WO2011091746A1 - 一种回程链路上行控制信道的处理方法和系统 - Google Patents

一种回程链路上行控制信道的处理方法和系统 Download PDF

Info

Publication number
WO2011091746A1
WO2011091746A1 PCT/CN2011/070607 CN2011070607W WO2011091746A1 WO 2011091746 A1 WO2011091746 A1 WO 2011091746A1 CN 2011070607 W CN2011070607 W CN 2011070607W WO 2011091746 A1 WO2011091746 A1 WO 2011091746A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
backhaul link
pucch
uplink subframe
subframe
Prior art date
Application number
PCT/CN2011/070607
Other languages
English (en)
French (fr)
Inventor
杨瑾
毕峰
梁枫
袁明
吴栓栓
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011091746A1 publication Critical patent/WO2011091746A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and system for processing a backhaul link uplink control channel. Background technique
  • the link between the base station (eNB) and the macro user equipment (M-UE) in the network is called a direct transmission link (Direct Link)
  • the link between the base station and the relay station is called a backhaul link
  • the link between the relay station and the relay user equipment (R-UE) is called an access link.
  • each radio frame is 10 ms and contains 10 subframes.
  • One sub-frame is 1 ms, divided into two slots of 0.5 ms, as shown in Figure 2.
  • the uplink physical resource is divided into RB (Resource Block).
  • the RB is defined as one slot (slot) in the time domain, and includes consecutive SC-FDMA symbols, where
  • the information that can be carried on the physical uplink control channel (PUCCH) of the M-UE is: Scheduling Request (SR), HARQ feedback information, that is, M-UE pair.
  • the eNB performs downlink ACK/NACK feedback and channel quality report, including CQI/PMI/RI (Channel Quality Indicator/Precoding Matrix Indicator/Rank Indication).
  • CQI/PMI/RI Channel Quality Indicator/Precoding Matrix Indicator/Rank Indication
  • M-UE based on The different conditions of the reported information are transmitted by the corresponding uplink control channel format, which are PUCCH format 1/la/lb and PUCCH format 2/2a/2b, respectively.
  • the physical resource allocation of the PUCCH channel is in units of RB pairs.
  • Each PUCCH physical channel occupies a pair of RB pairs, each of which occupies one RB and hops Hopping between slots.
  • the PUCCH format 1/la/lb channel structure is shown in Figure 4.
  • each subframe contains 14 SC-FDMA (Orthogonal Frequency Division Multiplexing) symbols, which are divided into 2 slots, and each slot includes 7 SC-FDMA symbols.
  • each sub-frame contains 12 SC-FDMA symbols, which are divided into 2 slots, each slot includes 6 SC-FDMA symbols, and is performed between the slots.
  • the RS signals are mapped on #3, #8, #9 symbols.
  • each subframe contains 14 SC-FDMA symbols, which are divided into 2 slots, each slot includes 7 SC-FDMA symbols, and frequency hopping is performed between the slots, where # 0, #2, #3, #4, #6, #7, #9, #10, #11, #13 symbols carry channel quality 4 reports, the remaining #1, #5, #8, #12
  • the pilot signal is mapped on the symbol as shown in Figure 5 (a).
  • each subframe contains 12 SC-FDMA symbols, which are divided into 2 slots, each slot includes 6 SC-FDMA symbols, and frequency hopping is performed between the slots, where # 0, #1, #2, #4, #5, #6, #7, #8, #10, #11 symbols carry the channel quality report, and the remaining #3, #9 symbols map the RS signal, as shown in the figure 5 (b) is shown.
  • the M-UE On Direct Link, the M-UE reports on the generated ACK/NACK information or channel quality. Line coding, frequency domain extension, etc.
  • the eNB configures the timing advance indicating the M-UE, and the M-UE is configured according to the timing advance, in relation to the received
  • the start position of the Direct Link downlink subframe is advanced by ⁇ 7 ⁇ seconds to start the transmission of the uplink subframe.
  • the time unit 7 ⁇ 1 ⁇ 15 ( ⁇ ) ⁇ 2 () 48 ) seconds, as shown in Figure 6.
  • the subframe in which the RN performs Backhaul Link uplink transmission is called the Backhaul Link uplink subframe.
  • the corresponding subframe used to receive the Access Link uplink signal is called the Access Link uplink subframe. Since the RN cannot simultaneously perform the uplink connection of the Access Link and the uplink transmission of the Backhaul Link, the RN needs a certain guard interval GP (Guard Period) between the signal reception/transmission and the transmission/reception of the Access Link and the Backhaul Link.
  • GP Guard Period
  • the number of symbols that the RN can actually use for uplink transmission on the Backhaul Link uplink subframe is smaller than the number of symbols included in one subframe, that is, the number of available symbols is less than 14 in the normal cyclic prefix (Normal CP), and the extended cyclic prefix ( Extended) CP ) is less than 12. Therefore, the channel structure of the physical uplink control channel (R-PUCCH) of the Backhaul Link is different from that of the PUCCH. The difference of the physical uplink control channel structure makes the processing of the uplink control channel of the Backhaul Link not be performed according to the Direct Link method. Summary of the invention
  • the main object of the present invention is to provide a method and system for processing a backhaul link uplink control channel, which can effectively transmit uplink control information on a backhaul link and improve transmission efficiency.
  • a backhaul link uplink control channel processing method comprising: the relay station RN receiving configuration information for indicating Backhaul Link uplink information transmission, The configuration of the Backhaul Link uplink subframe configuration, the backhaul Link uplink subframe relative to the Backhaul Link downlink subframe, and the Backhaul Link physical uplink control channel R-PUCCH resource configuration;
  • the uplink control information is processed by using the R-PUCCH channel structure corresponding to the received configuration information, and the uplink control information is sent to the base station eNB according to the configured timing relationship on the allocated Backhaul Link resources.
  • the R-PUCCH includes a guard time interval GP and a valid symbol, and the GP is used for receiving/transmitting or transmitting/receiving state transitions of the RN.
  • the valid symbol refers to an SC-FDMA symbol or an OFDM symbol, and is used to carry uplink control information UCI and a guide.
  • Frequency R When using the normal cyclic prefix Normal CP, the R-PUCCH channel structure is:
  • the #0 symbol in the subframe is used as the GP, and the #1-#13 symbol is the valid symbol of the R-PUCCH.
  • R- The #1 symbol of the PUCCH is aligned with the #1 symbol of the macro cell uplink subframe when the eNB receives, so that the 13 valid symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively #1##13 in the eNB and the uplink subframe.
  • the #13 symbol in the subframe is used as the GP, and the #0-#12 symbol is the valid symbol of the R-PUCCH.
  • the #0 symbol of the R-PUCCH is aligned with the #0 symbol of the macro cell uplink subframe when the eNB receives, so that the 13 valid symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively in the eNB and the #0- in the uplink subframe. #12 ⁇ alignment;
  • the sub-frame starts as a GP, called GP1, the length is less than the #0 symbol length, followed by the 13 valid symbols of the R-PUCCH, the #1-#13 symbol, and the end of the sub-frame is a GP, called GP2, two The sum of the lengths of the segments GP is equal to the length of the #0 symbol; according to the configured timing relationship of the Backhaul Link uplink subframe relative to the received Backhaul Link downlink subframe, the #1 symbol of the R-PUCCH is received by the eNB and the macro #1 symbol alignment of the cell uplink subframe, making Backhaul Link The 13 valid symbols of the R-PUCCH in the uplink subframe are respectively aligned with the #1-#13 symbols in the uplink subframe;
  • the sub-frame starts with a GP, called GP1, whose length is less than #13 symbol length, followed by 13 valid symbols of R-PUCCH, #0-#12 symbols, and a GP at the end of the last sub-frame, called GP2.
  • the sum of the lengths of the two GPs is equal to the length of the #13 symbol; according to the configured timing relationship of the Backhaul Link uplink subframe relative to the received Backhaul Link downlink subframe, the #0 symbol of the R-PUCCH is received by the eNB.
  • the #0 symbol alignment of the macro cell uplink subframe is such that the 13 valid symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively aligned with the #0-#12 symbols in the uplink subframe.
  • the uplink control information to be reported is the ACK/NACK information
  • the #2, #3, #4, #9, #10, and #11 symbols in the valid symbol are used to map the RS;
  • the #1, #5, #8, and #12 symbols in the symbol are used to map the RS.
  • the R-PUCCH includes a GP and a valid symbol, and the GP is used for receiving/transmitting or transmitting/receiving state transitions of the RN, and the valid symbol refers to an SC-FDMA symbol or an OFDM symbol, and is used for carrying UCI and RS;
  • the R-PUCCH channel structure is:
  • the #0 symbol in the subframe is used as the GP, and the #1-#11 symbol is the valid symbol of the R-PUCCH.
  • R- The #1 symbol of the PUCCH is aligned with the #1 symbol of the macro cell uplink subframe when the eNB receives, so that the 11 effective symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively in the eNB and the #1-#11 in the uplink subframe.
  • the #11 symbol in the subframe is used as the GP
  • the #0-#10 symbol is the valid symbol of the R-PUCCH.
  • the #0 symbol of the R-PUCCH is aligned with the #0 symbol of the macro cell uplink subframe when the eNB receives, so that the 11 effective symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively in the eNB and the #0- in the uplink subframe.
  • the subframe starts as a GP, called GP1, the length is less than the #0 symbol length, then the 11 valid symbols of the R-PUCCH, the #1-#11 symbol, and the last subframe is a GP, called GP2.
  • the sum of the lengths of the two GPs is equal to the length of the #0 symbol; according to the configured timing relationship of the Backhaul Link uplink subframe relative to the received Backhaul Link downlink subframe, the #1 symbol of the R-PUCCH is received by the eNB.
  • the #1 symbol alignment of the macro cell uplink subframe is such that the 11 effective symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively aligned with the #1-#11 symbols in the uplink subframe;
  • the subframe starts as a GP, called GP1, the length is less than #11 symbol length, then is 11 valid symbols of R-PUCCH, #0-#10 symbols, and the last subframe is a GP, called GP2.
  • the sum of the lengths of the two GPs is equal to the length of the #11 symbol; according to the configured timing relationship of the Backhaul Link uplink subframe with respect to the received Backhaul Link downlink subframe, the #0 symbol of the R-PUCCH is received by the eNB.
  • the #0 symbol alignment of the macro cell uplink subframe is such that the 11 effective symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively #0-#10 symbol pair 3C in the eNB and the uplink subframe.
  • the uplink control information to be reported is ACK/NACKK information
  • the #2, #3, #8, and #9 symbols in the symbol are used to map the RS
  • the uplink control information to be up to 4 is CQI/PMI/
  • the #3 and #9 symbols in the symbol are used to map the RS.
  • the configuration is obtained by one or more of the following parameters: Timing Offset Parameter Timing Advance Parameter, Propagation Delay Parameter - ⁇ , and ⁇ , ⁇ ⁇ R-TA takes a positive integer.
  • the parameter is indicated by the eNB by signaling configuration RN, or set by the system to a fixed value, or determined by the RN.
  • the process of processing the uplink control information by using the R-PUCCH structure includes: advancing with respect to a start position of a downlink subframe relative to the received Backhaul Link (A ⁇ A _U x:r s seconds as a Backhaul Link uplink) The start time of the frame, and,
  • the process of processing the uplink control information by using the R-PUCCH structure includes: advancing the start position of the downlink subframe relative to the received Backhaul Link as the start time of the Backhaul Link uplink subframe, and
  • the process of processing the uplink control information by using the R-PUCCH structure includes: advancing a second as a start time of the Backhaul Link uplink subframe with respect to a start position of the received downlink subframe of the Backhaul Link, and
  • the process of processing the uplink control information by using the R-PUCCH structure includes: advancing ⁇ R-TA X ⁇ seconds as the start of the Backhaul Link uplink subframe with respect to the start position of the received Backhaul Link downlink subframe.
  • the #0-#13 symbol of the R-PUCCH is aligned with the #0-#13 symbol of the uplink subframe of the macro cell when the eNB receives, where the #0 symbol is used as the GP;
  • the #0-#11 symbol of the R-PUCCH is aligned with the #0-#11 symbol of the macro cell uplink subframe when the eNB receives, where the #0 symbol is used as the GP.
  • the process of processing the uplink control information by using the R-PUCCH structure includes: advancing ⁇ R-TA X ⁇ seconds as the start of the Backhaul Link uplink subframe with respect to the start position of the received Backhaul Link downlink subframe.
  • the #0-#13 symbol of the R-PUCCH is aligned with the #0-#13 symbol of the uplink subframe of the macro cell when the eNB receives, where the #13 symbol is used as the GP;
  • a backhaul link uplink control channel processing system comprising a connected configuration information receiving unit, an uplink control information processing unit, and a transmitting unit;
  • the configuration information receiving unit is configured to receive configuration information indicating that the Backhaul Link uplink information is transmitted, including a Backhaul Link uplink subframe, a backhaul Link uplink subframe, a timing relationship of the Backhaul Link downlink subframe, and a Backhaul Link physical uplink. And the received configuration information is sent to the uplink control information processing unit; the uplink control information processing unit is configured to use the R-PUCCH channel structure pair corresponding to the received configuration information.
  • the uplink control information is subjected to bearer processing, and the uplink control information that completes the bearer processing is sent to the transmitting unit;
  • the transmitting unit is configured to: on the corresponding resource of the allocated Backhaul Link, transmit the received uplink control information of the completed bearer processing according to the configured timing relationship.
  • the uplink control information processing unit includes a timing relationship configuration unit, a frame structure configuration unit, and a resource configuration unit;
  • the timing relationship configuration unit is configured to receive timing relationship configuration information of the Backhaul Link uplink subframe relative to the Backhaul Link downlink subframe, and send the frame structure requirement corresponding to the timing relationship configuration information to the frame structure configuration unit;
  • the resource configuration unit is configured to receive resource configuration information of the Backhaul Link physical uplink control channel, and send the frame structure requirement corresponding to the resource configuration information to the frame structure configuration unit;
  • the frame structure configuration unit is configured to receive Backhaul Link uplink subframe configuration information, configuration information from a timing relationship configuration unit, and a resource configuration unit, and use an R-PUCCH channel structure corresponding to the received configuration information to uplink control.
  • the information carries the bearer processing, and sends the uplink control information that completes the bearer processing to the transmitting unit.
  • the R-PUCCH includes a GP and a valid symbol, and the GP is used for receiving/transmitting or transmitting/receiving state transitions of the RN, and the effective symbol refers to an SC-FDMA symbol or an OFDM symbol, and is used for carrying uplink control.
  • the UCI and the pilot RS are used; when the normal cyclic prefix Normal CP is used, the R-PUCCH channel structure is:
  • the #0 symbol in the subframe is used as the GP, and the #1-#13 symbol is the valid symbol of the R-PUCCH.
  • R- The #1 symbol of the PUCCH is aligned with the #1 symbol of the macro cell uplink subframe when the eNB receives, so that the 13 valid symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively #1##13 in the eNB and the uplink subframe.
  • the #13 symbol in the subframe is used as the GP, and the #0-#12 symbol is the valid symbol of the R-PUCCH.
  • the #0 symbol of the R-PUCCH is aligned with the #0 symbol of the macro cell uplink subframe when the eNB receives, so that the 13 valid symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively in the eNB and the #0- in the uplink subframe. #12 ⁇ alignment;
  • the sub-frame starts as a GP, called GP1, the length is less than the #0 symbol length, followed by the 13 valid symbols of the R-PUCCH, the #1-#13 symbol, and the end of the sub-frame is a GP, called GP2, two The sum of the lengths of the segments GP is equal to the length of the #0 symbol.
  • the #1 symbol of the R-PUCCH is received by the eNB and the macro. Aligning the #1 symbols of the uplink subframe of the cell, so that the 13 valid symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively aligned with the #1-#13 symbols in the uplink subframe;
  • the sub-frame starts with a GP, called GP1, whose length is less than #13 symbol length, followed by 13 valid symbols of R-PUCCH, #0-#12 symbols, and a GP at the end of the last sub-frame, called GP2.
  • the sum of the lengths of the two GPs is equal to the length of the #13 symbol.
  • the #0 symbol of the R-PUCCH is received by the eNB.
  • the #0 symbol of the macro cell uplink subframe is aligned, so that the 13 valid symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively in the eNB and the uplink sub-frame.
  • the #0-#12 symbols in the frame are aligned.
  • the uplink control information to be reported is the ACK/NACK information
  • the #2, #3, #4, #9, #10, and #11 symbols in the valid symbol are used to map the RS;
  • the #1, #5, #8, and #12 symbols in the symbol are used to map the RS.
  • the R-PUCCH includes a GP and a valid symbol, and the GP is used for receiving/transmitting or transmitting/receiving state transitions of the RN, and the valid symbol refers to an SC-FDMA symbol or an OFDM symbol, and is used for carrying UCI and RS;
  • the R-PUCCH channel structure is:
  • the #0 symbol in the subframe is used as the GP, and the #1-#11 symbol is the valid symbol of the R-PUCCH.
  • R- The #1 symbol of the PUCCH is aligned with the #1 symbol of the macro cell uplink subframe when the eNB receives, so that the 11 effective symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively in the eNB and the #1-#11 in the uplink subframe.
  • the #11 symbol in the subframe is used as the GP
  • the #0-#10 symbol is the valid symbol of the R-PUCCH.
  • the #0 symbol of the R-PUCCH is aligned with the #0 symbol of the macro cell uplink subframe when the eNB receives, so that the 11 effective symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively in the eNB and the #0- in the uplink subframe.
  • #10 symbol alignment ;
  • the subframe starts as a GP, called GP1, the length is less than the #0 symbol length, then the 11 valid symbols of the R-PUCCH, the #1-#11 symbol, and the last subframe is a GP, called GP2.
  • the sum of the lengths of the two GPs is equal to the length of the #0 symbol.
  • the #1 symbol of the R-PUCCH is received by the eNB.
  • the #1 symbol alignment of the macro cell uplink subframe is such that the 11 effective symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively aligned with the #1-#11 symbols in the uplink subframe;
  • the sub-frame starts with a GP, called GP1, and the length is less than #11 symbol length, after It is 11 valid symbols of R-PUCCH, #0-#10 symbols, and the end of the last subframe is a GP, called GP2.
  • the sum of the lengths of the two GPs is equal to the length of #11 symbol, according to the configured Backhaul Link uplink.
  • the #0 symbol of the R-PUCCH is aligned with the #0 symbol of the macro cell uplink subframe when the eNB receives, so that the R-PUCCH in the Backhaul Link uplink subframe
  • the 11 valid symbols are aligned at the eNB with the #0-#10 symbols in the uplink subframe, respectively.
  • the uplink control information to be reported is ACK/NACKK information
  • the #2, #3, #8, and #9 symbols in the symbol are used to map the RS
  • the uplink control information to be up to 4 is CQI/PMI/
  • the #3 and #9 symbols in the symbol are used to map the RS.
  • the uplink control information processing method and system of the present invention can ensure the smooth transmission of the uplink information on the Backhaul Link and improve the transmission efficiency.
  • 1 is a schematic diagram of a structure of a relay network
  • FIG. 2 is a schematic diagram of a radio frame structure of an LTE system
  • FIG. 3 is a schematic diagram of a resource RB of an LTE system
  • FIG. 4 is a schematic structural diagram of a PUCCH format 1/la/lb channel in an LTE system
  • FIG. 5 is a schematic structural diagram of a PUCCH format 2/2a/2b channel in an LTE system
  • FIG. 6 is a schematic diagram of timing relationship between uplink and downlink subframes in an LTE system
  • FIG. 7 is a schematic structural diagram of a R-PUCCH channel in a normal CP according to the present invention.
  • FIG. 8 is a schematic structural diagram of an R-PUCCH channel when the Extended CP of the present invention is used;
  • FIG. 9 is a schematic diagram of a processing manner of an uplink control channel of a backhaul link according to Embodiment 1 of the present invention
  • FIG. 10 is a schematic diagram of a processing manner of an uplink control channel of a backhaul link according to Embodiment 2 of the present invention
  • FIG. 11 is a schematic diagram of a backhaul link according to Embodiment 3 of the present invention
  • FIG. 12 is a schematic diagram of a method for processing an uplink control channel of a backhaul link according to Embodiment 4 of the present invention
  • FIG. 9 is a schematic diagram of a processing manner of an uplink control channel of a backhaul link according to Embodiment 1 of the present invention
  • FIG. 10 is a schematic diagram of a processing manner of an uplink control channel of a backhaul link according to Embodiment 2 of the present invention
  • FIG. 11 is a schematic diagram of a backhaul link according to Embodiment 3 of the present invention
  • FIG. 12
  • FIG. 13 is a schematic diagram of a method for processing an uplink control channel of a backhaul link according to Embodiment 5 of the present invention
  • 14 is a schematic diagram of a processing flow of an uplink control channel of a backhaul link according to the present invention
  • FIG. 15 is a schematic diagram of a backhaul link uplink control channel processing system according to an embodiment of the present invention. detailed description
  • the eNB configures the corresponding R-PUCCH resource for the RN, and the physical resource corresponding to each R-PUCCH channel is a pair of RB pairs (RB Pairs), and each slot of the uplink subframe occupies one RB, and the RB pair between slots It can be configured for frequency hopping or no frequency hopping.
  • the RN cannot perform the uplink transmission of the Access Link and the uplink transmission of the Backhaul Link at the same time. Therefore, it is necessary to convert between the receive and transmit and receive/receive states of the Access Link and the Backhaul Link, that is, in the Access Link uplink subframe and the configured.
  • a certain GP needs to be set between the Backhaul Link uplink subframes.
  • the setting manner and length of the GP are related to the configuration of the Backhaul Link uplink subframe, the time required for the RN state transition, and the transmission timing relationship of the Backhaul Link uplink subframe, which are further explained in the following embodiments.
  • the RN uses the corresponding R-PUCCH channel structure for uplink control.
  • the information is carried and processed and sent upstream to the cNB.
  • the RN needs to start in the Backhaul Link uplink subframe.
  • the position and end positions respectively set a GP for the conversion of the receive/transmit and send/receive states, as shown in Figures 7(c) and 7(d).
  • the R-PUCCH channel structure shown in Figure 7 (c) is applicable to the case where the Backhaul Link uplink subframe timing relationship indicated by the system configuration is the delay offset offset, that is, the RN is downlinked with respect to the received Backhaul Link according to the system configuration indication.
  • the start position of the subframe with a certain timing advance as the start time of the Backhaul Link uplink subframe, so that the 13 valid symbols transmitted in the Backhaul Link uplink subframe are received by the eNB. Align with the #1-#13 symbols in the macro cell uplink subframe.
  • the RN uses the structure shown in Figure 7 (c) to report the report.
  • the R-PUCCH channel structure shown in Figure 7 (d) is applicable to the case where the Backhaul Link uplink subframe timing relationship indicated by the system configuration is an early offset offset, that is, the RN is in accordance with the system configuration indication in relation to the received Backhaul Link downlink subframe start position, with a certain timing advance as the starting time of the Backhaul Link uplink subframe, so that the 13 valid symbols transmitted in the Backhaul Link uplink subframe are received by the eNB and the macro cell uplink subframe. #0-#12 Symbol alignment.
  • G GP
  • the first valid symbol in the Backhaul Link uplink subframe is transmitted, that is, the #0 symbol, so that the R-PUCCH#
  • the RN completes the transmission/reception state transition in GP 2 , then the R- in the Backhaul Link uplink subframe
  • the 13 valid symbols of the PUCCH are aligned with the #0-#12 symbols in the uplink subframe at the eNB, respectively.
  • the configured multiple consecutive Backhaul Link uplinks are configured.
  • the RN needs to perform the transmit/receive state transition in the first uplink subframe, and the RN needs to perform the transmit/receive state transition in the last uplink subframe, and the corresponding R-PUCCH channel structure is as shown in FIG. 7(a) and 7 (b).
  • the R-PUCCH channel structure shown in Figure 7 (a) is applicable to the Backhaul Link uplink subframe in which the RN needs to perform the transmit/transmit state transition, and the RN is in the start position of the downlink subframe relative to the received Backhaul Link according to the system configuration indication.
  • the 13 valid symbols sent in the Backhaul Link uplink subframe are aligned with the #1-#13 symbols in the macro cell uplink subframe when the eNB receives the eNB. .
  • the start position of the Backhaul Link downlink subframe is 7 ⁇ - ⁇ ⁇ second as the start time of the Backhaul Link uplink subframe, where the propagation delay parameter ⁇ is caused by the spatial distance between the RN and the eNB.
  • the timing advance associated with the signal propagation time which is a positive integer, is indicated by the eNB through signaling configuration.
  • the system configures a continuous multiple uplink subframe as the Backhaul Link uplink subframe.
  • the RN uses the structure shown in Figure 7 (a) to process the uplink control information to be reported.
  • ⁇ > ⁇ seconds is used as the start time of the Backhaul Link uplink subframe, and the #0 symbol is used as the GP for the RN.
  • the conversion of the receive/transmit status is a valid symbol of the R-PUCCH starting from the #1 symbol, so that the #1 symbol of the R-PUCCH is aligned with the #1 symbol of the macro cell uplink subframe when the eNB receives, and then R - The effective symbol of the PUCCH, then the 13 valid symbols of the R-PUCCH in the Backhaul Link uplink subframe are aligned with the #1-#13 symbols in the uplink subframe respectively.
  • the R-PUCCH channel structure shown in Figure 7 (b) is applicable to the Backhaul Link uplink subframe in which the RN needs to perform the transmit/receive state transition, and the RN is in the start position of the downlink subframe relative to the received Backhaul Link according to the system configuration indication.
  • the 13 valid symbols sent in the Backhaul Link uplink subframe are aligned with the #0-#12 symbols in the macro cell uplink subframe when the eNB receives the eNB. .
  • the system configures a plurality of consecutive uplink subframes as Backhaul Link uplink subframes, and for the last Backhaul Link uplink subframe, the RN uses the structure shown in Figure 7 (b) to process the uplink control information to be reported, and carries the uplink control information.
  • the allocated R-PUCCH resource is preceded by ⁇ > ⁇ seconds with respect to the start position of the received Backhaul Link downlink subframe.
  • the start time of the Backhaul Link uplink subframe, the #13 symbol at the end of the subframe is used as the GP for the conversion of the RN's transmit/receive state, and the sub-frame is the valid symbol of the R-PUCCH from the #0 symbol, so that the R-PUCCH
  • the #0 symbol is aligned with the #0 symbol of the macro cell uplink subframe when the eNB receives, and then is the effective symbol of the R-PUCCH, until the #12 symbol, #13 is the GP, and the Backhaul Link uplink subframe is R-
  • the 13 valid symbols of the PUCCH are aligned with the #0-#12 symbols in the uplink subframe, respectively, by the eNB.
  • the RN needs to be here.
  • the start position and the end position in the Backhaul Link uplink subframe are respectively set to convert a GP for receiving/transmitting and transmitting/receiving states, as shown in Figs. 8(c) and 8(d).
  • the R-PUCCH channel structure shown in Figure 8 (c) is applicable to the case where the Backhaul Link uplink subframe timing relationship indicated by the system configuration is the delay offset offset, that is, the RN is downlinked with respect to the received Backhaul Link according to the system configuration indication.
  • the RN uses the structure shown in Figure 8 (c) to report it.
  • the first valid symbol in the Backhaul Link uplink subframe is transmitted, ie the #1 symbol, so that R-PUCCH
  • the #1 symbol is aligned with the #1 symbol of the macro cell uplink subframe when the eNB receives, and then is the effective symbol of the R-PUCCH
  • the R-PUCCH channel structure shown in FIG. 8(d) is applicable to the case where the Backhaul Link uplink subframe timing relationship indicated by the system configuration is an early offset offset, that is, the RN is in accordance with the system configuration indication in relation to the received Backhaul Link downlink subframe start position, with a certain timing advance as the start time of the Backhaul Link uplink subframe, so that the 11 valid symbols transmitted in the Backhaul Link uplink subframe are received by the eNB and the macro cell uplink subframe. #0-#10 Symbol alignment.
  • the settings of the two GPs contained in the Backhaul Link uplink subframe are:
  • G S f ⁇ xT s seconds.
  • Gp 2 the last valid symbol in the subframe.
  • the length is equal to #11 length, that is, ⁇ 1 symbol length - ) XT S seconds.
  • the first valid symbol in the Backhaul Link uplink subframe is transmitted, that is, the #0 symbol, so that the R-PUCCH#
  • the 0 symbol is aligned with the #0 symbol of the macro cell uplink subframe when the eNB receives, and then is the effective symbol of the R-PUCCH, and finally the second segment is set at the end of the uplink subframe.
  • GP denoted as GP 2
  • GP 2 (#11 symbol length - N. ffset ) xT s seconds
  • ie GP 2 (2560 - N. ffset ) xT s
  • RN completes the transmit /receive state in GP 2
  • the 11 valid symbols of the R-PUCCH in the Backhaul Link uplink subframe are aligned with the #0-#10 symbols in the uplink subframe respectively.
  • the configured multiple consecutive Backhaul Link uplinks are configured.
  • the RN needs to perform the transmit/receive state transition in the first uplink subframe, and the RN needs to perform the transmit/receive state transition in the last uplink subframe, and the corresponding R-PUCCH channel structure is as shown in FIG. 8(a) and 8 (b) is shown.
  • the R-PUCCH channel structure shown in Figure 8 (a) is applicable to the Backhaul Link uplink subframe in which the RN needs to perform the transmit/transmit state transition, and the RN is in the start position of the downlink subframe relative to the received Backhaul Link according to the system configuration indication.
  • the timing advance is used as the start time of the Backhaul Link uplink subframe, so that the 11 valid symbols sent in the Backhaul Link uplink subframe are aligned with the #1-#11 symbols in the macro cell uplink subframe when the eNB receives the eNB. .
  • the timing relationship of the Backhaul Link uplink subframe is earlier than the start position of the Backhaul Link downlink subframe received by the RN by ⁇ 7 ⁇ seconds as the Backhaul Link uplink subframe. The beginning of the moment.
  • the system configures a plurality of consecutive uplink subframes as Backhaul Link uplink subframes.
  • the RN uses the structure shown in Figure 8 (a) to process the uplink control information to be reported.
  • the start position of the downlink subframe relative to the received Backhaul Link is advanced ⁇ > ⁇ seconds as the start time of the Backhaul Link uplink subframe, and the #0 symbol is used as the GP for the RN.
  • the conversion of the receive/transmit status is a valid symbol of the R-PUCCH from the #1 symbol, so that the #1 symbol of the R-PUCCH is aligned with the #1 symbol of the macro cell uplink subframe when the eNB receives, and then R - the effective symbol of the PUCCH, then the 11 valid symbols of the R-PUCCH in the Backhaul Link uplink subframe are
  • the eNBs are respectively aligned with the #1-#11 symbols in the uplink subframe.
  • the R-PUCCH channel structure shown in Figure 8 (b) is applicable to the Backhaul Link uplink subframe in which the RN needs to perform the transmit/receive state transition, and the RN according to the system configuration indication is in the start position relative to the received Backhaul Link downlink subframe.
  • the 11 valid symbols sent in the Backhaul Link uplink subframe are aligned with the #0-#10 symbols in the macro cell uplink subframe when the eNB receives the eNB. .
  • the timing relationship of the Backhaul Link uplink subframe is the start time of the Backhaul Link uplink subframe relative to the start position of the Backhaul Link downlink subframe received by the RN.
  • the uplink subframe is a Backhaul Link uplink subframe.
  • the RN processes the uplink control information to be reported by using the structure shown in Figure 8 (b), and carries the uplink control information to be allocated on the allocated R-PUCCH resource.
  • ⁇ > ⁇ seconds is used as the start time of the Backhaul Link uplink subframe
  • the #11 symbol at the end of the subframe is used as the GP for the transmission/reception of the RN.
  • the state transition is a valid symbol of the R-PUCCH from the #0 symbol in the subframe, so that the #0 symbol of the R-PUCCH is aligned with the #0 symbol of the macro cell uplink subframe when the eNB receives, and then R- PUCCH is valid Numbers until the symbol # 10, # 11 to the GP, the Backhaul Link uplink sub-frame R-PUCCH effective symbol of 11 respectively aligned with uplink subframes # 0- # 10 symbols eNB.
  • the start position of the Backhaul Link downlink subframe received relative to the RN is advanced by -TA X ⁇ seconds as the start time of the Backhaul Link uplink subframe, where the timing advance is o for Figure 7 (c), 7 (d), Figure 8 (c), 8 (d), Backhaul Link uplink subframe transmission timing advancement has different methods, specifically related to one or more of the following parameters, including: ⁇ R-TA , Offset , ⁇ .
  • the timing offset parameter A 6t is a parameter related to the transmission/reception or transmission/transmission time of the RN , and is a positive integer. The determination of the value may be indicated by the eNB by signaling configuration, or the system may set a certain value, or the RN may select a certain value.
  • the timing advance parameter refers to the timing advance of starting to transmit the Backhaul Link uplink subframe with respect to the start position of the Backhaul Link downlink subframe received by the RN.
  • the RN uses the corresponding method to process the R-PUCCH channel according to different configurations of the above parameters of the system. The following description will be made by taking FIG. 9 to FIG.
  • FIG. 9 is a schematic diagram of a processing manner of an uplink control channel of a backhaul link according to Embodiment 1 of the present invention.
  • the system uses Normal CP, which is a fixed value set by the system, which is a positive integer.
  • the system configures the Backhaul Link uplink subframe to transmit in an offset manner.
  • the eNB indicates the RN propagation delay parameter N R- in high layer signaling or other signaling manner.
  • the eNB configures a subframe as a Backhaul uplink subframe, and the adjacent uplink subframes are Access Link uplink subframes, and the RN pair is configured as an R-PUCCH resource for the RN in the uplink subframe, and the RB pair jumps between the slots. Frequency, used to carry uplink control information.
  • the RN processes the uplink control information to be reported in the Backhaul Link uplink subframe by using the R-PUCCH channel structure shown in Figure 7 (d), and carries the RB pair allocated to the R-PUCCH.
  • Advancing R-TA + Ss xT s seconds relative to the start position of the received Backhaul Link downlink subframe as the start time of the Backhaul Link uplink subframe, that is, the start of the first segment GP in the subframe, and ⁇ xT s seconds, used for the conversion of the RN's receive/transmit status. After this GP, the first valid symbol in the Backhaul Link uplink subframe is transmitted.
  • the #0 symbol causes the #0 symbol of the R-PUCCH to be aligned with the #0 symbol of the macro cell uplink subframe when the eNB receives, followed by the effective symbol of the R-PUCCH, and finally the second at the end of the uplink subframe.
  • the 13 valid symbols of the R-PUCCH are aligned with the #0-#12 symbols in the uplink subframe respectively.
  • the RN Map the ACK/NACK information bearer to the #0, #1, #5, #6, #7, #8, #12 symbols of the configured Backhaul Link uplink subframe, #2, #3, #4, # 9.
  • the #10 and #11 symbols are used to map the RS.
  • the uplink control information to be reported is CQI/PMI/RI information
  • the RN maps the CQI/PMI/RI information bearer to #0, #2, #3, #4, #6, #7, #9, #10, #11 symbols, #1, #5, #8, #12 symbols of the configured Backhaul Link uplink subframes Map the RS.
  • FIG. 10 is a schematic diagram of a processing manner of an uplink control channel of a backhaul link according to Embodiment 2 of the present invention.
  • the system uses Extended CP, which is a fixed value set for the system, which is a positive integer.
  • ffs 500 the system configures the Backhaul Link uplink subframe to transmit in a delayed offset manner, and the eNB uses high-level signaling. Or other signaling means to indicate the RN propagation delay parameter ⁇ .
  • the eNB configuration indicates that the RN is a Backhaul uplink subframe, and the adjacent uplink subframe is an Access Link uplink subframe, and the RN pair is configured as an R-PUCCH resource in the uplink subframe, and the RB pair is in the slot. Frequency hopping, used to carry uplink control information.
  • the RN processes the uplink control information to be reported in the Backhaul Link uplink subframe in the Backhaul Link uplink subframe, and carries the uplink control information to be reported on the allocated R-PUCCH resource, in relation to the received
  • the first valid symbol that is, the #1 symbol, causes the #1 symbol of the R-PUCCH to be aligned with the #1 symbol of the macro cell uplink subframe when the eNB receives, and then the effective symbol of the R-PUCCH, and finally the
  • the 11 valid symbols of the R-PUCCH in the Backhaul Link uplink subframe are The eNB is aligned with the #1-#11 symbols in the uplink subframe, respectively.
  • the uplink control information to be reported is ACK/NACKK information, as shown in FIG. 10( a )
  • the RN maps the ACK/NACK information to #1, #4, #5 of the configured Backhaul Link uplink subframe. #6, #7, #10, #11#, #2, #3, #8, #9 symbols are mapped on the RS.
  • the RN maps the CQI/PMI/RI information bearer to #1 and #2 of the configured Backhaul Link uplink subframe.
  • the #4, #5, #6, #7, #8, #10, #11 symbols carry the channel quality report, and the #3 and #9 symbols map the RS.
  • FIG. 11 is a schematic diagram of a processing manner of an uplink control channel of a backhaul link according to Embodiment 3 of the present invention.
  • the system uses the Normal CP, which is a fixed value set by the system or the eNB notifies the RN of a certain value by a signal, which is a positive integer.
  • the subframe is transmitted in a delayed offset manner, and the eNB indicates the RN as the timing advance parameter in high layer signaling or other signaling manner.
  • the eNB configuration indicates that a certain subframe of the RN is a Backhaul uplink subframe, and the uplink subframe of the front and rear phases is an Access Link uplink subframe, and the RB pair is configured as an R-PUCCH resource for the RN in the uplink subframe, and the RB pair is between the slots. Frequency hopping, used to carry uplink control information. .
  • the RN advances the start position of the downlink subframe relative to the received Backhaul Link by ⁇ 7 ⁇ seconds as the start time of the Backhaul Link uplink subframe, that is, the first segment G p in the subframe.
  • Start, and GS ( #0 symbol length - N. ffset ) xT s seconds, ie ( 22 0 8 - N. ffset ) xT s seconds, used for the conversion of the RN's receive/ transmit state, starting after this GP Transmitting the first valid symbol in the Backhaul Link uplink subframe, that is, the #1 symbol, so that the #1 symbol of the R-PUCCH is connected to the eNB.
  • the time is aligned with the #1 symbol of the macro cell uplink subframe, followed by the R-PUCCH effective symbol, and finally the second segment GP is set at the end of the uplink subframe, denoted as G/?2 , and ⁇ : ⁇ 1 second, in the Gp 2 , the RN completes the transmission/reception state transition, and the 13 valid symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively aligned with the #1-#13 symbols in the uplink subframe.
  • the RN maps the CQI/PMI/RI information bearer to be reported to the #2, #3, #4, #6, #7, #9, #10, #11 of the configured Backhaul Link uplink subframe according to the above configuration.
  • the #1, #5, #8, and #12 symbols are used to map the RS; and according to the timing relationship configuration, the uplink transmission is performed to the eNB in advance.
  • FIG. 12 is a schematic diagram of an uplink control information processing manner according to Embodiment 4 of the present invention.
  • the system uses the Extended CP to configure the RN to be the Backhaul uplink subframe, and the adjacent uplink subframes are the Access Link uplink subframes, and configure the RB pair as the R in the uplink subframe.
  • - PUCCH resource the RB pair does not hop between slots, and is used to carry uplink control information.
  • the value determined by the RN according to the time required for the transmission/reception or transmission/reception of the RN is a positive integer.
  • 614
  • the system configures the Backhaul Link uplink subframe to transmit in advance offset
  • the eNB High-level signaling or other signaling mode indicates RN propagation delay parameter v R-TA
  • the RN advances with respect to the start position of the received Backhaul Link downlink subframe according to the configuration indication of the eNB (V R-TA + U xr s seconds as the start time of the Backhaul Link uplink subframe, that is, the first in the subframe
  • the RN completes the transmission/reception state conversion in ⁇ , then the Backhaul Link uplink subframe
  • the 11 valid symbols of the R-PUCCH are respectively aligned with the #0-#10 symbols in the uplink subframe at the eNB.
  • the RN maps the CQI/PMI/RI information bearer to be reported to #0, #1, #2, #4, #5, #6, #7, #8 of the configured Backhaul Link uplink subframe. , #10 ⁇ ,
  • the #3, #9 symbol is used to map the RS; and according to the timing relationship configuration, advance ( ⁇ - ⁇ + ffJ xr , uplink transmission to the eNB.
  • FIG. 13 is a schematic diagram of an uplink control information processing manner according to Embodiment 5 of the present invention.
  • the system uses the Normal CP, and the configuration indicates that two consecutive subframes of the RN are Backhaul uplink subframes, and the uplink subframes of the front and rear phases are Access Link uplink subframes, and are configured for RNs in the two uplink subframes.
  • the RB pair is used as the R-PUCCH resource, and the RB pair hops between slots.
  • the R-PUCCH resource of the first Backhaul Link uplink subframe is configured to carry ACK/NACK information
  • the second Backhaul Link uplink subframe is R-
  • the PUCCH resource is used to carry CQI/PMI/RI information.
  • the eNB configures the Backhaul Link uplink subframe propagation delay parameter ⁇ through high-layer signaling or other signaling manner.
  • the RN sets a time interval as a GP in the Backhaul Link uplink subframe according to the configuration indication of the eNB, and the length is a symbol length, and the GP is located at the beginning position of the subframe, and the length is located on the allocated first Backhaul Link uplink subframe.
  • the RN advances ⁇ > ⁇ seconds as the start time of the Backhaul Link uplink subframe with respect to the start position of the received Backhaul Link downlink subframe, and in the first Backhaul Link uplink subframe, #0
  • the symbol position is GP, which is used for the conversion of the RN's receive/transmit status.
  • the first valid symbol in the Backhaul Link uplink subframe is transmitted, that is, the #1 symbol, so that the #1 symbol of the R-PUCCH is in the eNB.
  • it is aligned with the #1 symbol of the macro cell uplink subframe, and then is the effective symbol of the R-PUCCH until the end of the subframe.
  • 13 valid symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively in the eNB and the uplink subframe.
  • #1-#13 Symbol alignment In the second Backhaul Link uplink subframe, the #13 symbol position is GP, which is used for the conversion of the RN's transmit/receive state.
  • the #0 symbol of the R-PUCCH is received by the eNB and the macro cell uplink.
  • the #0 symbol of the frame is aligned, and then the effective symbol of the R-PUCCH is followed.
  • the 13 valid symbols of the R-PUCCH in the Backhaul Link uplink subframe are respectively aligned with the #0-#12 symbols in the uplink subframe. .
  • the RN maps the ACK/NACK information bearer to the #1, #5, #6, #7, #8, #12, #13 symbols on the first Backhaul Link uplink subframe to be reported. 2.
  • the #3, #4, #9, #10, and #11 symbols are used to map the RS; the CQI/PMI/RI information bearer is mapped to #0, # on the allocated second Backhaul Link uplink subframe. 2.
  • #3, #4, #6, #7, #9, #10, #11 on the symbol, #1, #5, #8, #12 are used to map the RS and are configured according to the timing relationship. ⁇ > ⁇ seconds for uplink transmission to the eNB.
  • Figure 14 is a schematic diagram of the process of processing uplink control information according to the present invention. The process includes the following steps:
  • Step 1410 Receive configuration information for indicating Backhaul Link uplink information transmission, including a Backhaul Link uplink subframe, a timing relationship of a Backhaul Link uplink subframe with respect to a backhaul downlink subframe, and a Backhaul Link physical uplink control channel resource.
  • Step 1420 Perform bearer processing on the uplink control information by using a physical uplink control channel structure corresponding to the received configuration information.
  • Step 1430 Perform uplink transmission on the uplink control information of the bearer processing according to the configured timing relationship on the allocated backhaul link resources.
  • FIG. 15 is a diagram of an uplink control information processing system according to an embodiment of the present invention.
  • the system includes a connected configuration information receiving unit, an uplink control information processing unit, and a transmitting unit, an uplink control structure configuration unit, and a resource configuration unit.
  • the configuration information receiving unit can receive configuration information for indicating Backhaul Link uplink information transmission, including a Backhaul Link uplink subframe, a Backhaul Link uplink subframe relative to a Backhaul Link downlink subframe, and a Backhaul Link physical uplink control channel. And can send the received configuration information to the uplink control information processing unit.
  • the timing relationship configuration unit in the uplink control information processing unit is configured to receive the timing relationship configuration information of the Backhaul Link uplink subframe relative to the Backhaul Link downlink subframe, and send the frame structure requirement corresponding to the timing relationship configuration information to the frame structure configuration unit.
  • the resource configuration unit can receive the resource configuration information of the Backhaul Link physical uplink control channel, and send the frame structure requirement corresponding to the resource configuration information to the frame structure configuration unit; the frame structure configuration unit can receive the Backhaul Link uplink subframe configuration information and
  • the configuration information from the timing relationship configuration unit and the resource configuration unit may further perform the bearer processing on the uplink control information by using the R-PUCCH channel structure corresponding to the received configuration information, and send the uplink control information that completes the bearer processing to Launch unit.
  • the transmitting unit can perform uplink transmission on the received uplink control information of the completed bearer processing according to the configured timing relationship on the corresponding resources of the allocated Backhaul Link.
  • the system is set to a certain fixed value or the eNB notifies the RN to determine a certain value, or the RN receives/transmits according to itself.
  • the Backhaul Link uplink control channel processing technology of the present invention can ensure efficient transmission on the uplink control information Backhaul Link and improve transmission efficiency, whether it is a method or a system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种回程链路上行控制信道的处理方法和系统,RN接收用于指示回程链路上行传输的配置信息,包括回程链路上行子帧配置、回程链路上行子帧相对于所接收到的回程链路下行子帧的定时关系配置、以及回程链路物理上行控制信道的资源配置;采用与收到的配置信息相对应的物理上行控制信道结构对上行控制信息进行处理;并在所分配的回程链路上行资源上,按照所配置的定时提前关系将处理后的上行控制信息进行上行发射。本发明的方法和系统,实现了在回程链路上对上行控制信息的有效传输,提高传输效率。

Description

一种回程链路上行控制信道的处理方法和系统 技术领域
本发明涉及通信领域, 具体涉及一种回程链路上行控制信道的处理方 法和系统。 背景技术
在引入中继站(Relay Node, RN ) 的网络中, 如图 1所示, 网络中基 站( eNB )与宏小区用户(Macro User Equipment , M-UE)间的链路称为直传 链路( Direct Link ),基站与中继站间的链路称为回程链路( Backhaul Link ), 中继站与中继域用户(Relay User Equipment , R-UE)间的链路称为接入链路 ( Access Link )。
在 LTE系统中,每个无线帧为 10ms, 包含 10个子帧。 1个子帧为 1ms, 分为 0.5ms的 2个 slot,如图 2所示。上行物理资源以 RB ( Resource Block, 资源块)为单位划分,如图 3所示, RB定义为在时间域上为 1个时隙( slot ), 包含连续的^ 个 SC-FDMA符号, 其中, 当系统的帧结构釆用普通循环 前缀( Normal Cyclic Prefix ) 时, ^ = 7 , 当系统的帧结构釆用扩展循环 前缀( Extended Cyclic Prefix )时, = 6,在频率域上为连续的 个子载 波, = 12
在 LTE 系统的直传链路上, M-UE 的上行物理控制信道 PUCCH ( Physical Uplink Control Channel )上可 载的信息有:调度请求( Scheduling request, SR ), HARQ反馈信息, 即 M-UE对 eNB下行发送的数据接收情 况进行 ACK/NACK反馈, 以及信道质量报告, 包括 CQI/PMI/RI ( Channel Quality Indicator/Precoding Matrix Indicator/Rank Indication )。 M-UE根据上 报信息的不同情况釆用相应的上行控制信道格式进行发射, 分别为 PUCCH format 1/la/lb和 PUCCH format 2/2a/2b„
PUCCH信道的物理资源分配以 RB对为单位 , 每个 PUCCH物理信道 占用一对 RB对, 每个 slot上分别占用一个 RB, 在 slot间跳频 Hopping。 PUCCH format 1/la/lb信道结构如图 4所示。当系统帧结构釆用普通循环前 缀(Normal Cyclic Prefix ) 时, 每子帧含有 14个 SC-FDMA ( Orthogonal Frequency Division Multiplexing )符号, 分为 2个 slot, 每个 slot上包括 7 个 SC-FDMA符号, 在 slot间进行跳频, 如图 4 ( a )所示, 其中 #0、 #1、 #5 , #6、 #7、 #8、 #12、 #13符号上承载 ACK/NACK信息, 剩余的 #2、 #3、 #4、 #9、 #10、 #11符号上映射导频信号(Reference Signal, RS )。 当系统帧 结构釆用扩展循环前缀(Extended Cyclic Prefix ) 时, 每子帧含有 12 个 SC-FDMA符号, 分为 2个 slot, 每个 slot上包括 6个 SC-FDMA符号, 在 slot间进行 ϋ频, ^口图 4 ( b )所示, 其中的 #0、 #1、 #4, #5、 #6、 #7、 #10、 #11符号上承载 ACK/NACK信息, 剩余的 #2、 #3、 #8、 #9符号上映射 RS 信号。
PUCCH format 2/2a/2b信道结构如图 5所示。当系统帧结构釆用普通循 环前缀时, 每子帧含有 14个 SC-FDMA符号, 分为 2个 slot, 每个 slot上 包括 7个 SC-FDMA符号, 在 slot间进行跳频, 其中的 #0、 #2、 #3 , #4、 #6、 #7、 #9、 #10、 #11、 #13符号上承载信道质量 4艮告, 剩余的 #1、 #5、 #8、 #12 符号上映射导频信号, 如图 5 ( a )所示。 当系统帧结构釆用扩展循环前缀 时, 每子帧含有 12个 SC-FDMA符号, 分为 2个 slot, 每个 slot上包括 6 个 SC-FDMA符号, 在 slot间进行跳频, 其中的 #0、 #1、 #2、 #4, #5、 #6、 #7、 #8、 #10、 #11符号上承载信道质量报告, 剩余的 #3、 #9符号上映射 RS 信号, 如图 5 ( b )所示。
在 Direct Link上, M-UE对生成的 ACK/NACK信息或信道质量报告进 行编码、频域扩展等
射, 并上行发送给 eNB。
在 Direct Link上, 考虑到 M-UE到 eNB的信号传播时延等因素, eNB 会配置指示 M-UE—定的时间提前量 , M-UE根据时间提前量的配置, 在相对于接收到的 Direct Link下行子帧的起始位置提前 ^^7^秒开始上行 子帧的传输。 其中, 时间单元7^ = 1Λ15(ΧΧ)χ2()48)秒, 如图 6所示。
系统配置 RN进行 Backhaul Link上行传输的子帧称为 Backhaul Link 上行子帧, 相应的用于接收 Access Link上行信号的子帧称为 Access Link 上行子帧。 由于 RN无法同时进行 Access Link的上行接 ^:和 Backhaul Link 的上行传输, RN在 Access Link和 Backhaul Link的信号收 /发和发 /收转换 之间需要一定的保护时间间隔 GP( Guard Period ),因此, RN在 Backhaul Link 上行子帧上可实际用于上行传输的符号数小于一个子帧所包含的符号数, 即在普通循环前缀(Normal CP ) 时可用符号数小于 14 , 扩展循环前缀 ( Extended CP ) 时小于 12。 因此 Backhaul Link 的物理上行控制信道 ( R-PUCCH ) 的信道结构与 PUCCH有所不同, 这种物理上行控制信道结 构的不同使 Backhaul Link的上行控制信道的处理无法依照 Direct Link方法 进行。 发明内容
有鉴于此, 本发明的主要目的在于提供一种回程链路上行控制信道的 处理方法和系统, 实现在回程链路上对上行控制信息的有效传输, 提高传 输效率。
为达到上述目的, 本发明的技术方案是这样实现的:
一种回程链路 Backhaul Link上行控制信道处理方法, 该方法包括: 中继站 RN接收用于指示 Backhaul Link上行信息传输的配置信息, 包 括 Backhaul Link上行子帧配置、 Backhaul Link上行子帧相对于 Backhaul Link 下行子帧的定时关系配置、 以及 Backhaul Link 物理上行控制信道 R-PUCCH的资源配置;
釆用与收到的配置信息相对应的 R-PUCCH信道结构对上行控制信息 进行处理; 并在所分配的 Backhaul Link资源上, 按照所配置的定时关系将 上行控制信息发送给基站 eNB。
所述 R-PUCCH中包括保护时间间隔 GP以及有效符号, GP用于 RN 进行收 /发或发 /收状态转换,有效符号指 SC-FDMA符号或 OFDM符号,用 于承载上行控制信息 UCI及导频 RS; 釆用普通循环前缀 Normal CP时, 所 述 R-PUCCH信道结构为:
子帧中 #0符号作为 GP, #1-#13符号为 R-PUCCH的有效符号,根据配 置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link下行子帧 的定时关系, R-PUCCH的 #1符号在 eNB接收时与宏小区上行子帧的 #1符 号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 13个有效符号在 eNB 分别与上行子帧中的 #1-#13符号对齐;
或者, 子帧中 #13符号作为 GP, #0-#12符号为 R-PUCCH的有效符号, 根据配置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子 帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 13个有效符 号在 eNB分别与上行子帧中的 #0-#12符号对齐;
或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #0符号长度, 之后是 R-PUCCH的 13个有效符号, #1-#13符号,子帧末尾为一段 GP,称为 GP2, 两段 GP的长度之和等于 #0符号长度; 根据配置的所述 Backhaul Link上行 子帧相对于所接收到的 Backhaul Link下行子帧的定时关系, R-PUCCH的 #1符号在 eNB接收时与宏小区上行子帧的 #1符号对齐, 使 Backhaul Link 上行子帧中 R-PUCCH的 13个有效符号在 eNB分别与上行子帧中的 #1-#13 符号对齐;
或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #13符号长度, 之后 是 R-PUCCH的 13个有效符号, #0-#12符号, 最后子帧末尾为一段 GP, 称为 GP2,两段 GP的长度之和等于 #13符号长度;根据配置的所述 Backhaul Link 上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 13个有效符号在 eNB分别与上行子 帧中的 #0-#12符号对齐。
当待上报的上行控制信息为 ACK/NACK信息时, 所述有效符号中的 #2、 #3、 #4、 #9、 #10、 #11符号用于映射 RS; 当待上报的上行控制信息为 CQI/PMI/RI信息时, 所述符号中的 #1、 #5、 #8、 #12符号用于映射 RS。
所述 R-PUCCH中包括 GP以及有效符号, GP用于 RN进行收 /发或发 / 收状态转换, 有效符号指 SC-FDMA符号或 OFDM符号, 用于承载 UCI及 RS; 釆用扩展循环前缀 Extended CP时, 所述 R-PUCCH信道结构为:
子帧中 #0符号作为 GP, #1-#11符号为 R-PUCCH的有效符号, 根据配 置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link下行子帧 的定时关系, R-PUCCH的 #1符号在 eNB接收时与宏小区上行子帧的 #1符 号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 11个有效符号在 eNB 分别与上行子帧中的 #1-#11符号对齐;
或者, 子帧中 #11符号作为 GP, #0-#10符号为 R-PUCCH的有效符号, 根据配置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子 帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 11个有效符 号在 eNB分别与上行子帧中的 #0-#10符号对齐; 或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #0符号长度, 之后是 R-PUCCH的 11个有效符号, #1-#11符号, 最后子帧末尾为一段 GP, 称为 GP2,两段 GP的长度之和等于 #0符号长度;根据配置的所述 Backhaul Link 上行子帧相对于所接收到的 Backhaul Link下行子帧的定时关系, R-PUCCH 的 #1符号在 eNB接收时与宏小区上行子帧的 #1符号对齐,使 Backhaul Link 上行子帧中 R-PUCCH的 11个有效符号在 eNB分别与上行子帧中的 #1-#11 符号对齐;
或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #11符号长度, 之后 是 R-PUCCH的 11个有效符号, #0-#10符号, 最后子帧末尾为一段 GP, 称为 GP2,两段 GP的长度之和等于 #11符号长度;根据配置的所述 Backhaul Link 上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 11个有效符号在 eNB分别与上行子 帧中的 #0-#10符号对 3C
当待上报的上行控制信息为 ACK/NACKK信息时, 所述符号中的 #2、 #3、 #8、 #9符号用于映射 RS; 当待上 4艮的上行控制信息为 CQI/PMI/RI信 息时, 所述符号中的 #3、 #9符号用于映射 RS。
配置通过以下参数的一项或几项获得: 定时偏移量参数 定时提前量 参数 , 传播时延参数 -^ , 且 ^、 Ν ^R-TA取值为正整数,
所述参数由 eNB通过信令配置指示 RN, 或由系统设置为固定值, 或 由 RN决定取值。
釆用所述 R-PUCCH结构对上行控制信息进行处理的过程包括:在相对 于所接收到的 Backhaul Link下行子帧的起始位置提前 (A^-TA + Uxr s秒作 为 Backhaul Link上行子帧的开始时刻, 并且, Normal CP时, 使 R-PUCCH的 #0-#12符号在 eNB接收时分别与宏小 区上行子帧的 #0-#12 符号对齐, R-PUCCH 结构中的<^= f^ xTs秒, G尸 2 =(#13符号长度- N。ffset)xTs秒, Ts =1/(15000x2048) .
Extended CP时,使 R-PUCCH的 #0-#10符号在 eNB接收时分别与宏小 区上行子帧的 #0-#10 符号对齐, R-PUCCH 结构中的<^= f^ xTs秒, G尸 2 =(#11符号长度 - N。ffset)xTs秒, Ts =1/(15000x2048)。
釆用所述 R-PUCCH结构对上行控制信息进行处理的过程包括:在相对 于所接收到的 Backhaul Link下行子帧的起始位置提前 (A^A _Ux:r s秒作 为 Backhaul Link上行子帧的开始时刻 , 并且 ,
Normal CP时, 使 R-PUCCH的 #1-#13符号在 eNB接收时与宏小区上 行子帧的 #1-#13 符号对齐, R-PUCCH 结构中的 GP2 = Offset xTs秒, =(#0符号长度- N。ffset)xTs秒;
Extended CP时,使 R-PUCCH的 #1-#11符号在 eNB接收时与宏小区上 行子帧的 #1-#11 符号对齐, R-PUCCH 结构中的 GP2 = Offset xTs秒, =(#0符号长度 - N。ffset)xTs秒。
釆用所述 R-PUCCH结构对上行控制信息进行处理的过程包括:在相对 于所接收到的 Backhaul Link 下行子帧的起始位置提前 秒作为 Backhaul Link上行子帧的开始时刻, 并且,
Normal CP时, 使 R-PUCCH的 #0-#12符号在 eNB接收时分别与宏小 区上行子帧的 #0-#12 符号对齐, R-PUCCH 结构中的 GS= f^ xTs秒, G尸 2 =(#13符号长度- N。ffset)xTs秒, Ts =1/(15000x2048) .
Extended CP时,使 R-PUCCH的 #0-#10符号在 eNB接收时分别与宏小 区上行子帧的 #0-#10 符号对齐, R-PUCCH 结构中的<^= f^ xTs秒, GP2 = (#11符号长度- N。ffset)xT 。 釆用所述 R-PUCCH结构对上行控制信息进行处理的过程包括:在相对 于所接收到的 Backhaul Link 下行子帧的起始位置提前 秒作为 Backhaul Link上行子帧的开始时刻, 并且,
Normal CP时, 使 R-PUCCH的 #1-#13符号在 eNB接收时与宏小区上 行子帧的 #1-#13 符号对齐, R-PUCCH 结构中的 GP2 = Offset xTs秒, = (#0符号长度- N。ffset)xTs秒;
Extended CP时,使 R-PUCCH的 #1-#11符号在 eNB接收时与宏小区上 行子帧的 #1-#11 符号对齐, R-PUCCH 结构中的 GP2 = Offset xTs秒, = (#0符号长度- N。ffset)xTs秒。
釆用所述 R-PUCCH结构对上行控制信息进行处理的过程包括:在相对 于所接收到的 Backhaul Link 下行子帧的起始位置提前 ^R-TA X^秒作为 Backhaul Link上行子帧的开始时刻, 并且,
Normal CP时, 使 R-PUCCH的 #0-#13符号在 eNB接收时与宏小区上 行子帧的 #0-#13符号对齐, 其中, #0符号作为 GP;
Extended CP时,使 R-PUCCH的 #0-#11符号在 eNB接收时与宏小区上 行子帧的 #0-#11符号对齐, 其中, #0符号作为 GP。
釆用所述 R-PUCCH结构对上行控制信息进行处理的过程包括:在相对 于所接收到的 Backhaul Link 下行子帧的起始位置提前 ^R-TA X^秒作为 Backhaul Link上行子帧的开始时刻, 并且,
Normal CP时, 使 R-PUCCH的 #0-#13符号在 eNB接收时与宏小区上 行子帧的 #0-#13符号对齐, 其中, #13符号作为 GP;
Extended CP时,使 R-PUCCH的 #0-#11符号在 eNB接收时与宏小区上 行子帧的 #0-#11符号对齐, 其中, #11符号作为 GP。 一种回程链路上行控制信道处理系统, 该系统包括相连的配置信息接 收单元、 上行控制信息处理单元、 发射单元; 其中,
所述配置信息接收单元, 用于接收指示 Backhaul Link上行信息传输的 配置信息, 包括 Backhaul Link上行子帧、 Backhaul Link上行子帧相对于 Backhaul Link链路下行子帧的定时关系、 以及 Backhaul Link物理上行控制 信道的资源; 并将收到的上述配置信息发送给所述上行控制信息处理单元; 所述上行控制信息处理单元, 用于釆用与收到的配置信息相对应的 R-PUCCH信道结构对上行控制信息进行承载处理, 并将完成承载处理的上 行控制信息发送给发射单元;
所述发射单元, 用于在所分配的 Backhaul Link的相应资源上, 根据 配置的定时关系, 对收到的完成承载处理的上行控制信息进行发射。
所述上行控制信息处理单元包括定时关系配置单元、 帧结构配置单元、 资源配置单元; 其中,
所述定时关系配置单元, 用于接收 Backhaul Link 上行子帧相对于 Backhaul Link下行子帧的定时关系配置信息, 并将该定时关系配置信息所 对应的帧结构要求发送给帧结构配置单元;
所述资源配置单元, 用于接收 Backhaul Link物理上行控制信道的资源 配置信息, 并将该资源配置信息所对应的帧结构要求发送给帧结构配置单 元;
所述帧结构配置单元, 用于接收 Backhaul Link上行子帧配置信息以及 来自定时关系配置单元、 资源配置单元的配置信息, 釆用与收到的配置信 息相对应的 R-PUCCH信道结构对上行控制信息进行承载处理,并将完成承 载处理的上行控制信息发送给所述发射单元。
所述 R-PUCCH中包括 GP以及有效符号, GP用于 RN进行收 /发或发 / 收状态转换, 有效符号指 SC-FDMA符号或 OFDM符号, 用于承载上行控 制信息 UCI及导频 RS; 釆用普通循环前缀 Normal CP时 , 所述 R-PUCCH 信道结构为:
子帧中 #0符号作为 GP, #1-#13符号为 R-PUCCH的有效符号,根据配 置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link下行子帧 的定时关系, R-PUCCH的 #1符号在 eNB接收时与宏小区上行子帧的 #1符 号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 13个有效符号在 eNB 分别与上行子帧中的 #1-#13符号对齐;
或者, 子帧中 #13符号作为 GP, #0-#12符号为 R-PUCCH的有效符号, 根据配置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子 帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 13个有效符 号在 eNB分别与上行子帧中的 #0-#12符号对齐;
或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #0符号长度, 之后是 R-PUCCH的 13个有效符号, #1-#13符号,子帧末尾为一段 GP,称为 GP2, 两段 GP的长度之和等于 #0符号长度, 根据配置的所述 Backhaul Link上行 子帧相对于所接收到的 Backhaul Link下行子帧的定时关系, R-PUCCH的 #1符号在 eNB接收时与宏小区上行子帧的 #1符号对齐, 使 Backhaul Link 上行子帧中 R-PUCCH的 13个有效符号在 eNB分别与上行子帧中的 #1-#13 符号对齐;
或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #13符号长度, 之后 是 R-PUCCH的 13个有效符号, #0-#12符号, 最后子帧末尾为一段 GP, 称为 GP2,两段 GP的长度之和等于 #13符号长度,根据配置的所述 Backhaul Link 上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 13个有效符号在 eNB分别与上行子 帧中的 #0-#12符号对齐。
当待上报的上行控制信息为 ACK/NACK信息时, 所述有效符号中的 #2、 #3、 #4、 #9、 #10、 #11符号用于映射 RS; 当待上报的上行控制信息为 CQI/PMI/RI信息时, 所述符号中的 #1、 #5、 #8、 #12符号用于映射 RS。
所述 R-PUCCH中包括 GP以及有效符号, GP用于 RN进行收 /发或发 / 收状态转换, 有效符号指 SC-FDMA符号或 OFDM符号, 用于承载 UCI及 RS; 釆用扩展循环前缀 Extended CP时, 所述 R-PUCCH信道结构为:
子帧中 #0符号作为 GP, #1-#11符号为 R-PUCCH的有效符号, 根据配 置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link下行子帧 的定时关系, R-PUCCH的 #1符号在 eNB接收时与宏小区上行子帧的 #1符 号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 11个有效符号在 eNB 分别与上行子帧中的 #1-#11符号对齐;
或者, 子帧中 #11符号作为 GP, #0-#10符号为 R-PUCCH的有效符号, 根据配置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子 帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 11个有效符 号在 eNB分别与上行子帧中的 #0-#10符号对齐;
或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #0符号长度, 之后是 R-PUCCH的 11个有效符号, #1-#11符号, 最后子帧末尾为一段 GP, 称为 GP2,两段 GP的长度之和等于 #0符号长度,根据配置的所述 Backhaul Link 上行子帧相对于所接收到的 Backhaul Link下行子帧的定时关系, R-PUCCH 的 #1符号在 eNB接收时与宏小区上行子帧的 #1符号对齐,使 Backhaul Link 上行子帧中 R-PUCCH的 11个有效符号在 eNB分别与上行子帧中的 #1-#11 符号对齐;
或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #11符号长度, 之后 是 R-PUCCH的 11个有效符号, #0-#10符号, 最后子帧末尾为一段 GP, 称为 GP2,两段 GP的长度之和等于 #11符号长度,根据配置的所述 Backhaul Link 上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 11个有效符号在 eNB分别与上行子 帧中的 #0-#10符号对齐。
当待上报的上行控制信息为 ACK/NACKK信息时, 所述符号中的 #2、 #3、 #8、 #9符号用于映射 RS; 当待上 4艮的上行控制信息为 CQI/PMI/RI信 息时, 所述符号中的 #3、 #9符号用于映射 RS。
可见, 本发明的上行控制信息处理方法和系统, 均可保证 Backhaul Link上的上行信息的顺利传输并能提高传输效率。 附图说明
图 1为中继网络结构示意图;
图 2为 LTE系统无线帧结构示意图;
图 3为 LTE系统资源 RB示意图;
图 4为 LTE系统中 PUCCH format 1/la/lb信道结构示意图;
图 5为 LTE系统中 PUCCH format 2/2a/2b信道结构示意图;
图 6为 LTE系统中上、 下行子帧定时关系示意图;
图 7为本发明的 Normal CP时 R-PUCCH信道结构示意图;
图 8为本发明的 Extended CP时 R-PUCCH信道结构示意图;
图 9为本发明实施例一的回程链路上行控制信道处理方式示意图; 图 10为本发明实施例二的回程链路上行控制信道处理方式示意图; 图 11为本发明实施例三的回程链路上行控制信道处理方式示意图; 图 12为本发明实施例四的回程链路上行控制信道处理方式示意图; 图 13为本发明实施例五的回程链路上行控制信道处理方式示意图; 图 14为本发明的回程链路上行控制信道处理流程简图;
图 15为本发明一实施例的回程链路上行控制信道处理系统图。 具体实施方式
eNB为 RN配置指示相应的 R-PUCCH资源,每个 R-PUCCH信道对应 的物理资源为一对 RB对(RB Pairs ), 在上行子帧的每个 slot各占用一个 RB , slot间的 RB对可以配置进行跳频或不进行跳频。
由于 RN无法同时进行 Access Link的上行接 ^:和 Backhaul Link的上行 传输, 因此需要在 Access Link和 Backhaul Link的收 /发和发 /收状态间进行 转换,即在 Access Link上行子帧与所配置的 Backhaul Link上行子帧之间需 要设置一定的 GP。 GP的设置方式以及时间长度与系统对 Backhaul Link上 行子帧的配置、 RN状态转换所需的时间、 以及 Backhaul Link上行子帧的 传输定时关系有关, 在下面的实施例中给出进一步说明。
根据系统对回程链路上行子帧的配置、 Backhaul Link上行子帧的传输 定时关系、 以及回程链路物理上行控制信道 R-PUCCH的资源分配, RN釆 用相应的 R-PUCCH信道结构对上行控制信息进行承载处理,并上行发送给 cNB。
系统釆用 Normal CP时
若系统配置给 RN某子帧为 Backhaul Link上行子帧, 且此子帧的前一 个子帧与后一个子帧均为 Access Link上行子帧, 则 RN需在此 Backhaul Link上行子帧内的开始位置和结束位置分别设置一段 GP用于收 /发和发 /收 状态的转换, 如图 7 ( c )和 7 ( d )所示。 图 7 ( c )所示的 R-PUCCH信道 结构适用于系统配置指示的 Backhaul Link上行子帧定时关系为延迟偏移 offset的情况, 即 RN根据系统配置指示在相对于所接收到的 Backhaul Link 下行子帧起始位置, 以一定的定时提前量作为 Backhaul Link上行子帧的起 始时刻, 使 Backhaul Link上行子帧中发送的 13个有效符号在 eNB接收时 与宏小区上行子帧中的 #1-#13符号对齐。 相应的, Backhaul Link上行子 帧中含有的两段 GP的设置为: Backhaul Link上行子帧中包含的最后一个 有效符号之后设置一段 GP, 记为 G/?2 , 且^^ ^ ^秒, 在子帧内的开始 位置设置一段 GP, 记为 G , 由于两段 GP之和的长度等于 #0 长度, 即 GS = ( #0符号长度- UX T秒, 其中, 时间单元 ?;= 1/(15000>< 2048)。 在系统配 置某一个上行子帧为 Backhaul Link上行子帧,且定时关系为延迟偏移 offset 时, RN釆用图 7 ( c )所示的结构对待上报的上行控制信息进行处理, 承载 在所分配的 R-PUCCH资源上, 在相对于所接收到的 Backhaul Link下行子 帧的起始位置提前一定的定时提前量作为 Backhaul Link上行子帧的开始时 刻, 即子帧内第一段 GP的开始, ( 2208 - U 秒, 用于 RN的收 /发 状态的转换, 在此段 GP之后开始传输 Backhaul Link上行子帧中第一个有 效符号, 即 #1符号, 使 R-PUCCH的 #1符号在 eNB接收时与宏小区上行子 帧的 #1符号对齐, 其后依次为 R-PUCCH的有效符号, 最后在上行子帧的 末尾设置第二段 GP, Gp 2 = 秒, 在 Gp 2内 RN完成发 /收状态的转换, 则 Backhaul Link上行子帧中 R-PUCCH的 13个有效符号在 eNB分别与上 行子帧中的 #1-#13符号对齐。
类似的, 图 7 ( d ) 所示的 R-PUCCH信道结构适用于系统配置指示的 Backhaul Link上行子帧定时关系为提前偏移 offset的情况,即 RN根据系统 配置指示在相对于所接收到的 Backhaul Link下行子帧起始位置, 以一定的 定时提前量作为 Backhaul Link上行子帧的起始时刻,使 Backhaul Link上行 子帧中发送的 13个有效符号在 eNB接收时与宏小区上行子帧中的 #0-#12 符号对齐。 相应的, Backhaul Link上行子帧中含有的两段 GP的设置为: Backhaul Link上行子帧中开始设置一段 GP, 记为 G , 且 GS = 秒, 在子帧内最后一个有效符号之后设置一段 GP,记为 由于两段 GP之和 的长度等于 #13长度, 即 Gp 2 =(#13符号长度- )xT s秒。 在系统配置某一个 上行子帧为 Backhaul Link上行子帧, 且定时关系为提前偏移 offset时, RN 釆用图 7 (d)所示的结构对待上报的上行控制信息进行处理, 承载在所分 配的 R-PUCCH资源上, 在相对于所接收到的 Backhaul Link下行子帧的起 始位置提前一定的定时提前量作为 Backhaul Link上行子帧的开始时刻, 即 子帧内第一段 GP的开始, gS=A^ XTS秒, 用于 RN的收 /发状态的转换, 在此段 GP之后开始传输 Backhaul Link上行子帧中第一个有效符号, 即 #0 符号,使 R-PUCCH的 #0符号在 eNB接收时与宏小区上行子帧的 #0符号对 齐,其后依次为 R-PUCCH的有效符号, 最后在上行子帧的末尾设置第二段 GP, 记为 GP2, 且 2 =(#13符号长度- N。ffset)xTs秒, 即 GP2 =(2192- N。ffset)xTs , 在 GP2内 RN完成发 /收状态的转换,则 Backhaul Link上行子帧中 R-PUCCH 的 13个有效符号在 eNB分别与上行子帧中的 #0-#12符号对齐。
当系统配置指示 RN连续的多个上行子帧为 Backhaul Link上行子帧, 且这多个子帧的之前一个和之后一个子帧为 Access Link上行子帧时, 在所 配置的连续多个 Backhaul Link上行子帧中, 第一个上行子帧中 RN需进行 收 /发状态转换, 最后一个上行子帧中 RN 需进行发 /收状态转换, 相应的 R-PUCCH信道结构分别如图 7 (a)和 7 (b)所示。
图 7 (a)所示的 R-PUCCH信道结构适用于 RN需进行收 /发状态转换 的 Backhaul Link上行子帧, RN根据系统配置指示在相对于所接收到的 Backhaul Link下行子帧起始位置, 以一定的定时提前量作为 Backhaul Link 上行子帧的起始时刻, 使 Backhaul Link上行子帧中发送的 13个有效符号 在 eNB接收时与宏小区上行子帧中的 #1-#13符号对齐。 相应的, Backhaul Link上行子帧中开始位置设置一段 GP,进行 RN收 /发状态的转换,设置为: GP = #0符号长度 xTs秒, 即 GP =2208xTs秒。 这里, 由于一段 GP 占用完整的 一个符号长度, 则 Backhaul Link上行子帧的定时关系为相对于 RN所接收 到的 Backhaul Link下行子帧的起始位置提前7 ^-ΤΑ χ 秒作为 Backhaul Link 上行子帧的开始时刻, 其中, 传播时延参数^^是与 RN和所属 eNB之间 由于空间距离带来的信号传播时间相关的定时提前量,取值正整数,由 eNB 通过信令配置指示 RN。 在系统配置某连续多个上行子帧为 Backhaul Link 上行子帧, 对第一个 Backhaul Link上行子帧, RN釆用图 7 ( a )所示的结 构对待上报的上行控制信息进行处理, 承载在所分配的 R-PUCCH资源上, 在相对于所接收到的 Backhaul Link下行子帧的起始位置提前^^ >^秒作 为 Backhaul Link上行子帧的开始时刻, #0符号作为 GP , 用于 RN的收 /发 状态的转换, 从 #1符号开始是 R-PUCCH的有效符号, 使 R-PUCCH的 #1 符号在 eNB接收时与宏小区上行子帧的 #1符号对齐,其后依次为 R-PUCCH 的有效符号, 则 Backhaul Link上行子帧中 R-PUCCH的 13个有效符号在 eNB分别与上行子帧中的 #1-#13符号对齐。
图 7 ( b )所示的 R-PUCCH信道结构适用于 RN需进行发 /收状态转换 的 Backhaul Link上行子帧, RN根据系统配置指示在相对于所接收到的 Backhaul Link下行子帧起始位置, 以一定的定时提前量作为 Backhaul Link 上行子帧的起始时刻, 使 Backhaul Link上行子帧中发送的 13个有效符号 在 eNB接收时与宏小区上行子帧中的 #0-#12符号对齐。 相应的, Backhaul Link上行子帧中末尾设置一段 GP, 进行 RN发 /收状态的转换, 设置为: GP = #13符号长度 xTs , 即 GP = 2l92xTs秒。 这里, 由于一段 GP占用完整的一 个符号长度, 则 Backhaul Link上行子帧的定时关系为相对于 RN所接收到 的 Backhaul Link下行子帧的起始位置提前^^ 7^秒作为 Backhaul Link上 行子帧的开始时刻。 在系统配置某连续多个上行子帧为 Backhaul Link上行 子帧, 对最后一个 Backhaul Link上行子帧, RN釆用图 7 ( b )所示的结构 对待上报的上行控制信息进行处理,承载在所分配的 R-PUCCH资源上,在 相对于所接收到的 Backhaul Link下行子帧的起始位置提前^^ >^秒作为 Backhaul Link上行子帧的开始时刻,子帧末尾的 #13符号作为 GP,用于 RN 的发 /收状态的转换, 子帧内从 #0符号开始是 R-PUCCH 的有效符号, 使 R-PUCCH的 #0符号在 eNB接收时与宏小区上行子帧的 #0符号对齐, 其后 依次为 R-PUCCH的有效符号, 直至 #12符号, #13为 GP, 则 Backhaul Link 上行子帧中 R-PUCCH的 13个有效符号在 eNB分别与上行子帧中的 #0-#12 符号对齐。
系统釆用 Extended CP时
类似于 normal CP时的情况, 若系统配置给 RN某子帧为 Backhaul Link上行子帧,且此子帧的前一个子帧与后一个子帧均为 Access Link上行 子帧, 则 RN需在此 Backhaul Link上行子帧内的开始位置和结束位置分别 设置一段 GP用于收 /发和发 /收状态的转换, 如图 8 ( c )和 8 ( d )所示。 图 8 ( c )所示的 R-PUCCH信道结构适用于系统配置指示的 Backhaul Link 上行子帧定时关系为延迟偏移 offset的情况, 即 RN根据系统配置指示在相 对于所接收到的 Backhaul Link下行子帧起始位置, 以一定的定时提前量作 为 Backhaul Link上行子帧的起始时刻,使 Backhaul Link上行子帧中发送的 11个有效符号在 eNB接收时与宏小区上行子帧中的 #1-#11符号对齐。相应 的, Backhaul Link上行子帧中含有的两段 GP的设置为: Backhaul Link上 行子帧中包含的最后一个有效符号之后设置一段 GP , 记为 Gpi , 且 GP2 = N。Sset xTs秒, 在子帧内的开始位置设置一段 GP, 记为 G , 由于两段 GP之和的长度等于 #0长度, 即 G = (#0符号长度- A^fjxi秒, 其中, 时间 单元7 : = 1/(15QQQx2Q48)。 在系统配置某一个上行子帧为 Backhaul Link上行 子帧, 且定时关系为延迟偏移 offset时, RN釆用图 8 ( c )所示的结构对待 上报的上行控制信息进行处理,承载在所分配的 R-PUCCH资源上,在相对 于所接收到的 Backhaul Link下行子帧的起始位置提前一定的定时提前量作 为 Backhaul Link 上行子帧的开始时刻, 即子帧内第一段 GP 的开始, w1= "bbU_N。ff xis秒, 用于 RN的收 /发状态的转换, 在此段 GP之后开始 传输 Backhaul Link上行子帧中第一个有效符号, 即 #1符号, 使 R-PUCCH 的 #1 符号在 eNB 接收时与宏小区上行子帧的 #1 符号对齐, 其后依次为 R-PUCCH 的有效符号, 最后在上行子帧的末尾设置第二段 GP, Gp 2 = f^ xTs秒, 在<^2内 RN完成发 /收状态的转换, 则 Backhaul Link上行 子帧中 R-PUCCH的 11个有效符号在 eNB分别与上行子帧中的 #1-#11符号 对齐。
类似的, 图 8 (d) 所示的 R-PUCCH信道结构适用于系统配置指示的 Backhaul Link上行子帧定时关系为提前偏移 offset的情况,即 RN根据系统 配置指示在相对于所接收到的 Backhaul Link下行子帧起始位置, 以一定的 定时提前量作为 Backhaul Link上行子帧的起始时刻,使 Backhaul Link上行 子帧中发送的 11 个有效符号在 eNB接收时与宏小区上行子帧中的 #0-#10 符号对齐。 相应的, Backhaul Link上行子帧中含有的两段 GP的设置为:
Backhaul Link上行子帧中开始设置一段 GP, 记为 G , 且 GS= f^ xT s秒, 在子帧内最后一个有效符号之后设置一段 GP,记为 Gp2 , 由于两段 GP之和 的长度等于 #11长度, 即^^^^1符号长度― )XTS秒。 在系统配置某一个 上行子帧为 Backhaul Link上行子帧, 且定时关系为提前偏移 offset时, RN 釆用图 7 (d)所示的结构对待上报的上行控制信息进行处理, 承载在所分 配的 R-PUCCH资源上, 在相对于所接收到的 Backhaul Link下行子帧的起 始位置提前一定的定时提前量作为 Backhaul Link上行子帧的开始时刻, 即 子帧内第一段 GP的开始, gS=A^ XTS秒, 用于 RN的收 /发状态的转换, 在此段 GP之后开始传输 Backhaul Link上行子帧中第一个有效符号, 即 #0 符号,使 R-PUCCH的 #0符号在 eNB接收时与宏小区上行子帧的 #0符号对 齐,其后依次为 R-PUCCH的有效符号, 最后在上行子帧的末尾设置第二段 GP, 记为 GP2 , 且 GP2 = (#11符号长度- N。ffset)xTs秒, 即 GP2 = (2560 - N。ffset)xTs , 在 GP2内 RN完成发 /收状态的转换,则 Backhaul Link上行子帧中 R-PUCCH 的 11个有效符号在 eNB分别与上行子帧中的 #0-#10符号对齐。
当系统配置指示 RN连续的多个上行子帧为 Backhaul Link上行子帧, 且这多个子帧的之前一个和之后一个子帧为 Access Link上行子帧时, 在所 配置的连续多个 Backhaul Link上行子帧中, 第一个上行子帧中 RN需进行 收 /发状态转换, 最后一个上行子帧中 RN 需进行发 /收状态转换, 相应的 R-PUCCH信道结构分别如图 8 ( a )和 8 ( b )所示。
图 8 ( a )所示的 R-PUCCH信道结构适用于 RN需进行收 /发状态转换 的 Backhaul Link上行子帧, RN根据系统配置指示在相对于所接收到的 Backhaul Link下行子帧起始位置, 以一定的定时提前量作为 Backhaul Link 上行子帧的起始时刻,使 Backhaul Link上行子帧中发送的 11个有效符号在 eNB 接收时与宏小区上行子帧中的 #1-#11 符号对齐。 相应的, Backhaul Link上行子帧中开始位置设置一段 GP,进行 RN收 /发状态的转换,设置为: GP = #0符号长度 xTs秒, 即 GP = 2560xTs秒。 这里, 由于一段 GP 占用完整的 一个符号长度, 则 Backhaul Link上行子帧的定时关系为相对于 RN所接收 到的 Backhaul Link下行子帧的起始位置提前^^ 7^秒作为 Backhaul Link 上行子帧的开始时刻。 在系统配置某连续多个上行子帧为 Backhaul Link上 行子帧, 对第一个 Backhaul Link上行子帧, RN釆用图 8 ( a )所示的结构 对待上报的上行控制信息进行处理,承载在所分配的 R-PUCCH资源上,在 相对于所接收到的 Backhaul Link下行子帧的起始位置提前^^ >^秒作为 Backhaul Link上行子帧的开始时刻, #0符号作为 GP, 用于 RN的收 /发状 态的转换, 从 #1符号开始是 R-PUCCH的有效符号, 使 R-PUCCH的 #1符 号在 eNB接收时与宏小区上行子帧的 #1符号对齐, 其后依次为 R-PUCCH 的有效符号, 则 Backhaul Link上行子帧中 R-PUCCH的 11个有效符号在 eNB分别与上行子帧中的 #1-#11符号对齐。
图 8 ( b )所示的 R-PUCCH信道结构适用于 RN需进行发 /收状态转换 的 Backhaul Link上行子帧, RN根据系统配置指示在相对于所接收到的 Backhaul Link下行子帧起始位置, 以一定的定时提前量作为 Backhaul Link 上行子帧的起始时刻,使 Backhaul Link上行子帧中发送的 11个有效符号在 eNB 接收时与宏小区上行子帧中的 #0-#10 符号对齐。 相应的, Backhaul Link上行子帧中末尾设置一段 GP, 进行 RN发 /收状态的转换, 设置为: (^ = #11符号长度 1 , 即 GP = 2560xTs秒。 这里, 由于一段 GP占用完整的一 个符号长度, 则 Backhaul Link上行子帧的定时关系为相对于 RN所接收到 的 Backhaul Link下行子帧的起始位置提前 秒作为 Backhaul Link上 行子帧的开始时刻。 在系统配置某连续多个上行子帧为 Backhaul Link上行 子帧, 对最后一个 Backhaul Link上行子帧, RN釆用图 8 ( b )所示的结构 对待上报的上行控制信息进行处理,承载在所分配的 R-PUCCH资源上,在 相对于所接收到的 Backhaul Link下行子帧的起始位置提前^^ >^秒作为 Backhaul Link上行子帧的开始时刻,子帧末尾的 #11符号作为 GP,用于 RN 的发 /收状态的转换, 子帧内从 #0符号开始是 R-PUCCH 的有效符号, 使 R-PUCCH的 #0符号在 eNB接收时与宏小区上行子帧的 #0符号对齐, 其后 依次为 R-PUCCH的有效符号, 直至 #10符号, #11为 GP, 则 Backhaul Link 上行子帧中 R-PUCCH的 11个有效符号在 eNB分别与上行子帧中的 #0-#10 符号对齐。
在具体应用中, 实现上述对 Backhaul Link上行控制信道处理的方式有 多种, 对于图 7 ( a ), 7 ( b ), 图 8 ( a ), 8 ( b ), 由于 Backhaul Link上行子 帧内设置一段 GP, 且长度为一个完整的符号长度, Backhaul Link上行子帧 的发送定时提前关系仅与 RN和所属 eNB之间由于空间距离带来的信号传 播时间相关。 因此, RN在获得所属 eNB对传播时延参数 的配置指示 后, 在相对于 RN 所接收到的 Backhaul Link 下行子帧的起始位置提前 -TA X^秒作为 Backhaul Link上行子帧的开始时刻, 这里定时提前量即为 o 对于图 7 ( c ), 7 ( d ), 图 8 ( c ), 8 ( d ), Backhaul Link上行 子帧发送定时提前量的确定有不同的方法, 具体与以下参数中的一项或多 项相关, 包括: ^R-TA , Offset , Ν 。 其中, 定时偏移量参数 A 6t , 是与 RN 的发 /收或收 /发转换时间相关的参数, 取值为正整数。 取值的确定可以 由 eNB通过信令配置指示 RN,或者由系统设定某确定取值,或者由 RN自 己选择某数值。定时提前量参数 ,指相对于 RN所接收到的 Backhaul Link 下行子帧的起始位置, 开始发送 Backhaul Link上行子帧的定时提前量。 根 据系统的上述参数的不同配置方式, RN釆用相应的方法对 R-PUCCH信道 进行处理, 下面以图 9至 13为例进行说明。
参见图 9,图 9为本发明实施例一的回程链路上行控制信道的处理方式 示意图。 图 9中, 系统釆用 Normal CP, 为系统设定的某固定数值, 为 正整数, 这里取
Figure imgf000023_0001
, 系统配置 Backhaul Link上行子帧以提前偏移量 的方式进行传输, eNB以高层信令或其它信令方式指示 RN传播时延 参数 NR- 。 eNB配置某子帧为 Backhaul上行子帧, 且前后相邻的上行子帧 为 Access Link 上行子帧, 并且在此上行子帧上为 RN 配置 RB 对作为 R-PUCCH资源, RB对在 slot间跳频, 用于承载上行控制信息。
RN根据上述配置指示, 在 Backhaul Link上行子帧内釆用图 7 ( d )所 示的 R-PUCCH 信道结构来处理待上报的上行控制信息, 承载在为 R-PUCCH所分配的 RB对上,在相对于所接收到的 Backhaul Link下行子帧 的起始位置提前 R-TA + Ss xTs秒作为 Backhaul Link上行子帧的开始时刻, 即子帧内第一段 GP的开始, 且 = ^xTs秒, 用于 RN的收 /发状态的转 换, 在此段 GP之后开始传输 Backhaul Link上行子帧中第一个有效符号, 即 #0符号, 使 R-PUCCH的 #0符号在 eNB接收时与宏小区上行子帧的 #0 符号对齐,其后依次为 R-PUCCH的有效符号,最后在上行子帧的末尾设置 第二段 GP,且 Gp 2 = (#13符号长度- UxTs秒,即 GP2 = (2192 - N。ffset)xTs , GP2 内 RN完成发 /收状态的转换,则 Backhaul Link上行子帧中 R-PUCCH的 13 个有效符号在 eNB分别与上行子帧中的 #0-#12符号对齐。 当待上报的上行 控制信息为 ACK/NACKK信息时, 如图 9 ( a )所示, RN将 ACK/NACK 信息承载映射到所配置的 Backhaul Link上行子帧的 #0, #1、 #5 , #6、 #7、 #8、 #12符号上, #2、 #3、 #4、 #9、 #10、 #11符号则用于映射 RS。 当待上 报的上行控制信息为 CQI/PMI/RI信息时,如图 9( b )所示, RN将 CQI/PMI/RI 信息承载映射到所配置的 Backhaul Link上行子帧的 #0、 #2、 #3 , #4、 #6、 #7、 #9、 #10、 #11符号上, #1、 #5、 #8、 #12符号上映射 RS。
参见图 10,图 10为本发明实施例二的回程链路上行控制信道的处理方 式示意图。 图 10中, 系统釆用 Extended CP, 为系统设定的某固定数 值, 为正整数, 这里取 ffs 500 , 系统配置 Backhaul Link上行子帧以延迟 偏移量 的方式进行传输, eNB以高层信令或其它信令方式指示 RN传 播时延参数^^。 eNB配置指示 RN某子帧为 Backhaul上行子帧, 前后相 邻的上行子帧为 Access Link上行子帧, 并在此上行子帧上为 RN配置 RB 对作为 R-PUCCH资源, RB对在 slot间跳频, 用于承载上行控制信息。
RN根据上述配置指示, 在 Backhaul Link上行子帧内釆用图 8 ( c )所 示的结构对待上报的上行控制信息进行处理,承载在所分配的 R-PUCCH资 源上, 在相对于所接收到的 Backhaul Link 下行子帧的起始位置提前 (WR-TAχ?;秒作为 Backhaul Link上行子帧的开始时刻, 即子帧内第一 段 GP的开始, 且 GS = ( #0符号长度— UxT s秒, 即(2560-UxT s秒, 用于 RN的收 /发状态的转换, 在此段 GP之后开始传输 Backhaul Link上行子帧 中第一个有效符号, 即 #1符号, 使 R-PUCCH的 #1符号在 eNB接收时与宏 小区上行子帧的 #1符号对齐, 其后依次为 R-PUCCH的有效符号, 最后在 上行子帧的末尾设置第二段 GP, 且<^ = ^ x Ts秒, 在<^2内 RN完成发 / 收状态的转换,则 Backhaul Link上行子帧中 R-PUCCH的 11个有效符号在 eNB 分别与上行子帧中的 #1-#11 符号对齐。 当待上报的上行控制信息为 ACK/NACKK信息时, 如图 10 ( a )所示, RN将 ACK/NACK信息 载映 射到所配置的 Backhaul Link上行子帧的 #1、 #4, #5、 #6、 #7、 #10、 #11符 号上, #2、#3、#8、#9符号上映射 RS。当待上 的上行控制信息为 CQI/PMI/RI 信息时, 如图 10 ( b ) 所示, RN将 CQI/PMI/RI信息承载映射到所配置的 Backhaul Link上行子帧的 #1、 #2、 #4, #5、 #6、 #7、 #8、 #10、 #11符号上 承载信道质量报告, #3、 #9符号上映射 RS。
参见图 11 , 图 11为本发明实施例三的回程链路上行控制信道的处理方 式示意图。 图 11中, 系统釆用 Normal CP, 为系统设定的某固定数值 或由 eNB通过信令通知 RN某值, 为正整数, 这里取 ^^^=7()() , 系统配置 Backhaul Link上行子帧以延迟偏移量 的方式进行传输, eNB以高层信 令或其它信令方式指示 RN作为定时提前量参数的 ^。 eNB配置指示 RN 某子帧为 Backhaul上行子帧,前后相部的上行子帧为 Access Link上行子帧, 并在此上行子帧上为 RN配置 RB对作为 R-PUCCH资源, RB对在 slot间 跳频, 用于承载上行控制信息。 .
RN根据 eNB的配置指示, 在相对于所接收到的 Backhaul Link下行子 帧的起始位置提前 ^Α Χ7^秒作为 Backhaul Link上行子帧的开始时刻, 即子 帧内第一段 Gp的开始, 且 GS = ( #0符号长度- N。ffset)xTs秒, 即(2208 - N。ffset)xTs 秒, 用于 RN的收 /发状态的转换, 在此段 GP之后开始传输 Backhaul Link 上行子帧中第一个有效符号, 即 #1符号, 使 R-PUCCH的 #1符号在 eNB接 收时与宏小区上行子帧的 #1符号对齐, 其后依次为 R-PUCCH的有效符号, 最后在上行子帧的末尾设置第二段 GP,记为 G/?2 ,且^^: ^ 1秒,在 Gp 2 内 RN完成发 /收状态的转换,则 Backhaul Link上行子帧中 R-PUCCH的 13 个有效符号在 eNB分别与上行子帧中的 #1-#13符号对齐。 RN根据上述配 置, 将待上报的 CQI/PMI/RI信息承载映射到所配置的 Backhaul Link上行 子帧的 #2、 #3 , #4、 #6、 #7、 #9、 #10、 #11、 #13符号上, #1、 #5、 #8、 #12 符号则用于映射 RS; 并根据定时关系配置, 提前 秒向 eNB进行上行 发射。
参见图 12, 图 12为本发明实施例四的上行控制信息处理方式示意图。 图 12中, 系统釆用 Extended CP, 配置指示 RN某子帧为 Backhaul上行子 帧,前后相邻的上行子帧为 Access Link上行子帧,并在此上行子帧上为 RN 配置 RB对作为 R-PUCCH资源, RB对在 slot间不跳频, 用于 载上行控 制信息。 为 RN根据自身收 /发或发 /收转换所需时间确定的某值, 为正 整数,这里取 ^^=614 ,系统配置 Backhaul Link上行子帧以提前偏移量 的方式进行传输, eNB以高层信令或其它信令方式指示 RN传播时延参数 v R-TA
RN根据 eNB的配置指示, 在相对于所接收到的 Backhaul Link下行子 帧的起始位置提前 ( VR-TA + Uxr s秒作为 Backhaul Link上行子帧的开始时 刻, 即子帧内第一段 GP的开始, 且 = ^ x Ts秒, 用于 RN的收 /发状态 的转换, 在此段 GP之后开始传输 Backhaul Link上行子帧中第一个有效符 号, 即 #0符号, 使 R-PUCCH的 #0符号在 eNB接收时与宏小区上行子帧的 #0符号对齐, 其后依次为 R-PUCCH的有效符号, 最后在上行子帧的末尾 设置第二段 GP,且 Gp 2 = (#1 1符号长度 _Ux rs秒, 即在 GP2 = (2560- N。ffset)xrs 秒, 在^^内 RN 完成发 /收状态的转换, 则 Backhaul Link 上行子帧中 R-PUCCH的 11个有效符号在 eNB分别与上行子帧中的 #0-#10符号对齐。 RN 根据上述配置, 将待上报的 CQI/PMI/RI 信息承载映射到所配置的 Backhaul Link上行子帧的 #0, #1、 #2、 #4, #5、 #6、 #7、 #8、 #10符号上,
#3、 #9符号则用于映射 RS; 并根据定时关系配置, 提前 (^-^ + ffJxr 、 向 eNB进行上行发射。
参见图 13 , 图 13为本发明实施例五的上行控制信息处理方式示意图。 图 13中, 系统釆用 Normal CP, 配置指示 RN某连续两子帧为 Backhaul上 行子帧, 前后相部的上行子帧为 Access Link上行子帧, 并在 2个上行子帧 上分别为 RN配置 RB对作为 R-PUCCH资源, RB对在 slot间跳频, 配置 的第一个 Backhaul Link上行子帧的 R-PUCCH资源用于承载 ACK/NACK 信息, 第二个 Backhaul Link 上行子帧的 R-PUCCH 资源用于承载 CQI/PMI/RI信息。 eNB 通过高层信令或其他信令方式配置指示 Backhaul Link上行子帧传播时延参数^^。
RN根据 eNB的配置指示, 在 Backhaul Link上行子帧内设置一段时间 间隔作为 GP, 长度为一个符号长度, 具体位于所分配的第一个 Backhaul Link上行子帧上 GP位于子帧的开始位置, 长度为 GP = #0符号长度 xrs , 即 在所分配的第二个 Backhaul Link上行子帧上 GP位于子帧的 结束位置, 长度为 GP = #13符号长度 xrs , 即 = 2192X7;。
RN根据上述配置, 在相对于所接收到的 Backhaul Link下行子帧的起 始位置提前^^ >^秒作为 Backhaul Link上行子帧的开始时刻, 在第一个 Backhaul Link上行子帧中, #0符号位置为 GP, 用于 RN的收 /发状态的转 换, 在此段 GP之后开始传输 Backhaul Link上行子帧中第一个有效符号, 即 #1符号, 使 R-PUCCH的 #1符号在 eNB接收时与宏小区上行子帧的 #1 符号对齐,其后依次为 R-PUCCH的有效符号,直至子帧结束。则此 Backhaul Link上行子帧中 R-PUCCH的 13个有效符号在 eNB分别与上行子帧中的 #1-#13符号对齐。在第二个 Backhaul Link上行子帧中, #13符号位置为 GP, 用于 RN的发 /收状态的转换,在此子帧中 R-PUCCH的 #0符号在 eNB接收 时与宏小区上行子帧的 #0符号对齐, 其后依次为 R-PUCCH的有效符号, 则此 Backhaul Link上行子帧中 R-PUCCH的 13个有效符号在 eNB分别与 上行子帧中的 #0-#12符号对齐。 RN将待上报的在所分配的第一个 Backhaul Link上行子帧上将 ACK/NACK信息承载映射到 #1 , #5 , #6、 #7、 #8、 #12、 #13符号上, #2、 #3、 #4、 #9、 #10、 #11符号则用于映射 RS; 在所分配的 第二个 Backhaul Link上行子帧上将 CQI/PMI/RI信息承载映射到 #0, #2、 #3 , #4、 #6、 #7、 #9、 #10、 #11 符号上, #1、 #5、 #8、 #12符号则用于映 射 RS, 并根据定时关系配置, 提前^^ >^秒向 eNB进行上行发射。
结合以上描述可知, 本发明的上行控制信息处理流程可以简化如图 14 所示。 参见图 14, 图 14为本发明的上行控制信息处理流程简图, 该流程包 括以下步骤:
步骤 1410: 接收用于指示 Backhaul Link上行信息传输的配置信息, 包 括 Backhaul Link上行子帧、 Backhaul Link上行子帧相对于回程链路下行子 帧的定时关系、 以及 Backhaul Link物理上行控制信道的资源。
步骤 1420: 釆用与收到的配置信息相对应的物理上行控制信道结构对 上行控制信息进行承载处理。
步骤 1430: 在所分配的回程链路资源上, 按照所配置的定时关系对完 成承载处理的上行控制信息进行上行发射。
为了保证上述技术内容能够顺利实现, 可以进行如图 15所示的设置。 参见图 15 , 图 15为本发明一实施例的上行控制信息处理系统图, 该系统包 括相连的配置信息接收单元、 上行控制信息处理单元、 发射单元; 上行控 结构配置单元、 资源配置单元。 其中, 配置信息接收单元能够接收用于指示 Backhaul Link上行信息传 输的配置信息, 包括 Backhaul Link上行子帧、 Backhaul Link上行子帧相对 于 Backhaul Link下行子帧的定时关系、以及 Backhaul Link物理上行控制信 道的资源; 并能够将收到的上述配置信息发送给上行控制信息处理单元。 上行控制信息处理单元中的定时关系配置单元能够接收 Backhaul Link上行 子帧相对于 Backhaul Link下行子帧的定时关系配置信息, 并将该定时关系 配置信息所对应的帧结构要求发送给帧结构配置单元; 资源配置单元能够 接收 Backhaul Link物理上行控制信道的资源配置信息, 并将该资源配置信 息所对应的帧结构要求发送给帧结构配置单元; 帧结构配置单元能够接收 Backhaul Link上行子帧配置信息以及来自定时关系配置单元、 资源配置单 元的配置信息 ,进而可以釆用与收到的配置信息相对应的 R-PUCCH信道结 构对上行控制信息进行承载处理, 并将完成承载处理的上行控制信息发送 给发射单元。 发射单元能够在所分配的 Backhaul Link的相应资源上, 根 据配置的定时关系, 对收到的完成承载处理的上行控制信息进行上行发射。
需要说明的是, 从以上描述可见, 可以通过多种方式确定, 如: 由系统设定为某固定数值或由 eNB通过信令通知 RN以确定为某值, 或者 是 RN根据自身收 /发或发 /收转换所需时间确定的某值。
综上所述可见, 无论是方法还是系统, 本发明的 Backhaul Link上行控 制信道处理技术, 均可保证上行控制信息 Backhaul Link上的有效传输, 并 能提高传输效率。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种回程链路 Backhaul Link上行控制信道处理方法 , 其特征在于, 该方法包括:
中继站 RN接收用于指示 Backhaul Link上行信息传输的配置信息, 包 括 Backhaul Link上行子帧配置、 Backhaul Link上行子帧相对于 Backhaul Link 下行子帧的定时关系配置、 以及 Backhaul Link 物理上行控制信道 R-PUCCH的资源配置;
釆用与收到的配置信息相对应的 R-PUCCH信道结构对上行控制信息 进行处理; 并在所分配的 Backhaul Link资源上, 按照所配置的定时关系将 上行控制信息发送给基站 eNB。
2、 根据权利要求 1所述的方法, 其特征在于, 所述 R-PUCCH中包括 保护时间间隔 GP以及有效符号, GP用于 RN进行收 /发或发 /收状态转换, 有效符号指 SC-FDMA符号或 OFDM符号, 用于承载上行控制信息 UCI及 导频 RS; 釆用普通循环前缀 Normal CP时, 所述 R-PUCCH信道结构为: 子帧中 #0符号作为 GP, #1-#13符号为 R-PUCCH的有效符号,根据配 置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link下行子帧 的定时关系, R-PUCCH的 #1符号在 eNB接收时与宏小区上行子帧的 #1符 号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 13个有效符号在 eNB 分别与上行子帧中的 #1-#13符号对齐;
或者, 子帧中 #13符号作为 GP, #0-#12符号为 R-PUCCH的有效符号, 根据配置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子 帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 13个有效符 号在 eNB分别与上行子帧中的 #0-#12符号对齐;
或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #0符号长度, 之后是 R-PUCCH的 13个有效符号, #1-#13符号,子帧末尾为一段 GP,称为 GP2, 两段 GP的长度之和等于 #0符号长度; 根据配置的所述 Backhaul Link上行 子帧相对于所接收到的 Backhaul Link下行子帧的定时关系, R-PUCCH的 #1符号在 eNB接收时与宏小区上行子帧的 #1符号对齐, 使 Backhaul Link 上行子帧中 R-PUCCH的 13个有效符号在 eNB分别与上行子帧中的 #1-#13 符号对齐;
或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #13符号长度, 之后 是 R-PUCCH的 13个有效符号, #0-#12符号, 最后子帧末尾为一段 GP, 称为 GP2,两段 GP的长度之和等于 #13符号长度;根据配置的所述 Backhaul Link 上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 13个有效符号在 eNB分别与上行子 帧中的 #0-#12符号对齐。
3、 根据权利要求 2所述的方法, 其特征在于, 当待上报的上行控制信 息为 ACK/NACK信息时, 所述有效符号中的 #2、 #3、 #4、 #9、 #10、 #11 符号用于映射 RS; 当待上报的上行控制信息为 CQI/PMI/RI信息时, 所述 符号中的 #1、 #5、 #8、 #12符号用于映射 RS。
4、 根据权利要求 1所述的方法, 其特征在于, 所述 R-PUCCH中包括 GP 以及有效符号, GP用于 RN进行收 /发或发 /收状态转换, 有效符号指 SC-FDMA符号或 OFDM符号, 用于承载 UCI及 RS; 釆用扩展循环前缀 Extended CP时, 所述 R-PUCCH信道结构为:
子帧中 #0符号作为 GP, #1-#11符号为 R-PUCCH的有效符号, 根据配 置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link下行子帧 的定时关系, R-PUCCH的 #1符号在 eNB接收时与宏小区上行子帧的 #1符 号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 11个有效符号在 eNB 分别与上行子帧中的 #1-#11符号对齐;
或者, 子帧中 #11符号作为 GP, #0-#10符号为 R-PUCCH的有效符号, 根据配置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子 帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 11个有效符 号在 eNB分别与上行子帧中的 #0-#10符号对齐;
或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #0符号长度, 之后是 R-PUCCH的 11个有效符号, #1-#11符号, 最后子帧末尾为一段 GP, 称为 GP2,两段 GP的长度之和等于 #0符号长度;根据配置的所述 Backhaul Link 上行子帧相对于所接收到的 Backhaul Link下行子帧的定时关系, R-PUCCH 的 #1符号在 eNB接收时与宏小区上行子帧的 #1符号对齐,使 Backhaul Link 上行子帧中 R-PUCCH的 11个有效符号在 eNB分别与上行子帧中的 #1-#11 符号对齐;
或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #11符号长度, 之后 是 R-PUCCH的 11个有效符号, #0-#10符号, 最后子帧末尾为一段 GP, 称为 GP2,两段 GP的长度之和等于 #11符号长度;根据配置的所述 Backhaul Link 上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 11个有效符号在 eNB分别与上行子 帧中的 #0-#10符号对齐。
5、 根据权利要求 4所述的方法, 其特征在于, 当待上报的上行控制信 息为 ACK/NACKK信息时, 所述符号中的 #2、 #3、 #8、 #9符号用于映射 RS; 当待上报的上行控制信息为 CQI/PMI/RI信息时, 所述符号中的 #3、 #9 符号用于映射 RS。
6、根据权利要求 1、 2或 4所述的方法,其特征在于,所述 Backhaul Link 项或几项获得: 定时偏移量参数 —, 定时提前量参数 , 传播时延参数
^R-TA , JL Offset ¾ N ^R-TA取值为正整数,
所述参数由 eNB通过信令配置指示 RN, 或由系统设置为固定值, 或 由 RN决定取值。
7、根据权利要求 1、 2或 4所述的方法,其特征在于,釆用所述 R-PUCCH 结构对上行控制信息进行处理的过程包括: 在相对于所接收到的 Backhaul Link下行子帧的起始位置提前(Λ^-ΤΑ+ ffJxrs秒作为 Backhaul Link上行子 帧的开始时刻, 并且,
Normal CP时, 使 R-PUCCH的 #0-#12符号在 eNB接收时分别与宏小 区上行子帧的 #0-#12 符号对齐, R-PUCCH 结构中的<^= f^ xTs秒, G尸 2 =(#13符号长度- N。ffset)xTs秒, Ts =1/(15000x2048) .
Extended CP时,使 R-PUCCH的 #0-#10符号在 eNB接收时分别与宏小 区上行子帧的 #0-#10 符号对齐, R-PUCCH 结构中的<^= f^ xTs秒, GP2 =(#11符号长度- N。ffset)xTs秒, 7; =1/(15000x2048)。
8、根据权利要求 1、 2或 4所述的方法,其特征在于,釆用所述 R-PUCCH 结构对上行控制信息进行处理的过程包括: 在相对于所接收到的 Backhaul Link下行子帧的起始位置提前 R-TA - 。 ffJxTs秒作为 Backhaul Link上行子 帧的开始时刻, 并且,
Normal CP时, 使 R-PUCCH的 #1-#13符号在 eNB接收时与宏小区上 行子帧的 #1-#13 符号对齐, R-PUCCH 结构中的 GP2 = Offset xTs秒, =(#0符号长度- N。ffset)xTs秒;
Extended CP时,使 R-PUCCH的 #1-#11符号在 eNB接收时与宏小区上 行子帧的 #1-#11 符号对齐, R-PUCCH 结构中的 GP2 = Offset xTs秒, = (#0符号长度- N。ffset)xTs秒。
9、根据权利要求 1、 2或 4所述的方法,其特征在于,釆用所述 R-PUCCH 结构对上行控制信息进行处理的过程包括: 在相对于所接收到的 Backhaul Link下行子帧的起始位置提前 ^Α Χ7^秒作为 Backhaul Link上行子帧的开始 时刻, 并且,
Normal CP时, 使 R-PUCCH的 #0-#12符号在 eNB接收时分别与宏小 区上行子帧的 #0-#12 符号对齐, R-PUCCH 结构中的<^ = 秒, G尸 2 = (#13符号长度- N。ffset)xTs秒, Ts = 1/(15000x2048) .
Extended CP时,使 R-PUCCH的 #0-#10符号在 eNB接收时分别与宏小 区上行子帧的 #0-#10 符号对齐, R-PUCCH 结构中的 GS = 秒, GP2 = (#11符号长度- N。ffset)xT 。
10、 根据权利要求 1、 2 或 4 所述的方法, 其特征在于, 釆用所述 R-PUCCH结构对上行控制信息进行处理的过程包括: 在相对于所接收到的
Backhaul Link下行子帧的起始位置提前 秒作为 Backhaul Link上行子 帧的开始时刻, 并且,
Normal CP时, 使 R-PUCCH的 #1-#13符号在 eNB接收时与宏小区上 行子帧的 #1-#13 符号对齐, R-PUCCH 结构中的 Gp2 xTs秒, = (#0符号长度- N。ffset)xTs秒;
Extended CP时,使 R-PUCCH的 #1-#11符号在 eNB接收时与宏小区上 行子帧的 #1-#11 符号对齐, R-PUCCH 结构中的 G/?2 = f x Ts秒 , = (#0符号长度- N。ffset)xTs秒。
11、 根据权利要求 1、 2 或 4 所述的方法, 其特征在于, 釆用所述 R-PUCCH结构对上行控制信息进行处理的过程包括: 在相对于所接收到的
Backhaul Link下行子帧的起始位置提前^^ 7^秒作为 Backhaul Link上行 子帧的开始时刻, 并且,
Normal CP时, 使 R-PUCCH的 #0-#13符号在 eNB接收时与宏小区上 行子帧的 #0-#13符号对齐, 其中, #0符号作为 GP;
Extended CP时,使 R-PUCCH的 #0-#11符号在 eNB接收时与宏小区上 行子帧的 #0-#11符号对齐, 其中, #0符号作为 GP。
12、 根据权利要求 1、 2 或 4 所述的方法, 其特征在于, 釆用所述 R-PUCCH结构对上行控制信息进行处理的过程包括: 在相对于所接收到的 Backhaul Link下行子帧的起始位置提前^^ 7^秒作为 Backhaul Link上行 子帧的开始时刻, 并且,
Normal CP时, 使 R-PUCCH的 #0-#13符号在 eNB接收时与宏小区上 行子帧的 #0-#13符号对齐, 其中, #13符号作为 GP;
Extended CP时,使 R-PUCCH的 #0-#11符号在 eNB接收时与宏小区上 行子帧的 #0-#11符号对齐, 其中, #11符号作为 GP。
13、 一种回程链路上行控制信道处理系统, 其特征在于, 该系统包括 相连的配置信息接收单元、 上行控制信息处理单元、 发射单元; 其中, 所述配置信息接收单元, 用于接收指示 Backhaul Link上行信息传输的 配置信息, 包括 Backhaul Link上行子帧、 Backhaul Link上行子帧相对于 Backhaul Link链路下行子帧的定时关系、 以及 Backhaul Link物理上行控制 信道的资源; 并将收到的上述配置信息发送给所述上行控制信息处理单元; 所述上行控制信息处理单元, 用于釆用与收到的配置信息相对应的
R-PUCCH信道结构对上行控制信息进行承载处理, 并将完成承载处理的上 行控制信息发送给发射单元;
所述发射单元, 用于在所分配的 Backhaul Link的相应资源上, 根据 配置的定时关系, 对收到的完成承载处理的上行控制信息进行发射。
14、 根据权利要求 13所述的系统, 其特征在于, 所述上行控制信息处 理单元包括定时关系配置单元、 帧结构配置单元、 资源配置单元; 其中, 所述定时关系配置单元, 用于接收 Backhaul Link 上行子帧相对于 Backhaul Link下行子帧的定时关系配置信息, 并将该定时关系配置信息所 对应的帧结构要求发送给帧结构配置单元;
所述资源配置单元, 用于接收 Backhaul Link物理上行控制信道的资源 配置信息, 并将该资源配置信息所对应的帧结构要求发送给帧结构配置单 元;
所述帧结构配置单元, 用于接收 Backhaul Link上行子帧配置信息以及 来自定时关系配置单元、 资源配置单元的配置信息, 釆用与收到的配置信 息相对应的 R-PUCCH信道结构对上行控制信息进行承载处理,并将完成承 载处理的上行控制信息发送给所述发射单元。
15、 根据权利要求 13或 14所述的系统, 其特征在于, 所述 R-PUCCH 中包括 GP以及有效符号, GP用于 RN进行收 /发或发 /收状态转换,有效符 号指 SC-FDMA符号或 OFDM符号, 用于承载上行控制信息 UCI及导频 RS; 釆用普通循环前缀 Normal CP时, 所述 R-PUCCH信道结构为:
子帧中 #0符号作为 GP, #1-#13符号为 R-PUCCH的有效符号,根据配 置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link下行子帧 的定时关系, R-PUCCH的 #1符号在 eNB接收时与宏小区上行子帧的 #1符 号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 13个有效符号在 eNB 分别与上行子帧中的 #1-#13符号对齐;
或者, 子帧中 #13符号作为 GP, #0-#12符号为 R-PUCCH的有效符号, 根据配置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子 帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 13个有效符 号在 eNB分别与上行子帧中的 #0-#12符号对齐; 或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #0符号长度, 之后是 R-PUCCH的 13个有效符号, #1-#13符号,子帧末尾为一段 GP,称为 GP2, 两段 GP的长度之和等于 #0符号长度, 根据配置的所述 Backhaul Link上行 子帧相对于所接收到的 Backhaul Link下行子帧的定时关系, R-PUCCH的 #1符号在 eNB接收时与宏小区上行子帧的 #1符号对齐, 使 Backhaul Link 上行子帧中 R-PUCCH的 13个有效符号在 eNB分别与上行子帧中的 #1-#13 符号对齐;
或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #13符号长度, 之后 是 R-PUCCH的 13个有效符号, #0-#12符号, 最后子帧末尾为一段 GP, 称为 GP2,两段 GP的长度之和等于 #13符号长度,根据配置的所述 Backhaul Link 上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 13个有效符号在 eNB分别与上行子 帧中的 #0-#12符号对齐。
16、 根据权利要求 15所述的系统, 其特征在于, 当待上报的上行控制 信息为 ACK/NACK信息时, 所述有效符号中的 #2、 #3、 #4、 #9、 #10、 #11 符号用于映射 RS; 当待上报的上行控制信息为 CQI/PMI/RI信息时, 所述 符号中的 #1、 #5、 #8、 #12符号用于映射 RS。
17、 根据权利要求 13或 14所述的系统, 其特征在于, 所述 R-PUCCH 中包括 GP以及有效符号, GP用于 RN进行收 /发或发 /收状态转换,有效符 号指 SC-FDMA符号或 OFDM符号, 用于承载 UCI及 RS; 釆用扩展循环 前缀 Extended CP时, 所述 R-PUCCH信道结构为:
子帧中 #0符号作为 GP, #1-#11符号为 R-PUCCH的有效符号, 根据配 置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link下行子帧 的定时关系, R-PUCCH的 #1符号在 eNB接收时与宏小区上行子帧的 #1符 号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 11个有效符号在 eNB 分别与上行子帧中的 #1-#11符号对齐;
或者, 子帧中 #11符号作为 GP, #0-#10符号为 R-PUCCH的有效符号, 根据配置的所述 Backhaul Link上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子 帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 11个有效符 号在 eNB分别与上行子帧中的 #0-#10符号对齐;
或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #0符号长度, 之后是 R-PUCCH的 11个有效符号, #1-#11符号, 最后子帧末尾为一段 GP, 称为 GP2,两段 GP的长度之和等于 #0符号长度,根据配置的所述 Backhaul Link 上行子帧相对于所接收到的 Backhaul Link下行子帧的定时关系, R-PUCCH 的 #1符号在 eNB接收时与宏小区上行子帧的 #1符号对齐,使 Backhaul Link 上行子帧中 R-PUCCH的 11个有效符号在 eNB分别与上行子帧中的 #1-#11 符号对齐;
或者, 子帧开始为一段 GP, 称为 GP1 , 长度小于 #11符号长度, 之后 是 R-PUCCH的 11个有效符号, #0-#10符号, 最后子帧末尾为一段 GP, 称为 GP2,两段 GP的长度之和等于 #11符号长度,根据配置的所述 Backhaul Link 上行子帧相对于所接收到的 Backhaul Link 下行子帧的定时关系, R-PUCCH的 #0符号在 eNB接收时与宏小区上行子帧的 #0符号对齐, 使 Backhaul Link上行子帧中 R-PUCCH的 11个有效符号在 eNB分别与上行子 帧中的 #0-#10符号对齐。
18、 根据权利要求 17所述的系统, 其特征在于, 当待上报的上行控制 信息为 ACK/NACKK信息时, 所述符号中的 #2、 #3、 #8、 #9符号用于映射 RS; 当待上报的上行控制信息为 CQI/PMI/RI信息时, 所述符号中的 #3、 #9 符号用于映射 RS。
PCT/CN2011/070607 2010-02-01 2011-01-25 一种回程链路上行控制信道的处理方法和系统 WO2011091746A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010115267.7A CN102143586B (zh) 2010-02-01 2010-02-01 一种回程链路上行控制信道的处理方法和系统
CN201010115267.7 2010-02-01

Publications (1)

Publication Number Publication Date
WO2011091746A1 true WO2011091746A1 (zh) 2011-08-04

Family

ID=44318670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070607 WO2011091746A1 (zh) 2010-02-01 2011-01-25 一种回程链路上行控制信道的处理方法和系统

Country Status (2)

Country Link
CN (1) CN102143586B (zh)
WO (1) WO2011091746A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190637A1 (en) * 2018-03-27 2019-10-03 Qualcomm Incorporated Resource coordination for half duplex communications
CN112913290A (zh) * 2018-08-17 2021-06-04 株式会社Ntt都科摩 无线通信装置以及无线通信方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215577B (zh) * 2010-04-02 2015-09-16 中兴通讯股份有限公司 回程链路上行控制信道的资源分配方法和系统
CN105557046B (zh) * 2014-01-24 2019-07-19 华为技术有限公司 导频信号的传输方法及装置
CN104918227B (zh) * 2014-03-10 2019-02-01 华为技术有限公司 通信设备和长期演进系统中基站回传的方法
JP6679713B2 (ja) * 2015-08-21 2020-04-15 華為技術有限公司Huawei Technologies Co.,Ltd. 無線通信方法およびシステム、ネットワーク装置、ならびにユーザ機器
AU2018214736A1 (en) 2017-02-03 2019-08-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information transmission method and apparatus and storage medium
CN109995484B (zh) * 2017-12-29 2021-01-22 电信科学技术研究院 一种数据传输、接收方法、终端及基站
CN110535677B (zh) * 2018-12-12 2023-05-02 中兴通讯股份有限公司 一种定时信息配置方法、装置和系统
CN111385076B (zh) * 2018-12-29 2021-08-13 华为技术有限公司 通信方法、网络设备和终端设备
CN111585732B (zh) * 2019-02-15 2022-02-25 华为技术有限公司 通信方法和通信设备
CN113163481B (zh) * 2020-01-23 2022-12-27 中国移动通信有限公司研究院 一种上行传输定时的确定方法、终端及基站

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374015A (zh) * 2007-08-20 2009-02-25 中兴通讯股份有限公司 一种支持中继模式的无线传输方法及物理层帧结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009512A (zh) * 2006-01-24 2007-08-01 华为技术有限公司 无线中转通信正交频分复用接入系统及方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374015A (zh) * 2007-08-20 2009-02-25 中兴通讯股份有限公司 一种支持中继模式的无线传输方法及物理层帧结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE.: "Consideration on UL Backhaul Resource Configuration and Indication.", 3GPP DRAFT; R1-092469., 23 June 2009 (2009-06-23), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/wgl_rll/TSGR157b/Docs/R1-092469.zip> *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190637A1 (en) * 2018-03-27 2019-10-03 Qualcomm Incorporated Resource coordination for half duplex communications
US10892883B2 (en) 2018-03-27 2021-01-12 Qualcomm Incorporated Resource coordination for half duplex communications
US11997054B2 (en) 2018-03-27 2024-05-28 Qualcomm Incorporated Resource coordination for half duplex communications
CN112913290A (zh) * 2018-08-17 2021-06-04 株式会社Ntt都科摩 无线通信装置以及无线通信方法
CN112913290B (zh) * 2018-08-17 2024-04-02 株式会社Ntt都科摩 无线通信装置以及无线通信方法

Also Published As

Publication number Publication date
CN102143586A (zh) 2011-08-03
CN102143586B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2011091746A1 (zh) 一种回程链路上行控制信道的处理方法和系统
US10966199B2 (en) Method and apparatus for receiving or transmitting data
US10965427B2 (en) Systems and methods of adaptive frame structure for time division duplex
JP7163277B2 (ja) 無線通信システムにおいて上りリンク送信のための方法及びそのための装置
EP3292651B1 (en) Systems and methods of adaptive frame structure for time division duplex
EP2524451B1 (en) Apparatus and method for relay switching time
CA2774806C (en) Method for transmitting a sounding reference signal in a wireless communication system, and apparatus for same
JP7418472B2 (ja) マルチtrp pdsch送信方式の動的インジケーション
CN112930658A (zh) 在nr v2x系统中执行harq反馈过程的方法及设备
JP5449385B2 (ja) 多重アンテナ無線通信システムで端末がチャネル品質指示子をフィードバックする方法及びそのための装置
US20120039239A1 (en) Signal transmitting/receiving method for a relay node and relay node using the method
WO2010045864A1 (zh) 中继传输的方法及设备
JP5319838B2 (ja) 無線リレーの方法およびデバイス
KR20110039207A (ko) 무선 통신 시스템에서 상향링크 백홀 신호를 송신 및 수신을 위한 장치 및 그 방법
US11412467B2 (en) Method and device for controlling receiving window for sidelink signal
WO2011050747A1 (zh) 一种子帧定时的方法及系统
WO2022029721A1 (en) TIMING ENHANCEMENTS RELATED TO PUCCH REPETITION TOWARDS MULTIPLE TRPs
EP4193542A1 (en) System and methods of pucch enhancement with intra-slot repetitions towards multiple trps
EP2346204B1 (en) Method and apparatus for synchronization processing
WO2013005916A1 (ko) 무선 통신 시스템에서 수신단이 채널 측정을 수행하는 방법 및 이를 위한 장치
WO2022029711A1 (en) COLLISION AVOIDANCE AND/OR HANDLING OF INVALID SYMBOLS WHEN UTILIZING UPLINK CHANNEL REPETITION TOWARDS MULTIPLE TRPs
WO2012116568A1 (zh) 一种回程链路上发送测量参考信号的方法及系统
CN110505636A (zh) 一种用于中继通信的同步控制方法
EP3288334B1 (en) Data transmission method and apparatus
WO2012155813A1 (zh) 下行子帧边界的调整方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736628

Country of ref document: EP

Kind code of ref document: A1