WO2012155813A1 - 下行子帧边界的调整方法及系统 - Google Patents

下行子帧边界的调整方法及系统 Download PDF

Info

Publication number
WO2012155813A1
WO2012155813A1 PCT/CN2012/075391 CN2012075391W WO2012155813A1 WO 2012155813 A1 WO2012155813 A1 WO 2012155813A1 CN 2012075391 W CN2012075391 W CN 2012075391W WO 2012155813 A1 WO2012155813 A1 WO 2012155813A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay station
downlink
subframe boundary
downlink subframe
base station
Prior art date
Application number
PCT/CN2012/075391
Other languages
English (en)
French (fr)
Inventor
梁枫
毕峰
杨瑾
吴栓栓
袁明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012155813A1 publication Critical patent/WO2012155813A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15564Relay station antennae loop interference reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of communications, and in particular to a method and system for adjusting a downlink subframe boundary.
  • relay technology has attracted more and more attention and is regarded as a key technology of B3G/4G.
  • future wireless communications or cellular systems require increased coverage and support for higher rate transmissions, this presents new challenges for wireless communication technologies.
  • the cost of system construction and maintenance is more prominent.
  • the energy consumption problem of the battery becomes prominent, and the future wireless communication will adopt a higher frequency, thereby causing a more serious path loss attenuation.
  • the traditional single-hop link can be divided into multiple multi-hop links.
  • FIG. 1 is a schematic diagram of a structure of a relay network according to the related art.
  • a relay network a link between a user participating in a service of a relay station and a relay station is called an access link, and a relay station is used.
  • the link between the base station and the base station is called a backhaul link.
  • the link between the user participating in the service and the base station is called a direct link.
  • 2 is a schematic diagram of a subframe structure according to the related art. As shown in FIG.
  • LTE Long Term Evolution
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the length of the symbol 0 is 22 () 8 ' T the length of other symbols is 2192 ' ; if the extended cyclic prefix is used in the subframe, the Bay U 1 slot contains 6 symbols, Taking the CP length into account, each symbol has a length of 256() ' Ts . Where Ts represents the length of a time unit, 30720 milliseconds.
  • Ts represents the length of a time unit, 30720 milliseconds.
  • an OFDM symbol or an SC-FDMA symbol may be simply referred to as a symbol, and in a subframe, a symbol identifier starts from 0. The following discussion, unless otherwise stated, is assumed to be a normal CP configuration.
  • the backhaul link and the access link operate on the same spectrum.
  • downlink or uplink transmission cannot be performed simultaneously on the backhaul link and the access link, but must be staggered in time. . Therefore, the subframes used for relay station transmission are currently divided into a backhaul subframe and an access subframe, and the backhaul downlink and uplink transmissions of the relay station are performed on the downlink and uplink backhaul subframes, respectively, and the downlink and uplink access subframes are respectively performed. It is specifically used for the downlink and uplink transmission of the access link.
  • the relay station needs to perform downlink transmission of the access link on the first or second OFDM symbols of the subframe, that is, downlink transmission to the user through the downlink access link, and on the remaining available resources.
  • the downlink reception of the backhaul link is performed, that is, the downlink transmission from the base station is received through the downlink backhaul link.
  • the downlink subframes of the relay stations refer to downlink access subframes.
  • the relay station needs a guard interval of a certain length of time for the radio frequency conversion, and the conversion process from the downlink transmission to the downlink reception or the downlink reception to the downlink transmission is difficult.
  • 3 is a schematic diagram of a synchronization state downlink backhaul subframe structure according to the related art.
  • the relay station if the timing of downlink transmission of the relay station access link is aligned with the timing of downlink transmission of the base station, the relay station is said to be in a synchronized state, otherwise It is in an asynchronous state.
  • the relay station in the synchronous state, in the first slot of the downlink backhaul subframe, the starting point of the downlink backhaul transmission is configured as symbol 1 or 2 or 3, and the destination is configured as symbol 6, in the second slot, the downlink backhaul is transmitted.
  • the starting point is configured as symbol 0 and the end point is configured as symbol 5.
  • 4 is a schematic diagram of a structure of a downlink backhaul subframe in an asynchronous state according to the related art. As shown in FIG. 4, for an asynchronous state relay station, in a first slot of a downlink backhaul subframe, a starting point of a downlink backhaul transmission is configured as a symbol 2 Or 3, the end point is configured as symbol 6. In the second slot, the starting point of the downlink backhaul transmission is configured as symbol 0, and the end point is configured as symbol 6.
  • the downlink backhaul transmission starting point of the first slot is regarded as the starting point of the downlink transmission of the downlink backhaul subframe, and is currently configured by the base station to perform configuration to the relay station through high layer signaling;
  • the structure configuration of the slot strictly corresponds to the synchronous or asynchronous state in which the relay station is located, that is, the relay station in the synchronous state adopts the configuration 1 in Table 2, and the relay station in the asynchronous state adopts the configuration 0 in Table 2, instead of the high-level letter passed by the base station. Let the relay be configured. Table 1
  • Table 1 The first slot structure configuration in the downlink backhaul subframe
  • 5 is a schematic diagram of a change in available symbols with propagation delay in a downlink backhaul subframe in a synchronization state according to the related art. As shown in FIG. 5, when the propagation delay between the base station and the relay station exceeds a certain threshold value ⁇ ⁇ 7 ⁇ , The available symbols of the second slot in the downlink backhaul subframe are symbols
  • Embodiments of the present invention provide a method and system for adjusting a downlink subframe boundary to solve at least a downlink receiving end and a transmitting end of a relay station in a synchronous state when the distance between the base station and the relay station is relatively long or when the relay station moves. There is a very serious problem of self-interference.
  • the embodiment of the invention provides a method for adjusting a downlink subframe boundary.
  • the method for adjusting a downlink subframe boundary includes: configuring a downlink access link timing of a relay station; and the method includes: configuring one of: transmitting a downlink subframe boundary of the relay station with respect to a downlink subframe boundary of the base station
  • the transmission time is aligned or delayed, and the transmission time of the downlink subframe boundary of the relay station is aligned or delayed with respect to the downlink subframe boundary of the base station, and the transmission time of the downlink subframe boundary of the relay station is configured with respect to the downlink of the current relay station.
  • the transmission time of the frame boundary is advanced or delayed; the relay station adjusts the downlink subframe boundary according to the configured downlink access link timing.
  • configuring the downlink access link timing of the relay station includes one of the following: configuring a downlink subframe of the relay station The transmission time of the boundary is delayed relative to the transmission time of the downlink subframe boundary of the base station; the transmission time of the downlink subframe boundary of the configuration relay station is delayed relative to the downlink subframe boundary of the base station at the receiving time of the relay station; and the downlink subframe boundary of the relay station is configured. The transmission time is advanced or delayed relative to the transmission timing of the downlink subframe boundary of the current relay station.
  • ⁇ ⁇ ⁇ is the guard interval for the relay station to receive the downlink transmission from the downlink
  • ⁇ ⁇ — ra is the guard interval of the relay station from the downlink transmission to the downlink reception
  • configuring downlink relay link timing of the relay station includes one of the following: configuring a downlink subframe of the relay station The transmission time of the boundary is aligned with the transmission time of the downlink subframe boundary of the base station; the transmission time of the downlink subframe boundary of the configuration relay station is advanced with respect to the downlink subframe boundary of the base station at the receiving time of the relay station; and the downlink subframe boundary of the relay station is configured.
  • the transmission time is advanced or delayed relative to the transmission time of the downlink subframe boundary of the current relay station; wherein the condition is that the relay station is in the synchronization state, and the second condition is that the end point of the second slot of the downlink backhaul subframe of the relay station is symbol 5, and condition 3 is the relay station.
  • the downlink propagation delay to the base station is lower or lower than the first threshold, and the fourth condition is that the distance between the relay station and the base station is lower or lower than the first threshold.
  • configuring the downlink access link timing of the relay station includes one of the following: configuring the downlink subframe of the relay station The transmission time of the boundary is delayed relative to the transmission time of the downlink subframe boundary of the base station; The transmission time of the subframe boundary is advanced with respect to the downlink subframe boundary of the base station at the receiving time of the relay station; the transmission time of the downlink subframe boundary of the configuration relay station is advanced or delayed with respect to the transmission timing of the downlink subframe boundary of the current relay station; The relay station is in a synchronous state, condition 6 is that the end of the second slot of the downlink backhaul subframe of the relay station is symbol 5, and condition 7 is that the downlink propagation delay of the relay station to the base station is greater than or not lower than the second threshold, and condition 8 is the relay station and The distance between the base stations exceeds or does not fall below the second threshold.
  • T p - (T ol - T GP - RT , ⁇ ⁇ ⁇ T p - T GP - TR , ⁇ 2 is a delay of the transmission time of the downlink subframe boundary of the relay station with respect to the transmission time of the downlink subframe boundary of the base station ; ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ - ⁇ ⁇ — R or MAX(T P , T Gp m ) ⁇ ⁇ 2 ' ⁇ ⁇ ⁇ ⁇ 1 - T GP RT , ⁇ is the transmission time of the downlink subframe boundary of the relay station relative to The advancement time of the downlink subframe boundary of the base station at the receiving time of the relay station; wherein 7 ⁇ is the propagation delay of the base station to the relay station, ⁇ - ⁇ is the guard interval of the relay station receiving the downlink transmission from the downlink, ⁇ is the relay station transmitting from the downlink The guard interval to the downlink reception
  • the downlink of the relay station The configuration of the inbound link timing includes: the relay station configures its own downlink access link timing.
  • configuring the downlink access link timing of the relay station includes: performing, by the base station, the downlink access link timing of the relay station The base station informs the relay station of the configuration result by the high layer signaling and/or the X2 interface signaling.
  • configuring the downlink access link timing of the relay station includes: the OAM module configuring the downlink access link timing of the relay station; The OAM module informs the relay station of the configuration result through the OAM signaling.
  • the OAM module notifies the relay station of the configuration result by OAM signaling, including: the OAM module notifies the base station of the configuration result by OAM signaling; the base station passes the high layer signaling and/or the X2 interface.
  • the high layer signaling, the X2 interface signaling and/or the OAM signaling comprise a binary sequence, wherein the binary sequence is used to indicate the transmission time of the downlink subframe boundary of the relay station relative to the base station. The transmission timing of the downlink subframe boundary is aligned or delayed, or is used to indicate that the transmission timing of the downlink subframe boundary of the relay station is advanced or delayed at the reception timing of the relay station with respect to the downlink subframe boundary of the base station.
  • the interface signaling and/or OAM signaling includes a first time length, where the first time length is used to refer to Determining the delay or advance time length of the downlink subframe boundary of the relay station relative to the downlink subframe boundary of the base station, or indicating the downlink subframe boundary of the downlink subframe boundary of the relay station relative to the base station.
  • the length of time delay or advancement at the receiving time of the relay station, or the length of time for indicating the transmission time of the downlink subframe boundary of the relay station is advanced or delayed with respect to the transmission timing of the downlink subframe boundary of the current relay station.
  • the embodiment of the invention provides an adjustment system for a downlink subframe boundary.
  • the adjusting system of the downlink subframe boundary includes an adjusting device and a relay station of a downlink subframe boundary, where the relay station includes: a configuration module configured to configure a downlink access link timing of the relay station, which includes one of the following: The transmission time of the downlink subframe boundary of the relay station is aligned or delayed with respect to the transmission time of the downlink subframe boundary of the base station, and the transmission time of the downlink subframe boundary of the relay station is aligned or delayed with respect to the receiving subframe of the base station.
  • the transmitting time of the downlink subframe boundary of the relay station is earlier or delayed relative to the transmitting time of the downlink subframe boundary of the current relay station; and the adjusting module is configured to adjust the downlink subframe boundary according to the configured downlink access link timing.
  • the configuration module is in the base station or in the operation and maintenance management OAM module or in the relay station. The present invention can avoid self-interference of the downlink receiving end and the transmitting end of the relay station by appropriately adjusting the downlink subframe boundary of the relay station, and the present invention does not change the downlink backhaul subframe structure, thereby ensuring system performance and user experience.
  • FIG. 1 is a schematic diagram of a relay network structure according to the related art
  • FIG. 2 is a schematic diagram of a subframe structure according to the related art
  • FIG. 3 is a schematic diagram of a synchronization state downlink backhaul subframe structure according to the related art
  • 4 is a schematic diagram of a downlink backhaul subframe structure according to the related art
  • FIG. 5 is a schematic diagram of a change of available symbols with propagation delay in a synchronization state downlink backhaul subframe according to the related art
  • FIG. 6 is a diagram according to an embodiment of the present invention.
  • a flowchart of a method for adjusting a downlink subframe boundary
  • FIG. 7 is a schematic diagram of a timing relationship of a downlink access link timing configuration of a relay station according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram 2 of a timing relationship of a downlink access link timing configuration of a relay station according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram 3 of a timing relationship of a downlink access link timing configuration of a relay station according to an embodiment of the present invention
  • FIG. 11 is an interaction flowchart 1 of a downlink access link timing configuration of a relay station according to an embodiment of the present invention
  • FIG. 12 is an interaction flowchart 1 of a downlink access link timing configuration of a relay station according to an embodiment of the present invention
  • FIG. 13 is an interaction flowchart 3 of a relay station downlink access link timing configuration according to an embodiment of the present invention
  • FIG. 14 is a downlink subframe according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for adjusting a downlink subframe boundary according to an embodiment of the present invention. As shown in FIG. 6, the following steps S602 to S604 are included.
  • Step S602 configuring a downlink access link timing of the relay station, which includes one of the following: configuring a transmission subframe of a downlink subframe boundary of the relay station to be aligned or delayed with respect to a transmission timing of a downlink subframe boundary of the base station, and configuring a downlink of the relay station
  • the transmission time of the subframe boundary is aligned or delayed with respect to the downlink subframe boundary of the base station at the receiving time of the relay station, and the transmission time of the downlink subframe boundary of the configuration relay station is advanced or delayed relative to the transmission time of the downlink subframe boundary of the current relay station;
  • the relay station adjusts a downlink subframe boundary according to the configured downlink access link timing.
  • configuring the downlink access link timing of the relay station includes one of the following: configuring the downlink subframe boundary of the relay station The transmission time is delayed relative to the transmission time of the downlink subframe boundary of the base station; the transmission time of the downlink subframe boundary configuring the relay station is delayed with respect to the downlink subframe boundary of the base station at the reception time of the relay station; The transmission timing of the downlink subframe boundary of the station is advanced or delayed relative to the transmission timing of the downlink subframe boundary of the current relay station.
  • T GP RT + T P ⁇ A, ⁇ (T symbol - T GP TR ) + T p where is the delay of the transmission time of the downlink subframe boundary of the relay station relative to the transmission time of the downlink subframe boundary of the base station;
  • T GP RT ⁇ A, ' ⁇ T ⁇ ol - T GP TR where is the delay of the transmission time of the downlink subframe boundary of the relay station relative to the downlink subframe boundary of the base station at the receiving time of the relay station; where is the propagation from the base station to the relay station
  • the delay, ⁇ ⁇ ⁇ is the guard interval of the relay station receiving the downlink transmission from the downlink
  • ⁇ ⁇ — ra is the guard interval of the relay station from the downlink transmission to the downlink reception
  • any OFDM symbol except the symbol 0 in the subframe includes the CP.
  • FIG. 7 is a first schematic diagram showing a timing relationship of a downlink access link timing configuration of a relay station according to an embodiment of the present invention.
  • a scenario in which a downlink subframe boundary of a relay station is delayed relative to a downlink subframe boundary of a base station is described.
  • the transmission time of the downlink subframe boundary of the relay station is delayed by ⁇ with respect to the transmission subframe boundary of the base station, and the transmission time of the downlink subframe boundary of the relay station is delayed relative to the downlink subframe boundary of the base station at the receiving time of the relay station. ⁇ .
  • FIG. 7 is a first schematic diagram showing a timing relationship of a downlink access link timing configuration of a relay station according to an embodiment of the present invention.
  • FIG. 8 is a second schematic diagram of a timing relationship of a downlink access link timing configuration of a relay station according to an embodiment of the present invention. As shown in FIG. 8, a transmission subframe of a downlink subframe boundary of a relay station is described with respect to a downlink subframe boundary of a current relay station. The transmission timing is advanced by ⁇ . situation.
  • configuring downlink relay link timing of the relay station includes one of the following: configuring a downlink subframe of the relay station The transmission time of the boundary is aligned with the transmission time of the downlink subframe boundary of the base station; the transmission time of the downlink subframe boundary of the configuration relay station is advanced with respect to the downlink subframe boundary of the base station at the receiving time of the relay station; and the downlink subframe boundary of the relay station is configured.
  • the transmission time is advanced or delayed relative to the transmission time of the downlink subframe boundary of the current relay station; wherein the condition is that the relay station is in the synchronization state, and the second condition is that the end point of the second slot of the downlink backhaul subframe of the relay station is symbol 5, and condition 3 is the relay station.
  • the downlink propagation delay to the base station is lower or lower than the first threshold T P Tm
  • the fourth condition is that the distance between the relay station and the base station is lower or lower than the first threshold 7).
  • configuring the downlink access link timing of the relay station includes one of the following: configuring the downlink of the relay station The transmission time of the subframe boundary is delayed relative to the transmission time of the downlink subframe boundary of the base station; the transmission time of the downlink subframe boundary of the configuration relay station is advanced with respect to the downlink subframe boundary of the base station at the receiving time of the relay station; and the downlink subframe of the relay station is configured.
  • the transmission time of the boundary is advanced or delayed relative to the transmission time of the downlink subframe boundary of the current relay station; wherein condition 5 is that the relay station is in a synchronous state, and condition 6 is that the end point of the second downlink of the downlink backhaul subframe of the relay station is symbol 5, condition seven
  • the downlink propagation delay from the relay station to the base station is greater than or not lower than the second threshold T P TH2
  • condition 8 is that the distance between the relay station and the base station exceeds or is not lower than the second threshold 7).
  • T P Tm ⁇ T P TH2 D Tm ⁇ D TH2 .
  • T p - (T ol - T GP - RT , ⁇ ⁇ ⁇ T p - T GP - TR ) is a delay of a transmission time of a downlink subframe boundary of the relay station with respect to a transmission time of a downlink subframe boundary of the base station; ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ - ⁇ ⁇ — R or MAX(T P , T Gp m ) ⁇ ⁇ 2 ' ⁇ ⁇ ⁇ ⁇ 1 - T GP RT , ⁇ is the transmission time of the downlink subframe boundary of the relay station relative to The downlink subframe boundary of the base station is advanced at the receiving time of the relay station; where ⁇ ⁇ is the propagation delay of the base station to the relay station, ⁇ ⁇ ⁇ is the guard interval of the relay station receiving the downlink transmission from the downlink, ⁇ ⁇ — ⁇ is the relay station transmitting from the downlink The guard interval
  • FIG. 3 is a schematic diagram showing the timing relationship of the downlink access link timing configuration timing of the relay station of the embodiment, and the downlink subframe boundary of the relay station is delayed relative to the base station downlink subframe boundary as shown in FIG. 9.
  • the downlink subframe boundary of the relay station Schematic emitting time with respect to time of transmission of the base station downlink sub-frame boundary delay ⁇ 2.
  • FIG. 10 is a timing according to the timing relationship configuration relay downlink access link of the embodiment of the present invention, the four, 10, describes the configuration of the relay station
  • the transmission time of the downlink subframe boundary is advanced by ⁇ at the receiving time of the relay station with respect to the downlink subframe boundary of the base station.
  • configuring the downlink access link timing of the relay station includes: the downlink access chain of the relay station to itself In the preferred embodiment, the implementation is simple and reliable.
  • configuring the downlink access link timing of the relay station includes: the base station configures the downlink access link timing of the relay station; The command and/or ⁇ 2 interface signaling informs the relay station of the configuration result.
  • configuring the downlink access link timing of the relay station includes: ⁇ module configuring downlink relay link timing of the relay station; Inform the relay station of the configuration result.
  • the OAM module notifies the relay station of the configuration result by OAM signaling, including:
  • the OAM signaling informs the base station of the configuration result; the base station informs the relay station through high layer signaling and/or X2 interface signaling and/or direct forwarding.
  • the high layer signaling, the X2 interface signaling, and/or the OAM signaling comprise a binary sequence, wherein the binary sequence is used to indicate that the transmission time of the downlink subframe boundary of the relay station is aligned or delayed relative to the transmission time of the downlink subframe boundary of the base station.
  • the transmission time indicating the downlink subframe boundary of the relay station is advanced or delayed at the receiving time of the relay station with respect to the downlink subframe boundary of the base station.
  • the binary sequence may be a one-bit binary sequence and may be set in the following two manners.
  • Setting mode 1 setting the one-bit binary sequence to "0" indicates that the relay station downlink access link timing is configured as the relay station downlink subframe boundary transmission time is aligned with respect to the base station downlink subframe boundary transmission time, or represents the relay station downlink access chain.
  • the timing of the downlink is configured as the relay subframe downlink subframe boundary transmission time is earlier than the base station downlink subframe boundary at the relay station reception time; when the one-bit binary sequence is set to "1", the relay station downlink access link timing is configured as the relay station downlink subframe boundary.
  • the transmission time is delayed relative to the base station downlink subframe boundary transmission time, or the relay station downlink access link timing is configured as the relay station downlink subframe boundary transmission time is delayed relative to the base station downlink subframe boundary at the relay station reception time.
  • Setting mode 2 setting the one-bit binary sequence to "1" indicates that the relay station downlink access link timing is configured as the relay station downlink subframe boundary transmission time is aligned with the base station downlink subframe boundary transmission time, or indicates the relay station downlink access chain.
  • the timing of the downlink is configured as the relay subframe downlink subframe boundary transmission time is earlier than the base station downlink subframe boundary at the relay station reception time; setting the one-bit binary sequence to "0" indicates that the relay station downlink access link timing is configured as the relay station downlink subframe boundary
  • the transmission time is delayed relative to the base station downlink subframe boundary transmission time, or the relay station downlink access link timing is configured as the relay station downlink subframe boundary transmission time is delayed relative to the base station downlink subframe boundary at the relay station reception time.
  • the high layer signaling, the X2 interface signaling, and/or the OAM signaling comprise a first time length, wherein the first time length is used to indicate a delay or advance of a downlink subframe boundary of the relay station relative to a downlink subframe boundary of the base station.
  • the length of time, or the length of time that the transmission time of the downlink subframe boundary of the relay station is delayed or advanced relative to the downlink subframe boundary of the base station, or the time of transmission of the downlink subframe boundary of the relay station is relatively The length of time that the transmission timing of the downlink subframe boundary of the current relay station is advanced or delayed.
  • the first length of time may preferably be equal to
  • FIG. 11 is an interaction flowchart 1 of a relay station downlink access link timing configuration according to an embodiment of the present invention.
  • the base station configures the downlink access link timing of the relay station, and through high layer signaling and/or
  • the base station downlink subframe boundary delay s and the integer N value (used to indicate the first time length, the same below) is set to "103" in the high layer signaling, and is sent to the relay station, indicating that the downlink subframe boundary of the relay station is downlink with respect to the base station.
  • Preferred embodiment three 12 is an interaction flowchart 2 of a relay station downlink access link timing configuration according to an embodiment of the present invention.
  • the OAM module describes the downlink access link timing of the relay station, and passes OAM signaling. The process of communicating the configuration results to the relay station.
  • the relay station timing state is configured as a synchronization state, and the downlink propagation delay of the base station to the relay station
  • the 0AM module configures the downlink access link timing of the relay station to be the downlink subframe boundary of the relay station aligned with the downlink subframe boundary of the base station, and is in OAM signaling.
  • the 1-bit binary sequence value is configured to be "0" and sent to the relay station, indicating that the relay station downlink subframe boundary is aligned with respect to the base station downlink subframe boundary.
  • the relay station timing state is configured as a synchronization state
  • the path timing is configured as the delay of the downlink subframe boundary of the relay station relative to the downlink subframe boundary of the base station, and in the high layer signaling, the 1-bit binary sequence value is configured to be "1", and sent to the relay station, indicating the downlink subframe boundary of the relay station relative to the base station. Downlink subframe boundary delay.
  • the boundary is delayed relative to the downlink subframe boundary of the base station, and in the ⁇ signaling, the integer ⁇ value is configured to "0", and is sent to the relay station, indicating that the downlink subframe boundary of the relay station is delayed by 0 with respect to the downlink subframe boundary of the base station.
  • 13 is an interaction flowchart 3 of a relay station downlink access link timing configuration according to an embodiment of the present invention.
  • the ⁇ module used in the preferred embodiment VIII describes the configuration result to the base station by using ⁇ signaling. Then, the base station informs the relay station of the procedure through high layer signaling and/or ⁇ 2 interface signaling and/or direct forwarding.
  • the relay station timing state is configured as a synchronization state
  • the base station configures the downlink access link timing of the relay station as the downlink subframe boundary of the relay station.
  • the integer threshold is configured as "59" and sent to the relay station.
  • FIG. 14 is a structural block diagram of an adjustment system for a downlink subframe boundary according to an embodiment of the present invention, as shown in FIG.
  • the configuration module 1422 is configured to configure a downlink access link timing of the relay station, and includes one of the following: configuring a transmission subframe of a downlink subframe boundary of the relay station to be aligned or delayed with respect to a transmission time boundary of a downlink subframe boundary of the base station, and configuring The transmission time of the downlink subframe boundary of the relay station is aligned or delayed with respect to the downlink subframe boundary of the base station at the receiving time of the relay station, and the transmission time of the downlink subframe boundary of the relay station is configured to be earlier than the transmission time of the downlink subframe boundary of the current relay station or
  • the adjustment module 1424 is connected to the configuration module 1422, and is configured to adjust the downlink subframe boundary according to the downlink access link timing configured by the configuration module 1422.
  • configuration module 1422 is within the base station or within the OAM module or within relay station 144.
  • the adjustment system of the downlink subframe boundary described in the device embodiment corresponds to the foregoing method embodiment, and the specific implementation process has been described in detail in the method embodiment, and details are not described herein again.
  • a method and system for adjusting a downlink subframe boundary are provided.
  • the present invention can avoid self-interference of the downlink receiving end and the transmitting end of the relay station by appropriately adjusting the downlink subframe boundary of the relay station, and the present invention does not change the downlink backhaul subframe structure, thereby ensuring system performance and user experience.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

下行子帧边界的调整方法及系统 技术领域 本发明涉及通信领域, 具体而言, 涉及一种下行子帧边界的调整方法及系统。 背景技术 中继技术作为一种新兴的技术, 引起了越来越广泛的注意, 被视为 B3G/4G的关 键技术。 由于未来无线通信或蜂窝系统要求增加覆盖范围, 支持更高速率传输, 这对 无线通信技术提出了新的挑战。 同时, 系统建造和维护的费用问题更加突出。 随着传 输速率及通信距离的增加, 电池的耗能问题也变得突出, 而且未来的无线通信将会采 用更高频率, 由此造成的路径损耗衰减更加严重。 通过中继技术, 可以将传统的单跳 链路分成多个多跳链路, 由于距离缩短, 这将极大地减小路径损耗, 有助于提高传输 质量, 扩大通信范围, 从而为用户提供更快速更优质的服务。 图 1是根据相关技术的中继网络结构的示意图, 如图 1所示, 在中继网络中, 中 继站参与服务的用户与中继站间的链路被称为接入链路(Access Link), 中继站与基站 间的链路被称为回程链路(Backhaul Link), 基站参与服务的用户和基站之间的链路被 称为直传链路 (Direct Link )。 图 2是根据相关技术的子帧结构的示意图, 如图 2所示, 在长期演进(Long Term Evolution, 简称为 LTE) 及其后续演进通信系统中, 1 个下行子帧或者上行子帧的标 准时间长度为 = = 1 ms, 每个子帧包含 2个 slot, 每个 slot的时间长度 rslot = 15360· !; = 0.5 ms。 若在子帧中采用普通循环前缀 (Normal cyclic prefix, 其中 cyclic prefix简称 CP),则 1个下行或者上行 slot中包含 7个正交频分复用(Orthogonal Frequency Division Multiplexing, 简称为 OFDM) 符号或者单载波-频分多址 (Single Carrier-Frequency Division Multiple Access, 简称为 SC-FDMA)符号, 即从符号 0直到 符号 6。 将 CP长度计算在内, 符号 0的长度为 22()8'T 其他符号的长度为 2192' ; 若 在子帧中采用扩展 CP (Extended cyclic prefix), 贝 U 1个 slot包含 6个符号, 将 CP长 度计算在内, 每个符号的长度为 256()' Ts。 其中, Ts 表示一个时间单元的长度, 30720毫秒。 本发明描述中, OFDM符号或者 SC-FDMA符号, 可以简称为符号, 在子帧中, 符号标识从 0开始。 以下讨论若无说明, 均假设为普通 CP配置。 对于带内中继 (In-band relaying), 回程链路和接入链路工作在相同的频谱上。 一 般情况下, 为了避免中继站自身的接收端与发射端之间产生干扰, 对于带内中继, 规 定回程链路和接入链路上不能同时进行下行或者上行的传输, 而必须在时间上错开。 因此, 目前将用于中继站传输的子帧分为回程子帧和接入子帧, 中继站的回程链路下 行和上行传输分别在下行和上行回程子帧上进行, 而下行和上行接入子帧则专门分别 用于接入链路下行和上行传输。 并且, 对于下行回程子帧, 中继站需要在该子帧前 1 或 2个 OFDM符号上进行接入链路的下行发射,即通过下行接入链路向用户进行下行 发射, 并且在剩余可用资源上进行回程链路的下行接收, 即通过下行回程链路接收来 自基站的下行传输。 以下描述若无特殊说明,所述中继站下行子帧均指下行接入子帧。 并且, 中继站在下行中继子帧上进行下行发射与下行接收之间, 还需要一定时间 长度的保护间隔用于射频转换, 而该下行发射到下行接收或者下行接收到下行发射的 转换过程很难在 CP内完成, 同时为了保证对 LTE用户的兼容, 目前规定将保护间隔 设置在下行回程子帧中, 牺牲下行回程子帧中的一部分时隙资源来避免出现中继站自 身的下行发射端与接收端之间产生干扰。 由于传输资源的最小时间单位是符号, 因此 即使保护间隔所占用的时隙资源不足一个符号长度, 这个被占用的符号也无法被用于 正常传输, 另外在下行回程子帧中既存在中继站下行发射到下行接收的切换, 又存在 下行接收到下行发射的切换, 因此需要两段独立的保护间隔, 这对中继站下行定时提 出了比较高的要求。 目前, 中继站下行定时分为两种定时状态, 分别为同步状态和非同步状态。 图 3是根据相关技术的同步状态下行回程子帧结构的示意图, 如图 3所示, 如果 中继站接入链路下行传输的定时与基站下行传输的定时对齐, 则称该中继站处于同步 状态, 否则处于非同步状态。 并且, 对于同步状态的中继站, 下行回程子帧的第一个 slot中, 下行回程传输的起点配置为符号 1或者 2或者 3, 终点配置为符号 6, 在第二 个 slot中, 下行回程传输的起点配置为符号 0, 终点配置为符号 5。 图 4是根据相关技术的非同步状态下行回程子帧结构的示意图, 如图 4所示, 对 于非同步状态中继站, 下行回程子帧的第一个 slot中, 下行回程传输的起点配置为符 号 2或者 3, 终点配置为符号 6,在第二个 slot中, 下行回程传输的起点配置为符号 0, 终点配置为符号 6。 如表 1、 表 2所示, 其中, 第一个 slot的下行回程传输起点被视作该下行回程子 帧进行下行传输的起点, 目前规定由基站通过高层信令向中继站进行配置;第二个 slot 的结构配置与中继站所处的同步或非同步状态严格对应, 即对于同步状态的中继站采 用表 2中的配置 1, 非同步状态的中继站采用表 2中的配置 0, 而不由基站通过高层信 令向中继站进行配置。 表 1 下行回程子帧中的第一个 slot结构配置
Figure imgf000004_0001
表 2 下行回程子帧中的第二个 slot结构配置
Figure imgf000004_0002
但是, 对于同步状态的中继站, 其下行回程子帧中可用于进行下行回程传输的具 体符号还会随着基站与中继站间的传播时延变化而不同。 图 5是根据相关技术的同步 状态下行回程子帧中可用符号随传播时延变化的示意图, 如图 5所示,当基站与中继站 间的传播时延超过某一门限值 ΓΡ 7Η时,下行回程子帧中第二个 slot的可用符号为符号
0到符号 4, 符号 5将不可用。 根据目前的中继站定时和下行回程子帧结构配置, 同步状态的中继站在回程子帧 的第二个 slot上的下行回程传输的终点已固定为符号 5, 这样当基站与中继站间距离 较远时, 或者在中继站发生移动时, 就很可能会在同步状态的中继站下行接收端和发 射端之间产生非常严重的自干扰, 导致传输出错, 对系统性能和用户感受影响很大。 发明内容 本发明实施例提供一种下行子帧边界的调整方法及系统, 以至少解决上述基站与 中继站间距离较远或者在中继站发生移动时, 会在同步状态的中继站下行接收端和发 射端之间产生非常严重的自干扰的问题。 本发明实施例提供了一种下行子帧边界的调整方法。 根据本发明的下行子帧边界 的调整方法包括: 对中继站的下行接入链路定时进行配置; 其包括以下之一: 配置中 继站的下行子帧边界的发射时刻相对于基站的下行子帧边界的发射时刻对齐或者延 迟, 配置中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界在中继站的接 收时刻对齐或者延迟, 配置中继站的下行子帧边界的发射时刻相对于当前中继站的下 行子帧边界的发射时刻提前或者延迟; 中继站根据配置的下行接入链路定时, 调整下 行子帧边界。 优选地, 当中继站处于非同步状态或者中继站下行回程子帧第二个时隙 slot的终 点是符号 6时, 对中继站的下行接入链路定时进行配置包括以下之一: 配置中继站的 下行子帧边界的发射时刻相对于基站的下行子帧边界的发射时刻延迟; 配置中继站的 下行子帧边界的发射时刻相对于基站的下行子帧边界在中继站的接收时刻延迟; 配置 中继站的下行子帧边界的发射时刻相对于当前中继站的下行子帧边界的发射时刻提前 或者延迟。 优选地, TGP RT + TP≤A,≤ (TSYMBOL - TGP TR) + TP , 其中 是中继站的下行子帧边界 的 发射 时刻相对于基站 的 下行子 帧边界 的 发射 时刻 的 延迟 ; TGP RT≤ Δ < T→OL - TGP TR, 其中 是中继站的下行子帧边界的发射时刻相对于基站 的下行子帧边界在中继站的接收时刻的延迟; 其中 为基站到中继站的传播时延,
Γσρ κτ为中继站从下行接收到下行发射的保护间隔, Γσρra为中继站从下行发射到下行 接收的保护间隔, 为子帧中除了符号 0之外任意一个 OFDM符号包括 CP在内的 时间长度, 并且满足 ΓσρΚ + Γσρ—^ 7 ^。 优选地, 当条件一与条件二中的一个条件成立, 并且条件三与条件四中的一个条 件成立时, 对中继站的下行接入链路定时进行配置包括以下之一: 配置中继站的下行 子帧边界的发射时刻相对于基站的下行子帧边界的发射时刻对齐; 配置中继站的下行 子帧边界的发射时刻相对于基站的下行子帧边界在中继站的接收时刻提前; 配置中继 站的下行子帧边界的发射时刻相对于当前中继站的下行子帧边界的发射时刻提前或延 迟; 其中条件一是中继站处于同步状态, 条件二是中继站的下行回程子帧第二个 slot 的终点是符号 5, 条件三是中继站到基站的下行传播时延低于或不超过第一门限, 条 件四是中继站与基站之间的距离低于或不超过第一门限。 优选地, 当条件五与条件六中的一个条件成立, 并且条件七与条件八中的一个条 件成立时, 对中继站的下行接入链路定时进行配置包括以下之一: 配置中继站的下行 子帧边界的发射时刻相对于基站的下行子帧边界的发射时刻延迟; 配置中继站的下行 子帧边界的发射时刻相对于基站的下行子帧边界在中继站的接收时刻提前; 配置中继 站的下行子帧边界的发射时刻相对于当前中继站的下行子帧边界的发射时刻提前或延 迟; 其中条件五是中继站处于同步状态, 条件六是中继站的下行回程子帧第二个 slot 的终点是符号 5, 条件七是中继站到基站的下行传播时延超过或不低于第二门限, 条 件八是中继站与基站之间的距离超过或不低于第二门限。 优选地, Tp - (T ol - TGPRT、≤ ^≤ Tp - TGPTR, Δ2是中继站的下行子帧边界的发 射时刻相对于基站的下行子帧边界的发射时刻的延迟; ΤΟΡ ΤΆ≤^≤Τ^Μ - ΓσρR 或者 MAX(TP, TGp m ) < Δ2' < Τ→ο1 - TGP RT, Δ 是中继站的下行子帧边界的发射时刻相对于 基站的下行子帧边界在中继站的接收时刻的提前; 其中7 ^为基站到中继站的传播时 延, Τσρ-^为中继站从下行接收到下行发射的保护间隔, ^^^为中继站从下行发射到 下行接收的保护间隔, 为子帧中除了符号 0之外任意一个 OFDM符号包括 CP 在内的时间长度, 并且满足 Tgprt + T°p-m≤ Tsymbo1。 优选地, 对中继站的下行接入链路定时进行配置包括: 中继站对自身的下行接入 链路定时进行配置。 优选地, 对中继站的下行接入链路定时进行配置包括: 基站对中继站的下行接入 链路定时进行配置; 基站通过高层信令和 /或 X2接口信令将配置结果告知中继站。 优选地,对中继站的下行接入链路定时进行配置包括: OAM模块对中继站的下行 接入链路定时进行配置; OAM模块通过 OAM信令将配置结果告知中继站。 优选地, OAM模块通过 OAM信令将配置结果告知中继站包括: OAM模块通过 OAM信令将配置结果告知基站; 基站通过高层信令和 /或 X2接口信令和 /或直接转发 方式告知中继站。 优选地, 高层信令、 X2接口信令和 /或 OAM信令包括二进制序列, 其中二进制序 列用于指示中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界的发射时刻 对齐或延迟, 或者用于指示中继站的下行子帧边界的发射时刻相对于基站的下行子帧 边界在中继站的接收时刻提前或延迟。 优选地, 高层信令、 X2接口信令和 /或 OAM信令包括第一时间长度, 其中第一时 间长度用于指示中继站的下行子帧边界相对于基站的下行子帧边界的延迟或提前的时 间长度, 或者用于指示中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界 在中继站的接收时刻延迟或提前的时间长度, 或者用于指示中继站的下行子帧边界的 发射时刻相对于当前中继站的下行子帧边界的发射时刻提前或延迟的时间长度。 本发明实施例提供了一种下行子帧边界的调整系统。 根据本发明的下行子帧边界 的调整系统包括下行子帧边界的调整装置和中继站, 其中中继站包括: 配置模块, 设 置为对中继站的下行接入链路定时进行配置, 其包括以下之一: 配置中继站的下行子 帧边界的发射时刻相对于基站的下行子帧边界的发射时刻对齐或者延迟, 配置中继站 的下行子帧边界的发射时刻相对于基站的下行子帧边界在中继站的接收时刻对齐或者 延迟, 配置中继站的下行子帧边界的发射时刻相对于当前中继站的下行子帧边界的发 射时刻提前或者延迟; 调整模块, 设置为根据配置的下行接入链路定时, 调整下行子 帧边界。 优选地, 配置模块处于基站内或者处于操作维护管理 OAM模块内或者处于中继 站内。 本发明通过对中继站的下行子帧边界进行适当的调整, 可以避免中继站下行接收 端和发射端发生自干扰, 并且本发明不改变下行回程子帧结构, 可以保证系统性能和 用户感受。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术的中继网络结构的示意图; 图 2是根据相关技术的子帧结构的示意图; 图 3是根据相关技术的同步状态下行回程子帧结构的示意图; 图 4是根据相关技术的非同步状态下行回程子帧结构的示意图; 图 5是根据相关技术的同步状态下行回程子帧中可用符号随传播时延变化的示意 图; 图 6是根据本发明实施例的下行子帧边界的调整方法的流程图; 图 7是根据本发明实施例的中继站下行接入链路定时配置时序关系的示意图 图 8是根据本发明实施例的中继站下行接入链路定时配置时序关系的示意图二; 图 9是根据本发明实施例的中继站下行接入链路定时配置时序关系的示意图三; 图 10是根据本发明实施例的中继站下行接入链路定时配置时序关系的示意图四; 图 11是根据本发明实施例的中继站下行接入链路定时配置的交互流程图一; 图 12是根据本发明实施例的中继站下行接入链路定时配置的交互流程图二; 图 13是根据本发明实施例的中继站下行接入链路定时配置的交互流程图三; 图 14是根据本发明实施例的下行子帧边界的调整系统的结构框图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 本发明实施例提供了一种下行子帧边界的调整方法。 图 6是根据本发明实施例的 下行子帧边界的调整方法的流程图, 如图 6所示, 包括如下的步骤 S602至 S604。 步骤 S602, 对中继站的下行接入链路定时进行配置, 其包括以下之一: 配置中继 站的下行子帧边界的发射时刻相对于基站的下行子帧边界的发射时刻对齐或者延迟, 配置中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界在中继站的接收时 刻对齐或者延迟, 配置中继站的下行子帧边界的发射时刻相对于当前中继站的下行子 帧边界的发射时刻提前或者延迟; 步骤 S604, 中继站根据配置的下行接入链路定时, 调整下行子帧边界。 相关技术中, 当基站与中继站间距离较远或者在中继站发生移动时, 会在同步状 态的中继站下行接收端和发射端之间产生非常严重的自干扰。 本发明实施例中, 通过 对中继站的下行子帧边界进行适当的调整, 可以避免中继站下行接收端和发射端发生 自干扰, 并且本发明不改变下行回程子帧结构, 可以保证系统性能和用户感受。 优选地, 当中继站处于非同步状态或者中继站下行回程子帧第二个 slot的终点是 符号 6时, 对中继站的下行接入链路定时进行配置包括以下之一: 配置中继站的下行 子帧边界的发射时刻相对于基站的下行子帧边界的发射时刻延迟; 配置中继站的下行 子帧边界的发射时刻相对于基站的下行子帧边界在中继站的接收时刻延迟; 配置中继 站的下行子帧边界的发射时刻相对于当前中继站的下行子帧边界的发射时刻提前或者 延迟。 优选地, TGP RT + TP≤A,≤ (Tsymbol - TGP TR) + Tp , 其中 是中继站的下行子帧边界 的 发射 时刻相对于基站 的 下行子 帧边界 的 发射 时刻 的 延迟 ; TGP RT≤ A,'≤ T→ol - TGP TR, 其中 是中继站的下行子帧边界的发射时刻相对于基站 的下行子帧边界在中继站的接收时刻的延迟; 其中 为基站到中继站的传播时延, Γσρ κτ为中继站从下行接收到下行发射的保护间隔, Γσρra为中继站从下行发射到下行 接收的保护间隔, 为子帧中除了符号 0之外任意一个 OFDM符号包括 CP在内的 时间长度, 并且满足 ΓσρΗ + Γσρ—^ 7 ^。 图 7是根据本发明实施例的中继站下行接入链路定时配置时序关系的示意图一, 如图 7所示, 描述了中继站下行子帧边界相对于基站下行子帧边界延迟的情形。 具体 地, 中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界的发射时刻延迟 Δ,, 中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界在中继站的接收时 刻延迟 Δ 。 图 8是根据本发明实施例的中继站下行接入链路定时配置时序关系的示意图二, 如图 8所示, 描述了中继站的下行子帧边界的发射时刻相对于当前中继站的下行子帧 边界的发射时刻提前 Δ。情形。 优选地, 当条件一与条件二中的一个条件成立, 并且条件三与条件四中的一个条 件成立时, 对中继站的下行接入链路定时进行配置包括以下之一: 配置中继站的下行 子帧边界的发射时刻相对于基站的下行子帧边界的发射时刻对齐; 配置中继站的下行 子帧边界的发射时刻相对于基站的下行子帧边界在中继站的接收时刻提前; 配置中继 站的下行子帧边界的发射时刻相对于当前中继站的下行子帧边界的发射时刻提前或延 迟; 其中条件一是中继站处于同步状态, 条件二是中继站的下行回程子帧第二个 slot 的终点是符号 5, 条件三是中继站到基站的下行传播时延低于或不超过第一门限 TP Tm, 条件四是中继站与基站之间的距离低于或不超过第一门限 7)^。 需要说明的是,本优选实施例中的 "配置中继站的下行子帧边界的发射时刻相对于 基站的下行子帧边界的发射时刻对齐"可以通过配置 "延迟 0"来配置对齐。 优选地, 当条件五与条件六中的一个条件成立, 并且条件七与条件八中的一个条 件成立时, 对中继站的下行接入链路定时进行配置包括以下之一: 配置中继站的下行 子帧边界的发射时刻相对于基站的下行子帧边界的发射时刻延迟; 配置中继站的下行 子帧边界的发射时刻相对于基站的下行子帧边界在中继站的接收时刻提前; 配置中继 站的下行子帧边界的发射时刻相对于当前中继站的下行子帧边界的发射时刻提前或延 迟; 其中条件五是中继站处于同步状态, 条件六是中继站的下行回程子帧第二个 slot 的终点是符号 5, 条件七是中继站到基站的下行传播时延超过或不低于第二门限 TP TH2, 条件八是中继站与基站之间的距离超过或不低于第二门限 7)—^。 优选地, TP Tm <TP TH2 , D Tm < D TH2。 优选地, Tp - (T ol - TGPRT、≤ ^≤ Tp - TGPTR, 是中继站的下行子帧边界的发 射时刻相对于基站的下行子帧边界的发射时刻的延迟; ΤΟΡ ΤΆ≤^≤Τ^Μ - ΓσρR 或者 MAX(TP, TGp m ) < Δ2' < Τ→ο1 - TGP RT, Δ 是中继站的下行子帧边界的发射时刻相对于 基站的下行子帧边界在中继站的接收时刻的提前; 其中 ΓΡ为基站到中继站的传播时 延, Γσρ κτ为中继站从下行接收到下行发射的保护间隔, Γσρ— ^为中继站从下行发射到 下行接收的保护间隔, ^。,为子帧中除了符号 0之外任意一个 OFDM符号包括 CP 在内的时间长度, 并且满足 TGP RT + TGp m≤ T ol。 图 9是根据本发明实施例的中继站下行接入链路定时配置时序关系的示意图三, 如图 9所示, 描述了中继站下行子帧边界相对于基站下行子帧边界延迟的情形。 具体 地, 中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界的发射时刻延迟 Δ2。 图 10是根据本发明实施例的中继站下行接入链路定时配置时序关系的示意图四, 如图 10所示,描述了配置中继站的下行子帧边界的发射时刻相对于基站的下行子帧边 界在中继站的接收时刻提前 Δ 的情形。 优选地, 对中继站的下行接入链路定时进行配置包括: 中继站对自身的下行接入 链路定时进行配置。 本优选实施例中, 实现方式简单、 可靠。 优选地, 对中继站的下行接入链路定时进行配置包括: 基站对中继站的下行接入 链路定时进行配置; 基站通过高层信令和 /或 Χ2接口信令将配置结果告知中继站。 优选地,对中继站的下行接入链路定时进行配置包括: ΟΑΜ模块对中继站的下行 接入链路定时进行配置; ΟΑΜ模块通过 ΟΑΜ信令将配置结果告知中继站。 优选地, OAM模块通过 OAM信令将配置结果告知中继站包括: OAM模块通过
OAM信令将配置结果告知基站; 基站通过高层信令和 /或 X2接口信令和 /或直接转发 方式告知中继站。 优选地, 高层信令、 X2接口信令和 /或 OAM信令包括二进制序列, 其中二进制序 列用于指示中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界的发射时刻 对齐或延迟, 或者用于指示中继站的下行子帧边界的发射时刻相对于基站的下行子帧 边界在中继站的接收时刻提前或延迟。 本优选实施例中, 该二进制序列可以是一比特的二进制序列, 并可以通过如下两 种方式设置。 设置方式一:设置该一比特二进制序列为 "0"时表示中继站下行接入链路定时配置 为中继站下行子帧边界发射时刻相对于基站下行子帧边界发射时刻对齐, 或者表示中 继站下行接入链路定时配置为中继站下行子帧边界发射时刻相对于基站下行子帧边界 在中继站接收时刻提前;设置该一比特二进制序列为 "1 "时表示中继站下行接入链路定 时配置为中继站下行子帧边界发射时刻相对于基站下行子帧边界发射时刻延迟, 或者 表示中继站下行接入链路定时配置为中继站下行子帧边界发射时刻相对于基站下行子 帧边界在中继站接收时刻延迟。 设置方式二:设置该一比特二进制序列为 "1 "时表示中继站下行接入链路定时配置 为中继站下行子帧边界发射时刻相对于基站下行子帧边界发射时刻对齐, 或者表示中 继站下行接入链路定时配置为中继站下行子帧边界发射时刻相对于基站下行子帧边界 在中继站接收时刻提前;设置该一比特二进制序列为 "0"时表示中继站下行接入链路定 时配置为中继站下行子帧边界发射时刻相对于基站下行子帧边界发射时刻延迟, 或者 表示中继站下行接入链路定时配置为中继站下行子帧边界发射时刻相对于基站下行子 帧边界在中继站接收时刻延迟。 优选地, 高层信令、 X2接口信令和 /或 OAM信令包括第一时间长度, 其中第一时 间长度用于指示中继站的下行子帧边界相对于基站的下行子帧边界的延迟或提前的时 间长度, 或者用于指示中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界 在中继站的接收时刻延迟或提前的时间长度, 或者用于指示中继站的下行子帧边界的 发射时刻相对于当前中继站的下行子帧边界的发射时刻提前或延迟的时间长度。 本优选实施例中, 该第一时间长度优选的可以等于 |N|xi6_ j 。 本发明方法中, 通过对非同步或同步状态下的中继站下行接入链路定时进行适当 的延迟, 可以避免中继站下行接收端和发射端发生自干扰并且不改变下行回程子帧结 构, 保证系统性能和用户感受。 下面将结合实例对本发明实施例的实现过程进行详细描述。 D 15.3 下优选实施例一至九中均假设7 ^ =7^ff2 =1568 TH,
以 2 厶、里,
GP = 624'TS, Τ ^ :21927^,在其他实施例中,
Z GP 、 也可取符合要求的其他值。 优选实施例一 图 11是根据本发明实施例的中继站下行接入链路定时配置的交互流程图一,如图
11 所示, 描述了基站对中继站的下行接入链路定时进行配置, 并通过高层信令和 /或
X2接口信令将配置结果告知中继站的过程。 中继站定时状态被配置为非同步状态, 并且基站到中继站的下行传播时延 TP = 1024TS, 则基站将中继站的下行接入链路定时配置为中继站下行子帧边界相对于
Δ, =16487;
基站下行子帧边界延迟 s, 并在高层信令中配置整数 N值(用于指示上述第 一时间长度, 下同)为" 103", 发送至中继站, 指示中继站下行子帧边界相对于基站下 行子帧边界延迟 =1()3><167^=1648^。
优选实施例二 中继站下行回程子帧第二个 slot的终点被配置为符号 6, 并且基站到中继站的下 行传播时延7 ^=2Q48 , 则中继站自身将中继站的下行接入链路定时配置为中继站下 行子帧边界相对于基站下行子帧边界延迟 Δι = 2612Ts
优选实施例三 图 12是根据本发明实施例的中继站下行接入链路定时配置的交互流程图二,如图 12所示, 描述了 OAM模块对中继站的下行接入链路定时进行配置, 并通过 OAM信 令将配置结果告知中继站的过程。 中继站定时状态被配置为同步状态, 并且基站到中继站的下行传播时延
Tp = l 024Ts低于门限 TpTm = l 56 STs, 则 0AM模块将中继站的下行接入链路定时配置 为中继站下行子帧边界相对于基站下行子帧边界对齐, 并在 OAM信令中将 1 比特二 进制序列值配置为" 0", 发送至中继站, 指示中继站下行子帧边界相对于基站下行子帧 边界对齐。
优选实施例四 中继站定时状态被配置为同步状态,并且基站与中继站之间的距离 = 5^ 氐于 门限 Am = 5'气 则中继站自身将中继站的下行接入链路定时配置为中继站下行子 帧边界相对于基站下行子帧边界延迟时间长度 0。
优选实施例五 中继站下行回程子帧第二个 slot的终点被配置为符号 5, 并且基站与中继站之间 的距离 = 1.9Am高于门限 A = 15·3½7,则基站将中继站的下行接入链路定时配置为 中继站下行子帧边界相对于基站下行子帧边界延迟, 并在高层信令中, 将 1 比特二进 制序列值配置为 "1", 发送至中继站, 指示中继站下行子帧边界相对于基站下行子帧边 界延迟。
优选实施例六 中继站下行回程子帧第二个 slot的终点被配置为符号 5, 并且基站到中继站的下 行传播时延7 ^ = 2()48 超过门限 ^2 5687^,则中继站自身将中继站的下行接入链 路定时配置为中继站下行子帧边界相对于基站下行子帧边界延迟时间长度 Δ, = 4807; 优选实施例七 中继站下行回程子帧第二个 slot的终点被配置为符号 5, 并且基站到中继站的下 行传播时延7 ^ = 2Q48 超过门限7 = 1568 ,则基站将中继站的下行接入链路定时 配置为中继站下行子帧边界相对于基站下行子帧边界延迟 = 48()7^, 并在高层信令 中, 将整数 N值配置为" -30", 发送至中继站。
优选实施例八 中继站定时状态被配置为同步状态, 并且基站到中继站的下行传播时延 = 1568 不低于门限7 = 15687 , 则 0ΑΜ模块将中继站的下行接入链路定时配 置为中继站下行子帧边界相对于基站下行子帧边界延迟, 并在 ΟΑΜ信令中, 将整数 Ν值配置为 "0", 发送至中继站, 指示中继站下行子帧边界相对于基站下行子帧边界延 迟时间长度 0。 图 13是根据本发明实施例的中继站下行接入链路定时配置的交互流程图三,如图 13所示, 描述了本优选实施例八中采用的 ΟΑΜ模块通过 ΟΑΜ信令将配置结果告知 基站,然后基站通过高层信令和 /或 Χ2接口信令和 /或直接转发方式告知中继站的过程。
优选实施例九 中继站定时状态被配置为同步状态, 并且基站到中继站的下行传播时延 = 1568 不低于门限7 = 15687 ,则基站将中继站的下行接入链路定时配置为中 继站下行子帧边界相对于当前中继站下行子帧边界延迟 944 ,并在高层信令中,将整 数 Ν值配置为" 59", 发送至中继站。 需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的 计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情况下, 可 以以不同于此处的顺序执行所示出或描述的步骤。 本发明实施例提供了一种下行子帧边界的调整系统, 该下行子帧边界的调整系统 可以用于实现上述下行子帧边界的调整方法。图 14是根据本发明实施例的下行子帧边 界的调整系统的结构框图, 如图 14所示, 包括。 下行子帧边界的调整装置 142和中继站 144, 其中下行子帧边界的调整装置 142 包括配置模块 1422和调整模块 1424, 下面对其进行详细描述。 配置模块 1422, 用于对中继站的下行接入链路定时进行配置, 其包括以下之一: 配置中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界的发射时刻对齐或 者延迟, 配置中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界在中继站 的接收时刻对齐或者延迟, 配置中继站的下行子帧边界的发射时刻相对于当前中继站 的下行子帧边界的发射时刻提前或者延迟; 调整模块 1424, 连接至配置模块 1422, 用 于根据配置模块 1422配置的下行接入链路定时, 调整下行子帧边界。 优选地,配置模块 1422处于基站内或者处于 OAM模块内或者处于中继站 144内。 需要说明的是, 装置实施例中描述的下行子帧边界的调整系统对应于上述的方法 实施例, 其具体的实现过程在方法实施例中已经进行过详细说明, 在此不再赘述。 综上所述, 根据本发明的上述实施例, 提供了一种下行子帧边界的调整方法及系 统。 本发明通过对中继站的下行子帧边界进行适当的调整, 可以避免中继站下行接收 端和发射端发生自干扰, 并且本发明不改变下行回程子帧结构, 可以保证系统性能和 用户感受。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 或者将它们分别制作成各个集成电路模 块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明 不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种下行子帧边界的调整方法, 包括:
对中继站的下行接入链路定时进行配置, 其包括以下之一: 配置所述中继 站的下行子帧边界的发射时刻相对于基站的下行子帧边界的发射时刻对齐或者 延迟, 配置所述中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界 在中继站的接收时刻对齐或者延迟, 配置所述中继站的下行子帧边界的发射时 刻相对于当前中继站的下行子帧边界的发射时刻提前或者延迟;
所述中继站根据配置的下行接入链路定时, 调整下行子帧边界。
2. 根据权利要求 1所述的方法, 其中, 当所述中继站处于非同步状态或者所述中 继站下行回程子帧第二个时隙 slot的终点是符号 6时, 对中继站的下行接入链 路定时进行配置包括以下之一:
配置所述中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界的 发射时刻延迟;
配置所述中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界在 中继站的接收时刻延迟;
配置所述中继站的下行子帧边界的发射时刻相对于当前中继站的下行子帧 边界的发射时刻提前或者延迟。
3. 根据权利要求 2所述的方法, 其中,
TOP_RT + TP≤ ≤ {T→ol - Top m) + Tp, 其中 是所述中继站的下行子帧边 界的发射时刻相对于基站的下行子帧边界的发射时刻的延迟;
TOP RT≤ \'≤ T→ol - TGP TR, 其中 是所述中继站的下行子帧边界的发射 时刻相对于基站的下行子帧边界在中继站的接收时刻的延迟;
其中 ΓΡ为基站到所述中继站的传播时延, TGP RT为所述中继站从下行接收 到下行发射的保护间隔, TGp m为所述中继站从下行发射到下行接收的保护间 隔, 7 ^。,为子帧中除了符号 0之外任意一个 OFDM符号包括 CP在内的时间 长度, 并且满足 TGP RT + Top TR≤ Γ ,ο!
4. 根据权利要求 1所述的方法, 其中, 当条件一与条件二中的一个条件成立, 并 且条件三与条件四中的一个条件成立时, 对中继站的下行接入链路定时进行配 置包括以下之一:
配置所述中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界的 发射时刻对齐;
配置所述中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界在 中继站的接收时刻提前;
配置所述中继站的下行子帧边界的发射时刻相对于当前中继站的下行子帧 边界的发射时刻提前或延迟;
其中所述条件一是所述中继站处于同步状态, 所述条件二是所述中继站的 下行回程子帧第二个 slot的终点是符号 5, 所述条件三是所述中继站到基站的 下行传播时延低于或不超过第一门限, 所述条件四是所述中继站与基站之间的 距离低于或不超过第一门限。
5. 根据权利要求 1所述的方法, 其中, 当条件五与条件六中的一个条件成立, 并 且条件七与条件八中的一个条件成立时, 对中继站的下行接入链路定时进行配 置包括以下之一:
配置所述中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界的 发射时刻延迟;
配置所述中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界在 中继站的接收时刻提前;
配置所述中继站的下行子帧边界的发射时刻相对于当前中继站的下行子帧 边界的发射时刻提前或延迟;
其中所述条件五是所述中继站处于同步状态, 所述条件六是所述中继站的 下行回程子帧第二个 slot的终点是符号 5, 所述条件七是所述中继站到基站的 下行传播时延超过或不低于第二门限, 所述条件八是所述中继站与基站之间的 距离超过或不低于第二门限。
6. 根据权利要求 4或 5所述的方法, 其中,
TP - (Tsymbol - TGP RT)≤ Δ2≤ TP - TGP TR, Δ2是所述中继站的下行子帧边界的 发射时刻相对于基站的下行子帧边界的发射时刻的延迟; TOP_m < Δ2' < T ol -TGP RT或者 4 (Γρ, Γσρra)≤ Δ2' < T ol -TGP RT, Δ2' 是所述中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界在中继站 的接收时刻的提前;
其中 ΓΡ为基站到所述中继站的传播时延, TGP RT为所述中继站从下行接收 到下行发射的保护间隔, TGp m为所述中继站从下行发射到下行接收的保护间 隔, 7 ^。,为子帧中除了符号 0之外任意一个 OFDM符号包括 CP在内的时间 长度, 并且满足 Γσρ—^ + Γσρ— ^^ 7 ^。
7. 根据权利要求 1所述的方法, 其中, 对中继站的下行接入链路定时进行配置包 括: 所述中继站对自身的下行接入链路定时进行配置。
8. 根据权利要求 1所述的方法, 其中, 对中继站的下行接入链路定时进行配置包 括:
基站对所述中继站的下行接入链路定时进行配置;
所述基站通过高层信令和 /或 Χ2接口信令将配置结果告知所述中继站。
9. 根据权利要求 1所述的方法, 其中, 对中继站的下行接入链路定时进行配置包 括:
操作维护管理 ΟΑΜ模块对所述中继站的下行接入链路定时进行配置; 所述 ΟΑΜ模块通过 ΟΑΜ信令将配置结果告知所述中继站。
10. 根据权利要求 9所述的方法, 其中, 所述 ΟΑΜ模块通过 ΟΑΜ信令将配置结 果告知所述中继站包括:
所述 ΟΑΜ模块通过所述 ΟΑΜ信令将所述配置结果告知基站; 所述基站通过高层信令和 /或 Χ2 接口信令和 /或直接转发方式告知所述中 继站。
11. 根据权利要求 8至 10中任一项所述的方法, 其中, 所述高层信令、 所述 Χ2接 口信令和 /或所述 ΟΑΜ信令包括二进制序列, 其中所述二进制序列用于指示所 述中继站的下行子帧边界的发射时刻相对于基站的下行子帧边界的发射时刻对 齐或延迟, 或者用于指示所述中继站的下行子帧边界的发射时刻相对于基站的 下行子帧边界在中继站的接收时刻提前或延迟。
12. 根据权利要求 8至 10中任一项所述的方法, 其中, 所述高层信令、 所述 X2接 口信令和 /或所述 OAM信令包括第一时间长度, 其中所述第一时间长度用于指 示所述中继站的下行子帧边界相对于基站的下行子帧边界的延迟或提前的时间 长度, 或者用于指示所述中继站的下行子帧边界的发射时刻相对于基站的下行 子帧边界在中继站的接收时刻延迟或提前的时间长度, 或者用于指示所述中继 站的下行子帧边界的发射时刻相对于当前中继站的下行子帧边界的发射时刻提 前或延迟的时间长度。
13. 一种下行子帧边界的调整系统, 包括下行子帧边界的调整装置和中继站, 其中 所述中继站包括:
配置模块, 设置为对所述中继站的下行接入链路定时进行配置, 其包括以 下之一: 配置所述中继站的下行子帧边界的发射时刻相对于基站的下行子帧边 界的发射时刻对齐或者延迟, 配置所述中继站的下行子帧边界的发射时刻相对 于基站的下行子帧边界在中继站的接收时刻对齐或者延迟, 配置所述中继站的 下行子帧边界的发射时刻相对于当前中继站的下行子帧边界的发射时刻提前或 者延迟;
调整模块, 设置为根据配置的下行接入链路定时, 调整下行子帧边界。
14. 根据权利要求 13所述的系统,其中,所述配置模块处于基站内或者处于操作维 护管理 OAM模块内或者处于所述中继站内。
PCT/CN2012/075391 2011-05-13 2012-05-11 下行子帧边界的调整方法及系统 WO2012155813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110124245.1 2011-05-13
CN2011101242451A CN102781089A (zh) 2011-05-13 2011-05-13 下行子帧边界的调整方法及系统

Publications (1)

Publication Number Publication Date
WO2012155813A1 true WO2012155813A1 (zh) 2012-11-22

Family

ID=47125800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075391 WO2012155813A1 (zh) 2011-05-13 2012-05-11 下行子帧边界的调整方法及系统

Country Status (2)

Country Link
CN (1) CN102781089A (zh)
WO (1) WO2012155813A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536317A (zh) * 2019-04-29 2019-12-03 中兴通讯股份有限公司 一种确定符号属性的方法及节点
CN111867087B (zh) * 2019-04-30 2022-10-25 华为技术有限公司 调整时域资源边界的方法和通信装置
CN111867040B (zh) * 2019-04-30 2021-12-28 华为技术有限公司 一种通信方法、终端设备以及网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931962A (zh) * 2009-06-22 2010-12-29 华为技术有限公司 一种传输数据的方法、中继和基站
CN102036364A (zh) * 2009-09-28 2011-04-27 大唐移动通信设备有限公司 一种终端的上行信息发送定时方法、设备和系统
CN102055518A (zh) * 2009-10-30 2011-05-11 中兴通讯股份有限公司 一种子帧定时的方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931962A (zh) * 2009-06-22 2010-12-29 华为技术有限公司 一种传输数据的方法、中继和基站
CN102036364A (zh) * 2009-09-28 2011-04-27 大唐移动通信设备有限公司 一种终端的上行信息发送定时方法、设备和系统
CN102055518A (zh) * 2009-10-30 2011-05-11 中兴通讯股份有限公司 一种子帧定时的方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ETRI.: "UL/DL timing for the relay node.", 3GPP TSG RAN WG1 MEETING #59BIS, R1-100461., 22 January 2010 (2010-01-22), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_59b/Docs/> *
NOKIA SIEMENS NETWORKS ET AL.: "Timing alignment of DL backhaul.", 3GPP TSG RAN WG1 MEETING #58BIS, R1-093924., 16 October 2009 (2009-10-16), pages 1 - 2, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_58b/Docs/> *
NOKIA SIEMENS NETWORKS: "Timing alignment of DL backhaul.", 3GPP TSG RAN WG1 MEETING #58, R1-093312., 28 August 2009 (2009-08-28), pages 1 - 2, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TS_GR1_58/Docs/> *

Also Published As

Publication number Publication date
CN102781089A (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
TWI731383B (zh) 在無線通訊系統中的節點操作方法及使用該方法的節點
US9674806B2 (en) Method and apparatus for applying a time alignment timer in a wireless communication system using a carrier aggregation technique
EP3358773B1 (en) Hybrid-arq mechanism for cooperative base stations uplink
KR102075016B1 (ko) 무선 통신 시스템에서 페이징을 위한 제어 정보를 송수신하는 방법 및 이를 위한 장치
CN103583009B (zh) 在使用载波聚合的移动通信系统中配置下行链路定时和发送随机接入响应的方法和装置
US9078163B2 (en) Method and apparatus for performing communication in a wireless communication system
US20170041119A1 (en) Configurable bi-directional time division duplex (tdd) subframe structure
JP5711255B2 (ja) 無線通信システムにおけるシステム情報送受信方法、及びそれを用いたシステム情報送信装置と受信装置
WO2019106050A1 (en) Switching of transmission between cell groups
WO2013166930A1 (zh) 同步跟踪参考信号的发送处理、接收处理方法及装置
WO2010045864A1 (zh) 中继传输的方法及设备
EP2522089A1 (en) Downlink control signaling for a backhaul link
WO2011091746A1 (zh) 一种回程链路上行控制信道的处理方法和系统
TW202046782A (zh) 喚醒訊號操作方法、裝置及電腦可讀介質
WO2011076074A1 (zh) 一种第一类中继站接收系统信息的系统及方法
KR101973465B1 (ko) 이동통신 시스템에서 백홀 링크 서브프레임 구조 및 그 정보 전송 방법
TWI747197B (zh) 通道狀態資訊測量和通道狀態資訊報告之方法和裝置
WO2011047616A1 (zh) 一种中继方法、设备和系统
WO2020165778A1 (en) Systems and methods for srs switching impact control
TW202106074A (zh) 無線通訊方法及裝置、電腦可讀介質
CN110832950A (zh) 实现无线通信系统中的冗余分组副本的有效处理
WO2011050747A1 (zh) 一种子帧定时的方法及系统
WO2012155813A1 (zh) 下行子帧边界的调整方法及系统
WO2014008814A1 (zh) 上行授权信息发送方法、授权信息指示方法及基站
WO2011079718A1 (zh) 基站、中继节点、中继子帧配置信息的通知方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785523

Country of ref document: EP

Kind code of ref document: A1