WO2011096279A1 - 画像処理装置、内視鏡システム、プログラム及び画像処理方法 - Google Patents

画像処理装置、内視鏡システム、プログラム及び画像処理方法 Download PDF

Info

Publication number
WO2011096279A1
WO2011096279A1 PCT/JP2011/050951 JP2011050951W WO2011096279A1 WO 2011096279 A1 WO2011096279 A1 WO 2011096279A1 JP 2011050951 W JP2011050951 W JP 2011050951W WO 2011096279 A1 WO2011096279 A1 WO 2011096279A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
display mode
elapsed time
attention area
Prior art date
Application number
PCT/JP2011/050951
Other languages
English (en)
French (fr)
Inventor
鶴岡 建夫
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to EP11739628.3A priority Critical patent/EP2517614B1/en
Priority to CN201180008337.1A priority patent/CN102740757B/zh
Publication of WO2011096279A1 publication Critical patent/WO2011096279A1/ja
Priority to US13/548,390 priority patent/US20120274754A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000095Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope for image enhancement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • A61B1/2736Gastroscopes

Definitions

  • the present invention relates to an image processing apparatus, an endoscope system, a program, an image processing method, and the like.
  • Patent Document 1 a normal light image using normal white light and a fluorescent image obtained using predetermined excitation light are alternately obtained from a subject administered with a fluorescent substance, and both images are obtained.
  • An endoscope apparatus that simultaneously displays the image by recording the information in a storage device is disclosed. According to the technique of Patent Document 1, it is possible to improve the ability to identify a region of interest such as a lesion in a normal light image.
  • Patent Document 2 a normal light image using normal white light and a special light image using special light of a specific wavelength are alternately acquired, both images are recorded in a storage device, and different image processing is performed on both images. And an endoscope apparatus that displays both images independently or in combination. According to the technique of Patent Document 2, an optimum normal light image and special light image can be obtained, and the ability to identify a region of interest such as a lesion in the normal light image can be improved.
  • Patent Documents 1 and 2 it is possible to simultaneously display a normal light image and a special light image, but identification of a region of interest such as a lesion is dependent on a doctor who is a user or the like. . For this reason, the user cannot be identified when moving to another area in a short time even if the attention area exists on the special light image, such as when imaging in a moving state as in an endoscope apparatus or the like. There is a problem. Further, even when imaging is performed in a stationary state, there is a problem that the user cannot be identified if the area of the attention area on the special light image is small.
  • an image processing apparatus an endoscope system, a program, an image processing method, and the like that suppress oversight of a region of interest and enable highly reliable identification.
  • an image processing device capable of suppressing a decrease in temporal resolution of the first image that is fundamental when observing with a moving image and acquiring a high-quality display image
  • An endoscope system, a program, an image processing method, and the like can be provided.
  • a first image acquisition unit that acquires an image having information in a wavelength band of white light as a first image, and a second image that acquires an image having information in a specific wavelength band as a second image.
  • a two-image acquisition unit a region-of-interest detection unit that detects a region of interest in the second image based on a feature amount of a pixel in the second image; and a display generated based on the first image
  • a display mode setting unit that performs an image display mode setting process; and an elapsed time setting unit that performs an elapsed time setting process based on a detection result of the attention area, wherein the display mode setting unit
  • the present invention relates to an image processing apparatus that performs the display mode setting process based on an elapsed time.
  • the present invention also relates to a program that causes a computer to function as each of the above-described units, or a computer-readable information storage medium that stores the program.
  • first and second images are acquired, and a region of interest is detected from the second image. Then, an elapsed time setting process is performed based on the attention area detection result, and a display image display mode setting process is performed based on the set elapsed time. In this way, when the attention area is detected, the elapsed time is set, and the display mode setting process of the display image reflecting the set elapsed time is performed. It is possible to provide an image processing apparatus that enables highly reliable identification.
  • a first image acquisition unit that acquires an image having information in a wavelength band of white light as a first image, and an image having information in a specific wavelength band is acquired as a second image.
  • a second image acquisition unit that performs detection, a target region detection unit that detects a target region in the second image based on a feature amount of a pixel in the second image, and an alert for the detected target region
  • An alert information output unit that outputs information
  • an elapsed time setting unit that performs an elapsed time setting process based on a detection result of the attention area, wherein the alert information output unit has passed the set elapsed time
  • the present invention relates to an image processing apparatus that outputs the alert information.
  • the present invention also relates to a program that causes a computer to function as each of the above-described units, or a computer-readable information storage medium that stores the program.
  • first and second images are acquired, and a region of interest is detected from the second image. Then, an elapsed time setting process is performed based on the attention area detection result, and alert information is output until the set elapsed time elapses.
  • an elapsed time setting process is performed based on the attention area detection result, and alert information is output until the set elapsed time elapses.
  • a first image acquisition unit that acquires an image having information in a wavelength band of white light as a first image, and an image having information in a specific wavelength band is acquired as a second image.
  • an attention area detection section for detecting an attention area in the second image based on a feature amount of a pixel in the second image
  • a display mode setting unit that performs a display mode setting process of the display image, an elapsed time setting unit that performs an elapsed time setting process based on the detection result of the attention area, and a display unit that displays the display image.
  • the display mode setting unit relates to an endoscope system that performs the display mode setting process based on the set elapsed time.
  • an image having information in a wavelength band of white light is acquired as a first image
  • an image having information in a specific wavelength band is acquired as a second image
  • the second image Based on the feature amount of the pixel in the image, the attention area in the second image is detected, the display mode setting processing of the display image generated based on the first image is performed, and the detection result of the attention area
  • an image processing method for performing the display mode setting process based on the set elapsed time is performed.
  • an image having information in a wavelength band of white light is acquired as a first image
  • an image having information in a specific wavelength band is acquired as a second image
  • the second image An attention area in the second image is detected based on a feature amount of a pixel in the image, alert information about the detected attention area is output, and an elapsed time is determined based on the detection result of the attention area.
  • an image processing method for outputting the alert information until the set elapsed time elapses.
  • FIG. 1A and 1B are explanatory diagrams of a conventional method.
  • FIG. 2 is an explanatory diagram of a technique for changing the display mode of the display image based on the detection result of the attention area.
  • FIG. 3 is an explanatory diagram of an elapsed time setting method according to the present embodiment.
  • FIG. 4 is an explanatory diagram of a method for resetting the elapsed time by detecting a region of interest.
  • FIG. 5 shows a first configuration example of the present embodiment.
  • 6A and 6B are explanatory diagrams of a color filter of a CCD.
  • FIG. 7A and FIG. 7B are explanatory diagrams of spectral characteristics by illumination light and a rotating filter.
  • FIG. 8 is an explanatory diagram of a periodic period in which a normal light image and a special light image are acquired.
  • FIGS. 9A and 9B are explanatory diagrams of an elapsed time setting method based on detection of a region of interest.
  • FIG. 10 shows a configuration example of the attention area detection unit.
  • FIG. 11 is an explanatory diagram of hue / saturation threshold values for attention area detection.
  • FIG. 12 is a configuration example of an elapsed time setting unit.
  • FIG. 13A and FIG. 13B are explanatory diagrams of a detection information update method.
  • FIG. 14 is a configuration example of a display mode setting unit.
  • FIG. 15 is an explanatory diagram of a method for adding alert information.
  • FIG. 16 is a configuration example of a computer used in software processing.
  • FIG. 17 is a configuration example of a computer used in software processing.
  • FIG. 18 is a flowchart for explaining the overall processing of this embodiment.
  • FIG. 19 is a flowchart illustrating attention area detection processing.
  • FIG. 20 is a flowchart for explaining elapsed time setting processing.
  • FIG. 21 is a flowchart for explaining display mode setting processing.
  • FIG. 22 shows a second configuration example of the present embodiment.
  • FIG. 23 is an explanatory diagram of an elapsed time setting method according to the amount of motion.
  • FIG. 24 is a configuration example of an elapsed time setting unit.
  • FIG. 25 is an explanatory diagram of the relationship between the amount of movement and the elapsed time.
  • FIG. 26 is a configuration example of a display mode setting unit.
  • FIG. 27 shows a third configuration example of the present embodiment.
  • FIG. 28 is an explanatory diagram of a color filter for illumination light.
  • FIG. 1A and 1B show a conventional method.
  • FIG. 1A shows a state of observation with normal light. A bright and easy-to-view image is obtained as a whole, but visibility of some lesions such as squamous cell carcinoma is difficult.
  • FIG. 1B shows an observation state using special light (for example, narrow-band light or fluorescence). For example, it is possible to improve the visibility of some lesions compared to normal light observation, for example, lesions such as squamous cell carcinoma are displayed in brown, but the whole image becomes dark and difficult to see.
  • special light for example, narrow-band light or fluorescence
  • the method shown in FIG. 2 is also conceivable as a method for solving such a problem.
  • a region of interest such as a lesion such as squamous cell carcinoma is identified from the special light image (second image), and the normal light image is processed based on the detection result of the region of interest, thereby causing the lesion or the like.
  • the visibility of the attention area is improved.
  • the visibility of the attention area is enhanced by performing image processing such as combining the color of the normal light image and the predetermined color in the attention area, or surrounding the periphery of the attention area with a line of the predetermined color. .
  • a normal light image (first image in a broad sense) and a special light image (second image in a broad sense) are acquired.
  • These normal light image and special light image may be acquired by capturing in real time with a normal scope endoscope, or acquired by reading an image captured with a capsule endoscope or the like from a storage device. May be.
  • the elapsed time for the display image display mode changing process is set as shown in A3.
  • processing for changing the display mode of the display image is performed.
  • a display image in which alert information for the attention area is set (added, superimposed, blended) on the normal light image is generated and displayed on the display unit. Is done.
  • the display mode changing process is not performed, and for example, a normal light image is displayed as a display image.
  • IMN1 to IMN9 are acquired as normal light images, and IMS1 to IMS9 are acquired as special light images.
  • the normal light images of these IMN1 to IMN9 are obtained corresponding to the special light images of IMS1 to IMS9.
  • an elapsed time as shown in B2 is set. Then, by setting the elapsed time of B2, the normal light images IMN2 to IMN6 within the elapsed time are the targets of the display mode changing process, and images in which the display modes of IMN2 to IMN6 are changed are displayed as display images.
  • the elapsed time is reset as shown in B4. Specifically, a new elapsed time starting from the detection timing of the attention area of B3 is set, and the elapsed time is extended.
  • IMN7 is also subject to display mode change processing, and an image in which the display mode of the normal light images IMN2 to IMN7 is changed is displayed as a display image.
  • the normal light image (first image) and the special light image (second image) are acquired, and for example, the attention area is detected based on the feature amount of the pixel of the special light image. Then, an elapsed time setting process is performed based on the detection result, and a display image display mode setting process is performed based on the set elapsed time. For this reason, even when the attention area is detected only for a short time in observation in a moving state, a user such as a doctor can recognize that the attention area exists in the vicinity of the current position. Accordingly, it is possible to suppress oversight of the region of interest and perform highly reliable identification. In particular, as shown in A5 of FIG.
  • the display mode of the display image is changed as shown in A6 within the elapsed time. Therefore, even when a user such as a doctor is concerned about the operation of the device as shown in FIG. 2 and misses the attention area, the alert information is output for a while. As a result, it is possible to make the user aware of the presence of the attention area, and it is possible to perform identification with higher reliability.
  • the normal light image and the special light image are acquired every predetermined period, and the acquisition ratio of the normal light image is higher than that of the special light image. For this reason, it is possible to suppress a reduction in temporal resolution of the basic normal light image and obtain a high-quality normal light image. Furthermore, as shown by A4 in FIG. 3, since the alert information (alert image) is added by setting, for example, the peripheral portion of the normal light image as an alert area, a good operation can be performed without disturbing the observation of the normal light image. An image processing apparatus having the characteristics can be provided.
  • FIG. 5 shows a first configuration example of the present embodiment that realizes the above technique.
  • the first configuration example is a configuration example of an image processing apparatus 90 according to the present embodiment and an endoscope system (endoscope apparatus) including the image processing apparatus 90.
  • the image processing apparatus 90 and the endoscope system according to the present embodiment are not limited to the configuration shown in FIG. 5, and various modifications such as omitting some of the components or adding other components are possible. It is.
  • a video signal photographed through a lens system 100 (an optical system in a broad sense) and a CCD 101 (an image pickup device in a broad sense) at the distal end portion (insertion portion) of an endoscope is amplified by a gain amplifier 104 and is The digital signal is converted by the D converter 105.
  • the illumination light from the illumination light source 102 passes through the filters (F1, F2) attached to the rotary filter 103, and the transmitted light is irradiated to the subject via the optical fiber.
  • a digital video signal from the A / D conversion unit 105 is transferred to a WB (white balance) unit 107, a photometric evaluation unit 108, and a switching unit 109 via the buffer 106.
  • the WB unit 107 is connected to the gain amplifier 104
  • the photometric evaluation unit 108 is connected to the illumination light source 102 and the gain amplifier 104.
  • the image processing apparatus 90 (image processing unit) of the present embodiment includes a switching unit 109, a first image acquisition unit 110, a second image acquisition unit 111, an attention area detection unit 112, and an elapsed time setting unit 113.
  • the display mode setting unit 114 is included. Various modifications may be made such as omitting some of these components or adding other components.
  • the switching unit 109 is connected to the first image acquisition unit 110 and the second image acquisition unit 111.
  • the first image acquisition unit 110 is connected to a display unit 115 (an output unit in a broad sense) such as a liquid crystal display via a display mode setting unit 114.
  • the second image acquisition unit 111 is connected to the attention region detection unit 112, the attention region detection unit 112 is connected to the elapsed time setting unit 113, and the elapsed time setting unit 113 is connected to the display mode setting unit 114.
  • the control unit 116 realized by a microcomputer or the like includes a rotary filter 103, a gain amplifier 104, an A / D conversion unit 105, a WB unit 107, a photometric evaluation unit 108, a switching unit 109, a first image acquisition unit 110, a second image.
  • the acquisition unit 111, the attention area detection unit 112, the elapsed time setting unit 113, the display mode setting unit 114, and the display unit 115 are bidirectionally connected.
  • the external I / F (interface) unit 117 is bidirectionally connected to the control unit 116.
  • the external I / F unit 117 includes a power switch, a shutter button, and an interface for performing settings such as switching of various modes during shooting.
  • the operation of the first configuration example in FIG. 5 will be described.
  • the user After the user sets shooting conditions via the external I / F unit 117, the user enters the imaging mode by pressing the shutter button.
  • Video signals photographed through the lens system 100 and the CCD 101 are continuously output as analog signals at predetermined time intervals. In the present embodiment, 1/30 second is assumed as the predetermined time interval.
  • the CCD 101 a single CCD having a Bayer type primary color filter arranged on the front surface is assumed.
  • FIG. 6A shows a configuration example of a Bayer type primary color filter.
  • the Bayer type has 2 ⁇ 2 pixels as a basic unit, in which red (R) and blue (B) filters are arranged one by one, and two green (G) filters are arranged.
  • FIG. 6B shows the spectral characteristics of three types of color filters R, G, and B.
  • a normal white light source such as xenon is used as the illumination light source 102, and two types of filters are attached to the rotary filter 103.
  • One of the two types of filters is a normal light image filter F1, and the other is a special light image filter F2.
  • FIG. 7A shows the spectral characteristics of the illumination light source 102 combined with the spectral characteristics of the illumination light and the normal light image filter F1.
  • the normal light image filter F1 has a characteristic of transmitting uniformly over the entire visible range, and the spectral characteristic when combined is equal to the spectral characteristic of the illumination light of the illumination light source 102.
  • the R, G, and B signals of the normal light image are obtained.
  • FIG. 7 (B) shows the spectral characteristics of the illumination light source 102 combined with the spectral characteristics of the illumination light and the special light image filter F2.
  • the special light image filter F2 includes a blue light narrow band (390 to 445 nm) for obtaining surface blood vessel information and a green light narrow band for obtaining deep blood vessel information. It has a characteristic of transmitting only (530 to 550 nm), and as a spectral characteristic when combined, it is a spectral characteristic consisting of two narrow bands of blue light and green light.
  • the B signal has a narrow band of blue light
  • the G signal has a narrow band of green light
  • the R signal has a 0 signal as a special light image. Will be.
  • the area ratio in the circumferential direction of the normal light image filter F1 and the special light image filter F2 in the rotary filter 103 is set to be 29: 1. Further, it is assumed that the rotary filter 103 rotates at a speed of 1 rotation / second. In this case, the period period (T) is 1 second, the period (T1) for irradiating the illumination for the normal light image is 29/30 seconds, and the period (T2) for irradiating the illumination for the special light image is 1 / 30 seconds. In the present embodiment, since the video signal is captured in 1/30 seconds, 29 normal light images and 1 special light image are alternately obtained with 1 second as a period. For this reason, the temporal resolution regarding the normal light image is sufficiently maintained.
  • the first image acquisition unit 110 acquires a normal light image (first image) for at least one frame every predetermined period (T), specifically, for K frames.
  • Normal light images IN1 to IN29 K special light images
  • the second image acquisition unit 111 acquires a special light image for at least one frame every period period (T), and specifically acquires a special light image IS1 (L special light images) for L frames.
  • the normal light images IN1 to IN29 are images obtained when the illumination light is illuminated on the subject via the normal light image filter F1 of FIG. 5, and the special light image IS1 is passed through the special light image filter F2. This is an image obtained when illuminated.
  • the length of the elapsed time set by the method of FIG. 3 and FIG. 4 is TE and the length of the period is T
  • the relationship of TE> T is established as shown in FIG.
  • the length TE of the elapsed time can be made sufficiently longer than the length T of the period period. Therefore, even after the attention area is no longer detected as shown in B5 of FIG. 4, as shown in B7, the alert information of the attention area can be displayed for a while until the elapsed time elapses.
  • the rotation of the rotary filter 103 provided at the distal end portion of the endoscope is performed in synchronization with the photographing operation of the CCD 101 based on the control of the control unit 116.
  • An analog video signal obtained by the photographing operation is amplified by a predetermined amount by the gain amplifier 104, converted into a digital signal by the A / D converter 105, and transferred to the buffer 106.
  • the buffer 106 can record data of one normal light image or special light image, and the image is overwritten as the image is taken.
  • the normal light image in the buffer 106 is intermittently transferred to the WB unit 107 and the photometric evaluation unit 108 at predetermined time intervals based on the control of the control unit 116.
  • the WB unit 107 calculates a white balance coefficient by integrating signals of a predetermined level for each color signal corresponding to the color filter.
  • the white balance coefficient is transferred to the gain amplifier 104 and multiplied by a different gain for each color signal, thereby executing white balance adjustment.
  • the photometric evaluation unit 108 controls the light amount of the illumination light source 102, the gain of the gain amplifier 104, and the like so as to achieve proper exposure.
  • the switching unit 109 controls the first image acquisition unit 110 when the normal light image is recorded in the buffer 106, and the second image acquisition unit when the special light image is recorded. Each image is transferred to 111.
  • the first image acquisition unit 110 reads the normal light image in a single plate state from the switching unit 109, performs known interpolation processing, gradation processing, etc., and displays the processed normal light image Transfer to the mode setting unit 114.
  • the second image acquisition unit 111 reads a special light image in a single plate state from the switching unit 109 based on the control of the control unit 116, and performs known interpolation processing, gradation processing, and the like. Further, as disclosed in Japanese Patent Laid-Open No. 2002-95635, processing for generating a pseudo color image from a B signal corresponding to a narrow band of blue light and a G signal corresponding to a narrow band of green light is also performed. The processed special light image is transferred to the attention area detection unit 112.
  • the attention area detection unit 112 reads the special light image from the second image acquisition unit 111, and performs detection processing of a predetermined attention area, which is a lesion part in which blood vessels are densely present in the present embodiment. Do.
  • the detection processing result is transferred to the elapsed time setting unit 113.
  • the elapsed time setting unit 113 reads the attention area detection processing result from the attention area detection unit 112 based on the control of the control unit 116, and sets the alert information for issuing information related to the detection processing result for the normal light image. To decide.
  • an attention area for example, 5 seconds, which is a five-period period
  • alert information is set for 5 seconds even if the attention area is not detected.
  • an elapsed time of 5 seconds is newly set starting from this point, as described in B4 of FIG.
  • the elapsed time setting unit 113 determines whether or not the current time (current time) belongs to the set elapsed time, and transfers the determination result to the display mode setting unit 114.
  • the display mode setting unit 114 (display mode determination unit, display control unit) reads a determination result as to whether or not it belongs within the elapsed time from the elapsed time setting unit 113, and belongs within the elapsed time. In this case, a process for setting (adding or superimposing) alert information (alert area) on the normal light image is selected.
  • the normal light image in which the alert information is set is a normal light image acquired after the special light image in which the attention area is detected. For example, when the attention area is detected in the special light image IMS1 of B1 in FIG. 4, alert information is set (added or superimposed) on the normal light image IMN2 acquired after the special light image IMS1 and displayed. Is changed.
  • the display image generated by the display mode setting unit 114 is transferred to the display unit 115 and sequentially displayed.
  • alert information setting display mode change
  • an image with alert information set in the normal light image is transferred as the display image
  • alert information non-setting is selected
  • the normal light image is transferred as it is as a display image.
  • the display unit 115 is shown as an example of the output unit.
  • the output unit of the present embodiment is not limited to this, and a normal light image is sequentially recorded and stored in a recording medium such as a hard disk or a memory card. It may be realized. Further, as alert information, sound alert information instead of an image may be output.
  • the first image acquisition unit 110 acquires a normal light image for at least one frame (for K frames) every periodic period (T) and acquires the second image.
  • the unit 111 acquires a special light image of at least one frame (L frames) for each periodic period.
  • the display mode setting unit 114 performs a process of changing the display mode of the display image in a cycle period TN + 1 (N + 1th cycle period) after the cycle period TN. For example, when a region of interest is detected in the special light image IS1 shown in G1 of FIG. 8, alert information is set for the normal light image after IN1 shown in G2 acquired in the next cycle period, and the display mode is changed. Be changed.
  • the display mode setting unit 114 displays the display image in the period TN + 1 to the period TN + 5 (in a broad sense, the (N + 1) th period to the Mth period). Change the aspect.
  • the attention area is detected in the period TN as indicated by C4 in FIG. 9B and the elapsed time is set as indicated by C5, in the special light image of the next period TN + 1 as indicated by C6.
  • the attention area is detected. This corresponds to the case where the attention area is detected in the special light image IS1 of G1 in FIG. 8 and the attention area is detected also in the special light image IS1 of G3.
  • the elapsed time is reset and the elapsed time is extended.
  • the attention area is detected also in the special light image in the next period TN + 2 as indicated by C8 as indicated by C9, and the elapsed time is further extended. In this way, as long as the attention area is detected, the display image display mode is changed, and after the attention area is no longer detected, until the elapsed time elapses, the display mode is changed. The change process can be continued.
  • FIG. 10 shows a configuration example of the attention area detection unit 112.
  • 10 includes a buffer 200, a hue / saturation calculation unit 201, an attention region determination unit 202, a threshold ROM 203, a buffer 204, and a reliability calculation unit 205.
  • Various modifications such as omitting some of these components or adding other components are possible.
  • the second image acquisition unit 111 is connected to the hue / saturation calculation unit 201 via the buffer 200.
  • the hue / saturation calculation unit 201 and the threshold ROM 203 are connected to the attention area determination unit 202.
  • the attention area determination unit 202 is connected to the confidence latitude calculation unit 205 via the buffer 204.
  • the reliability calculation unit 205 is connected to the elapsed time setting unit 113.
  • the control unit 116 is bi-directionally connected to the hue / saturation calculation unit 201, the attention area determination unit 202, the threshold ROM 203, and the reliability calculation unit 205.
  • the second image acquisition unit 111 transfers the special light image converted into a pseudo color image to the buffer 200.
  • the hue / saturation calculation unit 201 reads a special light image that has been converted into a pseudo color image from the buffer 200 under the control of the control unit 116.
  • the special light image converted into a pseudo color image is composed of three signals of R, G, and B.
  • the special light image is converted into a luminance signal Y and color difference signals Cb and Cr, for example, by the following equations (1) to (3).
  • Y 0.29900R + 0.58700G + 0.11400B (1)
  • Cb ⁇ 0.16874R ⁇ 0.33126G + 0.50000B
  • Cr 0.50,000R-0.41869G-0.81131B (3)
  • hue H and the saturation C are calculated using the following expressions (4) and (5).
  • H tan ⁇ 1 (Cb / Cr) (4)
  • C (Cb ⁇ Cb + Cr ⁇ Cr) 1/2 (5)
  • the calculated hue H and saturation C are sequentially transferred to the attention area determination unit 202 in units of pixels.
  • the attention area determination unit 202 reads the hue H and saturation C from the hue / saturation calculation unit 201, and the threshold values related to hue and saturation from the threshold ROM 203.
  • FIG. 11 shows an example of the threshold value recorded in the threshold value ROM 203.
  • the region of interest can be defined by the following equations (6) and (7), for example. -70 ° ⁇ Hue H ⁇ 30 ° (6) 16 ⁇ saturation C ⁇ 128 (7)
  • the threshold ROM 203 stores a total of four threshold values, that is, an upper limit value and a lower limit value related to the hue H and an upper limit value and a lower limit value related to the saturation C shown in the above formulas (6) and (7).
  • the attention area determination unit 202 reads these four threshold values.
  • the label value indicating whether or not all pixels of the special light image belong to the attention area is recorded in the buffer 204.
  • the area determination unit 206 included in the reliability calculation unit 205 reads the label value from the buffer 204 based on the control of the control unit 116 and calculates the area of the attention region by obtaining the total number of pixels belonging to the attention region. .
  • the area of the attention area is used as the reliability that is an index indicating the likelihood of the attention area (the probability of being a lesion). That is, the reliability is calculated based on the area of the attention area. If the calculated area of the attention area exceeds a predetermined threshold, the attention area is evaluated as having high reliability, and it is determined that the attention area has been detected.
  • the calculated area of the attention area exceeds a threshold of 1% of the total image area, for example, it is determined that the attention area has been detected.
  • the calculated area of the attention area is equal to or smaller than the predetermined threshold, the attention area is evaluated as having low reliability, and it is determined that the attention area has not been detected. Detection information representing the detection result of the attention area is transferred to the elapsed time setting unit 113.
  • FIG. 12 shows a configuration example of the elapsed time setting unit 113 (elapsed time determining unit).
  • the elapsed time setting unit 113 includes an update unit 300, a detection information recording unit 301, and a control information output unit 302 (processing control unit).
  • Various modifications may be made such as omitting some of these components or adding other components.
  • the attention area detection unit 112 is connected to the control information output unit 302 via the update unit 300 and the detection information recording unit 301.
  • the control information output unit 302 is connected to the display mode setting unit 114.
  • the control unit 116 is bidirectionally connected to the update unit 300, the detection information recording unit 301, and the control information output unit 302.
  • the control unit 116 When the image processing apparatus is initialized by turning on the power or the like, the control unit 116 initializes the detection information recording unit 301 and sets the value of the detection information to the initial value 0. Based on the control of the control unit 116, the update unit 300 reads detection information indicating whether or not the attention region has been detected in the special light image from the attention region detection unit 112.
  • the update unit 300 When the attention area is detected, the update unit 300 outputs a predetermined value as detection information, 5 in this embodiment, to the detection information recording unit 301. On the other hand, when the attention area is not detected, the value of the detection information recorded in the detection information recording unit 301 is decremented by one. If the value of the detection information becomes a negative number, the value is replaced with 0.
  • the control information output unit 302 reads the value of the detection information recorded in the detection information recording unit 301 based on the control of the control unit 116.
  • control information for instructing the display mode setting unit 114 to change the display mode (setting alert information) is output.
  • control information for instructing the display mode setting unit 114 to not change the display mode is output.
  • the period period (T) is 1 second, and it is assumed that one special light image is captured during this period period. For this reason, once the attention area is detected, it takes 5 period periods, that is, 5 seconds for the value as the detection information to be decremented from 5 to 0. Therefore, the elapsed time when the display mode is changed (the elapsed time when the alert information is set) is 5 seconds. In addition, if a region of interest is newly detected within 5 seconds, the value of the detection information is reset to 5, so that the display mode of the display image is changed for 5 seconds from the time of the new detection. Become.
  • FIG. 13 (A) and FIG. 13 (B) are diagrams for explaining the elapsed time setting method of the present embodiment.
  • the detection information recording unit 301 records the detection information of the attention area (information indicating whether or not the attention area is detected in each period), and the update unit 300 receives the information from the attention area detection unit 112. Based on the detection result, detection information (count value) update processing (count update processing) is performed.
  • the update unit 300 performs detection information update processing, for example, every period (T) described with reference to FIG.
  • the control information output unit 302 outputs control information for controlling the display mode setting process in the display mode setting unit 114 based on the detection information recorded in the detection information recording unit 301.
  • the elapsed time 5 seconds in which the display mode changing process as shown in D3 is performed is set.
  • the update process may be a process of incrementing VD.
  • D10 of FIG. 13B unlike D4 of FIG. 13A, the attention area is detected again from the special light image in the period TN + 1 after the period TN.
  • the non-change display mode is instructed.
  • the detection information is recorded in the detection information recording unit 301, and the detection information is updated by the method shown in FIGS. 13A and 13B.
  • the method is realized. Therefore, the elapsed time setting process based on the attention area detection result and the elapsed time resetting process by detecting the attention area within the elapsed time can be realized with a simple configuration and processing.
  • FIG. 14 shows a configuration example of the display mode setting unit 114 (display state determination unit).
  • the display mode setting unit 114 includes a buffer 410 and a processing unit 400, and the processing unit 400 includes a selection unit 401 (processing method selection unit) and an alert information addition unit 402.
  • Various modifications may be made such as omitting some of these components or adding other components.
  • the first image acquisition unit 110 is connected to the selection unit 401 via the buffer 410.
  • the elapsed time setting unit 113 is connected to the selection unit 401.
  • the selection unit 401 is connected to the alert information addition unit 402 and the display unit 115.
  • the alert information adding unit 402 is connected to the display unit 115.
  • the control unit 116 is bidirectionally connected to the selection unit 401 and the alert information addition unit 402.
  • the normal light image from the first image acquisition unit 110 is transferred to the buffer 410 and recorded.
  • the selection unit 401 reads control information for instructing change / non-change of the display mode from the elapsed time setting unit 113. Further, the normal light image is read from the buffer 410 based on the control of the control unit 116.
  • the read control information instructs to change the display mode (addition of alert information, superimposition of alert area)
  • the normal light image read from the buffer 410 is sent to the alert information addition unit 402. Forward.
  • the non-change of the display mode is instructed, the read normal light image is transferred to the display unit 115.
  • the alert information adding unit 402 performs processing for adding alert information to the normal light image when the normal light image is transferred from the selection unit 401 based on the control of the control unit 116.
  • FIG. 15 shows an example of alert information addition processing. In FIG. 15, processing for superimposing a warning color such as red is performed on the alert area in the peripheral area of the normal light image.
  • each unit constituting the image processing apparatus 90 is configured by hardware
  • the present embodiment is not limited to this.
  • the CPU may be configured to perform processing of each unit on an image acquired in advance using an imaging device such as a capsule endoscope, and may be realized as software by the CPU executing a program.
  • part of the processing performed by each unit may be configured by software.
  • each unit of the image processing apparatus 90 When the processing performed by each unit of the image processing apparatus 90 is realized as software, a known computer system such as a workstation or a personal computer can be used as the image processing apparatus. A program (image processing program) for realizing processing performed by each unit of the image processing apparatus 90 is prepared in advance, and this image processing program is executed by the CPU of the computer system.
  • FIG. 16 is a system configuration diagram showing the configuration of the computer system 600 in this modification
  • FIG. 17 is a block diagram showing the configuration of the main body 610 in the computer system 600.
  • the computer system 600 includes a main body 610, a display 620 for displaying information such as an image on a display screen 621 according to an instruction from the main body 610, and various information on the computer system 600.
  • a keyboard 630 for inputting and a mouse 640 for designating an arbitrary position on the display screen 621 of the display 620 are provided.
  • the main body 610 in the computer system 600 includes a CPU 611, a RAM 612, a ROM 613, a hard disk drive (HDD) 614, a CD-ROM drive 615 that accepts a CD-ROM 660, and a USB memory.
  • USB port 616 to which 670 is detachably connected I / O interface 617 to which display 620, keyboard 630 and mouse 640 are connected, and a LAN interface for connection to a local area network or wide area network (LAN / WAN) N1 618.
  • LAN / WAN wide area network
  • the computer system 600 is connected to a modem 650 for connecting to a public line N3 such as the Internet, and is another computer system via a LAN interface 618 and a local area network or a wide area network N1.
  • a personal computer (PC) 681, a server 682, a printer 683, and the like are connected.
  • the computer system 600 reads and executes an image processing program for realizing a processing procedure to be described later with reference to an image processing program (for example, FIGS. 18 to 21) recorded on a predetermined recording medium.
  • the predetermined recording medium is a “portable physical medium” including an MO disk, a DVD disk, a flexible disk (FD), a magneto-optical disk, an IC card, etc., in addition to the CD-ROM 660 and the USB memory 670, a computer A “fixed physical medium” such as HDD 614, RAM 612, and ROM 613 provided inside and outside the system 600, a public line N3 connected through a modem 650, and another computer system (PC) 681 or server 682 are connected.
  • Any recording medium (storage medium) that records an image processing program readable by the computer system 600 such as a “communication medium” that stores the program in a short time when transmitting the program, such as a local area network or a wide area network N1 Including.
  • the image processing program is recorded on a recording medium such as “portable physical medium”, “fixed physical medium”, and “communication medium” in a computer-readable manner.
  • An image processing apparatus is realized by reading and executing an image processing program from a medium.
  • the image processing program is not limited to being executed by the computer system 600, and when the other computer system (PC) 681 or the server 682 executes the image processing program or in cooperation therewith.
  • the present invention can be similarly applied to a case where an image processing program is executed.
  • FIG. 18 is a flowchart for explaining the overall processing of this embodiment.
  • a video signal is read (step S1). Specifically, in the present embodiment, assuming that a video signal from a Bayer type single-plate CCD is processed, as described with reference to FIG. It is assumed that a normal light image that is a first image (29 frames) and a special light image that is a second image (one frame) are alternately input.
  • step S2 the normal light image and the special light image are switched (step S2).
  • the process proceeds to the first image acquisition process (step S3), and the special light image is input.
  • the process proceeds to the second image acquisition process (step S4).
  • the process proceeds to the first image acquisition process (step S3), a known interpolation process, gradation process, and the like are performed on the normal light image that is the first image.
  • step S4 when the process proceeds to the second image acquisition process (step S4), a known interpolation process, a gradation process, and the like are performed on the special light image that is the second image, and a pseudo color imaging process is further performed. Then, the attention area is detected (step S5). Next, an elapsed time for setting (superimposing) alert information (alert region) for generating information related to the detection processing result with respect to the normal light image is set (determined) (step S6).
  • step S7 when the current time belongs within the elapsed time, the alert information setting process is performed on the normal light image, and when the current time does not belong within the elapsed time, the alert information setting process is performed. Absent. And the display image produced
  • FIG. 19 is a flowchart for explaining the attention area detection process in step S5 of FIG.
  • the hue and saturation calculation processing described in the above equations (1) to (5) is performed (step S20).
  • threshold value determination processing shown in the above formulas (6) and (7) is performed to determine whether or not the pixel belongs to the attention area in units of pixels (step S21). Then, the sum of the number of pixels belonging to the attention area is obtained, and if the total number of pixels exceeds a predetermined threshold, it is determined that the attention area has been detected. If the sum is smaller than the predetermined threshold, the attention area is detected. It is determined that it has not been performed (step S22). Then, detection information of the detection processing result is output (step S23).
  • FIG. 20 is a flowchart for explaining the elapsed time setting process in step S6 of FIG.
  • detection information of the detection processing result is read (step S30).
  • FIG. 21 is a flowchart for explaining the display mode setting process in step S7 of FIG.
  • control information related to the processing method is read (step S40). Then, it is determined whether or not to change the display mode based on the read control information (step S41), and when changing the display mode, an alert that superimposes a warning color such as red on the peripheral edge of the normal light image An information addition process is performed, and an image with the alert information added is output as a display image (step S42). On the other hand, when the display mode is not changed, the normal light image is output as a display image as it is.
  • the image processing apparatus 90 includes the first image acquisition unit 110, the second image acquisition unit 111, the attention area detection unit 112, the elapsed time setting unit 113, and the display mode setting unit 114.
  • the first image acquisition unit 110 acquires an image having information (signal) in the wavelength band of white light as a first image (normal light image in a narrow sense).
  • the second image acquisition unit 111 uses, as a second image (special light image in the narrow sense), an image having information (signal) in a specific wavelength band (in a narrow sense, a wavelength band such as narrow band light or fluorescence). get.
  • the attention area detection unit 112 detects the attention area in the second image based on the feature amount of the pixel in the second image (in a narrow sense, hue, saturation, luminance, etc.).
  • the display mode setting unit 114 performs display mode setting processing (display mode determination or change processing) of a display image (image displayed on the display unit 115) generated based on the first image, and sets elapsed time.
  • the unit 113 performs an elapsed time setting process (elapsed time determination or change process) based on the attention area detection result (detection information) in the attention area detection unit 112.
  • the display mode setting unit 114 performs display mode setting processing based on the elapsed time set by the elapsed time setting unit 113. For example, as described with reference to FIGS. 3 and 4, processing for changing the display mode of the display image is performed until the elapsed time has elapsed. Specifically, as illustrated in FIG. 15, until the elapsed time has elapsed, a process of displaying a display image in which alert information for the attention area is set on the display unit 115 is performed.
  • the alert information is information that generates a result of detection of the attention area, and for example, processing for setting alert information (alert image) is performed on the alert area set in the peripheral portion or the like of the first image.
  • the present embodiment having such a configuration, for example, even when the attention area is detected only for a short time in observation in a moving state, the user can recognize that the attention area exists in the vicinity of the current position. Therefore, it is possible to prevent oversight of a region of interest and to perform highly reliable identification. Moreover, since alert information is set in the peripheral part of the first image, a situation that hinders observation of the first image can be suppressed.
  • the display image may be generated as long as it is generated using at least the first image, and may be a composite image of the first image and the second image, for example.
  • the change of the display mode of the display image is not limited to the addition of alert information as shown in FIG.
  • the alert information (alert image) may be set by setting a region other than the peripheral portion of the first image as the alert region.
  • a process of changing the image of the corresponding attention area in the first image corresponding to the attention area detected in the second image may be performed.
  • the color of the corresponding attention area of the first image is brought close to a predetermined color
  • the enhancement process is performed on the image of the corresponding attention area, or the first image and the second image are synthesized (blending) in the corresponding attention area. ) May be performed.
  • the attention area is an area where the priority of observation for the user is relatively higher than other areas. For example, when the user is a doctor and desires treatment, an area in which the mucosa or lesion is copied. Point to. As another example, if the object that the doctor desires to observe is a bubble or stool, the region of interest is a region in which the bubble or stool portion is copied. In other words, the object that the user should pay attention to depends on the purpose of observation, but in any case, in the observation, the region where the priority of observation for the user is relatively higher than other regions becomes the region of interest. . Further, as described in the above formulas (1) to (7), the attention area can be detected using the feature amount (hue, saturation, etc.) of the pixel of the second image.
  • the formula (6) , (7) the threshold for the feature amount changes according to the type of the attention area.
  • the threshold value of the feature amount such as hue and saturation for the first type of attention region is different from the threshold value of the feature amount for the second type of attention region. Then, when the type of the attention area changes, it is only necessary to change the threshold value of the feature amount.
  • the processing after the detection of the attention area elapsed time setting processing, display mode setting processing, etc.
  • the display mode setting unit 114 also passes at least the elapsed time even when the attention area is not detected from the second image within the elapsed time. In the meantime, processing for changing the display mode of the display image may be performed.
  • the elapsed time setting unit 113 sets the detection timing of the attention area when the attention area is detected from the second image within the elapsed time. Processing for setting a new elapsed time as a starting point may be performed.
  • the timing of the starting point for setting a new elapsed time may be a timing within a periodic period following the period in which the attention area is detected, or a timing within a periodic period in which the attention area is detected. Also good.
  • the first image acquisition unit 110 acquires a first image of at least one frame (one sheet) for each predetermined period (image acquisition period),
  • the second image acquisition unit 111 acquires at least one frame (one) of second images for each periodic period.
  • the display mode setting unit 114 N + 1) after the Nth cycle period (N + 1) In TN + 1), processing for changing the display mode of the display image may be performed.
  • the attention area detection process is performed in each periodic period, and when the attention area is detected, the display mode of the display image is changed after the next periodic period, and the attention area detection is used. It becomes possible to inform the person. Accordingly, it is possible to minimize the delay time when displaying alert information and the like of the attention area to the user, and it is possible to more effectively suppress the oversight of the attention area.
  • the first image acquisition unit 110 acquires K frames (K is a natural number) of first images for each cycle period
  • the second image acquisition unit 111 stores L frames (for L periods (cycle period). L is a natural number) second image.
  • a normal light image for K frames and a special light image for L frames are acquired for each period period, and K> L is set, so that the acquisition ratio of the normal light image is higher than that of the special light image. Can also be increased. Accordingly, it is possible to suppress a decrease in temporal resolution of the basic normal light image and to obtain a high-quality display image (for example, a moving image).
  • the elapsed time can be made longer than the periodic period, which is a period that is a unit of detection of the attention area, the period during which the display mode is changed becomes longer, which effectively prevents the user from overlooking the attention area. Can be suppressed.
  • the display mode setting unit 114 detects the attention area from the second image in the Nth period (TN), and Even if the region of interest is not detected from the second image in the N + 1 period (TN + 1), the N + 1 period to the Mth period (TN + 1 to TN + 5, where M is an integer satisfying M> N + 1) In the above, processing for changing the display mode of the display image may be performed.
  • the display mode of the display image is changed at least until the subsequent Mth period (TN + 5).
  • the elapsed time can be set longer than the period.
  • the elapsed time setting unit 113 performs detection information update processing based on the detection information recording unit 301 that records the detection information of the attention region and the detection result from the attention region detection unit 112.
  • An update unit 300 and a control information output unit 302 that outputs control information for controlling display mode setting processing in the display mode setting unit 114 based on detection information recorded in the detection information recording unit 301 can be included.
  • the elapsed time setting process based on the detection information of the attention area can be realized.
  • the detection information is recorded and held in the detection information recording unit 301. Therefore, even when the attention area is not detected thereafter, the detection information is stored in the detection information recording unit 301. It is possible to set the elapsed time using the detected information.
  • the update unit 300 performs detection information update processing for each periodic period.
  • VD is set to VD1
  • update processing for changing VD from VD1 to VD2 is performed.
  • the control information output unit 302 controls the control information (control signal, control signal) to instruct the display mode setting unit 114 to change the display mode of the display image until the detection information value VD reaches the second value VD2. Flag) is output, and when the second value VD2 is reached, control information for instructing non-change of the display mode is output.
  • the update unit 300 detects a region of interest from the second image in a cycle period (TN + 1, TN + 2, etc. After the Nth cycle period (TN).
  • the process of resetting the elapsed time when the attention area is detected within the elapsed time can be realized by resetting the value of the detection information. Then, it is possible to extend the elapsed time by resetting the value of the detection information until the attention area is not detected.
  • the display mode setting unit 114 includes a processing unit 400. Then, when the change of the display mode of the display image is instructed by the control information from the control information output unit 302 of FIG. 12, the processing unit 400 processes the first image (addition of alert information or the like). ) And the processed first image is output as a display image. On the other hand, when non-change of the display mode is instructed by the control information, the first image that has not been processed is output as a display image.
  • control information will be set in control information output part 302 of elapsed time setting part 113, and processing part 400 of display mode setting part 114 will process the 1st picture based on this control information.
  • processing part 400 of display mode setting part 114 will process the 1st picture based on this control information.
  • the attention area detection unit 112 includes a reliability calculation unit 205.
  • the reliability calculation unit 205 performs a process of calculating a reliability indicating a probability of the detected attention area (a scale indicating the probability of being the attention area). Specifically, the reliability is calculated based on the area of the detected attention area.
  • the area is large, it is detected as the attention area, and when it is small, it is not detected as the attention area. Therefore, the influence of noise and the like can be reduced.
  • a period of 5 cycles (5 seconds) is assumed as the elapsed time after the attention area is detected.
  • the present embodiment is not limited to this, and an arbitrary elapsed time can be set. .
  • the user may be able to set an arbitrary elapsed time via the external I / F unit 117.
  • the rotation speed of the rotation filter 103 is assumed to be 1 rotation / second, and the area ratio in the circumferential direction of the normal light image filter F1 and the special light image filter F2 is assumed to be 29: 1.
  • the setting is not limited to this, and a free setting is possible. For example, it is possible to increase the distribution of the special light image (ratio of L to K) while giving priority to the temporal resolution of the basic normal light image.
  • a single CCD having a Bayer type primary color filter disposed on the front surface in the imaging system is assumed.
  • the present embodiment is not limited to this.
  • it can be applied to a two-plate or three-plate CCD.
  • a configuration using a narrow band of blue light and green light disclosed in Japanese Patent Application Laid-Open No. 2002-95635 as a special light image is assumed, but it is not necessary to be limited to such a configuration.
  • the present invention can be applied to a configuration using fluorescence as disclosed in JP-A-63-122421 and special light images such as infrared observation.
  • the rotation filter 103 is used for capturing the normal light image and the special light image
  • a configuration in which the lens system 100, the CCD 101, the illumination light source 102, the rotation filter 103, the gain amplifier 104, the A / D conversion unit 105, the WB unit 107, and the photometric evaluation unit 108 are integrated is assumed.
  • the present embodiment is not limited to such a configuration.
  • a video signal captured by a separate imaging unit such as a capsule endoscope can be stored in a recording medium in an unprocessed Raw data format, and the video signal from the recording medium can be processed separately. .
  • the present embodiment causes the computer to function as each unit (first image acquisition unit, second image acquisition unit, attention area detection unit, display mode setting unit, elapsed time setting unit, motion amount detection unit, etc.) of the present embodiment. It can also be applied to programs.
  • the present embodiment is a program code that realizes each unit (first image acquisition unit, second image acquisition unit, attention area detection unit, display mode setting unit, elapsed time setting unit, motion amount detection unit, etc.) of the present embodiment. It can also be applied to computer program products in which is recorded.
  • the computer program product includes, for example, an information storage medium (an optical disc medium such as a DVD, a hard disk medium, a memory medium, etc.) on which the program code is recorded, a computer on which the program code is recorded, an Internet system on which the program code is recorded (for example, an information storage medium, apparatus, device, or system in which a program code is incorporated, such as a system including a server and a client terminal.
  • an information storage medium, apparatus, device, or system in which a program code is incorporated such as a system including a server and a client terminal.
  • each component and each processing process of this embodiment are mounted by each module, and the program code constituted by these mounted modules is recorded in the computer program product.
  • FIG. 22 shows a second configuration example of the present embodiment.
  • the second configuration example is an example in which the image processing apparatus 90 of the present embodiment is applied to a microscope system.
  • the second configuration example can be applied to other electronic devices such as an endoscope system.
  • the second configuration example in FIG. 22 is configured by replacing the elapsed time setting unit 113 and the display mode setting unit 114 in the first configuration example in FIG. 5 with an elapsed time setting unit 500 and a display mode setting unit 501. Yes.
  • the basic configuration is the same as that of the first configuration example, and the same components are denoted by the same names and symbols. The following description will focus on the different parts.
  • the video signal photographed through the lens system 100 and the CCD 101 of the microscope is amplified by the gain amplifier 104 and converted into a digital signal by the A / D conversion unit 105.
  • Illumination light from the illumination light source 102 is guided to a microscope objective stage through a filter mounted on the rotary filter 103.
  • the first image acquisition unit 110 is connected to the elapsed time setting unit 500 and the display mode setting unit 501.
  • the display mode setting unit 501 is connected to the display unit 115.
  • the attention area detection unit 112 is connected to the elapsed time setting unit 500, and the elapsed time setting unit 500 is connected to the display mode setting unit 501.
  • the control unit 116 is bidirectionally connected to the elapsed time setting unit 500 and the display mode setting unit 501.
  • the configuration is basically the same as that of the first configuration example, and different portions will be mainly described.
  • the first image acquisition unit 110 reads the normal light image in a single plate state from the switching unit 109, performs known interpolation processing, gradation processing, etc., and passes the processed normal light image. Transfer to the time setting unit 500 and the display mode setting unit 501.
  • the attention area detection unit 112 reads the special light image from the second image acquisition unit 111 based on the control of the control unit 116, and performs a detection process of the attention area (a lesion part where blood vessels are densely present). The detection processing result is transferred to the elapsed time setting unit 500.
  • the elapsed time setting unit 500 reads the attention region detection processing result from the attention region detection unit 112, and reads two normal light images from the first image acquisition unit 110.
  • the attention region detection processing result from the attention region detection unit 112
  • the elapsed time setting unit 500 reads two normal light images from the first image acquisition unit 110.
  • 29 normal light images and one special light image are obtained in a period of 1 second as described with reference to FIG. Therefore, 29 normal light images correspond to one special light image.
  • the normal light images for two frames of the first and second images are read.
  • the elapsed time setting unit 500 determines the elapsed time by adding the amount of motion calculated from the two normal light images to the detection processing result from the attention area detection unit 112. Specifically, the elapsed time setting unit 500 determines whether or not the current time is within the set elapsed time, and transfers the determination result to the display mode setting unit 501. Based on the control of the control unit 116, the display mode setting unit 501 reads from the elapsed time setting unit 113 a determination result as to whether or not it belongs within the elapsed time. select. As an alert information addition process (alert area superimposition process) in this case, an edge and saturation enhancement process for a normal light image is assumed. On the other hand, if the current time does not belong within the elapsed time, no particular processing is performed. The display image from the display mode setting unit 501 is transferred to the display unit 115 and sequentially displayed.
  • FIG. 23 is a diagram for explaining an elapsed time setting method of the second configuration example.
  • the amount of motion of the normal light image is detected, and an elapsed time setting process is performed based on the detected amount of motion.
  • the elapsed time setting unit 113 performs a setting process that shortens the elapsed time as the amount of movement increases.
  • the detection of the amount of motion of the normal light image is performed on the condition that the attention area is detected in the special light image.
  • a region of interest is detected in the special light image IS1 acquired in the period TN.
  • the amount of motion between these images is detected using, for example, two normal light images IN1 and IN2 acquired in the next period TN + 1.
  • an elapsed time corresponding to the detected amount of motion is set, and the display mode changing process is performed within this elapsed time as in the first configuration example.
  • the elapsed time is set based on the amount of movement of the normal light image in this way, when the imaging unit (camera gazing point) is moving at high speed with respect to the subject, the elapsed time is shortened.
  • the time for changing the display mode is shortened. Therefore, when the imaging unit moves with respect to the subject at high speed and there is a low possibility that the attention area exists in the vicinity of the current position, the time for changing the display mode is shortened. Can be improved.
  • FIG. 24 shows a configuration example of the elapsed time setting unit 500. It should be noted that modifications can be made such as omitting some of these components or adding other components.
  • the elapsed time setting unit 500 in FIG. 24 has a configuration in which a buffer 303, a motion amount detection unit 304, an elapsed time calculation unit 305, and an elapsed time ROM 306 are added to the elapsed time setting unit 113 in FIG. .
  • the basic configuration is the same as the elapsed time setting unit 113 in FIG. 12, and the same components are assigned the same names and symbols. Hereinafter, different parts will be mainly described.
  • the first image acquisition unit 110 is connected to the motion amount detection unit 304 via the buffer 303.
  • the motion amount detection unit 304 and the elapsed time ROM 306 are connected to the elapsed time calculation unit 305.
  • the elapsed time calculation unit 305 is connected to the detection information recording unit 301.
  • the update unit 300 is connected to the detection information recording unit 301 and the motion amount detection unit 304.
  • the control information output unit 302 is connected to the display mode setting unit 501.
  • the control unit 116 is bidirectionally connected to the motion amount detection unit 304, the elapsed time calculation unit 305, and the elapsed time ROM 306.
  • the control unit 116 When the image processing apparatus is initialized by turning on the power or the like, the control unit 116 initializes the detection information recording unit 301 and sets the value of the detection information to the initial value 0. Based on the control of the control unit 116, the update unit 300 reads detection information indicating whether or not the attention region has been detected in the special light image from the attention region detection unit 112.
  • the update unit 300 transfers a control signal to the motion amount detection unit 304 so as to calculate the motion amount.
  • the value of the detection information recorded in the detection information recording unit 301 is decremented by one. If the value of the detection information becomes a negative number, it is replaced with 0.
  • the motion amount detection unit 304 calculates the motion amount of the normal light image on the buffer 303 only when the control signal is transferred from the update unit 300.
  • the buffer 303 as shown in FIG. 23, two normal light images IN1 and IN2 of the first and second sheets in each cycle period are recorded.
  • the amount of motion is calculated using a known block matching technique or the like.
  • the calculated amount of motion is transferred to the elapsed time calculation unit 305.
  • the elapsed time calculation unit 305 reads a relation table that associates the amount of motion with the elapsed time from the elapsed time ROM 306.
  • FIG. 25 shows an example of a relationship table associating the amount of motion with the elapsed time (periodic period), and has a relationship in which the elapsed time generally decreases as the amount of motion increases.
  • an upper limit value (MAX) and a lower limit value (MIN) are set for the elapsed time, and the elapsed time is set to the upper limit value (MAX) when the movement amount is equal to or less than the constant value (m1).
  • MIN constant value
  • the MIN lower limit
  • the elapsed time calculation unit 305 obtains an elapsed time with respect to the motion amount calculated by the motion amount detection unit 304 based on the relation table from the elapsed time ROM 306 and outputs it to the detection information recording unit 301 as a value of detection information.
  • the first value VD1 is variable. Specifically, as the amount of motion of the normal light image increases, VD1 decreases and the elapsed time set thereby decreases.
  • the control information output unit 302 reads the value of the detection information from the detection information recording unit 301 based on the control of the control unit 116.
  • the value of the detection information is 1 or more, control information that instructs the display mode setting unit 501 to change the display mode is output.
  • control information that instructs the display mode setting unit 501 to not change the display mode is output.
  • FIG. 26 shows a configuration example of the display mode setting unit 501.
  • the processing unit 398 in FIG. 26 is different in configuration from the processing unit 400 in FIG. 14.
  • the luminance / color difference separation unit 403, the edge enhancement unit 404, and the saturation enhancement unit 405 are different from the processing unit 398.
  • the luminance / color difference combining unit 406 is added, and the alert information adding unit 402 is deleted.
  • the basic configuration is the same as that shown in FIG. 14, and the same names and symbols are assigned to the same components. Hereinafter, different parts will be mainly described.
  • the elapsed time setting unit 500 is connected to the selection unit 401.
  • the selection unit 401 is connected to the luminance / color difference separation unit 403 and the display unit 115.
  • the luminance / color difference separation unit 403 is connected to the edge enhancement unit 404 and the saturation enhancement unit 405.
  • the edge enhancement unit 404 and the saturation enhancement unit 405 are connected to the luminance / color difference synthesis unit 406.
  • the luminance / color difference combining unit 406 is connected to the display unit 115.
  • the control unit 116 is bi-directionally connected to the luminance / color difference separation unit 403, the edge enhancement unit 404, the saturation enhancement unit 405, and the luminance / color difference synthesis unit 406.
  • the selection unit 401 reads control information indicating whether or not to change the display mode from the elapsed time setting unit 500 based on the control of the control unit 116, and reads a normal light image from the buffer 410.
  • control information instructs the change of the display mode
  • the normal light image is transferred to the luminance / color difference separation unit 403
  • the control information does not indicate the change of the display mode
  • the normal light image is transferred to the display unit 115.
  • the luminance / color difference separation unit 403 converts the R, G, and B signals of the normal light image into the above formulas (1) to ( The luminance signal Y and the color difference signals Cb and Cr shown in 3) are converted.
  • the luminance signal Y is transferred to the edge enhancement unit 404, and the color difference signals Cb and Cr are transferred to the saturation enhancement unit 405.
  • the edge enhancement unit 404 performs a known edge enhancement process on the luminance signal Y based on the control of the control unit 116.
  • the luminance signal Y ′ after the edge enhancement processing is transferred to the luminance / color difference synthesis unit 406.
  • the saturation enhancement unit 405 performs known saturation enhancement processing on the color difference signals Cb and Cr based on the control of the control unit 116.
  • the color difference signals Cb ′ and Cr ′ after the saturation enhancement process are transferred to the luminance / color difference synthesis unit 406.
  • the luminance / color difference synthesis unit 406 synthesizes the luminance signal Y ′ from the edge enhancement unit 404 and the color difference signals Cb ′ and Cr ′ from the saturation enhancement unit 405 based on the control of the control unit 116, thereby obtaining the following formula ( As shown in 7) to (9), the image is converted into an image composed of R ′, G ′, and B ′ signals that have been subjected to enhancement processing, and is output as a display image.
  • R ′ Y ′ + 1.40200Cr ′ (7)
  • G ′ Y′ ⁇ 0.34414Cb′ ⁇ 0.71414Cr ′ (8)
  • B ′ Y ′ + 1.77200 Cb ′ (9)
  • the alert information is set for the entire normal light image.
  • the elapsed time setting unit 500 includes the motion amount detection unit 304. Then, the motion amount detection unit 304 detects the motion amount of the first image acquired by the first image acquisition unit 110.
  • the elapsed time setting unit 500 performs an elapsed time setting process based on the motion amount detected by the motion amount detection unit 304. Specifically, setting processing is performed to shorten the elapsed time as the amount of motion increases.
  • the elapsed time is set based on the amount of movement of the first image, it is determined that the amount of movement of the first image is large and the imaging unit is moving at high speed.
  • the elapsed time is set to a short length, and the display mode change time is also shortened. Therefore, it is possible to prevent the alert information from being frequently displayed when the imaging unit moves at a high speed, and to provide an easy-to-use image processing apparatus.
  • the motion amount detection unit 304 may detect the motion amount of the first image when the attention area is detected in the second image.
  • the elapsed time setting unit 500 includes a detection information recording unit 301, an updating unit 300, and a control information output unit 302 in addition to the motion amount detection unit 304. Then, the update unit 300 sets the value of the detection information based on the motion amount detected by the motion amount detection unit 304.
  • the updating unit 300 sets the value VD of the detection information to the first value VD1 whose value changes according to the detected amount of motion. To do. That is, as shown in FIG. 13A, when a region of interest is detected like D1, the value VD of the detection information is set to VD1. However, in the second configuration example, the value of VD1 changes according to the amount of motion. For example, the value of VD1 decreases as the amount of motion increases.
  • the update unit 300 changes the value VD of the detection information from the first value VD1 to the second value in the same manner as D6 and D7 in FIG. An update process for changing the value VD2 toward the value VD2 is performed.
  • the setting process of the elapsed time according to the amount of motion can be efficiently realized by the update process of the value of the detection information recorded in the detection information recording unit 301.
  • the setting process of the elapsed time according to the amount of motion can be realized only by setting the first value VD1 whose value changes according to the amount of motion in the detection information recording unit 301, simplification of the processing and the configuration. I can plan.
  • the display mode setting unit 501 shown in FIG. 26 performs a process of enhancing at least one of the edge and the saturation of the first image.
  • the second configuration example the case where the amount of motion of the normal light image is used for setting the elapsed time has been described.
  • the second configuration example is not limited to such a configuration.
  • a method of setting a fixed elapsed time as in the first configuration example is also possible.
  • the display mode changing process employs a configuration that emphasizes the edge and saturation of the entire normal light image.
  • the second configuration example is not limited to such a configuration.
  • a configuration in which alert information is added to the peripheral portion of the normal light image may be employed.
  • a configuration that emphasizes the edge and saturation of the entire normal light image may be employed.
  • the second configuration example is not limited to this. For example, it may be realized by software processing as in the first configuration example.
  • FIG. 27 shows a third configuration example of the present embodiment.
  • FIG. 27 shows an example of application to a field sequential endoscope system.
  • the CCD 101, the rotation filter 103, and the switching unit 109 in the first configuration example of FIG. 5 are replaced with a CCD 550, a rotation filter 551, and a switching unit 552, respectively.
  • the basic configuration is the same as that of the first configuration example, and the same components are denoted by the same names and symbols. Hereinafter, different parts will be mainly described.
  • the video signal photographed through the lens system 100 and the CCD 550 at the distal end of the endoscope is amplified by the gain amplifier 104 and converted into a digital signal by the A / D conversion unit 105.
  • the illumination light from the illumination light source 102 passes through a filter attached to the rotary filter 551, and the transmitted light is irradiated to the subject via the optical fiber.
  • the control unit 116 is bidirectionally connected to the rotary filter 551 and the switching unit 552.
  • the configuration is basically the same as that of the first configuration example, and different portions will be mainly described.
  • the video signal photographed through the lens system 100 and the CCD 550 is output as an analog signal.
  • a single CCD for monochrome is assumed as the CCD 550, and an ordinary white light source such as xenon is assumed as the illumination light source 102.
  • the rotary filter 551 is provided with 29 sets of three filters each having a spectral characteristic for R, G, and B of a normal light image.
  • one set of filters is mounted, which includes a narrow band of blue light (390 to 445 nm), a narrow band of green light (530 to 550 nm), and a light shielding filter. ing.
  • FIG. 28 shows the spectral characteristics of these R, G, and B filters, and the narrow band (B2) of blue light and the narrow band (G2) of green light. It is assumed that the CCD 550 captures images at 1/90 second intervals, and the rotary filter 551 rotates at a speed of 1 rotation / second.
  • the buffer 106 can record one normal light image or special light image, and is overwritten as the image is taken. Based on the control of the control unit 116, the switching unit 552 transfers the normal light image composed of the three signals R, G, and B to the first image acquisition unit 110 in the buffer 106. In addition, when a special light image composed of two components of a narrow band of blue light and a narrow band of green light is recorded, the special light image is transferred to the second image acquisition unit 111.
  • the first image acquisition unit 110 reads the normal light image from the switching unit 552 based on the control of the control unit 116, performs known gradation processing, and transfers the processed normal light image to the display mode setting unit 114. .
  • the second image acquisition unit 111 reads a special light image from the switching unit 552 based on the control of the control unit 116, and performs known gradation processing and the like. Further, a process for generating a pseudo color image is also performed. The subsequent processing is the same as in the first configuration example shown in FIG.
  • the normal light image and the special light image are acquired, the attention area is detected based on the feature amount of the pixel of the special light image, and the elapsed time is set based on the detection result. Then, a display image display mode setting process is performed based on the determined elapsed time. For this reason, even when the attention area is detected only for a short time in observation in a moving state, the user can recognize that the attention area exists in the vicinity of the current position, suppress oversight of the attention area, and Highly distinctive identification is possible. Further, the normal light image and the special light image are alternately acquired every predetermined period, and the acquisition ratio of the normal light image is higher than that of the special light image.
  • the specific wavelength band in the present embodiment is a band narrower than the wavelength band of white light (NBI: Narrow Band Imaging).
  • the normal light image and the special light image are in-vivo images obtained by copying the inside of the living body
  • the specific wavelength band included in the in-vivo image is a wavelength band of a wavelength that is absorbed by hemoglobin in blood.
  • the wavelength absorbed by the hemoglobin is, for example, 390 to 445 nanometers (first narrowband light; B2 component of narrowband light), or 530 to 550 nanometers (second narrowband light; G2 of narrowband light) Component).
  • the wavelength band in this case is not limited to this, and the lower limit of the wavelength band is reduced by about 0 to 10% due to factors such as absorption by hemoglobin and experimental results related to the arrival of the living body on the surface or deep. It is also conceivable that the upper limit value increases by about 0 to 10%.
  • the specific wavelength band included in the in-vivo image may be a wavelength band of fluorescence emitted from the fluorescent material.
  • the specific wavelength band may be a wavelength band of 490 nanometers to 625 nanometers.
  • AFI Auto-Fluorescence-Imaging
  • excitation light 390 nm to 470 nm
  • autofluorescence intrinsic fluorescence
  • 490 nm to 625 nm the lesion can be highlighted with a color tone different from that of the normal mucous membrane, and the oversight of the lesion can be suppressed.
  • the numbers from 490 nm to 625 nm indicate the wavelength band of autofluorescence emitted by a fluorescent substance such as collagen when irradiated with the excitation light described above.
  • the wavelength band in this case is not limited to this.
  • the lower limit of the wavelength band is reduced by about 0 to 10% and the upper limit is 0 due to a variation factor such as an experimental result regarding the wavelength band of the fluorescence emitted by the fluorescent material.
  • a variation factor such as an experimental result regarding the wavelength band of the fluorescence emitted by the fluorescent material.
  • An increase of about 10% is also conceivable.
  • a pseudo color image may be generated by simultaneously irradiating a wavelength band (540 nm to 560 nm) absorbed by hemoglobin.
  • the specific wavelength band included in the in-vivo image may be an infrared light wavelength band.
  • the specific wavelength band may be a wavelength band of 790 nanometers to 820 nanometers, or 905 nanometers to 970 nanometers.
  • IRI infra®Red®Imaging
  • ICG Indocyanine Green
  • ICG Indocyanine Green
  • the numbers 790 nm to 820 nm are obtained from the characteristic that the absorption of the infrared index drug is the strongest, and the numbers 905 nm to 970 nm are determined from the characteristic that the absorption of the infrared index drug is the weakest.
  • the wavelength band in this case is not limited to this.
  • the lower limit of the wavelength band is reduced by about 0 to 10% and the upper limit is 0 to 10 due to a variation factor such as an experimental result regarding absorption of the infrared index drug. It can also be expected to increase by about%.
  • the second image acquisition unit 111 illustrated in FIG. 5 and the like may generate a special light image (second image) based on the acquired white light image (first image). .
  • the second image acquisition unit 111 includes a signal extraction unit that extracts a signal in the wavelength band of white light from the acquired white light image, and the second image acquisition unit 111 extracts the extracted white light.
  • a special light image including a signal in a specific wavelength band is generated based on the signal in the light wavelength band.
  • the signal extraction unit estimates the spectral reflectance characteristic of the subject in 10 nm increments from the RGB signal of the white light image, and the second image acquisition unit 111 integrates the estimated signal components in the specific band.
  • a special light image is generated.
  • the second image acquisition unit 11 includes a matrix data setting unit that sets matrix data for calculating a signal in a specific wavelength band from a signal in the wavelength band of white light. Then, the second image acquisition unit 111 uses the set matrix data to calculate a signal in a specific wavelength band from a signal in the wavelength band of white light, and generates a special light image.
  • the matrix data setting unit sets table data in which spectral characteristics of irradiation light in a specific wavelength band are described in increments of 10 nm as matrix data. Then, the spectral characteristics (coefficients) described in the table data are multiplied by the estimated spectral reflectance characteristics of the subject and integrated to generate a special light image.
  • the special light image can be generated based on the normal light image, so that the system can be realized with only one light source that irradiates normal light and one image sensor that images normal light. . Therefore, the insertion part of the scope type endoscope and the capsule type endoscope can be made small, and the effect of lowering the cost can be expected because the number of parts is reduced.
  • the alert information output according to the present embodiment is not limited to an image, and alert information by sound or light emission of a light emitting element. May be alert information.
  • the display mode setting unit 114 shown in FIG. 5 functions as an alert information output unit.
  • the first image acquisition unit 110 acquires the first image
  • the second image acquisition unit 111 acquires the second image
  • the attention area detection unit 112 is based on the feature amount of the pixel in the second image.
  • the alert information output section (display mode setting section 114) outputs alert information about the detected attention area.
  • the elapsed time setting unit 113 performs an elapsed time setting process based on the detection result of the attention area, and the alert information output unit outputs alert information until the set elapsed time elapses. To do.
  • the sound output unit 5 or the like functions as a sound output unit, and this sound output unit is used until the elapsed time elapses after the attention area is detected.
  • An alert sound informing the detection of the attention area is output as alert information. In this way, even when the attention area is detected only for a short time, for example, the user can recognize that the attention area exists in the vicinity of the current position, suppress oversight of the attention area, and improve reliability. High discrimination is possible.
  • 90 image processing apparatus 100 lens system 101 CCD, 102 illumination light source, 103 rotary filter, 104 gain amplifier, 105 A / D converter, 106 buffer, 107 WB unit, 108 photometric evaluation unit, 109 switching unit, 110 first image acquisition unit, 111 second image acquisition unit, 112 attention area detection unit, 113 elapsed time setting unit, 114 display mode setting unit, 115 display unit (output unit), 116 control unit, 117 external I / F unit, 200 buffer, 201 hue / saturation calculation unit, 202 attention area determination unit, 203 threshold ROM, 204 buffer, 205 reliability calculation unit, 206 area determination unit, 300 update unit, 301 detection information recording unit, 302 control information output unit, 303 buffer, 304 motion amount detection unit, 305 elapsed time calculation unit, 306 ROM for elapsed time, 398 processing unit, 400 processing unit, 401 selection unit, 402 alert information adding unit, 403 luminance / color difference separating unit, 404 edge enhancing unit, 405 saturation enhancement unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)

Abstract

 注目領域の見落としを抑止し、信頼性の高い識別を可能にする画像処理装置、内視鏡システム、プログラム及び画像処理方法等の提供。 画像処理装置は、白色光の波長帯域における情報を有する画像を第1の画像として取得する第1画像取得部と、特定の波長帯域における情報を有する画像を第2の画像として取得する第2画像取得部と、第2の画像内の画素の特徴量に基づいて、第2の画像での注目領域を検出する注目領域検出部と、第1の画像に基づき生成される表示画像の表示態様設定処理を行う表示態様設定部と、注目領域の検出結果に基づいて、経過時間の設定処理を行う経過時間設定部を含む。表示態様設定部は、設定された経過時間に基づいて表示態様設定処理を行う。

Description

画像処理装置、内視鏡システム、プログラム及び画像処理方法
 本発明は、画像処理装置、内視鏡システム、プログラム及び画像処理方法等に関係する。
 近年、内視鏡や顕微鏡などの分野においては通常の白色光を用いた通常光画像の他に、特定の分光特性を有する特殊光を用いた特殊光画像が利用されている。
 例えば特許文献1には、蛍光物質を投与した被検体から、通常の白色光を用いた通常光画像と、所定の励起光を用いたときに得られる蛍光画像とを交互に取得し、両画像を記憶装置に記録することで同時に表示する内視鏡装置が開示されている。この特許文献1の技術によれば、通常光画像において病変部などの注目領域の識別能を向上することができる。
 また特許文献2には、通常の白色光を用いた通常光画像と特定波長の特殊光を用いた特殊光画像を交互に取得し、両画像を記憶装置に記録し、両画像に異なる画像処理を行い、両画像を独立又は合成して表示する内視鏡装置が開示されている。この特許文献2の技術によれば、最適な通常光画像と特殊光画像が得られ、通常光画像において病変部などの注目領域の識別能を向上することができる。
特開昭63-122421号公報 特開2004-321244号公報
 しかしながら、特許文献1、2の従来技術では、通常光画像と特殊光画像を同時に表示することは可能であるが、病変部などの注目領域の識別は使用者であるドクター等に依存している。このため、内視鏡装置等のように動状態で撮像する場合など、特殊光画像上に注目領域が存在していても短時間で別の領域へ移動してしまうと、使用者が識別できないという課題がある。また静止状態で撮像する場合でも、特殊光画像上の注目領域の面積が小さい場合には、使用者が識別できないという課題がある。
 更に特許文献1、2の従来技術では、通常光画像と特殊光画像を1対1の割合で交互に取得するため、動画像で観察する場合は基本となる通常光画像の時間的分解能が不足し、観察しづらいという課題もある。
 本発明の幾つかの態様によれば、注目領域の見落としを抑止し、信頼性の高い識別を可能にする画像処理装置、内視鏡システム、プログラム及び画像処理方法等を提供できる。
 また本発明の幾つかの態様によれば、動画像で観察する場合に基本となる第1の画像の時間的分解能の低下を抑制し、高品位な表示画像の取得が可能な画像処理装置、内視鏡システム、プログラム及び画像処理方法等を提供できる。
 本発明の一態様は、白色光の波長帯域における情報を有する画像を第1の画像として取得する第1画像取得部と、特定の波長帯域における情報を有する画像を第2の画像として取得する第2画像取得部と、前記第2の画像内の画素の特徴量に基づいて、前記第2の画像での注目領域を検出する注目領域検出部と、前記第1の画像に基づき生成される表示画像の表示態様設定処理を行う表示態様設定部と、前記注目領域の検出結果に基づいて、経過時間の設定処理を行う経過時間設定部とを含み、前記表示態様設定部は、設定された前記経過時間に基づいて前記表示態様設定処理を行う画像処理装置に関係する。また本発明は、上記各部としてコンピュータを機能させるプログラム、又は該プログラムを記憶したコンピュータ読み取り可能な情報記憶媒体に関係する。
 本発明の一態様によれば、第1、第2の画像が取得され、第2の画像から注目領域が検出される。そして注目領域の検出結果に基づいて、経過時間の設定処理が行われ、設定された経過時間に基づいて表示画像の表示態様設定処理が行われる。このようにすれば注目領域が検出されると経過時間が設定され、設定された経過時間を反映した表示画像の表示態様設定処理が行われるようになるため、注目領域の見落としを抑止し、信頼性の高い識別を可能にする画像処理装置を提供することが可能になる。
 また本発明の他の態様は、白色光の波長帯域における情報を有する画像を第1の画像として取得する第1画像取得部と、特定の波長帯域における情報を有する画像を第2の画像として取得する第2画像取得部と、前記第2の画像内の画素の特徴量に基づいて、前記第2の画像での注目領域を検出する注目領域検出部と、検出された前記注目領域についてのアラート情報を出力するアラート情報出力部と、前記注目領域の検出結果に基づいて、経過時間の設定処理を行う経過時間設定部とを含み、前記アラート情報出力部は、設定された前記経過時間が経過するまでの間、前記アラート情報を出力する画像処理装置に関係する。また本発明は、上記各部としてコンピュータを機能させるプログラム、又は該プログラムを記憶したコンピュータ読み取り可能な情報記憶媒体に関係する。
 本発明の他の態様によれば、第1、第2の画像が取得され、第2の画像から注目領域が検出される。そして注目領域の検出結果に基づいて、経過時間の設定処理が行われ、設定された経過時間が経過するまでの間、アラート情報が出力される。このように経過時間が経過するまでの間、アラート情報を出力することにより、注目領域の見落としが抑止され、信頼性の高い識別を可能にする画像処理装置の提供が可能になる。
 また本発明の他の態様は、白色光の波長帯域における情報を有する画像を第1の画像として取得する第1画像取得部と、特定の波長帯域における情報を有する画像を第2の画像として取得する第2画像取得部と、前記第2の画像内の画素の特徴量に基づいて、前記第2の画像での注目領域を検出する注目領域検出部と、前記第1の画像に基づき生成される表示画像の表示態様設定処理を行う表示態様設定部と、前記注目領域の検出結果に基づいて、経過時間の設定処理を行う経過時間設定部と、前記表示画像を表示する表示部とを含み、前記表示態様設定部は、設定された前記経過時間に基づいて前記表示態様設定処理を行う内視鏡システムに関係する。
 また本発明の他の態様は、白色光の波長帯域における情報を有する画像を第1の画像として取得し、特定の波長帯域における情報を有する画像を第2の画像として取得し、前記第2の画像内の画素の特徴量に基づいて、前記第2の画像での注目領域を検出し、前記第1の画像に基づき生成される表示画像の表示態様設定処理を行い、前記注目領域の検出結果に基づいて、経過時間の設定処理を行うと共に、設定された前記経過時間に基づいて前記表示態様設定処理を行う画像処理方法に関係する。
 また本発明の他の態様は、白色光の波長帯域における情報を有する画像を第1の画像として取得し、特定の波長帯域における情報を有する画像を第2の画像として取得し、前記第2の画像内の画素の特徴量に基づいて、前記第2の画像での注目領域を検出し、検出された前記注目領域についてのアラート情報を出力し、前記注目領域の検出結果に基づいて、経過時間の設定処理を行うと共に、設定された前記経過時間が経過するまでの間、前記アラート情報を出力する画像処理方法に関係する。
図1(A)、図1(B)は従来の手法の説明図。 図2は、注目領域の検出結果に基づき表示画像の表示態様を変更する手法の説明図。 図3は、本実施形態の経過時間設定手法の説明図。 図4は、注目領域の検出により経過時間を再設定する手法の説明図。 図5は、本実施形態の第1の構成例。 図6(A)、図6(B)はCCDのカラーフィルタについての説明図。 図7(A)、図7(B)は照明光と回転フィルタによる分光特性についての説明図。 図8は、通常光画像及び特殊光画像が取得される周期期間の説明図。 図9(A)、図9(B)は注目領域の検出による経過時間設定手法の説明図。 図10は、注目領域検出部の構成例。 図11は、注目領域検出のための色相・彩度の閾値の説明図。 図12は、経過時間設定部の構成例。 図13(A)、図13(B)は検出情報の更新手法の説明図。 図14は、表示態様設定部の構成例。 図15は、アラート情報の付加手法の説明図。 図16は、ソフトウェア処理で用いられるコンピュータの構成例。 図17は、ソフトウェア処理で用いられるコンピュータの構成例。 図18は、本実施形態の全体的な処理を説明するフローチャート。 図19は、注目領域検出処理を説明するフローチャート。 図20は、経過時間設定処理を説明するフローチャート。 図21は、表示態様設定処理を説明するフローチャート。 図22は、本実施形態の第2の構成例。 図23は、動き量に応じた経過時間の設定手法の説明図。 図24は、経過時間設定部の構成例。 図25は、動き量と経過時間の関係についての説明図。 図26は、表示態様設定部の構成例。 図27は、本実施形態の第3の構成例。 図28は、照明光のカラーフィルタについての説明図。
 以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。
 1.本実施形態の手法
 まず本実施形態の概要について説明する。図1(A)及び図1(B)は従来の手法を示している。図1(A)は通常光による観察の様子を示したものである。全体に明るく、見やすい画像が得られるが、扁平上皮癌等の一部の病変については視認性が困難である。また図1(B)は特殊光(例えば狭帯域光或いは蛍光)による観察の様子を示したものである。例えば扁平上皮癌等の病変が褐色で表示されるなど、一部の病変の視認性を通常光観察に比べて高めることが可能になるが、全体に暗く、見づらい画像になってしまう。
 このような問題を解決する手法として図2に示す手法も考えられる。この手法では、特殊光画像(第2の画像)から例えば扁平上皮癌等の病変部などの注目領域を特定し、この注目領域の検出結果に基づいて通常光画像を加工して、病変部等の注目領域の視認性を高めている。具体的には、注目領域において通常光画像の色と所定色の合成処理を行ったり、注目領域の周縁部を所定色のラインで囲むなどの画像処理を行って、注目領域の視認性を高める。
 しかしながら、この手法を採用したとしても、図2に示すようにドクターが機器の操作に気をとられていると、病変部等の注目領域を見逃してしまうおそれがある。特に、内視鏡で動画を撮影する場合には、特殊光画像上で検出された注目領域が、短時間で別の領域へ移動してしまうという問題がある。
 本実施形態では、このような注目領域の見落としを抑止し、信頼性の高い識別を可能にするために、以下に説明するような手法を採用している。
 まず本実施形態では図3のA1、A2に示すように、通常光画像(広義には第1の画像)と特殊光画像(広義には第2の画像)を取得する。これらの通常光画像及び特殊光画像は、通常のスコープ型内視鏡によりリアルタイムに撮影することで取得してもよいし、カプセル型内視鏡等により撮影した画像を記憶装置から読み出すことで取得してもよい。
 そして図3のA2に示すように特殊光画像から注目領域が検出されると、A3に示すように表示画像の表示態様変更処理についての経過時間が設定される。そして経過時間が経過するまでの間、表示画像の表示態様を変更する処理(表示画像を変化させる処理)が行われる。具体的にはA4に示すように、経過時間が経過するまでの間、注目領域に対するアラート情報が通常光画像に設定(付加、重畳、ブレンド)された表示画像が生成されて、表示部に表示される。そして経過時間が経過すると、この表示態様の変更処理は行われなくなり、例えば通常光画像が表示画像として表示されるようになる。
 更に図3では、A5に示すように特殊光画像から注目領域が検出されなくなった場合でも、A3の経過時間が経過するまでの間は、A6に示すように表示画像の表示態様が変更される。これにより、注目領域が検出されなくなった後も、しばらくの間はアラート情報が出力されるようになり、ドクター等の使用者の見落としを効果的に抑止できる。
 また図4では、通常光画像としてIMN1~IMN9が取得され、特殊光画像としてIMS1~IMS9が取得されている。これらのIMN1~IMN9の各通常光画像は、IMS1~IMS9の各特殊光画像に対応して取得されたものである。
 そして図4のB1に示すように特殊光画像IMS1において病変部等である注目領域が検出されると、B2に示すような経過時間が設定される。そしてB2の経過時間の設定により、この経過時間内の通常光画像IMN2~IMN6が表示態様変更処理の対象になり、IMN2~IMN6の表示態様が変更された画像が表示画像として表示される。
 また図4のB2に示す経過時間内に、B3に示すように、次の特殊光画像IMS2において注目領域が検出されると、B4に示すように経過時間が再設定される。具体的にはB3の注目領域の検出タイミングを起点とした新たな経過時間が設定されて、経過時間が延長される。このB4の経過時間の再設定により、通常光画像IMN2~IMN6に加えてIMN7も表示態様変更処理の対象になり、通常光画像IMN2~IMN7の表示態様が変更された画像が表示画像として表示される。そしてB5の特殊光画像IMS3では注目領域が検出されなかったため、経過時間の再設定は行われず、B6の通常光画像IMN8は表示態様変更処理の対象にはならず、表示態様は変更されない。
 以上の本実施形態の手法によれば、通常光画像(第1の画像)と特殊光画像(第2の画像)を取得し、例えば特殊光画像の画素の特徴量に基づき注目領域を検出し、検出結果に基づいて経過時間の設定処理を行い、設定された経過時間に基づいて表示画像の表示態様設定処理を行う。このため、動状態での観察において注目領域が短時間しか検出されない場合でも、ドクター等の使用者は現在位置の近傍に注目領域が存在することを認識することが可能になる。従って、注目領域の見落としを抑止し、信頼性の高い識別が可能になる。特に図3のA5に示すように特殊光画像において注目領域が検出されなくなった場合にも、経過時間内であればA6に示すように表示画像の表示態様が変更される。従って、図2のようにドクター等の使用者が機器の操作に気をとられていて、注目領域を見逃してしまった場合にも、しばらくの間はアラート情報が出力されるようになる。これにより、注目領域の存在を使用者に気づかせることが可能になり、更に信頼性の高い識別が可能になる。
 また本実施形態では、後述するように、所定の周期期間毎に通常光画像と特殊光画像を取得し、且つ、通常光画像の取得割合を特殊光画像より高めている。このため、基本となる通常光画像の時間的分解能の低下を抑制し、高品位な通常光画像が得ることが可能になる。更に、図3のA4に示すように、通常光画像の例えば周縁部をアラート領域に設定してアラート情報(アラート画像)を付加しているため、通常光画像の観察を妨げずに良好な操作性を有する画像処理装置を提供できる。
 2.第1の構成例
 2.1 全体構成
 図5に、以上のような手法を実現する本実施形態の第1の構成例を示す。この第1の構成例は、本実施形態の画像処理装置90及びこの画像処理装置90を含む内視鏡システム(内視鏡装置)の構成例である。なお本実施形態の画像処理装置90、内視鏡システムは図5の構成に限定されず、その構成要素の一部を省略したり、他の構成要素を追加するなどの種々の変形実施が可能である。
 内視鏡先端部(挿入部)にあるレンズ系100(広義には光学系)及びCCD101(広義には撮像素子)を介して撮影された映像信号は、ゲインアンプ104にて増幅され、A/D変換部105にてデジタル信号に変換される。内視鏡先端部では、照明光源102からの照明光が、回転フィルタ103に装着されたフィルタ(F1、F2)を透過し、その透過光が光ファイバーを経由して被写体に照射される。A/D変換部105からのデジタルの映像信号は、バッファ106を介してWB(ホワイトバランス)部107、測光評価部108、切換部109に転送される。WB部107はゲインアンプ104へ接続され、測光評価部108は照明光源102、ゲインアンプ104へ接続されている。
 図5に示すように本実施形態の画像処理装置90(画像処理部)は、切り替え部109、第1画像取得部110、第2画像取得部111、注目領域検出部112、経過時間設定部113、表示態様設定部114を含む。なおこれらの構成要素の一部を省略したり、他の構成要素を追加するなどの種々の変形実施が可能である。
 切換部109は、第1画像取得部110及び第2画像取得部111へ接続されている。第1画像取得部110は、表示態様設定部114を介して液晶ディスプレイなどの表示部115(広義には出力部)へ接続されている。第2画像取得部111は注目領域検出部112へ、注目領域検出部112は経過時間設定部113へ、経過時間設定部113は表示態様設定部114へ接続されている。
 マイクロコンピュータなどで実現される制御部116は、回転フィルタ103、ゲインアンプ104、A/D変換部105、WB部107、測光評価部108、切換部109、第1画像取得部110、第2画像取得部111、注目領域検出部112、経過時間設定部113、表示態様設定部114、表示部115と双方向に接続されている。また、外部I/F(インターフェース)部117は制御部116に双方向に接続されている。この外部I/F部117は、電源スイッチ、シャッターボタン、撮影時の各種モードの切り替えなどの設定を行うためのインターフェースを備える。
 次に図5の第1の構成例の動作について説明する。使用者が、外部I/F部117を介して撮影条件を設定した後に、シャッターボタンを押すことで撮像モードに移行する。レンズ系100、CCD101を介して撮影された映像信号はアナログ信号として所定時間間隔で連続的に出力される。本実施形態においては上記所定時間間隔として1/30秒を想定する。また、CCD101としてはBayer型原色フィルタを前面に配置した単板CCDを想定する。
 図6(A)に、Bayer型原色フィルタの構成例を示す。Bayer型は2×2画素を基本単位とし、赤(R)、青(B)フィルタが1画素ずつ、緑(G)フィルタが2画素配置される。図6(B)は、三種類のカラーフィルタR、G、Bの分光特性を示す。
 更に、本実施形態では、照明光源102としてキセノンなどの通常の白色光用の光源を、回転フィルタ103には二種類のフィルタを装着されていることを想定する。上記二種類のフィルタは、一つは通常光画像用フィルタF1、もう一つは特殊光画像用フィルタF2である。
 図7(A)に、照明光源102の照明光の分光特性と通常光画像用フィルタF1を組み合わせた場合の分光特性を示す。通常光画像用フィルタF1は、可視域全体において均一に透過する特性を有し、組み合わせた場合の分光特性としては照明光源102の照明光の分光特性と等しくなる。図6(B)に示されるBayer型CCDの分光特性と合わせて、通常光画像のR、G、B信号が得られることになる。
 図7(B)に、照明光源102の照明光の分光特性と特殊光画像用フィルタF2を組み合わせた場合の分光特性を示す。特殊光画像用フィルタF2は、例えば特開2002-95635に開示されるように、表層の血管情報を得る青色光の狭帯域(390~445nm)と、深層の血管情報を得る緑色光の狭帯域(530~550nm)のみを透過する特性を有し、組み合わせた場合の分光特性としては青色光の狭帯域と緑色光の狭帯域の2つの狭帯域からなる分光特性となる。図6(B)に示されるBayer型CCDの分光特性と合わせて、B信号は青色光の狭帯域が、G信号は緑色光の狭帯域が、R信号は0の信号が特殊光画像として得られることになる。
 回転フィルタ103における通常光画像用フィルタF1と特殊光画像用フィルタF2の円周方向での面積比は、29:1になるように設定されている。また、回転フィルタ103は1回転/秒の速度で回転していると想定する。この場合には、周期期間(T)は1秒となり、通常光画像用の照明を照射する期間(T1)は29/30秒となり、特殊光画像用の照明を照射する期間(T2)は1/30秒となる。本実施形態において映像信号は1/30秒で撮影されるため、1秒を周期期間として、29枚の通常光画像と1枚の特殊光画像が交互に得られることになる。このため、通常光画像に関する時間的分解能は十分に維持される。
 例えば図8に示すように第1画像取得部110は、所定の周期期間(T)毎に少なくとも1フレーム分の通常光画像(第1の画像)を取得し、具体的にはKフレーム分の通常光画像IN1~IN29(K枚の特殊光画像)を取得する。また第2画像取得部111は、周期期間(T)毎に少なくとも1フレーム分の特殊光画像を取得し、具体的にはLフレーム分の特殊光画像IS1(L枚の特殊光画像)を取得する。ここで通常光画像IN1~IN29は、図5の通常光画像用フィルタF1を介して照明光を被写体に照明した時に得られる画像であり、特殊光画像IS1は、特殊光画像用フィルタF2を介して照明した時に得られる画像である。
 そして図8では、K=29、L=1となっており、K>Lの関係が成り立っている。このようにK>Lの関係が成り立つことで、各周期期間(各画像取得期間)において取得される画像の枚数は、通常光画像の方が多くなる。従って、通常光画像に関する時間的分解能は十分に維持されるようになり、特殊光画像により注目領域を検出したことに起因する表示画像の動画品質の劣化等を抑止できる。また特殊光画像については、例えば直接には表示部115に表示されず、注目領域の検出処理は例えばバックグランド処理として実行される。このため、各周期期間で取得される特殊光画像の枚数Lが少なくても、大きな問題は生じない。
 また図3、図4の手法で設定される経過時間の長さをTEとし、周期期間の長さをTとした場合に、図8に示すようにTE>Tの関係が成り立っている。このようにすることで、経過時間の長さTEを周期期間の長さTに対して十分長くすることが可能になる。従って、図4のB5のように注目領域が検出されなくなった後も、B7に示すように、経過時間が経過するまでは、しばらくの間、注目領域のアラート情報を表示できるようになる。
 内視鏡先端部に設けられる回転フィルタ103の回転は、制御部116の制御に基づいて、CCD101の撮影動作と同期して行われる。撮影動作により得られたアナログの映像信号はゲインアンプ104にて所定量増幅され、A/D変換部105にてデジタル信号へ変換されてバッファ106へ転送される。バッファ106は、1枚分の通常光画像又は特殊光画像のデータを記録可能であり、撮影にともない画像が上書きされることになる。
 バッファ106内の通常光画像は、制御部116の制御に基づいて、所定の時間間隔で間欠的にWB部107及び測光評価部108へ転送される。WB部107では所定レベルの信号を色フィルタに対応する色信号毎に積算することで、ホワイトバランス係数を算出する。上記ホワイトバランス係数をゲインアンプ104へ転送し、色信号毎に異なるゲインを乗算させることで、ホワイトバランス調整を実行する。測光評価部108は、適正露光となるよう照明光源102の光量やゲインアンプ104の増幅率などを制御する。
 切換部109は、制御部116の制御に基づき、バッファ106内に通常光画像が記録されている場合は第1画像取得部110へ、特殊光画像が記録されている場合は第2画像取得部111へ、それぞれの画像を転送する。
 第1画像取得部110は、制御部116の制御に基づき、切換部109から単板状態の通常光画像を読み込み、公知の補間処理、階調処理などを行い、処理後の通常光画像を表示態様設定部114へ転送する。
 第2画像取得部111は、制御部116の制御に基づき、切換部109から単板状態の特殊光画像を読み込み、公知の補間処理、階調処理などを行う。さらに特開2002-95635に開示されるように、青色光の狭帯域に対応するB信号と緑色光の狭帯域に対応するG信号から疑似カラー画像を生成する処理も併せて行う。処理後の特殊光画像は、注目領域検出部112へ転送される。
 注目領域検出部112は、制御部116の制御に基づき、第2画像取得部111から特殊光画像を読み込み、所定の注目領域、本実施形態においては血管が密に存在する病変部の検出処理を行う。検出処理結果は、経過時間設定部113へ転送される。
 経過時間設定部113は、制御部116の制御に基づき、注目領域検出部112から注目領域の検出処理結果を読み込み、通常光画像に対して検出処理結果に関する情報を発するアラート情報を設定する経過時間を決定する。
 本実施形態においては、注目領域が検出された場合に経過時間として例えば5周期期間である5秒間を設定し、以後、注目領域が検出されなくとも5秒間はアラート情報を設定することにする。また、設定した経過時間内に新たな注目領域が検出された場合は、図4のB4で説明したように、この時点を起点に新たに5秒間の経過時間が設定される。経過時間設定部113は、現時点(現時刻)が、設定された経過時間内に属するのか否かを判断し、この判断結果を表示態様設定部114へ転送する。
 表示態様設定部114(表示態様決定部、表示制御部)は、制御部116の制御に基づき、経過時間設定部113から経過時間内に属するのか否かの判断結果を読み込み、経過時間内に属する場合には、通常光画像に対してアラート情報(アラート領域)を設定(付加、重畳)する処理を選択する。一方、現時点が経過時間内に属さない場合には、特に処理を行わない。この場合に、アラート情報が設定される通常光画像は、注目領域が検出された特殊光画像の以降に取得される通常光画像である。例えば図4のB1の特殊光画像IMS1で注目領域が検出された場合には、特殊光画像IMS1以降に取得された通常光画像IMN2に対してアラート情報が設定(付加、重畳)されて表示態様が変更される。
 表示態様設定部114で生成された表示画像は表示部115へ転送され、順次表示される。アラート情報の設定(表示態様の変更)が選択された場合には、通常光画像にアラート情報が設定された画像が表示画像として転送され、アラート情報の非設定(表示態様の非変更)が選択された場合には、通常光画像がそのまま表示画像として転送される。
 なお図5では出力部の例として表示部115を示しているが、本実施形態の出力部はこれに限定されず、ハードディスクやメモリーカードなどの記録媒体に通常光画像を順次記録保存する形態で実現してもよい。またアラート情報として、画像ではなく音のアラート情報を出力してもよい。
 以上のように本実施形態では、図8に示すように第1画像取得部110は周期期間(T)毎に少なくとも1フレーム分(Kフレーム分)の通常光画像を取得し、第2画像取得部111は、周期期間毎に少なくとも1フレーム分(Lフレーム分)の特殊光画像を取得する。
 そして図9(A)のC1に示すように、周期期間TN(第Nの周期期間)において特殊光画像から注目領域が検出されると、C2に示すように経過時間設定部113により経過時間が設定される。すると表示態様設定部114は、周期期間TNの後の周期期間TN+1(第N+1の周期期間)において、表示画像の表示態様を変更する処理を行う。例えば図8のG1に示す特殊光画像IS1において注目領域が検出されると、次の周期期間で取得されるG2に示すIN1以降の通常光画像に対してアラート情報が設定されて、表示態様が変更される。
 そして図9(A)のC1に示すように周期期間TNにおいて特殊光画像から注目領域が検出され、C3に示すように周期期間TN+1において特殊光画像から注目領域が検出されなかったとする。これは図8のG1に示す特殊光画像IS1において注目領域が検出され、G3に示す特殊光画像IS1において注目領域が検出されなかった場合である。この場合には表示態様設定部114は、図9(A)に示すように、周期期間TN+1~周期期間TN+5(広義には第N+1の周期期間~第Mの周期期間)において、表示画像の表示態様を変更する。
 また図9(B)のC4に示すように周期期間TNにおいて注目領域が検出され、C5に示すように経過時間が設定された後、C6に示すように次の周期期間TN+1の特殊光画像においても注目領域が検出されたとする。これは図8のG1の特殊光画像IS1において注目領域が検出され、G3の特殊光画像IS1においても注目領域が検出された場合に相当する。この場合には図9(B)のC7に示すように経過時間が再設定されて、経過時間が延長される。そして、更にC8に示すように次の周期期間TN+2の特殊光画像においても注目領域が検出されると、C9に示すように経過時間が再設定されて、経過時間が更に延長される。このようにすれば、注目領域が検出されている限りにおいては表示画像の表示態様の変更処理が行われ、注目領域が検出されなくなった後も、経過時間が経過するまでの間は、表示態様の変更処理が続けられるようになる。
 2.2 注目領域検出部
 図10に注目領域検出部112の構成例を示す。図10の注目領域検出部112は、バッファ200、色相・彩度算出部201、注目領域判定部202、閾値用ROM203、バッファ204、信頼度算出部205を含む。なお、これらの構成要素の一部を省略したり、他の構成要素を追加するなどの種々の変形実施が可能である。
 図10において、第2画像取得部111は、バッファ200を介して色相・彩度算出部201へ接続している。色相・彩度算出部201及び閾値用ROM203は、注目領域判定部202へ接続している。注目領域判定部202は、バッファ204を介して信頼緯度算出部205へ接続している。信頼度算出部205は、経過時間設定部113へ接続している。制御部116は、色相・彩度算出部201、注目領域判定部202、閾値用ROM203、信頼度算出部205と双方向に接続されている。
 第2画像取得部111は、疑似カラー画像化された特殊光画像をバッファ200へ転送する。色相・彩度算出部201は、制御部116の制御に基づき、バッファ200から疑似カラー画像化された特殊光画像を読み込む。疑似カラー画像化された特殊光画像は、R、G、Bの3信号から構成されており、これを輝度信号Y及び色差信号Cb、Crへと、例えば下式(1)~(3)を用いて変換する。
 Y = 0.29900R+0.58700G+0.11400B 
(1)
 Cb=-0.16874R-0.33126G+0.50000B  (2)
 Cr=0.50000R-0.41869G-0.08131B   (3)
 更に、色相H、彩度Cを下式(4)、(5)を用いて算出する。
 H=tan-1(Cb/Cr)        (4)
 C=(Cb・Cb+Cr・Cr)1/2    (5)
 算出された色相H、彩度Cは、注目領域判定部202へ画素単位で順次転送される。注目領域判定部202は、制御部116の制御に基づき、色相・彩度算出部201から色相H、彩度Cを、閾値用ROM203から色相と彩度に関する閾値を読み込む。
 図11に、閾値用ROM203に記録されている閾値の一例を示す。疑似カラー画像化された特殊光画像においては、病変部などの表層の血管が密となる領域は赤褐色状に表示されることになる。このため、図11に示される扇状の領域が病変部、即ち注目領域になる。信号が8bitレベルであると仮定すると、上記注目領域は例えば下式(6)、(7)で規定できる。
 -70°< 色相H < 30°   (6)
  16 < 彩度C < 128   (7)
 閾値用ROM203には、上式(6)、(7)に示される色相Hに関する上限値及び下限値、並びに、彩度Cに関する上限値及び下限値の合計4つの閾値が記録されている。注目領域判定部202は、これらの4つの閾値を読み込む。そして上式(6)、(7)を満たす画素に関してはラベル値=1を、満たさない画素に関してはラベル値=0を、バッファ204へ出力する。これによりバッファ204には、特殊光画像の全画素に関して、注目領域に属するか否かのラベル値が記録されることになる。
 信頼度算出部205が有する面積判定部206は、制御部116の制御に基づき、バッファ204から上記ラベル値を読み込み、注目領域に属する画素数の総和を求めることで、注目領域の面積を算出する。本実施形態では、注目領域の確からしさ(病変であることの確からしさ)を示す指標である信頼度として、注目領域の面積を用いる。即ち、注目領域の面積に基づいて信頼度を算出する。そして算出された注目領域の面積が所定の閾値を超えた場合には、その注目領域は信頼度が高いと評価し、注目領域が検出されたものと判断する。例えば算出された注目領域の面積が、例えば全画像面積の1%という閾値を超えた場合には、注目領域が検出されたものと判断する。一方、算出された注目領域の面積が所定の閾値以下の場合は、その注目領域は信頼度が低いと評価し、注目領域は検出されなかったと判断する。このような注目領域の検出結果を表す検出情報は、経過時間設定部113へ転送される。
 2.3 経過時間設定部
 図12に経過時間設定部113(経過時間決定部)の構成例を示す。この経過時間設定部113は、更新部300、検出情報記録部301、制御情報出力部302(加工制御部)を含む。なおこれらの構成要素の一部を省略したり、他の構成要素を追加するなどの種々の変形実施が可能である。
 図12に示すように、注目領域検出部112は、更新部300、検出情報記録部301を介して制御情報出力部302へ接続している。制御情報出力部302は、表示態様設定部114へ接続している。制御部116は、更新部300、検出情報記録部301、制御情報出力部302と双方向に接続されている。
 電源投入などにより画像処理装置が初期化された場合に、制御部116は検出情報記録部301を初期化して、検出情報の値を初期値0に設定する。更新部300は、制御部116の制御に基づき、注目領域検出部112から特殊光画像中に注目領域が検出されたか否かの検出情報を読み込む。
 更新部300は、注目領域が検出された場合には、検出情報記録部301へ検出情報として所定の値、本実施形態においては5を出力する。一方、注目領域が検出されなかった場合には、検出情報記録部301に記録されている検出情報の値を1だけデクリメントする。もし、検出情報の値が負数になった場合は値を0に置換する。
 制御情報出力部302は、制御部116の制御に基づき、検出情報記録部301に記録される検出情報の値を読み込む。そして検出情報の値が1以上である場合には、表示態様設定部114に対して表示態様の変更(アラート情報の設定)を指示する制御情報を出力する。一方、検出情報の値が0である場合には、表示態様設定部114に対して表示態様の非変更(アラート情報の非設定)を指示する制御情報を出力する。
 本実施形態においては、図8で説明したように、周期期間(T)の長さは1秒であり、この周期期間中に1枚の特殊光画像を撮像することを想定している。このため、一旦、注目領域が検出されると、検出情報としての値が5から0にデクリメントされるのに5周期期間、即ち5秒を要することになる。従って、表示態様が変更される経過時間(アラート情報が設定される経過時間)は5秒となる。また、この5秒内に新たに注目領域が検出されると、検出情報の値が5にリセットされるため、新たに検出された時点から5秒間、表示画像の表示態様が変更されることになる。
 図13(A)、図13(B)は、本実施形態の経過時間設定手法を説明する図である。本実施形態では、検出情報記録部301は、注目領域の検出情報(各周期期間において注目領域が検出されたか否かを示す情報)を記録し、更新部300は、注目領域検出部112からの検出結果に基づいて、検出情報(カウント値)の更新処理(カウント更新処理)を行う。具体的には更新部300は、例えば図8で説明した周期期間(T)毎に検出情報の更新処理を行う。そして制御情報出力部302は、検出情報記録部301に記録される検出情報に基づいて、表示態様設定部114での表示態様設定処理を制御する制御情報を出力する。
 例えば図13(A)のD1に示すように、周期期間TNにおいて特殊光画像から注目領域が検出されたとする。この場合にはD2に示すように更新部300は、検出情報の値VDを、経過時間に対応する第1の値VD1=5に設定する。これによりD3に示すような表示態様変更処理が行われる経過時間(5秒)が設定される。
 一方、図13(A)のD4、D5に示すように、例えば周期期間TNの後の周期期間TN+1、TN+2等において特殊光画像から注目領域が検出されなかったとする。この場合には、D6、D7に示すように更新部300は、検出情報の値VDを、第1の値VD1=5から第2の値VD2=0に向かって変化させる更新処理を行う。即ち検出情報の値VDを、例えばVD2=0に向かってデクリメントする更新処理を行う。なお更新処理は、VDをインクリメントする処理であってもよい。
 そして制御情報出力部302は、検出情報の値VDがVD2=0に達するまでの間は、表示態様の変更を表示態様設定部114に指示する制御情報を出力する。一方、図13(A)のD8に示すようにVDがVD2=0に達した場合には、D9に示すように表示態様の非変更を表示態様設定部114に指示する制御情報を出力する。
 一方、図13(B)のD10では、図13(A)のD4とは異なり、周期期間TNの後の周期期間TN+1において、特殊光画像から注目領域が再度検出されている。この場合には、D11に示すように、検出情報の値VDが、第1の値VD1=5に再設定(リセット)される。そしてD12、D13に示すように、その後の周期期間TN+2、TN+3では、特殊光画像から注目領域が検出されなかったため、D14、D15に示すように更新部300は、VDを、VD1=5からVD2=0に向かって変化させる。そしてD16に示すように、VDがVD2=0に達すると、D17に示すように、表示態様の非変更が指示される。
 以上のように本実施形態では、検出情報記録部301に検出情報を記録し、図13(A)、図13(B)の手法で検出情報の更新処理を行うことで、図3、図4の手法を実現している。従って、注目領域の検出結果に基づく経過時間の設定処理や、経過時間内での注目領域の検出による経過時間の再設定処理を、簡素な構成・処理で実現することが可能になる。
 2.4 表示態様設定部
 図14に表示態様設定部114(表示状態決定部)の構成例を示す。この表示態様設定部114は、バッファ410、加工部400を含み、加工部400は、選択部401(加工法選択部)、アラート情報付加部402を含む。なおこれらの構成要素の一部を省略したり、他の構成要素を追加するなどの種々の変形実施が可能である。
 図14において、第1画像取得部110は、バッファ410を介して選択部401へ接続している。経過時間設定部113は、選択部401へ接続している。選択部401は、アラート情報付加部402及び表示部115へ接続している。アラート情報付加部402は、表示部115へ接続している。制御部116は、選択部401、アラート情報付加部402と双方向に接続されている。
 第1画像取得部110からの通常光画像はバッファ410へ転送され記録される。選択部401は、制御部116の制御に基づき、表示態様の変更・非変更を指示する制御情報を、経過時間設定部113から読み込む。また制御部116の制御に基づき、バッファ410から通常光画像を読み込む。そして、読み込まれた制御情報が、表示態様の変更(アラート情報の付加、アラート領域を重畳)を指示している場合には、バッファ410から読み込まれた通常光画像を、アラート情報付加部402へ転送する。一方、表示態様の非変更を指示している場合には、読み込まれた通常光画像を表示部115へ転送する。
 アラート情報付加部402は、制御部116の制御に基づき、選択部401から通常光画像が転送されてきた場合には、通常光画像に対してアラート情報を付加する処理を行う。図15に、アラート情報の付加処理の例を示す。図15では、通常光画像の周縁部周辺部)のアラート領域に対して、例えば赤などの警告色を重畳する処理が行われている。
 2.5 ソフトウェア処理
 以上では、画像処理装置90を構成する各部をハードウェアで構成する場合について主に説明したが、本実施形態はこれに限定されるものではない。例えば、カプセル型内視鏡などの撮像装置を用いて予め取得された画像に対して、CPUが各部の処理を行う構成とし、CPUがプログラムを実行することによってソフトウェアとして実現してもよい。或いは、各部が行う処理の一部をソフトウェアで構成することとしてもよい。
 画像処理装置90の各部が行う処理をソフトウェアとして実現する場合には、ワークステーションやパソコン等の公知のコンピュータシステムを画像処理装置として用いることができる。そして、画像処理装置90の各部が行う処理を実現するためのプログラム(画像処理プログラム)を予め用意し、この画像処理プログラムをコンピュータシステムのCPUが実行することによって実現できる。
 図16は、本変形例におけるコンピュータシステム600の構成を示すシステム構成図であり、図17は、このコンピュータシステム600における本体部610の構成を示すブロック図である。図16に示すように、コンピュータシステム600は、本体部610と、本体部610からの指示によって表示画面621に画像等の情報を表示するためのディスプレイ620と、このコンピュータシステム600に種々の情報を入力するためのキーボード630と、ディスプレイ620の表示画面621上の任意の位置を指定するためのマウス640とを備える。
 また、このコンピュータシステム600における本体部610は、図17に示すように、CPU611と、RAM612と、ROM613と、ハードディスクドライブ(HDD)614と、CD-ROM660を受け入れるCD-ROMドライブ615と、USBメモリ670を着脱可能に接続するUSBポート616と、ディスプレイ620、キーボード630及びマウス640を接続するI/Oインターフェース617と、ローカルエリアネットワーク又は広域エリアネットワーク(LAN/WAN)N1に接続するためのLANインターフェース618を備える。
 更に、このコンピュータシステム600には、インターネット等の公衆回線N3に接続するためのモデム650が接続されるとともに、LANインターフェース618及びローカルエリアネットワーク又は広域エリアネットワークN1を介して、他のコンピュータシステムであるパソコン(PC)681、サーバ682、プリンタ683等が接続される。
 そして、このコンピュータシステム600は、所定の記録媒体に記録された画像処理プログラム(例えば図18~図21)を参照して、後述する処理手順を実現するための画像処理プログラムを読み出して実行することで画像処理装置を実現する。ここで、所定の記録媒体とは、CD-ROM660やUSBメモリ670の他、MOディスクやDVDディスク、フレキシブルディスク(FD)、光磁気ディスク、ICカード等を含む「可搬用の物理媒体」、コンピュータシステム600の内外に備えられるHDD614やRAM612、ROM613等の「固定用の物理媒体」、モデム650を介して接続される公衆回線N3や、他のコンピュータシステム(PC)681又はサーバ682が接続されるローカルエリアネットワーク又は広域エリアネットワークN1等のように、プログラムの送信に際して短期にプログラムを記憶する「通信媒体」等、コンピュータシステム600によって読み取り可能な画像処理プログラムを記録するあらゆる記録媒体(記憶媒体)を含む。
 即ち、画像処理プログラムは、「可搬用の物理媒体」「固定用の物理媒体」「通信媒体」等の記録媒体にコンピュータ読み取り可能に記録されるものであり、コンピュータシステム600は、このような記録媒体から画像処理プログラムを読み出して実行することで画像処理装置を実現する。なお、画像処理プログラムは、コンピュータシステム600によって実行されることに限定されるものではなく、他のコンピュータシステム(PC)681又はサーバ682が画像処理プログラムを実行する場合や、これらが協働して画像処理プログラムを実行するような場合にも、本発明を同様に適用することができる。
 各部が行う処理の一部をソフトウェアで構成する場合の一例として、あらかじめ取得された画像に対して、画像処理装置90の処理をソフトウェアで実現する場合の処理手順を、図18~図20のフローチャートを用いて説明する。
 図18は本実施形態の全体的な処理を説明するためのフローチャートである。まず映像信号を読み込む(ステップS1)。具体的には本実施形態においてはBayer型単板CCDからの映像信号を処理することを想定し、図8にて説明したように1秒を1周期期間として、1周期期間毎に29枚(29フレーム分)の第1画像である通常光画像と1枚(1フレーム分)の第2画像である特殊光画像が交互に入力されるものとする。
 次に通常光画像と特殊光画像の切り換え処理を行い(ステップS2)、通常光画像が入力された場合には第1画像取得処理(ステップS3)に移行し、特殊光画像が入力された場合には、第2画像取得処理(ステップS4)に移行する。そして第1画像取得処理(ステップS3)に移行した場合には、第1画像である通常光画像に対して公知の補間処理、階調処理などを行う。
 一方、第2画像取得処理(ステップS4)に移行した場合には、第2画像である特殊光画像に対して公知の補間処理、階調処理などを行い、更に疑似カラー画像化処理を行う。そして注目領域の検出処理を行う(ステップS5)。次に、通常光画像に対して検出処理結果に関する情報を発するアラート情報(アラート領域)を設定(重畳)する経過時間を設定(決定)する(ステップS6)。
 表示態様設定処理(ステップS7)では、現時点が経過時間内に属する場合は、通常光画像に対してアラート情報の設定処理を行い、経過時間内に属さない場合は、アラート情報の設定処理を行わない。そして、このようにして生成された表示画像を出力する(ステップS8)。次に、全ての映像信号の処理が完了したか否かを判断し、完了していない場合はステップS2に戻り、完了した場合には処理を終了する。
 図19は、図18のステップS5の注目領域検出処理を説明するフローチャートである。まず上式(1)~(5)で説明した色相や彩度の算出処理を行う(ステップS20)。次に、上式(6)、(7)に示される閾値判定処理を行い、注目領域に属するか否かを画素単位で判定する(ステップS21)。そして、注目領域に属する画素の数の総和を求め、画素数の総和が所定の閾値を超える場合には、注目領域が検出されたものと判断し、所定の閾値以下の場合は注目領域は検出されなかったと判断する(ステップS22)。そして検出処理結果の検出情報を出力する(ステップS23)
 図20は、図18のステップS6の経過時間設定処理を説明するフローチャートである。まず検出処理結果の検出情報を読み込む(ステップS30)。そして図13(A)、図13(B)で説明した検出情報の更新処理を行う(ステップS31)。具体的には、注目領域が検出された場合には、検出情報の値VDを第1の値VD1=5に設定し、注目領域が検出されない場合には、VDを1だけデクリメントする。もし、検出情報の値VDが負数になった場合は、VD=0に設定する。次に加工法に関する制御情報の設定処理を行う(ステップS32)。具体的には、検出情報の値VDが1以上である場合は、アラート情報の付加を指示する制御情報の設定を行い、VD=0である場合、アラート情報の非付加を指示する制御情報の設定を行う。そして設定された制御情報を出力する(ステップS33)。
 図21は、図18のステップS7の表示態様設定処理を説明するフローチャートである。まず、加工法に関する制御情報を読み込む(ステップS40)。そして、読み込まれた制御情報に基づき表示態様を変更するか否かを判断し(ステップS41)、表示態様を変更する場合には、通常光画像の周縁部に赤などの警告色を重畳するアラート情報付加処理を行い、アラート情報が付加された画像を表示画像として出力する(ステップS42)。一方、表示態様を変更しない場合には、通常光画像をそのまま表示画像として出力する。
 以上のように本実施形態では、画像処理装置90は、第1画像取得部110と第2画像取得部111と注目領域検出部112と経過時間設定部113と表示態様設定部114を含む。
 第1画像取得部110は、白色光の波長帯域における情報(信号)を有する画像を、第1の画像(狭義には通常光画像)として取得する。また第2画像取得部111は、特定の波長帯域(狭義には狭帯域光や蛍光等の波長帯域)における情報(信号)を有する画像を、第2の画像(狭義には特殊光画像)として取得する。そして注目領域検出部112は、第2の画像内の画素の特徴量(狭義には色相、彩度、輝度等)に基づいて、第2の画像での注目領域を検出する。また表示態様設定部114は、第1の画像に基づき生成される表示画像(表示部115に表示される画像)の表示態様設定処理(表示態様の決定や変更の処理)を行い、経過時間設定部113は、注目領域検出部112での注目領域の検出結果(検出情報)に基づいて、経過時間の設定処理(経過時間の決定や変更の処理)を行う。
 そして本実施形態では、表示態様設定部114は、経過時間設定部113により設定された経過時間に基づいて、表示態様の設定処理を行う。例えば図3、図4で説明したように、経過時間が経過するまでの間、表示画像の表示態様を変更する処理を行う。具体的には図15に例示されるように、経過時間が経過するまでの間、注目領域についてのアラート情報が設定された表示画像を表示部115に表示する処理を行う。アラート情報は、注目領域の検出の結果を発する情報であり、例えば第1の画像の周縁部等に設定されたアラート領域に対してアラート情報(アラート画像)を設定する処理が行われる。
 このような構成の本実施形態によれば、例えば動状態での観察において注目領域が短時間しか検出されない場合でも、使用者は現在位置の近傍に注目領域が存在することを認識することができ、注目領域の見落としを抑止し、信頼性の高い識別が可能となる。また第1の画像の周縁部等にアラート情報を設定しているため、第1の画像の観察の妨げとなる事態等を抑止できる。
 なお表示画像は、少なくとも第1の画像を用いて生成されるものであればよく、例えば第1の画像と第2の画像の合成画像であってもよい。また表示画像の表示態様の変更は、図15のようなアラート情報の付加に限定されない。例えば第1の画像の周縁部以外の領域をアラート領域に設定して、アラート情報(アラート画像)を設定してもよい。また表示態様の変更処理として、第2の画像で検出された注目領域に対応する第1の画像での対応注目領域の画像を変更する処理を行ってもよい。例えば第1の画像の対応注目領域での色を所定色に近づけたり、対応注目領域の画像に対して強調処理を施したり、対応注目領域において第1の画像と第2の画像を合成(ブレンディング)する処理を行ってもよい。
 また注目領域とは、使用者にとって観察の優先順位が他の領域よりも相対的に高い領域であり、例えば、使用者が医者であり治療を希望した場合、粘膜部や病変部を写した領域を指す。また、他の例として、医者が観察したいと欲した対象が泡や便であれば、注目領域は、その泡部分や便部分を写した領域になる。即ち、使用者が注目すべき対象は、その観察目的によって異なるが、いずれにしても、その観察に際し、使用者にとって観察の優先順位が他の領域よりも相対的に高い領域が注目領域となる。また前述の式(1)~(7)で説明したように、注目領域は第2の画像の画素の特徴量(色相、彩度等)を用いて検出することができ、例えば式(6)、(7)の特徴量に対する閾値は、注目領域の種類に応じて変化する。例えば第1の種類の注目領域に対する色相、彩度等の特徴量の閾値と、第2の種類の注目領域に対する特徴量の閾値は異なった値になる。そして、注目領域の種類が変わった場合には、この特徴量の閾値を変えるだけで済み、注目領域の検出後の処理(経過時間の設定処理、表示態様の設定処理等)については、本実施形態で説明した処理と同様の処理で実現することができる。
 また本実施形態では、図3のA5、A6で説明したように、表示態様設定部114は、経過時間内に第2の画像から注目領域が検出されなかった場合にも、少なくとも経過時間が経過するまでの間は、表示画像の表示態様を変更する処理を行ってもよい。
 このようにすれば、注目領域が検出されなくなった後も、しばらくの間は、表示態様が変更された表示画像が表示されるようになるため、使用者が注目領域を見落としてしまう事態を更に効果的に抑止できる。
 また本実施形態では、図4のB3、B4で説明したように、経過時間設定部113は、経過時間内に第2の画像から注目領域が検出された場合には、注目領域の検出タイミングを起点とした新たな経過時間を設定する処理を行ってもよい。
 このようにすれば、注目領域が検出される毎に、経過時間が再設定され、経過時間が延長されるようになるため、注目領域の検出に応じた適切な経過時間の設定処理を実現できる。なお新たな経過時間を設定する起点のタイミングは、注目領域が検出された周期期間の次の周期期間内のタイミングであってもよいし、注目領域が検出された周期期間内のタイミングであってもよい。
 また本実施形態では、図8で説明したように、第1画像取得部110は、所定の周期期間(画像取得期間)毎に少なくとも1フレーム分(1枚)の第1の画像を取得し、第2画像取得部111は、周期期間毎に少なくとも1フレーム分(1枚)の第2の画像を取得する。そして表示態様設定部114は、第Nの周期期間(TN。Nは自然数)において第2の画像から注目領域が検出された場合には、第Nの周期期間の後の第N+1の周期期間(TN+1)において、表示画像の表示態様を変更する処理を行ってもよい。
 このようにすれば、各周期期間において注目領域の検出処理を行って、注目領域が検出された場合には次の周期期間以降において表示画像の表示態様を変更して、注目領域の検出を使用者に知らせることが可能になる。従って、注目領域のアラート情報等を使用者に表示する際の遅延時間を最小限に抑えることができ、注目領域の見落としを更に効果的に抑止できる。
 また本実施形態では第1画像取得部110は、周期期間毎にKフレーム分(Kは自然数)の第1の画像を取得し、第2画像取得部111は、周期期間毎にLフレーム分(Lは自然数)の第2の画像を取得する。具体的には第2画像取得部111は、周期期間毎に例えば1フレーム分(L=1)の第2の画像を取得する。そして、図8で説明したようにKとLの間にはK>Lの関係が成り立ってもよい。
 このようにすれば、周期期間毎にKフレーム分の通常光画像とLフレーム分の特殊光画像を取得し、且つ、K>Lとすることで、通常光画像の取得割合を特殊光画像よりも高めることができる。従って、基本となる通常光画像の時間的分解能の低下を抑制し、高品位な表示画像(例えば動画)を得ることが可能になる。
 なお、周期期間の長さをTとし、経過時間の長さをTEとした場合に、図3に示すようにTE>Tの関係が成り立ってもよい。
 このようにすれば、注目領域の検出単位となる期間である周期期間に比べて、経過時間を長くできるため、表示態様が変更される期間が長くなり、使用者による注目領域の見落としを効果的に抑止できる。
 また本実施形態では図9(A)のC1、C2、C3で説明したように、表示態様設定部114は、第Nの周期期間(TN)において第2の画像から注目領域が検出され、第N+1の周期期間(TN+1)において第2の画像から前記注目領域が検出されなかった場合にも、第N+1の周期期間~第Mの周期期間(TN+1~TN+5。MはM>N+1となる整数)において、表示画像の表示態様を変更する処理を行ってもよい。
 このようにすれば第N+1の周期期間(TN+1)において注目領域が検出された場合にも、少なくともその後の第Mの周期期間(TN+5)までは表示画像の表示態様が変更されるようになり、周期期間に比べて経過時間の長さを長く設定できるようになる。
 また図12で説明したように経過時間設定部113は、注目領域の検出情報を記録する検出情報記録部301と、注目領域検出部112からの検出結果に基づいて、検出情報の更新処理を行う更新部300と、検出情報記録部301に記録される検出情報に基づいて、表示態様設定部114での表示態様設定処理を制御する制御情報を出力する制御情報出力部302を含むことができる。
 このような構成にすることで、注目領域の検出情報に基づく経過時間の設定処理を実現できる。また、一旦、注目領域が検出されると、その検出情報が検出情報記録部301に記録されて保持されるため、その後に注目領域が検出されなくなった場合にも、検出情報記録部301に保持される検出情報を利用して、経過時間を設定することが可能になる。
 このとき、図13で説明したように更新部300は、第2の画像から注目領域が検出された場合には、検出情報の値VDを、経過時間に対応する第1の値VD1(例えばVD1=5)に設定する。一方、第2の画像から注目領域が検出されなかった場合には、検出情報の値VDを、第1の値VD1から第2の値VD2(例えばVD2=0)に向かって変化(デクリメント、インクリメント等)させる更新処理を行う。例えば更新部300は周期期間毎に検出情報の更新処理を行う。具体的には、第Nの周期期間(TN)において注目領域が検出された場合には、VDをVD1に設定し、第Nの周期期間(TN)の後の周期期間(TN+1、TN+2・・・)において注目領域が検出されなかった場合には、VDをVD1からVD2に向かって変化させる更新処理を行う。
 そして制御情報出力部302は、検出情報の値VDが第2の値VD2に達するまでの間は、表示画像の表示態様の変更を表示態様設定部114に指示する制御情報(制御信号、制御用フラグ)を出力し、第2の値VD2に達した場合には、表示態様の非変更を指示する制御情報を出力する。
 このようにすれば、検出情報記録部301に記録される検出情報の値の更新処理により、図3、図4等で説明した経過時間の設定処理を効率的に実現できるようになる。
 また図13(B)で説明したように、更新部300は、第Nの周期期間(TN)の後の周期期間(TN+1、TN+2・・・・)において第2の画像から注目領域が検出された場合には、検出情報の値VDを、第1の値VD1(例えばVD=VD1=5)に再設定してもよい。
 このようにすれば、経過時間内に注目領域が検出された場合に経過時間を再設定する処理を、検出情報の値の再設定により実現できるようになる。そして、注目領域が非検出になるまで検出情報の値を再設定することで、経過時間を延長することが可能になる。
 また図14に示すように表示態様設定部114は加工部400を含む。そして加工部400は、図12の制御情報出力部302からの制御情報により、表示画像の表示態様の変更が指示された場合には、第1の画像に対して加工処理(アラート情報の付加等)を施し、加工処理が施された第1の画像を表示画像として出力する。一方、制御情報により表示態様の非変更が指示された場合には、加工処理が施されていない第1の画像を表示画像として出力する。
 このようにすれば、経過時間設定部113の制御情報出力部302において制御情報を設定し、表示態様設定部114の加工部400が、この制御情報に基づいて第1の画像の加工処理を行うことで、注目領域の検出及び経過時間の設定に基づく表示態様の変更処理を実現できるようになる。そして加工部400は、経過時間設定部113からの制御情報にしたがって加工処理を行うだけで済むため、加工部400の構成や処理を簡素化できる。
 また図10に示すように注目領域検出部112は信頼度算出部205を含む。この信頼度算出部205は、検出された注目領域の確からしさを示す信頼度(注目領域であることの確からしさを示す尺度)を算出する処理を行う。具体的には、検出された注目領域の面積に基づいて、信頼度を算出する。
 このようにすれば、信頼度を用いない手法に比べて、注目領域の精度(例えば病変部を注目領域として適正に捉える精度等)を向上できる。また、面積が大きい場合は注目領域とすて検出され、小さい場合は注目領域として検出されなくなるため、ノイズの影響等を軽減できる。
 なお、本実施形態では注目領域が検出された後の経過時間として、5周期期間(5秒)を想定したが、本実施形態はこれに限定されず、任意の経過時間の設定が可能である。或いは、外部I/F部117を介して使用者が任意の経過時間を設定できるようにしてもよい。また、回転フィルタ103における回転速度を1回転/秒、通常光画像用フィルタF1と特殊光画像用フィルタF2の円周方向での面積比を29:1とを想定したが、本実施形態はこれに限定されず、自由な設定が可能である。例えば基本となる通常光画像の時間的分解能を優先しながら、特殊光画像の配分(Kに対するLの比率)を増やす構成も可能である。
 また本実施形態では撮像系にBayer型原色フィルタを前面に配置した単板CCDを想定したが、本実施形態はこれに限定されない。例えば、二板、三板のCCDにも適用可能である。また、特殊光画像として特開2002-95635に開示される青色光と緑色光の狭帯域を使用する構成を想定したが、このような構成に限定される必要はない。例えば、特開昭63-122421に開示されるような蛍光を使用する構成や、赤外観察などの特殊光画像へも適用可能である。更に、通常光画像の撮影と特殊光画像の撮影のため回転フィルタ103を使用する構成想定したが、このような構成に限定される必要はない。例えば、LED光源などを使用し、白色光と狭帯域光を光源自体を切り換える構成で実現することも可能である。
 また本実施形態ではレンズ系100、CCD101、照明光源102、回転フィルタ103、ゲインアンプ104、A/D変換部105、WB部107、測光評価部108からなる撮像部と一体化した構成を想定したが、本実施形態はこのような構成に限定されない。例えば、カプセル型内視鏡のように別体の撮像部で撮像された映像信号を未処理のRawデータ形態で記録媒体に保存し、記録媒体からの映像信号を別途処理することも可能である。
 また本実施形態は、本実施形態の各部(第1画像取得部、第2画像取得部、注目領域検出部、表示態様設定部、経過時間設定部、動き量検出部等)としてコンピュータを機能させるプログラムにも適用できる。
 これにより、例えばカプセル型内視鏡などにように、まず画像データを蓄積し、その後蓄積された画像データに対してPC等のコンピュータシステムでソフトウェア的に処理を行うことが可能になる。
 また本実施形態は、本実施形態の各部(第1画像取得部、第2画像取得部、注目領域検出部、表示態様設定部、経過時間設定部、動き量検出部等)を実現するプログラムコードが記録されたコンピュータプログラムプロダクトにも適用できる。
 ここでコンピュータプログラムプロダクトは、例えば、プログラムコードが記録された情報記憶媒体(DVD等の光ディスク媒体、ハードディスク媒体、メモリ媒体等)、プログラムコードが記録されたコンピュータ、プログラムコードが記録されたインターネットシステム(例えば、サーバとクライアント端末を含むシステム)など、プログラムコードが組み込まれた情報記憶媒体、装置、機器或いはシステム等である。この場合に、本実施形態の各構成要素や各処理プロセスは各モジュールにより実装され、これらの実装されたモジュールにより構成されるプログラムコードは、コンピュータプログラムプロダクトに記録される。
 3.第2の構成例
 図22に本実施形態の第2の構成例を示す。第2の構成例は、本実施形態の画像処理装置90を顕微鏡システムに適用した例である。もちろん図5のように内視鏡システムなどの他の電子機器にも第2の構成例は適用可能である。
 図22の第2の構成例は、図5の第1の構成例における経過時間設定部113、表示態様設定部114を、経過時間設定部500、表示態様設定部501に置き換えた構成になっている。基本構成は第1の構成例と同様であり、同じ構成要素には同一の名称及び符号を付している。以下、異なる部分を中心に説明する。
 顕微鏡のレンズ系100及びCCD101を介して撮影された映像信号は、ゲインアンプ104にて増幅され、A/D変換部105にてデジタル信号へ変換される。顕微鏡の対物ステージには、照明光源102からの照明光が回転フィルタ103に装着されたフィルタを透過して導かれている。第1画像取得部110は経過時間設定部500及び表示態様設定部501へ接続されている。表示態様設定部501は表示部115へ接続されている。注目領域検出部112は経過時間設定部500へ、経過時間設定部500は表示態様設定部501へ接続されている。制御部116は、経過時間設定部500、表示態様設定部501と双方向に接続されている。
 次に第2の構成例の動作について説明する。基本的には第1の構成例と同様であり、異なる部分を主に説明する。
 第1画像取得部110は、制御部116の制御に基づき、切換部109から単板状態の通常光画像を読み込み、公知の補間処理、階調処理などを行い、処理後の通常光画像を経過時間設定部500及び表示態様設定部501へ転送する。注目領域検出部112は、制御部116の制御に基づき、第2画像取得部111から特殊光画像を読み込み、注目領域(血管が密に存在する病変部等)の検出処理を行う。検出処理結果は、経過時間設定部500へ転送される。
 経過時間設定部500は、制御部116の制御に基づき、注目領域検出部112から注目領域の検出処理結果を読み込み、第1画像取得部110から2枚の通常光画像を読み込む。本実施形態においては、図8で説明したように1秒の周期期間に29枚の通常光画像と1枚の特殊光画像が得られることを想定している。このため、1枚の特殊光画像に対して29枚の通常光画像が対応することになる。以下では、1周期期間の通常光画像の動き量を求めるために、1枚目と2枚目の2フレーム分の通常光画像を読み込む。
 経過時間設定部500は、注目領域検出部112からの検出処理結果に対して、2枚の通常光画像から算出した動き量を加味して、経過時間を決定する。具体的には、経過時間設定部500は、現時点が設定された経過時間内に属するのか否かを判断し、この判断結果を表示態様設定部501へ転送する。表示態様設定部501は、制御部116の制御に基づき、経過時間設定部113から経過時間内に属するのか否かの判断結果を読み込み、経過時間内に属する場合は、アラーム情報を付加する処理を選択する。この場合のアラート情報の付加処理(アラート領域の重畳処理)としては、通常光画像に対するエッジ及び彩度の強調処理を想定する。一方、現時点が経過時間内に属さない場合は特に処理を行わない。表示態様設定部501からの表示画像は表示部115へ転送され、順次表示される。
 図23は、第2の構成例の経過時間設定手法を説明する図である。第2の構成例では、通常光画像の動き量が検出され、検出された動き量に基づいて、経過時間の設定処理が行われる。具体的には経過時間設定部113は、動き量が大きいほど経過時間を短くする設定処理を行う。また通常光画像の動き量の検出は、特殊光画像において注目領域が検出されたことを条件に実行される。
 例えば図23では、周期期間TNで取得された特殊光画像IS1において注目領域が検出されている。この場合には例えば次の周期期間TN+1で取得された例えば2枚の通常光画像IN1、IN2を用いて、これらの画像間の動き量が検出される。そして検出された動き量に応じた経過時間を設定し、第1の構成例と同様に、この経過時間内において表示態様の変更処理を行う。
 このように通常光画像の動き量に基づいて経過時間を設定すれば、被写体に対して撮像部(カメラの注視点)が高速に移動している場合には、経過時間が短くなることで、表示態様が変更される時間が短くなる。従って、被写体に対して撮像部が高速に移動することで現在位置の近傍に注目領域が存在する可能性が低い場合には、表示態様が変更される時間が短くなるため、使用者の利便性を向上できる。
 図24に経過時間設定部500の構成例を示す。なおこれらの構成要素の一部を省略したり、他の構成要素を追加するなどの変形実施が可能である。
 図24の経過時間設定部500は、図12の経過時間設定部113に対して、バッファ303、動き量検出部304、経過時間算出部305、経過時間用ROM306が追加された構成になっている。基本構成は図12の経過時間設定部113と同等であり、同一の構成要素には同一の名称及び符号を付している。以下、異なる部分を主に説明する。
 第1画像取得部110は、バッファ303を介して動き量検出部304へ接続している。動き量検出部304及び経過時間用ROM306は、経過時間算出部305へ接続している。経過時間算出部305は、検出情報記録部301へ接続している。更新部300は、検出情報記録部301及び動き量検出部304へ接続している。制御情報出力部302は、表示態様設定部501へ接続している。制御部116は、動き量検出部304、経過時間算出部305、経過時間用ROM306と双方向に接続されている。
 電源投入などにより画像処理装置が初期化された場合に、制御部116は検出情報記録部301を初期化して、検出情報の値を初期値0に設定する。更新部300は、制御部116の制御に基づき、注目領域検出部112から特殊光画像中に注目領域が検出されたか否かの検出情報を読み込む。
 更新部300は、注目領域が検出された場合には、動き量検出部304へ動き量の算出を行うよう制御信号を転送する。一方、注目領域が検出されなかった場合には、検出情報記録部301に記録されている検出情報の値を1だけデクリメントする。もし、検出情報の値が負数になった場合には0に置換する。
 動き量検出部304は、更新部300から制御信号が転送された場合にのみ、バッファ303上の通常光画像の動き量を算出する。バッファ303には、図23に示すように各周期期間の1枚目と2枚目の二枚の通常光画像IN1、IN2が記録されている。なお、動き量の算出は公知のブロックマッチング技術などを用いて算出される。算出された動き量は経過時間算出部305へ転送される。経過時間算出部305は、制御部116の制御に基づき、経過時間用ROM306から、動き量と経過時間を対応づける関係テーブルを読み込む。
 図25は、動き量と経過時間(周期期間)を対応づける関係テーブルの一例を示すものであり、動き量が増加するにつれて概ね経過時間が減少する関係にある。但し、経過時間に対しては上限値(MAX)と下限値(MIN)が設定されており、経過時間は、動き量が一定値(m1)以下では上限値(MAX)に、一定値(m2)以上では下限値(MIN)に設定される。このような関係テーブルを用いることで、動き量が増加するにつれて、表示態様を変更する経過時間は短くなる。これは、移動速度が速くなると、検出された注目領域からの距離が大きくなるため、現在位置の近傍に注目領域が存在する可能性が低くなりすぎることを防止するためである。
 経過時間算出部305は、経過時間用ROM306からの関係テーブルに基づき、動き量検出部304で算出された動き量に対する経過時間を求め、検出情報記録部301へ検出情報の値として出力する。例えば図13(A)のD1では、検出情報の第1の値はVD1=5に固定されていたが、第2の構成例では、第1の値VD1が可変になる。具体的には通常光画像の動き量が大きくなるほど、VD1は小さくなり、これにより設定される経過時間も短くなる。
 制御情報出力部302は、制御部116の制御に基づき、検出情報記録部301から検出情報の値を読み込む。検出情報の値が1以上である場合には、表示態様設定部501に表示態様の変更を指示する制御情報を出力する。一方、検出情報の値が0である場合には、表示態様設定部501に表示態様の非変更を指示する制御情報を出力する。
 図26に表示態様設定部501の構成例を示す。図26の加工部398は、図14の加工部400に対して構成が異なっており、図26では、加工部398に対して輝度・色差分離部403、エッジ強調部404、彩度強調部405、輝度・色差合成部406が追加され、アラート情報付加部402が削除された構成になっている。基本構成は図14と同様であり、同一の構成要素には同一の名称及び符号を付している。以下、異なる部分を主に説明する。
 経過時間設定部500は、選択部401へ接続している。選択部401は、輝度・色差分離部403及び表示部115へ接続している。輝度・色差分離部403は、エッジ強調部404及び彩度強調部405へ接続している。エッジ強調部404及び彩度強調部405は、輝度・色差合成部406へ接続している。輝度・色差合成部406は、表示部115へ接続している。制御部116は、輝度・色差分離部403、エッジ強調部404、彩度強調部405、輝度・色差合成部406と双方向に接続されている。
 選択部401は、制御部116の制御に基づき、経過時間設定部500から表示態様を変更するか否かの制御情報を読み込み、バッファ410から通常光画像を読み込む。制御情報が表示態様の変更を指示する場合には、通常光画像を輝度・色差分離部403へ転送し、表示態様の変更を指示しない場合には、通常光画像を表示部115へ転送する。
 輝度・色差分離部403は、制御部116の制御に基づき、選択部401から通常光画像が転送されてきた場合に、通常光画像のR、G、B信号を前述の式(1)~(3)で示される輝度信号Y及び色差信号Cb、Crへ変換する。輝度信号Yはエッジ強調部404へ、色差信号Cb、Crは彩度強調部405へ転送される。
 エッジ強調部404は、制御部116の制御に基づき、輝度信号Yに対して公知のエッジ強調処理を行う。エッジ強調処理後の輝度信号Y’は、輝度・色差合成部406へ転送される。一方、彩度強調部405は制御部116の制御に基づき、色差信号Cb、Crに対して公知の彩度強調処理を行う。彩度強調処理後の色差信号Cb’、Cr’は、輝度・色差合成部406へ転送される。
 輝度・色差合成部406は、制御部116の制御に基づき、エッジ強調部404からの輝度信号Y’と彩度強調部405からの色差信号Cb’、Cr’を合成することで、下式(7)~(9)に示すように、強調処理がなされたR’、G’、B’信号からなる画像へ変換して、表示画像として出力する。
  R’=Y’+1.40200Cr’            (7)
  G’=Y’-0.34414Cb’-0.71414Cr’ (8)
  B’=Y’+1.77200Cb’            (9)
 このように第2の構成例では、通常光画像の全体に対してアラート情報を設定する処理が行われる。
 以上のように本実施形態の第2の構成例では、経過時間設定部500は動き量検出部304を含む。そして動き量検出部304は、第1画像取得部110により取得された第1の画像の動き量を検出する。
 そして図23で説明したように、経過時間設定部500は、動き量検出部304で検出された動き量に基づいて、経過時間の設定処理を行う。具体的には、動き量が大きいほど経過時間を短くする設定処理を行う。
 このような構成によれば、第1の画像の動き量に基づいて経過時間を設定しているため、第1の画像の動き量が大きく、撮像部が高速に移動していると判断される場合には、経過時間が短い長さに設定され、表示態様の変更時間も短くなる。従って、撮像部の高速移動時にアラート情報が頻繁に表示されてしまう事態を抑止でき、使い勝手の良い画像処理装置を提供できるようになる。
 また本実施形態では、動き量検出部304は、第2の画像において注目領域が検出された場合に、第1の画像の動き量を検出してもよい。
 このようにすれば、注目領域が検出されなかった場合には、第1の画像の動き量の検出処理は行われないようになり、負荷の重い動き量検出処理が無駄に行われてしまう事態を抑止できる。従って、第1の画像の動き量を利用したインテリジェントな経過時間の設定処理を、より少ない処理負荷で実現できる。
 また図24に示すように、経過時間設定部500は、動き量検出部304に加えて、検出情報記録部301、更新部300、制御情報出力部302を含む。そして更新部300は、動き量検出部304で検出された動き量に基づいて、検出情報の値を設定する。
 具体的には更新部300は、第2の画像から注目領域が検出された場合には、検出情報の値VDを、検出された動き量に応じて値が変化する第1の値VD1に設定する。即ち図13(A)に示すように、D1のように注目領域が検出されると、検出情報の値VDをVD1に設定する。但し、第2の構成例では、このVD1の値は、動き量に応じて値が変化し、例えば動き量が大きいほどVD1の値は小さくなる。一方、更新部300は、第2の画像から注目領域が検出されなかった場合には、図13(A)のD6、D7と同様に、検出情報の値VDを第1の値VD1から第2の値VD2に向かって変化させる更新処理を行う。
 そして制御情報出力部302は、VDがVD2(=0)に達するまでの間は、表示画像の表示態様の変更を指示する制御情報を出力し、VDがVD2に達した場合には、表示態様の非変更を指示する制御情報を出力する。
 このようにすれば、検出情報記録部301に記録される検出情報の値の更新処理により、動き量に応じた経過時間の設定処理を効率的に実現できるようになる。また、動き量に応じて値が変化する第1の値VD1を検出情報記録部301に設定するだけで、動き量に応じた経過時間の設定処理を実現できるため、処理や構成の簡素化を図れる。
 また本実施形態では、図26の表示態様設定部501は、第1の画像のエッジ及び彩度の少なくとも1つを強調する処理を行う。
 このように、表示態様の変更処理として、通常光画像全体のエッジや彩度を強調する処理を行って、表示画像を生成すれば、使用者にとって違和感が少なく、使い勝手の良い画像処理装置を提供することが可能になる。
 なお、第2の構成例では、経過時間の設定に通常光画像の動き量を使用する場合について説明したが、第2の構成例はこのような構成に限定されない。例えば第1の構成例と同様に固定的な経過時間を設定する方法も可能である。逆に、第1の構成例において通常光画像の動き量を使用する構成を適用することも可能である。
 また、第2の構成例では、表示態様の変更処理として、通常光画像全体のエッジや彩度を強調する構成を採用したが、第2の構成例はこのような構成に限定されない。例えば第1の構成例と同様に、通常光画像の周縁部にアラート情報を付加する構成を採用してもよい。逆に、第1の構成例において通常光画像全体のエッジや彩度を強調する構成を採用してもよい。更に、上記では、ハードウェアによる処理を前提として説明したが、第2の構成例はこれに限定されない。例えば第1の構成例と同様にソフトウェア処理により実現してもよい。
 4.第3の構成例
 図27に本実施形態の第3の構成例を示す。図27は面順次方式の内視鏡システムへの適用例である。この第3の構成例は図5の第1の構成例におけるCCD101、回転フィルタ103、切換部109をそれぞれCCD550、回転フィルタ551、切換部552に置換した構成になっている。基本構成は第1の構成例と同様であり、同一の構成要素には同一の名称及び符号を付している。以下、異なる部分を主に説明する。
 内視鏡先端部にあるレンズ系100及びCCD550を介して撮影された映像信号は、ゲインアンプ104にて増幅され、A/D変換部105にてデジタル信号へ変換される。内視鏡先端部では、照明光源102からの照明光が、回転フィルタ551に装着されたフィルタを透過し、透過光が光ファイバーを経由して被写体に照射される。制御部116は、回転フィルタ551、切換部552と双方向に接続されている。
 次に第3の構成例の動作を説明する。基本的には第1の構成例と同様であり、異なる部分を主に説明する。
 レンズ系100、CCD550を介して撮影された映像信号はアナログ信号として出力される。なお、本実施形態ではCCD550として白黒用の単板CCDを、照明光源102としてはキセノンなどの通常の白色光用の光源を想定する。
 また回転フィルタ551には、通常光画像のR、G、B用の分光特性を有する三枚で一組をなすフィルタが29組実装されている。また第1の構成例と同様に、青色光の狭帯域(390~445nm)と緑色光の狭帯域(530~550nm)と遮光用のフィルタの三枚で一組をなすフィルタが1組実装されている。
 図28は、これらのR、G、Bフィルタと、青色光の狭帯域(B2)、緑色光の狭帯域(G2)のフィルタの分光特性を示す。CCD550は1/90秒間隔で撮像し、回転フィルタ551は1回転/秒の速度で回転していることを想定する。
 R、G、Bの3信号からなる通常光画像については、3×1/90=1/30秒で回転フィルタ551が1回転する間に、29枚の通常光画像が取得される。一方、特殊光画像については、R信号として遮光用のフィルタ、G信号として緑色光の狭帯域フィルタ(G2)、B信号として青色光の狭帯域フィルタ(B2)で撮像される。結果として3×1/90=1/30秒で回転フィルタ551が1回転する間に、1枚の特殊光画像が取得される。
 バッファ106は、1枚の通常光画像又は特殊光画像を記録可能で、撮影にともない上書きされることになる。切換部552は、制御部116の制御に基づき、バッファ106内にR、G、Bの3信号からなる通常光画像を第1画像取得部110へ転送する。また、青色光の狭帯域と緑色光の狭帯域の2成分からなる特殊光画像が記録されている場合には、第2画像取得部111へ特殊光画像を転送する。
 第1画像取得部110は、制御部116の制御に基づき、切換部552から通常光画像を読み込み、公知の階調処理などを行い、処理後の通常光画像を表示態様設定部114へ転送する。第2画像取得部111は、制御部116の制御に基づき、切換部552から特殊光画像を読み込み、公知の階調処理などを行う。更に、疑似カラー画像を生成する処理も併せて行う。以後の処理は、図5に示す第1の構成例と同様である。
 以上の第3の構成例においても、通常光画像と特殊光画像を取得し、特殊光画像の画素の特徴量に基づき注目領域を検出し、検出結果に基づいて経過時間を設定する。そして決定された経過時間に基づいて表示画像の表示態様の設定処理が行われる。このため、動状態での観察において注目領域が短時間しか検出されない場合でも、使用者は現在位置の近傍に注目領域が存在することを認識することができ、注目領域の見落としを抑止し、信頼性の高い識別が可能となる。また、所定の周期期間毎に通常光画像と特殊光画像を交互に取得し、且つ、通常光画像の取得割合を特殊光画像よりも高めている。このため、基本となる通常光画像の時間的分解能の低下を抑制し、高品位な表示画像を取得できる。更に通常光画像の周縁部にアラート情報が設定されるため、通常光画像の観察を妨げずに良好な操作性を有する画像処理装置を提供できる。
 以上では本実施形態の第1~第3の構成例について説明したが、本実施形態はこれに限定されるものではなく、種々の変形実施が可能である。
 例えば本実施形態における特定の波長帯域は、白色光の波長帯域よりも狭い帯域である(NBI:Narrow Band Imaging)。例えば、通常光画像および特殊光画像は生体内を写した生体内画像であり、生体内画像に含まれる特定の波長帯域は、血液中のヘモグロビンに吸収される波長の波長帯域である。このヘモグロビンに吸収される波長は、例えば390ナノメータ~445ナノメータ(第1の狭帯域光。狭帯域光のB2成分)、または530ナノメータ~550ナノメータ(第2の狭帯域光。狭帯域光のG2成分)である。
 これにより、生体の表層部及び、深部に位置する血管の構造を観察することが可能になる。また得られた信号を特定のチャンネル(G2→R、B2→G,B)に入力することで、扁平上皮癌等の通常光では視認が難しい病変などを褐色等で表示することができ、病変部の見落としを抑止することができる。なお、390nm~445nmまたは530nm~550nmとは、ヘモグロビンに吸収されるという特性及び、それぞれ生体の表層部または深部まで到達するという特性から得られた数字である。ただし、この場合の波長帯域はこれに限定されず、例えばヘモグロビンによる吸収と生体の表層部又は深部への到達に関する実験結果等の変動要因により、波長帯域の下限値が0~10%程度減少し、上限値が0~10%程度上昇することも考えられる。
 また、本実施形態では、生体内画像に含まれる特定の波長帯域は、蛍光物質が発する蛍光の波長帯域であってもよい。例えば、特定の波長帯域は、490ナノメータ~625ナノメータの波長帯域であってもよい。
 これにより、AFI(Auto Fluorescence Imaging)と呼ばれる蛍光観察が可能となる。励起光(390nm~470nm)を照射することで、コラーゲンなどの蛍光物質からの自家蛍光(intrinsic fluorescence。490nm~625nm)を観察することができる。このような観察では病変を正常粘膜とは異なった色調で強調表示することができ、病変部の見落としを抑止すること等が可能になる。なお490nm~625nmという数字は、前述の励起光を照射した際、コラーゲン等の蛍光物質が発する自家蛍光の波長帯域を示したものである。ただし、この場合の波長帯域はこれに限定されず、例えば蛍光物質が発する蛍光の波長帯域に関する実験結果等の変動要因により、波長帯域の下限値が0~10%程度減少し、上限値が0~10%程度上昇することも考えられる。また、ヘモグロビンに吸収される波長帯域(540nm~560nm)を同時に照射し、擬似カラー画像を生成してもよい。
 また、本実施形態では、生体内画像に含まれる特定の波長帯域は、赤外光の波長帯域であってもよい。例えば、特定の波長帯域は、790ナノメータ~820ナノメータ、または905ナノメータ~970ナノメータの波長帯域であってもよい。
 これにより、IRI(Infra Red Imaging)と呼ばれる赤外光観察が可能となる。赤外光が吸収されやすい赤外指標薬剤であるICG(インドシアニングリーン)を静脈注射した上で、上記波長帯域の赤外光を照射することで、人間の目では視認が難しい粘膜深部の血管や血流情報を強調表示することができ、胃癌の深達度診断や治療方針の判定などが可能になる。なお、790nm~820nmという数字は赤外指標薬剤の吸収がもっとも強いという特性から求められ、905nm~970nmという数字は赤外指標薬剤の吸収がもっとも弱いという特性から求められたものである。ただし、この場合の波長帯域はこれに限定されず、例えば赤外指標薬剤の吸収に関する実験結果等の変動要因により、波長帯域の下限値が0~10%程度減少し、上限値が0~10%程度上昇することも考えられる。
 また、本実施形態では、図5等に示す第2画像取得部111が、取得された白色光画像(第1の画像)に基づいて特殊光画像(第2の画像)を生成してもよい。
 具体的には、この第2画像取得部111は、取得された白色光画像から、白色光の波長帯域における信号を抽出する信号抽出部を含み、第2画像取得部111は、抽出された白色光の波長帯域における信号に基づいて、特定の波長帯域における信号を含む特殊光画像を生成する。例えば、信号抽出部は、白色光画像のRGB信号から10nm刻みに被写体の分光反射率特性を推定し、第2画像取得部111は、その推定された信号成分を上記特定の帯域で積算して特殊光画像を生成する。
 より具体的には、第2画像取得部11は、白色光の波長帯域における信号から、特定の波長帯域における信号を算出するためのマトリクスデータを設定するマトリクスデータ設定部を含む。そして第2画像取得部111は、設定されたマトリクスデータを用いて、白色光の波長帯域における信号から特定の波長帯域における信号を算出して、特殊光画像を生成する。例えば、マトリクスデータ設定部は、特定の波長帯域の照射光の分光特性が10nm刻みに記述されたテーブルデータをマトリクスデータとして設定する。そして、このテーブルデータに記述された分光特性(係数)を、推定された被写体の分光反射率特性に乗算して積算し、特殊光画像を生成する。
 これにより、通常光画像に基づいて特殊光画像を生成することができるので、通常光を照射する1つの光源と、通常光を撮像する1つの撮像素子のみでもシステムを実現することが可能になる。そのため、スコープ型内視鏡の挿入部やカプセル型内視鏡を小さくすることができ、また部品が少なくてすむためコストを下げる効果も期待できる。
 また以上では、図15に示すようにアラート情報が画像である場合を例にとり説明したが、本実施形態により出力されるアラート情報は画像には限定されず、音によるアラート情報や発光素子の発光によるアラート情報であってもよい。この場合には図5等の表示態様設定部114が、アラート情報出力部として機能する。
 そして第1画像取得部110が第1の画像を取得し、第2画像取得部111が第2の画像を取得し、注目領域検出部112が、第2の画像内の画素の特徴量に基づいて注目領域を検出すると、アラート情報出力部(表示態様設定部114)が、検出された注目領域についてのアラート情報を出力する。具体的には、経過時間設定部113が、注目領域の検出結果に基づいて経過時間の設定処理を行い、アラート情報出力部が、設定された経過時間が経過するまでの間、アラート情報を出力する。アラート情報が音である場合を例にとると、図5等の表示部115が音出力部として機能し、この音出力部が、注目領域が検出されてから経過時間が経過するまでの間、注目領域の検出を知らせるアラート音をアラート情報として出力する。このようにすれば、例えば注目領域が短時間しか検出されない場合でも、使用者は現在位置の近傍に注目領域が存在することを認識することができ、注目領域の見落としを抑止し、信頼性の高い識別が可能となる。
 以上のように本実施形態について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば明細書又は図面において、少なくとも一度、より広義または同義な異なる用語(第1の画像、第2の画像等)と共に記載された用語(通常光画像、特殊光画像等)は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また画像処理装置、内視鏡システムの構成、動作も本実施形態で説明したものに限定されず、種々の変形実施が可能である。
90 画像処理装置、100 レンズ系 101 CCD、102 照明光源、
103 回転フィルタ、104 ゲインアンプ、105 A/D変換部、
106 バッファ、107 WB部、108 測光評価部、109 切換部、
110 第1画像取得部、111 第2画像取得部、112 注目領域検出部、
113 経過時間設定部、114 表示態様設定部、115 表示部(出力部)、
116 制御部、117 外部I/F部、200 バッファ、
201 色相・彩度算出部、202 注目領域判定部、203 閾値用ROM、
204 バッファ、205 信頼度算出部、206 面積判定部、
300 更新部、301 検出情報記録部、302 制御情報出力部、
303 バッファ、304 動き量検出部、305 経過時間算出部、
306 経過時間用ROM、398 加工部、400 加工部、401 選択部、
402 アラート情報付加部、403 輝度・色差分離部、404 エッジ強調部、
405 彩度強調部、406 輝度・色差合成部、410 バッファ、
500 経過時間設定部、501 表示態様設定部、550 CCD、
551 回転フィルタ、552 切換部、600 コンピュータシステム、
610 本体部、611 CPU、612 RAM、613 ROM、
614 HDD、615 CD-ROMドライブ、616 USBポート、
617 I/Oインターフェース、618 LANインターフェース、
620 ディスプレイ、621 表示画面、630 キーボード、640 マウス、
650 モデム、660 CD-ROM、670 USBメモリ、681 PC、
682 サーバ、683 プリンタ

Claims (40)

  1.  白色光の波長帯域における情報を有する画像を第1の画像として取得する第1画像取得部と、
     特定の波長帯域における情報を有する画像を第2の画像として取得する第2画像取得部と、
     前記第2の画像内の画素の特徴量に基づいて、前記第2の画像での注目領域を検出する注目領域検出部と、
     前記第1の画像に基づき生成される表示画像の表示態様設定処理を行う表示態様設定部と、
     前記注目領域の検出結果に基づいて、経過時間の設定処理を行う経過時間設定部とを含み、
     前記表示態様設定部は、
     設定された前記経過時間に基づいて前記表示態様設定処理を行うことを特徴とする画像処理装置。
  2.  請求項1において、
     前記表示態様設定部は、
     前記表示態様設定処理として、前記経過時間が経過するまでの間、前記表示画像の表示態様を変更する処理を行うことを特徴とする画像処理装置。
  3.  請求項2において、
     前記表示態様設定部は、
     前記表示態様設定処理として、前記経過時間が経過するまでの間、前記注目領域についてのアラート情報が設定された前記表示画像を表示する処理を行うことを特徴とする画像処理装置。
  4.  請求項2において、
     前記表示態様設定部は、
     前記経過時間内に前記第2の画像から前記注目領域が検出されなかった場合にも、前記経過時間が経過するまでの間は、前記表示画像の表示態様を変更する処理を行うことを特徴とする画像処理装置。
  5.  請求項4において、
     前記経過時間設定部は、
     前記経過時間内に前記第2の画像から前記注目領域が検出された場合には、前記注目領域の検出タイミングを起点とした新たな経過時間を設定する処理を行うことを特徴とする画像処理装置。
  6.  請求項1において、
     前記第1画像取得部は、
     所定の周期期間毎に少なくとも1フレーム分の前記第1の画像を取得し、
     前記第2画像取得部は、
     前記周期期間毎に少なくとも1フレーム分の前記第2の画像を取得し、
     前記表示態様設定部は、
     第Nの周期期間(Nは自然数)において前記第2の画像から前記注目領域が検出された場合には、
     前記第Nの周期期間の後の第N+1の周期期間において、前記表示画像の表示態様を変更する処理を行うことを特徴とする画像処理装置。
  7.  請求項6において、
     前記第1画像取得部は、
     前記周期期間毎にKフレーム分(Kは自然数)の前記第1の画像を取得し、
     前記第2画像取得部は、
     前記周期期間毎にLフレーム分(Lは自然数)の前記第2の画像を取得し、
     K>Lであることを特徴とする画像処理装置。
  8.  請求項7において、
     前記第1画像取得部は、
     前記周期期間毎にKフレーム分の前記第1の画像を取得し、
     前記第2画像取得部は、
     前記周期期間毎に1フレーム分の前記第2の画像を取得することを特徴とする画像処理装置。
  9.  請求項6において、
     前記周期期間の長さをTとし、前記経過時間の長さをTEとした場合に、TE>Tであることを特徴とする画像処理装置。
  10.  請求項6において、
     前記表示態様設定部は、
     前記第Nの周期期間において前記第2の画像から前記注目領域が検出され、前記第N+1の周期期間において前記第2の画像から前記注目領域が検出されなかった場合にも、
     前記第N+1の周期期間~第Mの周期期間(MはM>N+1となる整数)において、前記表示画像の表示態様を変更する処理を行うことを特徴とする画像処理装置。
  11.  請求項1において、
     前記経過時間設定部は、
     前記注目領域の検出情報を記録する検出情報記録部と、
     前記注目領域検出部からの検出結果に基づいて、前記検出情報の更新処理を行う更新部と、
     前記検出情報記録部に記録される前記検出情報に基づいて、前記表示態様設定部での前記表示態様設定処理を制御する制御情報を出力する制御情報出力部を含むことを特徴とする画像処理装置。
  12.  請求項11において、
     前記更新部は、
     前記第2の画像から前記注目領域が検出された場合には、前記検出情報の値VDを、前記経過時間に対応する第1の値VD1に設定し、
     前記第2の画像から前記注目領域が検出されなかった場合には、前記検出情報の値VDを、前記第1の値VD1から第2の値VD2に向かって変化させる更新処理を行い、
     前記制御情報出力部は、
     前記検出情報の値VDが前記第2の値VD2に達するまでの間は、前記表示画像の表示態様の変更を前記表示態様設定部に指示する前記制御情報を出力し、
     前記検出情報の値VDが前記第2の値VD2に達した場合には、前記表示画像の表示態様の非変更を前記表示態様設定部に指示する前記制御情報を出力することを特徴とする画像処理装置。
  13.  請求項11において、
     前記第1画像取得部は、
     所定の周期期間毎に少なくとも1フレーム分の前記第1の画像を取得し、
     前記第2画像取得部は、
     前記周期期間毎に少なくとも1フレーム分の前記第2の画像を取得し、
     前記更新部は、
     前記周期期間毎に前記検出情報の更新処理を行うことを特徴とする画像処理装置。
  14.  請求項13において、
     前記更新部は、
     第Nの周期期間(Nは自然数)において前記第2の画像から前記注目領域が検出された場合には、前記検出情報の値VDを、前記経過時間に対応する第1の値VD1に設定し、
     前記第Nの周期期間の後の周期期間において前記第2の画像から前記注目領域が検出されなかった場合には、前記検出情報の値VDを、前記第1の値VD1から第2の値VD2に向かって変化させる更新処理を行い、
     前記制御情報出力部は、
     前記検出情報の値VDが前記第2の値VD2に達するまでの間は、前記表示画像の表示態様の変更を前記表示態様設定部に指示する前記制御情報を出力し、
     前記検出情報の値VDが前記第2の値VD2に達した場合には、前記表示画像の表示態様の非変更を前記表示態様設定部に指示する前記制御情報を出力することを特徴とする画像処理装置。
  15.  請求項14において、
     前記更新部は、
     前記第Nの周期期間の後の周期期間において前記第2の画像から前記注目領域が検出された場合には、前記検出情報の値VDを、前記第1の値VD1に再設定することを特徴とする画像処理装置。
  16.  請求項11において、
     前記表示態様設定部は加工部を含み、
     前記加工部は、
     前記制御情報出力部からの前記制御情報により前記表示画像の表示態様の変更が指示された場合には、前記第1の画像に対して加工処理を施し、加工処理が施された前記第1の画像を前記表示画像として出力し、
     前記制御情報出力部からの前記制御情報により前記表示画像の表示態様の非変更が指示された場合には、加工処理が施されていない前記第1の画像を前記表示画像として出力することを特徴とする画像処理装置。
  17.  請求項1において、
     前記注目領域検出部は、
     検出された前記注目領域の確からしさを示す信頼度を算出する信頼度算出部を含むことを特徴とする画像処理装置。
  18.  請求項17において、
     前記信頼度算出部は、
     検出された前記注目領域の面積に基づいて、前記信頼度を算出することを特徴とする画像処理装置。
  19.  請求項1において、
     前記経過時間設定部は、
     前記第1の画像の動き量を検出する動き量検出部を含み、
     前記経過時間設定部は、
     前記動き量検出部で検出された前記動き量に基づいて、前記経過時間の設定処理を行うことを特徴とする画像処理装置。
  20.  請求項19において、
     前記経過時間設定部は、
     前記動き量が大きいほど、前記経過時間を短くする設定処理を行うことを特徴とする画像処理装置。
  21.  請求項19において、
     前記動き量検出部は、
     前記第2の画像において前記注目領域が検出された場合に、前記第1の画像の動き量を検出することを特徴とする画像処理装置。
  22.  請求項19において、
     前記経過時間設定部は、
     前記注目領域の検出情報を記録する検出情報記録部と、
     前記注目領域検出部からの検出結果に基づいて、前記検出情報の更新処理を行う更新部と、
     前記検出情報記録部に記録される前記検出情報に基づいて、前記表示態様設定部での前記表示態様設定処理を制御する制御情報を出力する制御情報出力部を含み、
     前記更新部は、
     前記動き量検出部で検出された前記動き量に基づいて、前記検出情報の値を設定することを特徴とする画像処理装置。
  23.  請求項22において、
     前記更新部は、
     前記第2の画像から前記注目領域が検出された場合には、前記検出情報の値VDを、検出された前記動き量に応じて値が変化する第1の値VD1に設定し、
     前記第2の画像から前記注目領域が検出されなかった場合には、前記検出情報の値VDを、前記第1の値VD1から第2の値VD2に向かって変化させる更新処理を行い、
     前記制御情報出力部は、
     前記検出情報の値VDが前記第2の値VD2に達するまでの間は、前記表示画像の表示態様の変更を前記表示態様設定部に指示する前記制御情報を出力し、
     前記検出情報の値VDが前記第2の値VD2に達した場合には、前記表示画像の表示態様の非変更を前記表示態様設定部に指示する前記制御情報を出力することを特徴とする画像処理装置。
  24.  請求項1において、
     前記表示態様設定部は、
     前記表示態様設定処理として、前記第1の画像のエッジ及び彩度の少なくとも1つを強調する処理を行うことを特徴とする画像処理装置。
  25.  請求項1において、
     前記特定の波長帯域は、
     前記白色光の波長帯域よりも狭い帯域であることを特徴とする画像処理装置。
  26.  請求項1において、
     前記第1の画像及び前記第2の画像は生体内を写した生体内画像であり、
     前記生体内画像に含まれる前記特定の波長帯域は、血液中のヘモグロビンに吸収される波長の波長帯域であることを特徴とする画像処理装置。
  27.  請求項26において、
     前記特定の波長帯域は、390ナノメータ~445ナノメータ、または530ナノメータ~550ナノメータであることを特徴とする画像処理装置。
  28.  請求項1において、
     前記第1の画像及び前記第2の画像は生体内を写した生体内画像であり、
     前記生体内画像に含まれる前記特定の波長帯域は、蛍光物質が発する蛍光の波長帯域であることを特徴とする画像処理装置。
  29.  請求項28において、
     前記特定の波長帯域は、490ナノメータ~625ナノメータの波長帯域であることを特徴とする画像処理装置。
  30.  請求項1において、
     前記第1の画像及び前記第2の画像は生体内を写した生体内画像であり、
     前記生体内画像に含まれる前記特定の波長帯域は、赤外光の波長帯域であることを特徴とする画像処理装置。
  31.  請求項30において、
     前記特定の波長帯域は、790ナノメータ~820ナノメータ、または905ナノメータ~970ナノメータの波長帯域であることを特徴とする画像処理装置。
  32.  請求項1において、
     前記第2画像取得部は、
     取得された前記第1の画像に基づいて、前記第2の画像を生成することを特徴とする画像処理装置。
  33.  請求項32において、
     前記第2画像取得部は、
     取得された前記第1の画像から、白色光の波長帯域における信号を抽出する信号抽出部を含み、
     前記第2画像取得部は、
     抽出された前記白色光の波長帯域における信号に基づいて、前記特定の波長帯域における信号を含む前記第2の画像を生成することを特徴とする画像処理装置。
  34.  請求項33において、
     前記第2画像取得部は、
     前記白色光の波長帯域における信号から、前記特定の波長帯域における信号を算出するためのマトリクスデータを設定するマトリクスデータ設定部を含み、
     前記第2画像取得部は、
     設定された前記マトリクスデータを用いて、前記白色光の波長帯域における信号から前記特定の波長帯域における信号を算出して、前記第2の画像を生成することを特徴とする画像処理装置。
  35.  白色光の波長帯域における情報を有する画像を第1の画像として取得する第1画像取得部と、
     特定の波長帯域における情報を有する画像を第2の画像として取得する第2画像取得部と、
     前記第2の画像内の画素の特徴量に基づいて、前記第2の画像での注目領域を検出する注目領域検出部と、
     検出された前記注目領域についてのアラート情報を出力するアラート情報出力部と、
     前記注目領域の検出結果に基づいて、経過時間の設定処理を行う経過時間設定部とを含み、
     前記アラート情報出力部は、
     設定された前記経過時間が経過するまでの間、前記アラート情報を出力することを特徴とする画像処理装置。
  36.  白色光の波長帯域における情報を有する画像を第1の画像として取得する第1画像取得部と、
     特定の波長帯域における情報を有する画像を第2の画像として取得する第2画像取得部と、
     前記第2の画像内の画素の特徴量に基づいて、前記第2の画像での注目領域を検出する注目領域検出部と、
     前記第1の画像に基づき生成される表示画像の表示態様設定処理を行う表示態様設定部と、
     前記注目領域の検出結果に基づいて、経過時間の設定処理を行う経過時間設定部と、
     前記表示画像を表示する表示部とを含み、
     前記表示態様設定部は、
     設定された前記経過時間に基づいて前記表示態様設定処理を行うことを特徴とする内視鏡システム。
  37.  白色光の波長帯域における情報を有する画像を第1の画像として取得する第1画像取得部と、
     特定の波長帯域における情報を有する画像を第2の画像として取得する第2画像取得部と、
     前記第2の画像内の画素の特徴量に基づいて、前記第2の画像での注目領域を検出する注目領域検出部と、
     前記第1の画像に基づき生成される表示画像の表示態様設定処理を行う表示態様設定部と、
     前記注目領域の検出結果に基づいて、経過時間の設定処理を行う経過時間設定部として、
     コンピュータを機能させ、
     前記表示態様設定部は、
     設定された前記経過時間に基づいて前記表示態様設定処理を行うことを特徴とするプログラム。
  38.  白色光の波長帯域における情報を有する画像を第1の画像として取得する第1画像取得部と、
     特定の波長帯域における情報を有する画像を第2の画像として取得する第2画像取得部と、
     前記第2の画像内の画素の特徴量に基づいて、前記第2の画像での注目領域を検出する注目領域検出部と、
     検出された前記注目領域についてのアラート情報を出力するアラート情報出力部と、
     前記注目領域の検出結果に基づいて、経過時間の設定処理を行う経過時間設定部として、
     コンピュータを機能させ、
     前記アラート情報出力部は、
     設定された前記経過時間が経過するまでの間、前記アラート情報を出力することを特徴とするプログラム。
  39.  白色光の波長帯域における情報を有する画像を第1の画像として取得し、
     特定の波長帯域における情報を有する画像を第2の画像として取得し、
     前記第2の画像内の画素の特徴量に基づいて、前記第2の画像での注目領域を検出し、
     前記第1の画像に基づき生成される表示画像の表示態様設定処理を行い、
     前記注目領域の検出結果に基づいて、経過時間の設定処理を行うと共に、
     設定された前記経過時間に基づいて前記表示態様設定処理を行うことを特徴とする画像処理方法。
  40.  白色光の波長帯域における情報を有する画像を第1の画像として取得し、
     特定の波長帯域における情報を有する画像を第2の画像として取得し、
     前記第2の画像内の画素の特徴量に基づいて、前記第2の画像での注目領域を検出し、
     検出された前記注目領域についてのアラート情報を出力し、
     前記注目領域の検出結果に基づいて、経過時間の設定処理を行うと共に、
     設定された前記経過時間が経過するまでの間、前記アラート情報を出力することを特徴とする画像処理方法。
PCT/JP2011/050951 2010-02-05 2011-01-20 画像処理装置、内視鏡システム、プログラム及び画像処理方法 WO2011096279A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11739628.3A EP2517614B1 (en) 2010-02-05 2011-01-20 Image processing device, endoscope system, program and image processing method
CN201180008337.1A CN102740757B (zh) 2010-02-05 2011-01-20 图像处理装置、内窥镜系统以及图像处理方法
US13/548,390 US20120274754A1 (en) 2010-02-05 2012-07-13 Image processing device, endoscope system, information storage device, and image processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-023750 2010-02-05
JP2010023750A JP5220780B2 (ja) 2010-02-05 2010-02-05 画像処理装置、内視鏡システム、プログラム及び画像処理装置の作動方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/548,390 Continuation US20120274754A1 (en) 2010-02-05 2012-07-13 Image processing device, endoscope system, information storage device, and image processing method

Publications (1)

Publication Number Publication Date
WO2011096279A1 true WO2011096279A1 (ja) 2011-08-11

Family

ID=44355281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050951 WO2011096279A1 (ja) 2010-02-05 2011-01-20 画像処理装置、内視鏡システム、プログラム及び画像処理方法

Country Status (5)

Country Link
US (1) US20120274754A1 (ja)
EP (1) EP2517614B1 (ja)
JP (1) JP5220780B2 (ja)
CN (1) CN102740757B (ja)
WO (1) WO2011096279A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2875775A4 (en) * 2012-07-17 2016-04-27 Hoya Corp IMAGE PROCESSING DEVICE AND ENDOSCOPIC INSTRUMENT
US9430833B2 (en) 2012-07-17 2016-08-30 Hoya Corporation Image processing device and endoscope device
WO2020008651A1 (ja) * 2018-07-06 2020-01-09 オリンパス株式会社 内視鏡用画像処理装置、及び、内視鏡用画像処理方法、並びに、内視鏡用画像処理プログラム
WO2020090729A1 (ja) * 2018-11-01 2020-05-07 富士フイルム株式会社 医療画像処理装置、医療画像処理方法及びプログラム、診断支援装置
US10863893B2 (en) 2015-11-10 2020-12-15 Olympus Corporation Endoscope apparatus
US10893792B2 (en) 2016-10-25 2021-01-19 Olympus Corporation Endoscope image processing apparatus and endoscope image processing method
JPWO2021039438A1 (ja) * 2019-08-27 2021-03-04
US11559186B2 (en) 2015-08-13 2023-01-24 Hoya Corporation Evaluation value calculation device and electronic endoscope system
US11571108B2 (en) 2015-08-13 2023-02-07 Hoya Corporation Evaluation value calculation device and electronic endoscope system

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5331860B2 (ja) * 2011-09-15 2013-10-30 富士フイルム株式会社 内視鏡システム及び光源装置
JP6077340B2 (ja) * 2013-03-06 2017-02-08 富士フイルム株式会社 画像処理装置及び内視鏡システムの作動方法
US9041766B1 (en) * 2013-03-14 2015-05-26 Ca, Inc. Automated attention detection
US9100540B1 (en) 2013-03-14 2015-08-04 Ca, Inc. Multi-person video conference with focus detection
JP6120762B2 (ja) * 2013-12-13 2017-04-26 オリンパス株式会社 画像処理装置
JP6392570B2 (ja) * 2014-07-11 2018-09-19 オリンパス株式会社 画像処理装置、画像処理装置の作動方法、画像処理プログラム、及び内視鏡システム
WO2017017735A1 (ja) * 2015-07-24 2017-02-02 オリンパス株式会社 画像処理装置、表示制御方法およびプログラム
CN108135457B (zh) * 2015-10-26 2020-02-21 奥林巴斯株式会社 内窥镜图像处理装置
JPWO2017073337A1 (ja) * 2015-10-27 2017-11-09 オリンパス株式会社 内視鏡装置及びビデオプロセッサ
WO2018198327A1 (ja) * 2017-04-28 2018-11-01 オリンパス株式会社 内視鏡診断支援システム、内視鏡診断支援プログラム及び内視鏡診断支援方法
WO2018203383A1 (ja) * 2017-05-02 2018-11-08 オリンパス株式会社 画像処理装置、及び、画像処理プログラム
JP7121470B2 (ja) * 2017-05-12 2022-08-18 キヤノン株式会社 画像処理システム、制御方法、及び、プログラム
JP6840846B2 (ja) 2017-06-02 2021-03-10 富士フイルム株式会社 医療画像処理装置、内視鏡システム、診断支援装置、並びに医療業務支援装置
WO2019012911A1 (ja) * 2017-07-14 2019-01-17 富士フイルム株式会社 医療画像処理装置、内視鏡システム、診断支援装置、並びに医療業務支援装置
WO2019054265A1 (ja) 2017-09-15 2019-03-21 富士フイルム株式会社 医療画像処理装置
WO2019078237A1 (ja) 2017-10-18 2019-04-25 富士フイルム株式会社 医療画像処理装置、内視鏡システム、診断支援装置、並びに医療業務支援装置
WO2019146077A1 (ja) * 2018-01-26 2019-08-01 オリンパス株式会社 内視鏡画像処理装置、内視鏡画像処理方法及び内視鏡画像処理プログラム
JP2019180966A (ja) * 2018-04-13 2019-10-24 学校法人昭和大学 内視鏡観察支援装置、内視鏡観察支援方法、及びプログラム
WO2019220859A1 (ja) 2018-05-14 2019-11-21 富士フイルム株式会社 画像処理装置、内視鏡システム、及び画像処理方法
CN112423645B (zh) * 2018-07-20 2023-10-31 富士胶片株式会社 内窥镜系统
WO2020021864A1 (ja) 2018-07-27 2020-01-30 富士フイルム株式会社 医療画像処理装置
WO2020036109A1 (ja) 2018-08-17 2020-02-20 富士フイルム株式会社 医用画像処理装置及び内視鏡システム並びに医用画像処理装置の作動方法
CN112584739B (zh) * 2018-08-20 2024-04-05 富士胶片株式会社 医疗图像处理系统
WO2020040087A1 (ja) 2018-08-20 2020-02-27 富士フイルム株式会社 医療画像処理システム
EP3841959B1 (en) 2018-08-20 2024-10-16 FUJIFILM Corporation Medical image processing device
WO2020039929A1 (ja) * 2018-08-23 2020-02-27 富士フイルム株式会社 医用画像処理装置及び内視鏡システム並びに医用画像処理装置の作動方法
JP7170050B2 (ja) * 2018-09-11 2022-11-11 富士フイルム株式会社 医療画像処理装置、医療画像処理装置の作動方法及びプログラム、内視鏡システム
CN112739250B (zh) * 2018-09-18 2024-10-15 富士胶片株式会社 医用图像处理装置、处理器装置及医用图像处理方法
EP4285809A3 (en) 2018-09-28 2024-02-21 FUJIFILM Corporation Medical image processing device, medical image processing method, program, diagnosis assistance device, and endoscope system
JP7038641B2 (ja) 2018-11-02 2022-03-18 富士フイルム株式会社 医療診断支援装置、内視鏡システム、及び作動方法
US20220133129A1 (en) * 2019-02-13 2022-05-05 Nec Corporation Surgery assistance apparatus, surgery assistance method, and computer-readable recording medium
US11607112B2 (en) * 2019-11-08 2023-03-21 Meditrina, Inc. Endoscope and method of use
JP7551465B2 (ja) 2020-11-18 2024-09-17 ソニー・オリンパスメディカルソリューションズ株式会社 医療用画像処理装置及び医療用観察システム
WO2023187886A1 (ja) * 2022-03-28 2023-10-05 日本電気株式会社 画像処理装置、画像処理方法及び記憶媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122421A (ja) 1986-11-12 1988-05-26 株式会社東芝 内視鏡装置
JP2002095635A (ja) 2000-07-21 2002-04-02 Olympus Optical Co Ltd 内視鏡装置
JP2005007145A (ja) * 2003-05-27 2005-01-13 Olympus Corp 医療用画像記録装置、内視鏡画像の表示方法、内視鏡画像の取り込み方法及びプログラム
JP2007505645A (ja) * 2003-09-16 2007-03-15 パーセプトロニクス メディカル インク 自動化内視鏡装置、診断方法及び用法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3807541B2 (ja) * 1995-01-23 2006-08-09 富士写真フイルム株式会社 乳房画像表示方法および装置
EP1302152B1 (en) * 2000-07-21 2013-03-20 Olympus Corporation Endoscope apparatus
US7172553B2 (en) * 2001-05-16 2007-02-06 Olympus Corporation Endoscope system using normal light and fluorescence
JP4245976B2 (ja) * 2003-05-16 2009-04-02 オリンパス株式会社 超音波画像処理装置
JP2006198106A (ja) * 2005-01-19 2006-08-03 Olympus Corp 電子内視鏡装置
JP4741264B2 (ja) * 2005-03-18 2011-08-03 富士フイルム株式会社 内視鏡分光画像システム装置
JP4832927B2 (ja) * 2006-03-14 2011-12-07 オリンパスメディカルシステムズ株式会社 医療用画像処理装置及び医療用画像処理方法
JP2008084110A (ja) * 2006-09-28 2008-04-10 Toshiba Corp 情報表示装置、情報表示方法及び情報表示プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122421A (ja) 1986-11-12 1988-05-26 株式会社東芝 内視鏡装置
JP2002095635A (ja) 2000-07-21 2002-04-02 Olympus Optical Co Ltd 内視鏡装置
JP2005007145A (ja) * 2003-05-27 2005-01-13 Olympus Corp 医療用画像記録装置、内視鏡画像の表示方法、内視鏡画像の取り込み方法及びプログラム
JP2007505645A (ja) * 2003-09-16 2007-03-15 パーセプトロニクス メディカル インク 自動化内視鏡装置、診断方法及び用法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2517614A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2875775A4 (en) * 2012-07-17 2016-04-27 Hoya Corp IMAGE PROCESSING DEVICE AND ENDOSCOPIC INSTRUMENT
US9430833B2 (en) 2012-07-17 2016-08-30 Hoya Corporation Image processing device and endoscope device
US11571108B2 (en) 2015-08-13 2023-02-07 Hoya Corporation Evaluation value calculation device and electronic endoscope system
US11559186B2 (en) 2015-08-13 2023-01-24 Hoya Corporation Evaluation value calculation device and electronic endoscope system
US10863893B2 (en) 2015-11-10 2020-12-15 Olympus Corporation Endoscope apparatus
US10893792B2 (en) 2016-10-25 2021-01-19 Olympus Corporation Endoscope image processing apparatus and endoscope image processing method
JP7084994B2 (ja) 2018-07-06 2022-06-15 オリンパス株式会社 内視鏡用画像処理装置、及び、内視鏡用画像処理装置の作動方法、並びに、内視鏡用画像処理プログラム
JPWO2020008651A1 (ja) * 2018-07-06 2021-03-18 オリンパス株式会社 内視鏡用画像処理装置、及び、内視鏡用画像処理方法、並びに、内視鏡用画像処理プログラム
WO2020008651A1 (ja) * 2018-07-06 2020-01-09 オリンパス株式会社 内視鏡用画像処理装置、及び、内視鏡用画像処理方法、並びに、内視鏡用画像処理プログラム
US11656451B2 (en) 2018-07-06 2023-05-23 Olympus Corporation Image processing apparatus for endoscope, image processing method for endoscope, and recording medium
CN112969403A (zh) * 2018-11-01 2021-06-15 富士胶片株式会社 医疗图像处理装置、医疗图像处理方法及程序、诊断辅助装置
JPWO2020090729A1 (ja) * 2018-11-01 2021-09-24 富士フイルム株式会社 医療画像処理装置、医療画像処理方法及びプログラム、診断支援装置
WO2020090729A1 (ja) * 2018-11-01 2020-05-07 富士フイルム株式会社 医療画像処理装置、医療画像処理方法及びプログラム、診断支援装置
JP7315576B2 (ja) 2018-11-01 2023-07-26 富士フイルム株式会社 医療画像処理装置、医療画像処理装置の作動方法及びプログラム、診断支援装置、ならびに内視鏡システム
US12020808B2 (en) 2018-11-01 2024-06-25 Fujifilm Corporation Medical image processing apparatus, medical image processing method, program, and diagnosis support apparatus
WO2021039438A1 (ja) * 2019-08-27 2021-03-04 富士フイルム株式会社 医療画像処理システム及びその動作方法
JPWO2021039438A1 (ja) * 2019-08-27 2021-03-04
JP7225417B2 (ja) 2019-08-27 2023-02-20 富士フイルム株式会社 医療画像処理システム及び医療画像処理装置の作動方法

Also Published As

Publication number Publication date
EP2517614A4 (en) 2014-05-28
EP2517614B1 (en) 2017-08-30
JP2011160848A (ja) 2011-08-25
CN102740757B (zh) 2016-02-10
CN102740757A (zh) 2012-10-17
JP5220780B2 (ja) 2013-06-26
EP2517614A1 (en) 2012-10-31
US20120274754A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP5220780B2 (ja) 画像処理装置、内視鏡システム、プログラム及び画像処理装置の作動方法
JP5658873B2 (ja) 画像処理装置、電子機器、内視鏡システム及びプログラム
WO2011080996A1 (ja) 画像処理装置、電子機器、プログラム及び画像処理方法
JP5346856B2 (ja) 内視鏡システム、内視鏡システムの作動方法及び撮像装置
CN110325100B (zh) 内窥镜系统及其操作方法
JP5802364B2 (ja) 画像処理装置、電子機器、内視鏡システム及びプログラム
US9498153B2 (en) Endoscope apparatus and shake correction processing method
JP5572326B2 (ja) 画像処理装置、撮像装置、画像処理プログラムおよび画像処理方法
JP2011255006A (ja) 画像処理装置、内視鏡装置、プログラム及び画像処理方法
JP2010172673A (ja) 内視鏡システム、内視鏡用プロセッサ装置、並びに内視鏡検査支援方法
US20160128545A1 (en) Endoscope apparatus and method for controlling endoscope apparatus
JP2003334162A (ja) 内視鏡画像処理装置
WO2009145157A1 (ja) 信号処理システム及び信号処理プログラム
JP2011234844A (ja) 制御装置、内視鏡装置及びプログラム
JP5948203B2 (ja) 内視鏡システム及びその作動方法
JP2016192986A (ja) 内視鏡システム、及び、内視鏡システムの作動方法
JP2010200883A (ja) 内視鏡画像処理装置および方法ならびにプログラム
JP2011250925A (ja) 電子内視鏡システム
JPWO2016088628A1 (ja) 画像評価装置、内視鏡システム、画像評価装置の作動方法および画像評価装置の作動プログラム
JP2004305382A (ja) 特殊光観察システム
US20220117474A1 (en) Image processing apparatus, endoscope system, and operation method of image processing apparatus
JP2010213746A (ja) 内視鏡画像処理装置および方法ならびにプログラム
JP6285373B2 (ja) 内視鏡システム、プロセッサ装置、及び内視鏡システムの作動方法
JP5856943B2 (ja) 撮像システム
RU2744882C2 (ru) Двухчастотное обследование состояния зубов

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008337.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739628

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011739628

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011739628

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE