WO2012116568A1 - 一种回程链路上发送测量参考信号的方法及系统 - Google Patents

一种回程链路上发送测量参考信号的方法及系统 Download PDF

Info

Publication number
WO2012116568A1
WO2012116568A1 PCT/CN2011/084065 CN2011084065W WO2012116568A1 WO 2012116568 A1 WO2012116568 A1 WO 2012116568A1 CN 2011084065 W CN2011084065 W CN 2011084065W WO 2012116568 A1 WO2012116568 A1 WO 2012116568A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
symbol
backhaul link
subframe
network side
Prior art date
Application number
PCT/CN2011/084065
Other languages
English (en)
French (fr)
Inventor
杨瑾
毕峰
袁明
吴栓栓
梁枫
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012116568A1 publication Critical patent/WO2012116568A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to a relay technology in the field of wireless communications, and in particular, to a method and system for transmitting a measurement reference signal on a backhaul link. Background technique
  • a link between an evolved base station (eNB) and a macro user equipment (M-UE, Macro User Equipment) is called a direct transmission chain.
  • Direct Link the macro cell refers to the cell that the eNB covers and provides the service.
  • the link between the eNB and the RN is called the backhaul link
  • the interface between the eNB and the RN is the Un interface
  • the RN and the relay domain user R- the link between the UE, Relay User Equipment
  • each radio frame is 10 ms, including 10 subframes, 1 subframe is 1 ms, and is divided into 2 slots (slots) of 0.5 ms, as shown in FIG. .
  • the frame structure can be divided into two types according to the type of cyclic prefix (CP, Cyclic Prefix) used: one is a sub-frame structure using a normal cyclic prefix (Normal CP), and each uplink sub-frame contains 14 single carrier frequency divisions.
  • CP cyclic prefix
  • Normal CP normal cyclic prefix
  • SC-FDMA Signal-Carrier Frequency Division Multiple Access
  • each slot includes 7 SC-FDMA symbols.
  • PUSCH Physical Uplink Shared Channel
  • the demodulation reference symbols are symbols #3 and #10, and other symbols are used to carry data; the other is a subframe structure using extended cyclic prefix (Extended CP), each uplink subframe contains 12 SC-FDMA symbols. Each slot includes 6 SC-FDMA symbols.
  • the subframe structure is as shown in FIG. 4, and the demodulation reference symbols are symbols #2 and #8, and other symbols are used to carry data.
  • the UE transmits a measurement reference signal (SRS, Sounding Reference Symbol) on the last SC-FDMA symbol of the configured uplink subframe according to the configuration indication of the eNB, that is, the symbol of the subframe in the normal CP.
  • SRS Sounding Reference Symbol
  • the transmission of SRS requires certain processing rules.
  • the eNB configures a cell-specific SRS subframe in the macro cell, and configures a respective SRS subframe (UE specific SRS subframe) for each user in the cell, and all physical uplink control channels in the cell on the Cell specific SRS subframe (PUCCH, Physical Uplink Control Channel) formatl/la/lb adopts a shortening structure, and does not use the last symbol; PUSCH does not use the last symbol in the cell SRS bandwidth.
  • the uplink subframe is also a Cell specific SRS subframe, the UE transmits the SRS according to the configured SRS resource.
  • the UE may abandon the transmission of the SRS according to the configuration indication of the eNB, and only transmit the information carried on the PUCCH to the eNB.
  • the information that can be carried by the M-UE on the PUCCH is: a scheduling request (SR, Scheduling request) and a hybrid automatic repeat request (HQQ) feedback information, that is, the M-UE can send the downlink to the eNB.
  • the data reception status is ACK/NACK feedback, and the channel quality report.
  • the channel quality report may be a Channel Quality Indicator (CQI)/Precoding Matrix Index (PMI, Precoding Matrix Index) / Rank Indicator (RI, Rank Index). ).
  • the uplink (Un UL) subframe and the downlink (Un DL) subframe for the backhaul link can be configured by the network side for the backhaul link, where the backhaul link
  • the uplink subframe and the downlink subframe are divided in a time division manner, and the RN is on the backhaul link.
  • the transmitting and receiving are performed by using the indicated uplink subframe and the downlink subframe with the access link, and the RN does not provide the service data service to the R-UE in the configured Un UL/DL subframe, but performs data transmission with the eNB. .
  • the eNB may configure the RN to perform SRS transmission in the manner of the UE.
  • the RN transmitting the SRS must be performed on the Un UL subframe, so that the RN can use the SRS to use the limited subframe.
  • the RN and the RN When the eNB maintains strict synchronization, the propagation delay between the RN and the eNB may prevent the RN from transmitting the complete Un UL subframe, so that the RN cannot effectively transmit the SRS on the backhaul link, causing the measurement on the network side to fail. , thus affecting the normal operation of the communication network. Summary of the invention
  • the main object of the present invention is to provide a method and system for transmitting a measurement reference signal on a backhaul link to solve the problem that the SRS cannot be effectively implemented on the backhaul link in the prior art.
  • the present invention provides a method for transmitting a measurement reference signal on a backhaul link, the method comprising: a signal (SRS);
  • the SC-FDMA symbol #k is any one of the subframes except the demodulation reference symbol, which is a predefined fixed value or is indicated by the network side configuration.
  • the method further includes: the SC-FDMA symbol #k defined in advance or indicated by the network side configuration is the same for each RN in the same cell; or, according to the attributes of the RN, respectively, predefined or by The network side configuration indicates the SC-FDMA symbol #k.
  • the method further includes: when the SC-FDMA symbol #k is configured by the network side to the RN, the network side configures the SC-FDMA for the RN by using high layer signaling. Symbol #k.
  • the network side configures the k value for the RN by using the high layer signaling, where: the network side carries the k value information by using a radio resource control connection relay station reconfiguration (RRCConnection RNReconfiguration) signaling, and configures an indication for the RN.
  • RRCConnection RNReconfiguration radio resource control connection relay station reconfiguration
  • the attribute of the RN is a distance between the RN and the eNB; and the SC-FDMA symbol #k is pre-defined or specified by the network side according to an attribute of the RN, and is: the eNB and the RN When the distance between the distance is greater than the predefined distance threshold, the SC-FDMA symbol #k, which is predefined or indicated by the network side configuration, transmits a symbol of the measurement reference signal (LTE SRS symbol) to the LTE system; the eNB and the RN When the distance between the distance is not greater than a predefined distance threshold, the SC-FDMA symbol #k defined in advance or indicated by the network side configuration is any symbol other than the demodulation reference symbol and the LTE SRS symbol on the subframe. .
  • LTE SRS symbol the measurement reference signal
  • the attribute of the RN is a distance between the RN and the eNB
  • the SC-FDMA symbol #k is predefined for the RN or configured by the network side, when the distance between the eNB and the RN is not less than a predefined distance threshold, pre-defined or
  • the SC-FDMA symbol #1 ⁇ indicated by the network side configuration is an LTE SRS symbol; when the distance between the eNB and the RN is less than a predefined distance threshold, the SC-FDMA defined in advance or indicated by the network side configuration
  • the symbol #k is any one of the sub-frames except the demodulation reference symbol and the LTE SRS symbol.
  • the predefined distance threshold is 6 km or 5 km.
  • the attribute of the RN is whether the RN can transmit the last SC-FDMA symbol in the subframe in the uplink subframe of the backhaul link;
  • the SC-FDMA symbol # is specified by the network side configuration: when the RN is capable of transmitting the last SC-FDMA symbol in the subframe in the uplink subframe of the backhaul link,
  • the SC-FDMA symbol #k is an LTE SRS symbol; the RN is not
  • the SC-FDMA symbol #k is any symbol other than the demodulation reference symbol and the LTE SRS symbol on the subframe.
  • the RN transmits the SRS to the network side on the SC-FDMA symbol #k of the uplink subframe of the backhaul link, including:
  • the current subframe is an uplink subframe of the backhaul link, and is a macro cell SRS subframe, and is an SRS subframe configured by the RN (RN specific SRS)
  • the RN transmits the SRS to the network side on the SC-FDMA symbol #k of the current subframe.
  • the RN transmits the SRS to the network side on the SC-FDMA symbol #k of the uplink subframe of the backhaul link, including:
  • the current subframe is the uplink subframe of the backhaul link, and is an RN specific SRS subframe.
  • the RN transmits the SRS to the network side on the SC-FDMA symbol #k of the current subframe.
  • the method further includes: the PUSCH configured by the RN and/or the macro cell UE does not map data on the SC-FDMA symbol #k of the backhaul link uplink subframe, or is on the backhaul link uplink.
  • the SC-FDMA symbol #1 ⁇ within the Un SRS frequency domain bandwidth of the frame does not map data.
  • the method further includes: when the RN is configured to transmit the SRS and the PUCCH on the same backhaul link uplink subframe, the RN abandons the transmission of the SRS according to the predefined or network side configuration indication, Performing PUCCH transmission; or, the RN simultaneously transmits the SRS and the PUCCH according to a predefined or network side configuration indication.
  • the method further includes: configuring, by the network side, the SRS resource for the RN by using the high layer signaling, so that the RN can adopt the configured SRS resource, and the SC-FDMA of the uplink subframe of the backhaul link
  • the symbol #k transmits the SRS to the network side.
  • the present invention also provides a system for transmitting a measurement reference signal on a backhaul link, the system comprising: an RN, the RN for transmitting to the network on the SC-FDMA symbol #k of the uplink subframe of the backhaul link Side emission SRS;
  • the SC-FDMA symbol #k is any one of the subframes except the demodulation reference symbol, which is a predefined fixed value or is indicated by the network side configuration.
  • the system further includes a device on the network side, and the device on the network side is configured to configure the SC-FDMA symbol #k to the RN.
  • the network side device includes one or more of the following: an eNB, an RN, a cell cooperative entity (MCE), a gateway (GW), a mobility management device (MME), and an evolved universal terrestrial wireless device.
  • MCE cell cooperative entity
  • GW gateway
  • MME mobility management device
  • EUTRAN Access Network
  • OAM Operations Management and Maintenance
  • the device on the network side is configured to configure the SC-FDMA symbol #k for the RN according to an attribute of the RN.
  • the device on the network side is an eNB, and the eNB is configured to configure the SC-FDMA symbol #k for the RN according to the distance between the RN and itself.
  • the RN when the SC-FDMA symbol is an LTE SRS symbol, the RN is used to be the backhaul link uplink subframe in the current subframe, and is a macro cell SRS subframe, and is an RN specific SRS.
  • the SRS is transmitted to the network side on the LTE SRS symbol of the current subframe; and/or any other than the demodulation reference symbol and the LTE SRS symbol on the SC-FDMA symbol #k is a subframe.
  • the RN is configured to transmit the SRS to the network side on the symbol # of the current subframe when the current subframe is the backhaul link uplink subframe and is an RN specific SRS subframe.
  • the RN is further configured to: when transmitting the SRS and the PUCCH on the uplink subframe of the same backhaul link, the RN relinquishes the SRS and performs only the PUCCH transmission according to the pre-defined or network-side device configuration indication. Or, transmit SRS and PUCCH simultaneously according to a predefined or network-side device configuration indication.
  • the SRS transmitting method and system provided by the present invention the RN transmitting the SRS on the pre-designated SC-FDMA symbol of the uplink subframe of the backhaul link, and solving the problem that the RN cannot go to the network when the uplink symbol of the backhaul link cannot transmit the last symbol.
  • the SRS signal is transmitted on the side, which causes the network side to fail to perform the uplink measurement of the backhaul link. The effective transmission of the SRS on the backhaul link is realized, and the efficiency of the RN transmitting the SRS is improved.
  • the present invention can also reduce the conflict between the RN transmitting SRS and the UE transmitting SRS.
  • Figure 1 is a schematic diagram of a network architecture including an RN
  • FIG. 2 is a schematic diagram of a subframe structure of a radio frame
  • FIG. 3 is a schematic diagram of a frame structure of a Normal CP on a PUSCH
  • FIG. 4 is a schematic diagram of a frame structure of an extended CP on a PUSCH
  • FIG. 5 is a schematic structural diagram of a system for transmitting an SRS on a backhaul link according to the present invention
  • FIG. 6 is a schematic diagram of transmitting an SRS according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of sending an SRS according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram of sending an SRS according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic diagram of sending an SRS according to Embodiment 5 of the present invention.
  • the basic idea of the present invention is: The RN obtains the symbol position of transmitting the SRS on the uplink subframe according to a predefined or network-side configuration indication; after that, the RN uses the configured SRS resource on the corresponding symbol of the uplink subframe of the backhaul link.
  • the SRS is transmitted on the network side to implement effective transmission of the SRS on the backhaul link, and improve the transmission efficiency of the SRS on the backhaul link.
  • the method for transmitting a measurement reference signal on a backhaul link mainly includes: the RN transmitting a measurement reference signal to the network side on the SC-FDMA symbol #k of the uplink subframe of the backhaul link; wherein, the SC- FDMA symbol #k is any one of the sub-frames except the demodulation reference symbol
  • the symbols can be predefined fixed values or indicated by the network side configuration.
  • the SC-FDMA symbol #k may be any one of the SC-FDMA symbols on the subframe other than the demodulation reference symbol.
  • the value of ⁇ can be any value of the set ⁇ ⁇ , ⁇ , ⁇ , ⁇ , ⁇ ;
  • the k value can be a set ⁇ 0, ⁇ 3 , any of 4 , 5 , 6 , 7 , 9 , 1 0, 1 ".
  • the RN may be used by a predefined or network-side configuration indication, and the same symbol #k may be used for each RN in the same cell, that is, all RNs in the same cell transmit SRS on the same symbol of the uplink subframe of the backhaul link.
  • the RNs with different attributes may be pre-defined or indicated by the network side to indicate the corresponding SC-FDMA symbol #k, so that each RN in the same cell uses different symbols according to the RN attribute. #ktransmitting SRS, it is realized that multiple RNs in the same cell can transmit SRS on different symbols of the uplink subframe of the backhaul link.
  • the network side configures the symbol #k for the RN by using the high layer signaling, and after receiving the high layer signaling, the RN is used in the high layer signaling.
  • the symbol #k is obtained, and the SRS is transmitted to the network side on the SC-FDMA symbol #k of the backhaul link uplink subframe according to the configuration indication.
  • the network side may use the radio resource control connection RRC Reconfiguration (RRC Connection RN Reconfiguration) signaling to indicate the symbol #k for the RN configuration.
  • RRC Reconfiguration RRC Connection RN Reconfiguration
  • the predefined k values or the network side RN configuration indication k values are classified into two categories:
  • the attribute of the RN refers to the distance between the RN and the base station (eNB), which is predefined or indicated by the network side according to the distance between the RN and the eNB.
  • the SC-FDMA symbol #1 ⁇ defined in advance or indicated by the network side configuration is an LTE SRS symbol; between the eNB and the RN
  • the distance is not greater than the predefined distance threshold, it is pre-defined or configured by the network side.
  • the indicated SC-FDMA symbol #k is any one of the sub-frames except the demodulation reference symbol and the LTE SRS symbol.
  • the predefined distance threshold is 6 km or 5 km, which is determined by the propagation delay between the RN and the eNB.
  • the SC-FDMA symbol #1 ⁇ defined in advance or indicated by the network side configuration is an LTE SRS symbol; between the eNB and the RN
  • the SC-FDMA symbol #k defined in advance or indicated by the network side configuration is any one of the subframes except the demodulation reference symbol and the LTE SRS symbol.
  • the predefined distance threshold is 6 km or 5 km, which is determined by the propagation delay between the RN and the eNB.
  • the RN determines to transmit the SRS to the network side by using the predefined corresponding symbol #k according to the distance between the RN and the eNB; and when the network side configures the symbol #k for the RN, the network The side configures the corresponding symbol #k to the RN through high layer signaling according to the distance between the eNB and the RN.
  • the RN attribute indicates whether the RN can transmit the last SC-FDMA symbol in the subframe in the uplink subframe of the backhaul link.
  • the network side configuration indication is predefined or specified by the network side.
  • the SC-FDMA symbol #k is specifically:
  • the SC-FDMA symbol #1 ⁇ is an LTE SRS symbol; the RN cannot transmit the subframe in the uplink subframe of the backhaul link
  • the SC-FDMA symbol #k is any one of the subframes except the demodulation reference symbol and the LTE SRS symbol.
  • the RN determines whether to transmit the SRS to the network side by using the predefined corresponding symbol #k according to whether it can transmit the last symbol in the uplink subframe of the backhaul link;
  • the network side configures the corresponding symbol #k to the RN through high layer signaling according to whether the RN can transmit the last symbol in the uplink subframe of the backhaul link.
  • the current subframe is uplinked to the backhaul link.
  • the subframe is a macro cell SRS subframe and the RN specific SRS subframe configured for the RN on the network side
  • the RN transmits the SRS to the network side using the configured SRS resource on the LTE SRS symbol of the current subframe.
  • the current subframe is the RN specific for the backhaul link uplink subframe and the network side is the RN configuration.
  • the RN transmits an SRS to the network side on the SC-FDMA symbol #k of the current subframe.
  • the LTE SRS symbol is symbol #13; when an extended cyclic shift is adopted, that is, for a subframe adopting Extend CP, The LTE SRS symbol is symbol #11.
  • the method may further include: according to a predefined or by the network side configuration indication, the RN and/or the macro cell
  • the PUSCH of the UE does not map data on the symbol # of the uplink subframe of the backhaul link, or does not map data on the symbol # in the Un SRS frequency domain bandwidth of the uplink subframe of the backhaul link.
  • the data is not mapped on the symbol #k, that is, the macro cell UE PUSCH and/or the RN PUSCH do not use the symbol #k.
  • the RN abandons the transmission of the SRS according to a predefined or rule indicated by the configuration of the network side, and performs only PUCCH transmission; or, simultaneously transmits
  • the SRS and the PUCCH enable the RN to transmit only the PUCCH or simultaneously transmit the SRS and the PUCCH according to the predefined or network side configuration indication, thereby effectively solving the conflict problem.
  • the method further includes: configuring, by the network side, the SRS resource for the RN by using the high layer signaling, so that the RN can adopt the configured SRS resource, and on the SC-FDMA symbol #k of the uplink subframe of the backhaul link
  • the network side device transmits the SRS.
  • the network side may use the LTE SRS configuration mode to configure the SRS resource for the RN through the high layer signaling, where the configured SRS resource includes SRS corresponding frequency domain, time domain, sequence resources, and so on.
  • the present invention further provides a system for transmitting a measurement reference signal on a backhaul link.
  • the system mainly includes: an RN, where the RN is used for an uplink subframe on a backhaul link.
  • the SC-FDMA symbol #1 ⁇ transmits the SRS to the network side; wherein the SC-FDMA symbol #k is any symbol other than the demodulation reference symbol on the subframe, which is a predefined fixed value or is determined by the network. Side configuration indication.
  • the system may further include: a device on the network side, where the device on the network side is configured to configure the SC-FDMA symbol #k for the RN. Specifically, the network side configures the SC-FDMA symbol #k for the RN by using high layer signaling.
  • the device on the network side may include one or more of the following: an eNB, an RN, a Multi-cell/Multicast Coordination Entity (MCE), a Gateway (GW, Gateway), and a Mobility Management Device (MME, Mobility Management Entity), EUTRAN (E-UTRAN, Evolved Universal Terrestrial Radio Access Network), OAM (Operation Administration and Maintenance) Manager.
  • MCE Multi-cell/Multicast Coordination Entity
  • GW Gateway
  • MME Mobility Management Entity
  • EUTRAN E-UTRAN, Evolved Universal Terrestrial Radio Access Network
  • OAM Operaation Administration and Maintenance
  • the device on the network side may be configured to configure the SC-FDMA symbol #k for the RN according to an attribute of the RN.
  • the device on the network side is an eNB, and the eNB is configured to configure the SC-FDMA symbol #k for the RN according to the distance between the RN and itself.
  • the RN when the SC-FDMA symbol #k is an LTE SRS symbol, the RN is used to be the backhaul link uplink subframe in the current subframe, and is a macro cell SRS subframe and is an RN specific SRS subframe.
  • the SC-FDMA symbol #k is a subframe
  • the RN is configured to transmit the SRS to the network side on the symbol #k of the current subframe when the current subframe is the backhaul link uplink subframe and is an RN specific SRS subframe.
  • the RN is further configured to: when the SRS and the PUCCH are transmitted on the same backhaul uplink subframe, configure to abandon the SRS and perform only the PUCCH according to the predefined or network-side device configuration indication; or The SRS and PUCCH are simultaneously transmitted according to a predefined or network-side device configuration indication.
  • the eNB is used as the network side, and the Normal CP is taken as an example.
  • the Extend CP is similarly available.
  • the SRS may be transmitted by using the same symbol #k for all RNs in the same cell.
  • the specific process is as follows: Predetermine that all RNs in the current cell transmit SRS on symbol #12, or pass by the eNB.
  • the higher layer signaling indicates that all RNs in the cell transmit SRS on symbol #12.
  • the eNB adopts the LTE SRS configuration mode, and configures corresponding SRS resources, including time domain, frequency domain, and sequence resources, for each RN in the cell through high layer signaling.
  • the RN transmits the SRS to the eNB by using the SRS resource configured by the eNB on the symbol #12 of the subframe, according to the configuration indication of the eNB, when the current subframe is both the RN specific SRS subframe and the backhaul uplink subframe.
  • the RN transmits the SRS by using the symbol #12
  • PUSCH cannot map bearer data on symbol #12
  • reserved symbol #12 is used for Un SRS, thereby avoiding collision between Un SRS transmission and PUSCH transmission.
  • the PUSCH resource in the Un SRS frequency domain bandwidth may be configured to the RN, or may be configured to the macro cell LTE-A UE.
  • the eNB When configured as an LTE-AUE PUSCH resource, the eNB indicates that the LTE-A UE is the Un SRS frequency domain configured by the RN.
  • the bandwidth enables the LTE-A UE to keep the PUSCH from mapping the bearer data on the symbol #12 within the corresponding Un SRS frequency domain bandwidth, avoiding collision with the Un SRS transmission.
  • the RN PUSCH and the macro cell LTE-A UE PUSCH do not use the symbol #12 on the backhaul link uplink subframe, that is, do not map to the symbol #12 on the configured PUSCH resource. data.
  • the symbol #k is different according to the distance between the RN and the eNB, and the distance threshold is 6 km.
  • the specific process is: according to the distance between the RN and the eNB, when the pre-defined manner is adopted, the RN determines to transmit the SRS to the network side by using the predefined corresponding symbol #k according to the distance between the RN and the eNB; The network side configures the corresponding symbol #k to the RN through high layer signaling according to the distance between the eNB and the RN.
  • the RN transmits the SRS to the eNB using the symbol #13; when the distance between the eNB and the RN is not greater than or less than 6 km (referred to as the class B RN) The RN transmits the SRS to the eNB using symbol #12.
  • the eNB adopts the LTE SRS configuration mode to configure SRS resources for the intra-cell RN through high-layer signaling, including time domain, frequency domain, and sequence resources.
  • the configured RN specific SRS subframe is a backhaul uplink subframe
  • the Class B RN transmits the SRS to the eNB using the configured resources on the symbol #12 of the subframe.
  • the class B RN since the class B RN transmits the SRS using the symbol #12, it may form a collision with the PUSCH transmission.
  • the PUSCH of the macro cell LTE-A UE and other RNs are not in the symbol#
  • the bearer data is mapped on 12, and the reserved symbol #12 is used for Un SRS, thereby avoiding a collision between the Un SRS transmission and the PUSCH data transmission.
  • the SRS configuration and transmission mode of the class A RN is consistent with the LTE UE SRS.
  • the eNB configures SRS resources for the class A RN through high layer signaling, including time domain, frequency domain, and sequence resources.
  • the current subframe is an RN specific SRS subframe, and is a backhaul uplink subframe, and is a macro cell SRS (Cell specific SRS) subframe
  • the class A RN uses the symbol on the symbol #13 of the subframe.
  • the configured SRS resource transmits an SRS to the eNB.
  • Step 1 All RNs in the predefined cell use the symbol #12 to transmit the SRS to the eNB;
  • Step 2 The eNB configures SRS resources for each RN in the cell by using the high layer signaling.
  • the eNB configures the SRS resource for the RN in the cell by using the LTE SRS configuration parameter.
  • the configured SRS resource may include: an RN SRS subframe (RN specific SRS subframe ) and a backhaul link SRS bandwidth ( Un SRS bandwidth), RN specific SRS bandwidth, SRS hopping configuration, SRS frequency domain location, SRS sequence comb structure parameters, SRS pilot sequence cyclic shift, SRS configuration validity time, time domain, frequency domain, Sequence resources, etc.
  • Step 3 The RN according to the SRS resource configured by the eNB, when the current subframe is a backhaul uplink subframe, and is also an RN specific SRS subframe, uses the allocated SRS resource to transmit to the eNB on the current subframe symbol #12. SRS.
  • represents a demodulation reference signal
  • II represents Un PUSCH data
  • ⁇ 3 represents an SRS. Since all RNs in the cell obtain Un SRS bandwidth through SRS resources configured by the eNB, the RN is in Un.
  • the data is not mapped on the symbol #12 of the configured PUSCH resource, thereby avoiding collision between the RN and the other RN transmitting the SRS when the RN transmits the PUSCH.
  • Step 1 The eNB sends an SRS to the RN in the cell through the high layer signaling indication to all the RNs in the cell.
  • Step 2 In the same manner as step 2 of the first embodiment, the eNB configures SRS resources for each RN in the cell through high layer signaling. In addition, the eNB also indicates Un SRS bandwidth information for the macro cell LTE-A UE.
  • Step 3 The RN uses the allocated SRS resource according to the SRS resource configured by the eNB.
  • the current subframe is also a backhaul uplink subframe, and is also an RN specific SRS subframe
  • the allocated SRS resource is used.
  • the SRS is transmitted to the eNB on subframe symbol #12.
  • denotes a demodulation reference signal
  • II denotes Un PUSCH data
  • denotes SRS
  • denotes LTE-A UE PUSCH data
  • the A UE obtains the Un SRS bandwidth information, and when the RN and the LTE-A UE transmit the PUSCH in the Un SRS bandwidth, the data is not mapped on the symbol #12 of the configured PUSCH resource, so as to prevent the RN and the LTE-A UE from transmitting the PUSCH.
  • data When data is used, it conflicts with other RNs transmitting SRS.
  • Step 1 and Step 2 may be performed simultaneously or separately.
  • the eNB may implement the SRS resource on the RN and the configuration process for indicating the configuration information of transmitting the SRS on the symbol #12 through the same high layer signaling, or may be adopted.
  • the different high layer signaling implements the SRS resource configuration process on the RN and the configuration process for indicating the configuration information of transmitting the SRS on the symbol #12.
  • Step 1 The class A RN in which the distance between the RN and the eNB in the predefined cell is greater than a predefined distance threshold is used to transmit the SRS on the symbol #13, and The class B RN whose eNB spacing is less than or equal to the distance threshold transmits the SRS on symbol #12;
  • the distance threshold is determined according to the propagation delay caused by the distance between the RN and the eNB. In practical applications, the distance threshold can generally be set to 6 km.
  • Step 2 The eNB configures SRS resources for the Class A RN and the Class B RN in the current cell respectively. In addition, the eNB also indicates Un SRS bandwidth information for the macro cell LTE-A UE.
  • Step 3 The RN transmits an SRS to the eNB on the uplink subframe of the backhaul link according to the SRS resource configured by the eNB.
  • the class A RN in the cell uses the SRS resource allocated by the eNB, when the current subframe is an RN specific SRS subframe, and is a backhaul uplink subframe, and is a macro cell SRS subframe, The SRS is transmitted to the eNB on the symbol #13 of the current uplink subframe.
  • the B-type RN in the cell uses the SRS resource allocated by the eNB.
  • the current subframe is an RN specific SRS subframe and a backhaul uplink subframe
  • the SRS is transmitted to the eNB on symbol #12 of the current subframe.
  • indicates a demodulation reference signal
  • indicates SRS
  • indicates LTE-AUE PUSCH data
  • indicates LTE SRS symbol
  • The RN and the macro cell LTE-A UE obtain the Un SRS bandwidth information.
  • the RN and the LTE-A UE transmit the PUSCH in the Un SRS bandwidth the data is not mapped on the symbol #12 of the configured PUSCH resource to avoid RN and LTE-
  • the A UE transmits the PUSCH data it collides with other RNs to transmit the SRS.
  • the class A RN is the same as the SRS frequency domain bandwidth of the macro cell UE according to the configuration of the eNB, and the class A RN transmits the SRS to the eNB on the symbol #13 of the uplink subframe of the backhaul link.
  • Step 1 All RNs in the predefined cell use the symbol #12 to transmit the SRS to the eNB, and the predefined: if the RN is configured in the same subframe Transmitting the SRS and the PUCCH, abandoning the transmission of the SRS, and transmitting only the PUCCH;
  • Step 2 The same as Step 2 of Embodiment 1;
  • Step 3 The RN uses the SRS resource allocated by the eNB according to the SRS resource configuration indication of the eNB, and sends the SRS to the eNB when the uplink subframe of the backhaul link does not need to report the PUCCH data.
  • the current subframe is an RN specific SRS subframe and is a backhaul uplink subframe
  • the eNB configuration is used on the symbol #12 of the current subframe.
  • the SRS resource transmits an SRS to the eNB; if the RN needs to transmit the PUCCH to the eNB on the current uplink subframe, the transmission of the SRS is abandoned on the current uplink subframe, and only the PUCCH is transmitted to the eNB.
  • Step 1 All RNs in the predefined cell use the symbol #12 to transmit the SRS to the eNB, and are predefined: according to the configuration indication of the eNB, when the RN is in When the SRS and the PUCCH need to be transmitted on the same subframe, the SRS and the PUCCH are simultaneously transmitted to the eNB;
  • Step 2 The same as Step 2 of Embodiment 1;
  • Step 3 The RN uses the SRS resource allocated by the eNB to transmit the SRS to the eNB on the symbol #12 of the uplink subframe of the backhaul link.
  • denotes a demodulation reference signal
  • ⁇ 3 denotes SRS
  • denotes Un PUCCH data
  • the current subframe is an RN specific SRS subframe, and is In the uplink subframe
  • the SRS resource configured by the eNB is used to transmit the SRS to the eNB on the symbol #12 of the current subframe; if the current uplink subframe is used
  • the RN needs to transmit the PUCCH to the eNB, and according to the configuration of the eNB, the RN simultaneously transmits the SRS and the PUCCH to the eNB on the current uplink subframe.
  • Embodiment 1 to Embodiment 5 can also be applied to the subframe using the Extend CP, and the specific implementation process is similar, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种回程链路上发送测量参考信号的方法,所述方法包括:RN在回程链路上行子帧的SC-FDMA符号#k上向网络侧发射测量参考信号(SRS);其中,所述SC-FDMA符号#k为子帧上除解调参考符号之外的任意一个符号,是预先定义的固定值或者由网络侧配置指示。本发明还公开了一种用于在回程链路上发送测量参考信号的系统,本发明实现了回程链路上SRS的有效发射,提高了RN发射SRS的效率。

Description

一种回程链路上发送测量参考信号的方法及系统 技术领域
本发明涉及无线通信领域的中继技术, 尤其涉及一种回程链路上发送 测量参考信号的方法及系统。 背景技术
如图 1所示, 在引入中继站(RN, Relay Node ) 的无线通信网络中, 演进型基站( eNB )与宏小区用户 ( M-UE , Macro User Equipment )之间的 链路称为直传链路 ( Direct Link ), 宏小区指 eNB覆盖并提供服务的小区, eNB与 RN间的链路称为回程链路, eNB与 RN之间的接口为 Un接口, RN 与中继域用户( R-UE, Relay User Equipment )间的链路称为接入链路( Access Link )0
在长期演进 ( LTE, Long Term Evolution )系统中,每个无线帧为 10ms, 包含 10个子帧, 1个子帧为 1ms, 分为 0.5ms的 2个时隙 (slot ), 具体如 图 2所示。 帧结构根据所采用循环前缀(CP, Cyclic Prefix ) 的类型不同可 以分为两类: 一种是采用普通循环前缀(Normal CP ) 的子帧结构, 每个上 行子帧含有 14 个单载波频分多址(SC-FDMA, Signal-Carrier Frequency Division Multiple Access )符号, 每个 slot上包括 7个 SC-FDMA符号, 对 于物理上行共享信道(PUSCH, Physical Uplink Shared Channel ), 子帧结构 如图 3所示, 解调参考符号为符号 #3和 #10, 其他符号用于承载数据; 另一 种是采用扩展循环前缀(Extended CP )的子帧结构, 每个上行子帧含有 12 个 SC-FDMA符号, 每个 slot上包括 6个 SC-FDMA符号, 对于 PUSCH, 子帧结构如图 4所示, 解调参考符号为符号 #2和 #8, 其他符号用于承载数 据。 在 LTE系统中, UE根据 eNB的配置指示, 在所配置的上行子帧的最 后一个 SC-FDMA符号上发射测量参考信号 (SRS , Sounding Reference Symbol ), 即 Normal CP时, 在子帧的符号 #13上发射 SRS, Extend CP时, 在子帧的符号 #11上发射 SRS。
为避免 SRS的发射与其他上行信道在同一上行子帧发射时产生沖突,
SRS 的发射需要有一定的处理规则。 eNB 在宏小区内配置小区 SRS 子帧 ( Cell specific SRS subframe ), 为小区内各用户分别配置各自的 SRS子帧 ( UE specific SRS subframe ), 在 Cell specific SRS subframe上, 小区内所有 物理上行控制信道 ( PUCCH, Physical Uplink Control Channel ) formatl/la/lb 采用截短( shorten )结构,不使用最后一个符号; 在小区 SRS带宽上, PUSCH 不使用最后一个符号。 在 UE specific SRS subframe上, 当此上行子帧同时 也是 Cell specific SRS subframe时, UE根据配置的 SRS资源发射 SRS。 当 UE在同一上行子帧需要发射 SRS和 PUCCH时, UE可以根据 eNB的配置 指示, 放弃发射 SRS, 仅向 eNB发射 PUCCH上承载的信息。 LTE系统中, M-UE在 PUCCH上可承载的信息有: 调度请求( SR, Scheduling request ) 和混合自动重传请求( HARQ, Hybrid Automatic Repeat Request )反馈信息, 即 M-UE可以对 eNB下行发送的数据接收情况进行 ACK/NACK反馈、 以 及信道质量报告,信道质量报告可以为信道质量指示(CQI, Channel Quality Indicator ) /预编码矩阵指示 (PMI, Precoding Matrix Index ) /秩指示 ( RI, Rank Index )。
对于带内中继( inband-relay ), 即回程链路和接入链路使用相同的频率 资源时, 由于 inband-relay发射机会对自己的接收机产生干扰(自干扰), RN在回程链路和接入链路无法同时发射或接收, 因此, 可以由网络侧为回 程链路配置指示用于回程链路的上行( Un UL )子帧和下行( Un DL )子帧, 其中, 回程链路的上行子帧和下行子帧以时分的方式划分, RN在回程链路 与接入链路之间使用所指示的上行子帧和下行子帧进行发射或接收, RN在 配置的 Un UL/DL子帧上不提供业务数据服务给 R-UE,而与 eNB进行数据 传输。
在回程链路上, eNB可以配置 RN按 UE的方式进行 SRS发射, 一方 面, RN发射 SRS必须在 Un UL子帧上进行, 使得 RN发射 SRS能够使用 的子帧有限, 另一方面, RN与 eNB之间保持严格同步时, RN与 eNB之 间的传播时延使得 RN可能无法发射完整的 Un UL子帧, 以至于 RN在回 程链路上不能有效发射 SRS, 导致网络侧的测量不能正常进行, 从而影响 到通信网络的正常运行。 发明内容
有鉴于此, 本发明的主要目的在于提供一种回程链路上发送测量参考 信号的方法及系统, 以解决现有技术中的回程链路上发射 SRS无法有效实 现的问题。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种回程链路上发送测量参考信号的方法, 所述方法包 括: 信号 ( SRS );
其中, 所述 SC-FDMA符号 #k为子帧上除解调参考符号之外的任意一 个符号, 是预先定义的固定值或者由网络侧配置指示。
在上述方案中, 所述方法还包括: 对同一小区内的各个 RN, 预先定 义或由网络侧配置指示的所述 SC-FDMA符号 #k相同; 或者, 根据 RN的 属性, 分别预先定义或由网络侧配置指示所述 SC-FDMA符号 #k。
在上述方案中, 所述方法还包括: 由网络侧向 RN 配置指示所述 SC-FDMA符号 #k时, 网络侧通过高层信令为 RN配置指示所述 SC-FDMA 符号 #k。
在上述方案中 ,所述网络侧通过高层信令为 RN配置指示所述 k值,为: 网 络 侧 通 过 无 线 资 源 控 制 连 接 中 继 站 重 配 置 ( RRCConnectionRNReconfiguration )信令携带所述 k值信息, 为 RN配置 指示所述 SC-FDMA符号 #k。
在上述方案中, 所述 RN的属性为 RN与 eNB之间的距离; 所述根据 RN的属性,预先定义或由网络侧配置指示所述 SC-FDMA符号 #k,为: eNB 与所述 RN之间的距离大于预定义的距离阈值时,预先定义或由网络侧配置 指示的所述 SC-FDMA符号 #k 为长期演进系统发射测量参考信号的符号 ( LTE SRS符号); eNB与所述 RN之间的距离不大于预定义的距离阈值时, 预先定义或由网络侧配置指示的所述 SC-FDMA符号 #k为子帧上除解调参 考符号、 及 LTE SRS符号之外的任意一个符号。
在上述方案中, 所述 RN的属性为 RN与 eNB之间的距离;
所述根据 RN 的属性, 为 RN 预先定义或由网络侧配置指示所述 SC-FDMA符号 #k, 为: eNB与所述 RN之间的距离不小于预定义的距离阈 值时, 预先定义或由网络侧配置指示的所述 SC-FDMA符号 #1^为 LTE SRS 符号; eNB与所述 RN之间的距离小于预定义的距离阈值时, 预先定义或 由网络侧配置指示的所述 SC-FDMA符号 #k为子帧上除解调参考符号、 及 LTE SRS符号之外的任意一个符号。
在上述方案中, 所述预定义的距离阈值为 6km或 5km。
在上述方案中,所述 RN的属性为所述 RN是否能够在回程链路上行子 帧中发射子帧内的最后一个 SC-FDMA符号;
所述根据 RN的属性,预先定义或由网络侧配置指示所述 SC-FDMA符 号# 为: 所述 RN 能够在回程链路上行子帧中发射子帧内的最后一个 SC-FDMA符号时, 所述 SC-FDMA符号 #k为 LTE SRS符号; 所述 RN不 能够在回程链路上行子帧中发射子帧内的最后一个 SC-FDMA符号时, 所 述 SC-FDMA符号 #k为子帧上除解调参考符号、 及 LTE SRS符号之外的任 意一个符号。
在上述方案中, 所述 RN在回程链路上行子帧的 SC-FDMA符号 #k上 向网络侧发射 SRS, 包括:
所述 SC-FDMA符号 #1^为 LTE SRS符号时, 在当前子帧为所述回程链 路上行子帧、且为宏小区 SRS子帧、且为 RN所配置的 SRS子帧( RN specific SRS subframe )时, 所述 RN在当前子帧的 SC-FDMA符号 #k上向网络侧发 射 SRS。
在上述方案中, 所述 RN在回程链路上行子帧的 SC-FDMA符号 #k上 向网络侧发射 SRS, 包括:
所述 SC-FDMA符号 #k为子帧上除解调参考符号、 及 LTE SRS符号之 外的任意一个符号时, 在当前子帧为所述回程链路上行子帧、 且为 RN specific SRS subframe时, 所述 RN在当前子帧的 SC-FDMA符号 #k上向网 络侧发射 SRS。
在上述方案中,所述方法还包括: RN和 /或宏小区 UE所配置的 PUSCH 在回程链路上行子帧的所述 SC-FDMA符号 #k上不映射数据, 或在回程链 路上行子帧的 Un SRS频域带宽内的所述 SC-FDMA符号 #1^上不映射数据。
在上述方案中,所述方法还包括:在所述 RN被配置在同一回程链路上 行子帧上发射 SRS和 PUCCH时, 所述 RN根据预定义或网络侧的配置指 示, 放弃发射 SRS, 仅进行 PUCCH发射; 或者, 所述 RN根据预定义或网 络侧的配置指示, 同时发射 SRS和 PUCCH。
在上述方案中,所述方法还包括: 网络侧通过高层信令为所述 RN配置 SRS资源, 使得所述 RN能够采用所配置的 SRS资源, 在回程链路上行子 帧的所述 SC-FDMA符号 #k上向网络侧发射 SRS。 本发明还提供了一种用于在回程链路上发送测量参考信号的系统, 所 述系统包括: RN, 所述 RN用于在回程链路上行子帧的 SC-FDMA符号 #k 上向网络侧发射 SRS;
其中, 所述 SC-FDMA符号 #k为子帧上除解调参考符号之外的任意一 个符号, 是预先定义的固定值或者由网络侧配置指示。
在上述方案中, 所述系统还包括网络侧的设备, 所述网络侧的设备用 于向所述 RN配置指示所述 SC-FDMA符号 #k。
在上述方案中, 所述网络侧的设备包括以下设备的一种或多种: eNB、 RN、小区协作实体( MCE )、网关( GW )、移动性管理设备( MME )、 演进型通用陆地无线接入网( EUTRAN )、操作管理及维护( OAM )管理器。
在上述方案中, 所述网络侧的设备, 用于根据所述 RN的属性, 为所述 RN配置指示所述 SC-FDMA符号 #k。
在上述方案中, 所述网络侧的设备为 eNB, eNB用于根据所述 RN与 自身的距离, 为所述 RN配置指示所述 SC-FDMA符号 #k。
在上述方案中,在所述 SC-FDMA符号 为 LTE SRS符号时,所述 RN 用于在当前子帧为所述回程链路上行子帧、且为宏小区 SRS子帧、且为 RN specific SRS子帧时, 在当前子帧的 LTE SRS符号上向网络侧发射 SRS; 和 /或,在所述 SC-FDMA符号 #k为子帧上除解调参考符号、及 LTE SRS 符号之外的任意一个符号时,所述 RN用于在当前子帧为所述回程链路上行 子帧、 且为 RN specific SRS子帧时, 在当前子帧的所述符号# 上向网络侧 发射 SRS。
在上述方案中,所述 RN还用于在自身被配置在同一回程链路上行子帧 上发射 SRS和 PUCCH时, 根据预先定义或网络侧的设备配置指示, 放弃 发射 SRS, 仅进行 PUCCH的发射; 或者, 根据预先定义或网络侧的设备配 置指示同时发射 SRS和 PUCCH。 本发明提供的 SRS发送方法及系统, RN在回程链路上行子帧的预先 指定的 SC-FDMA符号上发射 SRS,解决了 RN在回程链路上行子帧无法发 射最后一个符号时, 不能向网络侧发射 SRS信号, 导致网络侧不能进行回 程链路上行测量的问题, 实现了回程链路上 SRS的有效发射, 提高了 RN 发射 SRS的效率。
另外, 本发明还可以减少 RN发射 SRS与 UE发射 SRS之间的沖突。 附图说明
图 1为包含 RN的网络架构示意图;
图 2为无线帧的子帧结构示意图;
图 3为 PUSCH上采用 Normal CP的帧结构示意图;
图 4为 PUSCH上采用 Extended CP的帧结构示意图;
图 5为本发明的用于回程链路上发送 SRS的系统的组成结构示意图; 图 6为本发明实施例一发送 SRS的示意图;
图 7为本发明实施例二发送 SRS的示意图;
图 8为本发明实施例三发送 SRS的示意图;
图 9为本发明实施例五发送 SRS的示意图; 具体实施方式
本发明的基本思想是: RN根据预定义的或由网络侧配置指示获得在上 行子帧上发射 SRS的符号位置; 之后, RN使用配置的 SRS资源在回程链 路上行子帧的相应符号上向网络侧发射 SRS, 实现回程链路上 SRS的有效 发射, 提高回程链路上 SRS的发射效率。
本发明提供的一种回程链路上发送测量参考信号的方法, 主要包括: RN在回程链路上行子帧的 SC-FDMA符号 #k上向网络侧发射测量参考信 号; 其中, 所述 SC-FDMA符号 #k为子帧上除解调参考符号之外的任意一 个符号, 可以是预定义的固定值或者由网络侧配置指示。
这里, 所述 SC-FDMA符号 #k可以是子帧上除解调参考符号之外的任 意一个 SC-FDMA符号。 实际应用中, 采用普通循环移位时, 即当前子帧 采用 Normal CP时, 所述!^值可以是集合^ ^,^,^,^^,^中的任意 一个数值; 采用扩展循环移位时, 即当前子帧采用 Extend CP时, 所述 k 值可以是集合 {0, ^ 34567910, 1 "中的任意一个数值。
这里, 由预定义的或者由网络侧配置指示 RN, 对同一小区内的各个 RN可以使用相同的符号 #k, 即相同小区内的所有 RN在回程链路上行子帧 的同一符号上发射 SRS。 或者, 可以根据各 RN的属性, 为属性不同的 RN 分别预先定义或由网络侧配置指示相应的所述 SC-FDMA符号 #k, 使得对 同一小区内的各个 RN,根据 RN属性使用不同的符号 #k发射 SRS, 实现了 相同小区内的多个 RN可以在回程链路上行子帧的不同符号上发射 SRS。
这里, 当采用网络侧配置指示 RN的方式获得符号 时, 网络侧通过 高层信令为所述 RN配置指示所述符号 #k, 所述 RN接收到高层信令后,从 所述高层信令中获得符号 #k, 并根据配置指示在回程链路上行子帧的所述 SC-FDMA符号 #k上向网络侧发送 SRS。 优选的, 网络侧可以采用无线资 源控制连接中继站重配置 ( RRC Connection RN Reconfiguration )信令为所 述 RN配置指示所述符号 #k。
在根据 RN的属性不同, 小区内各个 RN使用不同的符号 #k发射 SRS 时, 预定义的 k值或者网络侧向 RN配置指示 k值的依据分为两类:
第一类: RN的属性指 RN与基站( eNB )之间的距离,根据 RN与 eNB 之间距离, 预定义或由网络侧配置指示所述符号 #k。
具体地, eNB与所述 RN之间的距离大于预定义的距离阈值时, 预先 定义或由网络侧配置指示的所述 SC-FDMA符号 #1^为 LTE SRS符号; eNB 与所述 RN之间的距离不大于预定义的距离阈值时,预先定义或由网络侧配 置指示的所述 SC-FDMA符号 #k为子帧上除解调参考符号、 及 LTE SRS符 号之外的任意一个符号。优选的,预定义的距离阈值为 6km或 5km, 由 RN 和 eNB之间的传播时延决定。
或者, eNB与所述 RN之间的距离不小于预定义的距离阈值时, 预先 定义或由网络侧配置指示的所述 SC-FDMA符号 #1^为 LTE SRS符号; eNB 与所述 RN之间的距离小于预定义的距离阈值时,预先定义或由网络侧配置 指示的所述 SC-FDMA符号 #k为子帧上除解调参考符号、 及 LTE SRS符号 之外的任意一个符号。 优选的, 预定义的距离阈值为 6km或 5km, 由 RN 和 eNB之间的传播时延决定。
实际应用中, 采用预定义方式时, RN根据自身与 eNB之间的距离, 判断采用预定义的相应符号 #k向网络侧发射 SRS; 由网络侧为 RN配置指 示所述符号 #k时,网络侧根据 eNB与 RN之间的距离,通过高层信令向 RN 配置指示相应的符号 #k。
第二类: RN的属性指 RN是否能够在回程链路上行子帧中发射子帧内 的最后一个 SC-FDMA符号, 此时, 所述根据 RN的属性, 预先定义或由网 络侧配置指示所述 SC-FDMA符号 #k, 具体为:
RN能够在回程链路上行子帧中发射子帧内的最后一个 SC-FDMA符号 时, 所述 SC-FDMA符号 #1^为 LTE SRS符号; RN不能在回程链路上行子 帧中发射子帧内的最后一个 SC-FDMA符号时, 所述 SC-FDMA符号 #k为 子帧上除解调参考符号、 及 LTE SRS符号之外的任意一个符号。
实际应用中, 采用预定义方式时, RN根据自身是否能发射回程链路上 行子帧中的最后一个符号, 判断采用预定义的相应符号 #k 向网络侧发射 SRS; 由网络侧配置指示时, 网络侧根据 RN是否能发射回程链路上行子帧 中的最后一个符号, 通过高层信令向 RN配置指示相应的符号 #k。
这里, 在符号 为 LTE SRS符号时, 在当前子帧为所述回程链路上行 子帧、 且为宏小区 SRS子帧、 且为网络侧为 RN配置的 RN specific SRS子 帧时, 所述 RN在当前子帧的 LTE SRS符号上使用配置的 SRS资源向网络 侧发射 SRS。
在符号 #k为子帧上除解调参考符号、 及 LTE SRS符号之外的任意一个 符号时, 在当前子帧为所述回程链路上行子帧、 且为网络侧为 RN 配置的 RN specific SRS子帧时, 所述 RN在当前子帧的所述 SC-FDMA符号 #k上 向网络侧发射 SRS。
实际应用中, 在采用普通循环移位时, 即对于采用 Normal CP的子帧, 所述 LTE SRS符号为符号 #13;在采用扩展循环移位时, 即对于采用 Extend CP的子帧, 所述 LTE SRS符号为符号 #11。
这里, 为了避免宏小区 UE或 RN在回程链路上行子帧上发射 PUSCH 与 RN发射 SRS产生沖突, 所述方法还可以包括: 根据预定义的或由网络 侧配置指示, RN和 /或宏小区 UE的 PUSCH在回程链路上行子帧的符号# 上不映射数据, 或在回程链路上行子帧的 Un SRS频域带宽内的符号 # 上 不映射数据。 所述在符号 #k上不映射数据, 即宏小区 UE PUSCH和 /或 RN PUSCH不使用符号 #k。
这里, RN的 SRS发射和 PUCCH被配置在同一回程链路上行子帧时, 所述 RN根据预定义的或由网络侧的配置指示的规则, 放弃发射 SRS, 仅 进行 PUCCH发射; 或者, 同时发射 SRS和 PUCCH, 使出现 SRS发射与 PUCCH发射沖突时, RN 能够根据预定义的或网络侧配置指示, 仅发射 PUCCH, 或同时发射 SRS和 PUCCH, 从而有效解决沖突问题。
这里, 所述方法还包括: 网络侧通过高层信令为所述 RN配置 SRS资 源, 使得所述 RN 能够采用所配置的 SRS 资源, 在回程链路上行子帧的 SC-FDMA符号 #k上向网络侧设备发射 SRS。具体地, 网络侧可以使用 LTE SRS配置方式, 通过高层信令为 RN配置 SRS资源, 配置的 SRS资源包括 SRS相应的频域、 时域、 序列资源等。
相应的, 本发明还提供了一种用于在回程链路上发送测量参考信号的 系统, 如图 5所示, 所述系统主要包括: RN, 所述 RN用于在回程链路上 行子帧的 SC-FDMA符号 #1^上向网络侧发射 SRS; 其中, 所述 SC-FDMA 符号 #k为子帧上除解调参考符号之外的任意一个符号, 是预先定义的固定 值或者由网络侧配置指示。
其中, 如图 5 所示, 所述系统还可以包括: 网络侧的设备, 所述网络 侧的设备用于为所述 RN配置指示所述 SC-FDMA符号 #k。具体地, 网络侧 通过高层信令为所述 RN配置指示所述 SC-FDMA符号 #k。
这里, 所述网络侧的设备可以包括以下一种或多种: eNB、 RN、 小区 协作实体(MCE, Multi-cell/multicast Coordination Entity ), 网关 ( GW, Gateway ), 移动性管理设备(MME, Mobility Management Entity ), 演进型 通用陆地无线接入网 (EUTRAN, E-UTRAN, Evolved Universal Terrestrial Radio Access Network )、 操作管理及维护 ( OAM, Operation Administration and Maintenance )管理器。
这里, 所述网络侧的设备, 可以用于根据所述 RN的属性, 为所述 RN 配置指示所述 SC-FDMA符号 #k。
具体地, 所述网络侧的设备为 eNB, eNB用于根据所述 RN与自身的 距离, 为所述 RN配置指示所述 SC-FDMA符号 #k。
这里, 在所述 SC-FDMA符号 #k为 LTE SRS符号时, 所述 RN用于在 当前子帧为所述回程链路上行子帧、且为宏小区 SRS子帧、且为 RN specific SRS子帧时, 在当前子帧的 LTE SRS符号上向网络侧发射 SRS; 和 /或, 在 所述 SC-FDMA符号 #k为子帧上除解调参考符号、 及 LTE SRS符号之外的 任意一个符号时,所述 RN用于在当前子帧为所述回程链路上行子帧、且为 RN specific SRS子帧时, 在当前子帧的所述符号 #k上向网络侧发射 SRS。 这里, 所述 RN, 还用于在自身被配置在同一回程链路上行子帧上发射 SRS和 PUCCH时,根据预先定义或网络侧的设备配置指示,放弃发射 SRS, 仅进行 PUCCH的发射; 或者,根据预先定义或网络侧的设备配置指示同时 发射 SRS和 PUCCH。
下面实例说明中,以 eNB作为网络侧, Normal CP为例进行说明, Extend CP同理可得。
实际应用中,可以为同一小区内所有 RN使用相同的符号 #k发射 SRS , 以符号 #12为例, 具体过程为: 预定义当前小区内所有 RN在符号 #12上发 射 SRS, 或者由 eNB通过高层信令指示小区内所有 RN在符号 #12上发射 SRS。 eNB采用 LTE SRS的配置方式, 通过高层信令为小区内各个 RN分 别配置相应的 SRS资源, 包括时域、 频域、 序列资源等。 RN根据 eNB的 配置指示, 在当前子帧同时是 RN specific SRS子帧且是回程链路上行子帧 时,在该子帧的符号 #12上,使用 eNB所配置的 SRS资源向 eNB发射 SRS。 这里, RN使用符号 #12发射 SRS时,如果相应频域带宽内有 PUSCH发射, 则可能形成沖突, 因此, 对于配置为 Un SRS的频域带宽上(即为小区内所 有 RN配置的回程链路 SRS总带宽), PUSCH不能在符号 #12上映射承载数 据, 保留符号 #12用于 Un SRS, 从而避免 Un SRS发射与 PUSCH发射产生 沖突。 这里, Un SRS频域带宽内的 PUSCH资源可以配置给 RN, 也可以配 置给宏小区 LTE-AUE,配置为 LTE-AUE PUSCH资源时, eNB指示 LTE-A UE为 RN所配置的 Un SRS频域带宽, 使 LTE-AUE能够在相应的 Un SRS 频域带宽内保持 PUSCH不在符号 #12上映射承载数据, 避免与 Un SRS发 射产生沖突。 或者, 由预定义的或网络侧配置指示, RN PUSCH和宏小区 LTE-A UE PUSCH在回程链路上行子帧上, 不使用符号 #12, 即在配置的 PUSCH资源上不向符号 #12上映射数据。
实际应用中, 可以为同一小区内的各个 RN使用不同的符号 #k用于发 射 SRS, 以符号 #12为例进行说明。
对于第一类情况, 根据 RN与 eNB之间距离的不同, 符号 #k不同, 距 离阈值 = 6km。
具体过程为: 根据 RN与 eNB的距离, 当采用预定义的方式时, RN根 据自身与 eNB之间的距离, 判断采用预定义的相应符号 #k向网络侧发射 SRS; 当由网络侧配置指示时, 网络侧根据 eNB与 RN之间的距离, 通过高 层信令向 RN配置指示相应的符号 #k。
eNB与 RN之间的距离大于或大于等于 6km时(称为 A类 RN ), RN 使用符号 #13向 eNB发射 SRS; eNB与 RN之间的距离不大于或小于 6km 时(称为 B类 RN ), RN使用符号 #12向 eNB发射 SRS。
eNB采用 LTE SRS的配置方式, 通过高层信令为小区内 RN配置 SRS 资源, 包括时域、 频域、 序列资源。 B类 RN在所配置的 RN specific SRS 子帧同时是回程链路上行子帧时, 在此子帧的符号 #12上,使用所配置的资 源向 eNB发射 SRS。 这里, 由于 B类 RN使用符号 #12发射 SRS, 可能与 PUSCH发射形成沖突,因此对于配置给 B类 RN的 Un SRS的频域带宽上, 宏小区 LTE-A UE和其他 RN的 PUSCH不在符号 #12上映射承载数据, 保 留符号 #12用于 Un SRS,从而避免 Un SRS发射与 PUSCH数据发射之间产 生沖突。
对于 A类 RN, 由于 A类 RN在符号 #13上发射 SRS, 与 LTE SRS— 样, 因此, A类 RN的 SRS配置及发射方式与 LTE UE SRS一致。 eNB通 过高层信令为 A类 RN配置 SRS资源, 包括时域、 频域、 序列资源。 A类 RN在当前子帧同时是 RN specific SRS子帧, 且是回程链路上行子帧、 且 是宏小区 SRS ( Cell specific SRS )子帧时, 在该子帧的符号 #13上, 使用所 配置的 SRS资源向 eNB发射 SRS。 实施例一
本实施例中, 实现回程链路上 SRS发送的过程, 具体流程如下: 步驟 1 : 预定义小区内所有 RN使用符号 #12向 eNB发射 SRS;
步驟 2: eNB通过高层信令为小区内各 RN配置 SRS资源;
具体地, eNB采用 LTE SRS的配置参数, 通过高层信令为小区内 RN 配置 SRS资源;这里,所配置的 SRS资源可以包括: RN SRS子帧( RN specific SRS subframe )、 回程链路 SRS带宽( Un SRS带宽)、 RN specific SRS带宽、 SRS跳频 (SRS hopping ) 配置、 SRS频域位置、 SRS序列梳状结构参数、 SRS导频序列循环移位、 SRS配置有效时间等时域、 频域、 序列资源等。
步驟 3: RN根据 eNB配置的 SRS资源, 在当前子帧同时是回程链路 上行子帧, 也是 RN specific SRS子帧时, 使用所分配的 SRS资源, 在当前 子帧符号 #12上向 eNB发射 SRS。
这里,如图 6所示,其中, ^^表示解调参考信号, I I表示 Un PUSCH 数据, ^3表示 SRS, 由于小区内所有 RN通过 eNB配置的 SRS资源获得 了 Un SRS带宽, 则 RN在 Un SRS带宽内发射 PUSCH时, 在所配置的 PUSCH资源的符号 #12上不映射数据,从而避免了 RN发射 PUSCH时,与 其他 RN发射 SRS产生沖突。
实施例二
本实施例中, 实现回程链路上 SRS发送的过程, 具体流程如下: 步驟 1 : eNB通过高层信令向小区内所有 RN配置指示在符号 #12上发 射 SRS;
步驟 2: 与实施例一步驟 2相同, eNB通过高层信令为小区内各 RN配 置 SRS资源; 另外, eNB还为宏小区 LTE-AUE指示 Un SRS带宽信息。
步驟 3: RN根据 eNB配置的 SRS资源, 在当前子帧同时是回程链路 上行子帧, 也是 RN specific SRS子帧时, 使用所分配的 SRS资源, 在当前 子帧符号 #12上向 eNB发射 SRS。
本实施例中, 如图 7所示, 其中, ^^表示解调参考信号, I I表示 Un PUSCH数据, ^^表示 SRS, ^^表示 LTE-A UE PUSCH数据, 由 于小区内所有 RN和宏小区 LTE-A UE获得了 Un SRS带宽信息, 则 RN和 LTE-AUE在 Un SRS带宽内发射 PUSCH时,在所配置的 PUSCH资源的符 号 #12上不映射数据, 以避免 RN和 LTE-A UE发射 PUSCH数据时, 与其 他 RN发射 SRS产生沖突。
这里, 步驟 1和步驟 2可以同时进行, 也可以分开进行, eNB可以通 过同一高层信令实现 RN上 SRS资源、以及用于指示在符号 #12上发射 SRS 的配置信息的配置过程, 也可以通过不同的高层信令分别实现 RN上 SRS 资源配置过程、 以及用于指示在符号 #12上发射 SRS的配置信息的配置过 程。
实施例三
本实施例中, 实现回程链路上 SRS发送的过程, 具体流程如下: 步驟 1 :预定义小区内 RN与 eNB的间距大于预先定义的距离阈值的 A 类 RN在符号 #13上发射 SRS,与 eNB的间距小于等于距离阈值的 B类 RN 在符号 #12上发射 SRS;
这里, 所述距离阈值根据 RN与 eNB之间距离带来的传播时延确定, 实际应用中, 一般可以将该距离阈值设定为 6km。
步驟 2: eNB分别为当前小区内的 A类 RN、 以及 B类 RN配置 SRS 资源; 另外, eNB还为宏小区 LTE-AUE指示 Un SRS带宽信息;
步驟 3: RN根据 eNB配置的 SRS资源,在回程链路上行子帧上向 eNB 发射 SRS。
具体地, 小区内 A类 RN采用 eNB所分配的 SRS资源, 在当前子帧是 RN specific SRS子帧、且是回程链路上行子帧时、且是宏小区 SRS子帧时, 在当前上行子帧的符号 #13上向 eNB发射 SRS; 小区内 B类 RN采用 eNB 所分配的 SRS资源,在当前子帧是 RN specific SRS子帧、 同时是回程链路 上行子帧时, 在当前子帧的符号 #12上向 eNB发射 SRS。
本实施例中, 如图 8所示, 其中, ^表示解调参考信号, 1=1表示 Un PUSCH数据, ^曰表示 SRS, ^翻表示 LTE-AUE PUSCH数据, ^田 表示 LTE SRS符号,Β类 RN和宏小区 LTE-AUE获得了 Un SRS带宽信息, 则 RN和 LTE-AUE在 Un SRS带宽内发射 PUSCH时,在所配置的 PUSCH 资源的符号 #12上不映射数据, 以避免 RN和 LTE-A UE发射 PUSCH数据 时,与其他 RN发射 SRS产生沖突。 A类 RN根据 eNB的配置,与宏小区 UE 的 SRS频域带宽相同, A类 RN在回程链路上行子帧的符号 #13上向 eNB 发射 SRS。
实施例四
本实施例中, 实现回程链路上 SRS发送的过程, 具体流程如下: 步驟 1 : 预定义小区内所有 RN使用符号 #12向 eNB发射 SRS, 且预定 义: 如果 RN被配置在同一子帧上发射 SRS和 PUCCH, 则放弃 SRS的发 射, 只发射 PUCCH;
步驟 2: 与实施例一步驟 2完全相同;
步驟 3: RN根据 eNB的 SRS资源配置指示, 采用 eNB所分配的 SRS 资源, 在回程链路上行子帧不需要上报 PUCCH数据时, 向 eNB发射 SRS。
具体地, 当前子帧为 RN specific SRS子帧、且是回程链路上行子帧时, 如果在当前上行子帧上不需要向 eNB发射 PUCCH, 则在当前子帧的符号 #12上使用 eNB配置的 SRS资源向 eNB发射 SRS;如果在当前上行子帧上 RN需要向 eNB发射 PUCCH, 则在当前上行子帧上放弃 SRS的发射,仅向 eNB发射 PUCCH。
实施例五 本实施例中, 实现回程链路上 SRS发送的过程, 具体流程如下: 步驟 1 : 预定义小区内所有 RN使用符号 #12向 eNB发射 SRS, 且预先 定义:根据 eNB的配置指示,当 RN在同一子帧上需要发射 SRS和 PUCCH 时, 同时向 eNB发射 SRS和 PUCCH;
步驟 2: 与实施例一步驟 2完全相同;
步驟 3: RN采用 eNB所分配的 SRS资源, 在回程链路上行子帧的符 号 #12上向 eNB发射 SRS。
具体地,如图 9所示,其中, ^^表示解调参考信号, 1=1表示 PUSCH 数据, ^3表示 SRS, ^^表示 Un PUCCH数据, 当前子帧为 RN specific SRS子帧、且是回程链路上行子帧时,如果在当前上行子帧上不需要向 eNB 发射 PUCCH,则在当前子帧的符号 #12上使用 eNB配置的 SRS资源向 eNB 发射 SRS; 如果在当前上行子帧上 RN需要向 eNB发射 PUCCH, 则根据 eNB的配置, RN在当前上行子帧上同时向 eNB发射 SRS和 PUCCH。
需要说明的是, 上述实施例一到实施例五的实现过程, 也同样可以应 用到采用 Extend CP的子帧, 具体实现过程相似, 在此不再赘述。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种回程链路上发送测量参考信号的方法, 其特征在于, 所述方法 包括:
中继站( RN )在回程链路上行子帧的单载波频分多址( SC-FDMA )符 "f#k上向网络侧发射测量参考信号 ( SRS );
其中, 所述 SC-FDMA符号 #k为子帧上除解调参考符号之外的任意一 个符号, 是预先定义的固定值或者由网络侧配置指示。
2、 根据权利要求 1所述回程链路上发送测量参考信号的方法, 其特征 在于, 所述方法还包括:
对同一小区内的各个 RN , 预先定义或由网络侧配置指示的所述 SC-FDMA符号 #k相同;
或者, 根据 RN 的属性, 分别预先定义或由网络侧配置指示所述 SC-FDMA符号 #k。
3、 根据权利要求 1所述回程链路上发送测量参考信号的方法, 其特征 在于, 所述方法还包括:
由网络侧向 RN配置指示所述 SC-FDMA符号 #k时, 网络侧通过高层 信令为 RN配置指示所述 SC-FDMA符号 #k。
4、 根据权利要求 3所述回程链路上发送测量参考信号的方法, 其特征 在于, 所述网络侧通过高层信令为 RN配置指示所述 k值, 为:
网 络 侧 通 过 无 线 资 源 控 制 连 接 中 继 站 重 配 置 RRCConnectionRNReconfiguration信令携带所述 k值信息,为 RN配置指示 所述 SC-FDMA符号 #k。
5、 根据权利要求 2所述回程链路上发送测量参考信号的方法, 其特征 在于,
所述 RN的属性为 RN与基站( eNB )之间的距离; 所述根据 RN的属性,预先定义或由网络侧配置指示所述 SC-FDMA符 号#1^, 为:
eNB与所述 RN之间的距离大于预定义的距离阈值时, 预先定义或由 网络侧配置指示的所述 SC-FDMA符号 #k为长期演进系统发射测量参考信 号的符号 (LTE SRS符号);
eNB与所述 RN之间的距离不大于预定义的距离阈值时, 预先定义或 由网络侧配置指示的所述 SC-FDMA符号 #k为子帧上除解调参考符号、 及 LTE SRS符号之外的任意一个符号。
6、 根据权利要求 2所述回程链路上发送测量参考信号的方法, 其特征 在于,
所述 RN的属性为 RN与 eNB之间的 巨离;
所述根据 RN 的属性, 为 RN 预先定义或由网络侧配置指示所述 SC-FDMA符号 #k, 为:
eNB与所述 RN之间的距离不小于预定义的距离阈值时, 预先定义或 由网络侧配置指示的所述 SC-FDMA符号 #k为 LTE SRS符号;
eNB与所述 RN之间的距离小于预定义的距离阈值时, 预先定义或由 网络侧配置指示的所述 SC-FDMA符号 #k为子帧上除解调参考符号、及 LTE SRS符号之外的任意一个符号。
7、 根据权利要求 5所述回程链路上发送测量参考信号的方法, 其特征 在于, 所述预定义的距离阈值为 6km或 5km。
8、 根据权利要求 2所述回程链路上发送测量参考信号的方法, 其特征 在于,
所述 RN的属性为所述 RN是否能够在回程链路上行子帧中发射子帧内 的最后一个 SC-FDMA符号;
所述根据 RN的属性,预先定义或由网络侧配置指示所述 SC-FDMA符 - #k, 为:
所述 RN能够在回程链路上行子帧中发射子帧内的最后一个 SC-FDMA 符号时, 所述 SC-FDMA符号 #k为 LTE SRS符号;
所述 RN 不能够在回程链路上行子帧中发射子帧内的最后一个 SC-FDMA符号时, 所述 SC-FDMA符号 #k为子帧上除解调参考符号、 及 LTE SRS符号之外的任意一个符号。
9、 根据权利要求 1至 8任一项所述回程链路上发送测量参考信号的方 法, 其特征在于, 所述 RN在回程链路上行子帧的 SC-FDMA符号 #k上向 网络侧发射 SRS, 包括:
所述 SC-FDMA符号 #1^为 LTE SRS符号时, 在当前子帧为所述回程链 路上行子帧、且为宏小区 SRS子帧、且为 RN所配置的 SRS子帧( RN specific SRS subframe )时, 所述 RN在当前子帧的 SC-FDMA符号 #k上向网络侧发 射 SRS。
10、 根据权利要求 1至 8任一项所述回程链路上发送测量参考信号的 方法, 其特征在于, 所述 RN在回程链路上行子帧的 SC-FDMA符号 # 上 向网络侧发射 SRS, 包括:
所述 SC-FDMA符号 #k为子帧上除解调参考符号、 及 LTE SRS符号之 外的任意一个符号时, 在当前子帧为所述回程链路上行子帧、 且为 RN specific SRS subframe时, 所述 RN在当前子帧的 SC-FDMA符号 #k上向网 络侧发射 SRS。
11、 根据权利要求 1至 8任一项所述回程链路上发送测量参考信号的 方法, 其特征在于, 所述方法还包括:
RN和 /或宏小区 UE所配置的物理上行共享信道(PUSCH )在回程链 路上行子帧的所述 SC-FDMA符号 #k上不映射数据, 或在回程链路上行子 帧的 Un SRS频域带宽内的所述 SC-FDMA符号 #k上不映射数据。
12、 根据权利要求 1至 8任一项所述回程链路上发送测量参考信号的 方法, 其特征在于, 所述方法还包括:
在所述 RN被配置在同一回程链路上行子帧上发射 SRS和物理上行控 制信道(PUCCH ) 时, 所述 RN根据预定义或网络侧的配置指示, 放弃发 射 SRS, 仅进行 PUCCH发射; 或者, 所述 RN根据预定义或网络侧的配置 指示, 同时发射 SRS和 PUCCH。
13、 根据权利要求 1至 8任一项所述回程链路上发送测量参考信号的 方法, 其特征在于, 所述方法还包括:
网络侧通过高层信令为所述 RN配置 SRS资源, 使得所述 RN能够采 网络侧发射 SRS。
14、 一种用于在回程链路上发送测量参考信号的系统, 其特征在于, 所述系统包括: RN, 所述 RN用于在回程链路上行子帧的 SC-FDMA符号 # 上向网络侧发射 SRS;
其中, 所述 SC-FDMA符号 #k为子帧上除解调参考符号之外的任意一 个符号, 是预先定义的固定值或者由网络侧配置指示。
15、根据权利要求 14所述用于在回程链路上发送测量参考信号的系统, 其特征在于, 所述系统还包括网络侧的设备, 所述网络侧的设备用于向所 述 RN配置指示所述 SC-FDMA符号 #k。
16、根据权利要求 15所述用于在回程链路上发送测量参考信号的系统, 其特征在于, 所述网络侧的设备包括以下设备的一种或多种:
eNB、 RN、小区协作实体( MCE )、网关( GW )、移动性管理设备( MME )、 演进型通用陆地无线接入网( EUTRAN )、操作管理及维护( OAM )管理器。
17、 根据权利要求 14或 15所述用于在回程链路上发送测量参考信号 的系统, 其特征在于, 所述网络侧的设备, 用于根据所述 RN的属性, 为所 述 RN配置指示所述 SC-FDMA符号 #k。
18、根据权利要求 14所述用于在回程链路上发送测量参考信号的系统, 其特征在于, 所述网络侧的设备为 eNB, eNB用于根据所述 RN与自身的 距离, 为所述 RN配置指示所述 SC-FDMA符号 #k。
19、 根据权利要求 14或 18所述用于在回程链路上发送测量参考信号 的系统, 其特征在于,
在所述 SC-FDMA符号 #k为 LTE SRS符号时, 所述 RN用于在当前子 帧为所述回程链路上行子帧、 且为宏小区 SRS子帧、 且为 RN specific SRS 子帧时, 在当前子帧的 LTE SRS符号上向网络侧发射 SRS;
和 /或,在所述 SC-FDMA符号 #k为子帧上除解调参考符号、及 LTE SRS 符号之外的任意一个符号时,所述 RN用于在当前子帧为所述回程链路上行 子帧、 且为 RN specific SRS子帧时, 在当前子帧的所述符号# 上向网络侧 发射 SRS。
20、 根据权利要求 14 所述用于在回程链路上发送测量参考信号的系 统, 其特征在于, 所述 RN, 还用于在自身被配置在同一回程链路上行子帧 上发射 SRS和 PUCCH时, 根据预先定义或网络侧的设备配置指示, 放弃 发射 SRS, 仅进行 PUCCH的发射; 或者, 根据预先定义或网络侧的设备配 置指示同时发射 SRS和 PUCCH。
PCT/CN2011/084065 2011-03-02 2011-12-15 一种回程链路上发送测量参考信号的方法及系统 WO2012116568A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110050344.XA CN102655680B (zh) 2011-03-02 2011-03-02 一种回程链路上发送测量参考信号的方法及系统
CN201110050344.X 2011-03-02

Publications (1)

Publication Number Publication Date
WO2012116568A1 true WO2012116568A1 (zh) 2012-09-07

Family

ID=46731191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084065 WO2012116568A1 (zh) 2011-03-02 2011-12-15 一种回程链路上发送测量参考信号的方法及系统

Country Status (2)

Country Link
CN (1) CN102655680B (zh)
WO (1) WO2012116568A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150094684A (ko) * 2012-12-07 2015-08-19 아이시스 이노베이션 리미티드 3d 프린팅에 의한 비말 어셈블리
EP3754886A4 (en) * 2018-04-11 2021-04-21 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR TRANSMISSION OF REFERENCE SIGNALS

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113076B (zh) 2015-09-25 2019-08-13 华为技术有限公司 数据传输方法、数据传输装置、基站及用户设备
CN107026724B (zh) 2016-02-02 2021-09-24 北京三星通信技术研究有限公司 一种信号发送与接收的方法和用户设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541085A (zh) * 2009-04-27 2009-09-23 中兴通讯股份有限公司 一种测量参考信号的发送及使用方法
CN101547022A (zh) * 2008-03-26 2009-09-30 三星电子株式会社 Lte tdd系统中发送srs的方法和装置
CN101808409A (zh) * 2010-04-01 2010-08-18 中兴通讯股份有限公司 一种lte-a系统中测量参考信号的配置方法和系统
CN101868027A (zh) * 2009-04-17 2010-10-20 大唐移动通信设备有限公司 上行信号传输资源的配置和发送方法、基站和用户终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668676B2 (en) * 2006-06-19 2014-03-11 Allergan, Inc. Apparatus and methods for implanting particulate ocular implants
CN101500242B (zh) * 2008-02-01 2010-10-27 大唐移动通信设备有限公司 一种配置上行探测参考信号的方法和装置
US8400906B2 (en) * 2009-03-11 2013-03-19 Samsung Electronics Co., Ltd Method and apparatus for allocating backhaul transmission resource in wireless communication system based on relay

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547022A (zh) * 2008-03-26 2009-09-30 三星电子株式会社 Lte tdd系统中发送srs的方法和装置
CN101868027A (zh) * 2009-04-17 2010-10-20 大唐移动通信设备有限公司 上行信号传输资源的配置和发送方法、基站和用户终端
CN101541085A (zh) * 2009-04-27 2009-09-23 中兴通讯股份有限公司 一种测量参考信号的发送及使用方法
CN101808409A (zh) * 2010-04-01 2010-08-18 中兴通讯股份有限公司 一种lte-a系统中测量参考信号的配置方法和系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150094684A (ko) * 2012-12-07 2015-08-19 아이시스 이노베이션 리미티드 3d 프린팅에 의한 비말 어셈블리
KR102284661B1 (ko) 2012-12-07 2021-08-02 옥스포드 유니버시티 이노베이션 리미티드 3d 프린팅에 의한 비말 어셈블리
KR20210096318A (ko) * 2012-12-07 2021-08-04 옥스포드 유니버시티 이노베이션 리미티드 3d 프린팅에 의한 비말 어셈블리
KR102449271B1 (ko) 2012-12-07 2022-09-29 옥스포드 유니버시티 이노베이션 리미티드 3d 프린팅에 의한 비말 어셈블리
EP3754886A4 (en) * 2018-04-11 2021-04-21 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR TRANSMISSION OF REFERENCE SIGNALS

Also Published As

Publication number Publication date
CN102655680B (zh) 2017-12-15
CN102655680A (zh) 2012-09-05

Similar Documents

Publication Publication Date Title
US11700086B2 (en) Method and apparatus for using HARQ in wireless communications
EP3242520B1 (en) Method and corresponding terminal for d2d signal transmission in a wireless communication system
CN113573286B (zh) 执行用户设备之间的设备到设备通信的方法和装置
US9781760B2 (en) User terminal and processor for performing D2D transmission
KR102278565B1 (ko) 무선 통신 시스템에서 v2x 단말에 의해 수행되는 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말
US11902807B2 (en) Method and apparatus for measuring and transmitting CR by user equipment in wireless communication system
EP3605896B1 (en) Method and device for transmitting feedback information in wireless communication system
US8989079B2 (en) Apparatus for transmitting and receiving uplink backhaul signal in wireless communication system and method thereof
EP3113559B1 (en) Device and method for data transmission in direct communication
EP3177090A1 (en) User terminal, wireless base station, and wireless communication method
JP2016528776A (ja) 大規模mimo方式のためのグルーピングベースの参照信号送信
US20160374079A1 (en) User terminal, radio base station and radio communication method
JP7174675B2 (ja) 無線通信システムにおいて端末間直接通信を用いた端末間距離測定方法及びそのための装置
US9923689B2 (en) Mobile communication system, user terminal, and processor for assigning radio resources for transmission of sounding reference signals and device to device communication resources
CN110710252B (zh) 无线通信系统中终端的d2d操作方法和使用所述方法的终端
KR102246695B1 (ko) 무선 통신 시스템에서 v2x 단말에 의해 수행되는 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말
EP3591430A1 (en) Method and device for measuring distance in wireless communication system
EP3113553B1 (en) Method for transmitting synchronization signal for direct device-to-device communication in a wireless communication system, and apparatus therefor
WO2011038667A1 (zh) 一种发送上行控制信息的方法
WO2012116568A1 (zh) 一种回程链路上发送测量参考信号的方法及系统
JP6030238B2 (ja) 協調送信方法及び装置
EP3065458B1 (en) Base station
KR20190015665A (ko) Cu-du 기지국 분리 구조에서 캐리어 병합 구성 제어 방법 및 장치
WO2023039783A1 (en) Decoupled mini-slot sidelink control information (sci) for scheduling and resource reservation
WO2012097649A1 (zh) 回程链路发送非周期性测量参考信号的方法及中继站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860092

Country of ref document: EP

Kind code of ref document: A1