WO2011092903A1 - Image pickup unit for endoscope - Google Patents
Image pickup unit for endoscope Download PDFInfo
- Publication number
- WO2011092903A1 WO2011092903A1 PCT/JP2010/068197 JP2010068197W WO2011092903A1 WO 2011092903 A1 WO2011092903 A1 WO 2011092903A1 JP 2010068197 W JP2010068197 W JP 2010068197W WO 2011092903 A1 WO2011092903 A1 WO 2011092903A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image sensor
- imaging unit
- electronic circuit
- endoscope
- heat
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/05—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00096—Optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2407—Optical details
- G02B23/2423—Optical details of the distal end
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2407—Optical details
- G02B23/2423—Optical details of the distal end
- G02B23/243—Objectives for endoscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2476—Non-optical details, e.g. housings, mountings, supports
- G02B23/2484—Arrangements in relation to a camera or imaging device
Definitions
- the present invention relates to an imaging unit for an endoscope, which is provided in an endoscope apparatus, and particularly has a refractive optical system prism.
- endoscopes are widely used in the medical field and the industrial field.
- an image guide is used, and what can observe the inside of a patient's body cavity, the inside of a jet engine, or the like at an eyepiece portion where a user looks into has been the mainstream.
- an imaging unit is incorporated at the distal end of the insertion section, and images the inside of a patient's body cavity, the inside of a jet engine, etc., and displays an endoscopic image on a display device such as an external monitor.
- Electronic endoscope devices have appeared.
- Such an imaging unit is provided with an image sensor that photoelectrically converts detected light into an electrical signal.
- This image sensor is mainly used in which a solid-state imaging device, an electronic circuit, and the like are packaged as one electronic component.
- an imaging unit used for an electronic endoscope is required to have a size that can be accommodated in a distal end portion that has been reduced in size as the insertion portion is reduced in diameter. Therefore, the imaging unit disposed at the distal end portion of the endoscope apparatus having a small accommodation space has a structure in which refracted light is incident on the image sensor in order to prevent the distal end portion from increasing in size in the outer diameter direction. Some use a prism.
- JP JP-A-2009-49549 discloses an imaging device technology that suppresses the temperature rise of a solid-state imaging device by covering the surface of a three-color separation prism with a heat dissipation layer formed of copper or a graphite sheet. Is disclosed.
- a cover glass and an air gap are provided between a prism and a solid-state image sensor to conduct heat generated from a peripheral circuit arranged in the vicinity of the solid-state image sensor.
- a technique of an imaging apparatus for an endoscope that prevents fogging of a cover glass is disclosed.
- JP-A-7-255004 an elastic member formed of silicon rubber having high thermal conductivity is coated along the shape of a prism on which a heating element such as a solid-state imaging device or a substrate is mounted. Furthermore, a technology of a three-plate TV camera device having a heat dissipation structure in which a heat dissipation plate is provided on an elastic member is disclosed.
- JP 2008-278382 A a thermally conductive silicon rubber sheet containing a temperature sensor is tightly sandwiched between the ground pattern portion of the substrate and the outer surface of the shield plate of the liquid crystal monitor by thermal bonding.
- An image sensor module technique for detecting an abnormal temperature rise is disclosed.
- the imaging unit having a structure that suppresses the temperature rise as in the prior art cannot be accommodated in the small distal end portion, or it becomes a cause of inhibiting the miniaturization of the distal end portion because it is accommodated in the distal end portion. It was. For this reason, in particular, an imaging unit used in an endoscope apparatus has been desired to prevent an increase in size and to sufficiently dissipate heat from the image sensor to suppress an increase in temperature.
- the present invention has been made in view of the above circumstances, and provides an imaging unit for an endoscope that prevents an increase in size and that easily diffuses the temperature of an image sensor to improve heat dissipation and suppresses a high temperature.
- the purpose is to do.
- the first endoscope imaging unit of the present invention includes an objective optical system that collects a light beam of an optical image of an incident subject, an image sensor in which a photoelectric conversion unit and an electronic circuit unit are packaged, A refractive optical system provided on one surface of the image sensor and provided with a reflective film that refracts a light beam of the optical image and forms an image on the photoelectric conversion unit; and the refractive optical system to protect the reflective film. And a protective member having a thermal conductivity higher than that of the refractive optical system.
- the second endoscope imaging unit includes: an objective optical system that collects a light beam of an optical image of an incident subject; an image sensor in which a photoelectric conversion unit and an electronic circuit unit are packaged; A substrate electrically connected to the image sensor and having a ground layer formed on the entire surface, and the substrate is disposed so as to overlap the image sensor up to a portion where the electronic circuit unit is provided. It is characterized by.
- the perspective view showing the configuration of the imaging unit Sectional view showing the configuration of the imaging unit The top view showing the configuration of the imaging unit
- FIG. 11 is a rear perspective view showing the connection state between the cooling means and the protection member of the second modification of FIG. 11.
- Sectional drawing which shows the structure of the imaging unit concerning the 3rd Embodiment of this invention. Same as above, enlarged view of the part circled in FIG. 13A Sectional drawing which shows the structure of the imaging unit of a 1st modification similarly Same as above, enlarged view of the circled part in FIG.
- FIG. 18 is a cross-sectional view showing a configuration of a tip portion provided with an imaging unit along the line XIX-XIX in FIG. Sectional drawing which shows the structure of the front-end
- FIG. 1 is a view showing an electronic endoscope system including an electronic endoscope apparatus
- FIG. 2 is an inside of a distal end portion of an insertion portion
- FIG. 3 is a perspective view showing the inside of the distal end portion where the imaging unit is disposed
- FIG. 4 is a sectional view of the distal end portion where the imaging unit is disposed
- FIG. 7 is a top view showing the configuration of the imaging unit
- FIG. 8 is a bottom view showing the configuration of the imaging unit.
- the electronic endoscope system 1 mainly includes an electronic endoscope device 2, a light source device 3, a video processor 4, and a monitor 5.
- the electronic endoscope apparatus 2 includes a long and narrow insertion section 9, an operation section 10, an electric cable, and a universal cable 17 that is a composite cable through which a light guide bundle for transmitting illumination light is inserted, It is comprised.
- the insertion portion 9 of the electronic endoscope apparatus 2 includes a distal end portion 6, a bending portion 7, and a flexible tube portion 8 in order from the distal end.
- the operation unit 10 is connected to one end of the flexible tube unit 8 of the insertion unit 9, and a treatment instrument channel through which various treatment instruments disposed in the insertion unit 9 and the rear mouth unit 11 that is a folding prevention unit are inserted.
- the treatment instrument channel insertion portion 12 that is an opening of the operation portion and the operation portion main body 13 are configured.
- the operation section main body 13 is provided with a bending operation knob 16 for bending the bending section 7 of the insertion section 9, and is provided with switches for various endoscope functions.
- a UD bending operation knob 14 for bending the bending portion 7 in the vertical direction and an RL bending operation knob 15 for bending the bending portion 7 in the left-right direction are superimposed. It is arranged.
- the universal cable 17 extended from the operation unit 10 has an endoscope connector 18 that is detachable from the light source device 3 at the extended end.
- the electronic endoscope apparatus 2 of this Embodiment transmits illumination light from the light source device 3 to the front-end
- the endoscope connector 18 is provided with a coiled coil cable 19, and an electric connector 19 a detachably attached to the video processor 4 is provided at the extended end of the coil cable 19.
- the video processor 4 is electrically connected to a monitor 5 that displays an endoscopic image, and is photoelectrically converted by an endoscope imaging unit (hereinafter simply referred to as an imaging unit) 20 of the electronic endoscope device 2 described later.
- the electrical signal is processed and output to the monitor 5 as an image signal.
- a plurality of substantially circular metal bending pieces 20a which are adjacent to each other, are rotatably connected. 20b and 20c are provided. Further, the leading edge bending piece 20a is fixed to the distal end portion 6, and here, a distal end rigid portion (also referred to as a distal end constituting portion) 30 which is a distal end frame having a substantially metal outer shape is disposed. .
- gum which is not shown here is coat
- the distal end hard portion 30 and the bending pieces 20a, 20b, and 20c are provided with a treatment instrument channel 21, a light guide bundle 22, and various electric cables 23 that are inserted into the insertion portion 9.
- the distal end hard portion 30 has holes 31 and 32 into which the treatment instrument channel 21 and the light guide bundle 22 are individually inserted and fixed via a metal holding tube (not shown), and the imaging unit 40. And a space portion 33 in which is disposed.
- the hole portions 31 and 32 and the space portion 33 are formed from the distal end to the proximal end of the distal end hard portion 30, and an opening is formed at the distal end surface and the proximal end surface of the distal end rigid portion 30.
- the imaging unit 40 is a substantially cylindrical lens frame 41 formed of metal or the like, a substantially cylindrical holding tube 42 formed of metal or the like, and an objective optical system.
- the lens frame 41 is disposed at the forefront of the imaging unit 40, and internally holds a lens group 43 that collects a light beam of an optical image of an incident subject.
- the tip portion of the holding tube 42 is fitted, and the lens frame 41 and the holding tube 42 are fixed by an adhesive 41a.
- a cover glass 42 a adhered to the distal end surface of the prism 44 and an optical adhesive is inserted and fixed to the proximal end portion of the holding tube 42.
- the light beam of the optical image indicated by the optical axis O in the drawing which is incident from the tip surface side through the lens group 43, is refracted by about 90 ° and reflected toward the lower surface.
- a protection member 45 which is a block body attached with an adhesive, is fixed to protect the reflecting film on the reflecting surface 44a. The configuration of the protection member 45 will be described in detail later.
- the image sensor 46 is joined to the lower surface of the prism 44 by an optical adhesive, and a photoelectric conversion unit 46a such as a CCD or CMOS is disposed on the surface of the upper surface of the image sensor 46 facing the lower surface of the prism 44.
- the image sensor 46 is provided with an electronic circuit unit 46b including an amplifier such as a transistor in the middle of the base end side, and the electronic circuit unit 46b is packaged together with the photoelectric conversion unit 46a. It is.
- a front end portion of the FPC 47 is electrically connected to the upper surface portion on the base end side of the image sensor 46.
- the FPC 47 extends rearward from the image sensor 46, and has a plurality of connection lands 47a (see FIG. 7) on the upper surface of the base end portion. Further, the FPC 47 is provided with an electronic component 48 on the lower surface portion of the base end portion.
- the core 25a of the cable 25 is electrically connected to each connection land 47a and the electronic component 48 by soldering or the like.
- the electric cable 23 described above is a cable in which a plurality of cables 25 are bundled and covered with an outer sheath.
- the prism 44 and the cover body 50 that is a light shielding member formed of metal or the like around the upper portion and the side portion of the protective member 45 have a predetermined distance. So as to be separated from each other.
- the imaging unit 40 is modularized with the adhesive layer 49 (see FIG. 4) formed by applying a reinforcing adhesive around the components after the components are assembled. Thereafter, the imaging unit 40 is arranged in the space 33 of the distal end hard portion 30 with the lens frame 41 fitted and fixed to the distal end hard portion 30. Further, the imaging unit 40 is fixed in the distal end hard portion 30 by filling the gap between the imaging unit 40 and the distal end hard portion 30 forming the space portion 33 with an adhesive 51 (see FIG. 4). Note that the adhesive layer 49 and the adhesive 51 may not be illustrated.
- the space portion 33 of the distal end portion 6 where the imaging unit 40 is disposed is formed with a recess 33 a in the outer diameter direction so as not to contact the electronic component 48 disposed on the lower surface of the proximal end side of the FPC 47. (See FIGS. 3 and 4).
- photographing light indicated by the optical axis O refracted by the reflecting surface 44a of the prism 44 is incident on the photoelectric conversion unit 46a of the image sensor 46 to form an image.
- the photoelectric conversion unit 46a performs photoelectric conversion by generating electric charges according to the brightness of light incident on the light receiving element.
- the CCD photoelectric conversion unit 46a when used for the image sensor 46, a high-voltage analog circuit constituted by the electronic circuit unit 46b is required, and a large amount of power is required.
- the CMOS photoelectric conversion unit 46a when used, the image sensor 46 can be driven with lower power consumption than the CCD photoelectric conversion unit 46a, but noise is generated in the captured image at low illuminance. Therefore, it is necessary to further provide a circuit for correcting noise in the electronic circuit unit 46b including the amplifier.
- the photoelectric conversion unit 46a is required to have a higher pixel, and the driving frequency becomes higher and the frequency becomes higher.
- the electronic circuit unit 46b of the image sensor 46 is driven by the photoelectric conversion unit 46a at a high frequency, and a circuit that requires large power consumption or a circuit that corrects noise is provided. There is a case. Therefore, in addition to causing the function of the image sensor 46 to deteriorate, in particular, in the electronic endoscope device 2, the heat of the electronic circuit portion 46 b of the image sensor 46 causes the prism 44, the cover glass 42 a, the holding tube 42, and the lens frame 41 to be heated. Therefore, heat is transferred to the distal end hard portion 30, and the distal end portion 6 of the insertion portion 9 may be heated.
- the distal end portion 6 may be warmed by the ambient temperature in the living body.
- the light guide bundle 22 when the light guide bundle 22 is configured to transmit illumination light, the light guide bundle 22 is heated by the transmission of illumination light.
- the tip 6 is also warmed by heat transfer.
- the imaging unit 40 of the present embodiment instead of a conventional protective member formed of the same material as the prism 44 formed of glass or the like that protects the reflecting surface 44a of the prism 44, glass or the like is used.
- the thermal conductivity of the formed prism 44 is higher than that of, for example, a sintered body such as ceramics, a synthetic resin such as silicon, a metal such as pure copper, brass, or aluminum, or ore such as sapphire or diamond.
- the protection member 45 is formed of a high (large) material, and the heat absorption and heat dissipation from the image sensor 46 that generates heat is enhanced.
- the imaging unit 40 has a configuration in which heat generated in the electronic circuit portion 46 b of the image sensor 46 that is a heat generating portion is easily transferred to the protective member 45 formed of a material having a higher thermal conductivity than the prism 44.
- the protection member 45 of the present embodiment can be configured to absorb heat generated by the electronic circuit unit 46b of the image sensor 46 from the prism 44 and diffuse and dissipate the heat absorbed around the prism 44.
- the imaging unit 40 can form the protective member 45 with substantially the same size as the conventional one, an increase in size in the outer diameter direction is prevented. As a result, the enlargement of the outer shape of the distal end portion 6 in which the imaging unit 40 is incorporated is also prevented.
- the imaging unit 40 of the present embodiment can be configured to prevent an increase in size, to easily diffuse the temperature of the image sensor 46, to improve heat dissipation, and to suppress a high temperature.
- FIG. 9 is a cross-sectional view showing the configuration of the imaging unit
- FIG. 10 shows a first modification
- cooling means is provided.
- FIG. 11 is a sectional view showing the configuration of the imaging unit
- FIG. 11 is a sectional view showing a connection state between the cooling means and the protection member
- FIG. 12 is a cooling means and protection member according to the second modification of FIG. It is a back perspective view which shows the connection state of.
- the same components as those in the first embodiment are denoted by the same reference numerals for the convenience of description, and detailed description and operational effects of those components are omitted.
- the imaging unit 40 of the present embodiment is provided with a protective member 45 having a length that overlaps the upper surface of the image sensor 46 in the portion where the electronic circuit portion 46 b is provided. .
- the protective member 45 of the present embodiment has a higher thermal conductivity than the prism 44 made of a transparent member such as glass, for example, sintered ceramics or the like.
- Body a synthetic resin such as silicon, a metal such as pure copper or aluminum, or an ore such as sapphire, and has a length up to a position covering the electronic circuit portion 46b, and is provided on the upper surface of the image sensor 46. .
- the protective member 45 has a configuration in which only the length in the longitudinal axis direction parallel to the longitudinal direction of the imaging unit 40 is extended with respect to the configuration of the first embodiment, and the size around the longitudinal axis. (Outer shape of the distal end portion 6 in the outer diameter direction) has the same dimensions as in the first embodiment.
- the protective member 45 made of a material having a higher thermal conductivity than the material of the prism 44 is placed on the upper surface of the image sensor 46 to a position where it covers the electronic circuit portion 46b. Since the heat of the electronic circuit unit 46b is directly transferred to the protection member 45 by providing the heat absorption and heat dissipation of the heat from the electronic circuit unit 46b of the image sensor 46 as compared with the first embodiment. The configuration can be improved.
- the imaging unit 40 is formed of a material having a higher thermal conductivity than the prism 44, which is disposed in the vicinity so as to cover the electronic circuit unit 46 b so that the heat of the electronic circuit unit 46 b serving as the heat generating unit in the image sensor 46.
- the protection member 45 is configured to easily transfer heat directly.
- the protection member 45 of the present embodiment further directly absorbs the heat generated by the electronic circuit unit 46b of the image sensor 46 and absorbs it in the surroundings as compared to the configuration of the first embodiment. It is possible to dissipate the generated heat and dissipate it.
- the imaging unit 40 does not change the size of the protective member 45 around the longitudinal axis, the enlargement in the outer diameter direction is prevented as in the first embodiment. Therefore, similarly to the effect of the first embodiment, the enlargement of the outer shape of the distal end portion 6 in which the imaging unit 40 is built is prevented.
- the cooling member 55 which is cooling means, such as a heat pipe and a heat radiating wire, may be connected to the base end surface.
- the cooling member 55 is extended rearward by a predetermined length, and the whole excluding the tip end portion is covered with an outer sheath 56.
- tip part of the cooling member 55 is connected with the base end surface of the protection member 45 by the adhesive part 57 with high heat conductivity which is solder or brazing, for example.
- a hole 45 a is formed in the base end surface of the protection member 45, and the distal end portion of the cooling member 55 is press-fitted into the hole 45 a, or the distal end portion of the cooling member 55. May be connected by soldering or brazing with high thermal conductivity, for example.
- the imaging unit 40 includes the cooling member 55 that moves the heat of the protection member 45 that absorbs heat generated by the electronic circuit unit 46b of the image sensor 46 to the rear, in addition to the above-described effects. Furthermore, heat can be moved to the cooling member 55 to enhance the heat diffusibility, and the heat from the image sensor 46 can be prevented from moving to the tip side. Needless to say, the cooling member 55 has a sufficient heat diffusing effect even if it is provided in the configuration of the imaging unit 40 of the first embodiment.
- FIG. 13A is a cross-sectional view showing the configuration of the imaging unit
- FIG. 13B is an enlarged view of a portion surrounded by a circle in FIG. 13A
- FIG. FIG. 14B is an enlarged view of a portion surrounded by a circle in FIG. 14A
- FIG. 15 is a cross-sectional view showing the configuration of the imaging unit showing the second modification
- FIG. 16 is a cross-sectional view showing a configuration of an imaging unit showing a third modification
- FIG. 17 is a cross-sectional view showing a configuration of an imaging unit showing a fourth modification.
- the same components as those in the first embodiment are denoted by the same reference numerals for the sake of convenience of description, and detailed descriptions and operational effects of those components are omitted.
- the FPC 47 is disposed up to a position where it overlaps the upper surface of the image sensor 46 in the portion where the electronic circuit portion 46 b is provided.
- the FPC 47 is provided with a ground layer 62a and a signal line 62b which are covered with an insulating film on a cover lay 61 such as a polyimide film.
- the ground layer 62a is patterned on substantially the entire surface of the FPC 47. That is, the FPC 47 is disposed so as to overlap the upper surface of the image sensor 46 so as to cover the electronic circuit portion 46b of the image sensor 46 including the ground layer 62a.
- the ground layer 62a is provided on the upper surface of the image sensor 46 to the position where the tip portion of the FPC 47 in which the ground layer 62a is patterned on the entire surface covers the electronic circuit portion 46b. Since the heat from the electronic circuit unit 46b is directly transferred to the layer 62a, the heat absorption and heat dissipation of the heat from the electronic circuit unit 46b that generates heat in the image sensor 46 is further improved as compared with the first embodiment. It can be configured.
- the imaging unit 40 directly transfers heat generated in the electronic circuit unit 46b of the image sensor 46, which is a heat generating unit, to the ground layer 62a of the FPC 47 disposed in the vicinity so as to cover the electronic circuit unit 46b. It is configured to be heated.
- the protection member 45 absorbs and dissipates heat from the image sensor 46 transferred to the prism 44.
- the imaging unit 40 of the present embodiment further absorbs heat generated by the electronic circuit unit 46b of the image sensor 46 directly by the ground layer 62a of the FPC 47, as compared with the configuration of the first embodiment.
- the heat moves to the rear side of the FPC 47, and the heat absorbed by the ground layer 62a is diffused around the FPC 47 to dissipate it.
- the imaging unit 40 of the present embodiment absorbs the heat generated by the electronic circuit unit 46b of the image sensor 46 by the ground layer 62a of the FPC 47 and transfers it to the rear of the FPC 47, and the heat is transferred to the periphery of the FPC 47.
- the heat of the image sensor 46 that has not been absorbed by the ground layer 62 a of the FPC 47 is absorbed and dissipated by the protective member 45 through the prism 44. Therefore, in addition to the effects of the first embodiment, the imaging unit 40 can further increase the heat diffusibility and prevent the heat of the image sensor 46 from moving to the front end side.
- the imaging unit 40 may be provided with FPCs 47 each having a ground layer 62 a patterned on substantially the entire surface, on both upper and lower surfaces of the image sensor 46.
- the FPC 47 on which the electronic component 48 is mounted on the lower surface is disposed on the lower surface of the image sensor 46 until the tip portion covers the electronic circuit portion 46b.
- the newly provided FPC 63 simply has a structure in which a ground layer 65 with an insulating coating is provided on a cover lay 64 such as a polyimide film, and the image is such that the tip portion overlaps to a position covering the electronic circuit portion 46b.
- the sensor 46 is disposed on the upper surface.
- the new FPC 63 only the ground layer 65 is patterned on almost the entire surface, and here, no other circuit configuration is mounted, and no wiring pattern is formed therefor.
- the core 25a of the cable 25 is connected to the FPC 63 by soldering or the like so as to be electrically connected to the ground layer 65.
- the heat generated in the electronic circuit portion 46b of the image sensor 46 which is a heat generating portion, is directly applied to the ground layers 62 and 65 of the two FPCs 47 and 63, respectively. Heat is transferred. Then, the heat moves to the rear side of each FPC 47, 63 by the ground layers 62, 65 of the two FPCs 47, 63 that directly absorb the heat generated by the electronic circuit portion 46b of the image sensor 46, and the absorbed heat is absorbed. It diffuses and radiates heat around each FPC 47, 63.
- the imaging unit 40 of the present modification can further improve the heat diffusibility, and can prevent the heat of the image sensor 46 from moving to the tip side. Also in this configuration, the protection member 45 absorbs and dissipates heat from the image sensor 46 transferred to the prism 44.
- the configuration in which the FPCs 47 and 63 are arranged on two different surfaces (upper and lower surfaces) of the image sensor 46 is shown, but the image sensor 46 is overlapped to a position where the tip portion covers the electronic circuit portion 46b.
- the FPC 63 may be provided on the other surface (side surface).
- such a configuration including the FPC 47 (FPC 63) in which the ground layer 62a (65) is patterned on substantially the entire surface may be provided in the configuration of the imaging unit 40 of the second embodiment.
- the protective member 45 is sufficiently made of the same material as that of the prism 44 as in the prior art, and even if only the configuration including the FPC 47 (FPC 63) of the present embodiment is provided, it has a sufficient heat diffusing effect as compared with the prior art.
- the protective member 45 is sufficiently made of the same material as that of the prism 44 as in the prior art, and even if only the configuration including the FPC 47 (FPC 63) of the present embodiment is provided, it has a sufficient heat diffusing effect as compared with the prior art.
- the present invention can also be applied to an imaging unit including various image sensors 46.
- the FPC 47 (FPC 63) may be a rigid substrate.
- the FPC 47 and the FPC 63 which are provided so as to overlap the top and bottom surfaces of the image sensor 46 up to a position where the tip portion covers the electronic circuit portion 46b, are shown in FIG. It may be provided upside down with respect to the configuration.
- the imaging unit 40 is arranged on a position where an electronic component 48 such as a capacitor constituting an electric passive element disposed in the FPC 47 covers the electronic circuit unit 46 b of the image sensor 46. It may be provided. In such a configuration, the heat of the electronic circuit unit 46, which is an electrically active element, is also transferred to the electronic component 48, so that the heat dissipation diffusivity of the imaging unit 40 can be further increased.
- an electronic component 48 such as a capacitor constituting an electric passive element disposed in the FPC 47 covers the electronic circuit unit 46 b of the image sensor 46. It may be provided.
- the heat of the electronic circuit unit 46 which is an electrically active element, is also transferred to the electronic component 48, so that the heat dissipation diffusivity of the imaging unit 40 can be further increased.
- the imaging unit 40 may be provided on the base end side with respect to the image sensor 46, and a heat radiating member 58 may be provided between the FPC 47 and the FPC 63.
- the heat radiating member 58 absorbs the heat of the electronic component 48 of the image sensor 46 which is absorbed by the FPC 47 and the FPC 63 and is transferred to the base end side to dissipate the heat. be able to.
- FIG. 18 is a cross-sectional view showing the configuration of the tip portion provided with the imaging unit
- FIG. 19 is taken along line XIX-XIX in FIG.
- FIG. 20 is a cross-sectional view showing the configuration of the distal end portion provided with the imaging unit and provided with cooling means.
- the same components as those in the first embodiment are denoted by the same reference numerals for the sake of convenience of description, and detailed descriptions and operational effects of those components are omitted.
- the distal end portion 6 of the electronic endoscope apparatus 2 of the present embodiment is provided with a cylindrical resin frame 70 on the outer peripheral portion of the distal end hard portion 30.
- the resin frame 70 is fitted and bonded to the outer peripheral portion of the distal end hard portion 30 at the distal end portion.
- the base end portion of the resin frame 70 is bonded and bonded so that the inner peripheral surface thereof is in surface contact with the outer peripheral surface of the distal end hard portion 30 (not shown).
- the distal end hard portion 30 is formed with a concave portion in the circumferential direction by scraping the outer peripheral portion of the portion to which the resin frame 70 is fitted out by a predetermined thickness around the longitudinal axis within a predetermined length range in the longitudinal direction. .
- an air layer 71 is formed between the tip hard portion 30 and the resin frame 70 in a state where the resin frame 70 is externally fitted to the tip hard portion 30.
- the resin frame 70 and the hard tip portion 30 are hermetically fitted and bonded with an adhesive or the like.
- the distal end portion 6 of the electronic endoscope apparatus 2 is insulated by the air layer 71 from the heat of the imaging unit 40 serving as a heating element disposed in the distal end hard portion 30. Due to the effect, it is difficult to be transmitted to the resin frame 70 which is the outer surface, and a temperature rise due to heat from the inside is suppressed. Thereby, the high temperature of the front-end
- a cooling member 72 that is a cooling means such as a heat pipe or a heat radiating wire may be provided in the distal end hard portion 30.
- the cooling member 72 extends rearward with a predetermined length, and is entirely covered with an outer sheath 73 except for the distal end portion.
- tip part of the cooling member 72 is connected with the inner surface of the front-end
- the distal end portion 6 of the electronic endoscope apparatus 2 of the present modification is provided with the cooling member 72 that moves the heat of the distal end hard portion 30 heated by the heat transfer from the imaging unit 40 to the rear. Since the heat is diffused by this, the internal temperature can be suppressed to a certain value or less, and in addition to the above-described effects, it is possible to further prevent the temperature from rising.
- the configuration of the distal end portion 6 of the electronic endoscope of the present embodiment described above can be used together with the imaging unit 40 described in the above-described embodiments. Further, the configuration of the FPC 47 of each of the above-described embodiments is not limited to this, and a TAB tape may be used.
- each embodiment includes various stages of the invention, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Optics & Photonics (AREA)
- Surgery (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Multimedia (AREA)
- Endoscopes (AREA)
Abstract
An image pickup unit (40) for an endoscope is provided with: an objective optical system (43) which collects the incident light flux of an optical image of a subject; an image sensor (46) in which a photoelectric conversion part (46a) and an electronic circuit part (46b) are packaged; a dioptric system (44) which is disposed on one surface of the image sensor (46) and provided with a reflective film (44a) for refracting the light flux of the optical image and focusing the optical image on the photoelectric conversion part (46a); and a protective member (45) which is joined to the dioptric system (44) so as to protect the reflective film (44a) and has higher heat conductivity than the dioptric system (44). Consequently, increase in size is prevented, and the temperature of the image sensor becomes easier to diffuse to increase heat release performance, thereby suppressing increase in temperature.
Description
本発明は、内視鏡装置に設けられ、特に、屈折光学系のプリズムを有する内視鏡用撮像ユニットに関する。
The present invention relates to an imaging unit for an endoscope, which is provided in an endoscope apparatus, and particularly has a refractive optical system prism.
近年、医療分野、および工業分野において、内視鏡が広く利用されている。従来の内視鏡では、イメージガイドが用いられ、ユーザが覗き込む接眼部にて、患者の体腔内、またはジェットエンジン内部等を観察できるものが主流であった。
In recent years, endoscopes are widely used in the medical field and the industrial field. In conventional endoscopes, an image guide is used, and what can observe the inside of a patient's body cavity, the inside of a jet engine, or the like at an eyepiece portion where a user looks into has been the mainstream.
また、最近の内視鏡は、撮像ユニットが挿入部の先端部に組込まれ、患者の体腔内、またはジェットエンジン内部等を撮影して、外部モニタ等の表示装置に内視鏡画像を表示する電子内視鏡装置が登場している。
In recent endoscopes, an imaging unit is incorporated at the distal end of the insertion section, and images the inside of a patient's body cavity, the inside of a jet engine, etc., and displays an endoscopic image on a display device such as an external monitor. Electronic endoscope devices have appeared.
このような撮像ユニットには、検出した光を電気信号に光電変換するイメージセンサが設けられている。このイメージセンサは、固体撮像素子、電子回路などを1つの電子部品としてパッケージ化されているものが主流となっている。
Such an imaging unit is provided with an image sensor that photoelectrically converts detected light into an electrical signal. This image sensor is mainly used in which a solid-state imaging device, an electronic circuit, and the like are packaged as one electronic component.
また、電子内視鏡に用いられる撮像ユニットは、挿入部の細径化に伴って小型化された先端部内に収納できる大きさが要求される。そのため、収容スペースの小さな内視鏡装置の先端部に配設される撮像ユニットは、特に先端部の外径方向への大型化を防止するために、屈折させた光をイメージセンサに入射させる構造としてプリズムが用いられるものがある。
In addition, an imaging unit used for an electronic endoscope is required to have a size that can be accommodated in a distal end portion that has been reduced in size as the insertion portion is reduced in diameter. Therefore, the imaging unit disposed at the distal end portion of the endoscope apparatus having a small accommodation space has a structure in which refracted light is incident on the image sensor in order to prevent the distal end portion from increasing in size in the outer diameter direction. Some use a prism.
なお、電子回路が搭載されたイメージセンサは、消費電力により発熱して高温化すると、画像劣化の要因となる固体撮像素子の機能低下などの問題が生じてしまう。そのため、従来の撮像ユニットにおいては、イメージセンサの温度上昇を抑制する種々の工夫が提案されている。
Note that when an image sensor equipped with an electronic circuit generates heat and increases in temperature due to power consumption, problems such as deterioration of the function of the solid-state imaging device that cause image degradation occur. Therefore, in the conventional imaging unit, various devices for suppressing the temperature increase of the image sensor have been proposed.
まず、例えば、JP特開2009-49549号公報には、3色分離プリズムの表面を銅、またはグラファイトシートから形成した放熱層で覆うことで、固体撮像素子の温度上昇を抑制する撮像装置の技術が開示されている。
First, for example, JP JP-A-2009-49549 discloses an imaging device technology that suppresses the temperature rise of a solid-state imaging device by covering the surface of a three-color separation prism with a heat dissipation layer formed of copper or a graphite sheet. Is disclosed.
また、例えば、JP特開2003-284686号公報には、プリズムと固体撮像素子の間にカバーガラスとエアギャップを設けて、固体撮像素子の近傍に配置された周辺回路からの発熱を伝導してカバーガラスの曇りを防止した内視鏡の撮像装置の技術が開示されている。
Also, for example, in JP-A-2003-284686, a cover glass and an air gap are provided between a prism and a solid-state image sensor to conduct heat generated from a peripheral circuit arranged in the vicinity of the solid-state image sensor. A technique of an imaging apparatus for an endoscope that prevents fogging of a cover glass is disclosed.
さらに、例えば、JP特開平7-255004号公報には、熱伝導性の高いシリコンゴムなどから形成した弾性部材を固体撮像素子、基板などの発熱体が実装されたプリズムの形状に沿って被覆し、さらに放熱板を弾性部材上に設けた放熱構造を有する三板式テレビカメラ装置の技術が開示されている。
Further, for example, in JP-A-7-255004, an elastic member formed of silicon rubber having high thermal conductivity is coated along the shape of a prism on which a heating element such as a solid-state imaging device or a substrate is mounted. Furthermore, a technology of a three-plate TV camera device having a heat dissipation structure in which a heat dissipation plate is provided on an elastic member is disclosed.
そして、JP特開2008-278382号公報には、温度センサが収納された熱伝導性のシリコンゴムシートを基板のグランドパターン部と液晶モニタのシールド板の外表面との間に熱結合により密着挟持させて異常温度上昇を検出する撮像素子モジュールの技術が開示されている。
しかしながら、従来技術のような温度上昇を抑制する構造の撮像ユニットは、小型な先端部内に収容できなくなったり、または先端部内に収容するために、先端部の小型化を阻害したりする原因となっていた。そのため、特に、内視鏡装置に用いられる撮像ユニットは、大型化を防止すると共に、イメージセンサからの放熱を十分に行って、高温化を抑制できるものが要望されていた。 In JP 2008-278382 A, a thermally conductive silicon rubber sheet containing a temperature sensor is tightly sandwiched between the ground pattern portion of the substrate and the outer surface of the shield plate of the liquid crystal monitor by thermal bonding. An image sensor module technique for detecting an abnormal temperature rise is disclosed.
However, the imaging unit having a structure that suppresses the temperature rise as in the prior art cannot be accommodated in the small distal end portion, or it becomes a cause of inhibiting the miniaturization of the distal end portion because it is accommodated in the distal end portion. It was. For this reason, in particular, an imaging unit used in an endoscope apparatus has been desired to prevent an increase in size and to sufficiently dissipate heat from the image sensor to suppress an increase in temperature.
しかしながら、従来技術のような温度上昇を抑制する構造の撮像ユニットは、小型な先端部内に収容できなくなったり、または先端部内に収容するために、先端部の小型化を阻害したりする原因となっていた。そのため、特に、内視鏡装置に用いられる撮像ユニットは、大型化を防止すると共に、イメージセンサからの放熱を十分に行って、高温化を抑制できるものが要望されていた。 In JP 2008-278382 A, a thermally conductive silicon rubber sheet containing a temperature sensor is tightly sandwiched between the ground pattern portion of the substrate and the outer surface of the shield plate of the liquid crystal monitor by thermal bonding. An image sensor module technique for detecting an abnormal temperature rise is disclosed.
However, the imaging unit having a structure that suppresses the temperature rise as in the prior art cannot be accommodated in the small distal end portion, or it becomes a cause of inhibiting the miniaturization of the distal end portion because it is accommodated in the distal end portion. It was. For this reason, in particular, an imaging unit used in an endoscope apparatus has been desired to prevent an increase in size and to sufficiently dissipate heat from the image sensor to suppress an increase in temperature.
そこで、本発明は、上記事情に鑑みてなされたもので、大型化を防止すると共に、イメージセンサの温度を拡散し易く放熱性を高めて、高温化を抑制する内視鏡用撮像ユニットを提供することを目的としている。
Therefore, the present invention has been made in view of the above circumstances, and provides an imaging unit for an endoscope that prevents an increase in size and that easily diffuses the temperature of an image sensor to improve heat dissipation and suppresses a high temperature. The purpose is to do.
本発明の第1の内視鏡用撮像ユニットは、入射された被検体の光学像の光束を集光する対物光学系と、光電変換部、および電子回路部がパッケージ化されたイメージセンサと、前記イメージセンサの一面に配設され、前記光学像の光束を屈折して前記光電変換部に結像させる反射膜を備えた屈折光学系と、前記反射膜を保護するように前記屈折光学系に接合され、前記屈折光学系よりも高い熱伝導率を備えた保護部材と、を具備することを特徴としている。
The first endoscope imaging unit of the present invention includes an objective optical system that collects a light beam of an optical image of an incident subject, an image sensor in which a photoelectric conversion unit and an electronic circuit unit are packaged, A refractive optical system provided on one surface of the image sensor and provided with a reflective film that refracts a light beam of the optical image and forms an image on the photoelectric conversion unit; and the refractive optical system to protect the reflective film. And a protective member having a thermal conductivity higher than that of the refractive optical system.
また、第2の内視鏡用撮像ユニットは、入射された被検体の光学像の光束を集光する対物光学系と、光電変換部、および電子回路部がパッケージ化されたイメージセンサと、前記イメージセンサと電気的に接続され、全面にグランド層が形成された基板と、を備え、前記基板は、前記電子回路部が設けられた部位まで前記イメージセンサに重畳して配設されていることを特徴としている。
The second endoscope imaging unit includes: an objective optical system that collects a light beam of an optical image of an incident subject; an image sensor in which a photoelectric conversion unit and an electronic circuit unit are packaged; A substrate electrically connected to the image sensor and having a ground layer formed on the entire surface, and the substrate is disposed so as to overlap the image sensor up to a portion where the electronic circuit unit is provided. It is characterized by.
以下、本発明である撮像ユニットについて説明する。なお、以下の説明において、各実施の形態に基づく図面は、模式的なものであり、各部分の厚みと幅との関係、夫々の部分の厚みの比率などは現実のものとは異なることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。
Hereinafter, the imaging unit according to the present invention will be described. In the following description, the drawings based on each embodiment are schematic, and the relationship between the thickness and width of each part, the thickness ratio of each part, and the like are different from the actual ones. It should be noted that the drawings may include portions having different dimensional relationships and ratios between the drawings.
(第1の実施の形態)
先ず、本発明の第1の実施の形態について、図1から図8に基づいて以下に説明する。図1から図8は、本発明の第1の実施の形態に係り、図1は電子内視鏡装置を含む電子内視鏡システムを示す図、図2は挿入部の先端部分の内部を示す斜視図、図3は撮像ユニットが配設された先端部の内部を示す斜視図、図4は撮像ユニットが配設された先端部の断面図、図5は撮像ユニットの構成を示す斜視図、図6は撮像ユニットの構成を示す断面図、図7は撮像ユニットの構成を示す上面図、図8は撮像ユニットの構成を示す下面図である。 (First embodiment)
First, a first embodiment of the present invention will be described below with reference to FIGS. 1 to 8 relate to a first embodiment of the present invention, FIG. 1 is a view showing an electronic endoscope system including an electronic endoscope apparatus, and FIG. 2 is an inside of a distal end portion of an insertion portion. FIG. 3 is a perspective view showing the inside of the distal end portion where the imaging unit is disposed, FIG. 4 is a sectional view of the distal end portion where the imaging unit is disposed, and FIG. 5 is a perspective view showing the configuration of the imaging unit. 6 is a cross-sectional view showing the configuration of the imaging unit, FIG. 7 is a top view showing the configuration of the imaging unit, and FIG. 8 is a bottom view showing the configuration of the imaging unit.
先ず、本発明の第1の実施の形態について、図1から図8に基づいて以下に説明する。図1から図8は、本発明の第1の実施の形態に係り、図1は電子内視鏡装置を含む電子内視鏡システムを示す図、図2は挿入部の先端部分の内部を示す斜視図、図3は撮像ユニットが配設された先端部の内部を示す斜視図、図4は撮像ユニットが配設された先端部の断面図、図5は撮像ユニットの構成を示す斜視図、図6は撮像ユニットの構成を示す断面図、図7は撮像ユニットの構成を示す上面図、図8は撮像ユニットの構成を示す下面図である。 (First embodiment)
First, a first embodiment of the present invention will be described below with reference to FIGS. 1 to 8 relate to a first embodiment of the present invention, FIG. 1 is a view showing an electronic endoscope system including an electronic endoscope apparatus, and FIG. 2 is an inside of a distal end portion of an insertion portion. FIG. 3 is a perspective view showing the inside of the distal end portion where the imaging unit is disposed, FIG. 4 is a sectional view of the distal end portion where the imaging unit is disposed, and FIG. 5 is a perspective view showing the configuration of the imaging unit. 6 is a cross-sectional view showing the configuration of the imaging unit, FIG. 7 is a top view showing the configuration of the imaging unit, and FIG. 8 is a bottom view showing the configuration of the imaging unit.
図1に示すように、本実施の形態の電子内視鏡システム1は、電子内視鏡装置2と、光源装置3と、ビデオプロセッサ4と、モニタ5と、から主に構成されている。
電子内視鏡装置2は、長尺で細長な挿入部9と、操作部10と、電気ケーブル、および照明光伝送のためのライトガイドバンドルが内部に挿通する複合ケーブルであるユニバーサルケーブル17と、を有して構成されている。電子内視鏡装置2の挿入部9は、先端から順に先端部6と、湾曲部7と、可撓管部8と、を有して構成されている。 As shown in FIG. 1, the electronic endoscope system 1 according to the present embodiment mainly includes an electronic endoscope device 2, alight source device 3, a video processor 4, and a monitor 5.
The electronic endoscope apparatus 2 includes a long and narrow insertion section 9, anoperation section 10, an electric cable, and a universal cable 17 that is a composite cable through which a light guide bundle for transmitting illumination light is inserted, It is comprised. The insertion portion 9 of the electronic endoscope apparatus 2 includes a distal end portion 6, a bending portion 7, and a flexible tube portion 8 in order from the distal end.
電子内視鏡装置2は、長尺で細長な挿入部9と、操作部10と、電気ケーブル、および照明光伝送のためのライトガイドバンドルが内部に挿通する複合ケーブルであるユニバーサルケーブル17と、を有して構成されている。電子内視鏡装置2の挿入部9は、先端から順に先端部6と、湾曲部7と、可撓管部8と、を有して構成されている。 As shown in FIG. 1, the electronic endoscope system 1 according to the present embodiment mainly includes an electronic endoscope device 2, a
The electronic endoscope apparatus 2 includes a long and narrow insertion section 9, an
また、操作部10は、挿入部9の可撓管部8の一端と接続され、折れ止め部である後口部11と、挿入部9に配設される各種処置具を挿通する処置具チャンネルの開口部である処置具チャンネル挿通部12と、操作部本体13と、を有して構成されている。
In addition, the operation unit 10 is connected to one end of the flexible tube unit 8 of the insertion unit 9, and a treatment instrument channel through which various treatment instruments disposed in the insertion unit 9 and the rear mouth unit 11 that is a folding prevention unit are inserted. The treatment instrument channel insertion portion 12 that is an opening of the operation portion and the operation portion main body 13 are configured.
操作部本体13には、挿入部9の湾曲部7を湾曲操作するための湾曲操作ノブ16が回動自在に配設されると共に、各種内視鏡機能のスイッチ類等が設けられている。なお、湾曲操作ノブ16は、湾曲部7を上下方向に湾曲操作するためのUD湾曲操作ノブ14と、湾曲部7を左右方向に湾曲操作するためのRL湾曲操作ノブ15と、が重畳するように配設されている。
The operation section main body 13 is provided with a bending operation knob 16 for bending the bending section 7 of the insertion section 9, and is provided with switches for various endoscope functions. In the bending operation knob 16, a UD bending operation knob 14 for bending the bending portion 7 in the vertical direction and an RL bending operation knob 15 for bending the bending portion 7 in the left-right direction are superimposed. It is arranged.
操作部10から延設されたユニバーサルケーブル17は、延出端に光源装置3と着脱自在な内視鏡コネクタ18を有している。なお、本実施の形態の電子内視鏡装置2は、ここでは図示しないライトガイドバンドルによって、光源装置3から先端部6まで照明光を伝送するものである。内視鏡コネクタ18は、コイル状のコイルケーブル19が延設しており、このコイルケーブル19の延出端にビデオプロセッサ4と着脱自在な電気コネクタ19aが設けられている。
The universal cable 17 extended from the operation unit 10 has an endoscope connector 18 that is detachable from the light source device 3 at the extended end. In addition, the electronic endoscope apparatus 2 of this Embodiment transmits illumination light from the light source device 3 to the front-end | tip part 6 with the light guide bundle which is not illustrated here. The endoscope connector 18 is provided with a coiled coil cable 19, and an electric connector 19 a detachably attached to the video processor 4 is provided at the extended end of the coil cable 19.
ビデオプロセッサ4は、内視鏡画像を表示するモニタ5と電気的に接続され、電子内視鏡装置2の後述する内視鏡用撮像ユニット(以下、単に撮像ユニットという)20によって光電変換された電気信号を信号処理して、画像信号としてモニタ5に出力する。
The video processor 4 is electrically connected to a monitor 5 that displays an endoscopic image, and is photoelectrically converted by an endoscope imaging unit (hereinafter simply referred to as an imaging unit) 20 of the electronic endoscope device 2 described later. The electrical signal is processed and output to the monitor 5 as an image signal.
電子内視鏡装置2の挿入部9の湾曲部7の内部には、図2に示すように、互いに隣接するものが回動自在に連設された金属略円環状の複数の湾曲駒20a,20b,20cが設けられている。また、先端部6には、最先端の湾曲駒20aが固定され、ここでは金属製の外形略円柱状をした先端枠である先端硬質部(先端構成部とも言う)30が配設されている。なお、複数の湾曲駒20a,20b,20c、および先端硬質部30の外周部には、ここでは図示しない湾曲ゴムが被覆される。
As shown in FIG. 2, inside the bending portion 7 of the insertion portion 9 of the electronic endoscope apparatus 2, a plurality of substantially circular metal bending pieces 20a, which are adjacent to each other, are rotatably connected. 20b and 20c are provided. Further, the leading edge bending piece 20a is fixed to the distal end portion 6, and here, a distal end rigid portion (also referred to as a distal end constituting portion) 30 which is a distal end frame having a substantially metal outer shape is disposed. . In addition, the curved rubber | gum which is not shown here is coat | covered by the outer peripheral part of the some bending piece 20a, 20b, 20c and the front-end | tip hard part 30 here.
そして、先端硬質部30、および各湾曲駒20a,20b,20cには、挿入部9内に挿通される処置具チャンネル21、ライトガイドバンドル22、各種電気ケーブル23などが配設されている。
The distal end hard portion 30 and the bending pieces 20a, 20b, and 20c are provided with a treatment instrument channel 21, a light guide bundle 22, and various electric cables 23 that are inserted into the insertion portion 9.
図3に示すように、先端硬質部30には、図示しない金属保持管などを介して処置具チャンネル21、およびライトガイドバンドル22が個々に挿通固定される孔部31、32と、撮像ユニット40が配置される空間部33と、が形成されている。これら孔部31,32、および空間部33は、先端硬質部30の先端から基端にかけて形成され、先端硬質部30の先端面と基端面で開口部が形成されている。
As shown in FIG. 3, the distal end hard portion 30 has holes 31 and 32 into which the treatment instrument channel 21 and the light guide bundle 22 are individually inserted and fixed via a metal holding tube (not shown), and the imaging unit 40. And a space portion 33 in which is disposed. The hole portions 31 and 32 and the space portion 33 are formed from the distal end to the proximal end of the distal end hard portion 30, and an opening is formed at the distal end surface and the proximal end surface of the distal end rigid portion 30.
次に、本実施の形態の撮像ユニット40の具体的な構成について、図4から図8に基づいて、以下に説明する。
Next, a specific configuration of the imaging unit 40 of the present embodiment will be described below based on FIGS.
撮像ユニット40は、図4から図7に示すように、金属などから形成された略筒状のレンズ枠41と、金属などから形成された略筒状の保持管42と、対物光学系であるレンズ群43と、屈折光学系であるプリズム44と、高熱伝導部材であって、且つ放熱部材である保護部材45と、撮像手段であるイメージセンサ46と、FPC(フレキシブルプリント基板)、またはTAB(Tape Automated Bonding)47と、電子部品48と、を有して主に構成されている。
As shown in FIGS. 4 to 7, the imaging unit 40 is a substantially cylindrical lens frame 41 formed of metal or the like, a substantially cylindrical holding tube 42 formed of metal or the like, and an objective optical system. A lens group 43, a prism 44 that is a refractive optical system, a protective member 45 that is a high heat conduction member and a heat dissipation member, an image sensor 46 that is an imaging means, an FPC (flexible printed circuit board), or a TAB ( (Tape Automated Bonding) 47 and an electronic component 48.
レンズ枠41は、撮像ユニット40における最先端に配設され、入射された被検体の光学像の光束を集光するレンズ群43を内部で保持している。このレンズ枠41の基端部分は、保持管42の先部分が内嵌され、接着剤41aによりレンズ枠41と保持管42が固着されている。また、保持管42の基端部分には、プリズム44の先端面と光学接着剤によって貼着されたカバーガラス42aが挿嵌固定されている。
The lens frame 41 is disposed at the forefront of the imaging unit 40, and internally holds a lens group 43 that collects a light beam of an optical image of an incident subject. At the base end portion of the lens frame 41, the tip portion of the holding tube 42 is fitted, and the lens frame 41 and the holding tube 42 are fixed by an adhesive 41a. Further, a cover glass 42 a adhered to the distal end surface of the prism 44 and an optical adhesive is inserted and fixed to the proximal end portion of the holding tube 42.
プリズム44は、レンズ群43を介して先端面側から入射された、図中光軸Oで示す光学像の光束を反射面44aが略90°屈折させて下面に向けて反射する。このプリズム44の反射面44aの表面側には、反射面44aの反射膜を保護するために、接着剤により貼着されたブロック体である保護部材45が固着されている。なお、この保護部材45の構成については、後で詳述する。
In the prism 44, the light beam of the optical image indicated by the optical axis O in the drawing, which is incident from the tip surface side through the lens group 43, is refracted by about 90 ° and reflected toward the lower surface. On the surface side of the reflecting surface 44a of the prism 44, a protection member 45, which is a block body attached with an adhesive, is fixed to protect the reflecting film on the reflecting surface 44a. The configuration of the protection member 45 will be described in detail later.
イメージセンサ46は、プリズム44の下面と光学接着剤により接合され、上面部となるプリズム44の下面との対向面部分に、CCD、CMOSなどの光電変換部46aが配設されている。また、イメージセンサ46は、基端側の中途内部にトランジスタなどのアンプを含む電子回路部46bが設けられており、この電子回路部46bを光電変換部46aと共にパッケージ化した略板状の撮像パッケージである。このイメージセンサ46の基端側の上面部には、FPC47の先端部分が電気的に接続されている。
The image sensor 46 is joined to the lower surface of the prism 44 by an optical adhesive, and a photoelectric conversion unit 46a such as a CCD or CMOS is disposed on the surface of the upper surface of the image sensor 46 facing the lower surface of the prism 44. In addition, the image sensor 46 is provided with an electronic circuit unit 46b including an amplifier such as a transistor in the middle of the base end side, and the electronic circuit unit 46b is packaged together with the photoelectric conversion unit 46a. It is. A front end portion of the FPC 47 is electrically connected to the upper surface portion on the base end side of the image sensor 46.
FPC47は、イメージセンサ46から後方へ延設し、基端部分の上面部に複数の接続ランド47a(図7参照)を有している。また、FPC47は、基端部分の下面部に電子部品48が設けられている。各接続ランド47a、および電子部品48には、半田などによってケーブル25の芯線25aが電気的に接続されている。なお、上述した電気ケーブル23は、複数のケーブル25が束ねられて外装シースによって被覆されたものである。
The FPC 47 extends rearward from the image sensor 46, and has a plurality of connection lands 47a (see FIG. 7) on the upper surface of the base end portion. Further, the FPC 47 is provided with an electronic component 48 on the lower surface portion of the base end portion. The core 25a of the cable 25 is electrically connected to each connection land 47a and the electronic component 48 by soldering or the like. The electric cable 23 described above is a cable in which a plurality of cables 25 are bundled and covered with an outer sheath.
以上のように構成された本実施の形態の撮像ユニット40は、プリズム44と、保護部材45の上部、および側部の周囲に金属などから形成された遮光部材であるカバー体50が所定の距離で離間するように配設されている。なお、撮像ユニット40は、各部品が組み付けられた後に、周囲に補強用の接着剤が塗布されて、接着層49(図4参照)が形成された状態でモジュール化される。その後、撮像ユニット40は、レンズ枠41が先端硬質部30に嵌合ビス固定されて、先端硬質部30の空間部33内に配置される。また、撮像ユニット40は、空間部33を形成する先端硬質部30との隙間に接着剤51(図4参照)が充填されて、先端硬質部30内に固着される。なお、接着層49、および接着剤51は、図示していない場合もある。
In the imaging unit 40 according to the present embodiment configured as described above, the prism 44 and the cover body 50 that is a light shielding member formed of metal or the like around the upper portion and the side portion of the protective member 45 have a predetermined distance. So as to be separated from each other. The imaging unit 40 is modularized with the adhesive layer 49 (see FIG. 4) formed by applying a reinforcing adhesive around the components after the components are assembled. Thereafter, the imaging unit 40 is arranged in the space 33 of the distal end hard portion 30 with the lens frame 41 fitted and fixed to the distal end hard portion 30. Further, the imaging unit 40 is fixed in the distal end hard portion 30 by filling the gap between the imaging unit 40 and the distal end hard portion 30 forming the space portion 33 with an adhesive 51 (see FIG. 4). Note that the adhesive layer 49 and the adhesive 51 may not be illustrated.
また、撮像ユニット40が配置される先端部6の空間部33は、FPC47の基端側の下面に配設された電子部品48と当接しないように外径方向に凹部33aが形成されている(図3、および図4参照)。
Further, the space portion 33 of the distal end portion 6 where the imaging unit 40 is disposed is formed with a recess 33 a in the outer diameter direction so as not to contact the electronic component 48 disposed on the lower surface of the proximal end side of the FPC 47. (See FIGS. 3 and 4).
ところで、イメージセンサ46の光電変換部46aには、プリズム44の反射面44aによって屈折された光軸Oで示す撮影光が入射して結像される。そして、光電変換部46aは、受光素子に入射された光の明暗に応じた電荷を発生して、光電変換を行なうものである。
Incidentally, photographing light indicated by the optical axis O refracted by the reflecting surface 44a of the prism 44 is incident on the photoelectric conversion unit 46a of the image sensor 46 to form an image. The photoelectric conversion unit 46a performs photoelectric conversion by generating electric charges according to the brightness of light incident on the light receiving element.
特に、イメージセンサ46は、CCDの光電変換部46aを用いた場合、電子回路部46bによって構成される高電圧のアナログ回路が必要となり、大きな消費電力が必要となる。これに対して、CMOSの光電変換部46aを用いた場合、イメージセンサ46は、CCDの光電変換部46aよりも小さな消費電力で駆動できるが、低照度のときに、撮影した画像にノイズが生じ易くなるため、アンプを含む電子回路部46bにノイズを補正する回路をさらに設ける必要がある。また、近年の光電変換部46aは、高画素化が求められ、駆動周波数が高くなり高周波化となっている。
In particular, when the CCD photoelectric conversion unit 46a is used for the image sensor 46, a high-voltage analog circuit constituted by the electronic circuit unit 46b is required, and a large amount of power is required. On the other hand, when the CMOS photoelectric conversion unit 46a is used, the image sensor 46 can be driven with lower power consumption than the CCD photoelectric conversion unit 46a, but noise is generated in the captured image at low illuminance. Therefore, it is necessary to further provide a circuit for correcting noise in the electronic circuit unit 46b including the amplifier. In recent years, the photoelectric conversion unit 46a is required to have a higher pixel, and the driving frequency becomes higher and the frequency becomes higher.
このように、イメージセンサ46の電子回路部46bは、光電変換部46aを高周波で駆動させると共に、大きな消費電力が必要な回路、またはノイズを補正する回路が設けられるため、発熱部となって高温化する場合がある。そのため、イメージセンサ46の機能低下などを招く他、特に、電子内視鏡装置2では、イメージセンサ46の電子回路部46bの熱がプリズム44、カバーガラス42a、保持管42、およびレンズ枠41を介して、先端硬質部30に伝熱され、挿入部9の先端部6が高温化してしまう可能性がある。これに加えて、挿入部9は、およそ40°の生体内に挿入されるため、生体内の雰囲気温度により先端部6が温められてしまう場合がある。特に、本実施の形態の電子内視鏡装置2ように、ライトガイドバンドル22によって、照明光を伝送する構成であると、ライトガイドバンドル22が照明光の伝送によって加熱されるため、その熱が伝熱して先端部6も温められてしまう。
As described above, the electronic circuit unit 46b of the image sensor 46 is driven by the photoelectric conversion unit 46a at a high frequency, and a circuit that requires large power consumption or a circuit that corrects noise is provided. There is a case. Therefore, in addition to causing the function of the image sensor 46 to deteriorate, in particular, in the electronic endoscope device 2, the heat of the electronic circuit portion 46 b of the image sensor 46 causes the prism 44, the cover glass 42 a, the holding tube 42, and the lens frame 41 to be heated. Therefore, heat is transferred to the distal end hard portion 30, and the distal end portion 6 of the insertion portion 9 may be heated. In addition, since the insertion portion 9 is inserted into the living body at approximately 40 °, the distal end portion 6 may be warmed by the ambient temperature in the living body. In particular, as in the electronic endoscope apparatus 2 of the present embodiment, when the light guide bundle 22 is configured to transmit illumination light, the light guide bundle 22 is heated by the transmission of illumination light. The tip 6 is also warmed by heat transfer.
これらの対策として、本実施の形態の撮像ユニット40では、プリズム44の反射面44aを保護するガラスなどから形成されたプリズム44と同じ材質によって形成された従来の保護部材に代えて、ガラスなどから形成されたプリズム44の熱伝導率よりも、例えば、セラミックスなどの焼結体、シリコンなどの合成樹脂、純銅、真鍮、アルミなどの金属、またはサファイヤ、ダイヤモンドなどの鉱石を用いて熱伝導率の高い(大きい)材質から保護部材45を形成して、発熱するイメージセンサ46からの熱の吸収放熱性を高めた構成となっている。
As these countermeasures, in the imaging unit 40 of the present embodiment, instead of a conventional protective member formed of the same material as the prism 44 formed of glass or the like that protects the reflecting surface 44a of the prism 44, glass or the like is used. The thermal conductivity of the formed prism 44 is higher than that of, for example, a sintered body such as ceramics, a synthetic resin such as silicon, a metal such as pure copper, brass, or aluminum, or ore such as sapphire or diamond. The protection member 45 is formed of a high (large) material, and the heat absorption and heat dissipation from the image sensor 46 that generates heat is enhanced.
つまり、撮像ユニット40は、発熱部であるイメージセンサ46の電子回路部46bで発生した熱がプリズム44よりも熱伝導率の高い材質から形成した保護部材45へ伝熱し易い構成としている。これにより、本実施の形態の保護部材45は、イメージセンサ46の電子回路部46bの発熱をプリズム44から吸熱して、その周囲に吸収した熱を拡散して放熱する構成とすることができる。
That is, the imaging unit 40 has a configuration in which heat generated in the electronic circuit portion 46 b of the image sensor 46 that is a heat generating portion is easily transferred to the protective member 45 formed of a material having a higher thermal conductivity than the prism 44. As a result, the protection member 45 of the present embodiment can be configured to absorb heat generated by the electronic circuit unit 46b of the image sensor 46 from the prism 44 and diffuse and dissipate the heat absorbed around the prism 44.
また、撮像ユニット40は、保護部材45を従来と略同一の大きさで形成できるため、外径方向への大型化が防止される。その結果、撮像ユニット40が内蔵される先端部6の外形の大型化も防止される。
Moreover, since the imaging unit 40 can form the protective member 45 with substantially the same size as the conventional one, an increase in size in the outer diameter direction is prevented. As a result, the enlargement of the outer shape of the distal end portion 6 in which the imaging unit 40 is incorporated is also prevented.
以上の説明から、本実施の形態の撮像ユニット40は、大型化を防止すると共に、イメージセンサ46の温度を拡散し易く放熱性を高めて、高温化を抑制した構成とすることができる。
From the above description, the imaging unit 40 of the present embodiment can be configured to prevent an increase in size, to easily diffuse the temperature of the image sensor 46, to improve heat dissipation, and to suppress a high temperature.
(第2の実施の形態)
次に、第2の実施の形態の撮像ユニットについて、図9から図12に基づいて、以下に説明する。
なお、図9、および図10は、本発明の第2の実施の形態に係り、図9は撮像ユニットの構成を示す断面図、図10は第1の変形例を示し、冷却手段を設けた撮像ユニットの構成を示す断面図、図11は第2の変形例を示し、冷却手段と保護部材の接続状態を示す断面図、図12は図11の第2の変形例の冷却手段と保護部材の接続状態を示す後方斜視図である。また、以下の説明において、第1の実施の形態と同一の構成要素については、説明の便宜のため、同じ符号を用いて、それら構成要素の詳細な説明、および作用効果を省略する。 (Second Embodiment)
Next, an imaging unit according to the second embodiment will be described below based on FIGS. 9 to 12.
9 and 10 relate to the second embodiment of the present invention, FIG. 9 is a cross-sectional view showing the configuration of the imaging unit, FIG. 10 shows a first modification, and cooling means is provided. FIG. 11 is a sectional view showing the configuration of the imaging unit, FIG. 11 is a sectional view showing a connection state between the cooling means and the protection member, and FIG. 12 is a cooling means and protection member according to the second modification of FIG. It is a back perspective view which shows the connection state of. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals for the convenience of description, and detailed description and operational effects of those components are omitted.
次に、第2の実施の形態の撮像ユニットについて、図9から図12に基づいて、以下に説明する。
なお、図9、および図10は、本発明の第2の実施の形態に係り、図9は撮像ユニットの構成を示す断面図、図10は第1の変形例を示し、冷却手段を設けた撮像ユニットの構成を示す断面図、図11は第2の変形例を示し、冷却手段と保護部材の接続状態を示す断面図、図12は図11の第2の変形例の冷却手段と保護部材の接続状態を示す後方斜視図である。また、以下の説明において、第1の実施の形態と同一の構成要素については、説明の便宜のため、同じ符号を用いて、それら構成要素の詳細な説明、および作用効果を省略する。 (Second Embodiment)
Next, an imaging unit according to the second embodiment will be described below based on FIGS. 9 to 12.
9 and 10 relate to the second embodiment of the present invention, FIG. 9 is a cross-sectional view showing the configuration of the imaging unit, FIG. 10 shows a first modification, and cooling means is provided. FIG. 11 is a sectional view showing the configuration of the imaging unit, FIG. 11 is a sectional view showing a connection state between the cooling means and the protection member, and FIG. 12 is a cooling means and protection member according to the second modification of FIG. It is a back perspective view which shows the connection state of. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals for the convenience of description, and detailed description and operational effects of those components are omitted.
本実施の形態の撮像ユニット40は、図9に示すように、電子回路部46bが設けられた部分のイメージセンサ46の上面部まで重畳する長さを有した保護部材45が配設されている。
As shown in FIG. 9, the imaging unit 40 of the present embodiment is provided with a protective member 45 having a length that overlaps the upper surface of the image sensor 46 in the portion where the electronic circuit portion 46 b is provided. .
つまり、本実施の形態の保護部材45は、第1の実施の形態と同様に、材質がガラスなどの透明部材から形成されたプリズム44よりも熱伝導率の高い、例えば、セラミックスなどの焼結体、シリコンなどの合成樹脂、純銅、アルミなどの金属、またはサファイヤなどの鉱石から形成され、電子回路部46bを覆う位置までの長さを有して、イメージセンサ46の上面に設けられている。
That is, as in the first embodiment, the protective member 45 of the present embodiment has a higher thermal conductivity than the prism 44 made of a transparent member such as glass, for example, sintered ceramics or the like. Body, a synthetic resin such as silicon, a metal such as pure copper or aluminum, or an ore such as sapphire, and has a length up to a position covering the electronic circuit portion 46b, and is provided on the upper surface of the image sensor 46. .
なお、保護部材45は、第1の実施の形態の構成に対して、撮像ユニット40の長手方向と平行な長手軸方向の長さのみ延伸させた構成であって、この長手軸周囲の大きさ(先端部6の外径方向に向かった外形)が第1の実施の形態と同一寸法となっている。
Note that the protective member 45 has a configuration in which only the length in the longitudinal axis direction parallel to the longitudinal direction of the imaging unit 40 is extended with respect to the configuration of the first embodiment, and the size around the longitudinal axis. (Outer shape of the distal end portion 6 in the outer diameter direction) has the same dimensions as in the first embodiment.
このように構成された、本実施の形態の撮像ユニット40では、プリズム44の材質よりも熱伝導率の高い材質から形成した保護部材45が電子回路部46bを覆う位置までイメージセンサ46の上面に設けたことで、保護部材45に電子回路部46bの熱が直接伝熱されるため、第1の実施の形態に比して、さらに、イメージセンサ46の電子回路部46bからの熱の吸収放熱性を高めた構成とすることができる。
In the imaging unit 40 of the present embodiment configured as described above, the protective member 45 made of a material having a higher thermal conductivity than the material of the prism 44 is placed on the upper surface of the image sensor 46 to a position where it covers the electronic circuit portion 46b. Since the heat of the electronic circuit unit 46b is directly transferred to the protection member 45 by providing the heat absorption and heat dissipation of the heat from the electronic circuit unit 46b of the image sensor 46 as compared with the first embodiment. The configuration can be improved.
換言すると、撮像ユニット40は、イメージセンサ46における発熱部となる電子回路部46bの熱が、電子回路部46bを覆うように近傍に配設した、プリズム44よりも熱伝導率の高い材質から形成した保護部材45に直接的に伝熱し易い構成としている。これにより、本実施の形態の保護部材45は、第1の実施の形態の構成に比して、さらに、イメージセンサ46の電子回路部46bの発熱を直接的に吸熱して、その周囲に吸収した熱を拡散して放熱する構成とすることができる。
In other words, the imaging unit 40 is formed of a material having a higher thermal conductivity than the prism 44, which is disposed in the vicinity so as to cover the electronic circuit unit 46 b so that the heat of the electronic circuit unit 46 b serving as the heat generating unit in the image sensor 46. The protection member 45 is configured to easily transfer heat directly. As a result, the protection member 45 of the present embodiment further directly absorbs the heat generated by the electronic circuit unit 46b of the image sensor 46 and absorbs it in the surroundings as compared to the configuration of the first embodiment. It is possible to dissipate the generated heat and dissipate it.
また、撮像ユニット40は、保護部材45の長手軸周囲の大きさを変更していないため、第1の実施の形態と同様に、外径方向への大型化が防止されている。そのため、第1の実施の形態の効果と同様に、撮像ユニット40が内蔵される先端部6の外形の大型化も防止される。
Further, since the imaging unit 40 does not change the size of the protective member 45 around the longitudinal axis, the enlargement in the outer diameter direction is prevented as in the first embodiment. Therefore, similarly to the effect of the first embodiment, the enlargement of the outer shape of the distal end portion 6 in which the imaging unit 40 is built is prevented.
なお、保護部材45は、図10に示すように、ヒートパイプ、放熱線などの冷却手段である冷却部材55が基端面に接続されていても良い。この冷却部材55は、所定の長さで後方へ延設され、先端部分を除く全体が外装シース56によって被覆されている。また、冷却部材55の先端部は、例えば、半田、またはロウ付けである熱伝導性の高い接着部57によって、保護部材45の基端面と接続されている。
In addition, as shown in FIG. 10, as for the protection member 45, the cooling member 55 which is cooling means, such as a heat pipe and a heat radiating wire, may be connected to the base end surface. The cooling member 55 is extended rearward by a predetermined length, and the whole excluding the tip end portion is covered with an outer sheath 56. Moreover, the front-end | tip part of the cooling member 55 is connected with the base end surface of the protection member 45 by the adhesive part 57 with high heat conductivity which is solder or brazing, for example.
なお、図11、および図12に示すように、保護部材45の基端面に穴部45aを形成して、この穴部45aに冷却部材55の先端部分を圧入接続、または冷却部材55の先端部分を穴部45aに挿入した後に、熱伝導性の高い、例えば、半田、またはロウ付けで接続しても良い。
As shown in FIGS. 11 and 12, a hole 45 a is formed in the base end surface of the protection member 45, and the distal end portion of the cooling member 55 is press-fitted into the hole 45 a, or the distal end portion of the cooling member 55. May be connected by soldering or brazing with high thermal conductivity, for example.
このように、本変形例の撮像ユニット40は、イメージセンサ46の電子回路部46bの発熱を吸熱する保護部材45の熱を後方へ移動させる冷却部材55を設けることによって、上述の効果に加え、さらに、冷却部材55に熱を移動させて放熱拡散性を高めて、イメージセンサ46からの熱が先端側に移動することを防止することができる。なお、この冷却部材55は、第1の実施の形態の撮像ユニット40の構成に設けても、十分に、放熱拡散効果があることは勿論である。
As described above, the imaging unit 40 according to the present modification includes the cooling member 55 that moves the heat of the protection member 45 that absorbs heat generated by the electronic circuit unit 46b of the image sensor 46 to the rear, in addition to the above-described effects. Furthermore, heat can be moved to the cooling member 55 to enhance the heat diffusibility, and the heat from the image sensor 46 can be prevented from moving to the tip side. Needless to say, the cooling member 55 has a sufficient heat diffusing effect even if it is provided in the configuration of the imaging unit 40 of the first embodiment.
(第3の実施の形態)
次に、第3の実施の形態の撮像ユニットについて、図13から図17に基づいて、以下に説明する。
なお、図13から図17は、本発明の第3の実施の形態に係り、図13Aは撮像ユニットの構成を示す断面図、図13Bは図13Aの円で囲んだ部分の拡大図、図14Aは第1の変形例の撮像ユニットの構成を示す断面図、図14Bは図14Aの円で囲んだ部分の拡大図、図15は第2の変形例を示す撮像ユニットの構成を示す断面図、図16は第3の変形例を示す撮像ユニットの構成を示す断面図、図17は第4の変形例を示す撮像ユニットの構成を示す断面図である。また、以下の説明においても、第1の実施の形態と同一の構成要素については、説明の便宜のため、同じ符号を用いて、それら構成要素の詳細な説明、および作用効果を省略する。 (Third embodiment)
Next, an imaging unit according to the third embodiment will be described below based on FIGS.
13 to 17 relate to the third embodiment of the present invention, FIG. 13A is a cross-sectional view showing the configuration of the imaging unit, FIG. 13B is an enlarged view of a portion surrounded by a circle in FIG. 13A, and FIG. FIG. 14B is an enlarged view of a portion surrounded by a circle in FIG. 14A, FIG. 15 is a cross-sectional view showing the configuration of the imaging unit showing the second modification, FIG. 16 is a cross-sectional view showing a configuration of an imaging unit showing a third modification, and FIG. 17 is a cross-sectional view showing a configuration of an imaging unit showing a fourth modification. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals for the sake of convenience of description, and detailed descriptions and operational effects of those components are omitted.
次に、第3の実施の形態の撮像ユニットについて、図13から図17に基づいて、以下に説明する。
なお、図13から図17は、本発明の第3の実施の形態に係り、図13Aは撮像ユニットの構成を示す断面図、図13Bは図13Aの円で囲んだ部分の拡大図、図14Aは第1の変形例の撮像ユニットの構成を示す断面図、図14Bは図14Aの円で囲んだ部分の拡大図、図15は第2の変形例を示す撮像ユニットの構成を示す断面図、図16は第3の変形例を示す撮像ユニットの構成を示す断面図、図17は第4の変形例を示す撮像ユニットの構成を示す断面図である。また、以下の説明においても、第1の実施の形態と同一の構成要素については、説明の便宜のため、同じ符号を用いて、それら構成要素の詳細な説明、および作用効果を省略する。 (Third embodiment)
Next, an imaging unit according to the third embodiment will be described below based on FIGS.
13 to 17 relate to the third embodiment of the present invention, FIG. 13A is a cross-sectional view showing the configuration of the imaging unit, FIG. 13B is an enlarged view of a portion surrounded by a circle in FIG. 13A, and FIG. FIG. 14B is an enlarged view of a portion surrounded by a circle in FIG. 14A, FIG. 15 is a cross-sectional view showing the configuration of the imaging unit showing the second modification, FIG. 16 is a cross-sectional view showing a configuration of an imaging unit showing a third modification, and FIG. 17 is a cross-sectional view showing a configuration of an imaging unit showing a fourth modification. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals for the sake of convenience of description, and detailed descriptions and operational effects of those components are omitted.
本実施の形態の撮像ユニット40は、図13に示すように、電子回路部46bが設けられた部分のイメージセンサ46の上面部に重畳する位置まで、FPC47が配設されている。このFPC47は、ポリイミド膜などのカバーレイ61に絶縁被膜されたグランド層62a、および信号ライン62bが設けられている。
In the imaging unit 40 of the present embodiment, as shown in FIG. 13, the FPC 47 is disposed up to a position where it overlaps the upper surface of the image sensor 46 in the portion where the electronic circuit portion 46 b is provided. The FPC 47 is provided with a ground layer 62a and a signal line 62b which are covered with an insulating film on a cover lay 61 such as a polyimide film.
このグランド層62aは、FPC47の略全面にパターン形成されている。つまり、FPC47は、グランド層62aを含めて、イメージセンサ46の電子回路部46bを覆うように、イメージセンサ46の上面に重畳して配置される。
The ground layer 62a is patterned on substantially the entire surface of the FPC 47. That is, the FPC 47 is disposed so as to overlap the upper surface of the image sensor 46 so as to cover the electronic circuit portion 46b of the image sensor 46 including the ground layer 62a.
このように、本実施の形態の撮像ユニット40では、グランド層62aが略全面にパターン形成されたFPC47の先端部分が電子回路部46bを覆う位置までイメージセンサ46の上面に設けたことで、グランド層62aに電子回路部46bからの熱が直接伝熱されるため、第1の実施の形態に比して、さらに、イメージセンサ46における発熱する電子回路部46bからの熱の吸収放熱性を高めた構成とすることができる。
As described above, in the imaging unit 40 according to the present embodiment, the ground layer 62a is provided on the upper surface of the image sensor 46 to the position where the tip portion of the FPC 47 in which the ground layer 62a is patterned on the entire surface covers the electronic circuit portion 46b. Since the heat from the electronic circuit unit 46b is directly transferred to the layer 62a, the heat absorption and heat dissipation of the heat from the electronic circuit unit 46b that generates heat in the image sensor 46 is further improved as compared with the first embodiment. It can be configured.
換言すると、撮像ユニット40は、発熱部であるイメージセンサ46の電子回路部46bで発生した熱が、電子回路部46bを覆うように近傍に配設されたFPC47のグランド層62aへ直接的に伝熱される構成となっている。これに加えて、第1の実施の形態と同様に、保護部材45は、プリズム44に伝熱されたイメージセンサ46からの熱を吸収放熱する。
In other words, the imaging unit 40 directly transfers heat generated in the electronic circuit unit 46b of the image sensor 46, which is a heat generating unit, to the ground layer 62a of the FPC 47 disposed in the vicinity so as to cover the electronic circuit unit 46b. It is configured to be heated. In addition to this, similarly to the first embodiment, the protection member 45 absorbs and dissipates heat from the image sensor 46 transferred to the prism 44.
そのため、本実施の形態の撮像ユニット40は、第1の実施の形態の構成に比して、さらに、イメージセンサ46の電子回路部46bの発熱を直接的にFPC47のグランド層62aで吸熱して、FPC47の後方側へ熱が移動して、FPC47の周囲にグランド層62aで吸収した熱を拡散して放熱する構成とすることができる。
Therefore, the imaging unit 40 of the present embodiment further absorbs heat generated by the electronic circuit unit 46b of the image sensor 46 directly by the ground layer 62a of the FPC 47, as compared with the configuration of the first embodiment. The heat moves to the rear side of the FPC 47, and the heat absorbed by the ground layer 62a is diffused around the FPC 47 to dissipate it.
このように、本実施の形態の撮像ユニット40は、イメージセンサ46の電子回路部46bの発熱をFPC47のグランド層62aによって、吸熱してFPC47の後方へ熱移動させると共に、その熱をFPC47周囲に拡散して放熱し、さらに、FPC47のグランド層62aで吸熱しきれなかったイメージセンサ46の熱がプリズム44を介して、保護部材45によって吸収放熱される。そのため、撮像ユニット40は、第1の実施の形態の効果に加え、さらに、放熱拡散性を高めることができ、イメージセンサ46の熱が先端側に移動することを防止することができる。
As described above, the imaging unit 40 of the present embodiment absorbs the heat generated by the electronic circuit unit 46b of the image sensor 46 by the ground layer 62a of the FPC 47 and transfers it to the rear of the FPC 47, and the heat is transferred to the periphery of the FPC 47. The heat of the image sensor 46 that has not been absorbed by the ground layer 62 a of the FPC 47 is absorbed and dissipated by the protective member 45 through the prism 44. Therefore, in addition to the effects of the first embodiment, the imaging unit 40 can further increase the heat diffusibility and prevent the heat of the image sensor 46 from moving to the front end side.
また、図14に示すように、撮像ユニット40は、グランド層62aが略全面にパターン形成されたFPC47をイメージセンサ46の上下両面のそれぞれに設けても良い。
具体的には、電子部品48が下面に実装されたFPC47は、先端部分が電子回路部46bを覆う位置までイメージセンサ46の下面に配設されている。そして、新たに設けるFPC63は、単に、ポリイミド膜などのカバーレイ64に絶縁被膜されたグランド層65が設けられた構成であって、先端部分が電子回路部46bを覆う位置まで重畳するようにイメージセンサ46の上面に配設されている。 Further, as shown in FIG. 14, theimaging unit 40 may be provided with FPCs 47 each having a ground layer 62 a patterned on substantially the entire surface, on both upper and lower surfaces of the image sensor 46.
Specifically, theFPC 47 on which the electronic component 48 is mounted on the lower surface is disposed on the lower surface of the image sensor 46 until the tip portion covers the electronic circuit portion 46b. The newly provided FPC 63 simply has a structure in which a ground layer 65 with an insulating coating is provided on a cover lay 64 such as a polyimide film, and the image is such that the tip portion overlaps to a position covering the electronic circuit portion 46b. The sensor 46 is disposed on the upper surface.
具体的には、電子部品48が下面に実装されたFPC47は、先端部分が電子回路部46bを覆う位置までイメージセンサ46の下面に配設されている。そして、新たに設けるFPC63は、単に、ポリイミド膜などのカバーレイ64に絶縁被膜されたグランド層65が設けられた構成であって、先端部分が電子回路部46bを覆う位置まで重畳するようにイメージセンサ46の上面に配設されている。 Further, as shown in FIG. 14, the
Specifically, the
新たなFPC63は、グランド層65のみが略全面にパターン形成されたもので、ここでは、他の回路構成が実装されておらず、そのための配線パターンも形成されていないものである。そして、このFPC63は、グランド層65と電気的に接続するようにケーブル25の芯線25aが半田などにより接続されている。
In the new FPC 63, only the ground layer 65 is patterned on almost the entire surface, and here, no other circuit configuration is mounted, and no wiring pattern is formed therefor. The core 25a of the cable 25 is connected to the FPC 63 by soldering or the like so as to be electrically connected to the ground layer 65.
このように構成された本変形例の撮像ユニット40は、さらに、2つのFPC47,63の各グランド層62,65に発熱部であるイメージセンサ46の電子回路部46bで発生した熱が直接的に伝熱される。そして、イメージセンサ46の電子回路部46bの発熱を直接的に吸熱した2つのFPC47,63の各グランド層62,65によって、各FPC47,63の後方側へ熱が移動して、吸収した熱をそれぞれのFPC47,63の周囲に拡散して放熱する。
In the imaging unit 40 of this modification configured as described above, the heat generated in the electronic circuit portion 46b of the image sensor 46, which is a heat generating portion, is directly applied to the ground layers 62 and 65 of the two FPCs 47 and 63, respectively. Heat is transferred. Then, the heat moves to the rear side of each FPC 47, 63 by the ground layers 62, 65 of the two FPCs 47, 63 that directly absorb the heat generated by the electronic circuit portion 46b of the image sensor 46, and the absorbed heat is absorbed. It diffuses and radiates heat around each FPC 47, 63.
そのため、本変形例の撮像ユニット40は、上述の効果に加え、さらに、放熱拡散性を高めることができ、イメージセンサ46の熱が先端側に移動することを防止することができる。なお、この構成においても、保護部材45は、プリズム44に伝熱されたイメージセンサ46からの熱を吸熱放熱するものである。
Therefore, in addition to the above-described effects, the imaging unit 40 of the present modification can further improve the heat diffusibility, and can prevent the heat of the image sensor 46 from moving to the tip side. Also in this configuration, the protection member 45 absorbs and dissipates heat from the image sensor 46 transferred to the prism 44.
なお、ここでは、FPC47,63のそれぞれをイメージセンサ46の異なる2面(上下両面)に配設した構成を示したが、先端部分が電子回路部46bを覆う位置まで重畳するようにイメージセンサ46の他の面(側面)にもFPC63を設けても良い。
Here, the configuration in which the FPCs 47 and 63 are arranged on two different surfaces (upper and lower surfaces) of the image sensor 46 is shown, but the image sensor 46 is overlapped to a position where the tip portion covers the electronic circuit portion 46b. The FPC 63 may be provided on the other surface (side surface).
このようなグランド層62a(65)が略全面にパターン形成されたFPC47(FPC63)を備えた構成は、第2の実施の形態の撮像ユニット40の構成に設けても良いことは勿論である。さらに、保護部材45は、従来のように、プリズム44と同一の材質として、本実施の形態のFPC47(FPC63)を備えた構成のみとしても、従来に比して、十分に放熱拡散効果があることは勿論である。
Of course, such a configuration including the FPC 47 (FPC 63) in which the ground layer 62a (65) is patterned on substantially the entire surface may be provided in the configuration of the imaging unit 40 of the second embodiment. Further, the protective member 45 is sufficiently made of the same material as that of the prism 44 as in the prior art, and even if only the configuration including the FPC 47 (FPC 63) of the present embodiment is provided, it has a sufficient heat diffusing effect as compared with the prior art. Of course.
また、グランド層62が略全面にパターン形成されたFPC47(FPC63)をイメージセンサ46の電子回路部46bを覆う位置まで重畳するように設ける構成は、屈折光学系のプリズム44を有する撮像ユニット40に限定されることなく、各種イメージセンサ46を備えた撮像ユニットにも適用可能である。さらに、FPC47(FPC63)は、リジット基板でも良い。
The configuration in which the FPC 47 (FPC 63) having the ground layer 62 patterned on substantially the entire surface is provided so as to overlap the position covering the electronic circuit portion 46b of the image sensor 46 is provided in the imaging unit 40 having the prism 44 of the refractive optical system. Without being limited, the present invention can also be applied to an imaging unit including various image sensors 46. Further, the FPC 47 (FPC 63) may be a rigid substrate.
なお、図15に示すように、撮像ユニット40は、イメージセンサ46の上下2面に、先端部分が電子回路部46bを覆う位置まで重畳するように設けられるFPC47とFPC63が、上述した図14の構成に対して上下反対に設けられていても良い。
As shown in FIG. 15, in the imaging unit 40, the FPC 47 and the FPC 63, which are provided so as to overlap the top and bottom surfaces of the image sensor 46 up to a position where the tip portion covers the electronic circuit portion 46b, are shown in FIG. It may be provided upside down with respect to the configuration.
また、図16に示すように、撮像ユニット40は、FPC47に配設される電気的な受動素子を構成するコンデンサなどの電子部品48が、イメージセンサ46の電子回路部46bを覆う位置上に配設されていても良い。このような構成では、電気的な能動素子である電子回路部46の熱が電子部品48にも伝熱されるため、さらに、撮像ユニット40の放熱拡散性を高めることができる。
In addition, as shown in FIG. 16, the imaging unit 40 is arranged on a position where an electronic component 48 such as a capacitor constituting an electric passive element disposed in the FPC 47 covers the electronic circuit unit 46 b of the image sensor 46. It may be provided. In such a configuration, the heat of the electronic circuit unit 46, which is an electrically active element, is also transferred to the electronic component 48, so that the heat dissipation diffusivity of the imaging unit 40 can be further increased.
さらに、図17に示すように、撮像ユニット40は、イメージセンサ46よりも基端側であって、FPC47とFPC63の間に放熱部材58が設けられていても良い。この放熱部材58は、FPC47とFPC63が吸熱して基端側に伝熱されたイメージセンサ46の電子部品48の熱を吸熱して、放熱するため、さらに、撮像ユニット40の放熱拡散性を高めることができる。
Further, as shown in FIG. 17, the imaging unit 40 may be provided on the base end side with respect to the image sensor 46, and a heat radiating member 58 may be provided between the FPC 47 and the FPC 63. The heat radiating member 58 absorbs the heat of the electronic component 48 of the image sensor 46 which is absorbed by the FPC 47 and the FPC 63 and is transferred to the base end side to dissipate the heat. be able to.
(第4の実施の形態)
次に、第4の実施の形態の撮像ユニットについて、図18から図20に基づいて、以下に説明する。
なお、図18から図20は、本発明の第4の実施の形態に係り、図18は撮像ユニットが設けられた先端部の構成を示す断面図、図19は図18のXIX-XIX線に沿った撮像ユニットが設けられた先端部の構成を示す断面図、図20は撮像ユニットが設けられ、冷却手段を配設した先端部の構成を示す断面図である。また、以下の説明においても、第1の実施の形態と同一の構成要素については、説明の便宜のため、同じ符号を用いて、それら構成要素の詳細な説明、および作用効果を省略する。 (Fourth embodiment)
Next, an imaging unit according to a fourth embodiment will be described below based on FIGS.
18 to 20 relate to the fourth embodiment of the present invention, FIG. 18 is a cross-sectional view showing the configuration of the tip portion provided with the imaging unit, and FIG. 19 is taken along line XIX-XIX in FIG. FIG. 20 is a cross-sectional view showing the configuration of the distal end portion provided with the imaging unit and provided with cooling means. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals for the sake of convenience of description, and detailed descriptions and operational effects of those components are omitted.
次に、第4の実施の形態の撮像ユニットについて、図18から図20に基づいて、以下に説明する。
なお、図18から図20は、本発明の第4の実施の形態に係り、図18は撮像ユニットが設けられた先端部の構成を示す断面図、図19は図18のXIX-XIX線に沿った撮像ユニットが設けられた先端部の構成を示す断面図、図20は撮像ユニットが設けられ、冷却手段を配設した先端部の構成を示す断面図である。また、以下の説明においても、第1の実施の形態と同一の構成要素については、説明の便宜のため、同じ符号を用いて、それら構成要素の詳細な説明、および作用効果を省略する。 (Fourth embodiment)
Next, an imaging unit according to a fourth embodiment will be described below based on FIGS.
18 to 20 relate to the fourth embodiment of the present invention, FIG. 18 is a cross-sectional view showing the configuration of the tip portion provided with the imaging unit, and FIG. 19 is taken along line XIX-XIX in FIG. FIG. 20 is a cross-sectional view showing the configuration of the distal end portion provided with the imaging unit and provided with cooling means. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals for the sake of convenience of description, and detailed descriptions and operational effects of those components are omitted.
図18、および図19に示すように、本実施の形態の電子内視鏡装置2の先端部6は、先端硬質部30の外周部に筒状の樹脂枠70が設けられている。
この樹脂枠70は、先端部分が先端硬質部30の外周部と嵌合接着されている。なお、樹脂枠70の基端部分は、その内周面が図示しないが先端硬質部30の外周面と面接触するように接合接着されている。 As shown in FIGS. 18 and 19, thedistal end portion 6 of the electronic endoscope apparatus 2 of the present embodiment is provided with a cylindrical resin frame 70 on the outer peripheral portion of the distal end hard portion 30.
Theresin frame 70 is fitted and bonded to the outer peripheral portion of the distal end hard portion 30 at the distal end portion. The base end portion of the resin frame 70 is bonded and bonded so that the inner peripheral surface thereof is in surface contact with the outer peripheral surface of the distal end hard portion 30 (not shown).
この樹脂枠70は、先端部分が先端硬質部30の外周部と嵌合接着されている。なお、樹脂枠70の基端部分は、その内周面が図示しないが先端硬質部30の外周面と面接触するように接合接着されている。 As shown in FIGS. 18 and 19, the
The
また、先端硬質部30は、樹脂枠70が外嵌する部分の外周部が長手方向の所定の長さ範囲で長手軸回りに所定の厚さだけ削り取られて周方向に凹部が形成されている。そのため、先端部6は、先端硬質部30に樹脂枠70が外挿嵌着された状態において、先端硬質部30と樹脂枠70との間に空気層71が形成される。なお、樹脂枠70と先端硬質部30とは、接着剤などによって気密に嵌合接着される。
In addition, the distal end hard portion 30 is formed with a concave portion in the circumferential direction by scraping the outer peripheral portion of the portion to which the resin frame 70 is fitted out by a predetermined thickness around the longitudinal axis within a predetermined length range in the longitudinal direction. . For this reason, in the tip portion 6, an air layer 71 is formed between the tip hard portion 30 and the resin frame 70 in a state where the resin frame 70 is externally fitted to the tip hard portion 30. The resin frame 70 and the hard tip portion 30 are hermetically fitted and bonded with an adhesive or the like.
このような構成とすることで、本実施の形態の電子内視鏡装置2の先端部6は、先端硬質部30内に配置される発熱体となる撮像ユニット40の熱が空気層71による断熱効果によって、外表面となる樹脂枠70へ伝わり難くなり、内部からの熱による温度上昇が抑制される。これにより、電子内視鏡装置2の先端部6の高温化を防止できる。
With such a configuration, the distal end portion 6 of the electronic endoscope apparatus 2 according to the present embodiment is insulated by the air layer 71 from the heat of the imaging unit 40 serving as a heating element disposed in the distal end hard portion 30. Due to the effect, it is difficult to be transmitted to the resin frame 70 which is the outer surface, and a temperature rise due to heat from the inside is suppressed. Thereby, the high temperature of the front-end | tip part 6 of the electronic endoscope apparatus 2 can be prevented.
なお、図20に示すように、先端硬質部30内にヒートパイプ、放熱線などの冷却手段である冷却部材72を設けても良い。この冷却部材72は、所定の長さで後方へ延設され、先端部分を除く全体が外装シース73によって被覆されている。また、冷却部材72の先端部は、例えば、半田、またはロウ付けである熱伝導性の高い接着部74によって、空間部33を形成する先端硬質部30の内面と接続されている。
As shown in FIG. 20, a cooling member 72 that is a cooling means such as a heat pipe or a heat radiating wire may be provided in the distal end hard portion 30. The cooling member 72 extends rearward with a predetermined length, and is entirely covered with an outer sheath 73 except for the distal end portion. Moreover, the front-end | tip part of the cooling member 72 is connected with the inner surface of the front-end | tip hard part 30 which forms the space part 33 by the adhesive part 74 with high heat conductivity which is solder or brazing, for example.
このように、本変形例の電子内視鏡装置2の先端部6は、撮像ユニット40の熱が伝熱されて加熱された先端硬質部30の熱を後方へ移動させる冷却部材72を設けることによって、熱が拡散されるため、内部の温度が一定値以下に抑制することができ、上述の効果に加え、さらに、高温化することを防止することができる。
As described above, the distal end portion 6 of the electronic endoscope apparatus 2 of the present modification is provided with the cooling member 72 that moves the heat of the distal end hard portion 30 heated by the heat transfer from the imaging unit 40 to the rear. Since the heat is diffused by this, the internal temperature can be suppressed to a certain value or less, and in addition to the above-described effects, it is possible to further prevent the temperature from rising.
なお、以上に説明した、本実施の形態の電子内視鏡の先端部6の構成は、上述の各実施の形態で説明した撮像ユニット40と共に、併用できることは勿論である。また、上述の各実施の形態のFPC47の構成は、これに限定されることなく、TABテープでも構わない。
It should be noted that the configuration of the distal end portion 6 of the electronic endoscope of the present embodiment described above can be used together with the imaging unit 40 described in the above-described embodiments. Further, the configuration of the FPC 47 of each of the above-described embodiments is not limited to this, and a TAB tape may be used.
そして、以上に記載した発明は、上記各実施の形態に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、各実施形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより種々の発明が抽出され得るものである。
The invention described above is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention at the stage of implementation. Further, each embodiment includes various stages of the invention, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements.
例えば、各実施の形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする不具合に対して、述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得るものである。
For example, even if some constituent requirements are deleted from all the constituent requirements shown in each embodiment, this constituent requirement can be obtained when the described effect can be obtained for the problem to be solved by the invention. A configuration in which is deleted can be extracted as an invention.
本出願は、2010年2月1日に日本国に出願された特願2010-020495号を優先権主張の基礎として出願するものであり、上記の内容は、本願明細書、請求の範囲、および図面に引用されたものである。
This application is filed on the basis of the priority claim of Japanese Patent Application No. 2010-020495, filed in Japan on February 1, 2010, and the above-mentioned contents include the present specification, claims, and It is cited in the drawing.
Claims (9)
- 入射された被検体の光学像の光束を集光する対物光学系と、
光電変換部、および電子回路部がパッケージ化されたイメージセンサと、
前記イメージセンサの一面に配設され、前記光学像の光束を屈折して前記光電変換部に結像させる反射膜を備えた屈折光学系と、
前記反射膜を保護するように前記屈折光学系に接合され、前記屈折光学系よりも高い熱伝導率を備えた保護部材と、
を具備することを特徴とする内視鏡用撮像ユニット。 An objective optical system that collects a light beam of an optical image of an incident subject;
An image sensor in which a photoelectric conversion unit and an electronic circuit unit are packaged;
A refractive optical system provided on one surface of the image sensor and provided with a reflective film that refracts a light beam of the optical image and forms an image on the photoelectric conversion unit;
A protective member bonded to the refractive optical system so as to protect the reflective film, and having a higher thermal conductivity than the refractive optical system;
An imaging unit for an endoscope, comprising: - 前記保護部材は、前記電子回路部が設けられた部位まで前記イメージセンサに重畳して配設されていることを特徴とする請求項1に記載の内視鏡用撮像ユニット。 2. The endoscope imaging unit according to claim 1, wherein the protective member is disposed so as to overlap the image sensor up to a portion where the electronic circuit unit is provided.
- 前記保護部材には、冷却部材が接続されていることを特徴とする請求項1、または請求項2に記載の内視鏡用撮像ユニット。 3. The endoscope imaging unit according to claim 1, wherein a cooling member is connected to the protective member.
- 前記冷却部材は、熱伝導率の高い接着部によって、前記保護部材に接続されていることを特徴とする請求項3に記載の内視鏡用撮像ユニット。 4. The endoscope imaging unit according to claim 3, wherein the cooling member is connected to the protective member by an adhesive portion having high thermal conductivity.
- 前記屈折光学系がガラスにより形成され、
前記保護部材が前記ガラスよりも熱伝導率の高い焼結体、合成樹脂、金属、または鉱石によって形成されていることを特徴とする請求項1から請求項4のいずれか1項に記載の内視鏡用撮像ユニット。 The refractive optical system is formed of glass;
5. The inner member according to claim 1, wherein the protective member is made of a sintered body, a synthetic resin, a metal, or an ore having a higher thermal conductivity than the glass. Imaging unit for endoscope. - 前記イメージセンサと電気的に接続され、全面にグランド層が形成された基板を備え、
前記基板は、前記電子回路部が設けられた部位まで前記イメージセンサに重畳して配設されていることを特徴とする請求項1に記載の内視鏡用撮像ユニット。 A substrate electrically connected to the image sensor and having a ground layer formed on the entire surface,
2. The endoscope imaging unit according to claim 1, wherein the substrate is disposed so as to overlap the image sensor up to a portion where the electronic circuit unit is provided. - 前記イメージセンサの異なる面に配設された複数の前記基板を備え、
前記複数の基板は、前記電子回路部が設けられた部位まで前記イメージセンサに重畳して配設されていることを特徴とする請求項6に記載の内視鏡用撮像ユニット。 A plurality of the substrates disposed on different surfaces of the image sensor;
The endoscope imaging unit according to claim 6, wherein the plurality of substrates are arranged to overlap the image sensor up to a portion where the electronic circuit unit is provided. - 入射された被検体の光学像の光束を集光する対物光学系と、
光電変換部、および電子回路部がパッケージ化されたイメージセンサと、
前記イメージセンサと電気的に接続され、全面にグランド層が形成された基板と、
を備え、
前記基板は、前記電子回路部が設けられた部位まで前記イメージセンサに重畳して配設されていることを特徴とする内視鏡用撮像ユニット。 An objective optical system that collects a light beam of an optical image of an incident subject;
An image sensor in which a photoelectric conversion unit and an electronic circuit unit are packaged;
A substrate electrically connected to the image sensor and having a ground layer formed on the entire surface;
With
The imaging unit for an endoscope, wherein the substrate is disposed so as to overlap the image sensor up to a portion where the electronic circuit unit is provided. - 前記イメージセンサの異なる面に配設された複数の前記基板を備え、
前記複数の基板は、前記電子回路部が設けられた部位まで前記イメージセンサに重畳して配設されていることを特徴とする請求項8に記載の内視鏡撮像ユニット。 A plurality of the substrates disposed on different surfaces of the image sensor;
The endoscope imaging unit according to claim 8, wherein the plurality of substrates are arranged so as to overlap the image sensor up to a portion where the electronic circuit unit is provided.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010020495 | 2010-02-01 | ||
JP2010-020495 | 2010-02-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011092903A1 true WO2011092903A1 (en) | 2011-08-04 |
Family
ID=44318904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/068197 WO2011092903A1 (en) | 2010-02-01 | 2010-10-15 | Image pickup unit for endoscope |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011092903A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012071064A (en) * | 2010-09-29 | 2012-04-12 | Fujifilm Corp | Endoscope apparatus and method for releasing heat of imaging element thereof |
WO2014208171A1 (en) * | 2013-06-28 | 2014-12-31 | オリンパスメディカルシステムズ株式会社 | Imaging module and endoscope device |
JP2015042219A (en) * | 2013-08-26 | 2015-03-05 | オリンパスメディカルシステムズ株式会社 | Endoscope |
WO2015045616A1 (en) * | 2013-09-30 | 2015-04-02 | オリンパス株式会社 | Imaging unit, and endoscope device |
JP2016190007A (en) * | 2015-03-31 | 2016-11-10 | 株式会社フジクラ | Imaging module and endoscope |
WO2016185554A1 (en) * | 2015-05-19 | 2016-11-24 | オリンパス株式会社 | Image pickup unit and endoscope |
WO2021238239A1 (en) * | 2020-05-25 | 2021-12-02 | 卓外(上海)医疗电子科技有限公司 | Heat dissipation structure of endoscope insertion portion |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04317622A (en) * | 1991-04-15 | 1992-11-09 | Asahi Optical Co Ltd | Tip part of endoscope |
JP2000183541A (en) * | 1998-12-11 | 2000-06-30 | Toshiba Iyo System Engineering Kk | Multilayer printed board |
JP2001275022A (en) * | 2000-03-23 | 2001-10-05 | Sony Corp | Video camera |
JP2008029597A (en) * | 2006-07-28 | 2008-02-14 | Olympus Corp | Endoscope apparatus |
JP2009058807A (en) * | 2007-08-31 | 2009-03-19 | Olympus Medical Systems Corp | Imaging unit |
-
2010
- 2010-10-15 WO PCT/JP2010/068197 patent/WO2011092903A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04317622A (en) * | 1991-04-15 | 1992-11-09 | Asahi Optical Co Ltd | Tip part of endoscope |
JP2000183541A (en) * | 1998-12-11 | 2000-06-30 | Toshiba Iyo System Engineering Kk | Multilayer printed board |
JP2001275022A (en) * | 2000-03-23 | 2001-10-05 | Sony Corp | Video camera |
JP2008029597A (en) * | 2006-07-28 | 2008-02-14 | Olympus Corp | Endoscope apparatus |
JP2009058807A (en) * | 2007-08-31 | 2009-03-19 | Olympus Medical Systems Corp | Imaging unit |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012071064A (en) * | 2010-09-29 | 2012-04-12 | Fujifilm Corp | Endoscope apparatus and method for releasing heat of imaging element thereof |
WO2014208171A1 (en) * | 2013-06-28 | 2014-12-31 | オリンパスメディカルシステムズ株式会社 | Imaging module and endoscope device |
CN104684455A (en) * | 2013-06-28 | 2015-06-03 | 奥林巴斯医疗株式会社 | Imaging module and endoscope device |
US9345395B2 (en) | 2013-06-28 | 2016-05-24 | Olympus Corporation | Imaging module and endoscope device |
JP2015042219A (en) * | 2013-08-26 | 2015-03-05 | オリンパスメディカルシステムズ株式会社 | Endoscope |
WO2015045616A1 (en) * | 2013-09-30 | 2015-04-02 | オリンパス株式会社 | Imaging unit, and endoscope device |
JP2015066300A (en) * | 2013-09-30 | 2015-04-13 | オリンパス株式会社 | Imaging unit and endoscope apparatus |
US10574866B2 (en) | 2013-09-30 | 2020-02-25 | Olympus Corporation | Imaging unit and endoscope apparatus |
JP2016190007A (en) * | 2015-03-31 | 2016-11-10 | 株式会社フジクラ | Imaging module and endoscope |
WO2016185554A1 (en) * | 2015-05-19 | 2016-11-24 | オリンパス株式会社 | Image pickup unit and endoscope |
JPWO2016185554A1 (en) * | 2015-05-19 | 2018-03-08 | オリンパス株式会社 | Imaging unit and endoscope |
WO2021238239A1 (en) * | 2020-05-25 | 2021-12-02 | 卓外(上海)医疗电子科技有限公司 | Heat dissipation structure of endoscope insertion portion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5080695B2 (en) | Endoscope imaging unit | |
WO2011092903A1 (en) | Image pickup unit for endoscope | |
JP4757358B2 (en) | Endoscope device | |
JP3875505B2 (en) | Imaging device | |
WO2010064506A1 (en) | Imaging device and endoscope | |
WO2015019671A1 (en) | Imaging unit for endoscope | |
WO2013031276A1 (en) | Endoscope image capture unit | |
JP5143634B2 (en) | Imaging device | |
US11122969B2 (en) | Endoscopic device | |
JP5341279B2 (en) | Endoscope device | |
US20120075446A1 (en) | Endoscope apparatus and method for releasing heat generated by imaging element of the endoscope apparatus | |
JP2010069217A (en) | Imaging apparatus for electronic endoscope and electronic endoscope | |
WO2019044609A1 (en) | Endoscope | |
WO2019176601A1 (en) | Imaging unit and oblique endoscope | |
JP5377085B2 (en) | Endoscope | |
JP2008079823A (en) | Imaging apparatus | |
JP4709870B2 (en) | Imaging device | |
JP6727964B2 (en) | Endoscope | |
JP4127776B2 (en) | Imaging device | |
JP2022179301A (en) | Endoscope imaging apparatus and endoscope | |
JPH03118021A (en) | Endoscope device | |
JP5189209B2 (en) | Endoscope structure of endoscope | |
JP7385736B2 (en) | Endoscope imaging device | |
JP2013099469A (en) | Imaging device and endoscope | |
JP4286086B2 (en) | Endoscope device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10844658 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10844658 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |