Sより大きな有効開口面積Seを容易に形成することができる。図示の構成例では、ドア用開口部10が縦長の略楕円形状とされ、ドア6の上部に残る略半楕円形状のスペースを利用してタワー開口20を配置している。
 また、タワー2内への出入り口となるドア6については、タワー開口20からタワー内側に延在する凹部となる筒形状部21の構成面を利用して設置可能であり、構成面の何れかに開閉可能なドア6を取り付ければよい。
 上述したように、本実施形態の風力発電装置1は、タワー開口20からタワー内側に延在する凹部となる筒形状部21を形成し、筒形状部21の構成面を使用してタワー開口20の実開口面積Sより大きな圧損要素設置用の有効開口面積Seを確保したので、タワー開口20の面積を最小限に抑えてタワー強度を確保するとともに、大きな有効開口面積Seに設置した圧損要素を通過して流れる外気の流速を小さくすることができる。このように、タワー開口20から凹となる筒形状部21は、圧損要素を設置する場所がタワー2の外面より内側に奥まった位置となるため、粉塵や雨水等の異物が圧損要素まで到達しにくい構造となる。
 ところで、上述した実施形態の実開口面積S及び有効開口面積Seは、図4(a)に示す第1変形例及び図4(b)に示す第2変形例のような筒形状部21A,21Bとしてもよい。
 図4(a)に示す第1変形例の筒形状部21Aは、タワー2の開口からタワー軸中心方向へ上向きに傾斜する凹部となるように形成されている。すなわち、第1変形例の筒形状部21Aは、タワー2の外表面に開口するタワー開口20からタワー2の内部へ向けて、斜め上向きに傾斜しながら引っ込む(凹む)ように形成された円筒形状となっている。
 このような筒型形状部21Aは、圧損要素を設置する場所がタワー2の外面より内側に奥まった位置となることに加えて、タワー開口20から上向きの傾斜面が形成されているので、異物が圧損要素まで到達しにくい構造となる。
 また、図4(b)に示す第2変形例の筒形状部21Bは、タワー2のタワー開口20からタワー軸中心方向へ末広がりの凹部となるように形成されている。このようにすれば、円筒形状と比較してタワー2の内部に大きな周面積を確保できるため、大きな有効開口面積Seの確保が容易になる。
 なお、この場合の末広がりは、好適にはタワー内側へ拡径する円錐台形状となるが、水平方向または鉛直方向のいずれか一方のみに末広がりとしてもよい。
 また、上述した筒形状部21は、断面形状に直線部を含んでいるものが望ましい。すなわち、タワー開口20は、円筒形状の筒形状部21に対応する円形としてもよいが、直線部を含んだ形状とすることが好ましい。実開口面積となるタワー開口20の具体的な形状例は、たとえば図5(a)~(c)に示すように、正方形20A、長方形20B及び略楕円形状20C等がある。これらのタワー開口を備えた筒形状部は、各タワー開口と同じ断面形状のまま凹部を形成するとよい。
 また、実開口面積となるタワー開口に直線部を含んでいると、筒形状部を形成する一般的なダクト等の設置が容易になる。特に、長方形20Bや略楕円形状20C等のように、タワー開口20に縦長の形状を採用すれば、同面積の円形や正方形の角形状が開口している場合と比較して、縦長比の調整により、タワー径に対する開口径の割合が小さくなるため、タワー強度を低下させる要因が小さくなるので、タワー強度の確保に有効である。
<第2の実施形態>
 以下では、本発明に係る風力発電装置1について、第2の実施形態を図6に示して説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
 この実施形態では、有効開口面積Seより下流側となるタワー2の内部に仕切部材2aを設けて上下に仕切り、仕切部材2aに外気吸引用のファン30を設置している。このファン30が運転されると、タワー開口20から外気が吸引されて筒形状部21の圧損部材を通過する。この外気は、さらにファン30及びタワー2の内部を通過してナセル3の内部へ供給される。
 このように構成すれば、仕切部材2aによりタワー2内を通ってナセル3に至る外気流路がファン30に限定されるので、ファン30の出入口において、外気の流れにショートサーキットが生じることを防止できる。従って、タワー開口20から効果的に外気を取り込むことが可能になり、外気による冷却及び換気を確実に行うことができる。
 また、たとえば図7に示す第1変形例のように、有効開口面積Seを形成する面の内側(タワー2の空間側)に外気吸引用のファン30を設置し、外気を積極的に取り込むようにしてもよい。すなわち、筒形状部21の周面21aに対し、タワー2の内側(ナセル3側)となる位置に直接ファン30を設置したので、新たに仕切部材2aを設ける必要がない。
<第3の実施形態>
 以下では、本発明に係る風力発電装置1について、第3の実施形態を図8に示して説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
 この実施形態では、有効開口面積Seの面から分岐して大気に連通する外気のバイパス流路40を設け、このバイパス流路40内に外気との熱交換により冷却媒体を冷却する熱交換器50を設置している。すなわち、筒形状部21の周面21aから分岐して外気に連通するバイパス流路40を形成し、このバイパス流路40内に冷却媒体から吸熱して冷却する熱交換器50が設置されている。なお、筒形状部21の周面21aから分岐して外気に連通するバイパス流路40の入口は、圧損要素がなくてもよい。
 上述した熱交換器50は、冷却対象機器を循環するオイルや水等の冷却媒体を外気により冷却するものである。すなわち、タワー開口20から筒形状部21内に導入した低温の外気は、一部がバイパス流路40に分岐して流れ、熱交換器50を通過する際に冷却媒体から吸熱する。この結果、冷却対象機器を冷却して温度上昇した冷却媒体は外気に放熱して温度低下するので、冷却対象機器に対して常に低温の冷却媒体を供給しての冷却が可能となる。
 また、この熱交換器50をバイパス流路40に設置したので、熱交換器50で吸熱した高温の外気はバイパス出口41から大気へ流出する。このため、熱交換器50の排熱がタワー2の内部へショートサーキットすることはなく、従って、タワー開口20から筒形状部21内に導入した低温の外気は、バイパス流路40へ流出した一部を除いて、圧損要素を通過してナセル3まで導入される。
 このように、塵や雨水等の異物侵入防止が不要のため、圧損要素を通過させる必要のない外気については、ナセル3に向かう外気の流れから分岐する別系統のバイパス流路40を設けて熱交換器50に導くので、冷却用として導入する外気全体の圧力損失を低減することができる。
 この場合、バイパス流路40の内部には、たとえば図9に示す第1変形例のように、吸音材42を取り付けることが好ましい。このような吸音材42は、熱交換器50の稼働時に発生する熱交換器ファン51の運転騒音を低減するのに有効である。なお、熱交換器ファン51aは、筒形状部21からバイパス流路40内に外気の一部を導入して熱交換器51を通過させるためのファンであり、熱交換器51の上流側または下流側に隣接して設置されている。
 また、図10に示す第2変形例のように、バイパス流路40の出口側を下向きに延長して、バイパス出口41を地面に向けて開口させれば、熱交換器50の稼働時に発生する熱交換器ファン51の運転騒音が周囲に広がることを抑制できる。
<第4の実施形態>
 以下では、本発明に係る風力発電装置1について、第4の実施形態を図11に示して説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
 この実施形態では、タワー開口20からタワー外側に延在する凸部の筒形状部21Aを形成し、筒形状部21Aを構成する周面21a及びタワー外端面21cの一部または全部を使用してタワー開口20の実開口面積Sより大きな圧損要素設置用の有効開口面積Seとして確保している。すなわち、本実施形態では、有効開口面積Seとなる凸部構成面が実開口面積Sより大(Se>S)となるように、タワー開口20からタワー外部へ飛び出すようにして突出した凸状の筒形状部21Aを形成している。
 具体的に説明すると、図11に示す筒形状部21Aは、タワー2のタワー外表面に開口しているタワー開口20からタワー外部へ向けて突出した円筒形状である。なお、筒形状部21Aの筒断面形状や突出方向については、特に限定されることはない。
 また、上述した筒形状部21Aは、たとえば骨格部材(不図示)を格子状に組み合わせて筒形状を形成し、その周面及び両端面を開口させている。こうして形成された筒形状部21Aの開口は、タワー開口20となるタワー側の円筒端面(タワー側端面)を除いて、周面21a及びタワー外端面21cが実開口面積Seとして使用可能となり、圧損要素の設置に利用される。
 この結果、タワー開口20の開口面積と略一致する筒形状部21Aのタワー側端面の面積が実開口面積Sとなり、従って、この場合の有効開口面積Seは、略周面21aの面積分だけ実開口面積Sより大となる。図示の構成例では、タワー外端面21cの面積が実開口面積Seから除外されているが、タワー外端面21cの面積を実開口面積Seとして使用できる場合には、上述した実施形態と同様に、周面21aの面積が有効開口面積Seとなる。このような筒形状部21Aの周面21aは、軸方向長さや径を変更して適宜面積を調整することが可能である。
 このようなタワー開口20及び筒形状部21Aは、タワー2の適所に設ければよいが、たとえば図3に示すように、ドア6を設置するためのドア用開口部10を利用して設けてもよい。
 上述したように、本実施形態の風力発電装置1は、タワー開口20からタワー外側に延在する凸部となる筒形状部21Aを形成し、筒形状部21Aを構成する面の一部または全部をタワー開口20の実開口面積Sより大きな圧損要素設置用の有効開口面積Seとして確保したので、タワー開口20を最小限に抑えてタワー強度を確保するとともに、大きな有効開口面積Seに設置した圧損要素を通過して流れる外気の流速を小さくすることができる。
 また、図12に示す本実施形態の第1変形例において、上述した筒形状部21Aは、ドア用開口部10の周囲から外向きに突出する外箱22とされ、外箱22の露出面に有効開口面積Seを確保している。すなわち、外箱22は、ドア用開口部10を取り囲むようにして、タワー外側へ延在している。この場合の露出面は、外箱22を略角柱形状とし、地面からドア用開口部10へ向けて直線的に傾斜する配置にしたので、底面を含む周囲の4面を有効開口面積Seとして利用できる。従って、ドア用開口部10が規定する実開口面積Sと比較して、より大きな有効開口面積Seを容易に確保することができる。
 なお、外箱22の傾斜配置は、図示した直線的な傾斜に限定されることはなく、たとえば途中に水平部を有する複数段階の傾斜としてもよい。
 この場合、外箱22の地面設置側となる端面22aにドア(不図示)が取り付けられ、ドア用開口部10は外気通路として常時開放されている。そして、外箱22の中には、すなわち外箱22の空間内には、タワー入口となるドア用開口部10まで昇る階段を形成することも可能である。
 なお、外箱22の形状は略角柱形状に限定されることはなく、たとえばドア用開口部10と同じ断面形状を有する筒形状としてもよい。
 また、図13に示す本実施形態の第2変形例において、上述した筒形状部21Aは、ドア用開口部10の下端部側から突出する階段状外箱23とされ、ドア用開口部10の下端部側を実開口面積Sとし、かつ、階段状外箱23の両側面に有効開口面積Seを確保している。すなわち、階段状外箱23は、上面に階段(タラップ)23aが形成された中空の箱状部材であり、両側面23bが圧損要素の設置面となる。
 この場合、ドア用開口部10の上部領域10aをドア設置面として閉じ、階段23aより下方の下部領域10bが外気を通す流路として常時開口されている。
 また、図14に示す本実施形態の第3変形例においては、外箱22Aの底面22bと地面との間に外気が流通可能な空間を形成し、底面22bに有効開口面積Seを確保して圧損要素24を設置してもよい。
 同様に、図15に示す本実施形態の第4変形例では、階段状外箱23Aの底面23cと地面との間に外気が流通可能な空間を形成し、底面23cに有効開口面積Seを確保して圧損要素24を設置してもよい。
 このように、外箱22Aの底面22bや階段状外箱23Aの底面23cに有効開口面積Seを確保して圧損要素24を設置すれば、粉塵や雨水等の異物が圧損要素24まで到達しにくい構造となる。
 また、図16に示す第5変形例及び図17に示す第6変形例のように、外箱22Bまたは階段状外箱23Bの内部に、図中に矢印で示す独立した外気循環流路25を形成する機器設置空間26を備えた構造とし、たとえば機器設置空間26内に熱交換器50を設置してもよい。この場合、機器設置空間26は仕切部材27によりタワー2のドア用開口部10へ外気を導く空間から分離され、地面設置側端面の適所や階段23aの適所等に熱交換器50との熱交換で温度上昇した外気の出口が設けられている。
 このような構成にすれば、熱交換器50の排熱がタワー2内へショートサーキットして流入することを防止できる。
 また、上記の各実施形態及びその変形例においては、大きな有効開口面積Seを確保することができるので、圧損要素として低圧力損失のフィルタを取り付けても十分なフィルタ能力を得ることができる。
 このように、上述した各実施形態及びその変形例によれば、タワー2の表面に空けたタワー開口20の実開口面積Sに対して大きな面積比を有する有効開口面積Seを確保できるようになるので、タワー強度を確保しつつ吸排気用の大きな開口面積を確保することが可能になる。
 なお、本発明は上述した実施形態に限定されることはなく、たとえば凹の筒形状で説明した実施形態や変形例を凸の筒形状に適用するなど、その要旨を逸脱しない範囲内において適宜変更することができる。
  1  風力発電装置
  2  風車用タワー
  2a  仕切部材
  3  ナセル
  4  ロータヘッド
  5  風車翼
  6  ドア
 10  ドア用開口部
 20,20A~20C  タワー開口
 21,21′,21A,21B  筒形状部
 22,22A,22B  外箱
 23,23A,23B  階段状外箱
 30  ファン
 40  バイパス流路
 41  バイパス出口
 42  吸音材
 50  熱交換器

Claims (16)

  1.  風車翼に風力を受けて回転するロータヘッドがナセルの内部に設置された発電機を駆動して発電し、前記ナセルが基礎上に立設されたタワーの上端部に設置されるとともに、前記タワーの表面に設けたタワー開口からタワー内部に外気を導入して内部空間を冷却する風力発電装置において、
     前記タワー開口からタワー内側に延在する凹部または前記タワー開口からタワー外側に延在する凸部を有し、
     前記凹部または前記凸部を構成する面の一部または全部に設置された圧損要素を介して通気可能に構成されるとともに、前記圧損要素を設置した有効開口面積が前記タワー開口の実開口面積よりも大きい風力発電装置。
  2.  前記タワー開口は、タワー内部に出入りするためのドアを設置するドア用開口部の少なくとも一部が利用される請求項1に記載の風力発電装置。
  3.  前記凹部または前記凸部は、その構成面の何れかの位置に開閉可能な出入り口を備えている請求項1または2に記載の風力発電装置。
  4.  前記凹部または前記凸部は、前記タワー開口から末広がりに形成されている請求項1から3のいずれかに記載の風力発電装置。
  5.  前記凹部は、前記タワー開口からタワー軸中心方向へ上向きに傾斜している請求項1から4のいずれかに記載の風力発電装置。
  6.  前記凹部または前記凸部の断面形状が直線部を含んでいる請求項1に記載の風力発電装置。
  7.  前記凸部が前記ドア用開口部の周囲から突出する外箱とされ、該外箱の露出面に前記有効開口面積を確保した請求項2に記載の風力発電装置。
  8.  前記凹部または凸部が、前記ドア用開口部の下端部側から突出する階段状外箱であり、前記ドア用開口部の下端部側を前記実開口面積とし、かつ、前記階段状外箱の構成面の全部または一部に前記有効開口面積を確保した請求項2に記載の風力発電装置。
  9.  前記外箱または前記階段状外箱の底面と地面との間に空間を形成し、前記底面に前記有効開口面積を確保したことを特徴とする請求項7または8に記載の風力発電装置。
  10.  前記外箱または前記階段状外箱の内部に独立した外気循環流路を備えた機器設置空間を形成した請求項7から9のいずれかに記載の風力発電装置。
  11.  前記有効開口面積に低圧力損失のフィルタが取り付けられている請求項1から10のいずれかに記載の風力発電装置。
  12.  前記有効開口面積より下流側となる前記タワー内に仕切りを設けて外気吸引用のファンを設置した請求項1から11のいずれかに記載の風力発電装置。
  13.  前記有効開口面積を形成する面の内側に外気吸引用のファンが設置されている1から11のいずれかに記載の風力発電装置。
  14.  前記有効開口面積の面から分岐して大気に連通する外気のバイパス流路を設け、該バイパス流路内に外気との熱交換により冷却媒体を冷却する熱交換器を設置した請求項1から12のいずれかに記載の風力発電装置。
  15.  前記バイパス流路内に吸音材を取り付けた請求項14に記載の風力発電装置。
  16.  前記バイパス流路の出口側を延長して地面に向けて開口させた請求項14または15に記載の風力発電装置。
PCT/JP2011/052490 2010-02-08 2011-02-07 風力発電装置 WO2011096560A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2011211633A AU2011211633A1 (en) 2010-02-08 2011-02-07 Wind turbine generator
US13/577,853 US20130009405A1 (en) 2010-02-08 2011-02-07 Wind turbine generator
EP11739907A EP2535580A1 (en) 2010-02-08 2011-02-07 Wind-powered electrical generator
CN2011800084976A CN102753822A (zh) 2010-02-08 2011-02-07 风力发电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010025380A JP5595057B2 (ja) 2010-02-08 2010-02-08 風力発電装置
JP2010-025380 2010-02-08

Publications (1)

Publication Number Publication Date
WO2011096560A1 true WO2011096560A1 (ja) 2011-08-11

Family

ID=44355553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052490 WO2011096560A1 (ja) 2010-02-08 2011-02-07 風力発電装置

Country Status (7)

Country Link
US (1) US20130009405A1 (ja)
EP (1) EP2535580A1 (ja)
JP (1) JP5595057B2 (ja)
KR (1) KR20120115361A (ja)
CN (1) CN102753822A (ja)
AU (1) AU2011211633A1 (ja)
WO (1) WO2011096560A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455508B2 (ja) * 2009-08-28 2014-03-26 三菱重工業株式会社 風力発電用風車
DE102009051425A1 (de) * 2009-10-30 2011-05-05 Voith Patent Gmbh Strömungskraftwerk und Verfahren für dessen Erstellung
JP5992176B2 (ja) * 2012-02-10 2016-09-14 エムエイチアイ ヴェスタス オフショア ウィンド エー/エス 風力発電装置
CN104047811A (zh) * 2013-03-12 2014-09-17 上海电气风能有限公司 一种风力发电机塔底通风过滤系统
JP2015068170A (ja) 2013-09-26 2015-04-13 三菱重工業株式会社 再生エネルギー型発電装置
EP2937562B1 (en) * 2014-04-25 2017-08-02 Siemens Aktiengesellschaft Apparatus for dampening of acoustic noise generated by air-cooling of at least one wind turbine component provided with the nacelle of a wind turbine
CN104791197B (zh) * 2015-03-05 2018-07-17 中国船舶重工集团海装风电股份有限公司 恶劣环境下风力发电机组散热系统设计方法及散热系统
US9782710B2 (en) * 2015-07-01 2017-10-10 General Electric Company Multi-sided ventilation assembly for wind turbine tower access door
DE102015212321A1 (de) * 2015-07-01 2017-01-05 Wobben Properties Gmbh Windenergieanlage und Kühlvorrichtung für eine Windenergieanlage
WO2017008817A1 (en) * 2015-07-16 2017-01-19 Mhi Vestas Offshore Wind A/S A cooling panel assembly for a wind turbine tower and a wind turbine tower
CN106150929B (zh) 2016-08-05 2020-12-01 江苏金风科技有限公司 风力发电机组塔底冷却装置及控制方法
US10954922B2 (en) 2019-06-10 2021-03-23 General Electric Company System and method for cooling a tower of a wind turbine
EP4083413B1 (en) * 2021-04-28 2024-05-15 General Electric Renovables España S.L. Back-up power supply for wind turbines

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526357A (ja) * 1997-12-08 2001-12-18 シーメンス アクチエンゲゼルシヤフト 風力発電設備及び風力発電設備の発電機の冷却方法
US7168251B1 (en) 2005-12-14 2007-01-30 General Electric Company Wind energy turbine
JP2007186930A (ja) * 2006-01-13 2007-07-26 Matsushita Electric Works Ltd 照明用ポール
DE102006043936A1 (de) * 2006-09-14 2008-03-27 Repower Systems Ag Belüftung einer Windenergieanlage
JP2008309122A (ja) * 2007-06-18 2008-12-25 Ebara Corp 風力発電装置
WO2009094991A2 (de) * 2008-01-30 2009-08-06 Repower Systems Ag Windenergieanlage und ein turm oder turmsegment und eine türzarge dafür

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499034A (en) * 1982-09-02 1985-02-12 The United States Of America As Represented By The United States Department Of Energy Vortex-augmented cooling tower-windmill combination
DE19947915A1 (de) * 1999-10-06 2001-04-12 Abb Research Ltd Kühlsystem für Baugruppen in einer Windkraftanlage
ITTO20020908A1 (it) * 2002-10-17 2004-04-18 Lorenzo Battisti Sistema antighiaccio per impianti eolici.
US7938615B2 (en) * 2003-09-11 2011-05-10 Louis Michaud Enhanced vortex engine
FR2874240B1 (fr) * 2004-08-11 2006-11-24 Michel Alain Coustou Tour aerogeneratrice (combinant effet cheminee, effet de serre, force de coriolis et effet venturi)
ES2334522T3 (es) * 2006-03-25 2010-03-11 Clipper Windpower Technology, Inc. Sistema de gestion termica para turbina eolica.
US7615884B2 (en) * 2007-01-30 2009-11-10 Mcmastercorp, Inc. Hybrid wind turbine system, apparatus and method
US20090230691A1 (en) * 2007-03-23 2009-09-17 Presz Jr Walter M Wind turbine with mixers and ejectors
DE102008019271A1 (de) * 2008-04-16 2009-10-22 Kenersys Gmbh Windkraftanlage mit verbesserter Kühlluftführung
AU2009203009A1 (en) * 2008-08-06 2010-02-25 Code Valley Corp Pty Ltd Cooling system
EP2182618B1 (en) * 2008-10-28 2012-10-17 Siemens Aktiengesellschaft Arrangement for cooling of an electrical machine
US7748946B2 (en) * 2008-12-09 2010-07-06 General Electric Company Cooling system and method for wind turbine components
US20100171314A1 (en) * 2009-01-08 2010-07-08 Justin Dale Tackett Vertically Oriented Wind Tower Generator
US8421265B2 (en) * 2009-02-09 2013-04-16 Grayhawke Applied Technologies System and method for generating electricity within a building structure
US7837126B2 (en) * 2009-09-25 2010-11-23 General Electric Company Method and system for cooling a wind turbine structure
US8227932B2 (en) * 2010-02-08 2012-07-24 Mitsubishi Heavy Industries, Ltd. Wind generator having an outside air-circulation flow path in a tower thereof
US20110278928A1 (en) * 2010-05-17 2011-11-17 Microsoft Corporation Wind-powered data center
JP5449060B2 (ja) * 2010-06-30 2014-03-19 三菱重工業株式会社 風力発電装置
JP5463218B2 (ja) * 2010-06-30 2014-04-09 三菱重工業株式会社 風力発電装置
CA2826392C (en) * 2011-02-04 2016-03-22 Hitachi, Ltd. Cooling system for a wind turbine generator system
US8992171B2 (en) * 2011-09-01 2015-03-31 Gamesa Innovation & Technology, S.L. Energy efficient climate control system for an offshore wind turbine
US20130214538A1 (en) * 2012-02-16 2013-08-22 Clipper Windpower, Llc Air Cooled Power Feeders for Wind Turbine Applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526357A (ja) * 1997-12-08 2001-12-18 シーメンス アクチエンゲゼルシヤフト 風力発電設備及び風力発電設備の発電機の冷却方法
US7168251B1 (en) 2005-12-14 2007-01-30 General Electric Company Wind energy turbine
JP2007186930A (ja) * 2006-01-13 2007-07-26 Matsushita Electric Works Ltd 照明用ポール
DE102006043936A1 (de) * 2006-09-14 2008-03-27 Repower Systems Ag Belüftung einer Windenergieanlage
JP2008309122A (ja) * 2007-06-18 2008-12-25 Ebara Corp 風力発電装置
WO2009094991A2 (de) * 2008-01-30 2009-08-06 Repower Systems Ag Windenergieanlage und ein turm oder turmsegment und eine türzarge dafür

Also Published As

Publication number Publication date
EP2535580A1 (en) 2012-12-19
CN102753822A (zh) 2012-10-24
JP5595057B2 (ja) 2014-09-24
JP2011163179A (ja) 2011-08-25
KR20120115361A (ko) 2012-10-17
AU2011211633A1 (en) 2012-08-30
US20130009405A1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP5595057B2 (ja) 風力発電装置
JP5204216B2 (ja) 風力発電装置
JP5449060B2 (ja) 風力発電装置
JP5211244B2 (ja) 風力発電装置
WO2012002466A1 (ja) 風力発電装置
JP3989693B2 (ja) 風力発電装置
JP2011163179A5 (ja)
JP6650318B2 (ja) 風力発電装置
WO2012114891A1 (ja) 風力発電装置
TWI576512B (zh) Wind power plant
KR20110114427A (ko) 풍력 발전 장치
JP6074033B2 (ja) 風力発電設備
KR20100026017A (ko) 풍력을 이용한 실내공기 배출과 발전장치.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008497.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127020622

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011211633

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13577853

Country of ref document: US

Ref document number: 2011739907

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011211633

Country of ref document: AU

Date of ref document: 20110207

Kind code of ref document: A