WO2011092809A1 - Ultrasonic bonding method and ultrasonic bonding device - Google Patents

Ultrasonic bonding method and ultrasonic bonding device Download PDF

Info

Publication number
WO2011092809A1
WO2011092809A1 PCT/JP2010/051061 JP2010051061W WO2011092809A1 WO 2011092809 A1 WO2011092809 A1 WO 2011092809A1 JP 2010051061 W JP2010051061 W JP 2010051061W WO 2011092809 A1 WO2011092809 A1 WO 2011092809A1
Authority
WO
WIPO (PCT)
Prior art keywords
fpc
pcb
ultrasonic horn
bonding
resin
Prior art date
Application number
PCT/JP2010/051061
Other languages
French (fr)
Japanese (ja)
Inventor
俊夫 八木原
誠 小玉
正康 戸来
Original Assignee
株式会社コグコフ
Esb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コグコフ, Esb株式会社 filed Critical 株式会社コグコフ
Priority to PCT/JP2010/051061 priority Critical patent/WO2011092809A1/en
Publication of WO2011092809A1 publication Critical patent/WO2011092809A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0285Using ultrasound, e.g. for cleaning, soldering or wet treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/167Using mechanical means for positioning, alignment or registration, e.g. using rod-in-hole alignment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/328Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by welding

Definitions

  • the present invention relates to an ultrasonic bonding method and an ultrasonic bonding apparatus, and relates to a method for connecting electrodes of a printed circuit board (hereinafter referred to as FPC), at least one of which is flexible, using ultrasonic waves, and an apparatus using the same. Is.
  • FPC printed circuit board
  • Recent electronic devices are becoming lighter, thinner, and smaller, while the number of wires at the junction is increasing. For this reason, the existing bonding method between the FPC and the PCB has a limit for increasing the bonding density.
  • the above PCB is a substrate on the other side to which the FPC is bonded.
  • the substrate is, for example, an FPC, a rigid flexible printed circuit board (hereinafter referred to as RFC), a rigid printed circuit board (hereinafter referred to as RPC), a ceramic printed circuit board, a film liquid crystal substrate, a touch panel substrate, or a sheet. It is a switch board.
  • the pitch is not 0.3 mm or more, disconnection, misalignment, incorrect insertion, etc. occur during the process from manufacture to assembly, so the connector arrangement space is large compared to other methods. Necessary.
  • the thickness of the connector is about 1 mm. Therefore, in a portable electronic device, if a connector is used, the thickness of the final product cannot be reduced and the weight cannot be ignored.
  • the mounting of the connector requires a large number of processes before joining, and the mounting cost is high.
  • a method using an anisotropic conductive film (hereinafter referred to as ACF) or a non-conductive film (hereinafter referred to as NCF) for bonding is capable of a pitch of 0.3 mm or less, and has recently attracted attention rapidly.
  • ACF anisotropic conductive film
  • NCF non-conductive film
  • This method using ACF or NCF has advantages over solder in weight and thickness, and has the advantage that the arrangement area is about half, but the temperature, time, and stress for bonding are much larger than solder. For this reason, there are many restrictions on thermal design and substrate design, and the unit cost of NCF / NCP is high, so the place of use is limited.
  • a method has been devised in which FPC and RPC are bonded with high strength at a lower temperature and in a shorter time than heating methods and resin-free bonding.
  • the ease of resin discharge must be taken into consideration, and the electrode pitch, which is usually 1.5 to 2 times the electrode thickness, is 3 to 4 times. If it becomes necessary and the electrode pitch is narrowed in the future, the production management of the electrode becomes difficult.
  • the plating structure and shape of the electrode satisfy the current market demand as shown above, while electrical bonding ensures solid-phase bonding between the electrodes, mechanical bonding strength is a method using resin It is to provide a bonding method satisfying the same strength.
  • the tool for holding the electronic component is changed to hold the FPC instead of the electronic component, and the tip width is 0.001 to 0.5 mm.
  • a heating type ultrasonic horn characterized in that the tip shape is orthogonal to the vibration direction and the cross-sectional shape is a convex groove type blade shape perpendicular to the pressing surface is parallel to the bonding surface and with respect to the electrode direction.
  • the electrodes are arranged so that they are vibrated in a parallel direction, and the FPC and circuit electrodes are overlapped, a load is applied perpendicularly to the joint surface with a predetermined pressure, and then the electrodes are heated and vibrated. This is solved by bonding the FPC and the PCB using a resin.
  • the convex groove type blades according to claim 1 are arranged in a plurality of columns, one row, a plurality of rows, or a plurality of rows, and a plurality of rows on the electrode ⁇ 1 column, or 1 row ⁇ multiple columns, or a plurality of rows.
  • the joining positions are moved relative to each other, and joining is carried out at a position of a plurality of rows x one row, or one row x a plurality of rows, or a plurality of rows x a plurality of rows on the electrode.
  • it can be solved by obtaining a high bonding strength with a lower load.
  • the resin is preliminarily disposed in an area of about half of the joining area and the amount of the joining volume before joining, and the FPC and the circuit electrode are overlapped and then predetermined.
  • the metal bonding of the electrode where the resin was not placed and the resin was heated to melt between the electrodes By providing a time difference to flow and joining the metal, it is not necessary to discharge the resin from between the electrodes even if the resin is arranged in advance, so that the adhesion between the FPC and the PCB and the bonding between the electrodes can be compatible even at a low load. Solved.
  • a liquid UV curable resin is poured from the end face of the FPC or PCB after metal bonding between the electrodes, and further UV irradiation is performed to discharge the resin from between the electrodes. Since there is no need, both the adhesion of the FPC and the PCB and the bonding of the electrodes can be solved even with a low load.
  • the joining method of applying vibration from the transverse direction by longitudinal vibration while applying a load from the direction perpendicular to the pressing surface consists of the transition of the following four phases (hereinafter referred to as PHASE).
  • reference numeral 10a denotes a knurl-shaped (pyramid-shaped) ultrasonic horn.
  • Joining with the shape (pyramid shape) ultrasonic horn 10a has the result that the peel strength is lower than that of a convex groove type blade-shaped ultrasonic horn despite the presence of indentations on the FPC surface or PCB electrode surface. Obtained. From this, it was considered that “the relative motion between the PHASE 2 and the PHASE 3 is required on the surfaces of the ultrasonic horn and the FPC to increase the bonding strength”.
  • the area ⁇ increases when the biting amount ⁇ of the horn tip into the resin or metal electrode increases.
  • ⁇ ⁇ ⁇ (1-Sin ⁇ )
  • the solid-phase bonding strength is “saturated” when there is no breakage in the electrode or substrate, and the bonding strength of the plating surface or the metal on the plating and plating base. It is known to saturate at the lower value of the bond strength of. As described above, in the present invention, even if the load is changed, the pressure receiving area does not change. Therefore, it is possible to provide a joining method in which the stress is proportional to the load.
  • the thickness dimension of the convex blade at the tip of the ultrasonic horn which is the most important in the present invention, cannot be defined unconditionally due to processing limitations due to the characteristics of the material.
  • the relationship between the cross-sectional shape of the tip, the amplitude of the ultrasonic horn and the stress applied to the metal electrode through the FPC substrate can be theoretically confirmed by a simplified model.
  • a theoretical model is used to summarize how the relationship between the shape and the amplitude of the ultrasonic horn is related to the thickness dimension of the tip.
  • Fig. 7 is a list of theoretical models that summarize the relationship between cross-sectional shape and amplitude.
  • 6 (a) and 6 (b) are legends excerpting 131a and 131b in FIG. 7.
  • the b series composed of 111b, 112b, 113b, and 135b is a “stress sum” graph obtained by adding the stress due to the load and the weight when the ultrasonic horn moves, and the horizontal scale indicates the amplitude of the ultrasonic horn.
  • the vertical scale is in units of stress with the downward direction being positive.
  • the one series composed of 111a, 111b, 121a, and 131b is composed of the two series composed of 111a, 111b, 121a,.
  • the part length is 1 times the amplitude of the ultrasonic horn
  • the three series consisting of 113a, 113b, 123a, 133b are 114a, 114b, 124a
  • the load part length is twice the amplitude of the ultrasonic horn.
  • the four series composed of 134b has a load section length of 5 of the amplitude of the ultrasonic horn. If it is double, it is a model list.
  • the cross-sectional shape of the ultrasonic horn of the 10 series composed of 111a, 111b, 112a, 115b is a triangle
  • the cross-sectional shape of the ultrasonic horn of the 20 series composed of 121a, 121b, 122a is a model list in the case where the cross-sectional shape of the ultrasonic horn is a square.
  • a thin solid line drawn in each figure of the a series indicates a position where the amplitude length has been moved.
  • Fig. 8 (a) is a comparison table of the maximum stresses of the b series in Fig. 7, and the unit is 100% for each one series.
  • FIG. 8B is a comparison table of the stress sums of the b series in FIG. 7, and the unit is 100% for each one series.
  • FIG. 8C is a comparison table of the maximum values of the rate of change of the stress sum, and the unit is 100% for each one series.
  • FIG. 8D is a comparison table of the minimum values of the rate of change of the sum of stress, and the unit is 100% for each one series.
  • the a series is an ideal stress distribution graph in a static state in which the ultrasonic horn is pressed against the FPC, and the load portion length is proportional to the pressurizing area if the length of the ultrasonic horn is the same. Furthermore, if the load is the same, the stress is considered to be the same in all models.
  • the b series is an ideal stress sum distribution graph in which the load from the position at which the ultrasonic horn is pressed against the FPC to the position at which the amplitude length is moved and the stress that has changed due to the pulling are added.
  • the area between the graph and the stress axis is the sum of the stress received when the ultrasonic horn is moved.
  • the slope of the graph represents the rate of change of the stress.
  • the cross-sectional shape is a quadrangle, that is, a cross-sectional shape perpendicular to the pressing surface, it is stable even if the amplitude changes. Therefore, the present invention can provide a joining method in which the joining force is stable even if the amplitude changes, because the sectional shape of the ultrasonic horn is a quadrangle, that is, a sectional shape perpendicular to the pressing surface.
  • the present invention provides a joining method in which the tip shape of an ultrasonic horn is formed into a convex groove type blade shape and arranged in a plurality of rows so that a joining strength several times that of one row can be obtained in a single joining process. it can.
  • the present invention can provide a bonding method and apparatus that can obtain a bonding strength several times that of a single bonding because the bonding position by the ultrasonic horn is relatively moved each time and bonded many times.
  • N times overlap length / ultrasonic amplitude
  • the tip shape of the ultrasonic horn is a convex-blade blade shape in the present invention, the bonding area does not change even if the ultrasonic horn bites into the resin that is the FPC base material.
  • the present invention can provide a bonding method and apparatus that reduce stress on the PCB and facilitates stress design and stress management of the PCB because the bonding stress is locally concentrated even at a low load.
  • the convex groove type blade shape, dimensions and arrangement of the heating ultrasonic horn according to the present invention have a stable pressure receiving area and a stable stress concentration.
  • the degree of concentration is increased, and the plastic deformation of the metal surface is accelerated at an accelerated rate by heating. Therefore, it was confirmed in the experiment that the electrode surface can be joined with other than gold (for example, silver, tin, and aluminum).
  • the FPC and the circuit electrodes are overlapped, and a load is applied perpendicularly to the bonding surface at a predetermined pressure, heating and vibration are applied. If the resin is not sufficiently heated, the resin is not discharged from between the electrodes, and the metal bonding of the electrodes is hindered, resulting in a case where the resistance is high or there is no conduction. Therefore, in this method of arranging in advance on the entire surface, the bonding time between the FPC and the PCB becomes longer and the load for bonding and adhesion becomes larger than in the case where only the electrodes are solid-phase bonded.
  • the resin is disposed in advance in an amount required to fill the gap portion of the joining portion with a length of about 30% to 50% of the joining length of the joining surface, and the FPC and circuit electrodes.
  • a load is applied perpendicularly to the bonding surface with a certain pressure after applying a certain amount of pressure, and then vibration and heating are performed, the metal bonding of the electrode where the resin has not been placed is completed first, and then the resin Is heated to melt and flow between the electrodes, so that it is possible to provide a joining method and apparatus for joining the FPC and the PCB with substantially the same time and load as the metal joining method.
  • the present invention can provide a bonding method having a lower bonding resistance than fusion bonding. Moreover, since the removal of the oxide film and oil film on the surface is mechanically performed by vibration from the lateral direction, the present invention can provide a bonding method and apparatus that do not require electrode cleaning. Furthermore, since solid-phase bonding by lateral vibration causes very little change in the shape of the electrode surface, in the present invention, even if the FPC once bonded is peeled off and bonded again, both bonding strength and bonding resistance deteriorate. Can provide no joining method.
  • the shape of the electrode is a simple shape as usual, it is not necessary to consider the resin flow, and it is possible to provide a joining method in which the PCB electrode pitch is narrow as usual.
  • the tip shape of the ultrasonic horn is simple, even if the ultrasonic horn is worn, it can be reused by simply polishing the joint surface. Therefore, this can provide a joining method with a low running cost of the ultrasonic horn. Further, in the present invention, even if the ultrasonic horn is worn, it is possible to polish the joining surface of the ultrasonic horn by polishing the ultrasonic horn while applying a polishing grindstone or the like. Accordingly, this makes it possible to provide a joining method and apparatus that facilitates removal of dirt and that has a low running cost of the ultrasonic horn.
  • Electrode plating structure and dimensions can be narrowed to meet current market requirements, and electrical bonding ensures solid-state bonding between electrodes, while mechanical bonding strength is the same as resin-based methods A bonding method satisfying the strength can be provided.
  • FIG. 1 It is a perspective view which shows the ultrasonic connection apparatus of FPC. It is a perspective view which shows how to overlap FPC and PCB, an electrode direction, a load direction, and a vibration direction. It is the perspective view which reversed the Naru form ultrasonic horn, the load direction, and the vibration direction from the lower surface.
  • A is the perspective view which reversed the convex blade shape 1 row ultrasonic horn from the lower surface
  • (b) is the perspective view which reversed the convex blade shape 3 row ultrasonic horn from the lower surface.
  • (c) is a perspective view of the convex blade-shaped single-row ultrasonic horn inverted from the lower surface
  • (d) is the convex blade-shaped single-row ultrasonic horn inverted from the lower surface. It is the perspective view seen
  • (e) is the perspective view which reversed the convex blade shape 3 row 1 row ultrasonic horn from the lower surface, and was seen.
  • (A) is the perspective view which reversed and saw the convex blade shape 3 row 3 row ultrasonic horn from the lower surface
  • (b) is the arrow X figure of figure (a)
  • (c) is a figure ( It is an arrow Y view of a).
  • (A) is a legend of the static stress distribution graph of FIG.
  • (b) is a legend of the stress sum distribution graph of FIG. It is a list of theoretical models that summarize the relationship between cross-sectional shape and amplitude.
  • (A) is the b series maximum stress comparison table of FIG. 7, and the unit is 100% for each one series.
  • B) is a comparison table of the stress sums of the b series in FIG. 7, and the unit is 100% for each one series.
  • C) is a comparison table of the maximum values of the rate of change of the stress sum, and the unit is 100% for each one series.
  • (D) is a comparison table of the minimum values of the rate of change of the stress sum, and the unit is 100% for each one series.
  • FIG. 6A is a side view showing a bonding position before the relative movement of the convex blade-shaped ultrasonic horn
  • FIG. 6B shows the relative movement of the convex blade-shaped ultrasonic horn. It is a side view which shows the position which has joined next.
  • (A) is a front view showing the state before joining, in which resin is arranged on the entire surface of the PCB
  • (b) is a front view showing the middle of joining and bonding, which is the next stage of (a)
  • (A) is the front view which shows the state before joining which arrange
  • (b) is the next step of (a), in the middle of joining and adhesion
  • C) is a front view showing a state after joining and bonding, which is the next stage of (b).
  • (A) is a front view showing the state before joining, in which a resin having an area of about half of the PCB is arranged near the center of the joint, and (b) is the next stage of (a), the first stage of joining / bonding It is a front view which shows the step of (b), (c) is a front view which shows the step in the middle of joining and adhesion
  • (A) is a front view showing a state before bonding, in which a resin having an area of about 1/3 is arranged in the vicinity of the PCB end surface on the PCB, and (b) is the next stage of (a), which is a bonding / adhesion step. It is a front view which shows the middle, (c) is a front view which shows the state after joining and adhesion
  • (A) is a front view showing a state before bonding, in which a resin having an area of about 1/3 is arranged in the vicinity of the PCB end surface on the PCB, and (b) is the next stage of (a), which is a bonding / adhesion step.
  • (c) is a front view which shows the stage in the middle of joining and adhesion
  • (c) is a front view which shows a certain last stage of joining and adhesion
  • FIG. 2 is a perspective view showing how the FPC and the PCB are overlapped, the electrode direction, the load direction, and the vibration direction.
  • 1 is an FPC
  • 1a is an FPC base material made of a resin such as polyimide (trade name) or pet (trade name)
  • 2 is a conductive metal such as gold, silver or copper, or soldered on the surface thereof.
  • FPC electrodes provided on the FPC 1 subjected to plating, tin plating, gold plating, etc. 3 is a PCB
  • 3a is a resin such as polyvinyl chloride, bakelite, fiber, polyimide (trade name), pet (trade name), PCB substrate made of ceramics and glass
  • 4 is a conductive metal such as gold, silver, copper, or PCB electrode provided on PCB 3 on which solder plating, tin plating, gold plating or the like is further applied
  • 6a, 7a Is an alignment mark provided for positioning described later.
  • FIG. 4 (a) is a perspective view of the convex blade-shaped single-row ultrasonic horn according to the present invention as seen from the lower surface showing the shape, load direction, vibration direction, and electrode direction.
  • Reference numeral 10b denotes a convex blade shape single row ultrasonic horn.
  • 10c shown in FIG. 4 (b) is a convex blade-shaped three-row ultrasonic horn.
  • 10d shown in FIG.4 (c) is a convex blade shape 1 row 1 row ultrasonic horn.
  • Reference numeral 10e shown in FIG. 4 (d) denotes a convex blade-shaped three-row single-row ultrasonic horn.
  • Reference numeral 10f shown in FIG. 4 (e) denotes a convex blade-shaped one-row, three-row ultrasonic horn.
  • 10g shown in FIG.4 (g) is a convex-blade shape 3 row
  • FIG. 5 (b) is a side view as seen from the direction of the arrow x in FIG. 5 (a), and is a side view arranged so that the load direction is from bottom to top.
  • Wy is the length of the portion of the ultrasonic horn where the convex blade is provided
  • B is the length of the convex blade of the ultrasonic horn
  • Py is the pitch distance when multiple convex blades are arranged.
  • FIG.5 (c) is the figure seen from the arrow y direction of Fig.5 (a), and is the front view arrange
  • Wx is the width of the portion of the ultrasonic horn where the convex blades are provided
  • T is the thickness of the convex blades of the ultrasonic horn
  • Px is the pitch distance when multiple rows of convex blades are arranged.
  • the minimum value of the thickness T at the tip of the ultrasonic horn is considered to be sufficient if it is one time the amplitude of the ultrasonic horn based on the above theoretical model.
  • the amplitude of the ultrasonic horn currently used in the experiment is 3 ⁇ m, it should be 0.003 mm.
  • the oscillation frequency will be increased, and on the contrary, the amplitude will be further reduced, and the FPC1 due to ultrasonic vibration will be reduced. Since it is planned that it is necessary to suppress damage to the PCB 3 and the components mounted on the surface and inside thereof, the minimum value of the thickness T at the tip of the ultrasonic horn is set to 0.001 mm.
  • the maximum value of the thickness T at the tip of the ultrasonic horn is sufficient to be one time the amplitude of the ultrasonic horn from the above-mentioned theoretical model.
  • the processing method and state of the surface, further, the material, thickness, hardness, and longitudinal elastic modulus of the resin that is the base material of the FPC, and further the condition of the joining member such as the processing method and state of the surface In addition, based on the results of experiments so far, the limits of processing from the material of the ultrasonic horn and the characteristics of the materials, the number of wires, the thickness of the wires, the control limits of the load control device, etc. .5mm is required.
  • the thickness T of the tip of the ultrasonic horn is 0.001 to 0.5 mm.
  • the height H of the tip of the ultrasonic horn cannot be determined at all because the thickness of the FPC substrate 1a is as wide as several tens to several hundreds ⁇ m depending on the application.
  • the heat radiation and the radiant heat are very important, so the height H of the tip of the ultrasonic horn is as much as possible in consideration of the thickness and material of the FPC substrate 1a.
  • the thickness T of the ultrasonic horn tip can be determined. Even if the necessary load can be determined, the allowable stress of the PCB 3 may be exceeded depending on the conditions of the joining member. In this case, for example, the shape of the convex blade-shaped three-row ultrasonic horn 10g receives the reaction force from the “FPC” base material 3a rather than the shape of the convex blade-shaped three-row ultrasonic horn 10c. Since it is difficult, the load can be reduced. However, since the number of lines depends on the number of wires, it is actually 1 to several tens, not several, and sometimes several hundreds. The number of columns also depends on the allowable stress of the PCB. , In some cases, hundreds.
  • the shape of the convex blade-shaped three-row ultrasonic horn 10c is simpler than the shape of the convex blade-shaped three-row ultrasonic horn 10g.
  • the manufacturing cost of the ultrasonic horn 10 is reduced. As described above, since the number of columns and the number of strips cannot be uniquely determined, they are determined each time in the above conditions.
  • solid-phase metal bonding which is the core of the present invention, is an ultrasonic bonding apparatus having a load means, a vibration means, and a heating means.
  • This is an embodiment of the third aspect of the invention.
  • the example in the case of performing resin bonding together is the implementation in the case of aligning FPC and PCB in Example 5, Example 6, Example 7, Example 8, Example 9, and Example 10. Examples will be described in detail in Example 12, Example 13, and Example 14.
  • FIG. 22 is a perspective view showing an embodiment of the present invention, excerpted from FIG. 1.
  • 20 is an anvil having means for adsorbing and fixing PCB 3
  • 20 a is a PCB provided on the anvil 20.
  • Fixing suction hole 20b is an FPC fixing suction hole provided in the anvil 20, 21 is an anvil heater for heating the anvil, 1 is an FPC, 1a is an FPC base material made of an insulating material of the FPC 1, 2 Is an FPC electrode which is an electric circuit formed on the FPC substrate 1a, 6a is two pairs of FPC alignment holes provided in the FPC substrate 1a, 3 is a PCB, 3a is made of an insulating material of this PCB3
  • the PCB substrate 4 is a PCB electrode which is an electric circuit formed on the PCB substrate 3a, and 7a is two pairs of PCB alignment marks provided on the PCB substrate 3a.
  • FIG. 4B is a perspective view showing the shape, load direction, and vibration direction of the convex blade-shaped three-row ultrasonic horn as viewed from the bottom, and 10c is the convex blade-shaped three-row super horn of the present invention. It is a sonic horn. However, since the number of columns depends on the allowable stress of the PCB, it is actually not only 3 but 1 to several tens, and in some cases several hundreds.
  • FIG. 1 is a perspective view showing the configuration of the entire apparatus.
  • 10 is an ultrasonic horn that moves up and down along a vertical movement guide (not shown)
  • 13 is a vertical movement guide (not shown) that is fixed to the fixed point of the ultrasonic horn 10 with a screw or the like.
  • 11 is an ultrasonic horn heater fixed to the ultrasonic horn 10 with a screw or the like
  • 12 is an ultrasonic wave fixed to the ultrasonic horn 10 with a screw or the like. It is a vibrator.
  • 25 is a Y-axis stage fixed to the main body (not shown) with a screw
  • 24 is an X-axis stage fixed to the Y-axis stage with a screw
  • 23 is fixed to the X-axis stage with a screw.
  • a ⁇ -axis stage, 22 is a load sensor fixed to the ⁇ -axis stage with a screw or the like
  • 20 is an anvil fixed to the load sensor 22 with a screw or the like
  • 21 is fixed to the anvil 20 with a screw or the like.
  • a load control device 73a for controlling the load means 13 includes a temperature measuring body (not shown) such as a thermocouple in which the temperature of the ultrasonic horn 10 heated by the ultrasonic horn heater 11 is fixed to the ultrasonic horn with a screw or the like.
  • An ultrasonic horn temperature adjusting device 73b that performs feedback control using a temperature sensor (not shown) such as a thermocouple in which the temperature of the anvil 20 heated by the anvil heater 21 is fixed to the anvil with a screw or the like is fed back.
  • a temperature sensor not shown
  • An anvil temperature control device to be controlled.
  • 76a is an FPC adsorption sensor provided in the FPC holding / supplying unit 50, which is provided in a piping path to the negative pressure generator (not shown) for adsorbing and fixing the FPC1, and confirming the adsorption of the FPC1.
  • 76b is an FPC adsorption sensor provided in the anvil 20 for confirming the adsorption of the FPC 1 provided in the piping path from the adsorption fixing hole 20a in FIG. 22 for adsorbing and fixing the FPC 1 to the negative pressure generator (not shown).
  • a position control device 77 controls the moving speed and position of the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25.
  • the PCB electrode 4 of the PCB 3 is supplied onto the anvil 20 with the PCB electrode 4 facing upward.
  • the PCB 3 is suction-fixed to the anvil 20 with the PCB fixing suction hole 20a set to a negative pressure.
  • the FPC 1 is placed on the FPC 1 and the PCB 3 with the FPC electrode 2 facing downward by the FPC holding / supply means 50.
  • the FPC 1 is suctioned and fixed to the anvil 20 by making the FPC fixing suction hole 20 b negative pressure, the negative pressure of the FPC holding / supply means 50 is released, and the FPC 1 is supplied to the anvil 20. .
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77. That is, the anvil 20 and the FPC 1 and the PCB 3 that are adsorbed and fixed to the anvil 20 are moved directly below the ultrasonic horn 10c (hereinafter referred to as a joining position).
  • the control device 70 In response to the arrival completion signal from the position control device 77, the control device 70 lowers the ultrasonic horn 10c along the vertical movement guide (not shown) using the load means 13, and moves the FPC 1 and PCB 3 to the ultrasonic horn 10. Between the anvil 20 and the anvil 20 to apply pressure to the joint surface.
  • the load sensor 22 compares the load with a predetermined load and controls the load control device 72 so as to hold the predetermined load.
  • the ultrasonic transmitter 71 oscillates according to a command from the control device 70, and the ultrasonic horn 10 c is vibrated by the ultrasonic vibrator 12. Due to the oscillation of the ultrasonic horn 10c, the FPC electrode 2 and the PCB electrode 4 from which the resin has been discharged are solid-phase metal bonded.
  • the oscillation of the ultrasonic transmitter 71 is stopped by a command from the control device 70, and the vibration of the ultrasonic horn 10c by the ultrasonic vibrator 12 is stopped. After the vibration is stopped, the ultrasonic horn 10c is raised along the vertical movement guide (not shown) using the load means 13 in accordance with a command from the control device 70.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this PCB 3 joined to is moved to the original position (hereinafter referred to as supply / removal position).
  • the control device 70 stops the adsorption of the anvil 20, and releases the fixation of the FPC 1 and the PCB 3 bonded thereto, thereby completing the solid-phase metal bonding step.
  • FIG. 22 is a perspective view showing an embodiment of the present invention, which is a part of FIG.
  • 20 is an anvil having means for adsorbing and fixing PCB3
  • 20a is an adsorbing hole for fixing PCB on the anvil
  • 20b is an adsorbing hole for fixing FPC on the anvil
  • 21 is for heating the anvil.
  • Anvil heater 1 is an FPC
  • 1a is an FPC base that is a base made of an insulating material of the FPC
  • 2 is an FPC electrode that is an electric circuit formed on the FPC base 1a
  • 6a is an FPC base 1a
  • 3 is a PCB
  • 3a is a PCB substrate made of an insulating material of this PCB3
  • 4 is an electric circuit formed on the PCB substrate 3a.
  • PCB electrodes 7a are two pairs of PCB alignment marks provided on the PCB substrate 3a.
  • FIG. 4 (e) is a perspective view showing the shape, load direction, and vibration direction of a convex blade-shaped single-row, three-row ultrasonic horn as seen from the bottom.
  • 10f is a convex blade shape 1 row 3 row ultrasonic horn among this invention.
  • the number of rows depends on the allowable stress of the PCB, it is actually 1 to several tens, not several, and several hundreds in some cases. Further, since the number of stripes also depends on the number of wirings to be connected, it is actually 1 to several tens instead of three, and sometimes several hundreds.
  • FIG. 9A is a front view showing the joining position before the relative movement of the convex blade-shaped ultrasonic horn
  • 10f is a convex blade-shaped one-row, three-row ultrasonic horn
  • 11 is a convex shape.
  • An ultrasonic horn heater that heats the blade-shaped single-row, three-row ultrasonic horn 10f, and 12 is a vibrator that vibrates the convex blade-shaped single-row, three-row ultrasonic horn 10f.
  • FIG. 9B is a front view showing a position where the convex blade-shaped ultrasonic horn is relatively moved, and the next joining position in FIG. 9A.
  • FIG. It is a side view which shows the position which has joined before performing relative movement of a sound wave horn.
  • FIG. 10B is a side view showing a position where the convex blade-shaped ultrasonic horn is relatively moved and next to FIG. 10A.
  • FIG. 1 is a perspective view showing the configuration of the entire apparatus.
  • 10 is an ultrasonic horn that moves up and down along a vertical movement guide (not shown)
  • 13 is a vertical movement guide (not shown) that is fixed to the fixed point of the ultrasonic horn 10 with a screw or the like.
  • 11 is an ultrasonic horn heater fixed to the ultrasonic horn 10 with a screw or the like
  • 12 is an ultrasonic wave fixed to the ultrasonic horn 10 with a screw or the like. It is a vibrator.
  • a ⁇ -axis stage 22 is a load sensor fixed to the ⁇ -axis stage with a screw or the like
  • 20 is an anvil fixed to the load sensor 20 with a screw or the like.
  • An anvil heater 21 is fixed to the anvil with a screw or the like.
  • 70 is a control device
  • 71 is an ultrasonic transmitter that vibrates the ultrasonic horn 10c by the ultrasonic vibrator 12
  • 72 is compared with a predetermined ultimate load by the load sensor 22, and holds a predetermined load.
  • 73a is an ultrasonic horn temperature adjustment in which the temperature of the ultrasonic horn 10 heated by the ultrasonic horn heater 11 is feedback-controlled using a thermometer (not shown) such as a thermocouple fixed to the ultrasonic horn with a screw or the like.
  • a device 73b is an anvil temperature adjusting device that feedback-controls the temperature of the anvil 20 heated by the anvil heater 21 using a temperature measuring body (not shown) such as a thermocouple fixed to the anvil with a screw or the like.
  • 76b is an FPC adsorption sensor provided in the anvil 20 for confirming the adsorption of the FPC 1 provided in the piping path from the adsorption fixing hole 20a in FIG. 22 for adsorbing and fixing the FPC 1 to the negative pressure generator (not shown).
  • Reference numeral 76c denotes a PCB adsorption sensor provided in the anvil 20 for confirming the adsorption of the PCB provided in the piping path from the PCB adsorption fixing hole 20a for adsorbing and fixing the PCB 3 to the negative pressure generator (not shown).
  • a position control device 77 controls the moving speed and position of the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25.
  • the PCB electrode 4 of the PCB 3 is supplied onto the anvil 20 with the PCB electrode 4 facing upward.
  • the PCB 3 is suction-fixed to the anvil 20 with the PCB fixing suction hole 20a set to a negative pressure.
  • the FPC 1 and the PCB 3 are overlapped with the FPC electrode 2 facing downward.
  • the FPC 1 is sucked and fixed to the anvil 20 with the FPC fixing suction hole 20b set to a negative pressure.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved by the command from the control device 70 to the position control device 77, that is, The anvil 20 and the FPC 1 and PCB 3 adsorbed and fixed to the anvil 20 are moved directly below the ultrasonic horn 10c.
  • the control device 70 In response to the arrival completion signal from the position control device 77, the control device 70 lowers the ultrasonic horn 10c along the vertical movement guide (not shown) using the load means 13, and moves the FPC 1 and PCB 3 to the ultrasonic horn 10. Between the anvil 20 and the anvil 20 to apply pressure to the joint surface.
  • the load sensor 22 compares the load with a predetermined load and controls the load control device 72 so as to hold the predetermined load.
  • FIG. 9A is a front view showing this state
  • FIG. 10A is a side view showing this state.
  • the ultrasonic transmitter 71 oscillates according to a command from the control device 70, and the ultrasonic horn 10 c is vibrated by the ultrasonic vibrator 12. Due to the oscillation of the ultrasonic horn 10c, the FPC electrode 2 and the PCB electrode 4 from which the resin has been discharged are solid-phase metal bonded.
  • the oscillation of the ultrasonic transmitter 71 is stopped by a command from the control device 70, and the vibration of the ultrasonic horn 10c by the ultrasonic vibrator 12 is stopped. After the vibration is stopped, the ultrasonic horn 10c is raised along the vertical movement guide (not shown) using the load means 13 in accordance with a command from the control device 70.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this Is moved to the next bonding position in the Y direction.
  • FIG. 9A is a front view showing this state
  • FIG. 10B is a side view showing this state.
  • the above pressurization and heating to vibration are performed, and then the ultrasonic horn 10c is raised.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this PCB3 joined to is moved to the next joining position in the X direction.
  • FIG. 9B is a front view showing this state
  • FIG. 10A is a side view showing this state.
  • the above-described pressurization and heating to vibration are performed, and then the ultrasonic horn 10c is raised.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this Is moved to the next bonding position in the -Y direction.
  • FIG. 9B is a front view showing this state
  • FIG. 10B is a side view showing this state.
  • the above relative movement is repeated a predetermined number of times, and when the final joining position is reached, the above pressurization and heating to vibration are performed, and then the ultrasonic horn 10c is raised.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this And move the PCB 3 joined to the original position.
  • the control device 70 stops the adsorption on the anvil 20, and releases the fixation of the FPC 1 and the PCB 3 bonded thereto, thereby completing the solid-phase metal bonding step.
  • the productivity, the load received by the PCB, and the manufacturing cost of the ultrasonic horn 10 are compared as follows.
  • the productivity is highest for the convex blade shape three-row ultrasonic horn 10c and the convex blade shape three-row ultrasonic horn 10g.
  • the order is as follows.
  • Convex blade shape 3 row ultrasonic horn 10c> Convex blade shape 3 row 3 ultrasonic horn 10g> Convex blade shape 1 row ultrasonic horn 10b> Convex blade shape 3 row 1 ultrasonic horn 10e convex type Blade shape 1 row 1 row ultrasonic horn 10f> Convex blade shape 1 row 1 row ultrasonic horn 10d Furthermore, when the manufacturing cost of the ultrasonic horn 10 is compared, the convex blade shape single-row ultrasonic horn 10b is the smallest. In summary, the order is as follows.
  • Convex blade shape 1 row ultrasonic horn 10b> Convex blade shape 1 row 1 ultrasonic horn 10d> Convex blade shape 3 row ultrasonic horn 10c> Convex blade shape 3 row 1 ultrasonic horn 10e convex type Blade shape 1 row 3 row ultrasonic horn 10f> Convex blade shape 3 row 3 row ultrasonic horn 10g
  • the number of columns and the number of lines there is no unique rule for the combination of the number of columns and the number of lines, and the actual number of lines depends on the number of wirings, so it is actually 1 to several tens instead of 3, and sometimes several hundreds. Since the number of columns also depends on the allowable stress of the PCB, it is actually 1 to several tens instead of three, and sometimes several hundreds. Therefore, since the number of columns and the number of strips cannot be determined uniquely, they are determined each time in the above conditions.
  • the resin in carrying out claims 1, 2, and 4, is preliminarily disposed on the entire surface of the joining surface with a certain thickness on the FPC 1, and the electrodes of the FPC 1 and the PCB 3 are overlapped.
  • the resin is heated by applying a load to the bonding surface with the pressure of, the resin is discharged from the bonding surface, and the electrode of the bonding surface from which the resin has been discharged by vibrating is subjected to solid-phase metal bonding, and further heated.
  • the molten resin is melt-flowed between the electrodes, and as a result, the gap is filled and the FPC 1 and the PCB 3 are bonded.
  • This method of placing the resin between the FPC 1 and the PCB before bonding and bonding and bonding is a known method.
  • FIG. 1 is a perspective view showing the configuration of the entire apparatus.
  • 10 is an ultrasonic horn that moves up and down along a vertical movement guide (not shown)
  • 13 is a vertical movement guide (not shown) that is fixed to the fixed point of the ultrasonic horn 10 with a screw or the like.
  • 11 is an ultrasonic horn heater fixed to the ultrasonic horn 10 with a screw or the like
  • 12 is an ultrasonic wave fixed to the ultrasonic horn 10 with a screw or the like. It is a vibrator.
  • 25 is a Y-axis stage fixed to the main body (not shown) with a screw
  • 24 is an X-axis stage fixed to the Y-axis stage with a screw
  • 23 is fixed to the X-axis stage with a screw.
  • a ⁇ -axis stage, 22 is a load sensor fixed to the ⁇ -axis stage with a screw or the like
  • 20 is an anvil fixed to the load sensor 20 with a screw or the like
  • 77 is a ⁇ -axis stage 23 and an X-axis stage 24.
  • a position control device for controlling the moving speed and position of the Y-axis stage 25.
  • FIG. 4 (b) is a perspective view showing the shape, load direction, and vibration direction of the convex blade-shaped three-row ultrasonic horn, as seen from the bottom, and 10c is a convex blade-shaped three-row supersonic horn. It is a sonic horn.
  • FIG. 11A is a front view showing a state before resin is preliminarily disposed on the entire surface of the PCB of this embodiment and bonded and bonded
  • FIG. 11B is a front view showing the middle of bonding and bonding
  • FIG. 11 (c) is a front view showing the state after bonding and joining.
  • 1a is an FPC substrate
  • 2 is an FPC electrode formed in advance on the FPC substrate 1a
  • 3a is a PCB substrate
  • 4 is a PCB electrode formed in advance on the PCB electrode
  • 5 is an FPC1 and PCB3. A resin to be bonded.
  • the resin 5 is placed in advance on the entire bonding surface of the PCB 3 with a certain thickness before bonding, and then the PCB electrode 4 of the PCB 3 is supplied onto the anvil 20 with the PCB electrode 4 facing upward.
  • the PCB 3 is suction-fixed to the anvil 20 with the PCB fixing suction hole 20a set to a negative pressure. Adsorbed and fixed to the anvil 20.
  • the FPC 1 and the PCB 3 are overlapped with the FPC electrode 2 facing downward. Under the control of the control device 70, the FPC 1 is sucked and fixed to the anvil 20 with the FPC fixing suction hole 20b set to a negative pressure.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved in accordance with commands from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 and PCB 3 that are attracted and fixed to the anvil 20. Is moved directly below the ultrasonic horn 10c. This is the state of FIG. 11A, but the figure illustrates the state in which the resin is arranged on the PCB 3 in advance. However, the anvil 20 is omitted. In addition, the FPC electrode 2 and the resin 5 are actually in contact with each other, but are not in contact with each other for explanation.
  • the control device 70 In response to the arrival completion signal from the position control device 77, the control device 70 lowers the ultrasonic horn 10c along the vertical movement guide (not shown) using the load means 13, and moves the FPC 1 and PCB 3 to the ultrasonic horn 10c. Between the anvil 20 and the anvil 20 to apply pressure to the joint surface.
  • the load sensor 22 compares the load with a predetermined load and controls the load control device 72 so as to hold the predetermined load. This is the state of FIG.
  • the resin is melted by heat transfer and radiant heat of the ultrasonic horn heater 11c heated by the ultrasonic horn heater 11, and the resin is discharged from between the FPC electrode 1 and the PCB electrode 4 by the bonding pressure.
  • the discharged resins are FPC1 and PCB3. Through the gap formed by the FPC electrode 2 and the PCB electrode 4 and discharged from both end faces of the FPC 1 and the PCB 3. This is the state of FIG.
  • the ultrasonic transmitter 71 oscillates according to a command from the control device 70, and the ultrasonic horn 10 c is vibrated by the ultrasonic vibrator 12. Due to the oscillation of the ultrasonic horn 10c, the FPC electrode 2 and the PCB electrode 4 from which the resin has been discharged are solid-phase metal bonded.
  • the oscillation of the ultrasonic transmitter 71 is stopped by a command from the control device 70, and the vibration of the ultrasonic horn 10c by the ultrasonic vibrator 12 is stopped. After the vibration is stopped, the ultrasonic horn 10c is raised along the vertical movement guide (not shown) using the load means 13 in accordance with a command from the control device 70.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this And move the PCB 3 joined to the original position.
  • the control device 70 stops the suction of the anvil 20, and releases the fixation of the FPC 1 and the PCB 3 joined thereto, thereby completing the bonding / joining process.
  • the resin is arranged in advance by printing and applying the resin to the FPC 1 or PCB 3a, or by attaching a film-like resin before joining, or by discharging the resin immediately before joining. There is a method of applying.
  • the method of lowering the ultrasonic horn 10 and the method of raising the anvil 20 are the same in terms of the joining effect.
  • the resin is applied to the joint surface of the FPC 1 at a length which is 1 ⁇ 2 of the joint length, and the FPC electrode 2 and the PCB at the joint portion.
  • An amount sufficient to fill the gap formed by the electrode 4 is placed in advance near the center of the joining length, and the FPC and the circuit electrode are overlapped, and then a load is applied in a direction perpendicular to the joining surface with a predetermined pressure.
  • FIG. 1 is a perspective view showing the configuration of the entire apparatus.
  • 10 is an ultrasonic horn that moves up and down along a vertical movement guide (not shown)
  • 13 is a vertical movement guide (not shown) that is fixed to the fixed point of the ultrasonic horn 10 with a screw or the like.
  • 11 is an ultrasonic horn heater fixed to the ultrasonic horn 10 with a screw or the like
  • 12 is an ultrasonic wave fixed to the ultrasonic horn 10 with a screw or the like. It is a vibrator.
  • 25 is a Y-axis stage fixed to the main body (not shown) with a screw
  • 24 is an X-axis stage fixed to the Y-axis stage with a screw
  • 23 is fixed to the X-axis stage with a screw.
  • a ⁇ -axis stage, 22 is a load sensor fixed to the ⁇ -axis stage with a screw or the like
  • 20 is an anvil fixed to the load sensor 20 with a screw or the like
  • 77 is a ⁇ -axis stage 23 and an X-axis stage 24.
  • a position control device for controlling the moving speed and position of the Y-axis stage 25.
  • FIG. 4 (b) is a perspective view showing the shape, load direction, and vibration direction of the convex blade-shaped three-row ultrasonic horn, as seen from the bottom, and 10c is a convex blade-shaped three-row supersonic horn. It is a sonic horn.
  • FIG. 12A is a front view showing the state before bonding / bonding a resin having a half area to the PCB of this embodiment, which is arranged near the center of the bonding portion
  • FIG. FIG. 12C is a front view showing the state after bonding and joining.
  • 1a is an FPC substrate
  • 2 is an FPC electrode formed in advance on the FPC substrate 1a
  • 3a is a PCB substrate
  • 4 is a PCB electrode formed in advance on the PCB electrode
  • 5 is an FPC1 and PCB3.
  • the resin 5 having a length of about 1 ⁇ 2 of the joining length is arranged in advance near the center of the joint portion of the joint surface of the PCB 3.
  • the PCB electrode 4 of the PCB 3 is supplied onto the anvil 20 with the PCB electrode 4 facing upward.
  • the PCB 3 is suction-fixed to the anvil 20 with the PCB fixing suction hole 20a set to a negative pressure.
  • the FPC 1 and the PCB 3 are overlapped with the FPC electrode 2 facing downward. Under the control of the control device 70, the FPC 1 is sucked and fixed to the anvil 20 with the FPC fixing suction hole 20b set to a negative pressure.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved in accordance with commands from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 and PCB 3 that are attracted and fixed to the anvil 20. Is moved directly below the ultrasonic horn 10c. This is the state of FIG. 12A, but the figure illustrates the state in which the resin 5 is disposed on the PCB 3 in advance. However, the anvil 20 is omitted. In addition, the FPC electrode 2 and the resin 5 are actually in contact with each other, but are not in contact with each other for explanation.
  • the control device 70 In response to the arrival completion signal from the position control device 77, the control device 70 lowers the ultrasonic horn 10c along the vertical movement guide (not shown) using the load means 13, and moves the FPC 1 and PCB 3 to the ultrasonic horn 10c. Between the anvil 20 and the anvil 20 to apply pressure to the joint surface.
  • the load sensor 22 compares the load with a predetermined load and controls the load control device 72 so as to hold the predetermined load. This is the state of FIG.
  • the resin is melted by heat transfer and radiant heat of the ultrasonic horn heater 11c heated by the ultrasonic horn heater 11, and the resin is discharged from between the FPC electrode 1 and the PCB electrode 4 by the bonding pressure.
  • the discharged resins are FPC1 and PCB3. Through the gap formed by the FPC electrode 2 and the PCB electrode 4 and discharged from both end faces of the FPC 1 and the PCB 3. This is the state of FIG.
  • the ultrasonic transmitter 71 oscillates according to a command from the control device 70, and the ultrasonic horn 10 c is vibrated by the ultrasonic vibrator 12. Due to the oscillation of the ultrasonic horn 10c, the FPC electrode 2 and the PCB electrode 4 from which the resin has been discharged are solid-phase metal bonded.
  • the oscillation of the ultrasonic transmitter 71 is stopped by a command from the control device 70, and the vibration of the ultrasonic horn 10c by the ultrasonic vibrator 12 is stopped. After the vibration is stopped, the ultrasonic horn 10c is raised along the vertical movement guide (not shown) using the load means 13 in accordance with a command from the control device 70.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this And move the PCB 3 joined to the original position.
  • the control device 70 stops the suction of the anvil 20, and releases the fixation of the FPC 1 and the PCB 3 joined thereto, thereby completing the bonding / joining process.
  • the resin is arranged in advance by printing and applying the resin to the FPC 1 or PCB 3a, or by attaching a film-like resin before joining, or by discharging the resin immediately before joining. There is a method of applying.
  • the method of lowering the ultrasonic horn 10 and the method of raising the anvil 20 are the same in terms of the joining effect.
  • the load sensor 22 since the load sensor only controls the timing of starting the oscillation of the ultrasonic wave, the load sensor 22 is not an indispensable condition if a timing device such as a timer is combined with the load means 13 capable of holding a constant load. .
  • the resin is applied to the joint surface of the FPC 1 at a length which is 1 ⁇ 2 of the joint length, and the FPC electrode 2 and the PCB at the joint portion.
  • An amount sufficient to fill the gap formed by the electrode 4 is placed in advance near the center of the joining length, and the FPC and the circuit electrode are overlapped, and then a load is applied in a direction perpendicular to the joining surface with a predetermined pressure.
  • FIG. 1 is a perspective view showing the configuration of the entire apparatus.
  • 10 is an ultrasonic horn that moves up and down along a vertical movement guide (not shown)
  • 13 is a vertical movement guide (not shown) that is fixed to the fixed point of the ultrasonic horn 10 with a screw or the like.
  • 11 is an ultrasonic horn heater fixed to the ultrasonic horn 10 with a screw or the like
  • 12 is an ultrasonic wave fixed to the ultrasonic horn 10 with a screw or the like. It is a vibrator.
  • 25 is a Y-axis stage fixed to the main body (not shown) with a screw
  • 24 is an X-axis stage fixed to the Y-axis stage with a screw
  • 23 is fixed to the X-axis stage with a screw.
  • a ⁇ -axis stage, 22 is a load sensor fixed to the ⁇ -axis stage with a screw or the like
  • 20 is an anvil fixed to the load sensor 20 with a screw or the like
  • 77 is a ⁇ -axis stage 23 and an X-axis stage 24.
  • a position control device for controlling the moving speed and position of the Y-axis stage 25.
  • FIG. 4A is a perspective view showing the shape, load direction, and vibration direction of the convex blade-shaped single-row ultrasonic horn as viewed from the bottom, and 10b is a convex blade-shaped single row. It is a sonic horn.
  • FIG. 13A is a front view showing a state before joining, in which a resin having a half area is arranged in the vicinity of the center of the joint on the PCB of this embodiment, and FIG. 13B is a first stage of joining / bonding.
  • FIG. 13C is a front view showing a stage in the middle of joining / bonding, and
  • FIG. 13D is a front view showing the last stage of joining / bonding.
  • 1a is an FPC substrate
  • 2 is an FPC electrode formed in advance on the FPC substrate 1a
  • 3a is a PCB substrate
  • 4 is a PCB electrode formed in advance on the PCB electrode
  • 5 is an FPC1 and PCB3.
  • the resin 5 is arranged in advance near the center of the joint portion of the joint surface of the PCB 3 before joining.
  • the PCB electrode 4 of the PCB 3 is supplied onto the anvil 20 with the PCB electrode 4 facing upward.
  • the PCB 3 is suction-fixed to the anvil 20 with the PCB fixing suction hole 20a set to a negative pressure. Adsorbed and fixed to the anvil 20.
  • the FPC 1 and the PCB 3 are overlapped with the FPC electrode 2 facing downward. Under the control of the control device 70, the FPC 1 is sucked and fixed to the anvil 20 with the FPC fixing suction hole 20b set to a negative pressure.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved in accordance with commands from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 and PCB 3 that are attracted and fixed to the anvil 20. Is moved to the first joining position directly below the ultrasonic horn 10b.
  • This is the state of FIG. 13A, but the figure illustrates the state where the resin is arranged on the PCB 3 in advance. However, the anvil 20 is omitted.
  • the FPC electrode 2 and the resin 5 are actually in contact with each other, but are not in contact with each other for explanation.
  • the control device 70 In response to the arrival completion signal from the position control device 77, the control device 70 lowers the ultrasonic horn 10b along the vertical movement guide (not shown) using the load means 13, and moves the FPC1 and PCB3 to the ultrasonic horn 10b. Between the anvil 20 and the anvil 20 to apply pressure to the joint surface.
  • the load sensor 22 compares the load with a predetermined load and controls the load control device 72 so as to hold the predetermined load.
  • the ultrasonic transmitter 71 oscillates according to a command from the control device 70, and the ultrasonic horn 10 b is vibrated by the ultrasonic vibrator 12.
  • the FPC electrode 2 and the PCB electrode 4 are solid-phase metal bonded. This is the state of FIG.
  • the oscillation of the ultrasonic transmitter 71 is stopped by the instruction of the control device 70, and the excitation of the ultrasonic horn 10b by the ultrasonic vibrator 12 is stopped.
  • the ultrasonic horn 10b is raised along the vertical movement guide (not shown) using the load means 13 according to the command of the control device 70 after the vibration is stopped, and the first joining process is completed.
  • the FPC 1 and the PCB 3 bonded thereto are moved to the next bonding position.
  • the ultrasonic horn 10b is lowered in the same manner as described above, and a load is applied to the bonding surface to apply pressure. Further, the ultrasonic horn 10b is oscillated. By the oscillation of the ultrasonic horn 10b, the FPC electrode 2 and the PCB electrode 4 are solid-phase metal bonded. This is the state of FIG.
  • the vibration is performed for a predetermined time, and after the vibration of the ultrasonic horn 10b is stopped, the ultrasonic horn 10b is raised, and the joining process in the middle is completed.
  • the FPC 1 and the PCB 3 bonded thereto are moved to the final bonding position.
  • the ultrasonic horn 10b is lowered in the same manner as described above, and a pressure is applied to the joint surface while applying a load.
  • the resin is melted by heat transfer and radiation heat of the ultrasonic horn 10b heated by the ultrasonic horn heater 11, and the resin is discharged from between the FPC electrode 1 and the PCB electrode 4 by the bonding pressure.
  • the discharged resins are FPC1 and PCB3.
  • the gap between the FPC 1 and the PCB 3 is filled through the gap formed by the FPC electrode 2 and the PCB electrode 4. This is the state of FIG.
  • the ultrasonic horn 10b After pressurizing and heating for a predetermined time, the ultrasonic horn 10b is vibrated. Due to the oscillation of the ultrasonic horn 10b, the FPC electrode 2 and the PCB electrode 4 from which the resin has been discharged are solid-phase metal bonded. After performing the vibration for a predetermined time, the ultrasonic horn 10b is raised, and the final joining process is completed. Next, the FPC 1 and the PCB 3 joined thereto are moved to their original positions. In response to the movement completion signal from the position control device 77, the control device 70 stops the suction of the anvil 20, and releases the fixation of the FPC 1 and the PCB 3 joined thereto, thereby completing the bonding / joining process.
  • the resin is arranged in advance by printing and applying the resin to the FPC 1 or PCB 3a, or by attaching a film-like resin before joining, or by discharging the resin immediately before joining. There is a method of applying. Moreover, in the said Example, the method of lowering the ultrasonic horn 10 and the method of raising the anvil 20 conversely are the same in the effect of joining.
  • the load sensor 22 since the load sensor only controls the timing of starting the oscillation of the ultrasonic wave, the load sensor 22 is not an indispensable condition if a timing device such as a timer is combined with the load means 13 capable of holding a constant load. .
  • the resin is applied to the joint surface of the FPC 1 with a length of 1/3 of the joint length, and the FPC electrode 2 and the PCB at the joint portion.
  • FIG. 1 is a perspective view showing the configuration of the entire apparatus.
  • 10 is an ultrasonic horn that moves up and down along a vertical movement guide (not shown)
  • 13 is a vertical movement guide (not shown) that is fixed to the fixed point of the ultrasonic horn 10 with a screw or the like.
  • 11 is an ultrasonic horn heater fixed to the ultrasonic horn 10 with a screw or the like
  • 12 is an ultrasonic wave fixed to the ultrasonic horn 10 with a screw or the like. It is a vibrator.
  • 25 is a Y-axis stage fixed to the main body (not shown) with a screw
  • 24 is an X-axis stage fixed to the Y-axis stage with a screw
  • 23 is fixed to the X-axis stage with a screw.
  • a ⁇ -axis stage, 22 is a load sensor fixed to the ⁇ -axis stage with a screw or the like
  • 20 is an anvil fixed to the load sensor 20 with a screw or the like
  • 77 is a ⁇ -axis stage 23 and an X-axis stage 24.
  • a position control device for controlling the moving speed and position of the Y-axis stage 25.
  • FIG. 4 (b) is a perspective view showing the shape, load direction, and vibration direction of the convex blade-shaped three-row ultrasonic horn, as seen from the bottom, and 10c is a convex blade-shaped three-row supersonic horn. It is a sonic horn.
  • FIG. 14A is a front view showing a state before joining, in which a resin having a length of 1/3 of the joining length is disposed in the vicinity of the end face of the PCB on the joining surface of the PCB of the present embodiment.
  • FIG. 14B is a front view showing the middle of bonding / bonding
  • FIG. 14C is a front view showing the state after bonding / bonding.
  • 1a is an FPC substrate
  • 2 is an FPC electrode formed in advance on the FPC substrate 1a
  • 3a is a PCB substrate
  • 4 is a PCB electrode formed in advance on the PCB electrode
  • 5 is an FPC1 and PCB3.
  • a resin to be bonded is an FPC substrate.
  • FIG. 1 the resin 5 having about 1/3 of the joining length is placed in advance on the joining surface of the PCB 3 and in the vicinity of the end surface before joining.
  • the PCB electrode 4 of the PCB 3 is supplied onto the anvil 20 with the PCB electrode 4 facing upward.
  • the PCB 3 is suction-fixed to the anvil 20 with the PCB fixing suction hole 20a set to a negative pressure. Adsorbed and fixed to the anvil 20.
  • the FPC 1 and the PCB 3 are overlapped with the FPC electrode 2 facing downward. Under the control of the control device 70, the FPC 1 is sucked and fixed to the anvil 20 with the FPC fixing suction hole 20b set to a negative pressure.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved in accordance with commands from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 and PCB 3 that are attracted and fixed to the anvil 20. Is moved to the first joining position directly below the ultrasonic horn 10b.
  • This is the state of FIG. 14A, but the figure illustrates the state in which the resin is arranged on the PCB 3 in advance. However, the anvil 20 is omitted.
  • the FPC electrode 2 and the resin 5 are actually in contact with each other, but are not in contact with each other for explanation.
  • the control device 70 In response to the arrival completion signal from the position control device 77, the control device 70 lowers the ultrasonic horn 10b along the vertical movement guide (not shown) using the load means 13, and moves the FPC1 and PCB3 to the ultrasonic horn 10b. Between the anvil 20 and the anvil 20 to apply pressure to the joint surface.
  • the load sensor 22 compares the load with a predetermined load and controls the load control device 72 so as to hold the predetermined load. This is the state of FIG.
  • the resin is melted by heat transfer and radiant heat of the ultrasonic horn 10b heated by the ultrasonic horn heater 11, and the resin is discharged from between the FPC electrode 1 and the PCB electrode 4 by the bonding pressure.
  • the discharged resins are FPC1 and PCB3. And fills the gap between the FPC 1 and the PCB 3 through the gap formed by the FPC electrode 2 and the PCB electrode 4 and is discharged from the end face side of the PCB 3 to form a fillet. This is the state of FIG.
  • the ultrasonic transmitter 71 oscillates according to a command from the control device 70, and the ultrasonic horn 10 c is vibrated by the ultrasonic vibrator 12. Due to the oscillation of the ultrasonic horn 10c, the FPC electrode 2 and the PCB electrode 4 from which the resin has been discharged are solid-phase metal bonded.
  • the oscillation of the ultrasonic transmitter 71 is stopped by a command from the control device 70, and the vibration of the ultrasonic horn 10c by the ultrasonic vibrator 12 is stopped. After the vibration is stopped, the ultrasonic horn 10c is raised along the vertical movement guide (not shown) using the load means 13 in accordance with a command from the control device 70.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this And move the PCB 3 joined to the original position.
  • the control device 70 stops the suction of the anvil 20, and releases the fixation of the FPC 1 and the PCB 3 joined thereto, thereby completing the bonding / joining process.
  • the resin is arranged in advance by printing and applying the resin to the FPC 1 or PCB 3a, or by attaching a film-like resin before joining, or by discharging the resin immediately before joining. There is a method of applying. Moreover, in the said Example, the method of lowering the ultrasonic horn 10 and the method of raising the anvil 20 conversely are the same in the effect of joining.
  • the load sensor 22 since the load sensor only controls the timing of starting the oscillation of the ultrasonic wave, the load sensor 22 is not an indispensable condition if a timing device such as a timer is combined with the load means 13 capable of holding a constant load. .
  • the resin is applied to the joint surface of the FPC 1 with a length of 1/3 of the joint length, and the FPC electrode 2 and the PCB at the joint portion.
  • FIG. 1 is a perspective view showing the configuration of the entire apparatus.
  • 10 is an ultrasonic horn that moves up and down along a vertical movement guide (not shown)
  • 13 is a vertical movement guide (not shown) that is fixed to the fixed point of the ultrasonic horn 10 with a screw or the like.
  • 11 is an ultrasonic horn heater fixed to the ultrasonic horn 10 with a screw or the like
  • 12 is an ultrasonic wave fixed to the ultrasonic horn 10 with a screw or the like. It is a vibrator.
  • 25 is a Y-axis stage fixed to the main body (not shown) with a screw
  • 24 is an X-axis stage fixed to the Y-axis stage with a screw
  • 23 is fixed to the X-axis stage with a screw.
  • a ⁇ -axis stage, 22 is a load sensor fixed to the ⁇ -axis stage with a screw or the like
  • 20 is an anvil fixed to the load sensor 20 with a screw or the like
  • 77 is a ⁇ -axis stage 23 and an X-axis stage 24.
  • a position control device for controlling the moving speed and position of the Y-axis stage 25.
  • FIG. 4A is a perspective view showing the shape, load direction, and vibration direction of the convex blade-shaped single-row ultrasonic horn as viewed from the bottom, and 10b is a convex blade-shaped single row. It is a sonic horn.
  • FIG. 15A is a front view showing the state before joining, in which a resin having a length of about 1/3 of the joining surface is arranged in the vicinity of the end surface of the PCB
  • FIG. 15C is a front view showing a first stage of joining / bonding
  • FIG. 15C is a front view showing a stage in the middle of joining / bonding
  • FIG. 15D is a front view showing the last stage of joining / bonding.
  • 1a is an FPC substrate
  • 2 is an FPC electrode formed in advance on the FPC substrate 1a
  • 3a is a PCB substrate
  • 4 is a PCB electrode formed in advance on the PCB electrode
  • 5 is an FPC1 and PCB3.
  • the resin 5 is arranged in advance on the bonding surface of the PCB 3 before bonding and in the vicinity of the end surface.
  • the PCB electrode 4 of the PCB 3 is supplied onto the anvil 20 with the PCB electrode 4 facing upward.
  • the PCB 3 is suction-fixed to the anvil 20 with the PCB fixing suction hole 20a set to a negative pressure. Adsorbed and fixed to the anvil 20.
  • the FPC 1 and the PCB 3 are overlapped with the FPC electrode 2 facing downward. Under the control of the control device 70, the FPC 1 is sucked and fixed to the anvil 20 with the FPC fixing suction hole 20b set to a negative pressure.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved in accordance with commands from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 and PCB 3 that are attracted and fixed to the anvil 20. Is moved to the first joining position directly below the ultrasonic horn 10b.
  • This is the state of FIG. 15A, but the figure illustrates the state in which the resin is arranged on the PCB 3 in advance. However, the anvil 20 is omitted.
  • the FPC electrode 2 and the resin 5 are actually in contact with each other, but are not in contact with each other for explanation.
  • the control device 70 In response to the arrival completion signal from the position control device 77, the control device 70 lowers the ultrasonic horn 10b along the vertical movement guide (not shown) using the load means 13, and moves the FPC1 and PCB3 to the ultrasonic horn 10b. Between the anvil 20 and the anvil 20 to apply pressure to the joint surface.
  • the load sensor 22 compares the load with a predetermined load and controls the load control device 72 so as to hold the predetermined load.
  • the ultrasonic transmitter 71 oscillates according to a command from the control device 70, and the ultrasonic horn 10 b is vibrated by the ultrasonic vibrator 12.
  • the FPC electrode 2 and the PCB electrode 4 are solid-phase metal bonded. This is the state of FIG.
  • the oscillation of the ultrasonic transmitter 71 is stopped by an instruction from the control device 70, and the excitation of the ultrasonic horn 10b by the ultrasonic vibrator 12 is stopped.
  • the ultrasonic horn 10b is raised along the vertical movement guide (not shown) using the load means 13 according to the command of the control device 70 after the vibration is stopped, and the first joining process is completed.
  • the FPC 1 and the PCB 3 bonded thereto are moved to the next bonding position.
  • the ultrasonic horn 10b is lowered in the same manner as described above, and a load is applied to the bonding surface to apply pressure. Further, the ultrasonic horn 10b is oscillated. By the oscillation of the ultrasonic horn 10b, the FPC electrode 2 and the PCB electrode 4 are solid-phase metal bonded. This is the state of FIG.
  • the vibration is performed for a predetermined time, and after the vibration of the ultrasonic horn 10b is stopped, the ultrasonic horn 10b is raised, and the joining process in the middle is completed. Next, the FPC 1 and the PCB 3 bonded thereto are moved to the final bonding position. When this movement is completed, the ultrasonic horn 10b is lowered in the same manner as described above, and a pressure is applied to the joint surface while applying a load.
  • the resin is melted by heat transfer and radiation heat of the ultrasonic horn 10b heated by the ultrasonic horn heater 11, and the resin is discharged from between the FPC electrode 1 and the PCB electrode 4 by the bonding pressure.
  • the discharged resin passes through a gap formed by the FPC1, PCB3, FPC electrode 2 and PCB electrode 4, fills the gap between the FPC1 and PCB3, and is discharged from the end face side of the PCB3 to form a fillet. This is the state of FIG.
  • the ultrasonic horn 10b After pressurizing and heating for a predetermined time, the ultrasonic horn 10b is vibrated. Due to the oscillation of the ultrasonic horn 10b, the FPC electrode 2 and the PCB electrode 4 from which the resin has been discharged are solid-phase metal bonded. After performing the vibration for a predetermined time, the ultrasonic horn 10b is raised, and the final joining process is completed. Next, the FPC 1 and the PCB 3 joined thereto are moved to their original positions. In response to the movement completion signal from the position control device 77, the control device 70 stops the suction of the anvil 20, and releases the fixation of the FPC 1 and the PCB 3 joined thereto, thereby completing the bonding / joining process.
  • the resin is arranged in advance by printing and applying the resin to the FPC 1 or PCB 3a, or by attaching a film-like resin before joining, or by discharging the resin immediately before joining. There is a method of applying. Moreover, in the said Example, the method of lowering the ultrasonic horn 10 and the method of raising the anvil 20 conversely are the same in the effect of joining.
  • the load sensor 22 since the load sensor only controls the timing of starting the oscillation of the ultrasonic wave, the load sensor 22 is not an indispensable condition if a timing device such as a timer is combined with the load means 13 capable of holding a constant load. .
  • FIG. 16 is a perspective view illustrating a state in which a resin is being applied after the FPC 1 and the PCB 3 are joined.
  • 1a is an FPC substrate
  • 2 is an FPC electrode
  • 3a is a PCB substrate
  • 4 is a PCB electrode
  • 5 is a liquid resin.
  • 25 is a Y-axis stage fixed to the main body (not shown) with screws
  • 24 is an X-axis stage fixed to the Y-axis stage with screws
  • 23 is screwed to the X-axis stage.
  • a fixed ⁇ -axis stage, 22 is a load sensor fixed to the ⁇ -axis stage with screws or the like
  • 20 is an anvil fixed to the load sensor 20 with screws or the like
  • 77 denotes a ⁇ -axis stage 23.
  • This is a position control device that controls the moving speed and position of the X-axis stage 24 and the Y-axis stage 25.
  • a syringe 31 is fixed to the syringe holding / up-and-down means 32 with a screw or the like, and a needle 30 is fixed to the syringe 31 with a screw or the like.
  • the tip of the needle 31 does not hinder the movement of the FPC 1 or PCB 3 on the anvil 20 or the anvil 20 in the movement region formed by the movement of the anvil 20 with the ⁇ -axis stage 23, the X-axis stage 24 and the Y-axis stage 25.
  • the ultrasonic horn 10 is disposed at a position that does not interfere with the joining and positioning / supply / removal steps.
  • 74 is a resin discharge control device that controls the amount of liquid discharged from the tip of the needle 32 by the liquid resin stored in the syringe 31.
  • the FPC 1 and PCB 3 after bonding which are adsorbed and fixed on the anvil 20 and moved together with the anvil 20, are the end faces of the FPC 1 provided in advance under the needle 30.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved to a predetermined position (hereinafter referred to as a resin discharge start position) by the control of the position control device 77 according to a command from the control device 70.
  • a resin discharge start position a predetermined position
  • Position control device 77 sends a positioning completion signal to control device 70, and based on this signal, control device 70 lowers syringe holding / up and down means 32, syringe 31, and needle 30. However, at this time, the needle 30 is separated from the end face of the FPC 1 and the upper surface of the PCB 3 by a distance (0.1 mm or more) that does not prevent relative movement in the horizontal plane. Does not come into contact with FPC1 or PCB3.
  • the control device 70 sends a command to the resin discharge control device 74 and starts discharging the liquid resin stored in the syringe 31 from the tip of the needle 32. Further, when the discharge is started, a resin discharge in-process signal from the resin discharge control device 74 is sent to the control device 70. Based on this signal, the control device 70 is opposite to the resin discharge start position of the FPC 1 from the resin discharge start position.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved to a predetermined position on the side (hereinafter referred to as a resin discharge end position) at a predetermined speed by the speed control of the position control device 77, and resin discharge is performed. When the end position is reached, the position control device 77 stops moving.
  • a positioning completion signal is sent to the control device 70, and based on this signal, the control device 70 sends a command to the resin discharge control device 74 and the liquid resin stored in the syringe 31 of the needle 32. Stops resin discharge from the tip.
  • a resin discharge stop completion signal is sent from the resin discharge control device 74 to the control device 70, and the control device 70 raises the syringe holding / up-and-down means 32 to a predetermined position.
  • the resin application process is completed.
  • the PCB electrode 4 of the PCB 3 faces up and is fixed to the anvil 20. If it is this apparatus configuration, it can be realized without adding a control device or a moving means if it is applied between the supply of the FPC 1 or after the positioning of the FPC 1 and the PCB 3. Moreover, in the said Example, the method of lowering the ultrasonic horn 10 and the method of raising the anvil 20 conversely are the same in the effect of joining.
  • the load sensor 22 since the load sensor only controls the timing of starting the oscillation of the ultrasonic wave, the load sensor 22 is not an indispensable condition if a timing device such as a timer is combined with the load means 13 capable of holding a constant load. .
  • the ultrasonic horn is worn or a resin or the like is attached to the ultrasonic horn. If it becomes dirty, it is applied to a polishing grindstone, a paper file, a wrap film or the like during the joining standby time, and the ultrasonic horn is vibrated to perform planar polishing or cleaning.
  • FIG.17 is a side view showing the position of the polishing grindstone immediately before and after the FPC 1 and PCB 3 are joined, that is, at the “joining position”.
  • FIG. 18 is a side view showing the position of the polishing wheel at the FPC 1 take-out / supply position, that is, the “standby position”.
  • 1 is an FPC
  • 2 is an FPC electrode
  • 3 is a PCB
  • 4 is a PCB electrode
  • 10 is an ultrasonic horn
  • 13 is a load means
  • 72 is a load control that controls the speed and load of the load means 13.
  • the apparatus, 20 is an anvil
  • 22 is a load sensor
  • 23 is a ⁇ -axis stage
  • 24 is an X-axis stage
  • 25 is a Y-axis stage
  • 77 is a position control device for controlling the moving speed and position thereof.
  • Reference numeral 50 is an FPC supply / holding means having means for adsorbing and fixing the FPC 1 and means for supplying the FPC 1 to the anvil 20, and is fixed to the main body (not shown) independent of the movement of the anvil 20 with a screw or the like.
  • Reference numeral 61 denotes a grinding wheel holding means that is fixed to the X-axis stage 24 with a screw or the like and moves together with the X-axis stage 24.
  • the polishing wheel holding means 61 is provided with a polishing load sensor (not shown), and the load is fed back to the load control device 70 during polishing.
  • Reference numeral 60 denotes a polishing wheel fixed to the polishing wheel holding means 61 with a screw or an adhesive.
  • the ultrasonic horn 10 After the ultrasonic horn 10 is lowered by the load means 13 during the above period, the ultrasonic horn 10 comes into contact with the grinding wheel 60, and it is detected that the grinding wheel load sensor (not shown) has reached a predetermined pressure.
  • the ultrasonic wave horn 10 is vibrated by oscillating the ultrasonic vibrator 12 while the load means 13 continues to apply a load under the control of the load control device 72 that maintains the load. After vibrating for a predetermined time, the oscillation of the ultrasonic vibrator 12 is stopped, the load of the load means 13 is removed, the ultrasonic horn 10 is raised to the original position, and the planar polishing is completed.
  • This polishing method according to the present invention can be completed within a series of time from take-out / supply / positioning, that is, “standby time”, so that productivity is not lowered.
  • the method of lowering the ultrasonic horn 10 and the method of raising the polishing wheel 60 by providing means for moving the polishing wheel holding means 61 in the vertical direction are the same in terms of the bonding effect. .
  • a method of changing the polishing position every time or several times by providing the polishing wheel holding means 61 with a moving means that moves in a horizontal plane is also conceivable. It is the same even if a paper file or a wrap film is used instead of the polishing grindstone 60. Further, a method of polishing the tip of the ultrasonic horn 10 by vibrating the moving means moving on the horizontal surface to the polishing grindstone holding means 61 without oscillating the ultrasonic horn 10 is also conceivable.
  • a tape-shaped paper file or wrap film is unwound and sent using a bobbin and a take-up bobbin each time on the grinding wheel holding means 61 at a constant pitch, and ultrasonic waves are sent to the sent paper file or wrap film.
  • a method of pressing the horn and then oscillating it can be considered.
  • the polishing amount is proportional to the polishing time. Therefore, if a timing device such as a timer is combined with a polishing wheel holding means 61 that can hold a constant load, a polishing wheel load sensor ( (No figure) is not an essential condition.
  • This embodiment is an embodiment according to claim 11 and claim 12 in which the FPC and the PCB are simply positioned in carrying out claims 1, 2, and 4.
  • this method uses the ⁇ -axis stage 23, the X-axis stage 24, the Y-axis stage 25 of FIG. 1 and their positioning control devices 77, the lens 40 of FIG. Since 41 and these image positioning control devices 75 are provided, the device configuration and control configuration are complicated.
  • the present invention is a non-contact system, there is no deformation due to the external force of the FPC 1, so positioning with high accuracy is possible. It can be performed.
  • this invention is a method suitable for the apparatus for automatic work which does not depend on an operator by manual work.
  • FIG. 1 is an FPC
  • 3 is a PCB
  • 25 is a Y-axis stage fixed to the main body (not shown) with screws
  • 24 is an X-axis stage fixed to the Y-axis stage with screws
  • 23 Is a ⁇ axis stage fixed to the X axis stage with screws
  • 22 is a load sensor fixed to the ⁇ axis stage with screws
  • 20 is an anvil fixed to the load sensor 20 with screws.
  • 77 is a position control device for controlling the moving speed and position of the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25.
  • FIG. 19 is a plan view of the FPC.
  • 1 is an FPC
  • 1a is an FPC substrate which is a substrate made of an insulating material of the FPC
  • 2 is an FPC electrode which is an electric circuit formed on the FPC substrate 1a
  • 6a is an FPC substrate.
  • FIG. 20 is a plan view of the PCB.
  • 3 is a PCB
  • 3a is a PCB substrate which is a substrate made of this PCB3 insulating material
  • 4 is a PCB electrode which is an electric circuit formed on the PCB substrate 3a
  • 7a is a PCB substrate.
  • FIG. 21 is a plan view showing a state in which the FPC 1 is overlaid on the PCB 3.
  • FIG. 22 is a perspective view showing an embodiment of the present invention, which is a part of FIG.
  • 20 is an anvil having means for adsorbing and fixing PCB3
  • 20a is an adsorbing hole for fixing PCB on the anvil
  • 20b is an adsorbing hole for fixing FPC on the anvil
  • 21 is for heating the anvil.
  • Anvil heater 1 is an FPC
  • 1a is an FPC base that is a base made of the insulating material of this FPC
  • 2 is an FPC electrode that is an electric circuit formed on the FPC base 1a
  • 6a is an FPC base 1a
  • 3 is a PCB
  • 3a is a PCB substrate made of an insulating material of this PCB3
  • 4 is an electric circuit formed on the PCB substrate 3a.
  • PCB electrodes 7a are two pairs of PCB alignment marks provided on the PCB substrate 3a.
  • 41a is a means for observing the PCB alignment mark 7a through the FPC alignment hole 6a.
  • a CCD camera 40a fixed to the main body (not shown) with a screw or the like independent of the movement of the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 in FIG.
  • 41b is a means for observing another PCB alignment mark 7a through another FPC alignment hole 6a, and is a CCD fixed to the main body (not shown) with a screw or the like.
  • a camera 40b is a lens fixed to the CCD camera 41b with a screw or the like.
  • Reference numeral 50 denotes an FPC supply / holding means having means for adsorbing and fixing the FPC 1 and means for supplying the FPC 1 to the anvil 20, and is fixed to the main body (not shown) with screws or the like.
  • the process at the time of implementing this invention is demonstrated using FIG. 1 and FIG.
  • the PCB 3 is suction-fixed to the anvil 20 with the PCB electrode 4 facing upward and the PCB 3 suction hole 20 a under a negative pressure under the control of the control device 70.
  • the FPC 1 is attracted and fixed to the FPC supply / holding means 50 with the FPC electrode 2 facing downward.
  • the FPC supply / holding means 50 moves to a predetermined position where the joint portion of the FPC 1 overlaps the joint portion of the PCB 3.
  • the PCB 3 and the FPC 1 are separated by a distance (about 0.1 mm) that does not hinder the relative movement in the horizontal plane, and the FPC 1 and the PCB 3 are not brought into contact by the relative movement in the horizontal plane.
  • FIG. 22 shows this state.
  • the image positioning control device 75 in FIG. 1 uses the CCD camera 41a to measure the mutual positional error between the FPC alignment hole 6a and the PCB alignment mark 7a from the upper surface of the FPC 1 through the lens 40a and through the FPC alignment hole 6a.
  • the CCD camera 41b is used to measure the mutual positional error of the PCB alignment mark 6a through the lens 40b and another FPC alignment hole 6a from the upper surface of the FPC 1 and also through the other FPC alignment hole 6a.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved by the command of the position control device 78 of FIG. 1 so that these errors are within a predetermined error range, that is, the anvil 20 and its The PCB 3 that is sucked and fixed to the anvil 20 is moved for alignment.
  • the FPC holding / supplying unit 50 is lowered, and when the FPC holding / supplying unit 50 is lowered to a position where the FPC 1 and the PCB 3 come into contact with each other, the FPC 1 comes into contact with the step provided on the anvil 20 and The provided FPC fixing suction hole 20 is closed.
  • This embodiment is an embodiment according to claim 11 and claim 12 in which the FPC and the PCB are simply positioned in carrying out claims 1, 2, and 4.
  • this method is used for positioning the ⁇ -axis stage 23, the X-axis stage 24, the Y-axis stage 25 and their positioning control device 77 in FIG. 1, the lens 40, and the CCD camera 41 in FIG.
  • the image positioning control device 75 since it is necessary to provide the image positioning control device 75, the device configuration and the control configuration are complicated.
  • the apparatus configuration is further complicated as compared to the twelfth embodiment.
  • the lens 40 and the CCD camera 41 since there is no dimensional restriction by the lens 40 and the CCD camera 41, there is no restriction between the pitches of the FPC alignment holes 6a and the PCB alignment marks 7a.
  • the following embodiment 14 is a system in which the FPC positioning hole 6b and the positioning pin 20c are brought into contact with each other, since the present invention is a non-contact system, there is no deformation due to the external force of the FPC 1, so positioning can be performed with high accuracy. It can be carried out.
  • this invention is a method suitable for the apparatus for automatic work which does not depend on an operator by manual work.
  • FIG. 1 is an FPC
  • 3 is a PCB
  • 25 is a Y-axis stage fixed to the main body (not shown) with screws
  • 24 is an X-axis stage fixed to the Y-axis stage with screws
  • 23 Is a ⁇ axis stage fixed to the X axis stage with screws
  • 22 is a load sensor fixed to the ⁇ axis stage with screws
  • 20 is an anvil fixed to the load sensor 20 with screws.
  • 77 is a position control device for controlling the moving speed and position of the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25.
  • FIG. 19 is a plan view of the FPC.
  • 1 is an FPC substrate
  • 1a is an FPC substrate made of an insulating material of the FPC 1
  • 2 is an electric circuit formed on the FPC substrate 1a.
  • FPC electrodes 6a which are circuits are two pairs of FPC alignment holes provided in the FPC base material 1a.
  • 20 is a plan view of the PCB.
  • 3 is a PCB
  • 3a is a PCB substrate made of an insulating material of the PCB 3
  • 4 is an electric circuit formed on the PCB substrate 3a.
  • the PCB electrodes 7a are two pairs of PCB alignment marks provided on the PCB substrate 3a.
  • FIG. 21 is a plan view showing a state in which the FPC 1 is overlaid on the PCB 3.
  • FIG. 23 is a perspective view showing an embodiment of the present invention, excerpted from a part of FIG.
  • 20 is an anvil having means for adsorbing and fixing PCB 3
  • 20 b is an FPC fixing adsorbing hole provided in the anvil 20.
  • the CCD camera 40 having means (not shown) for moving between two pairs of alignment marks formed by the FPC alignment hole 6a and the PCB alignment mark 7a is fixed to the CCD camera 41 with screws or the like.
  • Reference numeral 50 denotes an FPC supply / holding means having means for adsorbing and fixing the FPC 1 and means for supplying the FPC 1 to the anvil 20, and is fixed to the main body (not shown) with screws or the like.
  • the process at the time of implementing this invention is demonstrated using FIG. 1 and FIG.
  • the PCB 3 is suction-fixed to the anvil 20 with the PCB electrode 4 facing upward and the PCB 3 suction hole 20 a under a negative pressure under the control of the control device 70.
  • the FPC 1 is attracted and fixed to the FPC supply / holding means 50 with the FPC electrode 2 facing downward.
  • the FPC supply / holding means 50 moves to a predetermined position where the joint portion of the FPC 1 overlaps the joint portion of the PCB 3.
  • FIG. 23 shows this state.
  • the image positioning control device 75 in FIG. 1 uses the CCD camera 41 to measure the mutual positional error between the FPC alignment hole 6a and the PCB alignment mark 7a from the upper surface of the FPC 1 through the lens 40 and through the FPC alignment hole 6a. To do. Next, the CCD camera 41 and the lens 40 fixed to the CCD camera 41 are moved to another FPC alignment hole 6a and a position for measuring the mutual position error of the PCB alignment mark 7a through the FPC alignment hole 6a. Measure.
  • the ⁇ -axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved by the command of the position control device 78 of FIG. 1 so that these errors are within a predetermined error range, that is, the anvil 20 and its The PCB 3 that is sucked and fixed to the anvil 20 is moved for alignment.
  • the FPC holding / supplying unit 50 is lowered, and when the FPC holding / supplying unit 50 is lowered to a position where the FPC 1 and the PCB 3 come into contact with each other, the FPC 1 comes into contact with the step provided on the anvil 20 and The provided FPC fixing suction hole 20 is closed.
  • Suction is started from the FPC suction hole 20b provided in the anvil 20, and when the FPC suction sensor 76b confirms the suction of the FPC 1, the FPC 1 is fixed by the FPC holding / supplying means 50 and the FPC holding / supplying means 50 is raised. In addition, the CCD camera 41 and the lens 4 fixed thereto are returned to their original positions, and the positioning process is completed. After joining, since the FPC1 and PCB3 are joined and integrated, the suction of the FPC suction hole 20b provided in the anvil 20 is released simultaneously with the release of the PCB suction, and the suction fixing of the FPC1 and the PCB3 is released. This completes the removal process. A method of observing the alignment mark of the FPC 1 through the lens 40 provided on the anvil side from the PCB alignment hole provided in the PCB 3 with the CCD 41 is also conceivable.
  • This embodiment is an embodiment different from the above-described embodiments of claim 13 and claim 14 in which the FPC and the PCB are simply positioned when carrying out claims 1, 2, and 4.
  • the ⁇ -axis stage 23, the X-axis stage 24, the Y-axis stage 25 in FIG. 1 and the lenses 40 in FIG. 22 and FIG. Since it is not necessary to provide the CCD camera 41, the apparatus configuration is simplified and the cost of the apparatus is reduced.
  • FIG. 24 is a plan view of the FPC.
  • 1 is an FPC
  • 1a is an FPC base material which is a base material made of an insulating material of the FPC
  • 2 is an FPC electrode which is an electric circuit formed on the FPC base material 1a
  • 6b is an FPC base material.
  • FIG. 26 is a perspective view showing an embodiment of the present invention, which is a part extracted from FIG.
  • reference numeral 20 denotes an anvil
  • 20c denotes two pairs of positioning pins that are press-fitted and fixed to the anvil 20.
  • the PCB positioning hole 7b is inserted into the positioning pin 20c fixed to the anvil 20 with the PCB 3 facing the PCB electrode 4 upward.
  • the positioning step is completed by inserting the FPC 1 with the FPC electrode 2 facing down and the FPC positioning hole 6b into the positioning pin 20c fixed to the anvil 20 so that the joint portion overlaps the PCB 3. .
  • the FPC positioning hole 6b and the PCB positioning hole 7b are simultaneously removed from the positioning pin 20c, thereby completing the taking out process.
  • the present invention can be easily positioned, and is suitable for manual work by an operator.
  • the FPC positioning hole 7b is deformed by the positioning pin 20c when the FPC 1 is inserted, there is a risk that the positioning accuracy is lowered. Therefore, the FPC having an electrode pitch of about 0.3 mm is joined. This is a suitable method.
  • the number of FPC positioning holes 6b, PCB positioning holes 7b, and positioning pins 20c may be increased.
  • the positioning pin 20c may have a cylindrical shape or a prismatic shape.
  • a stepped pin having two or more different diameter portions, a thin diameter portion and a thick diameter portion, may be used.
  • the fixing method can be other than press-fitting, and may be fixed with a screw or the like instead of press-fitting.
  • means for moving the positioning pin 20c up and down relative to the anvil 20 is provided and the positioning pin 20c is submerged below the surface of the anvil 20, the joined PCB 3 and FPC 1 can be easily pulled out of the pin. Can do.
  • the FPC base material does not need to be a heat-resistant resin such as polyimide, and therefore a cheap resin such as PET can be used as the base material.
  • the electrode since the load is low, for example, if the electrode can be coated with gold, silver, aluminum or the like, it can be used for bonding to a film liquid crystal panel or touch panel whose base material is PET. Also, it can be used for bonding to a liquid crystal panel, plasma display, or organic EL whose base material is glass if the electrode can be coated with gold, silver, aluminum, or the like.
  • there is no three-dimensional part such as a connector at the joint it can be considered that it contributes to the realization of a wearable computer or the like in combination with the film liquid crystal, RFC, sheet switch or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

As the weight, thickness, and size of a portable electronic device are reduced, a conventional method for bonding a FPC to a circuit board using a connector and/or solder, ACF, NCF, etc., is not reasonable because the component cost is high, the number of mounting processes is large, the mounting time is long, the mounting temperature is high, the bonding thrust is high, the bonding resistance is large, and the repair property is low in the conventional method. The bonding operation for a lightweight, thin, and small electronic device can be realized at a low cost, a small number of processes, a short period of time, a low temperature, a low load, a low resistance, and a high repair property, because a heating ultrasonic horn shaped like a projected blade having a tip perpendicular to the vibration direction and a section perpendicular to the pressing surface, is disposed so that the heating ultrasonic horn is vibrated in a direction parallel to the bonding surface and the electrode direction; the electrodes of the FPC and the circuit are metal-bonded by overlapping the electrodes before heating and vibrating the electrodes while a predetermined pressure is vertically applied to the bonding surface; and the FPC and the PCB are bonded using resin.

Description

超音波接合方法及び超音波接合装置Ultrasonic bonding method and ultrasonic bonding apparatus
 本発明は、超音波接合方法及び超音波接合装置に関するもので、少なくとも一方がフレキシブルなプリント回路基板(以下FPCと称す)の電極を、超音波を用いて接続する方法、およびこれを用いる装置に関するものである。 The present invention relates to an ultrasonic bonding method and an ultrasonic bonding apparatus, and relates to a method for connecting electrodes of a printed circuit board (hereinafter referred to as FPC), at least one of which is flexible, using ultrasonic waves, and an apparatus using the same. Is.
 最近の電子機器、特に携帯用電子機器は、軽量化・薄型化・小型化がすすむ一方で、接合部での配線本数は増加している。そのため、FPCとPCBとの既存の接合方法では接合の高密度化に対して限界が生じている。 Recent electronic devices, particularly portable electronic devices, are becoming lighter, thinner, and smaller, while the number of wires at the junction is increasing. For this reason, the existing bonding method between the FPC and the PCB has a limit for increasing the bonding density.
 ここで上記のPCBとは、FPCが接合される相手側の基板のことである。その基板は、たとえばFPCであったり、リジッド・フレキシブルプリント回路基板(以下RFCと称す)であったり、リジッドプリント回路基板(以下RPCと称す)・セラミックプリント回路基板・フィルム液晶基板・タッチパネル基板・シートスイッチ基板などのことである。 Here, the above PCB is a substrate on the other side to which the FPC is bonded. The substrate is, for example, an FPC, a rigid flexible printed circuit board (hereinafter referred to as RFC), a rigid printed circuit board (hereinafter referred to as RPC), a ceramic printed circuit board, a film liquid crystal substrate, a touch panel substrate, or a sheet. It is a switch board.
 接合の高密度化の限界の対策として、FPCの上に部品を実装する方法と、それに適したFPCと同じ構造で、その表面に全ての部品を実装し、そのあと、折り曲げてコンパクトな実装形態を完成させて実装密度を高めたRFCなども開発されている。しかし、この方法では接合部がないために、かえって、個々の実装部品の信頼性や、その個々の実装方法の信頼性により、接合部を設ける方法よりも生産性が著しく劣っている。 As a measure to limit the density of bonding, a method of mounting components on the FPC and the same structure as the FPC suitable for it, all components are mounted on the surface, and then folded to form a compact mounting form. The RFC etc. which completed this and raised the mounting density are also developed. However, since there is no joint in this method, the productivity is remarkably inferior to the method of providing the joint due to the reliability of individual mounting components and the reliability of the individual mounting methods.
 このためPCB・部品をそれぞれ独立して生産・検査し、それらを最終的にFPCなどで接合して、統合して完成するという生産形態は今後も維持される見通しである。 For this reason, it is expected that the production form in which PCBs and parts are produced and inspected independently, finally joined by FPC, etc., and integrated and completed will be maintained in the future.
 また、たとえば、接合にコネクタを用いる方法では、0.3mmピッチ以上でないと製造から組み立てまでの工程間に、抜けやズレや誤挿入などが生じるので、コネクタの配置スペースが他方式と比べて大きく必要となる。また、コネクタの厚みは1mm程度有る。そのため、携帯電子機器では、コネクタを用いると最終製品の厚みが薄くできないうえに、重さも無視できない。なお、コネクタの実装にはコネクタのコストが大きいほかに、接合までに多数の工程が必要であり実装コストも大きい。 In addition, for example, in the method of using a connector for joining, if the pitch is not 0.3 mm or more, disconnection, misalignment, incorrect insertion, etc. occur during the process from manufacture to assembly, so the connector arrangement space is large compared to other methods. Necessary. The thickness of the connector is about 1 mm. Therefore, in a portable electronic device, if a connector is used, the thickness of the final product cannot be reduced and the weight cannot be ignored. In addition to the high cost of the connector, the mounting of the connector requires a large number of processes before joining, and the mounting cost is high.
 また、たとえば、接合に半田を用いる方法では、0.5mmピッチ以上でないと、ショートや接続不良、フラックス除去の必要性などにより、製造から組み立てまでの安定した生産を確保できない。このため、半田を用いる方法は重量・厚み・実装コストではコネクタに比べてメリットが大きいが、その一方で高温での半田付けが必要であり、接合部付近の熱設計に制限が多く、配置面積を小さくすることが難しい。なお、環境配慮からも鉛・フラックスが忌避されるにつれ、接合温度がますます上がり、さらに接合部付近の熱設計・部品配置が難しく、最終製品の軽少短薄化の阻害になっている。 Also, for example, in the method using solder for bonding, stable production from manufacturing to assembly cannot be secured unless the pitch is 0.5 mm or more due to short circuit, poor connection, or the necessity of flux removal. For this reason, the method using solder is more advantageous than the connector in terms of weight, thickness, and mounting cost, but on the other hand, soldering at a high temperature is necessary, and there are many restrictions on the thermal design near the joint, and the layout area It is difficult to make small. In addition, as lead and flux are avoided from environmental considerations, the bonding temperature increases further, and the thermal design and component placement near the joint is difficult, which hinders the miniaturization of the final product.
 たとえば、接合に異方性導電フィルム(以下ACFと称す)や非導電性フィルム(以下NCFと称す)を用いる方法では0.3mmピッチ以下も可能であり、最近急速に注目を浴びている。この、ACFやNCFを用いる方法は重量・厚みでは半田よりもメリットが大きく、さらに配置面積が半分程度になる長所もあるが、接合のための温度・時間・応力が半田に比べて非常に大きいため、熱設計・基板設計に制限が多いうえに、NCF・NCPの材料単価も高いため、使用場所は限定されている。 For example, a method using an anisotropic conductive film (hereinafter referred to as ACF) or a non-conductive film (hereinafter referred to as NCF) for bonding is capable of a pitch of 0.3 mm or less, and has recently attracted attention rapidly. This method using ACF or NCF has advantages over solder in weight and thickness, and has the advantage that the arrangement area is about half, but the temperature, time, and stress for bonding are much larger than solder. For this reason, there are many restrictions on thermal design and substrate design, and the unit cost of NCF / NCP is high, so the place of use is limited.
 以上のような問題を解決するために、特許文献1のような熱可塑性樹脂を超音波の振動で発熱させて接合する方法がある。しかし、この方法では発熱のために、接合部の上面から数十μmの振幅でさらに、数十秒の加振が必要なため、FPCの破壊やPCBの破壊や、PCBやRPC上に高密度実装された部品の破壊などが発生しやすいため、生産手段として広まっていない。 In order to solve the above problems, there is a method of joining a thermoplastic resin as disclosed in Patent Document 1 by generating heat by ultrasonic vibration. However, because this method generates heat, it needs to vibrate for several tens of seconds with an amplitude of several tens of μm from the upper surface of the joint. Therefore, the FPC is broken, the PCB is broken, and the PCB or RPC has a high density. Since the mounted parts are easily destroyed, they are not widely used as production means.
 また、FPCの破壊を減らすため、特許文献2や、特許文献3のような、接合部の横方向から振動を加える方法も考案された。しかし、これらの方法は、電極の金属を超音波の振動で金属結合するだけの方法のため、樹脂を用いる方法に比べてピール強度が低い。たとえば、市場で要求される電極構造が、電極の母材である銅に、金が銅に浸食されることを防ぐニッケルのメッキの厚みが4μm程度、その上に表面の酸化を防ぎ、かつ、接合抵抗を下げるための金のメッキ厚みが0.05μm以下である状態では、ニッケルの表面硬度がHV220と銅や金に比べて非常に高いため、荷重後に抜重すると、ニッケルの弾性復元力で接合界面がはずれてしまい、十分な接合強度が得られないので、生産手段として広まっていない。 Also, in order to reduce the destruction of FPC, a method of applying vibration from the lateral direction of the joint as in Patent Document 2 and Patent Document 3 has been devised. However, since these methods are simply methods for metal bonding of the metal of the electrode by ultrasonic vibration, the peel strength is lower than the method using a resin. For example, in the electrode structure required in the market, the thickness of the nickel plating that prevents gold from being eroded by copper, which is the base metal of the electrode, is about 4 μm, and further prevents surface oxidation, and When the gold plating thickness for lowering the bonding resistance is 0.05 μm or less, the surface hardness of nickel is very high compared to HV220 and copper or gold. Since the interface is detached and sufficient bonding strength cannot be obtained, it is not widely used as a production means.
 さらに、特許文献3の超音波ホーンの先端形状は波状のため、荷重を上げても超音波ホーン先端がFPCの表面に食い込むことにより、超音波ホーンよりFPCが受ける見かけの荷重の面積に対して、実際の受圧の面積が増加するため、単位面積当たりの荷重が減少し、電極を十分に加圧できなくなり、塑性変形させることが出来ず接合力が弱くなる、また、接合力が安定しないという問題を内包している。 Further, since the tip shape of the ultrasonic horn of Patent Document 3 is wavy, even if the load is increased, the tip of the ultrasonic horn bites into the surface of the FPC, so that the apparent load area received by the FPC from the ultrasonic horn is reduced. Because the actual pressure receiving area increases, the load per unit area decreases, the electrode cannot be pressurized sufficiently, it cannot be plastically deformed, the bonding force becomes weak, and the bonding force is not stable Contains the problem.
特開平4-186697号公報JP-A-4-18697 特開2005-223054号公報JP 2005-223054 A 特開2006-24590号公報JP 2006-24590 A WO2008/018160公報WO2008 / 018160 特開2006-156813号公報JP 2006-156813 A
 ここで、特許文献4のような超音波ホーンにヒータを具備させて、超音波による固相金属接合と、加熱による塑性変形の促進と樹脂への加熱を役割分担させることで、上記加振=加熱方法や樹脂無し接合よりも低い温度かつ短時間でFPCとRPCを高強度に接合する方法が考案された。 Here, the ultrasonic horn as in Patent Document 4 is provided with a heater, and the above-described excitation = is achieved by sharing the roles of solid-phase metal bonding by ultrasonic waves, promotion of plastic deformation by heating, and heating of the resin. A method has been devised in which FPC and RPC are bonded with high strength at a lower temperature and in a shorter time than heating methods and resin-free bonding.
 ただし、この方法では樹脂の排出のしやすさなどを考慮せざるを得ないことと、電極の太さに対して、通常1.5倍~2倍ですむ電極のピッチが3倍から4倍必要になり、将来電極ピッチが狭くなると、電極の製造管理が難しくなる。 However, with this method, the ease of resin discharge must be taken into consideration, and the electrode pitch, which is usually 1.5 to 2 times the electrode thickness, is 3 to 4 times. If it becomes necessary and the electrode pitch is narrowed in the future, the production management of the electrode becomes difficult.
 以上より電極のメッキ構造と形状は上記で示したとおり現在の市場要求を満足させることとし、電気的接合は電極同士の固相接合を確保しながら、機械的接合強度は樹脂を用いた方法と同じ強度を満たす接合方法を提供することにある。 From the above, the plating structure and shape of the electrode satisfy the current market demand as shown above, while electrical bonding ensures solid-phase bonding between the electrodes, mechanical bonding strength is a method using resin It is to provide a bonding method satisfying the same strength.
 特許文献5のような加熱式かつ直上加圧式の超音波ホーンにおいて、電子部品を保持するツールを、電子部品ではなくFPCを押さえるように変更し、その先端の幅が0.001~0.5mmであり、先端形状が振動方向に直交し、断面形状が加圧面に垂直な凸溝型のブレード形状であることを特徴とする加熱式超音波ホーンを、接合面に平行かつ、電極方向に対しても平行な方向に加振するように配置し、FPCと回路の電極を重ねてから所定の圧力で接合面に垂直に荷重をかけ、そのあとに、加熱・加振することにより、電極同士の金属接合を行い、さらに、樹脂を用いてFPCとPCBを接着することにより解決される。 In the heating and direct pressure ultrasonic horn as in Patent Document 5, the tool for holding the electronic component is changed to hold the FPC instead of the electronic component, and the tip width is 0.001 to 0.5 mm. A heating type ultrasonic horn characterized in that the tip shape is orthogonal to the vibration direction and the cross-sectional shape is a convex groove type blade shape perpendicular to the pressing surface is parallel to the bonding surface and with respect to the electrode direction. However, the electrodes are arranged so that they are vibrated in a parallel direction, and the FPC and circuit electrodes are overlapped, a load is applied perpendicularly to the joint surface with a predetermined pressure, and then the electrodes are heated and vibrated. This is solved by bonding the FPC and the PCB using a resin.
 請求項1の凸溝型のブレードを複数列1条、もしくは1行複数条、もしくは複数行複数条に配置して、電極上の複数行×1列、もしくは1行×複数列、もしくは複数行×複数列の位置で接合するようにすることで、さらに低い荷重で高い接合強度を得ることで解決される。 The convex groove type blades according to claim 1 are arranged in a plurality of columns, one row, a plurality of rows, or a plurality of rows, and a plurality of rows on the electrode × 1 column, or 1 row × multiple columns, or a plurality of rows. X It is solved by obtaining a high joint strength with a lower load by joining at a plurality of positions.
 請求項1や請求項2を実施するにあたり、接合位置を相対移動させて、電極上の、複数行×1条、もしくは、1行×複数条、もしくは、複数行×複数条の位置で接合することで、また、さらに低い荷重で高い接合強度を得ることで解決される。 In carrying out Claims 1 and 2, the joining positions are moved relative to each other, and joining is carried out at a position of a plurality of rows x one row, or one row x a plurality of rows, or a plurality of rows x a plurality of rows on the electrode. In addition, it can be solved by obtaining a high bonding strength with a lower load.
 請求項1や請求項2や請求項4の実施時に、樹脂を接合前に接合面積の半分程度の面積かつ、接合体積分の量に事前に配置し、FPCと回路の電極を重ねてから所定の圧力で接合面に直交するように荷重をかけ、そのあとに、加振・加熱させることにより、樹脂が配置されていなかった部分の電極の金属接合と、樹脂が加熱されて電極間を溶融流動することに時間差を設けて金属接合することにより、樹脂を事前に配置しても電極間から樹脂を排出する必要がないので、低い荷重でもFPCとPCBの接着と電極同士の接合の両立が解決される。 At the time of carrying out Claim 1, Claim 2 or Claim 4, the resin is preliminarily disposed in an area of about half of the joining area and the amount of the joining volume before joining, and the FPC and the circuit electrode are overlapped and then predetermined. By applying a load perpendicular to the bonding surface with the pressure of, and then applying vibration and heating, the metal bonding of the electrode where the resin was not placed and the resin was heated to melt between the electrodes By providing a time difference to flow and joining the metal, it is not necessary to discharge the resin from between the electrodes even if the resin is arranged in advance, so that the adhesion between the FPC and the PCB and the bonding between the electrodes can be compatible even at a low load. Solved.
 請求項1や請求項2や請求項4の実施時に、液状の常温硬化樹脂・嫌気性硬化樹脂・好湿性硬化樹脂などを電極同士の金属結合後に電極の端面より流し込むことにより、電極間から樹脂を排出する必要がないので、低い荷重でもFPCとPCBの接着と電極同士の接合の両立が解決される。 When carrying out claim 1, claim 2 or claim 4, a liquid room temperature curable resin, anaerobic curable resin, moisture curable resin, etc. are poured from the end surfaces of the electrodes after metal bonding between the electrodes, thereby resin from between the electrodes. Therefore, it is possible to solve both the adhesion between the FPC and the PCB and the bonding between the electrodes even at a low load.
 請求項1や請求項2や請求項4の実施時に、液状のUV硬化性樹脂を電極同士の金属結合後にFPCやPCBの端面より流し込み、さらにUV照射することで、電極間から樹脂を排出する必要がないので、低い荷重でもFPCとPCBの接着と電極同士の接合の両立が解決される。 When implementing Claim 1, Claim 2 or Claim 4, a liquid UV curable resin is poured from the end face of the FPC or PCB after metal bonding between the electrodes, and further UV irradiation is performed to discharge the resin from between the electrodes. Since there is no need, both the adhesion of the FPC and the PCB and the bonding of the electrodes can be solved even with a low load.
 請求項3や請求項5において、超音波ホーンが摩耗したり、超音波ホーンに樹脂などが付着して汚れたりしても、研磨砥石や紙ヤスリやラップフィルムなどを当て、そのうえで荷重をかけながら超音波ホーンを振動さて超音波ホーンの平面研磨を行うことにより、超音波ホーンの寿命が延びるので、ランニングコストの問題や、樹脂を用いることでホーンが汚れる問題が解決される。 In claim 3 or claim 5, even if the ultrasonic horn is worn or a resin adheres to the ultrasonic horn and becomes dirty, a polishing grindstone, a paper file, a wrap film, etc. are applied to the ultrasonic horn while applying a load. Since the life of the ultrasonic horn is extended by vibrating the ultrasonic horn and performing planar polishing of the ultrasonic horn, the problem of running cost and the problem of soiling the horn by using a resin are solved.
 加圧面に垂直な方向から荷重をかけながら、横方向から縦振動にて加振する接合方法は以下の4つの状態の相(以下PHASEと称す)の遷移からなると考えられる。 It is considered that the joining method of applying vibration from the transverse direction by longitudinal vibration while applying a load from the direction perpendicular to the pressing surface consists of the transition of the following four phases (hereinafter referred to as PHASE).
 「PHASE1」
 加圧面に垂直な方向から荷重をかけながら、横方向から加振されると、超音波ホーンの振動はFPCとPCBを平行に相対運動させて、局所的な凝着と破壊により局所的に発熱させ、この発熱が電極の表面の軟化を促す。さらに、電極同士がお互いの表面を研削して、酸化膜や油脂成分を除去して新生面を暴露する。なお、このことは、接合部断面を観察すると接合部の両側面に削り滓状の金属塊が観察できた実験結果と接合部の温度を超小型の熱伝対を用いて測定すると、加振初期時には温度が急上昇することから考察した。
"PHASE1"
When a vibration is applied from the lateral direction while applying a load from the direction perpendicular to the pressure surface, the vibration of the ultrasonic horn causes the FPC and PCB to move relative to each other in parallel, causing local heat generation due to local adhesion and destruction. This heat generation promotes softening of the electrode surface. Further, the electrodes grind each other's surface to remove the oxide film and oil components and expose the new surface. It should be noted that when observing the cross section of the joint, it was possible to observe a shaving-like metal lump on both sides of the joint and the temperature of the joint using an ultra-small thermocouple. This was considered because the temperature rose rapidly in the initial stage.
 「PHASE2」
 暴露された新生面の凝着が進み、FPCとPCBの相対運動が減り、このため発熱が減り、さらに、超音波ホーンとFPC表面が相対運動を始めることにより接合部は急速に温度が低下する。なお、このことは、「接合部の温度を超小型の熱伝対を用いて測定すると、加振初期時には温度が急上昇するが、そのあとは速やかに低下する」ということから考察した。
"PHASE2"
Adhesion of the exposed new surface progresses, the relative movement of FPC and PCB decreases, and heat generation is reduced. Furthermore, the temperature of the joint rapidly decreases due to the relative movement of the ultrasonic horn and the FPC surface. This is considered from the fact that “when the temperature of the joint is measured using an ultra-small thermocouple, the temperature rapidly increases at the initial stage of vibration, but then rapidly decreases”.
 「PHASE3」
 超音波ホーンとFPC表面の相対運動が増すにつれて、暴露された新生面の凝着し始めた接合部は、接合面に垂直な方向から荷重を受けながら横方向から加振されるので、凝着した部分を中心にした揺動運動となり、凝着部を中心に交番荷重を受けて塑性変形がすすみ接合部の拡大が進む。なお、このことは、「接合部を剥離して接合跡を観察すると層状の接合痕が観察できる」ということから考察した。
"PHASE3"
As the relative movement between the ultrasonic horn and the FPC surface increased, the exposed joint of the newly-born surface was vibrated from the lateral direction while receiving a load from the direction perpendicular to the joint surface. The oscillating motion is centered on the part, and an alternating load is received centering on the adhesion part, so that plastic deformation progresses and the joint part expands. In addition, this was considered from the fact that “a layered joint trace can be observed when the joint is peeled and the joint trace is observed”.
 ここで、図3において10aはナール形状(ピラミッド形状)の超音波ホーンであり、これを試作して上記の方法で、凸溝型のブレード形状の超音波ホーンとピール強度を比較したところ、ナール形状(ピラミッド形状)の超音波ホーン10aでの接合は、FPC表面やPCB電極表面に圧痕が残っているにもかかわらず、凸溝型のブレード形状の超音波ホーンよりピール強度が低いという結果を得た。このことから、「このPHASE2からPHASE3の間には、超音波ホーンとFPCの表面で相対運動が起こることが接合強度を上げるのに必要である」と考察した。 Here, in FIG. 3, reference numeral 10a denotes a knurl-shaped (pyramid-shaped) ultrasonic horn. When this was prototyped and the peel strength was compared with that of a convex groove-shaped ultrasonic horn by the above method, Joining with the shape (pyramid shape) ultrasonic horn 10a has the result that the peel strength is lower than that of a convex groove type blade-shaped ultrasonic horn despite the presence of indentations on the FPC surface or PCB electrode surface. Obtained. From this, it was considered that “the relative motion between the PHASE 2 and the PHASE 3 is required on the surfaces of the ultrasonic horn and the FPC to increase the bonding strength”.
 「PHASE4」
 接合部の実際の接合面積が拡大するにつれて、荷重による電極表面の応力が減り、塑性変形が進まなくなる。なお、このことは「一定時間以上加振しても接合強度が上がらなくなる」という実験結果から考察した。
"PHASE4"
As the actual bonding area of the bonded portion increases, the stress on the electrode surface due to the load decreases, and plastic deformation does not progress. This was considered from the experimental result that “the bonding strength does not increase even if the vibration is applied for a certain time or longer”.
 また、上記において超音波ホーンやアンビルを加熱すると、接合時間が短くなることを実験の結果得た。これは、加熱したため金属材料の降伏点(耐力)が低下したためと考察した。 In addition, as a result of experiments, it was found that when the ultrasonic horn or anvil is heated in the above, the bonding time is shortened. This was considered because the yield point (proof stress) of the metal material was lowered due to heating.
 つぎに、上記のナール形状(ピラミッド形状)の超音波ホーン10aでは、荷重手段13の荷重を大きくすると、FPC表面の圧痕の大きさは、荷重の大きさにつれて大きくなるにもかかわらず、PCB電極4の表面の圧痕の大きさがほとんど変わらないという実験結果を得た。 Next, in the above-described knurl-shaped (pyramid-shaped) ultrasonic horn 10a, when the load of the load means 13 is increased, the size of the impression on the FPC surface increases as the load increases. An experimental result was obtained that the size of the indentation on the surface of 4 hardly changed.
 下記の計算で、接合面に対して垂直方向から角度θ°を持つ、長さγのくさび型形状の超音波ホーンでは、樹脂や金属電極へのホーン先端の食い込み量αが増加すると、面積βはβ=γ×α(1-Sinθ)と増加し、また、ナール形状の超音波ホーンでは、樹脂や金属電極へのホーン先端の食い込み量αが増加すると、面積βはβ=(α×(1-Sinθ))^2と増加することが確かめられる。このことから、「ナール型(ピラミッド型)・くさび形・波形などの接合面に対して垂直でない断面を持つ超音波ホーン形状では、「荷重を増加しても、FPCの基材の硬度や厚みによって、超音波ホーン側の見かけの加圧面積よりも実際のFPC側の受圧面積が増えてしまうので、応力が低下もしくは飽和してしまう」という考察を行った。 In the following calculation, in the wedge-shaped ultrasonic horn having a length γ having an angle θ ° from the direction perpendicular to the bonding surface, the area β increases when the biting amount α of the horn tip into the resin or metal electrode increases. Β = γ × α (1-Sinθ), and in the case of a knurl-shaped ultrasonic horn, when the biting amount α of the horn tip into the resin or metal electrode increases, the area β becomes β = (α × ( 1-Sinθ)) ^ 2. For this reason, in the case of an ultrasonic horn shape having a cross section that is not perpendicular to the joint surface such as a knurled (pyramid), wedge, or corrugated surface, “the hardness and thickness of the FPC substrate even if the load is increased As a result, the actual pressure receiving area on the FPC side increases more than the apparent pressure area on the ultrasonic horn side, so that the stress decreases or becomes saturated.
 金属は弾性変形領域では、応力に正比例して変形するが、降伏点(耐力)を超えて塑性変形状態に入ると、応力に比例せずに加速度的に変形を始める。しかし、「荷重を増加しても接合面積も増加すれば、荷重に応力は比例しなくなり、荷重を上げても降伏点(耐力)を超えられず、抜重すると弾性変形の復元力により接合部がはずれてしまい、その結果、接合強度が落ちる」と考察した。そして実験の結果、ナール型(ピラミッド型)の超音波ホーンでの接合強度が、凸溝型のブレード形状の超音波ホーンと比較して低い値で「飽和」したので、この考察は裏付けられた。 Metals are deformed in proportion to the stress in the elastic deformation region, but when they enter the plastic deformation state beyond the yield point (proof stress), they begin to deform at an accelerated rate without being proportional to the stress. However, if the joint area increases even if the load is increased, the stress will not be proportional to the load. Even if the load is increased, the yield point (proof stress) cannot be exceeded. It will come off and as a result, the bonding strength will decrease. " As a result of the experiment, the joint strength of the knurl type (pyramid type) ultrasonic horn was “saturated” at a lower value than that of the convex blade type ultrasonic horn, so this consideration was supported. .
 ちなみに、応力を上げた場合の固相接合の接合強度が「飽和」する場合とは、電極や基材での破壊がなければ、メッキ表面の界面結合力、もしくは、メッキとメッキ下地の金属との結合力のいずれか低い方の値で飽和すると知られている。
 以上より本発明では、荷重を変化させても受圧面積が変化せず、そのため、応力が荷重に比例する接合方法を提供できる。
By the way, when the stress is increased, the solid-phase bonding strength is “saturated” when there is no breakage in the electrode or substrate, and the bonding strength of the plating surface or the metal on the plating and plating base. It is known to saturate at the lower value of the bond strength of.
As described above, in the present invention, even if the load is changed, the pressure receiving area does not change. Therefore, it is possible to provide a joining method in which the stress is proportional to the load.
 つぎに、接合金属の母材の材質・厚み・硬度・縦弾性係数や、また、その表面にメッキが施されている場合は、そのメッキの材質・厚み・硬度・縦弾性係数や、さらに、その表面の処理方法や状態、また、さらに、FPCの母材である樹脂の材質・厚み・硬度・縦弾性係数や、また、さらにその表面の処理方法や状態、また、超音波ホーンの材質やその材質の特性からの加工上の限界などにより、本発明において一番重要な超音波ホーンの先端の凸型ブレードの厚み寸法は一概には定義できない。 Next, the material, thickness, hardness, longitudinal elastic modulus of the base metal of the joining metal, and if the surface is plated, the material, thickness, hardness, longitudinal elastic modulus of the plating, The treatment method and state of the surface, the material, thickness, hardness, longitudinal elastic modulus of the resin that is the base material of the FPC, the treatment method and state of the surface, the material of the ultrasonic horn, The thickness dimension of the convex blade at the tip of the ultrasonic horn, which is the most important in the present invention, cannot be defined unconditionally due to processing limitations due to the characteristics of the material.
 だが、先端の断面形状と、超音波ホーンの振幅とFPC基材を通して金属電極が受ける応力の関係は単純化したモデルにより理論的に確認できるので、図6,図7を用いて、先端の断面形状と超音波ホーンの振幅の関係が、先端の厚み寸法にいかに関与しているかを、理論モデルを用いてまとめる。 However, the relationship between the cross-sectional shape of the tip, the amplitude of the ultrasonic horn and the stress applied to the metal electrode through the FPC substrate can be theoretically confirmed by a simplified model. A theoretical model is used to summarize how the relationship between the shape and the amplitude of the ultrasonic horn is related to the thickness dimension of the tip.
 図7は断面形状と振幅の関係をまとめた理論モデルの一覧表である。図6(a)、図6(b)は、図7の131a、131bを抜粋した凡例であり、図7の111a・112a・113a・・135aで構成されるa系列は静的な応力の「静応力」グラフであり、横目盛りは超音波ホーンの振幅を単位とし、縦目盛りは下向きが正となる応力を単位としている。また、111b・112b・113b・・135bで構成されるb系列は超音波ホーンが移動したときの、荷重と抜重による応力を足した「応力和」グラフであり、横目盛りは超音波ホーンの振幅を単位とし、縦目盛りは下向きが正となる応力を単位としている。 Fig. 7 is a list of theoretical models that summarize the relationship between cross-sectional shape and amplitude. 6 (a) and 6 (b) are legends excerpting 131a and 131b in FIG. 7. The a series composed of 111a, 112a, 113a, and 135a in FIG. It is a "static stress" graph, the horizontal scale is in units of the amplitude of the ultrasonic horn, and the vertical scale is in units of stress in which the downward direction is positive. In addition, the b series composed of 111b, 112b, 113b, and 135b is a “stress sum” graph obtained by adding the stress due to the load and the weight when the ultrasonic horn moves, and the horizontal scale indicates the amplitude of the ultrasonic horn. The vertical scale is in units of stress with the downward direction being positive.
 また、111a・111b・121a・・131bで構成される1系列は荷重部長さが超音波ホーンの振幅の0.5倍の場合、111a・111b・121a・・132bで構成される2系列は荷重部長さが超音波ホーンの振幅の1倍の場合、113a・113b・123a・・133bで構成される3系列は荷重部長さが超音波ホーンの振幅の2倍の場合、114a・114b・124a・・134bで構成される4系列は荷重部長さが超音波ホーンの振幅の3倍の場合、115a・115b・125a・・135bで構成される5系列は荷重部長さが超音波ホーンの振幅の5倍の場合、でのモデル一覧である。 In addition, when the load portion length is 0.5 times the amplitude of the ultrasonic horn, the one series composed of 111a, 111b, 121a, and 131b is composed of the two series composed of 111a, 111b, 121a,. When the part length is 1 times the amplitude of the ultrasonic horn, the three series consisting of 113a, 113b, 123a, 133b are 114a, 114b, 124a, when the load part length is twice the amplitude of the ultrasonic horn. When the load section length is three times the amplitude of the ultrasonic horn, the four series composed of 134b has a load section length of 5 of the amplitude of the ultrasonic horn. If it is double, it is a model list.
 さらに、111a・111b・112a・・115bで構成される10系列は超音波ホーンの断面形状が三角形の場合、121a・121b・122a・・125bで構成される20系列は超音波ホーンの断面形状が台形の場合、131a・131b・132a・・135bで構成される30系列は超音波ホーンの断面形状が四角形の場合でのモデル一覧である。なお、図7において、a系列の各図に描画した細い実線は、振幅長さを移動した位置を示している。 Furthermore, when the cross-sectional shape of the ultrasonic horn of the 10 series composed of 111a, 111b, 112a, 115b is a triangle, the cross-sectional shape of the ultrasonic horn of the 20 series composed of 121a, 121b, 122a,. In the case of a trapezoid, the 30 series composed of 131a, 131b, 132a, and 135b is a model list in the case where the cross-sectional shape of the ultrasonic horn is a square. In FIG. 7, a thin solid line drawn in each figure of the a series indicates a position where the amplitude length has been moved.
 図8(a)は図7のb系列の最大応力の比較表で、単位はそれぞれの1系列を100%としている。図8(b)は図7のb系列の応力和の比較表で、単位はそれぞれの1系列を100%としている。図8(c)は応力和の変化率の、最大値の比較表で、単位はそれぞれの1系列を100%としている。図8(d)は応力和の変化率の、最小値の比較表で、単位はそれぞれの1系列を100%としている。 Fig. 8 (a) is a comparison table of the maximum stresses of the b series in Fig. 7, and the unit is 100% for each one series. FIG. 8B is a comparison table of the stress sums of the b series in FIG. 7, and the unit is 100% for each one series. FIG. 8C is a comparison table of the maximum values of the rate of change of the stress sum, and the unit is 100% for each one series. FIG. 8D is a comparison table of the minimum values of the rate of change of the sum of stress, and the unit is 100% for each one series.
 a系列は超音波ホーンをFPCに押しつけた静的な状態での理想的な応力の分布グラフであり、荷重部長さは、超音波ホーンの長さが同じであれば加圧面積に比例し、さらに荷重が同じであれば応力は全てのモデルで同じと考えられる。b系列は超音波ホーンをFPCに押しつけた位置から、振幅長さを移動した位置までの荷重と抜重により変化した応力を足した理想的な応力和の分布グラフである。 The a series is an ideal stress distribution graph in a static state in which the ultrasonic horn is pressed against the FPC, and the load portion length is proportional to the pressurizing area if the length of the ultrasonic horn is the same. Furthermore, if the load is the same, the stress is considered to be the same in all models. The b series is an ideal stress sum distribution graph in which the load from the position at which the ultrasonic horn is pressed against the FPC to the position at which the amplitude length is moved and the stress that has changed due to the pulling are added.
 ここで、40kHzの周期で振幅が3μmの超音波の最大加速度は、振動方程式x=Asin(ωT):(x:位置・A:振幅=0.003mm・ω:周波数=40、000Hz・T:時間)をTで2階積分したα=-Aω^2sin(ωT):(α:加速度)に、-1<=sin(ωT)<=1から、-1=sin(ωT)を代入してα=4、800g、という巨大な加速度かつ、作用時間=1/40,000秒なので、瞬間的に移動してしまうため、移動中の応力の変化は無視できるとした。なお、超音波ホーンが移動すると、荷重がかった部分は応力がプラス(下向きが正)になり、荷重がかかっていた部分は、抜重されて応力がマイナスになる。 Here, the maximum acceleration of an ultrasonic wave having a period of 40 kHz and an amplitude of 3 μm is the vibration equation x = Asin (ωT): (x: position · A: amplitude = 0.003 mm · ω: frequency = 40,000 Hz · T: Substituting −1 = sin (ωT) from −1 <= sin (ωT) <= 1 into α = −Aω ^ 2 sin (ωT) :( α: acceleration) obtained by second-order integration of time) with T Since the huge acceleration of α = 4,800 g and the action time = 1 / 40,000 seconds, the movement is instantaneous, so the change in stress during the movement can be ignored. When the ultrasonic horn moves, the stressed part becomes positive (positive downward), and the part where the load is applied is extracted and the stress becomes negative.
 b系列のグラフの最大高さが、超音波ホーンが移動したときの最大応力になるので、応力の目盛りを単位としてまとめると図8(a)「最大応力の比較表 単位:1系列100%」のようになる。この表から、超音波ホーンの断面形状は四角形、つまり加圧面に垂直な断面形状であれば、振幅が変化しても最大応力が安定していることが分かった。また、1系列、つまり「超音波ホーンの長さ=振幅×0.5」と2系列、つまり「超音波ホーンの長さ×1=振幅」と、3系列、つまり「超音波ホーンの長さ×2=振幅」とであれば、全ての断面形状で最大応力が安定していることが分かった。 Since the maximum height of the b-series graph is the maximum stress when the ultrasonic horn is moved, the stress scale is summarized as a unit. Fig. 8 (a) "Comparison table of maximum stress: 1 series 100%" become that way. From this table, it was found that if the ultrasonic horn had a square cross section, that is, a cross section perpendicular to the pressing surface, the maximum stress was stable even if the amplitude changed. Further, one series, that is, “ultrasonic horn length = amplitude × 0.5” and two series, that is, “ultrasonic horn length × 1 = amplitude”, and three series, that is, “ultrasonic horn length”. If “× 2 = amplitude”, it was found that the maximum stress was stable in all cross-sectional shapes.
 b系列のグラフでグラフと応力軸とに挟まれた部分の面積が、超音波ホーンが移動したときに受けた応力の総和になるので、振幅と応力の目盛りをユニットとして計算して、まとめると図8(b)「応力和の比較表 単位:1系列100%」のようになる。この表から、超音波ホーンの断面形状は四角形、つまり加圧面に垂直な断面形状では、1倍以上であれば、振幅が変化したしても、受ける荷重の割合いが比例していることが分かった。また、この表から1系列、つまり「超音波ホーンの長さ=振幅×0.5」と2系列、つまり「超音波ホーンの長さ=振幅×1」であれば、全ての断面形状で安定していることが分かった。 In the b series graph, the area between the graph and the stress axis is the sum of the stress received when the ultrasonic horn is moved. Fig. 8 (b) "Stress sum comparison table: 1 series: 100%". From this table, the cross-sectional shape of the ultrasonic horn is quadrangular, that is, the cross-sectional shape perpendicular to the pressing surface is proportional to the proportion of the load received even if the amplitude is changed if it is 1 or more times. I understood. From this table, if one series, that is, “ultrasonic horn length = amplitude × 0.5” and two series, ie, “ultrasonic horn length = amplitude × 1”, all cross-sectional shapes are stable. I found out that
 また、b系列のグラフでグラフの傾きは応力の変化率を表しているので、振幅と応力の目盛りをユニットとして計算して、まとめると、最大値は図8(c)「応力和の変化率最大値比較表 単位:1系列100%」のようになり、また最小値は図8(d)応力和の変化率最小値比較表 単位:1系列100%」のようになる。これらの表から、超音波ホーンの断面形状は四角形、つまり加圧面に垂直な断面形状であれば、振幅が変化した場合の応力の変化の度合いが安定していることが分かった。また、この表から2系列、つまり「超音波ホーンの長さ=振幅×2」以外は全ての断面形状で安定していることが分かった。 In the b series graph, the slope of the graph represents the rate of change of the stress. When the amplitude and the scale of the stress are calculated as a unit and put together, the maximum value is shown in FIG. The maximum value comparison table unit: 1 series 100% ", and the minimum value is as shown in Fig. 8 (d) Stress sum change rate minimum value comparison unit: 1 series 100%. From these tables, it was found that if the cross-sectional shape of the ultrasonic horn is a square, that is, a cross-sectional shape perpendicular to the pressing surface, the degree of change in stress when the amplitude changes is stable. Further, from this table, it was found that all cross-sectional shapes were stable except for two series, that is, “ultrasonic horn length = amplitude × 2”.
 以上をまとめると、全ての超音波ホーン形状で安定しているのは1系列、つまり「超音波ホーンの長さ振幅×0.5」と2系列、つまり「超音波ホーンの長さ=振幅×1」であることが分かった。また、断面形状が四角形、つまり加圧面に垂直な断面形状であれば、振幅が変化しても安定していることが分かった。そこで、本発明は、超音波ホーンの断面形状が四角形、つまり加圧面に垂直な断面形状であるので、振幅が変化しても接合力が安定している接合法を提供できる。 In summary, all the ultrasonic horn shapes are stable in one series, that is, “ultrasonic horn length amplitude × 0.5” and two series, that is, “ultrasonic horn length = amplitude × 1 ". Further, it was found that if the cross-sectional shape is a quadrangle, that is, a cross-sectional shape perpendicular to the pressing surface, it is stable even if the amplitude changes. Therefore, the present invention can provide a joining method in which the joining force is stable even if the amplitude changes, because the sectional shape of the ultrasonic horn is a quadrangle, that is, a sectional shape perpendicular to the pressing surface.
 また、本発明は超音波ホーンの先端形状を凸溝型のブレード形状にし、複数列に配置することで、1回の接合プロセスで1列よりも数倍の接合強度が得られる接合法を提供できる。 In addition, the present invention provides a joining method in which the tip shape of an ultrasonic horn is formed into a convex groove type blade shape and arranged in a plurality of rows so that a joining strength several times that of one row can be obtained in a single joining process. it can.
 同様に、本発明は超音波ホーンによる接合位置を毎回相対移動させて、多数回接合させるので1回の接合に比べて数倍の接合強度が得られる接合法と装置を提供できる。なお、理論的には、図21の接合部分の重なり長さを超音波の振幅で割った値N(N=重なり長さ÷超音波の振幅)回接合できるので、N倍の強度を得ることができる。 Similarly, the present invention can provide a bonding method and apparatus that can obtain a bonding strength several times that of a single bonding because the bonding position by the ultrasonic horn is relatively moved each time and bonded many times. Theoretically, it is possible to bond N times (N = overlap length / ultrasonic amplitude) times obtained by dividing the overlapping length of the joining portion of FIG. 21 by the ultrasonic amplitude, so that N times the strength can be obtained. Can do.
 さらに、本発明は超音波ホーンの先端形状が凸溝型のブレード形状なので、超音波ホーンがFPC基材である樹脂に食い込んでも接合面積が変わらないので、接合力が変化しない接合を提供できる。 Furthermore, since the tip shape of the ultrasonic horn is a convex-blade blade shape in the present invention, the bonding area does not change even if the ultrasonic horn bites into the resin that is the FPC base material.
 さらに、また、本発明は低荷重でも接合応力が局所に集中するため、PCBへのストレスが小さくなり、PCBの応力設計や応力管理がしやすい接合法と装置を提供できる。 Furthermore, the present invention can provide a bonding method and apparatus that reduce stress on the PCB and facilitates stress design and stress management of the PCB because the bonding stress is locally concentrated even at a low load.
 このように、本発明による加熱式超音波ホーンの凸溝型のブレード形状・寸法と配置は、受圧面積の安定性があり、さらに応力集中の安定性があるので、超音波による金属接合エネルギーの集中度が上がり、そのうえ、加熱することで金属表面の塑性変形を加速度的に促進するので、実験では電極表面が金以外(たとえば銀・スズ・アルミ)でも接合できることが確かめられた。 Thus, the convex groove type blade shape, dimensions and arrangement of the heating ultrasonic horn according to the present invention have a stable pressure receiving area and a stable stress concentration. In addition, the degree of concentration is increased, and the plastic deformation of the metal surface is accelerated at an accelerated rate by heating. Therefore, it was confirmed in the experiment that the electrode surface can be joined with other than gold (for example, silver, tin, and aluminum).
 つぎに、樹脂を接合面積の全面に事前に配置し、FPCと回路の電極を重ねてから、所定の圧力で接合面に垂直に荷重をかけて加熱・加振しても、加振前に樹脂が十分に加熱されていないと、電極間から樹脂が排出されずに、電極の金属接合を阻害して、抵抗が高い場合もしくは、導通が無い場合が発生する。したがって、この全面に事前に配置する方法では、電極だけを固相接合する場合にくらべて、FPCとPCBとの接合時間が長くなるし、接合・接着のための荷重が大きくなる。そこで、本発明では、樹脂を接合面の接合長さの30%~50%程度の長さで、接合部の間隙部分に充填するのに必要な量を事前に配置し、FPCと回路の電極を重ねてから所定の圧力で接合面に垂直に荷重をかけ、そのあとに、加振・加熱させると、樹脂が配置されていなかった部分の電極の金属接合が先に完了し、そのあと樹脂が加熱されて電極間を溶融流動するので、金属接合する方法とほぼ同じ時間と荷重でFPCとPCBを接合する接合法と装置を提供できる。 Next, even if the resin is pre-arranged over the entire surface of the bonding area, the FPC and the circuit electrodes are overlapped, and a load is applied perpendicularly to the bonding surface at a predetermined pressure, heating and vibration are applied. If the resin is not sufficiently heated, the resin is not discharged from between the electrodes, and the metal bonding of the electrodes is hindered, resulting in a case where the resistance is high or there is no conduction. Therefore, in this method of arranging in advance on the entire surface, the bonding time between the FPC and the PCB becomes longer and the load for bonding and adhesion becomes larger than in the case where only the electrodes are solid-phase bonded. Therefore, in the present invention, the resin is disposed in advance in an amount required to fill the gap portion of the joining portion with a length of about 30% to 50% of the joining length of the joining surface, and the FPC and circuit electrodes. When a load is applied perpendicularly to the bonding surface with a certain pressure after applying a certain amount of pressure, and then vibration and heating are performed, the metal bonding of the electrode where the resin has not been placed is completed first, and then the resin Is heated to melt and flow between the electrodes, so that it is possible to provide a joining method and apparatus for joining the FPC and the PCB with substantially the same time and load as the metal joining method.
 電極の金属接合後に、粘度が低い液状の常温硬化樹脂・嫌気性硬化樹脂・好湿性硬化樹脂などを、電極同士の金属結合後に電極の端面より流し込むと、毛細管現象により、接合した電極間とFPCとPCBにより形成される空隙を充填する。そのあと常温で放置すれば樹脂は固化し、つまり、電極の金属接合を阻害しないでFPCとPCBを接着する。 After metal bonding of electrodes, when liquid room-temperature curable resin, anaerobic curable resin, hygroscopic curable resin, etc. with low viscosity are poured from the end surfaces of the electrodes after metal bonding between the electrodes, the FPC and the bonded electrodes are connected by capillary action. And filling the void formed by PCB. Thereafter, if left at room temperature, the resin is solidified, that is, the FPC and the PCB are bonded without hindering metal bonding of the electrodes.
 また、接着剤が毛細管現象で、FPCとPCBとそれらの電極により形成される空隙に充填されると、FPCとPCBとの間に分子間力が働き、この状態では体積が変化しにくいため、破壊対力があるので、固化する前でも擬似的な接着力が働く。そこで本発明では、完全な接着力が発生するまでの間、つまり完全に固化するまでの間でも、金属の固相接合だけの場合に比べて強い接着力が発生するので、本発明のあとの工程まで剥離が生じない接合法と装置を提供できる。 In addition, when the adhesive is a capillary phenomenon and is filled in the gap formed by FPC and PCB and their electrodes, intermolecular force works between FPC and PCB, and in this state, the volume is difficult to change. Since there is a destructive force, a pseudo-adhesive force works even before solidification. Therefore, in the present invention, a strong adhesive force is generated until a complete adhesive force is generated, that is, until it is completely solidified, as compared with the case of solid-phase metal bonding alone. It is possible to provide a bonding method and apparatus in which separation does not occur until the process.
 本発明では、上記樹脂に液状のUV硬化性樹脂を用いる場合でも、工程間移動では同様に剥離しにくいだけの接着力が発生するので、本発明のあとの工程であるUV照射工程まで剥離することのない接合法を提供できる。同様に、本発明では、上記樹脂に液状の熱硬化性樹脂や熱可塑性樹脂を用いる場合も、工程間移動では同様に剥離しにくいだけの接着力が発生するので、本発明のあとの工程である加熱工程まで剥離することのない接合法と装置を提供できる。 In the present invention, even when a liquid UV curable resin is used as the resin, an adhesive force that is also difficult to peel off is generated by movement between the processes, so that the UV irradiation process, which is a subsequent process of the present invention, is peeled off. It is possible to provide a safe joining method. Similarly, in the present invention, even when a liquid thermosetting resin or a thermoplastic resin is used as the resin, an adhesive force that is also difficult to peel off is generated by movement between processes. It is possible to provide a bonding method and apparatus that do not peel until a certain heating step.
 なお、毛細管現象での浸透力を上げたり、接着力を上げるには、接合前にイソプロパノールで洗浄し表面の油分やゴミを除去したり、プラズマ放電により表面を改質したりすると有効である。 It should be noted that in order to increase the penetrating power by capillarity or increase the adhesive strength, it is effective to wash the surface with isopropanol before joining to remove oil or dust on the surface, or to modify the surface by plasma discharge.
 横方向からの加振による加熱式超音波接合は、前述したとおり固相接合なので、本発明では溶融接合に比べて接合抵抗が低い接合法を提供できる。また、横方向からの加振により表面の酸化膜・油脂皮膜の除去が、メカニカルに行われるため、本発明では電極の洗浄処理が不要である接合法と装置を提供できる。さらに、横方向からの加振による固相接合は、電極表面の形状の変化が非常に少ないため、本発明では、一度接合したFPCを剥がして再度接合しても接合強度・接合抵抗ともに劣化がない接合法を提供できる。 Since the heating type ultrasonic bonding by vibration from the lateral direction is solid phase bonding as described above, the present invention can provide a bonding method having a lower bonding resistance than fusion bonding. Moreover, since the removal of the oxide film and oil film on the surface is mechanically performed by vibration from the lateral direction, the present invention can provide a bonding method and apparatus that do not require electrode cleaning. Furthermore, since solid-phase bonding by lateral vibration causes very little change in the shape of the electrode surface, in the present invention, even if the FPC once bonded is peeled off and bonded again, both bonding strength and bonding resistance deteriorate. Can provide no joining method.
 本発明では電極の形状が従来通りの単純な形状のため、樹脂流動に対しても特に考慮する必要もなく、PCBの電極のピッチが通常通り狭い接合法を提供できる。 In the present invention, since the shape of the electrode is a simple shape as usual, it is not necessary to consider the resin flow, and it is possible to provide a joining method in which the PCB electrode pitch is narrow as usual.
 本発明では超音波ホーンの先端形状が単純なため、超音波ホーンが摩耗した場合でも接合面を平面研磨するだけで再使用が可能である。従ってこれにより、超音波ホーンのランニングコストが低い接合法を提供できる。さらに、本発明では、超音波ホーンが摩耗しても研磨砥石などを当てながら超音波ホーンを振動させれば超音波ホーンの接合面を平面研磨することが可能である。従ってこれにより、汚れ除去がしやすく、また、超音波ホーンのランニングコストが低い接合法と装置を提供できる。 In the present invention, since the tip shape of the ultrasonic horn is simple, even if the ultrasonic horn is worn, it can be reused by simply polishing the joint surface. Therefore, this can provide a joining method with a low running cost of the ultrasonic horn. Further, in the present invention, even if the ultrasonic horn is worn, it is possible to polish the joining surface of the ultrasonic horn by polishing the ultrasonic horn while applying a polishing grindstone or the like. Accordingly, this makes it possible to provide a joining method and apparatus that facilitates removal of dirt and that has a low running cost of the ultrasonic horn.
 電極のメッキ構造と寸法形状は現在の市場要求を満足させるように狭くすることができ、電気的接合は電極同士の固相接合を確保しながら、機械的接合強度は樹脂を用いた方法と同じ強度を満たす接合方法を提供することができる。 Electrode plating structure and dimensions can be narrowed to meet current market requirements, and electrical bonding ensures solid-state bonding between electrodes, while mechanical bonding strength is the same as resin-based methods A bonding method satisfying the strength can be provided.
FPCの超音波接続装置を示す斜視図である。It is a perspective view which shows the ultrasonic connection apparatus of FPC. FPCとPCBとの重ね方と、電極方向と荷重方向と振動方向を示す斜視図である。It is a perspective view which shows how to overlap FPC and PCB, an electrode direction, a load direction, and a vibration direction. ナール形状超音波ホーンと荷重方向と振動方向を下面より反転して見た斜視図である。It is the perspective view which reversed the Naru form ultrasonic horn, the load direction, and the vibration direction from the lower surface. (a)は凸型ブレード形状1列超音波ホーンを下面より反転して見た斜視図であり、(b)は凸型ブレード形状3列超音波ホーンを下面より反転して見た斜視図であり、(c)は凸型ブレード形状1列1条超音波ホーンを下面より反転して見た斜視図であり、(d)は凸型ブレード形状1列3条超音波ホーンを下面より反転して見た斜視図であり、(e)は凸型ブレード形状3列1条超音波ホーンを下面より反転して見た斜視図である。(A) is the perspective view which reversed the convex blade shape 1 row ultrasonic horn from the lower surface, and (b) is the perspective view which reversed the convex blade shape 3 row ultrasonic horn from the lower surface. And (c) is a perspective view of the convex blade-shaped single-row ultrasonic horn inverted from the lower surface, and (d) is the convex blade-shaped single-row ultrasonic horn inverted from the lower surface. It is the perspective view seen, and (e) is the perspective view which reversed the convex blade shape 3 row 1 row ultrasonic horn from the lower surface, and was seen. (a)は凸型ブレード形状3列3条超音波ホーンを下面より反転して見た斜視図であり、(b)は図(a)の矢視X図であり、(c)は図(a)の矢視Y図である。(A) is the perspective view which reversed and saw the convex blade shape 3 row 3 row ultrasonic horn from the lower surface, (b) is the arrow X figure of figure (a), (c) is a figure ( It is an arrow Y view of a). (a)は図7の静応力分布グラフの凡例であり、(b)は図7の応力和分布グラフの凡例である。(A) is a legend of the static stress distribution graph of FIG. 7, and (b) is a legend of the stress sum distribution graph of FIG. 断面形状と振幅の関係をまとめた理論モデルの一覧表である。It is a list of theoretical models that summarize the relationship between cross-sectional shape and amplitude. (a)は図7のb系列の最大応力の比較表で、単位はそれぞれの1系列を100%としている。(b)は図7のb系列の応力和の比較表で、単位はそれぞれの1系列を100%としている。(c)は応力和の変化率の、最大値の比較表で、単位はそれぞれの1系列を100%としている。(d)は応力和の変化率の、最小値の比較表で、単位はそれぞれの1系列を100%としている。(A) is the b series maximum stress comparison table of FIG. 7, and the unit is 100% for each one series. (B) is a comparison table of the stress sums of the b series in FIG. 7, and the unit is 100% for each one series. (C) is a comparison table of the maximum values of the rate of change of the stress sum, and the unit is 100% for each one series. (D) is a comparison table of the minimum values of the rate of change of the stress sum, and the unit is 100% for each one series. (a)は凸型ブレード形状超音波ホーンの相対移動を行う前の、接合している位置を示す正面図であり、(b)は凸型ブレード形状超音波ホーンの相対移動を行い、図5aのつぎの接合している位置を示す正面図である。(A) is a front view which shows the joining position before performing the relative movement of a convex blade-shaped ultrasonic horn, (b) performs the relative movement of a convex blade-shaped ultrasonic horn, FIG. It is a front view which shows the position which has joined next. (a)は凸型ブレード形状超音波ホーンの相対移動を行う前の、接合している位置を示す側面図であり、(b)は凸型ブレード形状超音波ホーンの相対移動を行い、図6aのつぎの接合している位置を示す側面図である。FIG. 6A is a side view showing a bonding position before the relative movement of the convex blade-shaped ultrasonic horn, and FIG. 6B shows the relative movement of the convex blade-shaped ultrasonic horn. It is a side view which shows the position which has joined next. (a)はPCBへ樹脂を全面に配置した、接合前を示す正面図であり(b)は(a)の次の段階である、接合・接着の途中を示す正面図であり、(c)は(b)の次の段階である、接合・接着したあとを示す正面図である。(A) is a front view showing the state before joining, in which resin is arranged on the entire surface of the PCB, (b) is a front view showing the middle of joining and bonding, which is the next stage of (a), (c) [FIG. 4] It is a front view which shows the state after joining and adhesion | attachment which is the next step of (b). (a)はPCBへ面積が半分程の樹脂を、接合部中央付近に配置した、接合前を示す正面図であり、(b)は(a)の次の段階である、接合・接着の途中を示す正面図であり、(c)は(b)の次の段階である、接合・接着したあとを示す正面図である。(A) is the front view which shows the state before joining which arrange | positioned resin whose area is about half to PCB in the joint part center vicinity, (b) is the next step of (a), in the middle of joining and adhesion | attachment (C) is a front view showing a state after joining and bonding, which is the next stage of (b). (a)はPCBへ面積が半分程の樹脂を、接合部中央付近に配置した、接合前を示す正面図であり、(b)は(a)の次の段階である、接合・接着の最初の段階を示す正面図であり、(c)は(b)の次の段階である、接合・接着の途中の段階を示す正面図であり、(d)は(c)の次の段階である、接合・接着の最後の段階を示す正面図である。(A) is a front view showing the state before joining, in which a resin having an area of about half of the PCB is arranged near the center of the joint, and (b) is the next stage of (a), the first stage of joining / bonding It is a front view which shows the step of (b), (c) is a front view which shows the step in the middle of joining and adhesion | attachment which is the next step of (b), (d) is the next step of (c). It is a front view which shows the last step of joining and adhesion | attachment. (a)はPCBへ面積が1/3程度の樹脂を、PCB端面付近に配置した、接合前を示す正面図であり、(b)は(a)の次の段階である、接合・接着の途中を示す正面図であり、(c)は(b)の次の段階である、接合・接着したあとを示す正面図である。(A) is a front view showing a state before bonding, in which a resin having an area of about 1/3 is arranged in the vicinity of the PCB end surface on the PCB, and (b) is the next stage of (a), which is a bonding / adhesion step. It is a front view which shows the middle, (c) is a front view which shows the state after joining and adhesion | attachment which is the next step of (b). (a)はPCBへ面積が1/3程度の樹脂を、PCB端面付近に配置した、接合前を示す正面図であり、(b)は(a)の次の段階である、接合・接着の最初の段階を示す正面図であり、(c)は(b)の次の段階である、接合・接着の途中の段階を示す正面図であり、(d)は(c)の次の段階である、接合・接着の最後の段階を示す正面図である。(A) is a front view showing a state before bonding, in which a resin having an area of about 1/3 is arranged in the vicinity of the PCB end surface on the PCB, and (b) is the next stage of (a), which is a bonding / adhesion step. It is a front view which shows the first stage, (c) is a front view which shows the stage in the middle of joining and adhesion | attachment which is the next stage of (b), (d) is the next stage of (c). It is a front view which shows a certain last stage of joining and adhesion | attachment. FPCとPCBを接合後に樹脂を、端面より流し込む途中を示す斜視図である。It is a perspective view which shows the middle of pouring resin from an end surface after joining FPC and PCB. 超音波ホーンを在姿状態で研磨する前の状態を示す側面図である。It is a side view which shows the state before grind | polishing an ultrasonic horn in a present state. 超音波ホーンを在姿状態で研磨している途中を示す側面図である。It is a side view which shows the middle of grinding | polishing the ultrasonic horn in a present state. FPCアライメント穴を示す平面図である。It is a top view which shows an FPC alignment hole. PCBアライメントマークを示す平面図である。It is a top view which shows a PCB alignment mark. PCBアライメントマークを重ねた状態を示す平面図である。It is a top view which shows the state which accumulated the PCB alignment mark. FPCとPCBの固定式のCCDカメラによる位置決め方法を示す斜視図である。It is a perspective view which shows the positioning method with the fixed CCD camera of FPC and PCB. FPCとPCBの移動式のCCDカメラによる位置決め方法を示す斜視図である。It is a perspective view which shows the positioning method by the movable CCD camera of FPC and PCB. FPC位置決め穴を示す平面図である。It is a top view which shows a FPC positioning hole. PCB位置決め穴を示す平面図である。It is a top view which shows a PCB positioning hole. FPCとPCBのピンによる位置決め方法を示す斜視図である。It is a perspective view which shows the positioning method by the pin of FPC and PCB.
 本実施例は請求項1の実施例である。以下に各部分を図2・図4・図5を用いて詳細に説明する。図2はFPCとPCBとの重ね方と、電極方向と荷重方向と振動方向を示す斜視図である。図2の1はFPCであり、1aはポリイミド(商品名)やペット(商品名)などの樹脂からなるFPC基材、2は金、銀、銅などの導電性金属、もしくはさらにその表面に半田メッキ、錫メッキ、金メッキなどを施してあるFPC1上に設けられたFPC電極、3はPCBであり、3aは塩ビ、ベークライト、ファイバー、ポリイミド(商品名)、ペット(商品名)などの樹脂や、セラミックス、ガラスからなるPCB基材、4は金、銀、銅などの導電性金属、もしくはさらにその表面に半田メッキ、錫メッキ、金メッキなどを施しあるPCB3上に設けられたPCB電極、6a、7aは後述の位置決めのために設けられた、アライメントマークである。 This example is an example of claim 1. Each part will be described in detail below with reference to FIGS. FIG. 2 is a perspective view showing how the FPC and the PCB are overlapped, the electrode direction, the load direction, and the vibration direction. In FIG. 2, 1 is an FPC, 1a is an FPC base material made of a resin such as polyimide (trade name) or pet (trade name), 2 is a conductive metal such as gold, silver or copper, or soldered on the surface thereof. FPC electrodes provided on the FPC 1 subjected to plating, tin plating, gold plating, etc., 3 is a PCB, 3a is a resin such as polyvinyl chloride, bakelite, fiber, polyimide (trade name), pet (trade name), PCB substrate made of ceramics and glass, 4 is a conductive metal such as gold, silver, copper, or PCB electrode provided on PCB 3 on which solder plating, tin plating, gold plating or the like is further applied, 6a, 7a Is an alignment mark provided for positioning described later.
 図4(a)は本発明による凸型ブレード形状1列超音波ホーンの形状と荷重方向と振動方向と電極方向を示す下面より反転して見た斜視図である。10bは凸型ブレード形状1列超音波ホーンである。以下同様に、図4(b)に示す10cは凸型ブレード形状3列超音波ホーンである。図4(c)に示す10dは凸型ブレード形状1列1条超音波ホーンである。図4(d)に示す10eは凸型ブレード形状3列1条超音波ホーンである。図4(e)に示す10fは凸型ブレード形状1列3条超音波ホーンである。図4(g)に示す10gは凸型ブレード形状3列3条超音波ホーンである。 FIG. 4 (a) is a perspective view of the convex blade-shaped single-row ultrasonic horn according to the present invention as seen from the lower surface showing the shape, load direction, vibration direction, and electrode direction. Reference numeral 10b denotes a convex blade shape single row ultrasonic horn. Similarly, 10c shown in FIG. 4 (b) is a convex blade-shaped three-row ultrasonic horn. 10d shown in FIG.4 (c) is a convex blade shape 1 row 1 row ultrasonic horn. Reference numeral 10e shown in FIG. 4 (d) denotes a convex blade-shaped three-row single-row ultrasonic horn. Reference numeral 10f shown in FIG. 4 (e) denotes a convex blade-shaped one-row, three-row ultrasonic horn. 10g shown in FIG.4 (g) is a convex-blade shape 3 row | line | column ultrasonic horn.
 図5(b)は図5(a)の矢視x方向から見た図で、荷重方向が下から上となるように配置した側面図である。Wyは超音波ホーン上の凸型ブレードが設けられている部分の長さ、Bは超音波ホーンの凸型ブレードの長さ、Pyは凸型ブレードが複数条配置してある場合のピッチ間距離を示す。図5(c)は図5(a)の矢視y方向から見た図で、荷重方向が下から上となるように配置した正面図である。Wxは超音波ホーン上の凸型ブレードが設けられている部分の幅、Tは超音波ホーンの凸型ブレードの厚み、Pxは凸型ブレードが複数列配置してある場合のピッチ間距離を示す。 FIG. 5 (b) is a side view as seen from the direction of the arrow x in FIG. 5 (a), and is a side view arranged so that the load direction is from bottom to top. Wy is the length of the portion of the ultrasonic horn where the convex blade is provided, B is the length of the convex blade of the ultrasonic horn, and Py is the pitch distance when multiple convex blades are arranged. Indicates. FIG.5 (c) is the figure seen from the arrow y direction of Fig.5 (a), and is the front view arrange | positioned so that a load direction may be from the bottom to the top. Wx is the width of the portion of the ultrasonic horn where the convex blades are provided, T is the thickness of the convex blades of the ultrasonic horn, and Px is the pitch distance when multiple rows of convex blades are arranged. .
 さて、超音波ホーン先端の厚みTの最小値は、上述の理論モデルから超音波ホーンの振幅の1倍であれば十分であると考えられる。ここで、現在実験で使用している超音波ホーンの振幅は3μmなので0.003mmとすべきだが、今後、発振周波数を上げて、逆に、振幅をさらに減らして、超音波の振動によるFPC1やPCB3や、これらの表面や内部に実装されている部品のダメージを押さえることが必要であることが予定されているので、超音波ホーン先端の厚みTの最小値を0.001mmとする。 The minimum value of the thickness T at the tip of the ultrasonic horn is considered to be sufficient if it is one time the amplitude of the ultrasonic horn based on the above theoretical model. Here, since the amplitude of the ultrasonic horn currently used in the experiment is 3 μm, it should be 0.003 mm. However, in the future, the oscillation frequency will be increased, and on the contrary, the amplitude will be further reduced, and the FPC1 due to ultrasonic vibration will be reduced. Since it is planned that it is necessary to suppress damage to the PCB 3 and the components mounted on the surface and inside thereof, the minimum value of the thickness T at the tip of the ultrasonic horn is set to 0.001 mm.
 つぎに、超音波ホーン先端の厚みTの最大値は、上述の理論モデルから超音波ホーンの振幅の1倍で十分であると考えられる。しかし、実際には接合金属の母材の材質・厚みT・硬度・縦弾性係数や、また、その表面にメッキが施されている場合は、そのメッキの材質・厚み・硬度・縦弾性係数や、さらに、その表面の処理方法や状態、また、さらに、FPCの母材である樹脂の材質・厚み・硬度・縦弾性係数や、また、さらにその表面の処理方法や状態という接合部材の条件、また、超音波ホーンの材質やその材質の特性からの加工上の限界や、その上、配線本数や配線の太さ、荷重制御装置の制御上の限界などと、今までの実験結果から、0.5mmは必要である。以上をまとめて、超音波ホーン先端の厚みTは0.001~0.5mmとする。 Next, it is considered that the maximum value of the thickness T at the tip of the ultrasonic horn is sufficient to be one time the amplitude of the ultrasonic horn from the above-mentioned theoretical model. However, in actuality, the material, thickness T, hardness, longitudinal elastic modulus of the base metal of the joining metal, and if the surface is plated, the material, thickness, hardness, longitudinal elastic modulus of the plating, Furthermore, the processing method and state of the surface, further, the material, thickness, hardness, and longitudinal elastic modulus of the resin that is the base material of the FPC, and further the condition of the joining member such as the processing method and state of the surface, In addition, based on the results of experiments so far, the limits of processing from the material of the ultrasonic horn and the characteristics of the materials, the number of wires, the thickness of the wires, the control limits of the load control device, etc. .5mm is required. In summary, the thickness T of the tip of the ultrasonic horn is 0.001 to 0.5 mm.
 そして、超音波ホーン先端の高さHは、FPC基材1aの厚みが、用途により数十μmから数百μmと幅が広いので、いちがいに決定することはできない。ただし、後述するように樹脂を加熱溶融させる場合に、伝熱と共に輻射熱は非常に重要であので、FPC基材1aの厚みや材質などを考慮して、超音波ホーン先端の高さHはできるだけ低く、ただし、接合中に超音波ホーンの先端以外がFPC1に接触しない程度の寸法で都度決定することとする。 And the height H of the tip of the ultrasonic horn cannot be determined at all because the thickness of the FPC substrate 1a is as wide as several tens to several hundreds μm depending on the application. However, as will be described later, when the resin is heated and melted, the heat radiation and the radiant heat are very important, so the height H of the tip of the ultrasonic horn is as much as possible in consideration of the thickness and material of the FPC substrate 1a. However, it is determined each time with a dimension that does not contact the FPC 1 except for the tip of the ultrasonic horn during joining.
 本実施例は請求項2の実施例である。上記実施例1の通り、超音波ホーン先端の厚みTは決定でき、必要な荷重が決定できても、接合部材の条件により、PCB3の許容応力を越えてしまう場合がある。この場合、たとえば、凸型ブレード形状3列超音波ホーン10cの形状よりも、凸型ブレード形状3列3条超音波ホーン10gの形状の方が、「FPC」基材3aからの反力を受けにくいので、荷重を減らすことが可能となる。ただし、条数は、配線本数に依存するので、実際は3ではなく1~数十、場合により数百となり、また、列数もPCBの許容応力に依存するので、実際は3ではなく1~数十、場合によっては数百となる。 This example is an example of claim 2. As described in the first embodiment, the thickness T of the ultrasonic horn tip can be determined. Even if the necessary load can be determined, the allowable stress of the PCB 3 may be exceeded depending on the conditions of the joining member. In this case, for example, the shape of the convex blade-shaped three-row ultrasonic horn 10g receives the reaction force from the “FPC” base material 3a rather than the shape of the convex blade-shaped three-row ultrasonic horn 10c. Since it is difficult, the load can be reduced. However, since the number of lines depends on the number of wires, it is actually 1 to several tens, not several, and sometimes several hundreds. The number of columns also depends on the allowable stress of the PCB. , In some cases, hundreds.
 また、逆に、PCB3の許容応力が十分大きければ、たとえば、凸型ブレード形状3列3条超音波ホーン10gの形状よりも、凸型ブレード形状3列超音波ホーン10cの形状の方が単純なので、超音波ホーン10の製造コストが低くなる。以上より、列数と条数は一意に決定できないので、上記条件の中で都度決定することとする。 Conversely, if the allowable stress of the PCB 3 is sufficiently large, for example, the shape of the convex blade-shaped three-row ultrasonic horn 10c is simpler than the shape of the convex blade-shaped three-row ultrasonic horn 10g. The manufacturing cost of the ultrasonic horn 10 is reduced. As described above, since the number of columns and the number of strips cannot be uniquely determined, they are determined each time in the above conditions.
 本実施例は、請求項1や請求項2を実施するに当たり、荷重手段と、加振手段と、加熱手段と、を持つ超音波接合装置である本発明の核となる固相金属接合を実施する場合の請求項3の実施例である。なお、樹脂接着を併せて行う場合の実施例は、実施例5・実施例6・実施例7・実施例8・実施例9・実施例10にて、FPCとPCBを位置合わせする場合の実施例は実施例12・実施例13・実施例14にて詳細に説明する。 In the present embodiment, in carrying out claims 1 and 2, solid-phase metal bonding, which is the core of the present invention, is an ultrasonic bonding apparatus having a load means, a vibration means, and a heating means. This is an embodiment of the third aspect of the invention. In addition, the example in the case of performing resin bonding together is the implementation in the case of aligning FPC and PCB in Example 5, Example 6, Example 7, Example 8, Example 9, and Example 10. Examples will be described in detail in Example 12, Example 13, and Example 14.
 以下に各部分を、図1と図4(b)と図22を用いて詳細に説明する。図22は図1の一部を抜粋した、本発明の実施例を示す斜視図であり、この図22において、20はPCB3を吸着固定する手段を持ったアンビル、20aはアンビル20に設けたPCB固定用吸着穴、20bはアンビル20に設けたFPC固定用吸着穴、21はアンビルを加熱するアンビルヒータ、1はFPC、1aはこのFPC1の絶縁材料でできた基材であるFPC基材、2はFPC基材1aに上に形成された電気回路であるFPC電極、6aはFPC基材1aに設けられた2対のFPCアライメント穴であり、3がPCB、3aはこのPCB3の絶縁材料でできた基材であるPCB基材、4はPCB基材3a上に形成された電気回路であるPCB電極、7aはPCB基材3aに設けられた2対のPCBアライメントマークである。 Hereinafter, each part will be described in detail with reference to FIG. 1, FIG. 4 (b), and FIG. FIG. 22 is a perspective view showing an embodiment of the present invention, excerpted from FIG. 1. In FIG. 22, 20 is an anvil having means for adsorbing and fixing PCB 3, and 20 a is a PCB provided on the anvil 20. Fixing suction hole, 20b is an FPC fixing suction hole provided in the anvil 20, 21 is an anvil heater for heating the anvil, 1 is an FPC, 1a is an FPC base material made of an insulating material of the FPC 1, 2 Is an FPC electrode which is an electric circuit formed on the FPC substrate 1a, 6a is two pairs of FPC alignment holes provided in the FPC substrate 1a, 3 is a PCB, 3a is made of an insulating material of this PCB3 The PCB substrate 4 is a PCB electrode which is an electric circuit formed on the PCB substrate 3a, and 7a is two pairs of PCB alignment marks provided on the PCB substrate 3a.
 図4(b)は凸型ブレード形状3列超音波ホーンの形状と荷重方向と振動方向を示す、下面より反転して見た斜視図であり、10cは本発明の凸型ブレード形状3列超音波ホーンである。
ただし、列数はPCBの許容応力に依存するので、実際は3だけではなく1~数十、場合によっては数百となる。
FIG. 4B is a perspective view showing the shape, load direction, and vibration direction of the convex blade-shaped three-row ultrasonic horn as viewed from the bottom, and 10c is the convex blade-shaped three-row super horn of the present invention. It is a sonic horn.
However, since the number of columns depends on the allowable stress of the PCB, it is actually not only 3 but 1 to several tens, and in some cases several hundreds.
 図1は装置全体の構成を示す斜視図である。図1において、10は上下移動用ガイド(図無し)に沿って上下する超音波ホーンであり、13は超音波ホーン10の不動点とねじなどで固着している上下移動用ガイド(図無し)と、これにねじなどで固着している荷重手段であり、11は超音波ホーン10にねじなどで固着している超音波ホーンヒータ、12は超音波ホーン10にねじなどで固着している超音波振動子である。 FIG. 1 is a perspective view showing the configuration of the entire apparatus. In FIG. 1, 10 is an ultrasonic horn that moves up and down along a vertical movement guide (not shown), and 13 is a vertical movement guide (not shown) that is fixed to the fixed point of the ultrasonic horn 10 with a screw or the like. And 11 is an ultrasonic horn heater fixed to the ultrasonic horn 10 with a screw or the like, and 12 is an ultrasonic wave fixed to the ultrasonic horn 10 with a screw or the like. It is a vibrator.
 25は本体(図無し)にねじなどで固着しているY軸ステージ、24はこのY軸ステージにねじなどで固着されているX軸ステージ、23はこのX軸ステージにねじで固着されているθ軸ステージ、22はこのθ軸ステージにねじなどで固着されている荷重センサ、20はこの荷重センサ22にねじなどで固着されているアンビルであり、21はこのアンビル20にねじなどで固着しているアンビルヒータである。 25 is a Y-axis stage fixed to the main body (not shown) with a screw, 24 is an X-axis stage fixed to the Y-axis stage with a screw, and 23 is fixed to the X-axis stage with a screw. A θ-axis stage, 22 is a load sensor fixed to the θ-axis stage with a screw or the like, 20 is an anvil fixed to the load sensor 22 with a screw or the like, and 21 is fixed to the anvil 20 with a screw or the like. There is an anvil heater.
 70は制御装置であり、71は超音波振動子12により超音波ホーン10cを加振する超音波発信器、72は荷重センサ22により所定の到達荷重と比較し、所定の荷重を保持するように荷重手段13を制御する加重制御装置、73aは超音波ホーンヒータ11で加熱される超音波ホーン10の温度を超音波ホーンにねじなどで固着している熱電対などの測温体(図無し)を用いてフィードバック制御する超音波ホーン温度調整装置、73bはアンビルヒータ21で加熱されるアンビル20の温度をアンビルにねじなどで固着している熱電対などの測温体(図無し)を用いてフィードバック制御するアンビル温度調整装置である。 70 is a control device, 71 is an ultrasonic transmitter that vibrates the ultrasonic horn 10c by the ultrasonic vibrator 12, 72 is compared with a predetermined ultimate load by the load sensor 22, and holds a predetermined load. A load control device 73a for controlling the load means 13 includes a temperature measuring body (not shown) such as a thermocouple in which the temperature of the ultrasonic horn 10 heated by the ultrasonic horn heater 11 is fixed to the ultrasonic horn with a screw or the like. An ultrasonic horn temperature adjusting device 73b that performs feedback control using a temperature sensor (not shown) such as a thermocouple in which the temperature of the anvil 20 heated by the anvil heater 21 is fixed to the anvil with a screw or the like is fed back. An anvil temperature control device to be controlled.
 76aはFPC保持・供給手段50に設けられた、FPC1を吸着固定する、負圧発生装置(図無し)までの配管経路に設けられた、FPC1の吸着を確認するFPC吸着センサである。76bはアンビル20に設けられた、FPC1を吸着固定する図22の吸着固定穴20aから、負圧発生装置(図無し)までの配管経路に設けられた、FPC1の吸着を確認するFPC吸着センサ、76cはアンビル20に設けられた、PCB3を吸着固定する吸着固定穴(図無し)から、負圧発生装置(図無し)までの配管経路に設けられた、PCB3の吸着を確認するPCB吸着センサである。77はθ軸ステージ23とX軸ステージ24とY軸ステージ25の移動速度と位置を制御する位置制御装置である。 76a is an FPC adsorption sensor provided in the FPC holding / supplying unit 50, which is provided in a piping path to the negative pressure generator (not shown) for adsorbing and fixing the FPC1, and confirming the adsorption of the FPC1. 76b is an FPC adsorption sensor provided in the anvil 20 for confirming the adsorption of the FPC 1 provided in the piping path from the adsorption fixing hole 20a in FIG. 22 for adsorbing and fixing the FPC 1 to the negative pressure generator (not shown). 76c is a PCB adsorption sensor provided on the anvil 20 for confirming the adsorption of the PCB 3 provided in the piping path from the adsorption fixing hole (not shown) for adsorbing and fixing the PCB 3 to the negative pressure generator (not shown). is there. A position control device 77 controls the moving speed and position of the θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25.
 以下、図1と図22を用いて、本実施例の工程を説明する。まず、PCB3のPCB電極4を上に向けてアンビル20上に供給する。制御装置70からの制御によりPCB3を、PCB固定用吸着穴20aを負圧にして、アンビル20に吸着固定する。FPC1を、FPC保持・供給手段50にて、FPC電極2を下に向けてFPC1とPCB3の電極同士を重ねる。制御装置70からの制御によりFPC1を、FPC固定用吸着穴20bを負圧にして、アンビル20に吸着固定し、FPC保持・供給手段50の負圧を解除して、FPC1をアンビル20に供給する。 Hereinafter, the steps of this embodiment will be described with reference to FIGS. First, the PCB electrode 4 of the PCB 3 is supplied onto the anvil 20 with the PCB electrode 4 facing upward. Under the control of the control device 70, the PCB 3 is suction-fixed to the anvil 20 with the PCB fixing suction hole 20a set to a negative pressure. The FPC 1 is placed on the FPC 1 and the PCB 3 with the FPC electrode 2 facing downward by the FPC holding / supply means 50. Under the control of the control device 70, the FPC 1 is suctioned and fixed to the anvil 20 by making the FPC fixing suction hole 20 b negative pressure, the negative pressure of the FPC holding / supply means 50 is released, and the FPC 1 is supplied to the anvil 20. .
 FPC吸着センサ76bとPCB吸着センサ76cとが吸着を確認すると、制御装置70からの位置制御装置77への指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させる。つまり、アンビル20とそのアンビル20に吸着固定されているFPC1とPCB3を超音波ホーン10cの直下に(以下接合位置と称す)移動させる。 When the FPC suction sensor 76b and the PCB suction sensor 76c confirm the suction, the θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77. That is, the anvil 20 and the FPC 1 and the PCB 3 that are adsorbed and fixed to the anvil 20 are moved directly below the ultrasonic horn 10c (hereinafter referred to as a joining position).
 位置制御装置77の到達完了信号により、制御装置70は超音波ホーン10cを、荷重手段13を用いて、上下移動用ガイド(図無し)に沿って下降させて、FPC1とPCB3を超音波ホーン10とアンビル20の間に挟んで、接合面に荷重をかけて加圧する。荷重センサ22により所定の到達荷重と比較し、所定の荷重を保持するように荷重制御装置72を制御する。 In response to the arrival completion signal from the position control device 77, the control device 70 lowers the ultrasonic horn 10c along the vertical movement guide (not shown) using the load means 13, and moves the FPC 1 and PCB 3 to the ultrasonic horn 10. Between the anvil 20 and the anvil 20 to apply pressure to the joint surface. The load sensor 22 compares the load with a predetermined load and controls the load control device 72 so as to hold the predetermined load.
 加圧と加熱を所定時間行ったあと、制御装置70の指令により、超音波発信器71が発振し、超音波振動子12により超音波ホーン10cを加振する。この超音波ホーン10cの発振により、樹脂が排出されたFPC電極2とPCB電極4は固相金属接合する。加振を所定時間行ったあと、制御装置70の指令により超音波発信器71の発振が停止し、超音波振動子12による超音波ホーン10cの加振が停止する。加振を停止後制御装置70の指令により、荷重手段13を用いて、上下移動用ガイド(図無し)に沿って超音波ホーン10cを上昇させる。 After pressurization and heating for a predetermined time, the ultrasonic transmitter 71 oscillates according to a command from the control device 70, and the ultrasonic horn 10 c is vibrated by the ultrasonic vibrator 12. Due to the oscillation of the ultrasonic horn 10c, the FPC electrode 2 and the PCB electrode 4 from which the resin has been discharged are solid-phase metal bonded. After the vibration is performed for a predetermined time, the oscillation of the ultrasonic transmitter 71 is stopped by a command from the control device 70, and the vibration of the ultrasonic horn 10c by the ultrasonic vibrator 12 is stopped. After the vibration is stopped, the ultrasonic horn 10c is raised along the vertical movement guide (not shown) using the load means 13 in accordance with a command from the control device 70.
 制御装置70からの位置制御装置77への指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているFPC1とこれと接合したPCB3を元の位置(以下供給・取り出し位置と称す)に移動させる。位置制御装置77からの移動完了信号により、制御装置70はアンビル20の吸着を停止して、FPC1とこれと接合したPCB3の固定を解除することで、固相金属接合工程は完了となる。 The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this PCB 3 joined to is moved to the original position (hereinafter referred to as supply / removal position). In response to the movement completion signal from the position control device 77, the control device 70 stops the adsorption of the anvil 20, and releases the fixation of the FPC 1 and the PCB 3 bonded thereto, thereby completing the solid-phase metal bonding step.
 本実施例は請求項1や請求項2を実施するに当たり、本発明の核となる固相金属接合の接合部分の応力を大きくしながら、PCBへの荷重を小さくするために、1回の接合面積を減らし、接合位置を相対移動させて、電極上の複数行1条、もしくは1行複数条、もしくは複数行複数条の位置で複数回実施する請求項4と請求項5の実施例である。なお、樹脂接着を併せて行う場合の実施例は、実施例5・実施例6・実施例7・実施例8・実施例9・実施例10にて、FPCとPCBを位置合わせする場合の実施例は実施例12・実施例13・実施例14にて詳細に説明する。 In the present embodiment, in order to reduce the load on the PCB while increasing the stress at the joint portion of the solid-phase metal joint that is the core of the present invention, The embodiment of claim 4 and claim 5, wherein the area is reduced and the joining position is moved relative to each other, and a plurality of rows on the electrode, or a plurality of rows, or a plurality of rows are implemented a plurality of times. . In addition, the example in the case of performing resin bonding together is the implementation in the case of aligning FPC and PCB in Example 5, Example 6, Example 7, Example 8, Example 9, and Example 10. Examples will be described in detail in Example 12, Example 13, and Example 14.
 以下に各部分を、図1と図4(e)と図9と図22を用いて詳細に説明する。図22は図1の一部を抜粋した、本発明の実施例を示す斜視図である。この図22において、20はPCB3を吸着固定する手段を持ったアンビル、20aはアンビル20に設けたPCB固定用吸着穴、20bはアンビル20に設けたFPC固定用吸着穴、21はアンビルを加熱するアンビルヒータ、1はFPC、1aはこのFPC1の絶縁材料でできた基材であるFPC基材、2はFPC基材1aに上に形成された電気回路であるFPC電極、6aはFPC基材1aに設けられた2対のFPCアライメント穴であり、3がPCB、3aはこのPCB3の絶縁材料でできた基材であるPCB基材、4はPCB基材3a上に形成された電気回路であるPCB電極、7aはPCB基材3aに設けられた2対のPCBアライメントマークである。 Hereinafter, each part will be described in detail with reference to FIG. 1, FIG. 4 (e), FIG. 9, and FIG. FIG. 22 is a perspective view showing an embodiment of the present invention, which is a part of FIG. In FIG. 22, 20 is an anvil having means for adsorbing and fixing PCB3, 20a is an adsorbing hole for fixing PCB on the anvil 20, 20b is an adsorbing hole for fixing FPC on the anvil 20, and 21 is for heating the anvil. Anvil heater, 1 is an FPC, 1a is an FPC base that is a base made of an insulating material of the FPC 1, 2 is an FPC electrode that is an electric circuit formed on the FPC base 1a, and 6a is an FPC base 1a Are two pairs of FPC alignment holes, 3 is a PCB, 3a is a PCB substrate made of an insulating material of this PCB3, and 4 is an electric circuit formed on the PCB substrate 3a. PCB electrodes 7a are two pairs of PCB alignment marks provided on the PCB substrate 3a.
 図4(e)は凸型ブレード形状1列3条超音波ホーンの形状と荷重方向と振動方向を示す、下面より反転して見た斜視図である。10fは本発明のうち、凸型ブレード形状1列3条超音波ホーンである。ただし、列数はPCBの許容応力に依存するので、実際は3ではなく1~数十、場合によっては数百となる。また、条数も接続する配線本数に依存するので、実際は3ではなく1~数十、場合によっては数百となる。 FIG. 4 (e) is a perspective view showing the shape, load direction, and vibration direction of a convex blade-shaped single-row, three-row ultrasonic horn as seen from the bottom. 10f is a convex blade shape 1 row 3 row ultrasonic horn among this invention. However, since the number of rows depends on the allowable stress of the PCB, it is actually 1 to several tens, not several, and several hundreds in some cases. Further, since the number of stripes also depends on the number of wirings to be connected, it is actually 1 to several tens instead of three, and sometimes several hundreds.
 図9(a)は凸型ブレード形状超音波ホーンの相対移動を行う前の、接合している位置を示す正面図で、10fは凸型ブレード形状1列3条超音波ホーン、11は凸型ブレード形状1列3条超音波ホーン10fを加熱する超音波ホーンヒータ、12は凸型ブレード形状1列3条超音波ホーン10fを加振する振動子である。図9(b)は凸型ブレード形状超音波ホーンの相対移動を行い、図9(a)のつぎの接合している位置を示す正面図である、図10(a)は凸型ブレード形状超音波ホーンの相対移動を行う前の、接合している位置を示す側面図である。図10(b)は凸型ブレード形状超音波ホーンの相対移動を行い、図10(a)のつぎの接合している位置を示す側面図である。 FIG. 9A is a front view showing the joining position before the relative movement of the convex blade-shaped ultrasonic horn, 10f is a convex blade-shaped one-row, three-row ultrasonic horn, and 11 is a convex shape. An ultrasonic horn heater that heats the blade-shaped single-row, three-row ultrasonic horn 10f, and 12 is a vibrator that vibrates the convex blade-shaped single-row, three-row ultrasonic horn 10f. FIG. 9B is a front view showing a position where the convex blade-shaped ultrasonic horn is relatively moved, and the next joining position in FIG. 9A. FIG. It is a side view which shows the position which has joined before performing relative movement of a sound wave horn. FIG. 10B is a side view showing a position where the convex blade-shaped ultrasonic horn is relatively moved and next to FIG. 10A.
 図1は装置全体の構成を示す斜視図である。図1において、10は上下移動用ガイド(図無し)に沿って上下する超音波ホーンであり、13は超音波ホーン10の不動点とねじなどで固着している上下移動用ガイド(図無し)と、これにねじなどで固着している荷重手段であり、11は超音波ホーン10にねじなどで固着している超音波ホーンヒータ、12は超音波ホーン10にねじなどで固着している超音波振動子である。 FIG. 1 is a perspective view showing the configuration of the entire apparatus. In FIG. 1, 10 is an ultrasonic horn that moves up and down along a vertical movement guide (not shown), and 13 is a vertical movement guide (not shown) that is fixed to the fixed point of the ultrasonic horn 10 with a screw or the like. And 11 is an ultrasonic horn heater fixed to the ultrasonic horn 10 with a screw or the like, and 12 is an ultrasonic wave fixed to the ultrasonic horn 10 with a screw or the like. It is a vibrator.
 25は本体(図無し)にねじなどで固着しているY軸ステージ、24はこのY軸ステージにねじなどで固着されているX軸ステージ、23はこのX軸ステージにねじで固着されているθ軸ステージ、22はこのθ軸ステージにねじなどで固着されている荷重センサ、20はこの荷重センサ20にねじなどで固着されているアンビルである。21はこのアンビルにねじなどで固着しているアンビルヒータである。 25 is a Y-axis stage fixed to the main body (not shown) with a screw, 24 is an X-axis stage fixed to the Y-axis stage with a screw, and 23 is fixed to the X-axis stage with a screw. A θ-axis stage 22 is a load sensor fixed to the θ-axis stage with a screw or the like, and 20 is an anvil fixed to the load sensor 20 with a screw or the like. An anvil heater 21 is fixed to the anvil with a screw or the like.
 70は制御装置であり、71は超音波振動子12により超音波ホーン10cを加振する超音波発信器、72は荷重センサ22により所定の到達荷重と比較し、所定の荷重を保持するように荷重手段13を制御する加重制御装置、
 73aは超音波ホーンヒータ11で加熱される超音波ホーン10の温度を超音波ホーンにねじなどで固着している熱電対などの測温体(図無し)を用いてフィードバック制御する超音波ホーン温度調整装置、73bはアンビルヒータ21で加熱されるアンビル20の温度をアンビルにねじなどで固着している熱電対などの測温体(図無し)を用いてフィードバック制御するアンビル温度調整装置である。
70 is a control device, 71 is an ultrasonic transmitter that vibrates the ultrasonic horn 10c by the ultrasonic vibrator 12, 72 is compared with a predetermined ultimate load by the load sensor 22, and holds a predetermined load. A weight control device for controlling the load means 13,
73a is an ultrasonic horn temperature adjustment in which the temperature of the ultrasonic horn 10 heated by the ultrasonic horn heater 11 is feedback-controlled using a thermometer (not shown) such as a thermocouple fixed to the ultrasonic horn with a screw or the like. A device 73b is an anvil temperature adjusting device that feedback-controls the temperature of the anvil 20 heated by the anvil heater 21 using a temperature measuring body (not shown) such as a thermocouple fixed to the anvil with a screw or the like.
 76bはアンビル20に設けられた、FPC1を吸着固定する図22の吸着固定穴20aから、負圧発生装置(図無し)までの配管経路に設けられた、FPC1の吸着を確認するFPC吸着センサ、76cはアンビル20に設けられた、PCB3を吸着固定するPCB吸着固定穴20aから、負圧発生装置(図無し)までの配管経路に設けられた、PCBの吸着を確認するPCB吸着センサである。77はθ軸ステージ23とX軸ステージ24とY軸ステージ25の移動速度と位置を制御する位置制御装置である。 76b is an FPC adsorption sensor provided in the anvil 20 for confirming the adsorption of the FPC 1 provided in the piping path from the adsorption fixing hole 20a in FIG. 22 for adsorbing and fixing the FPC 1 to the negative pressure generator (not shown). Reference numeral 76c denotes a PCB adsorption sensor provided in the anvil 20 for confirming the adsorption of the PCB provided in the piping path from the PCB adsorption fixing hole 20a for adsorbing and fixing the PCB 3 to the negative pressure generator (not shown). A position control device 77 controls the moving speed and position of the θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25.
 以下、図1と図9と図10と図22を用いて、本実施例の工程を説明する。まず、PCB3のPCB電極4を上に向けてアンビル20上に供給する。制御装置70からの制御によりPCB3を、PCB固定用吸着穴20aを負圧にして、アンビル20に吸着固定する。FPC1を、FPC電極2を下に向けてFPC1とPCB3の電極同士を重ねる。制御装置70からの制御によりFPC1を、FPC固定用吸着穴20bを負圧にして、アンビル20に吸着固定する。 Hereinafter, the steps of the present embodiment will be described with reference to FIGS. 1, 9, 10, and 22. First, the PCB electrode 4 of the PCB 3 is supplied onto the anvil 20 with the PCB electrode 4 facing upward. Under the control of the control device 70, the PCB 3 is suction-fixed to the anvil 20 with the PCB fixing suction hole 20a set to a negative pressure. The FPC 1 and the PCB 3 are overlapped with the FPC electrode 2 facing downward. Under the control of the control device 70, the FPC 1 is sucked and fixed to the anvil 20 with the FPC fixing suction hole 20b set to a negative pressure.
 FPC吸着センサ76bとPCB吸着センサ76cとが吸着を確認すると、制御装置70からの位置制御装置77への指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているFPC1とPCB3を超音波ホーン10cの直下に移動させる。 When the FPC suction sensor 76b and the PCB suction sensor 76c confirm the suction, the θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved by the command from the control device 70 to the position control device 77, that is, The anvil 20 and the FPC 1 and PCB 3 adsorbed and fixed to the anvil 20 are moved directly below the ultrasonic horn 10c.
 位置制御装置77の到達完了信号により、制御装置70は超音波ホーン10cを、荷重手段13を用いて、上下移動用ガイド(図無し)に沿って下降させて、FPC1とPCB3を超音波ホーン10とアンビル20の間に挟んで、接合面に荷重をかけて加圧する。荷重センサ22により所定の到達荷重と比較し、所定の荷重を保持するように荷重制御装置72を制御する。なお、図9(a)はこの状態を示す正面図であり、図10(a)はこの状態を示す側面図である。 In response to the arrival completion signal from the position control device 77, the control device 70 lowers the ultrasonic horn 10c along the vertical movement guide (not shown) using the load means 13, and moves the FPC 1 and PCB 3 to the ultrasonic horn 10. Between the anvil 20 and the anvil 20 to apply pressure to the joint surface. The load sensor 22 compares the load with a predetermined load and controls the load control device 72 so as to hold the predetermined load. FIG. 9A is a front view showing this state, and FIG. 10A is a side view showing this state.
 加圧と加熱を所定時間行ったあと、制御装置70の指令により、超音波発信器71が発振し、超音波振動子12により超音波ホーン10cを加振する。この超音波ホーン10cの発振により、樹脂が排出されたFPC電極2とPCB電極4は固相金属接合する。加振を所定時間行ったあと、制御装置70の指令により超音波発信器71の発振が停止し、超音波振動子12による超音波ホーン10cの加振が停止する。加振を停止後制御装置70の指令により、荷重手段13を用いて、上下移動用ガイド(図無し)に沿って超音波ホーン10cを上昇させる。 After pressurization and heating for a predetermined time, the ultrasonic transmitter 71 oscillates according to a command from the control device 70, and the ultrasonic horn 10 c is vibrated by the ultrasonic vibrator 12. Due to the oscillation of the ultrasonic horn 10c, the FPC electrode 2 and the PCB electrode 4 from which the resin has been discharged are solid-phase metal bonded. After the vibration is performed for a predetermined time, the oscillation of the ultrasonic transmitter 71 is stopped by a command from the control device 70, and the vibration of the ultrasonic horn 10c by the ultrasonic vibrator 12 is stopped. After the vibration is stopped, the ultrasonic horn 10c is raised along the vertical movement guide (not shown) using the load means 13 in accordance with a command from the control device 70.
 制御装置70からの位置制御装置77への指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているFPC1とこれと接合したPCB3をY方向の次の接合位置に移動させる。なお、図9(a)はこの状態を示す正面図であり、図10(b)はこの状態を示す側面図である。
 上記の、加圧と加熱から加振までをおこない、そのあと超音波ホーン10cを上昇させる。
The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this Is moved to the next bonding position in the Y direction. FIG. 9A is a front view showing this state, and FIG. 10B is a side view showing this state.
The above pressurization and heating to vibration are performed, and then the ultrasonic horn 10c is raised.
 制御装置70からの位置制御装置77への指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているFPC1とこれと接合したPCB3をX方向の次の接合位置に移動させる。なお、図9(b)はこの状態を示す正面図であり、図10(a)はこの状態を示す側面図である。 The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this PCB3 joined to is moved to the next joining position in the X direction. FIG. 9B is a front view showing this state, and FIG. 10A is a side view showing this state.
 上記の、加圧と加熱から加振までをおこない、そのあと超音波ホーン10cを上昇させる。制御装置70からの位置制御装置77への指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているFPC1とこれと接合したPCB3を-Y方向の次の接合位置に移動させる。なお図9(b)はこの状態を示す正面図であり、図10(b)はこの状態を示す側面図である。以上の相対移動を所定回数繰り返し、最後の接合位置に到達したら、上記の、加圧と加熱から加振までをおこない、そのあと超音波ホーン10cを上昇させる。 The above-described pressurization and heating to vibration are performed, and then the ultrasonic horn 10c is raised. The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this Is moved to the next bonding position in the -Y direction. FIG. 9B is a front view showing this state, and FIG. 10B is a side view showing this state. The above relative movement is repeated a predetermined number of times, and when the final joining position is reached, the above pressurization and heating to vibration are performed, and then the ultrasonic horn 10c is raised.
 制御装置70からの位置制御装置77への指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているFPC1とこれと接合したPCB3を元の位置に移動させる。位置制御装置77からの移動完了信号により、制御装置70はアンビル20上の吸着を停止して、FPC1とこれと接合したPCB3の固定を解除することで、固相金属接合工程は完了となる。 The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this And move the PCB 3 joined to the original position. In response to the movement completion signal from the position control device 77, the control device 70 stops the adsorption on the anvil 20, and releases the fixation of the FPC 1 and the PCB 3 bonded thereto, thereby completing the solid-phase metal bonding step.
 配線本数が3本、また、PCBの最大許容力が3列分だと仮定して生産性、PCBの受ける荷重、超音波ホーン10の製造コストを下記に比較した。生産性は凸型ブレード形状3列超音波ホーン10cと凸型ブレード形状3列3条超音波ホーン10gが一番高い。なお、まとめると、以下の順番となる。 Assuming that the number of wirings is 3 and the maximum allowable force of the PCB is 3 rows, the productivity, the load received by the PCB, and the manufacturing cost of the ultrasonic horn 10 are compared as follows. The productivity is highest for the convex blade shape three-row ultrasonic horn 10c and the convex blade shape three-row ultrasonic horn 10g. In summary, the order is as follows.
 凸型ブレード形状3列超音波ホーン10c=凸型ブレード形状3列3条超音波ホーン10g>凸型ブレード形状1列超音波ホーン10b=凸型ブレード形状3列1条超音波ホーン10e=凸型ブレード形状1列3条超音波ホーン10f>凸型ブレード形状1列1条超音波ホーン10d
 また、PCBの受ける応力を比較すると、凸型ブレード形状3列超音波ホーン10c>が一番大きい。なお、まとめると、以下の順番となる。
Convex blade shape 3-row ultrasonic horn 10c = Convex blade shape 3-row ultrasonic horn 10g> Convex blade shape 1-row ultrasonic horn 10b = Convex blade shape 3-row ultrasonic horn 10e = Convex shape Blade shape 1 row 1 row ultrasonic horn 10f> Convex blade shape 1 row 1 row ultrasonic horn 10d
Further, when the stress received by the PCB is compared, the convex blade shape three-row ultrasonic horn 10c> is the largest. In summary, the order is as follows.
 凸型ブレード形状3列超音波ホーン10c>凸型ブレード形状3列3条超音波ホーン10g>凸型ブレード形状1列超音波ホーン10b>凸型ブレード形状3列1条超音波ホーン10e=凸型ブレード形状1列3条超音波ホーン10f>凸型ブレード形状1列1条超音波ホーン10d
 また、さらに、超音波ホーン10の製造コストを比較すると、凸型ブレード形状1列超音波ホーン10bが一番小さい。なお、まとめると、以下の順番となる。
Convex blade shape 3 row ultrasonic horn 10c> Convex blade shape 3 row 3 ultrasonic horn 10g> Convex blade shape 1 row ultrasonic horn 10b> Convex blade shape 3 row 1 ultrasonic horn 10e = convex type Blade shape 1 row 1 row ultrasonic horn 10f> Convex blade shape 1 row 1 row ultrasonic horn 10d
Furthermore, when the manufacturing cost of the ultrasonic horn 10 is compared, the convex blade shape single-row ultrasonic horn 10b is the smallest. In summary, the order is as follows.
 凸型ブレード形状1列超音波ホーン10b>凸型ブレード形状1列1条超音波ホーン10d>凸型ブレード形状3列超音波ホーン10c>凸型ブレード形状3列1条超音波ホーン10e=凸型ブレード形状1列3条超音波ホーン10f>凸型ブレード形状3列3条超音波ホーン10g
 上記の通り、列数と条数の組み合わせには一意の法則がないばかりか、実際の条数は、配線本数に依存するので、実際は3ではなく1~数十、場合により数百となり、また、列数もPCBの許容応力に依存するので、実際は3ではなく1~数十、場合によっては数百となる。よって、列数と条数は一意に決定できないので、上記条件の中で都度決定することとする。
Convex blade shape 1 row ultrasonic horn 10b> Convex blade shape 1 row 1 ultrasonic horn 10d> Convex blade shape 3 row ultrasonic horn 10c> Convex blade shape 3 row 1 ultrasonic horn 10e = convex type Blade shape 1 row 3 row ultrasonic horn 10f> Convex blade shape 3 row 3 row ultrasonic horn 10g
As described above, there is no unique rule for the combination of the number of columns and the number of lines, and the actual number of lines depends on the number of wirings, so it is actually 1 to several tens instead of 3, and sometimes several hundreds. Since the number of columns also depends on the allowable stress of the PCB, it is actually 1 to several tens instead of three, and sometimes several hundreds. Therefore, since the number of columns and the number of strips cannot be determined uniquely, they are determined each time in the above conditions.
 本実施例は、請求項1や請求項2や請求項4を実施するに当たり、樹脂をFPC1に、接合面の全面に一定の厚みで事前に配置し、FPC1とPCB3の電極を重ねてから所定の圧力で接合面に荷重をかけることにより、樹脂が加熱され、接合面から樹脂を排出し、加振することにより樹脂を排出した接合面の電極の固相金属接合をおこない、さらに、加熱された樹脂を電極間に溶融流動させ、その結果、隙間を充填させてFPC1とPCB3を接着する。なお、樹脂を接合前にFPC1とPCBの間に配置して接着・接合するこの方法は公知の方法である。 In the present embodiment, in carrying out claims 1, 2, and 4, the resin is preliminarily disposed on the entire surface of the joining surface with a certain thickness on the FPC 1, and the electrodes of the FPC 1 and the PCB 3 are overlapped. The resin is heated by applying a load to the bonding surface with the pressure of, the resin is discharged from the bonding surface, and the electrode of the bonding surface from which the resin has been discharged by vibrating is subjected to solid-phase metal bonding, and further heated. The molten resin is melt-flowed between the electrodes, and as a result, the gap is filled and the FPC 1 and the PCB 3 are bonded. This method of placing the resin between the FPC 1 and the PCB before bonding and bonding and bonding is a known method.
 以下に各部分を図1と図4(b)と図11を用いて詳細に説明する。まず、図1は装置全体の構成を示す斜視図である。図1において、10は上下移動用ガイド(図無し)に沿って上下する超音波ホーンであり、13は超音波ホーン10の不動点とねじなどで固着している上下移動用ガイド(図無し)と、これにねじなどで固着している荷重手段であり、11は超音波ホーン10にねじなどで固着している超音波ホーンヒータ、12は超音波ホーン10にねじなどで固着している超音波振動子である。 Hereinafter, each part will be described in detail with reference to FIG. 1, FIG. 4 (b), and FIG. First, FIG. 1 is a perspective view showing the configuration of the entire apparatus. In FIG. 1, 10 is an ultrasonic horn that moves up and down along a vertical movement guide (not shown), and 13 is a vertical movement guide (not shown) that is fixed to the fixed point of the ultrasonic horn 10 with a screw or the like. And 11 is an ultrasonic horn heater fixed to the ultrasonic horn 10 with a screw or the like, and 12 is an ultrasonic wave fixed to the ultrasonic horn 10 with a screw or the like. It is a vibrator.
 25は本体(図無し)にねじなどで固着しているY軸ステージ、24はこのY軸ステージにねじなどで固着されているX軸ステージ、23はこのX軸ステージにねじで固着されているθ軸ステージ、22はこのθ軸ステージにねじなどで固着されている荷重センサ、20はこの荷重センサ20にねじなどで固着されているアンビルであり、77はθ軸ステージ23とX軸ステージ24とY軸ステージ25の移動速度と位置を制御する位置制御装置である。 25 is a Y-axis stage fixed to the main body (not shown) with a screw, 24 is an X-axis stage fixed to the Y-axis stage with a screw, and 23 is fixed to the X-axis stage with a screw. A θ-axis stage, 22 is a load sensor fixed to the θ-axis stage with a screw or the like, 20 is an anvil fixed to the load sensor 20 with a screw or the like, and 77 is a θ-axis stage 23 and an X-axis stage 24. And a position control device for controlling the moving speed and position of the Y-axis stage 25.
 つぎに、図4(b)は凸型ブレード形状3列超音波ホーンの形状と荷重方向と振動方向を示す、下面より反転して見た斜視図であり、10cは凸型ブレード形状3列超音波ホーンである。 Next, FIG. 4 (b) is a perspective view showing the shape, load direction, and vibration direction of the convex blade-shaped three-row ultrasonic horn, as seen from the bottom, and 10c is a convex blade-shaped three-row supersonic horn. It is a sonic horn.
 さらに、図11(a)は本実施例のPCBへ樹脂を全面に事前に配置し接着・接合する前を示す正面図であり、図11(b)は接着・接合の途中を示す正面図であり、図11(c)は接着・接合したあとを示す正面図である。 Further, FIG. 11A is a front view showing a state before resin is preliminarily disposed on the entire surface of the PCB of this embodiment and bonded and bonded, and FIG. 11B is a front view showing the middle of bonding and bonding. FIG. 11 (c) is a front view showing the state after bonding and joining.
 図11において1aはFPC基材、2はFPC基材1a上にあらかじめ形成されたFPC電極、3aはPCB基材、4はPCB電極上にあらかじめ形成されたPCB電極、5はFPC1とPCB3とを接着する樹脂である。 In FIG. 11, 1a is an FPC substrate, 2 is an FPC electrode formed in advance on the FPC substrate 1a, 3a is a PCB substrate, 4 is a PCB electrode formed in advance on the PCB electrode, and 5 is an FPC1 and PCB3. A resin to be bonded.
 以下、図1と図4(b)と図11と図22を用いて、本実施例の工程を説明する。まず、樹脂5を接合前にPCB3の接合面の全面に一定の厚みで事前に配置し、つぎに、PCB3のPCB電極4を上に向けてアンビル20上に供給する。制御装置70からの制御によりPCB3を、PCB固定用吸着穴20aを負圧にして、アンビル20に吸着固定する。アンビル20に吸着固定する。さらに、FPC1を、FPC電極2を下に向けてFPC1とPCB3の電極同士を重ねる。制御装置70からの制御によりFPC1を、FPC固定用吸着穴20bを負圧にして、アンビル20に吸着固定する。 Hereinafter, the steps of the present embodiment will be described with reference to FIGS. 1, 4 (b), 11 and 22. First, the resin 5 is placed in advance on the entire bonding surface of the PCB 3 with a certain thickness before bonding, and then the PCB electrode 4 of the PCB 3 is supplied onto the anvil 20 with the PCB electrode 4 facing upward. Under the control of the control device 70, the PCB 3 is suction-fixed to the anvil 20 with the PCB fixing suction hole 20a set to a negative pressure. Adsorbed and fixed to the anvil 20. Further, the FPC 1 and the PCB 3 are overlapped with the FPC electrode 2 facing downward. Under the control of the control device 70, the FPC 1 is sucked and fixed to the anvil 20 with the FPC fixing suction hole 20b set to a negative pressure.
 制御装置70からの位置制御装置77への指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているFPC1とPCB3を超音波ホーン10cの直下に移動させる。これが図11(a)の状態であるが、図では樹脂はPCB3上にあらかじめ配置している状態を例示している。ただし、アンビル20は省いてある。また、FPC電極2と樹脂5は、実際には接触しているが、説明のために接触していない状態で示している。 The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved in accordance with commands from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 and PCB 3 that are attracted and fixed to the anvil 20. Is moved directly below the ultrasonic horn 10c. This is the state of FIG. 11A, but the figure illustrates the state in which the resin is arranged on the PCB 3 in advance. However, the anvil 20 is omitted. In addition, the FPC electrode 2 and the resin 5 are actually in contact with each other, but are not in contact with each other for explanation.
 位置制御装置77の到達完了信号により、制御装置70は超音波ホーン10cを、荷重手段13を用いて、上下移動用ガイド(図無し)に沿って下降させて、FPC1とPCB3を超音波ホーン10cとアンビル20の間に挟んで、接合面に荷重をかけて加圧する。荷重センサ22により所定の到達荷重と比較し、所定の荷重を保持するように荷重制御装置72を制御する。これが、図11(b)の状態である。 In response to the arrival completion signal from the position control device 77, the control device 70 lowers the ultrasonic horn 10c along the vertical movement guide (not shown) using the load means 13, and moves the FPC 1 and PCB 3 to the ultrasonic horn 10c. Between the anvil 20 and the anvil 20 to apply pressure to the joint surface. The load sensor 22 compares the load with a predetermined load and controls the load control device 72 so as to hold the predetermined load. This is the state of FIG.
 超音波ホーンヒータ11で加熱される超音波ホーン10cの伝熱と輻射熱により樹脂が溶融し、接合圧力によりFPC電極1とPCB電極4の間から樹脂が排出され、その排出された樹脂はFPC1とPCB3とFPC電極2とPCB電極4により形成される空隙を通りFPC1とPCB3の両端面より排出される。これが、図11(c)の状態である。 The resin is melted by heat transfer and radiant heat of the ultrasonic horn heater 11c heated by the ultrasonic horn heater 11, and the resin is discharged from between the FPC electrode 1 and the PCB electrode 4 by the bonding pressure. The discharged resins are FPC1 and PCB3. Through the gap formed by the FPC electrode 2 and the PCB electrode 4 and discharged from both end faces of the FPC 1 and the PCB 3. This is the state of FIG.
 加圧と加熱を所定時間行ったあと、制御装置70の指令により、超音波発信器71が発振し、超音波振動子12により超音波ホーン10cを加振する。この超音波ホーン10cの発振により、樹脂が排出されたFPC電極2とPCB電極4は固相金属接合する。加振を所定時間行ったあと、制御装置70の指令により超音波発信器71の発振が停止し、超音波振動子12による超音波ホーン10cの加振が停止する。加振を停止後制御装置70の指令により、荷重手段13を用いて、上下移動用ガイド(図無し)に沿って超音波ホーン10cを上昇させる。 After pressurization and heating for a predetermined time, the ultrasonic transmitter 71 oscillates according to a command from the control device 70, and the ultrasonic horn 10 c is vibrated by the ultrasonic vibrator 12. Due to the oscillation of the ultrasonic horn 10c, the FPC electrode 2 and the PCB electrode 4 from which the resin has been discharged are solid-phase metal bonded. After the vibration is performed for a predetermined time, the oscillation of the ultrasonic transmitter 71 is stopped by a command from the control device 70, and the vibration of the ultrasonic horn 10c by the ultrasonic vibrator 12 is stopped. After the vibration is stopped, the ultrasonic horn 10c is raised along the vertical movement guide (not shown) using the load means 13 in accordance with a command from the control device 70.
 制御装置70からの位置制御装置77への指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているFPC1とこれと接合したPCB3を元の位置に移動させる。位置制御装置77からの移動完了信号により、制御装置70はアンビル20の吸着を停止して、FPC1とこれと接合したPCB3の固定を解除することで、接着・接合工程は完了となる。 The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this And move the PCB 3 joined to the original position. In response to the movement completion signal from the position control device 77, the control device 70 stops the suction of the anvil 20, and releases the fixation of the FPC 1 and the PCB 3 joined thereto, thereby completing the bonding / joining process.
 なお、樹脂の配置方法は、あらかじめFPC1もしくはPCB3aへ、樹脂を印刷塗布しておく方法、もしくは、接合前にフィルム状樹脂を貼り付けておく方法、また、もしくは、接合直前に樹脂を吐出して塗布する方法などがある。 The resin is arranged in advance by printing and applying the resin to the FPC 1 or PCB 3a, or by attaching a film-like resin before joining, or by discharging the resin immediately before joining. There is a method of applying.
 また、上記実施例において、超音波ホーン10を下降させる方法と、逆にアンビル20を上昇させる方法は接合の効果において同じである。 In the above embodiment, the method of lowering the ultrasonic horn 10 and the method of raising the anvil 20 are the same in terms of the joining effect.
 本実施例は請求項1や請求項2や請求項4を実施するに当たり、樹脂をFPC1の接合面に、接合長さの1/2の長さで、かつ、接合部のFPC電極2とPCB電極4で形成される空隙を充填するのに十分な量で、接合長さの中央付近に事前に配置し、FPCと回路の電極を重ねてから所定の圧力で接合面に垂直な方向に荷重をかけながら加振・加熱させることにより、樹脂が配置されていなかった部分の電極の固相金属接合のタイミングと、樹脂が加熱され、電極間を溶融流動するタイミングに時間差を生じさせて、固相金属接合を阻害しないで接合・接着する請求項6の実施例である。 In the present embodiment, when the first, second and fourth aspects are carried out, the resin is applied to the joint surface of the FPC 1 at a length which is ½ of the joint length, and the FPC electrode 2 and the PCB at the joint portion. An amount sufficient to fill the gap formed by the electrode 4 is placed in advance near the center of the joining length, and the FPC and the circuit electrode are overlapped, and then a load is applied in a direction perpendicular to the joining surface with a predetermined pressure. By applying vibration and heating while applying pressure, there is a time difference between the solid-phase metal bonding timing of the electrode where the resin is not disposed and the timing at which the resin is heated and melted and flows between the electrodes. It is an Example of Claim 6 joined and adhere | attached, without inhibiting a phase metal joining.
 以下に各部分を図1と図4(b)と図12を用いて詳細に説明する。まず、図1は装置全体の構成を示す斜視図である。図1において、10は上下移動用ガイド(図無し)に沿って上下する超音波ホーンであり、13は超音波ホーン10の不動点とねじなどで固着している上下移動用ガイド(図無し)と、これにねじなどで固着している荷重手段であり、11は超音波ホーン10にねじなどで固着している超音波ホーンヒータ、12は超音波ホーン10にねじなどで固着している超音波振動子である。 Hereinafter, each part will be described in detail with reference to FIG. 1, FIG. 4 (b), and FIG. First, FIG. 1 is a perspective view showing the configuration of the entire apparatus. In FIG. 1, 10 is an ultrasonic horn that moves up and down along a vertical movement guide (not shown), and 13 is a vertical movement guide (not shown) that is fixed to the fixed point of the ultrasonic horn 10 with a screw or the like. And 11 is an ultrasonic horn heater fixed to the ultrasonic horn 10 with a screw or the like, and 12 is an ultrasonic wave fixed to the ultrasonic horn 10 with a screw or the like. It is a vibrator.
 25は本体(図無し)にねじなどで固着しているY軸ステージ、24はこのY軸ステージにねじなどで固着されているX軸ステージ、23はこのX軸ステージにねじで固着されているθ軸ステージ、22はこのθ軸ステージにねじなどで固着されている荷重センサ、20はこの荷重センサ20にねじなどで固着されているアンビルであり、77はθ軸ステージ23とX軸ステージ24とY軸ステージ25の移動速度と位置を制御する位置制御装置である。 25 is a Y-axis stage fixed to the main body (not shown) with a screw, 24 is an X-axis stage fixed to the Y-axis stage with a screw, and 23 is fixed to the X-axis stage with a screw. A θ-axis stage, 22 is a load sensor fixed to the θ-axis stage with a screw or the like, 20 is an anvil fixed to the load sensor 20 with a screw or the like, and 77 is a θ-axis stage 23 and an X-axis stage 24. And a position control device for controlling the moving speed and position of the Y-axis stage 25.
 つぎに、図4(b)は凸型ブレード形状3列超音波ホーンの形状と荷重方向と振動方向を示す、下面より反転して見た斜視図であり、10cは凸型ブレード形状3列超音波ホーンである。 Next, FIG. 4 (b) is a perspective view showing the shape, load direction, and vibration direction of the convex blade-shaped three-row ultrasonic horn, as seen from the bottom, and 10c is a convex blade-shaped three-row supersonic horn. It is a sonic horn.
 さらに、図12(a)は本実施例のPCBへ面積が半分程の樹脂を、接合部中央付近に配置した接着・接合する前を示す正面図であり、図12(b)は接着・接合の途中を示す正面図であり、図12(c)は接着・接合したあとを示す正面図である。図12において1aはFPC基材、2はFPC基材1a上にあらかじめ形成されたFPC電極、3aはPCB基材、4はPCB電極上にあらかじめ形成されたPCB電極、5はFPC1とPCB3とを接着する樹脂である。 Furthermore, FIG. 12A is a front view showing the state before bonding / bonding a resin having a half area to the PCB of this embodiment, which is arranged near the center of the bonding portion, and FIG. FIG. 12C is a front view showing the state after bonding and joining. In FIG. 12, 1a is an FPC substrate, 2 is an FPC electrode formed in advance on the FPC substrate 1a, 3a is a PCB substrate, 4 is a PCB electrode formed in advance on the PCB electrode, and 5 is an FPC1 and PCB3. A resin to be bonded.
 以下、図1と図4(b)と図12と図22を用いて、本実施例の工程を説明する。まず、接合長さの1/2程度の樹脂5をPCB3の接合面の接合部中央付近に事前に配置する。つぎに、PCB3のPCB電極4を上に向けてアンビル20上に供給する。制御装置70からの制御によりPCB3を、PCB固定用吸着穴20aを負圧にして、アンビル20に吸着固定する。さらに、FPC1を、FPC電極2を下に向けてFPC1とPCB3の電極同士を重ねる。制御装置70からの制御によりFPC1を、FPC固定用吸着穴20bを負圧にして、アンビル20に吸着固定する。 Hereinafter, the steps of the present embodiment will be described with reference to FIGS. 1, 4 (b), 12, and 22. First, the resin 5 having a length of about ½ of the joining length is arranged in advance near the center of the joint portion of the joint surface of the PCB 3. Next, the PCB electrode 4 of the PCB 3 is supplied onto the anvil 20 with the PCB electrode 4 facing upward. Under the control of the control device 70, the PCB 3 is suction-fixed to the anvil 20 with the PCB fixing suction hole 20a set to a negative pressure. Further, the FPC 1 and the PCB 3 are overlapped with the FPC electrode 2 facing downward. Under the control of the control device 70, the FPC 1 is sucked and fixed to the anvil 20 with the FPC fixing suction hole 20b set to a negative pressure.
 制御装置70からの位置制御装置77への指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているFPC1とPCB3を超音波ホーン10cの直下に移動させる。これが図12(a)の状態であるが、図では樹脂5はPCB3上にあらかじめ配置している状態を例示している。ただし、アンビル20は省いてある。また、FPC電極2と樹脂5は、実際には接触しているが、説明のために接触していない状態で示している。 The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved in accordance with commands from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 and PCB 3 that are attracted and fixed to the anvil 20. Is moved directly below the ultrasonic horn 10c. This is the state of FIG. 12A, but the figure illustrates the state in which the resin 5 is disposed on the PCB 3 in advance. However, the anvil 20 is omitted. In addition, the FPC electrode 2 and the resin 5 are actually in contact with each other, but are not in contact with each other for explanation.
 位置制御装置77の到達完了信号により、制御装置70は超音波ホーン10cを、荷重手段13を用いて、上下移動用ガイド(図無し)に沿って下降させて、FPC1とPCB3を超音波ホーン10cとアンビル20の間に挟んで、接合面に荷重をかけて加圧する。荷重センサ22により所定の到達荷重と比較し、所定の荷重を保持するように荷重制御装置72を制御する。これが、図12(b)の状態である。 In response to the arrival completion signal from the position control device 77, the control device 70 lowers the ultrasonic horn 10c along the vertical movement guide (not shown) using the load means 13, and moves the FPC 1 and PCB 3 to the ultrasonic horn 10c. Between the anvil 20 and the anvil 20 to apply pressure to the joint surface. The load sensor 22 compares the load with a predetermined load and controls the load control device 72 so as to hold the predetermined load. This is the state of FIG.
 超音波ホーンヒータ11で加熱される超音波ホーン10cの伝熱と輻射熱により樹脂が溶融し、接合圧力によりFPC電極1とPCB電極4の間から樹脂が排出され、その排出された樹脂はFPC1とPCB3とFPC電極2とPCB電極4により形成される空隙を通りFPC1とPCB3の両端面より排出される。これが、図12(c)の状態である。 The resin is melted by heat transfer and radiant heat of the ultrasonic horn heater 11c heated by the ultrasonic horn heater 11, and the resin is discharged from between the FPC electrode 1 and the PCB electrode 4 by the bonding pressure. The discharged resins are FPC1 and PCB3. Through the gap formed by the FPC electrode 2 and the PCB electrode 4 and discharged from both end faces of the FPC 1 and the PCB 3. This is the state of FIG.
 加圧と加熱を所定時間行ったあと、制御装置70の指令により、超音波発信器71が発振し、超音波振動子12により超音波ホーン10cを加振する。この超音波ホーン10cの発振により、樹脂が排出されたFPC電極2とPCB電極4は固相金属接合する。加振を所定時間行ったあと、制御装置70の指令により超音波発信器71の発振が停止し、超音波振動子12による超音波ホーン10cの加振が停止する。加振を停止後制御装置70の指令により、荷重手段13を用いて、上下移動用ガイド(図無し)に沿って超音波ホーン10cを上昇させる。 After pressurization and heating for a predetermined time, the ultrasonic transmitter 71 oscillates according to a command from the control device 70, and the ultrasonic horn 10 c is vibrated by the ultrasonic vibrator 12. Due to the oscillation of the ultrasonic horn 10c, the FPC electrode 2 and the PCB electrode 4 from which the resin has been discharged are solid-phase metal bonded. After the vibration is performed for a predetermined time, the oscillation of the ultrasonic transmitter 71 is stopped by a command from the control device 70, and the vibration of the ultrasonic horn 10c by the ultrasonic vibrator 12 is stopped. After the vibration is stopped, the ultrasonic horn 10c is raised along the vertical movement guide (not shown) using the load means 13 in accordance with a command from the control device 70.
 制御装置70からの位置制御装置77への指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているFPC1とこれと接合したPCB3を元の位置に移動させる。位置制御装置77からの移動完了信号により、制御装置70はアンビル20の吸着を停止して、FPC1とこれと接合したPCB3の固定を解除することで、接着・接合工程は完了となる。 The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this And move the PCB 3 joined to the original position. In response to the movement completion signal from the position control device 77, the control device 70 stops the suction of the anvil 20, and releases the fixation of the FPC 1 and the PCB 3 joined thereto, thereby completing the bonding / joining process.
 なお、樹脂の配置方法は、あらかじめFPC1もしくはPCB3aへ、樹脂を印刷塗布しておく方法、もしくは、接合前にフィルム状樹脂を貼り付けておく方法、また、もしくは、接合直前に樹脂を吐出して塗布する方法などがある。 The resin is arranged in advance by printing and applying the resin to the FPC 1 or PCB 3a, or by attaching a film-like resin before joining, or by discharging the resin immediately before joining. There is a method of applying.
 また、上記実施例において、超音波ホーン10を下降させる方法と、逆にアンビル20を上昇させる方法は接合の効果において同じである。 In the above embodiment, the method of lowering the ultrasonic horn 10 and the method of raising the anvil 20 are the same in terms of the joining effect.
 本発明において、一定の荷重を保持すれば、接合プロセスが進むにつれて、接合面積の増大に伴い応力が低下して、接合による変形は進まなくなることは上述したとおりである。したがって、荷重センサは超音波の発振開始のタイミングを制御しているだけなので、たとえばタイマーなどの時限装置と一定の荷重を保持できる荷重手段13を組み合わせれば、荷重センサ22は必須の条件ではない。 In the present invention, if a constant load is maintained, as the joining process proceeds, the stress decreases as the joining area increases, and the deformation due to joining does not proceed as described above. Therefore, since the load sensor only controls the timing of starting the oscillation of the ultrasonic wave, the load sensor 22 is not an indispensable condition if a timing device such as a timer is combined with the load means 13 capable of holding a constant load. .
 本実施例は請求項1や請求項2や請求項4を実施するに当たり、樹脂をFPC1の接合面に、接合長さの1/2の長さで、かつ、接合部のFPC電極2とPCB電極4で形成される空隙を充填するのに十分な量で、接合長さの中央付近に事前に配置し、FPCと回路の電極を重ねてから所定の圧力で接合面に垂直な方向に荷重をかけながら加振・加熱させることにより、樹脂が配置されていなかった部分の電極の固相金属接合のタイミングと、樹脂が加熱され、電極間を溶融流動するタイミングに時間差を生じさせて、固相金属接合を阻害しないで接合・接着する請求項6の上記とは別の実施例である。 In the present embodiment, when the first, second and fourth aspects are carried out, the resin is applied to the joint surface of the FPC 1 at a length which is ½ of the joint length, and the FPC electrode 2 and the PCB at the joint portion. An amount sufficient to fill the gap formed by the electrode 4 is placed in advance near the center of the joining length, and the FPC and the circuit electrode are overlapped, and then a load is applied in a direction perpendicular to the joining surface with a predetermined pressure. By applying vibration and heating while applying pressure, there is a time difference between the solid-phase metal bonding timing of the electrode where the resin is not disposed and the timing at which the resin is heated and melted and flows between the electrodes. This is an embodiment different from the above-described embodiment in which bonding and adhesion are performed without hindering phase metal bonding.
 以下に各部分を図1と図4(a)と図13を用いて詳細に説明する。まず、図1は装置全体の構成を示す斜視図である。図1において、10は上下移動用ガイド(図無し)に沿って上下する超音波ホーンであり、13は超音波ホーン10の不動点とねじなどで固着している上下移動用ガイド(図無し)と、これにねじなどで固着している荷重手段であり、11は超音波ホーン10にねじなどで固着している超音波ホーンヒータ、12は超音波ホーン10にねじなどで固着している超音波振動子である。 Hereinafter, each part will be described in detail with reference to FIG. 1, FIG. 4 (a), and FIG. First, FIG. 1 is a perspective view showing the configuration of the entire apparatus. In FIG. 1, 10 is an ultrasonic horn that moves up and down along a vertical movement guide (not shown), and 13 is a vertical movement guide (not shown) that is fixed to the fixed point of the ultrasonic horn 10 with a screw or the like. And 11 is an ultrasonic horn heater fixed to the ultrasonic horn 10 with a screw or the like, and 12 is an ultrasonic wave fixed to the ultrasonic horn 10 with a screw or the like. It is a vibrator.
 25は本体(図無し)にねじなどで固着しているY軸ステージ、24はこのY軸ステージにねじなどで固着されているX軸ステージ、23はこのX軸ステージにねじで固着されているθ軸ステージ、22はこのθ軸ステージにねじなどで固着されている荷重センサ、20はこの荷重センサ20にねじなどで固着されているアンビルであり、77はθ軸ステージ23とX軸ステージ24とY軸ステージ25の移動速度と位置を制御する位置制御装置である。 25 is a Y-axis stage fixed to the main body (not shown) with a screw, 24 is an X-axis stage fixed to the Y-axis stage with a screw, and 23 is fixed to the X-axis stage with a screw. A θ-axis stage, 22 is a load sensor fixed to the θ-axis stage with a screw or the like, 20 is an anvil fixed to the load sensor 20 with a screw or the like, and 77 is a θ-axis stage 23 and an X-axis stage 24. And a position control device for controlling the moving speed and position of the Y-axis stage 25.
 つぎに、図4(a)は凸型ブレード形状1列超音波ホーンの形状と荷重方向と振動方向を示す、下面より反転して見た斜視図であり、10bは凸型ブレード形状1列超音波ホーンである。 Next, FIG. 4A is a perspective view showing the shape, load direction, and vibration direction of the convex blade-shaped single-row ultrasonic horn as viewed from the bottom, and 10b is a convex blade-shaped single row. It is a sonic horn.
 図13(a)は本実施例のPCBへ面積が半分程の樹脂を、接合部中央付近に配置した、接合前を示す正面図であり、図13(b)は接合・接着の最初の段階を示す正面図であり、図13(c)は接合・接着の途中の段階を示す正面図であり、図13(d)は接合・接着の最後の段階を示す正面図である。図13において1aはFPC基材、2はFPC基材1a上にあらかじめ形成されたFPC電極、3aはPCB基材、4はPCB電極上にあらかじめ形成されたPCB電極、5はFPC1とPCB3とを接着する樹脂である。 FIG. 13A is a front view showing a state before joining, in which a resin having a half area is arranged in the vicinity of the center of the joint on the PCB of this embodiment, and FIG. 13B is a first stage of joining / bonding. FIG. 13C is a front view showing a stage in the middle of joining / bonding, and FIG. 13D is a front view showing the last stage of joining / bonding. In FIG. 13, 1a is an FPC substrate, 2 is an FPC electrode formed in advance on the FPC substrate 1a, 3a is a PCB substrate, 4 is a PCB electrode formed in advance on the PCB electrode, and 5 is an FPC1 and PCB3. A resin to be bonded.
 以下、図1と図4(a)と図13と図22を用いて、本実施例の工程を説明する。まず、樹脂5を接合前にPCB3の接合面の接合部中央付近に事前に配置する。つぎに、PCB3のPCB電極4を上に向けてアンビル20上に供給する。制御装置70からの制御によりPCB3を、PCB固定用吸着穴20aを負圧にして、アンビル20に吸着固定する。アンビル20に吸着固定する。さらに、FPC1を、FPC電極2を下に向けてFPC1とPCB3の電極同士を重ねる。制御装置70からの制御によりFPC1を、FPC固定用吸着穴20bを負圧にして、アンビル20に吸着固定する。 Hereinafter, the steps of this embodiment will be described with reference to FIGS. 1, 4A, 13 and 22. FIG. First, the resin 5 is arranged in advance near the center of the joint portion of the joint surface of the PCB 3 before joining. Next, the PCB electrode 4 of the PCB 3 is supplied onto the anvil 20 with the PCB electrode 4 facing upward. Under the control of the control device 70, the PCB 3 is suction-fixed to the anvil 20 with the PCB fixing suction hole 20a set to a negative pressure. Adsorbed and fixed to the anvil 20. Further, the FPC 1 and the PCB 3 are overlapped with the FPC electrode 2 facing downward. Under the control of the control device 70, the FPC 1 is sucked and fixed to the anvil 20 with the FPC fixing suction hole 20b set to a negative pressure.
 制御装置70からの位置制御装置77への指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているFPC1とPCB3を超音波ホーン10bの直下である、初回の接合位置に移動させる。これが図13(a)の状態であるが、図では樹脂はPCB3上にあらかじめ配置している状態を例示している。ただし、アンビル20は省いてある。また、FPC電極2と樹脂5は、実際には接触しているが、説明のために接触していない状態で示している。 The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved in accordance with commands from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 and PCB 3 that are attracted and fixed to the anvil 20. Is moved to the first joining position directly below the ultrasonic horn 10b. This is the state of FIG. 13A, but the figure illustrates the state where the resin is arranged on the PCB 3 in advance. However, the anvil 20 is omitted. In addition, the FPC electrode 2 and the resin 5 are actually in contact with each other, but are not in contact with each other for explanation.
 位置制御装置77の到達完了信号により、制御装置70は超音波ホーン10bを、荷重手段13を用いて、上下移動用ガイド(図無し)に沿って下降させて、FPC1とPCB3を超音波ホーン10bとアンビル20の間に挟んで、接合面に荷重をかけて加圧する。荷重センサ22により所定の到達荷重と比較し、所定の荷重を保持するように荷重制御装置72を制御する。加圧と加熱を所定時間行ったあと、制御装置70の指令により、超音波発信器71が発振し、超音波振動子12により超音波ホーン10bを加振する。この超音波ホーン10bの発振によりFPC電極2とPCB電極4は固相金属接合する。これが、図13(b)の状態である。 In response to the arrival completion signal from the position control device 77, the control device 70 lowers the ultrasonic horn 10b along the vertical movement guide (not shown) using the load means 13, and moves the FPC1 and PCB3 to the ultrasonic horn 10b. Between the anvil 20 and the anvil 20 to apply pressure to the joint surface. The load sensor 22 compares the load with a predetermined load and controls the load control device 72 so as to hold the predetermined load. After performing pressurization and heating for a predetermined time, the ultrasonic transmitter 71 oscillates according to a command from the control device 70, and the ultrasonic horn 10 b is vibrated by the ultrasonic vibrator 12. By the oscillation of the ultrasonic horn 10b, the FPC electrode 2 and the PCB electrode 4 are solid-phase metal bonded. This is the state of FIG.
 加振を所定時間行ったあと、制御装置70の指令により超音波発信器71の発振が停止し、超音波振動子12による超音波ホーン10bの加振が停止する。加振を停止後制御装置70の指令により、荷重手段13を用いて、上下移動用ガイド(図無し)に沿って超音波ホーン10bを上昇させて、初回の接合工程が完了する。 After performing the excitation for a predetermined time, the oscillation of the ultrasonic transmitter 71 is stopped by the instruction of the control device 70, and the excitation of the ultrasonic horn 10b by the ultrasonic vibrator 12 is stopped. The ultrasonic horn 10b is raised along the vertical movement guide (not shown) using the load means 13 according to the command of the control device 70 after the vibration is stopped, and the first joining process is completed.
 つぎに、FPC1とこれと接合したPCB3を、つぎの接合位置に移動させ、この移動が完了したら、上記と同じように超音波ホーン10bを下降させて、接合面に荷重をかけて加圧する。さらに、超音波ホーン10bを発振させる。この超音波ホーン10bの発振によりFPC電極2とPCB電極4は固相金属接合する。これが、図13(c)の状態である。 Next, the FPC 1 and the PCB 3 bonded thereto are moved to the next bonding position. When this movement is completed, the ultrasonic horn 10b is lowered in the same manner as described above, and a load is applied to the bonding surface to apply pressure. Further, the ultrasonic horn 10b is oscillated. By the oscillation of the ultrasonic horn 10b, the FPC electrode 2 and the PCB electrode 4 are solid-phase metal bonded. This is the state of FIG.
 加振を所定時間行い、超音波ホーン10bの加振が停止したあと、超音波ホーン10bを上昇させて、途中の接合工程が完了する。つぎに、FPC1とこれと接合したPCB3を、最後の接合位置に移動させる。この移動が完了したら、上記と同じように超音波ホーン10bを下降させて、接合面に荷重をかけて加圧する。超音波ホーンヒータ11で加熱される超音波ホーン10bの伝熱と輻射熱により樹脂が溶融し、接合圧力によりFPC電極1とPCB電極4の間から樹脂が排出され、その排出された樹脂はFPC1とPCB3とFPC電極2とPCB電極4により形成される空隙を通りFPC1とPCB3の間隙を充填する。これが、図13(d)の状態である。 The vibration is performed for a predetermined time, and after the vibration of the ultrasonic horn 10b is stopped, the ultrasonic horn 10b is raised, and the joining process in the middle is completed. Next, the FPC 1 and the PCB 3 bonded thereto are moved to the final bonding position. When this movement is completed, the ultrasonic horn 10b is lowered in the same manner as described above, and a pressure is applied to the joint surface while applying a load. The resin is melted by heat transfer and radiation heat of the ultrasonic horn 10b heated by the ultrasonic horn heater 11, and the resin is discharged from between the FPC electrode 1 and the PCB electrode 4 by the bonding pressure. The discharged resins are FPC1 and PCB3. And the gap between the FPC 1 and the PCB 3 is filled through the gap formed by the FPC electrode 2 and the PCB electrode 4. This is the state of FIG.
 加圧と加熱を所定時間行ったあと、超音波ホーン10bを加振する。この超音波ホーン10bの発振により、樹脂が排出されたFPC電極2とPCB電極4は固相金属接合する。加振を所定時間行ったあと、超音波ホーン10bを上昇させて、最後の接合工程が完了する。つぎに、FPC1とこれと接合したPCB3を、元の位置に移動させる。位置制御装置77からの移動完了信号により、制御装置70はアンビル20の吸着を停止して、FPC1とこれと接合したPCB3の固定を解除することで、接着・接合工程は完了となる。 After pressurizing and heating for a predetermined time, the ultrasonic horn 10b is vibrated. Due to the oscillation of the ultrasonic horn 10b, the FPC electrode 2 and the PCB electrode 4 from which the resin has been discharged are solid-phase metal bonded. After performing the vibration for a predetermined time, the ultrasonic horn 10b is raised, and the final joining process is completed. Next, the FPC 1 and the PCB 3 joined thereto are moved to their original positions. In response to the movement completion signal from the position control device 77, the control device 70 stops the suction of the anvil 20, and releases the fixation of the FPC 1 and the PCB 3 joined thereto, thereby completing the bonding / joining process.
 なお、樹脂の配置方法は、あらかじめFPC1もしくはPCB3aへ、樹脂を印刷塗布しておく方法、もしくは、接合前にフィルム状樹脂を貼り付けておく方法、また、もしくは、接合直前に樹脂を吐出して塗布する方法などがある。
 また、上記実施例において、超音波ホーン10を下降させる方法と、逆にアンビル20を上昇させる方法は接合の効果において同じである。
The resin is arranged in advance by printing and applying the resin to the FPC 1 or PCB 3a, or by attaching a film-like resin before joining, or by discharging the resin immediately before joining. There is a method of applying.
Moreover, in the said Example, the method of lowering the ultrasonic horn 10 and the method of raising the anvil 20 conversely are the same in the effect of joining.
 本発明において、一定の荷重を保持すれば、接合プロセスが進むにつれて、接合面積の増大に伴い応力が低下して、接合による変形は進まなくなることは上述したとおりである。したがって、荷重センサは超音波の発振開始のタイミングを制御しているだけなので、たとえばタイマーなどの時限装置と一定の荷重を保持できる荷重手段13を組み合わせれば、荷重センサ22は必須の条件ではない。 In the present invention, if a constant load is maintained, as the joining process proceeds, the stress decreases as the joining area increases, and the deformation due to joining does not proceed as described above. Therefore, since the load sensor only controls the timing of starting the oscillation of the ultrasonic wave, the load sensor 22 is not an indispensable condition if a timing device such as a timer is combined with the load means 13 capable of holding a constant load. .
 本実施例は請求項1や請求項2や請求項4を実施するに当たり、樹脂をFPC1の接合面に、接合長さの1/3の長さで、かつ、接合部のFPC電極2とPCB電極4で形成される空隙を充填するのに十分な量に、接合端面にフィレットを形成させる目的で増量した量で、接合部のPCB端面付近に事前に配置し、FPCと回路の電極を重ねてから所定の圧力で接合面に垂直な方向に荷重をかけながら加振・加熱させることにより、樹脂が配置されていなかった部分の電極の固相金属接合のタイミングと、樹脂が加熱され、電極間を溶融流動するタイミングに時間差を生じさせて、固相金属接合を阻害しないで接合・接着する請求項6の実施例である。 In the present embodiment, when the first, second, and fourth embodiments are carried out, the resin is applied to the joint surface of the FPC 1 with a length of 1/3 of the joint length, and the FPC electrode 2 and the PCB at the joint portion. Arrange the FPC and the circuit electrodes in advance in the vicinity of the PCB end face of the joint in an amount increased to fill the gap formed by the electrode 4 and in an amount increased for the purpose of forming a fillet on the joint end face. Then, by applying vibration and heating while applying a load in a direction perpendicular to the bonding surface at a predetermined pressure, the timing of solid-phase metal bonding of the electrode where the resin was not disposed, and the resin is heated, The embodiment according to claim 6, wherein a time difference is generated in the timing of melting and flowing between them, and bonding and adhesion are performed without hindering solid-phase metal bonding.
 以下に各部分を図1と図4(b)と図14を用いて詳細に説明する。まず、図1は装置全体の構成を示す斜視図である。図1において、10は上下移動用ガイド(図無し)に沿って上下する超音波ホーンであり、13は超音波ホーン10の不動点とねじなどで固着している上下移動用ガイド(図無し)と、これにねじなどで固着している荷重手段であり、11は超音波ホーン10にねじなどで固着している超音波ホーンヒータ、12は超音波ホーン10にねじなどで固着している超音波振動子である。 Hereinafter, each part will be described in detail with reference to FIG. 1, FIG. 4 (b), and FIG. First, FIG. 1 is a perspective view showing the configuration of the entire apparatus. In FIG. 1, 10 is an ultrasonic horn that moves up and down along a vertical movement guide (not shown), and 13 is a vertical movement guide (not shown) that is fixed to the fixed point of the ultrasonic horn 10 with a screw or the like. And 11 is an ultrasonic horn heater fixed to the ultrasonic horn 10 with a screw or the like, and 12 is an ultrasonic wave fixed to the ultrasonic horn 10 with a screw or the like. It is a vibrator.
 25は本体(図無し)にねじなどで固着しているY軸ステージ、24はこのY軸ステージにねじなどで固着されているX軸ステージ、23はこのX軸ステージにねじで固着されているθ軸ステージ、22はこのθ軸ステージにねじなどで固着されている荷重センサ、20はこの荷重センサ20にねじなどで固着されているアンビルであり、77はθ軸ステージ23とX軸ステージ24とY軸ステージ25の移動速度と位置を制御する位置制御装置である。 25 is a Y-axis stage fixed to the main body (not shown) with a screw, 24 is an X-axis stage fixed to the Y-axis stage with a screw, and 23 is fixed to the X-axis stage with a screw. A θ-axis stage, 22 is a load sensor fixed to the θ-axis stage with a screw or the like, 20 is an anvil fixed to the load sensor 20 with a screw or the like, and 77 is a θ-axis stage 23 and an X-axis stage 24. And a position control device for controlling the moving speed and position of the Y-axis stage 25.
 つぎに、図4(b)は凸型ブレード形状3列超音波ホーンの形状と荷重方向と振動方向を示す、下面より反転して見た斜視図であり、10cは凸型ブレード形状3列超音波ホーンである。 Next, FIG. 4 (b) is a perspective view showing the shape, load direction, and vibration direction of the convex blade-shaped three-row ultrasonic horn, as seen from the bottom, and 10c is a convex blade-shaped three-row supersonic horn. It is a sonic horn.
 さらに、図14(a)は本実施例のPCBの接合面に接合長さの1/3の長さの樹脂を、PCB端面付近に配置した、接合前を示す正面図であり、図14(b)は接着・接合の途中を示す正面図であり、図14(c)は接着・接合したあとを示す正面図である。図14において1aはFPC基材、2はFPC基材1a上にあらかじめ形成されたFPC電極、3aはPCB基材、4はPCB電極上にあらかじめ形成されたPCB電極、5はFPC1とPCB3とを接着する樹脂である。 Further, FIG. 14A is a front view showing a state before joining, in which a resin having a length of 1/3 of the joining length is disposed in the vicinity of the end face of the PCB on the joining surface of the PCB of the present embodiment. FIG. 14B is a front view showing the middle of bonding / bonding, and FIG. 14C is a front view showing the state after bonding / bonding. In FIG. 14, 1a is an FPC substrate, 2 is an FPC electrode formed in advance on the FPC substrate 1a, 3a is a PCB substrate, 4 is a PCB electrode formed in advance on the PCB electrode, and 5 is an FPC1 and PCB3. A resin to be bonded.
 以下、図1と図4(a)と図14と図22を用いて、本実施例の工程を説明する。まず、接合長さの1/3程度の樹脂5を接合前にPCB3の接合面のであり、かつ、端面付近に事前に配置する。つぎに、PCB3のPCB電極4を上に向けてアンビル20上に供給する。制御装置70からの制御によりPCB3を、PCB固定用吸着穴20aを負圧にして、アンビル20に吸着固定する。アンビル20に吸着固定する。さらに、FPC1を、FPC電極2を下に向けてFPC1とPCB3の電極同士を重ねる。制御装置70からの制御によりFPC1を、FPC固定用吸着穴20bを負圧にして、アンビル20に吸着固定する。 Hereinafter, the steps of this embodiment will be described with reference to FIGS. 1, 4A, 14 and 22. FIG. First, the resin 5 having about 1/3 of the joining length is placed in advance on the joining surface of the PCB 3 and in the vicinity of the end surface before joining. Next, the PCB electrode 4 of the PCB 3 is supplied onto the anvil 20 with the PCB electrode 4 facing upward. Under the control of the control device 70, the PCB 3 is suction-fixed to the anvil 20 with the PCB fixing suction hole 20a set to a negative pressure. Adsorbed and fixed to the anvil 20. Further, the FPC 1 and the PCB 3 are overlapped with the FPC electrode 2 facing downward. Under the control of the control device 70, the FPC 1 is sucked and fixed to the anvil 20 with the FPC fixing suction hole 20b set to a negative pressure.
 制御装置70からの位置制御装置77への指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているFPC1とPCB3を超音波ホーン10bの直下である、初回の接合位置に移動させる。これが図14(a)の状態であるが、図では樹脂はPCB3上にあらかじめ配置している状態を例示している。ただし、アンビル20は省いてある。また、FPC電極2と樹脂5は、実際には接触しているが、説明のために接触していない状態で示している。 The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved in accordance with commands from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 and PCB 3 that are attracted and fixed to the anvil 20. Is moved to the first joining position directly below the ultrasonic horn 10b. This is the state of FIG. 14A, but the figure illustrates the state in which the resin is arranged on the PCB 3 in advance. However, the anvil 20 is omitted. In addition, the FPC electrode 2 and the resin 5 are actually in contact with each other, but are not in contact with each other for explanation.
 位置制御装置77の到達完了信号により、制御装置70は超音波ホーン10bを、荷重手段13を用いて、上下移動用ガイド(図無し)に沿って下降させて、FPC1とPCB3を超音波ホーン10bとアンビル20の間に挟んで、接合面に荷重をかけて加圧する。荷重センサ22により所定の到達荷重と比較し、所定の荷重を保持するように荷重制御装置72を制御する。これが、図14(b)の状態である。 In response to the arrival completion signal from the position control device 77, the control device 70 lowers the ultrasonic horn 10b along the vertical movement guide (not shown) using the load means 13, and moves the FPC1 and PCB3 to the ultrasonic horn 10b. Between the anvil 20 and the anvil 20 to apply pressure to the joint surface. The load sensor 22 compares the load with a predetermined load and controls the load control device 72 so as to hold the predetermined load. This is the state of FIG.
 超音波ホーンヒータ11で加熱される超音波ホーン10bの伝熱と輻射熱により樹脂が溶融し、接合圧力によりFPC電極1とPCB電極4の間から樹脂が排出され、その排出された樹脂はFPC1とPCB3とFPC電極2とPCB電極4により形成される空隙を通りFPC1とPCB3の間隙を充填すると共に、PCB3端面側より排出されて、フィレットを形成する。これが、図14(c)の状態である。 The resin is melted by heat transfer and radiant heat of the ultrasonic horn 10b heated by the ultrasonic horn heater 11, and the resin is discharged from between the FPC electrode 1 and the PCB electrode 4 by the bonding pressure. The discharged resins are FPC1 and PCB3. And fills the gap between the FPC 1 and the PCB 3 through the gap formed by the FPC electrode 2 and the PCB electrode 4 and is discharged from the end face side of the PCB 3 to form a fillet. This is the state of FIG.
 加圧と加熱を所定時間行ったあと、制御装置70の指令により、超音波発信器71が発振し、超音波振動子12により超音波ホーン10cを加振する。この超音波ホーン10cの発振により、樹脂が排出されたFPC電極2とPCB電極4は固相金属接合する。加振を所定時間行ったあと、制御装置70の指令により超音波発信器71の発振が停止し、超音波振動子12による超音波ホーン10cの加振が停止する。加振を停止後制御装置70の指令により、荷重手段13を用いて、上下移動用ガイド(図無し)に沿って超音波ホーン10cを上昇させる。 After pressurization and heating for a predetermined time, the ultrasonic transmitter 71 oscillates according to a command from the control device 70, and the ultrasonic horn 10 c is vibrated by the ultrasonic vibrator 12. Due to the oscillation of the ultrasonic horn 10c, the FPC electrode 2 and the PCB electrode 4 from which the resin has been discharged are solid-phase metal bonded. After the vibration is performed for a predetermined time, the oscillation of the ultrasonic transmitter 71 is stopped by a command from the control device 70, and the vibration of the ultrasonic horn 10c by the ultrasonic vibrator 12 is stopped. After the vibration is stopped, the ultrasonic horn 10c is raised along the vertical movement guide (not shown) using the load means 13 in accordance with a command from the control device 70.
 制御装置70からの位置制御装置77への指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているFPC1とこれと接合したPCB3を元の位置に移動させる。位置制御装置77からの移動完了信号により、制御装置70はアンビル20の吸着を停止して、FPC1とこれと接合したPCB3の固定を解除することで、接着・接合工程は完了となる。 The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are respectively moved by a command from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 sucked and fixed to the anvil 20 and this And move the PCB 3 joined to the original position. In response to the movement completion signal from the position control device 77, the control device 70 stops the suction of the anvil 20, and releases the fixation of the FPC 1 and the PCB 3 joined thereto, thereby completing the bonding / joining process.
 なお、樹脂の配置方法は、あらかじめFPC1もしくはPCB3aへ、樹脂を印刷塗布しておく方法、もしくは、接合前にフィルム状樹脂を貼り付けておく方法、また、もしくは、接合直前に樹脂を吐出して塗布する方法などがある。
 また、上記実施例において、超音波ホーン10を下降させる方法と、逆にアンビル20を上昇させる方法は接合の効果において同じである。
The resin is arranged in advance by printing and applying the resin to the FPC 1 or PCB 3a, or by attaching a film-like resin before joining, or by discharging the resin immediately before joining. There is a method of applying.
Moreover, in the said Example, the method of lowering the ultrasonic horn 10 and the method of raising the anvil 20 conversely are the same in the effect of joining.
 本発明において、一定の荷重を保持すれば、接合プロセスが進むにつれて、接合面積の増大に伴い応力が低下して、接合による変形は進まなくなることは上述したとおりである。したがって、荷重センサは超音波の発振開始のタイミングを制御しているだけなので、たとえばタイマーなどの時限装置と一定の荷重を保持できる荷重手段13を組み合わせれば、荷重センサ22は必須の条件ではない。 In the present invention, if a constant load is maintained, as the joining process proceeds, the stress decreases as the joining area increases, and the deformation due to joining does not proceed as described above. Therefore, since the load sensor only controls the timing of starting the oscillation of the ultrasonic wave, the load sensor 22 is not an indispensable condition if a timing device such as a timer is combined with the load means 13 capable of holding a constant load. .
 本実施例は請求項1や請求項2や請求項4を実施するに当たり、樹脂をFPC1の接合面に、接合長さの1/3の長さで、かつ、接合部のFPC電極2とPCB電極4で形成される空隙を充填するのに十分な量に、接合端面にフィレットを形成させる目的で増量した量で、接合部のPCB端面付近に事前に配置し、FPCと回路の電極を重ねてから所定の圧力で接合面に垂直な方向に荷重をかけながら加振・加熱させることにより、樹脂が配置されていなかった部分の電極の固相金属接合のタイミングと、樹脂が加熱され、電極間を溶融流動するタイミングに時間差を生じさせて、固相金属接合を阻害しないで接合・接着する請求項6の上記とは別の実施例である。 In the present embodiment, when the first, second, and fourth embodiments are carried out, the resin is applied to the joint surface of the FPC 1 with a length of 1/3 of the joint length, and the FPC electrode 2 and the PCB at the joint portion. Arrange the FPC and the circuit electrodes in advance in the vicinity of the PCB end face of the joint in an amount increased to fill the gap formed by the electrode 4 and in an amount increased for the purpose of forming a fillet on the joint end face. Then, by applying vibration and heating while applying a load in a direction perpendicular to the bonding surface at a predetermined pressure, the timing of solid-phase metal bonding of the electrode where the resin was not disposed, and the resin is heated, This is another embodiment different from the above-described embodiment of the present invention, in which a time difference is generated in the timing of melting and flowing between them, and the solid-phase metal bonding is bonded and bonded without hindering.
 以下に各部分を図1と図4(a)と図15を用いて詳細に説明する。まず、図1は装置全体の構成を示す斜視図である。図1において、10は上下移動用ガイド(図無し)に沿って上下する超音波ホーンであり、13は超音波ホーン10の不動点とねじなどで固着している上下移動用ガイド(図無し)と、これにねじなどで固着している荷重手段であり、11は超音波ホーン10にねじなどで固着している超音波ホーンヒータ、12は超音波ホーン10にねじなどで固着している超音波振動子である。 Hereinafter, each part will be described in detail with reference to FIG. 1, FIG. 4 (a), and FIG. First, FIG. 1 is a perspective view showing the configuration of the entire apparatus. In FIG. 1, 10 is an ultrasonic horn that moves up and down along a vertical movement guide (not shown), and 13 is a vertical movement guide (not shown) that is fixed to the fixed point of the ultrasonic horn 10 with a screw or the like. And 11 is an ultrasonic horn heater fixed to the ultrasonic horn 10 with a screw or the like, and 12 is an ultrasonic wave fixed to the ultrasonic horn 10 with a screw or the like. It is a vibrator.
 25は本体(図無し)にねじなどで固着しているY軸ステージ、24はこのY軸ステージにねじなどで固着されているX軸ステージ、23はこのX軸ステージにねじで固着されているθ軸ステージ、22はこのθ軸ステージにねじなどで固着されている荷重センサ、20はこの荷重センサ20にねじなどで固着されているアンビルであり、77はθ軸ステージ23とX軸ステージ24とY軸ステージ25の移動速度と位置を制御する位置制御装置である。 25 is a Y-axis stage fixed to the main body (not shown) with a screw, 24 is an X-axis stage fixed to the Y-axis stage with a screw, and 23 is fixed to the X-axis stage with a screw. A θ-axis stage, 22 is a load sensor fixed to the θ-axis stage with a screw or the like, 20 is an anvil fixed to the load sensor 20 with a screw or the like, and 77 is a θ-axis stage 23 and an X-axis stage 24. And a position control device for controlling the moving speed and position of the Y-axis stage 25.
 つぎに、図4(a)は凸型ブレード形状1列超音波ホーンの形状と荷重方向と振動方向を示す、下面より反転して見た斜視図であり、10bは凸型ブレード形状1列超音波ホーンである。 Next, FIG. 4A is a perspective view showing the shape, load direction, and vibration direction of the convex blade-shaped single-row ultrasonic horn as viewed from the bottom, and 10b is a convex blade-shaped single row. It is a sonic horn.
 さらに、図15(a)は本実施例のPCBへ長さが接合面の1/3程度の樹脂を、PCB端面付近に配置した、接合前を示す正面図であり、図15(b)は接合・接着の最初の段階を示す正面図であり、図15(c)は接合・接着の途中の段階を示す正面図であり、図15(d)は接合・接着の最後の段階を示す正面図である。図15において1aはFPC基材、2はFPC基材1a上にあらかじめ形成されたFPC電極、3aはPCB基材、4はPCB電極上にあらかじめ形成されたPCB電極、5はFPC1とPCB3とを接着する樹脂である。 Further, FIG. 15A is a front view showing the state before joining, in which a resin having a length of about 1/3 of the joining surface is arranged in the vicinity of the end surface of the PCB, and FIG. FIG. 15C is a front view showing a first stage of joining / bonding, FIG. 15C is a front view showing a stage in the middle of joining / bonding, and FIG. 15D is a front view showing the last stage of joining / bonding. FIG. In FIG. 15, 1a is an FPC substrate, 2 is an FPC electrode formed in advance on the FPC substrate 1a, 3a is a PCB substrate, 4 is a PCB electrode formed in advance on the PCB electrode, and 5 is an FPC1 and PCB3. A resin to be bonded.
 以下、図1と図4(a)と図15と図22を用いて、本実施例の工程を説明する。まず、樹脂5を接合前にPCB3の接合面であり、かつ、端面付近に事前に配置する。つぎに、PCB3のPCB電極4を上に向けてアンビル20上に供給する。制御装置70からの制御によりPCB3を、PCB固定用吸着穴20aを負圧にして、アンビル20に吸着固定する。アンビル20に吸着固定する。さらに、FPC1を、FPC電極2を下に向けてFPC1とPCB3の電極同士を重ねる。制御装置70からの制御によりFPC1を、FPC固定用吸着穴20bを負圧にして、アンビル20に吸着固定する。 Hereinafter, the steps of the present embodiment will be described with reference to FIGS. 1, 4A, 15 and 22. First, the resin 5 is arranged in advance on the bonding surface of the PCB 3 before bonding and in the vicinity of the end surface. Next, the PCB electrode 4 of the PCB 3 is supplied onto the anvil 20 with the PCB electrode 4 facing upward. Under the control of the control device 70, the PCB 3 is suction-fixed to the anvil 20 with the PCB fixing suction hole 20a set to a negative pressure. Adsorbed and fixed to the anvil 20. Further, the FPC 1 and the PCB 3 are overlapped with the FPC electrode 2 facing downward. Under the control of the control device 70, the FPC 1 is sucked and fixed to the anvil 20 with the FPC fixing suction hole 20b set to a negative pressure.
 制御装置70からの位置制御装置77への指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているFPC1とPCB3を超音波ホーン10bの直下である、初回の接合位置に移動させる。これが図15(a)の状態であるが、図では樹脂はPCB3上にあらかじめ配置している状態を例示している。ただし、アンビル20は省いてある。また、FPC電極2と樹脂5は、実際には接触しているが、説明のために接触していない状態で示している。 The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved in accordance with commands from the control device 70 to the position control device 77, that is, the anvil 20 and the FPC 1 and PCB 3 that are attracted and fixed to the anvil 20. Is moved to the first joining position directly below the ultrasonic horn 10b. This is the state of FIG. 15A, but the figure illustrates the state in which the resin is arranged on the PCB 3 in advance. However, the anvil 20 is omitted. In addition, the FPC electrode 2 and the resin 5 are actually in contact with each other, but are not in contact with each other for explanation.
 位置制御装置77の到達完了信号により、制御装置70は超音波ホーン10bを、荷重手段13を用いて、上下移動用ガイド(図無し)に沿って下降させて、FPC1とPCB3を超音波ホーン10bとアンビル20の間に挟んで、接合面に荷重をかけて加圧する。荷重センサ22により所定の到達荷重と比較し、所定の荷重を保持するように荷重制御装置72を制御する。加圧と加熱を所定時間行ったあと、制御装置70の指令により、超音波発信器71が発振し、超音波振動子12により超音波ホーン10bを加振する。この超音波ホーン10bの発振によりFPC電極2とPCB電極4は固相金属接合する。これが、図15(b)の状態である。 In response to the arrival completion signal from the position control device 77, the control device 70 lowers the ultrasonic horn 10b along the vertical movement guide (not shown) using the load means 13, and moves the FPC1 and PCB3 to the ultrasonic horn 10b. Between the anvil 20 and the anvil 20 to apply pressure to the joint surface. The load sensor 22 compares the load with a predetermined load and controls the load control device 72 so as to hold the predetermined load. After performing pressurization and heating for a predetermined time, the ultrasonic transmitter 71 oscillates according to a command from the control device 70, and the ultrasonic horn 10 b is vibrated by the ultrasonic vibrator 12. By the oscillation of the ultrasonic horn 10b, the FPC electrode 2 and the PCB electrode 4 are solid-phase metal bonded. This is the state of FIG.
 加振を所定時間行ったあと、制御装置70の指令により超音波発信器71の発振が停止し、超音波振動子12による超音波ホーン10bの加振が停止する。加振を停止後制御装置70の指令により、荷重手段13を用いて、上下移動用ガイド(図無し)に沿って超音波ホーン10bを上昇させて、初回の接合工程が完了する。 After the excitation is performed for a predetermined time, the oscillation of the ultrasonic transmitter 71 is stopped by an instruction from the control device 70, and the excitation of the ultrasonic horn 10b by the ultrasonic vibrator 12 is stopped. The ultrasonic horn 10b is raised along the vertical movement guide (not shown) using the load means 13 according to the command of the control device 70 after the vibration is stopped, and the first joining process is completed.
 つぎに、FPC1とこれと接合したPCB3を、つぎの接合位置に移動させ、この移動が完了したら、上記と同じように超音波ホーン10bを下降させて、接合面に荷重をかけて加圧する。さらに、超音波ホーン10bを発振させる。この超音波ホーン10bの発振によりFPC電極2とPCB電極4は固相金属接合する。これが、図15(c)の状態である。 Next, the FPC 1 and the PCB 3 bonded thereto are moved to the next bonding position. When this movement is completed, the ultrasonic horn 10b is lowered in the same manner as described above, and a load is applied to the bonding surface to apply pressure. Further, the ultrasonic horn 10b is oscillated. By the oscillation of the ultrasonic horn 10b, the FPC electrode 2 and the PCB electrode 4 are solid-phase metal bonded. This is the state of FIG.
 加振を所定時間行い、超音波ホーン10bの加振が停止したあと、超音波ホーン10bを上昇させて、途中の接合工程が完了する。つぎに、FPC1とこれと接合したPCB3を、最後の接合位置に移動させる。この移動が完了したら、上記と同じように超音波ホーン10bを下降させて、接合面に荷重をかけて加圧する。 The vibration is performed for a predetermined time, and after the vibration of the ultrasonic horn 10b is stopped, the ultrasonic horn 10b is raised, and the joining process in the middle is completed. Next, the FPC 1 and the PCB 3 bonded thereto are moved to the final bonding position. When this movement is completed, the ultrasonic horn 10b is lowered in the same manner as described above, and a pressure is applied to the joint surface while applying a load.
 超音波ホーンヒータ11で加熱される超音波ホーン10bの伝熱と輻射熱により樹脂が溶融し、接合圧力によりFPC電極1とPCB電極4の間から樹脂が排出される。その排出された樹脂は、FPC1とPCB3とFPC電極2とPCB電極4により形成される空隙を通りFPC1とPCB3の間隙を充填すると共に、PCB3端面側より排出されて、フィレットを形成する。これが、図15(d)の状態である。 The resin is melted by heat transfer and radiation heat of the ultrasonic horn 10b heated by the ultrasonic horn heater 11, and the resin is discharged from between the FPC electrode 1 and the PCB electrode 4 by the bonding pressure. The discharged resin passes through a gap formed by the FPC1, PCB3, FPC electrode 2 and PCB electrode 4, fills the gap between the FPC1 and PCB3, and is discharged from the end face side of the PCB3 to form a fillet. This is the state of FIG.
 加圧と加熱を所定時間行ったあと、超音波ホーン10bを加振する。この超音波ホーン10bの発振により、樹脂が排出されたFPC電極2とPCB電極4は固相金属接合する。加振を所定時間行ったあと、超音波ホーン10bを上昇させて、最後の接合工程が完了する。つぎに、FPC1とこれと接合したPCB3を、元の位置に移動させる。位置制御装置77からの移動完了信号により、制御装置70はアンビル20の吸着を停止して、FPC1とこれと接合したPCB3の固定を解除することで、接着・接合工程は完了となる。 After pressurizing and heating for a predetermined time, the ultrasonic horn 10b is vibrated. Due to the oscillation of the ultrasonic horn 10b, the FPC electrode 2 and the PCB electrode 4 from which the resin has been discharged are solid-phase metal bonded. After performing the vibration for a predetermined time, the ultrasonic horn 10b is raised, and the final joining process is completed. Next, the FPC 1 and the PCB 3 joined thereto are moved to their original positions. In response to the movement completion signal from the position control device 77, the control device 70 stops the suction of the anvil 20, and releases the fixation of the FPC 1 and the PCB 3 joined thereto, thereby completing the bonding / joining process.
 なお、樹脂の配置方法は、あらかじめFPC1もしくはPCB3aへ、樹脂を印刷塗布しておく方法、もしくは、接合前にフィルム状樹脂を貼り付けておく方法、また、もしくは、接合直前に樹脂を吐出して塗布する方法などがある。
 また、上記実施例において、超音波ホーン10を下降させる方法と、逆にアンビル20を上昇させる方法は接合の効果において同じである。
The resin is arranged in advance by printing and applying the resin to the FPC 1 or PCB 3a, or by attaching a film-like resin before joining, or by discharging the resin immediately before joining. There is a method of applying.
Moreover, in the said Example, the method of lowering the ultrasonic horn 10 and the method of raising the anvil 20 conversely are the same in the effect of joining.
 本発明において、一定の荷重を保持すれば、接合プロセスが進むにつれて、接合面積の増大に伴い応力が低下して、接合による変形は進まなくなることは上述したとおりである。したがって、荷重センサは超音波の発振開始のタイミングを制御しているだけなので、たとえばタイマーなどの時限装置と一定の荷重を保持できる荷重手段13を組み合わせれば、荷重センサ22は必須の条件ではない。 In the present invention, if a constant load is maintained, as the joining process proceeds, the stress decreases as the joining area increases, and the deformation due to joining does not proceed as described above. Therefore, since the load sensor only controls the timing of starting the oscillation of the ultrasonic wave, the load sensor 22 is not an indispensable condition if a timing device such as a timer is combined with the load means 13 capable of holding a constant load. .
 本実施例は、請求項1や請求項2や請求項4を実施するに当たり、接合前に樹脂を塗布すると、樹脂無しで固相金属接合だけを行うよりも電極間の樹脂排出のためにさらに荷重が必要であるという実験結果から、電極同士の固相金属結合後に、樹脂を端子の端面より流し込むことにより、電極の固相金属接合を阻害しないでFPCと回路基板を接着する、請求項7や請求項8の実施例である。 In the present embodiment, in carrying out claims 1, 2, and 4, if resin is applied before bonding, the resin is discharged more between the electrodes than when only solid phase metal bonding is performed without resin. 8. The FPC and the circuit board are bonded without interfering with the solid-phase metal bonding of the electrodes by pouring resin from the end face of the terminal after solid-phase metal bonding between the electrodes based on the experimental result that a load is required. And an embodiment of claim 8.
 以下に各部分を図1・図16を用いて詳細に説明する。図16はFPC1とPCB3の接合後に樹脂を塗布している途中を示す斜視図である。図16において、1aはFPC基材、2はFPC電極、3aはPCB基材、4はPCB電極、5は液状樹脂である。 Hereinafter, each part will be described in detail with reference to FIGS. FIG. 16 is a perspective view illustrating a state in which a resin is being applied after the FPC 1 and the PCB 3 are joined. In FIG. 16, 1a is an FPC substrate, 2 is an FPC electrode, 3a is a PCB substrate, 4 is a PCB electrode, and 5 is a liquid resin.
 図1において、25は本体(図無し)にねじなどで固着しているY軸ステージ、24はこのY軸ステージにねじなどで固着されているX軸ステージ、23はこのX軸ステージにねじで固着されているθ軸ステージ、22はこのθ軸ステージにねじなどで固着されている荷重センサ、20はこの荷重センサ20にねじなどで固着されているアンビルであり、77はθ軸ステージ23とX軸ステージ24とY軸ステージ25の移動速度と位置を制御する位置制御装置である。 In FIG. 1, 25 is a Y-axis stage fixed to the main body (not shown) with screws, 24 is an X-axis stage fixed to the Y-axis stage with screws, and 23 is screwed to the X-axis stage. A fixed θ-axis stage, 22 is a load sensor fixed to the θ-axis stage with screws or the like, 20 is an anvil fixed to the load sensor 20 with screws or the like, and 77 denotes a θ-axis stage 23. This is a position control device that controls the moving speed and position of the X-axis stage 24 and the Y-axis stage 25.
 32はシリンジ保持・上下手段であり、アンビル20の移動とは独立している本体(図無し)にねじなどで固着されている。31はそのシリンジ保持・上下手段32にねじなどで固着されているシリンジ、30はそのシリンジ31にねじなどで固着されているニードルである。ニードル31の先端はアンビル20がθ軸ステージ23とX軸ステージ24とY軸ステージ25との移動により形成される移動領域内で、アンビル20やアンビル20上のFPC1やPCB3の移動を妨げないで、かつ、超音波ホーン10による接合と、位置決め・供給・取り出しの工程を妨げない位置に配置されている。74はシリンジ31に蓄えられた液状樹脂が、ニードル32の先端から吐出する液量を制御する樹脂吐出制御装置である。 32 is a syringe holding / up-and-down means, which is fixed to a main body (not shown) independent of the movement of the anvil 20 with a screw or the like. A syringe 31 is fixed to the syringe holding / up-and-down means 32 with a screw or the like, and a needle 30 is fixed to the syringe 31 with a screw or the like. The tip of the needle 31 does not hinder the movement of the FPC 1 or PCB 3 on the anvil 20 or the anvil 20 in the movement region formed by the movement of the anvil 20 with the θ-axis stage 23, the X-axis stage 24 and the Y-axis stage 25. In addition, the ultrasonic horn 10 is disposed at a position that does not interfere with the joining and positioning / supply / removal steps. 74 is a resin discharge control device that controls the amount of liquid discharged from the tip of the needle 32 by the liquid resin stored in the syringe 31.
 図1と図16を用いて、本発明を実施した場合の工程を説明する。まず、固相金属接合工程の完了後、アンビル20上に吸着固定され、アンビル20と一緒に移動する、接合後のFPC1とPCB3を、ニードル30の下である、あらかじめ設けたFPC1の端面である所定の位置(以下樹脂吐出開始位置と称す)へ、制御装置70からの指令で、θ軸ステージ23・X軸ステージ24・Y軸ステージ25を、位置制御装置77の制御により移動し、移動が完了する。 1 and 16 will be used to explain the process when the present invention is implemented. First, after completion of the solid-phase metal bonding step, the FPC 1 and PCB 3 after bonding, which are adsorbed and fixed on the anvil 20 and moved together with the anvil 20, are the end faces of the FPC 1 provided in advance under the needle 30. The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved to a predetermined position (hereinafter referred to as a resin discharge start position) by the control of the position control device 77 according to a command from the control device 70. Complete.
 位置制御装置77から位置決め完了信号を制御装置70へ送り、この信号を元に、制御装置70はシリンジ保持・上下手段32と、シリンジ31と、ニードル30を下降させる。ただし、このときニードル30は、FPC1の端面やPCB3の上面から、水平面内での相対移動を妨げない程度の距離(0.1mm以上)離れているので、水平面内で相対移動してもニードル30がFPC1やPCB3と接触することはない。 Position control device 77 sends a positioning completion signal to control device 70, and based on this signal, control device 70 lowers syringe holding / up and down means 32, syringe 31, and needle 30. However, at this time, the needle 30 is separated from the end face of the FPC 1 and the upper surface of the PCB 3 by a distance (0.1 mm or more) that does not prevent relative movement in the horizontal plane. Does not come into contact with FPC1 or PCB3.
 さらに、上記下降が完了すると、制御装置70は、樹脂吐出制御装置74へ指令を送りシリンジ31に蓄えられた液状樹脂を、ニードル32の先端から吐出を開始する。さらに、上記吐出が開始すると、樹脂吐出制御装置74からの樹脂吐出中信号を制御装置70へ送り、この信号を元に、制御装置70は樹脂吐出開始位置からFPC1の樹脂吐出開始位置とは反対側にある所定の位置(以下樹脂吐出終了位置と称す)へ、θ軸ステージ23・X軸ステージ24・Y軸ステージ25を、位置制御装置77の速度制御で所定の速度で移動し、樹脂吐出終了位置に到達すると、位置制御装置77は移動を停止させる。 Further, when the lowering is completed, the control device 70 sends a command to the resin discharge control device 74 and starts discharging the liquid resin stored in the syringe 31 from the tip of the needle 32. Further, when the discharge is started, a resin discharge in-process signal from the resin discharge control device 74 is sent to the control device 70. Based on this signal, the control device 70 is opposite to the resin discharge start position of the FPC 1 from the resin discharge start position. The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved to a predetermined position on the side (hereinafter referred to as a resin discharge end position) at a predetermined speed by the speed control of the position control device 77, and resin discharge is performed. When the end position is reached, the position control device 77 stops moving.
 移動の停止が完了すると、位置決め完了信号を制御装置70へ送り、この信号を元に、制御装置70は、樹脂吐出制御装置74へ指令を送りシリンジ31に蓄えられた液状樹脂の、ニードル32の先端からの樹脂吐出を停止する。樹脂吐出の停止が完了すると、樹脂吐出制御装置74から樹脂吐出停止完了信号を制御装置70へ送り、制御装置70はシリンジ保持・上下手段32を所定の位置へ上昇させる。以上で樹脂塗布工程は完了となる。 When the stop of the movement is completed, a positioning completion signal is sent to the control device 70, and based on this signal, the control device 70 sends a command to the resin discharge control device 74 and the liquid resin stored in the syringe 31 of the needle 32. Stops resin discharge from the tip. When the stop of the resin discharge is completed, a resin discharge stop completion signal is sent from the resin discharge control device 74 to the control device 70, and the control device 70 raises the syringe holding / up-and-down means 32 to a predetermined position. Thus, the resin application process is completed.
 また、樹脂をもれなく塗布する必要がある場合、つまり、事前に配置する場合でも、たとえば後述実施例12,10,11においてPCB3のPCB電極4を上に向けて、アンビル20に吸着固定してから、FPC1の供給間に塗布する、もしくはFPC1とPCB3の位置決め後に塗布することも本装置構成であれば制御装置や移動手段を追加せずに実現できる。
 また、上記実施例において、超音波ホーン10を下降させる方法と、逆にアンビル20を上昇させる方法は接合の効果において同じである。
Further, when it is necessary to apply the resin completely, that is, when the resin is disposed in advance, for example, in Examples 12, 10, and 11, which will be described later, the PCB electrode 4 of the PCB 3 faces up and is fixed to the anvil 20. If it is this apparatus configuration, it can be realized without adding a control device or a moving means if it is applied between the supply of the FPC 1 or after the positioning of the FPC 1 and the PCB 3.
Moreover, in the said Example, the method of lowering the ultrasonic horn 10 and the method of raising the anvil 20 conversely are the same in the effect of joining.
 本発明において、一定の荷重を保持すれば、接合プロセスが進むにつれて、接合面積の増大に伴い応力が低下して、接合による変形は進まなくなることは上述したとおりである。したがって、荷重センサは超音波の発振開始のタイミングを制御しているだけなので、たとえばタイマーなどの時限装置と一定の荷重を保持できる荷重手段13を組み合わせれば、荷重センサ22は必須の条件ではない。 In the present invention, if a constant load is maintained, as the joining process proceeds, the stress decreases as the joining area increases, and the deformation due to joining does not proceed as described above. Therefore, since the load sensor only controls the timing of starting the oscillation of the ultrasonic wave, the load sensor 22 is not an indispensable condition if a timing device such as a timer is combined with the load means 13 capable of holding a constant load. .
 本実施例は、請求項1・請求項2・請求項4・請求項6・請求項7・請求項8を実施するに当たり、超音波ホーンが摩耗したり、超音波ホーンに樹脂などが付着して汚れたりした場合、接合の待機時間中に、研磨砥石や紙ヤスリやラップフィルムなどに当てて、超音波ホーンを振動さて超音波ホーンの平面研磨や洗浄を行う、請求項9と請求項10の実施例である。以下に、各部分を図17・図18を用いて詳細に説明する。図17はFPC1とPCB3を接合する直前から直後まで、つまり「接合位置」での研磨砥石の位置を示した側面図である。図18はFPC1の取り出し・供給位置つまり「待機位置」での研磨砥石の位置を示した側面図である。 In this embodiment, when the first, second, fourth, sixth, seventh and eighth aspects of the present invention are carried out, the ultrasonic horn is worn or a resin or the like is attached to the ultrasonic horn. If it becomes dirty, it is applied to a polishing grindstone, a paper file, a wrap film or the like during the joining standby time, and the ultrasonic horn is vibrated to perform planar polishing or cleaning. This is an example. Below, each part is demonstrated in detail using FIG.17 and FIG.18. FIG. 17 is a side view showing the position of the polishing grindstone immediately before and after the FPC 1 and PCB 3 are joined, that is, at the “joining position”. FIG. 18 is a side view showing the position of the polishing wheel at the FPC 1 take-out / supply position, that is, the “standby position”.
 図17・図18において、1がFPC、2がFPC電極、3がPCB、4がPCB電極、10が超音波ホーン、13が荷重手段、72が荷重手段13の速度と荷重を制御する荷重制御装置、20がアンビル、22が荷重センサ、23がθ軸ステージ、24がX軸ステージ、25がY軸ステージであり、77はこれらの移動速度と位置を制御する位置制御装置である。 17 and 18, 1 is an FPC, 2 is an FPC electrode, 3 is a PCB, 4 is a PCB electrode, 10 is an ultrasonic horn, 13 is a load means, and 72 is a load control that controls the speed and load of the load means 13. The apparatus, 20 is an anvil, 22 is a load sensor, 23 is a θ-axis stage, 24 is an X-axis stage, 25 is a Y-axis stage, and 77 is a position control device for controlling the moving speed and position thereof.
 50はFPC1を吸着固定する手段と、FPC1をアンビル20へ供給する手段を持ったFPC供給・保持手段であり、アンビル20の移動とは独立している本体(図無し)にねじなどで固着されている。61がX軸ステージ24にねじなどで固着されてX軸ステージ24と共に移動する、研磨砥石保持手段である。なお、研磨砥石保持手段61には研磨荷重センサ(図無し)が設けてあり、研磨時は荷重を荷重制御装置70へフィードバックする。また、60が研磨砥石保持手段61にねじもしくは接着剤などで固着されている研磨砥石である。なお、X軸ステージ24が移動して「待機位置」へ移動すると、研磨砥石保持手段61に固着した研磨砥石60が超音波ホーン10の真下に来るようにあらかじめ配置してある。 50 is an FPC supply / holding means having means for adsorbing and fixing the FPC 1 and means for supplying the FPC 1 to the anvil 20, and is fixed to the main body (not shown) independent of the movement of the anvil 20 with a screw or the like. ing. Reference numeral 61 denotes a grinding wheel holding means that is fixed to the X-axis stage 24 with a screw or the like and moves together with the X-axis stage 24. The polishing wheel holding means 61 is provided with a polishing load sensor (not shown), and the load is fed back to the load control device 70 during polishing. Reference numeral 60 denotes a polishing wheel fixed to the polishing wheel holding means 61 with a screw or an adhesive. When the X-axis stage 24 moves and moves to the “standby position”, the polishing grindstone 60 fixed to the grindstone holding means 61 is arranged in advance so as to be directly below the ultrasonic horn 10.
 図17と図18を用いて、本発明を実施した場合の工程を説明する。図17の位置つまり、「接合位置」でFPC1とPCB3の接合が完了すると、X軸ステージ24は前進してFPC1の取り出し・供給位置、つまり「待機位置」へ戻ってくる。接合後のFPC1とPCB3を取り出してから、供給して、位置決め完了するまでの間は、X軸ステージ24はこの「待機位置」にある。 17 and 18 will be used to explain the process when the present invention is implemented. When the joining of the FPC 1 and the PCB 3 is completed at the position of FIG. 17, that is, the “joining position”, the X-axis stage 24 moves forward and returns to the FPC 1 take-out / supply position, that is, the “standby position”. The X-axis stage 24 is in this “standby position” during the period from when the FPC 1 and the PCB 3 after joining are taken out and supplied until the positioning is completed.
 上記の間に超音波ホーン10を荷重手段13にて下降させて、超音波ホーン10が研磨砥石60に接触し、研磨砥石荷重センサ(図無し)が所定の圧力に到達したことを検出したあと、その荷重を維持する荷重制御装置72の制御により荷重手段13が荷重を加え続けながら、超音波振動子12を発振させて超音波ホーン10を加振する。所定の時間加振したあと超音波振動子12の発振を停止させてから、荷重手段13の荷重を抜き、超音波ホーン10を元の位置まで上昇させて、平面研磨は完了となる。 After the ultrasonic horn 10 is lowered by the load means 13 during the above period, the ultrasonic horn 10 comes into contact with the grinding wheel 60, and it is detected that the grinding wheel load sensor (not shown) has reached a predetermined pressure. The ultrasonic wave horn 10 is vibrated by oscillating the ultrasonic vibrator 12 while the load means 13 continues to apply a load under the control of the load control device 72 that maintains the load. After vibrating for a predetermined time, the oscillation of the ultrasonic vibrator 12 is stopped, the load of the load means 13 is removed, the ultrasonic horn 10 is raised to the original position, and the planar polishing is completed.
 本発明によるこの研磨方法は、取り出し・供給・位置決めまでの一連の時間、つまり「待機時間」内で完了できるので、生産性を落とすことがない。また、上記実施例において、超音波ホーン10を下降させる方法と、逆に研磨砥石保持手段61に垂直方向に移動する手段を設けて、研磨砥石60を上昇させる方法は接合の効果において同じである。 This polishing method according to the present invention can be completed within a series of time from take-out / supply / positioning, that is, “standby time”, so that productivity is not lowered. In the above embodiment, the method of lowering the ultrasonic horn 10 and the method of raising the polishing wheel 60 by providing means for moving the polishing wheel holding means 61 in the vertical direction are the same in terms of the bonding effect. .
 なお、研磨砥石60のかた減りを未然に防ぐために、研磨砥石保持手段61に水平面で移動する移動手段を具備させて、毎回もしくは数回毎に研磨位置を変更させる方法もあわせて考えられる。上記研磨砥石60の代わりに紙ヤスリやラップフィルムを用いても同じである。また、超音波ホーン10を発振しないで、研磨砥石保持手段61に水平面で移動する移動手段を振動させて超音波ホーン10の先端を研磨する方法も考えられる。また、さらに、テープ状の紙ヤスリやラップフィルムを巻きだしボビンと巻き取りボビンを用いて、研磨砥石保持手段61上を一定のピッチで毎回送り、その送られた紙ヤスリやラップフィルムに超音波ホーンを押しつけ、その後発振させる方法も考えられる。 In addition, in order to prevent the polishing wheel 60 from being reduced, a method of changing the polishing position every time or several times by providing the polishing wheel holding means 61 with a moving means that moves in a horizontal plane is also conceivable. It is the same even if a paper file or a wrap film is used instead of the polishing grindstone 60. Further, a method of polishing the tip of the ultrasonic horn 10 by vibrating the moving means moving on the horizontal surface to the polishing grindstone holding means 61 without oscillating the ultrasonic horn 10 is also conceivable. In addition, a tape-shaped paper file or wrap film is unwound and sent using a bobbin and a take-up bobbin each time on the grinding wheel holding means 61 at a constant pitch, and ultrasonic waves are sent to the sent paper file or wrap film. A method of pressing the horn and then oscillating it can be considered.
 上記実施例において、一定の荷重を保持すれば、研磨量は研磨時間に比例するので、タイマーなどの時限装置と一定の荷重を保持できる研磨砥石保持手段61を組み合わせれば、研磨砥石荷重センサ(図無し)は必須の条件ではない。 In the above embodiment, if a constant load is maintained, the polishing amount is proportional to the polishing time. Therefore, if a timing device such as a timer is combined with a polishing wheel holding means 61 that can hold a constant load, a polishing wheel load sensor ( (No figure) is not an essential condition.
 本実施例は、請求項1や請求項2や請求項4を実施するに当たり、FPCとPCBを簡単に位置決めする請求項11と請求項12の実施例である。この方法は後述の実施例14に比べて、位置決めの用途に図1のθ軸ステージ23、X軸ステージ24、Y軸ステージ25やこれらの位置決め制御装置77と、図1のレンズ40,CCDカメラ41やこれらの画像位置決め制御装置75とを設けるため、装置構成や制御構成が複雑になる。 This embodiment is an embodiment according to claim 11 and claim 12 in which the FPC and the PCB are simply positioned in carrying out claims 1, 2, and 4. Compared to Example 14 described later, this method uses the θ-axis stage 23, the X-axis stage 24, the Y-axis stage 25 of FIG. 1 and their positioning control devices 77, the lens 40 of FIG. Since 41 and these image positioning control devices 75 are provided, the device configuration and control configuration are complicated.
 ただし、レンズ40,CCDカメラ41が複数あるため、移動手段を設ける必要が無いので、そのぶん下記実施例13に比べて、装置構成が単純になる。しかし、レンズ40a、CCDカメラ41aとレンズ40b、CCDカメラ41bの寸法上の制約があるため、FPCアライメント穴6aやPCBアライメントマーク7aのピッチ間にも制約がある。 However, since there are a plurality of lenses 40 and CCD cameras 41, there is no need to provide moving means, so that the apparatus configuration is simpler than that of Example 13 below. However, since there are restrictions on the dimensions of the lens 40a, the CCD camera 41a and the lens 40b, and the CCD camera 41b, there are also restrictions on the pitches of the FPC alignment holes 6a and the PCB alignment marks 7a.
 だが、後述の実施例14が、FPC位置決め穴6bと位置決めピン20cを接触させる方式であることに対して、本発明は非接触方式のため、FPC1の外力による変形がないので、高い精度で位置決めを行うことができる。なお、この発明は作業者に手動作業によらない自動作業用の装置に適した方法である。 However, in contrast to the fact that the embodiment 14 described later is a system in which the FPC positioning hole 6b and the positioning pin 20c are brought into contact with each other, since the present invention is a non-contact system, there is no deformation due to the external force of the FPC 1, so positioning with high accuracy is possible. It can be performed. In addition, this invention is a method suitable for the apparatus for automatic work which does not depend on an operator by manual work.
 以下に、各部分を図1、図19、図20、図21、図22を用いて詳細に説明する。図1において、1はFPC、3はPCB、25は本体(図無し)にねじなどで固着しているY軸ステージ、24はこのY軸ステージにねじなどで固着されているX軸ステージ、23はこのX軸ステージにねじで固着されているθ軸ステージ、22はこのθ軸ステージにねじなどで固着されている荷重センサ、20はこの荷重センサ20にねじなどで固着されているアンビルであり、77はθ軸ステージ23とX軸ステージ24とY軸ステージ25の移動速度と位置を制御する位置制御装置である。 Hereinafter, each part will be described in detail with reference to FIG. 1, FIG. 19, FIG. 20, FIG. In FIG. 1, 1 is an FPC, 3 is a PCB, 25 is a Y-axis stage fixed to the main body (not shown) with screws, 24 is an X-axis stage fixed to the Y-axis stage with screws, 23 Is a θ axis stage fixed to the X axis stage with screws, 22 is a load sensor fixed to the θ axis stage with screws, and 20 is an anvil fixed to the load sensor 20 with screws. , 77 is a position control device for controlling the moving speed and position of the θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25.
 図19はFPCの平面図である。この図19において、1がFPC、1aはこのFPC1の絶縁材料でできた基材であるFPC基材、2はFPC基材1aに上に形成された電気回路であるFPC電極、6aはFPC基材1aに設けられた2対のFPCアライメント穴である。 FIG. 19 is a plan view of the FPC. In FIG. 19, 1 is an FPC, 1a is an FPC substrate which is a substrate made of an insulating material of the FPC 1, 2 is an FPC electrode which is an electric circuit formed on the FPC substrate 1a, and 6a is an FPC substrate. These are two pairs of FPC alignment holes provided in the material 1a.
 図20はPCBの平面図である。この図20において、3がPCB、3aはこのPCB3の絶縁材料でできた基材であるPCB基材、4はPCB基材3a上に形成された電気回路であるPCB電極、7aはPCB基材3aに設けられた2対のPCBアライメントマークである。図21はPCB3の上に、FPC1を重ねた状態を示す平面図である。 FIG. 20 is a plan view of the PCB. In FIG. 20, 3 is a PCB, 3a is a PCB substrate which is a substrate made of this PCB3 insulating material, 4 is a PCB electrode which is an electric circuit formed on the PCB substrate 3a, and 7a is a PCB substrate. These are two pairs of PCB alignment marks provided on 3a. FIG. 21 is a plan view showing a state in which the FPC 1 is overlaid on the PCB 3.
 図22は図1の一部を抜粋した、本発明の実施例を示す斜視図である。この図22において、20はPCB3を吸着固定する手段を持ったアンビル、20aはアンビル20に設けたPCB固定用吸着穴、20bはアンビル20に設けたFPC固定用吸着穴、21はアンビルを加熱するアンビルヒータ、1がFPC、1aはこのFPC1の絶縁材料でできた基材であるFPC基材、2はFPC基材1aに上に形成された電気回路であるFPC電極、6aはFPC基材1aに設けられた2対のFPCアライメント穴であり、3がPCB、3aはこのPCB3の絶縁材料でできた基材であるPCB基材、4はPCB基材3a上に形成された電気回路であるPCB電極、7aはPCB基材3aに設けられた2対のPCBアライメントマークである。 FIG. 22 is a perspective view showing an embodiment of the present invention, which is a part of FIG. In FIG. 22, 20 is an anvil having means for adsorbing and fixing PCB3, 20a is an adsorbing hole for fixing PCB on the anvil 20, 20b is an adsorbing hole for fixing FPC on the anvil 20, and 21 is for heating the anvil. Anvil heater, 1 is an FPC, 1a is an FPC base that is a base made of the insulating material of this FPC 1, 2 is an FPC electrode that is an electric circuit formed on the FPC base 1a, 6a is an FPC base 1a Are two pairs of FPC alignment holes, 3 is a PCB, 3a is a PCB substrate made of an insulating material of this PCB3, and 4 is an electric circuit formed on the PCB substrate 3a. PCB electrodes 7a are two pairs of PCB alignment marks provided on the PCB substrate 3a.
 41aはFPCアライメント穴6aを通してPCBアライメントマーク7aを観察する手段である。図1のθ軸ステージ23、X軸ステージ24、Y軸ステージ25の移動とは独立している、本体(図無し)にねじなどで固着されているCCDカメラ、40aはそのCCDカメラ41aにねじなどで固着されたレンズであり、同様に41bはもう一つのFPCアライメント穴6aを通してやはりもう一つのPCBアライメントマーク7aを観察する手段であり、本体(図無し)にねじなどで固着されているCCDカメラ、40bはそのCCDカメラ41bにねじなどで固着されたレンズである。50はFPC1を吸着固定する手段と、FPC1をアンビル20へ供給する手段を持ったFPC供給・保持手段であり、本体(図無し)にねじなどで固着されている。 41a is a means for observing the PCB alignment mark 7a through the FPC alignment hole 6a. A CCD camera 40a fixed to the main body (not shown) with a screw or the like independent of the movement of the θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 in FIG. Similarly, 41b is a means for observing another PCB alignment mark 7a through another FPC alignment hole 6a, and is a CCD fixed to the main body (not shown) with a screw or the like. A camera 40b is a lens fixed to the CCD camera 41b with a screw or the like. Reference numeral 50 denotes an FPC supply / holding means having means for adsorbing and fixing the FPC 1 and means for supplying the FPC 1 to the anvil 20, and is fixed to the main body (not shown) with screws or the like.
 以下、図1と図22を用いて、本発明を実施した場合の工程を説明する。まず、PCB3をPCB電極4を上に向けて、制御装置70からの制御によりPCB3を、PCB固定用吸着穴20aを負圧にして、アンビル20に吸着固定する。つぎに、FPC1を、FPC電極2を下に向けてFPC供給・保持手段50に吸着固定する。 Hereafter, the process at the time of implementing this invention is demonstrated using FIG. 1 and FIG. First, the PCB 3 is suction-fixed to the anvil 20 with the PCB electrode 4 facing upward and the PCB 3 suction hole 20 a under a negative pressure under the control of the control device 70. Next, the FPC 1 is attracted and fixed to the FPC supply / holding means 50 with the FPC electrode 2 facing downward.
 FPC供給・保持手段50はPCB3の接合部にFPC1の接合部が重なる、あらかじめ決められた位置に移動する。ただし、このときPCB3とFPC1は水平面内での相対移動を妨げない程度の距離(0.1mm程度)離れていて、水平面内での相対移動によりFPC1とPCB3が接触することはない。なお、図22はこの状態を示す。 The FPC supply / holding means 50 moves to a predetermined position where the joint portion of the FPC 1 overlaps the joint portion of the PCB 3. However, at this time, the PCB 3 and the FPC 1 are separated by a distance (about 0.1 mm) that does not hinder the relative movement in the horizontal plane, and the FPC 1 and the PCB 3 are not brought into contact by the relative movement in the horizontal plane. FIG. 22 shows this state.
 つぎに、図1の画像位置決め制御装置75は、CCDカメラ41aを用いて、レンズ40aを通して、FPC1の上面よりFPCアライメント穴6aと、FPCアライメント穴6aを通してPCBアライメントマーク7aの相互の位置誤差を測定する。同様にCCDカメラ41bを用いて、レンズ40bを通して、FPC1の上面よりもう一つのFPCアライメント穴6aと、やはりもう一つのFPCアライメント穴6aを通してPCBアライメントマーク7aの相互の位置誤差を測定する。 Next, the image positioning control device 75 in FIG. 1 uses the CCD camera 41a to measure the mutual positional error between the FPC alignment hole 6a and the PCB alignment mark 7a from the upper surface of the FPC 1 through the lens 40a and through the FPC alignment hole 6a. To do. Similarly, the CCD camera 41b is used to measure the mutual positional error of the PCB alignment mark 6a through the lens 40b and another FPC alignment hole 6a from the upper surface of the FPC 1 and also through the other FPC alignment hole 6a.
 これらの誤差が所定の誤差範囲にはいるように、図1の位置制御装置78の指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているPCB3を移動させてアライメントを行う。アライメント完了後FPC保持・供給手段50を下降させ、FPC1とPCB3を接触する位置までFPC保持・供給手段50を下降させると、FPC1はアンビル20に設けた段に接触し、アンビル20の段上に設けたFPC固定用吸着穴20を塞ぐ。 The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved by the command of the position control device 78 of FIG. 1 so that these errors are within a predetermined error range, that is, the anvil 20 and its The PCB 3 that is sucked and fixed to the anvil 20 is moved for alignment. After the alignment is completed, the FPC holding / supplying unit 50 is lowered, and when the FPC holding / supplying unit 50 is lowered to a position where the FPC 1 and the PCB 3 come into contact with each other, the FPC 1 comes into contact with the step provided on the anvil 20 and The provided FPC fixing suction hole 20 is closed.
 アンビル20に設けたFPC吸着穴20bより吸引を開始し、FPC吸着センサ76bがFPC1の吸着を確認するとFPC保持・供給手段50のFPC1の吸着固定を解除し、FPC保持・供給手段50を上昇させて、位置決め工程は完了となる。接合後は、FPC1とPCB3は接合が完了して一体となっているので、PCB吸着解除と同時にアンビル20に設けたFPC吸着穴20bの吸着を解除し、FPC1とPCB3の吸着固定を解除することで取り出し工程は完了となる。なお、PCB3に設けたPCBアライメント穴からFPC1のアライメントマークをアンビル側に設けたレンズ40を通してCCD41で観察する方法も考えられる。 Suction is started from the FPC suction hole 20b provided in the anvil 20, and when the FPC suction sensor 76b confirms the suction of the FPC 1, the FPC 1 is fixed by the FPC holding / supplying means 50 and the FPC holding / supplying means 50 is raised. Thus, the positioning process is completed. After joining, since the FPC1 and PCB3 are joined and integrated, the suction of the FPC suction hole 20b provided in the anvil 20 is released simultaneously with the release of the PCB suction, and the suction fixing of the FPC1 and the PCB3 is released. This completes the removal process. A method of observing the alignment mark of the FPC 1 through the lens 40 provided on the anvil side from the PCB alignment hole provided in the PCB 3 with the CCD 41 is also conceivable.
 本実施例は、請求項1や請求項2や請求項4を実施するに当たり、FPCとPCBを簡単に位置決めする請求項11と請求項12の実施例である。この方法は下記実施例14に比べて、位置決めの用途に図1のθ軸ステージ23、X軸ステージ24、Y軸ステージ25やこれらの位置決め制御装置77と、図1のレンズ40,CCDカメラ41やこれらの画像位置決め制御装置75とを設ける必要があるため、装置構成や制御構成が複雑になる。 This embodiment is an embodiment according to claim 11 and claim 12 in which the FPC and the PCB are simply positioned in carrying out claims 1, 2, and 4. Compared with the following Example 14, this method is used for positioning the θ-axis stage 23, the X-axis stage 24, the Y-axis stage 25 and their positioning control device 77 in FIG. 1, the lens 40, and the CCD camera 41 in FIG. In addition, since it is necessary to provide the image positioning control device 75, the device configuration and the control configuration are complicated.
 また、レンズ40,CCDカメラ41の移動手段を設けるため、さらに、上記実施例12に比べて、装置構成が複雑になる。しかし、レンズ40、CCDカメラ41による寸法上の制約が無いため、FPCアライメント穴6aやPCBアライメントマーク7aのピッチ間にも制約が無い。また、下記実施例14が、FPC位置決め穴6bと位置決めピン20cを接触させる方式であることに対して、本発明は非接触方式のため、FPC1の外力による変形がないので、高い精度で位置決めを行うことができる。なお、この発明は作業者に手動作業によらない自動作業用の装置に適した方法である。 Further, since the moving means for the lens 40 and the CCD camera 41 is provided, the apparatus configuration is further complicated as compared to the twelfth embodiment. However, since there is no dimensional restriction by the lens 40 and the CCD camera 41, there is no restriction between the pitches of the FPC alignment holes 6a and the PCB alignment marks 7a. In addition, while the following embodiment 14 is a system in which the FPC positioning hole 6b and the positioning pin 20c are brought into contact with each other, since the present invention is a non-contact system, there is no deformation due to the external force of the FPC 1, so positioning can be performed with high accuracy. It can be carried out. In addition, this invention is a method suitable for the apparatus for automatic work which does not depend on an operator by manual work.
 以下に、各部分を図1、図19、図20、図21、図23を用いて詳細に説明する。図1において、1はFPC、3はPCB、25は本体(図無し)にねじなどで固着しているY軸ステージ、24はこのY軸ステージにねじなどで固着されているX軸ステージ、23はこのX軸ステージにねじで固着されているθ軸ステージ、22はこのθ軸ステージにねじなどで固着されている荷重センサ、20はこの荷重センサ20にねじなどで固着されているアンビルであり、77はθ軸ステージ23とX軸ステージ24とY軸ステージ25の移動速度と位置を制御する位置制御装置である。 Hereinafter, each part will be described in detail with reference to FIGS. 1, 19, 20, 21, and 23. FIG. In FIG. 1, 1 is an FPC, 3 is a PCB, 25 is a Y-axis stage fixed to the main body (not shown) with screws, 24 is an X-axis stage fixed to the Y-axis stage with screws, 23 Is a θ axis stage fixed to the X axis stage with screws, 22 is a load sensor fixed to the θ axis stage with screws, and 20 is an anvil fixed to the load sensor 20 with screws. , 77 is a position control device for controlling the moving speed and position of the θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25.
 図19はFPCの平面図であり、この図19において、1がFPC、1aはこのFPC1の絶縁材料でできた基材であるFPC基材、2はFPC基材1aに上に形成された電気回路であるFPC電極、6aはFPC基材1aに設けられた2対のFPCアライメント穴である。図20はPCBの平面図であり、この図20において、3がPCB、3aはこのPCB3の絶縁材料でできた基材であるPCB基材、4はPCB基材3a上に形成された電気回路であるPCB電極、7aはPCB基材3aに設けられた2対のPCBアライメントマークである。図21はPCB3の上に、FPC1を重ねた状態を示す平面図である。 FIG. 19 is a plan view of the FPC. In FIG. 19, 1 is an FPC substrate, 1a is an FPC substrate made of an insulating material of the FPC 1, and 2 is an electric circuit formed on the FPC substrate 1a. FPC electrodes 6a which are circuits are two pairs of FPC alignment holes provided in the FPC base material 1a. 20 is a plan view of the PCB. In FIG. 20, 3 is a PCB, 3a is a PCB substrate made of an insulating material of the PCB 3, and 4 is an electric circuit formed on the PCB substrate 3a. The PCB electrodes 7a are two pairs of PCB alignment marks provided on the PCB substrate 3a. FIG. 21 is a plan view showing a state in which the FPC 1 is overlaid on the PCB 3.
 図23は図1の一部を抜粋した、本発明の実施例を示す斜視図である。この図23において、20はPCB3を吸着固定する手段を持ったアンビル、20bはアンビル20に設けたFPC固定用吸着穴である。 FIG. 23 is a perspective view showing an embodiment of the present invention, excerpted from a part of FIG. In FIG. 23, 20 is an anvil having means for adsorbing and fixing PCB 3, and 20 b is an FPC fixing adsorbing hole provided in the anvil 20.
 41はFPCアライメント穴6aを通してPCBアライメントマーク7aを観察する手段であり、図1のθ軸ステージ23、X軸ステージ24、Y軸ステージ25の移動とは独立している本体(図無し)に支持された、FPCアライメント穴6aとPCBアライメントマーク7aで形成される、2対のアライメントマークの間を移動する手段(図無し)を具備するCCDカメラ、40はそのCCDカメラ41にねじなどで固着されたレンズである。50はFPC1を吸着固定する手段と、FPC1をアンビル20へ供給する手段を持ったFPC供給・保持手段であり、本体(図無し)にねじなどで固着されている。 41 is a means for observing the PCB alignment mark 7a through the FPC alignment hole 6a, and is supported by a main body (not shown) independent of the movement of the θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 in FIG. The CCD camera 40 having means (not shown) for moving between two pairs of alignment marks formed by the FPC alignment hole 6a and the PCB alignment mark 7a is fixed to the CCD camera 41 with screws or the like. Lens. Reference numeral 50 denotes an FPC supply / holding means having means for adsorbing and fixing the FPC 1 and means for supplying the FPC 1 to the anvil 20, and is fixed to the main body (not shown) with screws or the like.
 以下、図1と図23を用いて、本発明を実施した場合の工程を説明する。まず、PCB3をPCB電極4を上に向けて、制御装置70からの制御によりPCB3を、PCB固定用吸着穴20aを負圧にして、アンビル20に吸着固定する。つぎに、FPC1を、FPC電極2を下に向けてFPC供給・保持手段50に吸着固定する。FPC供給・保持手段50はPCB3の接合部にFPC1の接合部が重なる、あらかじめ決められた位置に移動する。ただし、このときPCB3とFPC1は水平面内での相対移動を妨げない程度の距離(0.1mm程度)離れていて、水平面内での相対移動によりFPC1とPCB3が接触することはない。なお、図23はこの状態を示す。 Hereafter, the process at the time of implementing this invention is demonstrated using FIG. 1 and FIG. First, the PCB 3 is suction-fixed to the anvil 20 with the PCB electrode 4 facing upward and the PCB 3 suction hole 20 a under a negative pressure under the control of the control device 70. Next, the FPC 1 is attracted and fixed to the FPC supply / holding means 50 with the FPC electrode 2 facing downward. The FPC supply / holding means 50 moves to a predetermined position where the joint portion of the FPC 1 overlaps the joint portion of the PCB 3. However, at this time, the PCB 3 and the FPC 1 are separated by a distance (about 0.1 mm) that does not hinder the relative movement in the horizontal plane, and the FPC 1 and the PCB 3 are not brought into contact by the relative movement in the horizontal plane. FIG. 23 shows this state.
 つぎに、図1の画像位置決め制御装置75は、CCDカメラ41を用いて、レンズ40を通して、FPC1の上面よりFPCアライメント穴6aと、FPCアライメント穴6aを通してPCBアライメントマーク7aの相互の位置誤差を測定する。つぎに、CCDカメラ41とこれに固着しているレンズ40をもう一つのFPCアライメント穴6aと、FPCアライメント穴6aを通してPCBアライメントマーク7aの相互の位置誤差を測定する位置に移動させ、この位置誤差を測定する。 Next, the image positioning control device 75 in FIG. 1 uses the CCD camera 41 to measure the mutual positional error between the FPC alignment hole 6a and the PCB alignment mark 7a from the upper surface of the FPC 1 through the lens 40 and through the FPC alignment hole 6a. To do. Next, the CCD camera 41 and the lens 40 fixed to the CCD camera 41 are moved to another FPC alignment hole 6a and a position for measuring the mutual position error of the PCB alignment mark 7a through the FPC alignment hole 6a. Measure.
 これらの誤差が所定の誤差範囲にはいるように、図1の位置制御装置78の指令によりθ軸ステージ23、X軸ステージ24、Y軸ステージ25をそれぞれ移動させて、つまり、アンビル20とそのアンビル20に吸着固定されているPCB3を移動させてアライメントを行う。アライメント完了後FPC保持・供給手段50を下降させ、FPC1とPCB3を接触する位置までFPC保持・供給手段50を下降させると、FPC1はアンビル20に設けた段に接触し、アンビル20の段上に設けたFPC固定用吸着穴20を塞ぐ。 The θ-axis stage 23, the X-axis stage 24, and the Y-axis stage 25 are moved by the command of the position control device 78 of FIG. 1 so that these errors are within a predetermined error range, that is, the anvil 20 and its The PCB 3 that is sucked and fixed to the anvil 20 is moved for alignment. After the alignment is completed, the FPC holding / supplying unit 50 is lowered, and when the FPC holding / supplying unit 50 is lowered to a position where the FPC 1 and the PCB 3 come into contact with each other, the FPC 1 comes into contact with the step provided on the anvil 20 and The provided FPC fixing suction hole 20 is closed.
 アンビル20に設けたFPC吸着穴20bより吸引を開始し、FPC吸着センサ76bがFPC1の吸着を確認するとFPC保持・供給手段50のFPC1の吸着固定を解除し、FPC保持・供給手段50を上昇させ、また、CCDカメラ41とこれに固着しているレンズ4を元の位置に戻して位置決め工程は完了となる。接合後は、FPC1とPCB3は接合が完了して一体となっているので、PCB吸着解除と同時にアンビル20に設けたFPC吸着穴20bの吸着を解除し、FPC1とPCB3の吸着固定を解除することで取り出し工程は完了となる。なお、PCB3に設けたPCBアライメント穴からFPC1のアライメントマークをアンビル側に設けたレンズ40を通してCCD41で観察する方法も考えられる Suction is started from the FPC suction hole 20b provided in the anvil 20, and when the FPC suction sensor 76b confirms the suction of the FPC 1, the FPC 1 is fixed by the FPC holding / supplying means 50 and the FPC holding / supplying means 50 is raised. In addition, the CCD camera 41 and the lens 4 fixed thereto are returned to their original positions, and the positioning process is completed. After joining, since the FPC1 and PCB3 are joined and integrated, the suction of the FPC suction hole 20b provided in the anvil 20 is released simultaneously with the release of the PCB suction, and the suction fixing of the FPC1 and the PCB3 is released. This completes the removal process. A method of observing the alignment mark of the FPC 1 through the lens 40 provided on the anvil side from the PCB alignment hole provided in the PCB 3 with the CCD 41 is also conceivable.
 本実施例は、請求項1や請求項2や請求項4を実施するに当たり、FPCとPCBを簡単に位置決めする請求項13と請求項14の上記とは別の実施例である。なお、この方法によれば上記実施例12や実施例13の様な、位置決めの用途に図1のθ軸ステージ23、X軸ステージ24、Y軸ステージ25や図22や図23のレンズ40,CCDカメラ41を設ける必要がないので、装置構成が単純になり、装置のコストも小さくなる。 This embodiment is an embodiment different from the above-described embodiments of claim 13 and claim 14 in which the FPC and the PCB are simply positioned when carrying out claims 1, 2, and 4. According to this method, the θ-axis stage 23, the X-axis stage 24, the Y-axis stage 25 in FIG. 1 and the lenses 40 in FIG. 22 and FIG. Since it is not necessary to provide the CCD camera 41, the apparatus configuration is simplified and the cost of the apparatus is reduced.
 以下に、各部分を図24、図25、図26を用いて詳細に説明する。図24はFPCの平面図である。この図24において、1がFPC、1aはこのFPC1の絶縁材料でできた基材であるFPC基材、2はFPC基材1a上に形成された電気回路であるFPC電極、6bはFPC基材1aに設けられた2対のFPC位置決め穴である。図25はPCBの平面図である。この図25において、3がPCB、3aはこのPCB3の絶縁材料でできた基材であるPCB基材、4はPCB基材3a上に形成された電気回路であるPCB電極、7bはPCB基材3aに設けられた2対のPCB位置決め穴である。図26は図1の一部を抜粋した、本発明の実施例を示す斜視図である。この図26において、20はアンビル、20cはアンビル20に圧入して固着された2対の位置決めピンである。 Hereinafter, each part will be described in detail with reference to FIGS. 24, 25, and 26. FIG. 24 is a plan view of the FPC. In FIG. 24, 1 is an FPC, 1a is an FPC base material which is a base material made of an insulating material of the FPC 1, 2 is an FPC electrode which is an electric circuit formed on the FPC base material 1a, and 6b is an FPC base material. These are two pairs of FPC positioning holes provided in 1a. FIG. 25 is a plan view of the PCB. In FIG. 25, 3 is a PCB, 3a is a PCB substrate which is a substrate made of this PCB3 insulating material, 4 is a PCB electrode which is an electric circuit formed on the PCB substrate 3a, and 7b is a PCB substrate. These are two pairs of PCB positioning holes provided in 3a. FIG. 26 is a perspective view showing an embodiment of the present invention, which is a part extracted from FIG. In FIG. 26, reference numeral 20 denotes an anvil, and 20c denotes two pairs of positioning pins that are press-fitted and fixed to the anvil 20.
 図26を用いて、本発明を実施した場合の工程を説明する。まず、PCB3をPCB電極4を上に向けてPCB位置決め穴7bを、アンビル20に固着している位置決めピン20cに差し込む。つぎに、FPC1を、FPC電極2を下に向け、FPC位置決め穴6bを上記PCB3に接合部が重なるように、アンビル20に固着している位置決めピン20cに差し込むことで、位置決め工程は完了となる。接合後は、FPC1とPCB3は接合が完了して一体となっているので、FPC位置決め穴6bとPCB位置決め穴7bとを同時に位置決めピン20cから抜き取ることで取り出し工程は完了となる。 The process when the present invention is carried out will be described with reference to FIG. First, the PCB positioning hole 7b is inserted into the positioning pin 20c fixed to the anvil 20 with the PCB 3 facing the PCB electrode 4 upward. Next, the positioning step is completed by inserting the FPC 1 with the FPC electrode 2 facing down and the FPC positioning hole 6b into the positioning pin 20c fixed to the anvil 20 so that the joint portion overlaps the PCB 3. . After joining, since the FPC 1 and the PCB 3 are joined together, the FPC positioning hole 6b and the PCB positioning hole 7b are simultaneously removed from the positioning pin 20c, thereby completing the taking out process.
 上記の通りこの発明は位置決めが簡単にできるので、作業者の手作業に向いている。しかし、本発明ではFPC1を差し込むときに位置決めピン20cで、FPC位置決め穴7bを変形させてしまい、位置決め精度が落ちるという危険を内包しているので、電極のピッチが0.3mm程度のFPCの接合に適した方法である。上記欠点を補うためにFPC位置決め穴6b、PCB位置決め穴7b、位置決めピン20cの数を増やしてもよい。 As described above, the present invention can be easily positioned, and is suitable for manual work by an operator. However, in the present invention, since the FPC positioning hole 7b is deformed by the positioning pin 20c when the FPC 1 is inserted, there is a risk that the positioning accuracy is lowered. Therefore, the FPC having an electrode pitch of about 0.3 mm is joined. This is a suitable method. In order to compensate for the above disadvantages, the number of FPC positioning holes 6b, PCB positioning holes 7b, and positioning pins 20c may be increased.
 なお、位置決めピン20cの材質は容易に曲がらない材料であれば、SUS304の様な硬度のある金属や、PEEK(商品名)のような硬度のある樹脂でも良い。また、位置決めピン20cの形状は円筒形状や角柱形状でも良い。さらに、ピンの径が細いために圧入が弱い場合は細い径の部分と太い径の部分との2つ以上の異径部分を持つ段付きピンとしても良い。また、上記段付きピン形状であれば固着方法は圧入以外でも可能となり、圧入の代わりにねじなどで固着しても良い。また、上記位置決めピン20cをアンビル20に対して相対的に上下に移動する手段を設け、位置決めピン20cをアンビル20の表面より下に沈めれば、接合したPCB3とFPC1をピンから容易に抜くことができる。 In addition, as long as the material of the positioning pin 20c is a material which does not bend easily, a hard metal such as SUS304 or a hard resin such as PEEK (trade name) may be used. Further, the positioning pin 20c may have a cylindrical shape or a prismatic shape. Further, when the press-fitting is weak because the pin diameter is thin, a stepped pin having two or more different diameter portions, a thin diameter portion and a thick diameter portion, may be used. Moreover, if it is the shape of the stepped pin, the fixing method can be other than press-fitting, and may be fixed with a screw or the like instead of press-fitting. Further, if means for moving the positioning pin 20c up and down relative to the anvil 20 is provided and the positioning pin 20c is submerged below the surface of the anvil 20, the joined PCB 3 and FPC 1 can be easily pulled out of the pin. Can do.
 接合プロセスが低温かつ短時間であるので、FPCの基材がポリイミドなどの耐熱性樹脂である必要がないため、PETなどの安い樹脂が基材に用いることが出来る。また、上記特徴に加え低荷重であるため、たとえば電極が金や銀やアルミニウム等でコートできれば基材がPETであるフィルム液晶パネルやタッチパネルとの接合に用いることができる。また、基材がガラスである液晶パネルやプラズマディスプレイや有機ELとの接合にも、電極が金や銀やアルミニウム等でコートできれば用いることができる。また、接合部にコネクタなどの立体部分がないため、上記フィルム液晶や、RFC、シートスイッチなどと組み合わせて、ウェラブルコンピュータなどの実現に寄与することが考えられる。 Since the bonding process is performed at a low temperature for a short time, the FPC base material does not need to be a heat-resistant resin such as polyimide, and therefore a cheap resin such as PET can be used as the base material. In addition to the above characteristics, since the load is low, for example, if the electrode can be coated with gold, silver, aluminum or the like, it can be used for bonding to a film liquid crystal panel or touch panel whose base material is PET. Also, it can be used for bonding to a liquid crystal panel, plasma display, or organic EL whose base material is glass if the electrode can be coated with gold, silver, aluminum, or the like. In addition, since there is no three-dimensional part such as a connector at the joint, it can be considered that it contributes to the realization of a wearable computer or the like in combination with the film liquid crystal, RFC, sheet switch or the like.
1 FPC
1a FPC基材
2 FPC電極
3 PCB
3a PCB基材
4 PCB電極
5 樹脂
5a 液状樹脂
6a FPCアライメント穴(アライメントマーク)
6b FPC位置決め穴
7a FPCアライメント穴(アライメントマーク)
7b PCB位置決め穴
10 超音波ホーン
10a ナール(ピラミッド)形状超音波ホーン
10b 凸型ブレード形状1列超音波ホーン
10c 凸型ブレード形状3列超音波ホーン
10d 凸型ブレード形状1列1条超音波ホーン
10e 凸型ブレード形状1列3条超音波ホーン
10f 凸型ブレード形状3列3条超音波ホーン
11 超音波ホーンヒータ
12 超音波振動子
13 荷重手段
20 アンビル
20a PCB固定用吸着穴
20b FPC固定用吸着穴
20c 位置決めピン
21 アンビルヒータ
22 荷重センサ
23 θ軸ステージ
24 X軸ステージ
25 Y軸ステージ
30 ニードル
31 シリンジ
32 シリンジ保持・上下手段
40 レンズ
40a レンズ
40b レンズ
41 CCDカメラ
41a CCDカメラ
41b CCDカメラ
50 FPC保持・供給手段
60 研磨砥石
61 研磨砥石保持手段
70 制御装置
71 超音波発信器
72 荷重制御装置
73a 超音波ホーン温度調整装置
73b アンビル温度調整装置
74 樹脂吐出制御装置
75 画像位置決め制御装置
76a FPC吸着センサ
76b FPC吸着センサ
76c PCB吸着センサ
77 位置制御装置
1 FPC
1a FPC base material 2 FPC electrode 3 PCB
3a PCB base material 4 PCB electrode 5 Resin 5a Liquid resin 6a FPC alignment hole (alignment mark)
6b FPC positioning hole 7a FPC alignment hole (alignment mark)
7b PCB positioning hole 10 Ultrasonic horn 10a Knurl (pyramid) shaped ultrasonic horn 10b Convex blade shape 1 row ultrasonic horn 10c Convex blade shape 3 row ultrasonic horn 10d Convex blade shape 1 row 1 row ultrasonic horn 10e Convex blade shape 1 row 3 row ultrasonic horn 10f Convex blade shape 3 row 3 row ultrasonic horn 11 Ultrasonic horn heater 12 Ultrasonic vibrator 13 Load means 20 Anvil 20a PCB fixing suction hole 20b FPC fixing suction hole 20c Positioning pin 21 Anvil heater 22 Load sensor 23 θ-axis stage 24 X-axis stage 25 Y-axis stage 30 Needle 31 Syringe 32 Syringe holding / up-and-down means 40 Lens 40a Lens 40b Lens 41 CCD camera 41a CCD camera 41b CCD camera 50 FPC holding / supply hand 60 grinding wheel 61 grinding wheel holding means 70 control device 71 ultrasonic transmitter 72 load control device 73a ultrasonic horn temperature adjustment device 73b anvil temperature adjustment device 74 resin discharge control device 75 image positioning control device 76a FPC adsorption sensor 76b FPC adsorption sensor 76c PCB adsorption sensor 77 Position control device

Claims (14)

  1.  加熱式超音波ホーンの先端の幅が0.001~0.5mmであることを特徴としていることと、先端形状が振動方向に直交していることと、断面形状が加圧面に垂直な凸型のブレード形状であることを特徴とする加熱式超音波ホーンを接合面に平行かつ、電極方向に対して平行な方向に加振するように配置してあることと、FPCと回路の電極を重ねてから所定の圧力で接合面に垂直に荷重をかけながら、加熱・加振することで、電極同士の金属接合することと、さらに、樹脂を用いてFPCとPCBの接着を行うことを特徴とする超音波接合方法。 The feature is that the width of the tip of the heated ultrasonic horn is 0.001 to 0.5 mm, the tip shape is orthogonal to the vibration direction, and the convex shape is perpendicular to the pressure surface. The heated ultrasonic horn characterized by the blade shape is arranged so as to vibrate in the direction parallel to the joint surface and parallel to the electrode direction, and the FPC and the circuit electrode are overlapped. It is characterized in that the electrodes are metal-bonded by heating and vibration while applying a load perpendicular to the bonding surface with a predetermined pressure, and further, FPC and PCB are bonded using resin. Ultrasonic bonding method.
  2.  請求項1の凸型のブレードを複数列1条、もしくは、1行複数条、もしくは、複数行複数条、に配置して、複数行×1条、もしくは、1行×複数条、もしくは、複数行×複数条の位置で接合することを特徴とする超音波接合方法。 The convex blades according to claim 1 are arranged in a plurality of rows, one row, a plurality of rows, or a plurality of rows, and a plurality of rows × 1 row, or 1 row × multiple rows, or a plurality of rows. An ultrasonic bonding method characterized in that bonding is performed at a position of rows x multiple stripes.
  3.  請求項1や請求項2を実施するために、荷重手段と、加振手段と、加熱手段を持つことを特徴とする超音波接合装置。 In order to implement Claim 1 and Claim 2, it has a load means, a vibration means, and a heating means, The ultrasonic bonding apparatus characterized by the above-mentioned.
  4.  請求項1や請求項2を実施するにあたり接合位置を相対移動させて電極上の、複数行×1条、もしくは、1行×複数条、もしくは、複数行×複数条の位置で接合することを特徴とする超音波接合方法。 In carrying out Claims 1 and 2, the joining positions are moved relative to each other, and joining at the position of a plurality of rows x one row, or one row x a plurality of rows, or a plurality of rows x a plurality of rows on the electrode. A characteristic ultrasonic bonding method.
  5.  請求項4を実施するために、荷重手段と加振手段と加熱手段とFPCと超音波ホーンを相対移動させる手段を持つことを特徴とする超音波接合装置。 In order to implement Claim 4, the ultrasonic joining apparatus characterized by having a load means, a vibration means, a heating means, an FPC, and an ultrasonic horn.
  6.  請求項1や請求項2や請求項4の実施時に、樹脂を接合面の接合長さの30~50%の長さであることを特徴としていることと、かつ接着に必要な体積になるような一定の厚みで事前に配置し、FPCと回路の電極を重ねてから所定の圧力で接合面に垂直に荷重をかけながら加振・加熱させるときに、樹脂を配置していなかった部分の金属接合と、樹脂を配置していた部分で樹脂を加熱溶融して電極間を排出する金属接合に時間差を設けて接合・接着することを特徴とする超音波接合方法。 In carrying out the first, second, and fourth aspects, the resin is characterized in that it has a length of 30 to 50% of the joining length of the joining surface, and the volume necessary for adhesion is obtained. The metal of the part where the resin was not placed when pre-arranged with a certain constant thickness and the FPC and the circuit electrodes were overlapped and then applied with a predetermined pressure and applied with a load perpendicular to the joint surface. An ultrasonic bonding method characterized in that bonding and bonding are performed with a time difference between bonding and metal bonding in which resin is heated and melted at a portion where the resin has been disposed and discharged between electrodes.
  7.  請求項1や請求項2や請求項4の実施後に、液状の常温硬化樹脂・嫌気性硬化樹脂・好湿性硬化樹脂や液状の熱可塑性樹脂・熱硬化性樹脂や液状のUV硬化性樹脂などを、電極同士の金属接合のあとに端子の端面より流し込むことにより、電極の金属接合を阻害しないでFPCとPCBを接着することを特徴とする超音波接合方法。 After the implementation of claim 1, claim 2 or claim 4, a liquid room temperature curable resin, anaerobic curable resin, a moisture curable resin, a liquid thermoplastic resin, a thermosetting resin, a liquid UV curable resin, etc. An ultrasonic bonding method characterized in that FPC and PCB are bonded without impeding metal bonding of electrodes by pouring from the end face of the terminal after metal bonding of the electrodes.
  8.  請求項7を実施するために、樹脂塗布の手段を持つことを特徴とする超音波接合装置。 In order to implement Claim 7, it has a means of resin application, An ultrasonic joining device characterized by things.
  9.  請求項1や請求項2や請求項4実施時に、超音波ホーンが摩耗したり、超音波ホーンに樹脂などが付着して汚れたりしても、接合の待機時間中に研磨砥石や紙ヤスリやラップフィルムなどを当て、そのうえで超音波ホーンを振動させて超音波ホーンの平面研磨や洗浄を行うことを特徴とする超音波接合方法。 Even when the ultrasonic horn is worn or the ultrasonic horn is adhered to the ultrasonic horn and contaminated when the first, second, or fourth embodiments are performed, a polishing grindstone, a paper file, An ultrasonic bonding method characterized by applying a lapping film or the like and then vibrating the ultrasonic horn to perform planar polishing or cleaning of the ultrasonic horn.
  10.  請求項11を実施させるための、研磨砥石や紙ヤスリやラップフィルムなどを配置する手段を持つことを特徴とする超音波接合装置。 An ultrasonic bonding apparatus having means for arranging a polishing grindstone, a paper file, a wrap film or the like for carrying out the method according to claim 11.
  11.  請求項1や請求項2や請求項4実施時に、FPCとPCBの位置決めを、FPCもしくはPCBの一方に2つ以上の位置決め用の穴をあけ、もう一方のFPCもしくはPCB上に、FPCとPCBを重ねたときに同位置に重なるように印刷やメッキで所定の位置に設けた、2つ以上の、この穴を通して観察できる大きさの位置決め用のマークを、この穴を通して顕微鏡やCCDカメラなどで観察しながら位置決めすることを特徴とする超音波接合方法。 At the time of implementation of claim 1, claim 2 or claim 4, positioning of FPC and PCB is performed by making two or more positioning holes in one of FPC or PCB, and FPC and PCB on the other FPC or PCB. Two or more positioning marks with a size that can be observed through this hole, which are provided at a predetermined position by printing or plating so that they overlap at the same position when they are stacked, are passed through this hole with a microscope or a CCD camera. An ultrasonic bonding method comprising positioning while observing.
  12.  請求項11を実施させるための観察手段と位置決め手段を持つことを特徴とする超音波接合装置。 An ultrasonic bonding apparatus comprising observation means and positioning means for carrying out the invention.
  13.  請求項1や請求項2や請求項4実施時に、FPCとPCBの位置決めを、FPCもしくはPCBの一方に、2つ以上の位置決め用の穴をあけ、もう一方のFPCもしくはPCB上に、FPCとPCBを重ねたときに、同位置に重なるように、2つ以上の上記と同じ大きさの位置決め穴をあけ、アンビル上に設けてある位置決めピンにその穴に差し込んで位置決めすることを特徴とする超音波接合方法。 At the time of implementation of claim 1, claim 2, or claim 4, positioning of the FPC and the PCB is performed by making two or more positioning holes on one side of the FPC or PCB, and on the other FPC or PCB, Two or more positioning holes having the same size as the above are formed so as to overlap at the same position when PCBs are stacked, and positioning is performed by inserting the positioning pins provided on the anvil into the holes. Ultrasonic bonding method.
  14.  請求項13を実施させるためのアンビル上に位置決めピンを設けてあることを特徴とする超音波接合装置。 An ultrasonic bonding apparatus characterized in that a positioning pin is provided on an anvil for carrying out the method according to claim 13.
PCT/JP2010/051061 2010-01-27 2010-01-27 Ultrasonic bonding method and ultrasonic bonding device WO2011092809A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051061 WO2011092809A1 (en) 2010-01-27 2010-01-27 Ultrasonic bonding method and ultrasonic bonding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051061 WO2011092809A1 (en) 2010-01-27 2010-01-27 Ultrasonic bonding method and ultrasonic bonding device

Publications (1)

Publication Number Publication Date
WO2011092809A1 true WO2011092809A1 (en) 2011-08-04

Family

ID=44318821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051061 WO2011092809A1 (en) 2010-01-27 2010-01-27 Ultrasonic bonding method and ultrasonic bonding device

Country Status (1)

Country Link
WO (1) WO2011092809A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150136839A1 (en) * 2012-08-03 2015-05-21 Murata Manufacturing Co., Ltd. Method for manufacturing electronic device
TWI628023B (en) * 2016-08-04 2018-07-01 日商東芝三菱電機產業系統股份有限公司 Ultrasonic bonding tool and ultrasonic bonding apparatus
US10090223B2 (en) 2016-04-27 2018-10-02 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing same
CN108668464A (en) * 2018-04-08 2018-10-16 深圳市比亚迪电子部品件有限公司 A kind of method and article construction of ultra-thin soft board and metal terminal ultrasonic bonding
JP2019005776A (en) * 2017-06-22 2019-01-17 イーグル工業株式会社 Ultrasonic joining method, ultrasonic joining jig, and joint structure
JP2019013959A (en) * 2017-07-06 2019-01-31 イーグル工業株式会社 Ultrasonic junction jig, junction structure and junction method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215268A (en) * 1982-06-09 1983-12-14 Hitachi Ltd Ultrasonic soldering device
JPH11121894A (en) * 1997-08-12 1999-04-30 Optrex Corp Connection structure of circuit board
JP2001127425A (en) * 1999-10-28 2001-05-11 Seiko Epson Corp Wiring board and bonding method thereof, mounting and bonding method of mounting component, electronic component, circuit board and electronic apparatus
JP2005072232A (en) * 2003-08-25 2005-03-17 D D K Ltd Connecting structure of flexible printed circuit board and hard substrate, and pushing fixture used therefor
JP2006024590A (en) * 2004-07-06 2006-01-26 Fujikura Ltd Method of ultrasonic bonding terminal of flexible wiring board
WO2008018160A1 (en) * 2006-08-07 2008-02-14 Nippon Avionics Co., Ltd. Method and apparatus for connecting printed wiring boards
JP2008066458A (en) * 2006-09-06 2008-03-21 Fujikura Ltd Connection structure of wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215268A (en) * 1982-06-09 1983-12-14 Hitachi Ltd Ultrasonic soldering device
JPH11121894A (en) * 1997-08-12 1999-04-30 Optrex Corp Connection structure of circuit board
JP2001127425A (en) * 1999-10-28 2001-05-11 Seiko Epson Corp Wiring board and bonding method thereof, mounting and bonding method of mounting component, electronic component, circuit board and electronic apparatus
JP2005072232A (en) * 2003-08-25 2005-03-17 D D K Ltd Connecting structure of flexible printed circuit board and hard substrate, and pushing fixture used therefor
JP2006024590A (en) * 2004-07-06 2006-01-26 Fujikura Ltd Method of ultrasonic bonding terminal of flexible wiring board
WO2008018160A1 (en) * 2006-08-07 2008-02-14 Nippon Avionics Co., Ltd. Method and apparatus for connecting printed wiring boards
JP2008066458A (en) * 2006-09-06 2008-03-21 Fujikura Ltd Connection structure of wiring board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150136839A1 (en) * 2012-08-03 2015-05-21 Murata Manufacturing Co., Ltd. Method for manufacturing electronic device
US10005150B2 (en) * 2012-08-03 2018-06-26 Murata Manufacturing Co., Ltd. Method for manufacturing electronic device
US10090223B2 (en) 2016-04-27 2018-10-02 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing same
TWI628023B (en) * 2016-08-04 2018-07-01 日商東芝三菱電機產業系統股份有限公司 Ultrasonic bonding tool and ultrasonic bonding apparatus
JP2019005776A (en) * 2017-06-22 2019-01-17 イーグル工業株式会社 Ultrasonic joining method, ultrasonic joining jig, and joint structure
JP2019013959A (en) * 2017-07-06 2019-01-31 イーグル工業株式会社 Ultrasonic junction jig, junction structure and junction method
CN108668464A (en) * 2018-04-08 2018-10-16 深圳市比亚迪电子部品件有限公司 A kind of method and article construction of ultra-thin soft board and metal terminal ultrasonic bonding

Similar Documents

Publication Publication Date Title
WO2011092809A1 (en) Ultrasonic bonding method and ultrasonic bonding device
KR101918106B1 (en) Apparatus and method for repairing bad elements
KR100905404B1 (en) Method and apparatus for connecting printed wiring boards
JP5426762B2 (en) Bonding tool, electronic component mounting apparatus, and method of manufacturing bonding tool
JP5334843B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP5847718B2 (en) Method for passively aligning an optoelectronic component assembly on a substrate
JP2010021216A (en) Method for bonding flexible printed board
JP2014072270A (en) Connection method
JP2007294826A (en) Device and method for thermal crimping component
JP2010092931A (en) Method and apparatus for manufacturing semiconductor device
JP2007073817A (en) Semiconductor device manufacturing method
JP5663764B2 (en) Joining device
JP2007115893A (en) Method and apparatus for thermocompression bonding
JP2003179101A (en) Bonding unit, method of manufacturing semiconductor device, and bonding method
JP5648200B2 (en) Joining method
WO2009150940A1 (en) Device and method for joining parts together
JP2011112517A (en) Probe card and method for manufacturing the same
JP2007173706A (en) Method for manufacturing display
JP2008235656A (en) Package of circuit board
JP2007036022A (en) Jointing structure and its manufacturing method
JPH08320498A (en) Terminal connecting structure of liquid crystal display panel
JP2019121774A (en) Wiring board with metal piece and manufacturing method of the same
JPH08340176A (en) Connecting method of lead wire
JP2005230845A (en) Ultrasonic joining apparatus, and method for producing electronic device
JP4830409B2 (en) Flexible substrate connection method, droplet discharge head, and droplet discharge apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP