WO2011050747A1 - 一种子帧定时的方法及系统 - Google Patents

一种子帧定时的方法及系统 Download PDF

Info

Publication number
WO2011050747A1
WO2011050747A1 PCT/CN2010/078252 CN2010078252W WO2011050747A1 WO 2011050747 A1 WO2011050747 A1 WO 2011050747A1 CN 2010078252 W CN2010078252 W CN 2010078252W WO 2011050747 A1 WO2011050747 A1 WO 2011050747A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay node
timing
subframe
link subframe
backhaul link
Prior art date
Application number
PCT/CN2010/078252
Other languages
English (en)
French (fr)
Inventor
毕峰
梁枫
袁明
杨瑾
吴栓栓
姜静
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011050747A1 publication Critical patent/WO2011050747A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and system for subframe timing.
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • IMT-Advanced International Mobile Telecommunication Advanced
  • OFDM Orthogonal Frequency Division Multiplexing
  • a resource block is defined as an OFDM symbol in one slot (slot) in a time domain, and 12 or 24 subcarriers in a frequency domain.
  • the system needs to ensure that the data transmitted by each terminal arrives at the base station side at the same time (so the timing is also It can be considered that the time between the terminal and the base station is aligned.
  • the base station side notifies the terminal in advance how long it takes to transmit, that is, the advance amount.
  • the corresponding command is called the Timing Advance Command (TAC), and the terminal receives the TAC. It will be transmitted in advance in the corresponding subframe.
  • TAC Timing Advance Command
  • a new link is added after the introduction of a relay node in the LTE-A system:
  • the link between the base station, ie, the evolved Node B (eNode B, eNB) and the relay, is called a backhaul chain.
  • a link between a relay and a user equipment (UE) is called an access link, and a link between the eNode-B and the UE is called a straight link.
  • Pass link ( direct link ).
  • the eNode-B to relay link and relay to UE link operate on the same frequency resource. Since the in-band relay transmitter will interfere with its own receiver (self-interference), the eNode-B to relay link and relay to UE link cannot simultaneously be on the same frequency resource unless there is sufficient signal separation and antenna Isolation. Similarly, it is impossible for the relay to transmit to the eNode-B while receiving the data transmitted by the UE, that is, the relay cannot transmit and receive at the same time.
  • the Multimedia Broadcast Multicast Service (MBMS) Control Entity (MCE) first configures the available MBSFN subframe for the eNode-B.
  • the eNode-B configures the available backhaul subframes in these available MBSFN subframes. Therefore, in the downlink, the relay first transmits control information to the subordinate UEs in the first 1 or 2 OFDM symbols, including uplink (UL) transmission data.
  • Feedback information confirmation/non-confirmation information Acknowledgment/Negative Acknowledgment, ACK/NACK
  • uplink grant UL grant
  • time division multiplexing Time Division Multiplexing
  • TDM Time Division Multiplexing
  • the technical problem to be solved by the present invention is to provide a method and system for subframe timing, which is suitable for solving the timing problem of a relay subframe and an access subframe after introducing a relay node.
  • the present invention provides a seed frame timing method, which is applied to a communication system using a relay node, and the method includes: a relay node side uplink backhaul link subframe according to a relay node side downlink backhaul link The frame is timed, and the timing quantity is determined by a time advance command (TAC) sent by the base station; and the relay node transmits the uplink signal to the base station according to the downlink backhaul link subframe of the relay node side.
  • TAC time advance command
  • the timing is transmitted in advance at the timing.
  • the method further includes: determining, by the base station, the timing quantity according to the measured propagation delay between the base station and the relay node, and sending the timing quantity to the relay node by using the TAC.
  • the timing amount is twice the propagation delay between the base station and the relay node.
  • the method is applicable to radio frame timing.
  • the present invention further provides a method for seed frame timing, which is applied to a communication system using a relay node, the method comprising: a terminal side uplink access link subframe according to a relay node side uplink backhaul link Subframe, or relay node side uplink access link subframe, timing is determined by a timing advance command (TAC) sent by the relay node; and the terminal transmits an uplink signal to the relay node And transmitting according to the timing of the start time of the downlink side access link subframe of the terminal side.
  • TAC timing advance command
  • the method further includes: the base station determining, according to the measured propagation delay between the relay node and the terminal, and the base station and the middle determined according to a time advance command issued by the base station side
  • the timing delay is determined by the propagation delay between the nodes, and is sent to the terminal by using the TAC.
  • the timing amount is a propagation delay between the base station and the relay node. Twice, plus twice the propagation delay between the relay node and the terminal.
  • the method is applicable to radio frame timing.
  • the present invention further provides a method for seed frame timing, which is characterized by being applied to a communication system using a relay node, the method comprising: a boundary of a relay node side uplink access link subframe The boundaries of the uplink backhaul link subframes on the relay node side are aligned. The boundary of the relay node side uplink access link subframe and the boundary of the relay node side uplink backhaul link subframe are aligned as follows:
  • the guard interval is located in the last orthogonal frequency division multiplexing of the current subframe.
  • the boundary of the relay node side uplink backhaul link subframe refers to the boundary of the last OFDM symbol; if the relay node side uplink backhaul link subframe maintains a fixed delay when transmitting And the current subframe end position has a send/receive switching state, and the guard interval is located outside the last OFDM symbol of the current subframe, and the boundary of the relay node side uplink backhaul link subframe refers to the current subframe end position protection. The boundary of the interval.
  • the present invention further provides a method for seed frame timing, which is applied to a communication system using a relay node, the method comprising: a boundary of a relay node side downlink access link subframe and a relay node side The boundaries of the downlink backhaul link subframes are aligned.
  • the boundary of the relay node side downlink backhaul link subframe refers to the boundary of the last OFDM symbol; if the relay node side downlink backhaul link subframe maintains one when the first or first 2 OFDM symbols are transmitted Fixed delay, and there is a receive/transmit switch state at the end of the current subframe, then the guard interval Located outside the last OFDM symbol of the current subframe, the boundary of the relay node side downlink backhaul link subframe refers to the boundary of the current subframe end position guard interval.
  • the method is applicable to radio frame timing.
  • the first timing quantity is transmitted; and the terminal side uplink access link subframe is timed according to the relay node side uplink backhaul link subframe or the relay node side uplink access link subframe, and the second timing quantity Determined by a time advance command (TAC) sent by the relay node; when the terminal transmits an uplink signal to the relay node, the terminal advances according to a start time of the downlink access link subframe of the terminal side.
  • TAC time advance command
  • Two timing quantities are transmitted.
  • the method is applicable to radio frame timing.
  • the present invention further provides a seed frame timing system, including a base station and a relay node, where: the base station is configured to: according to the measured propagation between the base station and the relay node Determining the first timing amount, and transmitting the first timing amount to the relay node by using a time advance command (TAC); the relay node is configured to: receive the TAC including the first timing amount delivered by the base station After that, the relay node side uplink backhaul link subframe is scheduled according to the relay node side downlink backhaul link subframe, and when the uplink signal is transmitted to the base station, according to the relay node side downlink backhaul link subframe The first timing amount is transmitted in advance at the beginning time.
  • TAC time advance command
  • the present invention further provides a seed frame timing system, including a base station, a relay node, and a terminal, where the base station is configured to: according to the measured between the base station and the relay node The propagation delay determines a first timing amount, and is sent to the relay node by using a timing advance command (TAC); the relay node is configured to: according to the measured between the relay node and the terminal Spread And determining, by the TAC, the second timing amount by using the TAC, and the propagation delay between the base station and the relay node determined by the TAC, where the first timing quantity is delivered by the base station, is sent to the
  • the terminal is configured to: after receiving the TAC including the second timing amount delivered by the relay node, according to the uplink backhaul link subframe of the relay node side or the uplink access chain of the relay node side
  • the sub-frame is configured to delay the terminal-side uplink access link subframe, and when the uplink signal is sent to the relay node, the second timing is advanced
  • the boundary of the relay node side uplink access link subframe and the boundary of the relay node side uplink backhaul link subframe are aligned as follows: if the relay node side uplink backhaul link subframe is not transmitted at the time of transmission Fixed delay, and the current subframe end position has an transmit/receive switching state, and the guard interval is located in the last orthogonal frequency division multiplexing (OFDM) symbol of the current subframe, and the relay node side uplink backhaul link
  • OFDM orthogonal frequency division multiplexing
  • the boundary of the relay node side uplink backhaul link subframe refers to the boundary of the current subframe end position guard interval.
  • the present invention further provides a seed frame timing system, which includes a relay node, wherein a boundary of a relay node side downlink access link subframe and a relay node side downlink backhaul link subframe The boundary is aligned in the following manner: if the relay node side downlink backhaul link subframe is in the first or first two orthogonal frequency division multiplexing
  • the (OFDM) symbol is transmitted without a fixed delay, and the current subframe end position has an receive/transmit handover state, and the guard interval is located in the last OFDM symbol of the current subframe, and the relay node side downlink backhaul link subframe The boundary of the last OFDM symbol; if the relay node side downlink backhaul link subframe maintains a fixed delay when the first or first 2 OFDM symbols are transmitted, and the current subframe end position is received/transmitted In the handover state, the guard interval is located outside the last OFDM symbol of the current subframe, and the boundary of the relay node side downlink backhaul link subframe refers to the boundary of the current subframe end position guard interval.
  • the present invention provides a seed frame timing method and system, which can be well applied to a relay node to a base station link, has a flexible timing mode, does not increase signaling overhead, and ensures backward compatibility (compatible with LTE). System) also solves the problem of relay subframe and access subframe timing.
  • FIG. 1 is a schematic diagram of a resource block and a subcarrier of an OFDM system
  • FIG. 2 is a schematic diagram of an architecture of an LTE-A system
  • FIG. 3 is a schematic diagram of a frame structure of the backhaul
  • FIG. 5 is a schematic diagram of an access link subframe timing
  • FIG. 6 is a schematic diagram of a direct transmission link subframe timing
  • FIG. 7 is a relay node side downlink access link subframe and a relay node side downlink backhaul link.
  • FIG. 10 is a relay node-side uplink access link subframe and a relay node side Schematic diagram of subframe alignment of the uplink backhaul link (with fixed delay).
  • the basic idea of the present invention is: For the LTE and LTE-A systems introducing the relay node, a corresponding subframe timing scheme is proposed.
  • the scheme includes single-link subframe timing and multi-link subframe timing, where single-link subframe timing refers to respective subframe timings of the backhaul link, the access link, and the direct transmission link; Frame timing refers to the subframe timing of the backhaul link and the access link.
  • the single link subframe timing includes:
  • the relay node side uplink backhaul link subframe is timed according to the relay node side downlink backhaul link subframe, and the timing amount is determined by a time advance command or a propagation delay;
  • the terminal side uplink access link subframe is timed according to the relay node side uplink backhaul link subframe or according to the relay node side uplink access link subframe, and the timing amount is commanded by the time advance command or Propagation delay decision;
  • Multi-link subframe timing that is, subframe timing of the backhaul link and the access link includes:
  • the boundary of the uplink access link subframe of the relay node side is aligned with the boundary of the uplink backhaul link subframe of the relay node side.
  • the boundary of the relay node side downlink access link subframe is aligned with the relay node side downlink backhaul link subframe boundary, if the relay node side downlink backhaul link subframe is in the first 1 or 2 OFDM symbols
  • the guard interval is located in the last OFDM symbol of the current subframe, that is, the boundary at this time refers to the last OFDM symbol.
  • the guard interval is located at the end of the current subframe.
  • the outer boundary of the OFDM symbol that is, the boundary at this time refers to the boundary of the current subframe end position guard interval, and the fixed delay is greater than or equal to the time corresponding to the guard interval.
  • the guard interval is located in the last OFDM symbol of the current subframe, that is, the boundary at this time refers to the boundary of the last OFDM symbol; if the relay node side uplink backhaul link
  • the subframe maintains a fixed delay when transmitting, and the current subframe end position has an transmit/receive switching state, and the guard interval is outside the last OFDM symbol of the current subframe, that is, the boundary at this time refers to the current subframe end position.
  • the boundary of the guard interval, the fixed delay is greater than or equal to the time corresponding to the guard interval.
  • each radio frame is composed of ten subframes.
  • the radio frame timing is completed, and the radio frame timing is completed, that is, the subframe timing is completed.
  • Example one the timing of the backhaul link subframe is determined by the base station according to the propagation delay between the base station and the relay node, and is sent to the relay node in the form of an advance command.
  • the amount of time advancement (also referred to herein as the amount of timing) is twice the propagation delay between the base station and the relay node.
  • the relay node side uplink backhaul link subframe is pre-transmitted according to the time corresponding to the relay node side downlink backhaul link subframe.
  • Tx refers to transmit data
  • Rx refers to receive data
  • Tx control refers to control information transmitted by the relay in the first or first two OFDM symbols to its subordinate UE
  • BRTT refers to back and forth of the backhaul link.
  • Example 2 As shown in Figure 5, the timing mode of the access link subframe is shown.
  • ARTT refers to the back-to-back propagation time of the access link.
  • the relay node determines the timing amount according to the measured propagation delay between the relay node and the terminal, and the propagation delay between the base station and the relay node determined by the received TAC, and is commanded by the advance amount.
  • the form is sent to the terminal.
  • the timing is twice the propagation delay between the base station and the relay node, plus twice the propagation delay between the relay node and the terminal.
  • the terminal side uplink access link subframe is pre-transmitted according to the time corresponding to the relay node side uplink backhaul link subframe or the relay node side uplink access link subframe.
  • FIG. 5 also shows the subframe timing of the backhaul link and the access link, as shown in FIG. Aligning the boundary of the relay node side downlink access link subframe with the relay node side downlink backhaul link subframe boundary; the boundary of the relay node side uplink access link subframe and the relay node side uplink backhaul link Subframe boundaries are aligned. After sub-frame alignment, you can make full use of time resources. As shown in FIG. 7 and FIG. 8, when the boundary of the relay node side downlink access link subframe and the relay node side downlink backhaul link subframe boundary are aligned, if the relay node side downlink backhaul link subframe is before
  • the guard interval is located in the last OFDM symbol of the current subframe (the last OFDM symbol is a normal cyclic prefix).
  • the 14th OFDM symbol in the frame, the last OFDM symbol when the cyclic prefix is extended is the 12th OFDM symbol), that is, the boundary at this time refers to the boundary of the last OFDM symbol. If the relay node side downlink backhaul link subframe maintains a fixed delay when the first 1 or 2 OFDM symbols are transmitted, and the current subframe end position has an receive/transmit handover state, the guard interval is located at the last OFDM of the current subframe.
  • the boundary at this time refers to the current subframe end position protection.
  • the boundary of the interval As shown in FIG. 9 and FIG.
  • the guard interval is located in the last OFDM symbol of the current subframe (the last OFDM symbol in the normal cyclic prefix is the 14th in the subframe)
  • the OFDM symbol when the cyclic prefix is extended, the last OFDM symbol is the 12th OFDM symbol), that is, the boundary at this time refers to the boundary of the last OFDM symbol.
  • the guard interval is outside the last OFDM symbol of the current subframe (normal cyclic prefix)
  • the last OFDM symbol is the 14th OFDM symbol in the subframe, and the last OFDM symbol is the 12th OFDM symbol when the cyclic prefix is extended, that is, the boundary at this time refers to the boundary of the current subframe end position guard interval.
  • the embodiment of the present invention further provides a seed frame timing system, including a base station and a relay node, where: the base station is configured to: determine, according to the measured propagation delay between the base station and the relay node The first timing amount is sent to the relay node by using a TAC; the relay node is configured to: after receiving the TAC including the first timing amount delivered by the base station, according to the downlink of the relay node
  • the backhaul link subframe performs timing on the relay node side uplink backhaul link subframe, and when transmitting the uplink signal to the base station, the first timing is advanced according to the start time of the relay node side downlink backhaul link subframe. The amount is emitted.
  • the subframe timing system includes a base station, a relay node, and a terminal, where the base station is configured to: determine, according to the measured propagation delay between the base station and the relay node, The timing quantity is sent to the relay node by using a TAC; the relay node is configured to: according to the measured propagation delay between the relay node and the terminal, and the location delivered by the base station Determining, by the TAC, the second timing amount of the propagation delay between the base station and the relay node that is determined by the TAC, where the first timing quantity is determined, and sending the second timing quantity to the terminal by using a TAC; After the TAC including the second timing amount delivered by the relay node, the terminal side uplink access link according to the relay node side uplink backhaul link subframe or the relay node side uplink access link subframe The subframe performs timing, and when transmitting the uplink signal to the relay node, transmitting according to the second timing amount according to the start time of the terminal side downlink
  • the subframe timing system includes a base station, a relay node, and a terminal, where the base station is configured to: determine, according to the measured propagation delay between the base station and the relay node, The timing quantity is sent to the relay node by using a TAC; the relay node is configured to: after receiving the TAC including the first timing quantity delivered by the base station, according to the downlink backhaul chain of the relay node side
  • the path subframe is used to time the uplink backhaul link subframe of the relay node, and when the uplink signal is transmitted to the base station, the first timing amount is advanced according to the start time of the downlink backhaul link subframe of the relay node side.
  • the propagation delay between the two determines the second timing amount and passes The TAC is sent to the terminal; the terminal is configured to: after receiving the TAC that includes the second timing quantity delivered by the relay node, according to the relay node side uplink backhaul link subframe, or relay
  • the node-side uplink access link subframe performs timing on the terminal-side uplink access link subframe, and when the uplink signal is transmitted to the relay node, according to the start time of the terminal-side downlink access link subframe
  • the second timing amount is transmitted in advance.
  • the subframe timing system includes a relay node, where a boundary between a relay node side uplink access link subframe and a relay node side uplink backhaul link subframe is performed in the following manner. Alignment: If the relay node side uplink backhaul link subframe has no fixed delay when transmitting, and the current subframe end position has an transmit/receive switching state, the guard interval is located in the last OFDM symbol of the current subframe.
  • the boundary of the relay node side uplink backhaul link subframe refers to the boundary of the last OFDM symbol; if the relay node side uplink backhaul link subframe maintains a fixed delay when transmitting, and the current subframe ends The location is in the transmit/receive switch state, and the guard interval is located outside the last OFDM symbol of the current subframe, and the boundary of the relay node side uplink backhaul link subframe refers to the boundary of the current subframe end location guard interval.
  • the subframe timing system includes a relay node, where a boundary between a relay node side downlink access link subframe and a relay node side downlink backhaul link subframe is performed in the following manner.
  • the guard interval is located at the current Within the last OFDM symbol of the subframe, the boundary of the relay node side downlink backhaul link subframe refers to the boundary of the last OFDM symbol; if the relay node side downlink backhaul link subframe is at the first or the first 2 The OFDM symbols are transmitted with a fixed delay, and the current subframe end position has an receive/transmit handover state, and the guard interval is located outside the last OFDM symbol of the current subframe, and the relay node side downlink backhaul link subframe The boundary of the current subframe is the boundary of the guard interval at the end of the current subframe.
  • the present invention provides a method and system for subframe timing, which is well applicable to a relay node to a base station link, has a flexible timing manner, does not increase signaling overhead, and ensures backward compatibility (compatible with an LTE system). ), also solves the problem of relay subframe and access subframe timing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种子帧定时的方法,应用于采用中继节点的通信系统,该方法包括:中继节点侧上行回程链路子帧根据中继节点侧下行回程链路子帧进行定时,定时量由基站发送的时间提前量命令(TAC)确定;以及所述中继节点在向所述基站发射上行信号时,根据所述中继节点侧下行回程链路子帧的起始时刻提前所述定时量进行发射。本发明还公开了子帧定时的系统。本发明提供了子帧定时的方法及系统,可以很好地适用于中继节点到基站链路,定时方式灵活,没有增加信令开销,既保证了后向兼容性,也解决了中继子帧和接入子帧定时的问题。

Description

一种子帧定时的方法及系统
技术领域 本发明涉及通信领域, 更具体地, 涉及一种子帧定时的方法及系统。
背景技术
长期演进( Long Term Evolution, LTE )系统、 LTE增强( LTE Advanced, LTE-A ) 系统、 高级的 国 际移动通信系统 ( International Mobile Telecommunication Advanced , IMT-Advanced ) 都是以正交频分复用 ( Orthogonal Frequency Division Multiplexing , OFDM )技术为基础。在 OFDM 系统中主要是时频两维的数据形式。 如图 1所示, 在 LTE和 LTE-A中资源 块( Resource Block, RB )定义为在时间域上连续 1个时隙( slot )内的 OFDM 符号, 在频率域上连续 12或 24个子载波, 所以 1个 RB包括 N一 xN 3 个 资源单元( Resource Element, RE ) , 其中 Ν 表示 1个 slot内的 OFDM符 号的个数, N 表示资源块在频率域上连续子载波的个数。 RB映射在物理资 源上则称为物理资源块( Physical Resource Block , PRB ) 。 无线通信系统中, 下行同步的作用是为了使终端和基站侧保持时间和频 率上的同步, 使得接收到的信号能够正确被解调。 系统中除了下行同步外, 还存在上行同步, 其主要原因是由于每个终端到基站的距离不同, 也就是说 传输时间不同, 系统需要保证每个终端发射的数据同时到达基站侧 (所以定 时也可以认为是使终端和基站的时间对齐) , 基站侧事先通知终端需要提前 多少时间进行发射, 即提前量, 其对应的命令称为时间提前量命令 ( Timing Advance Command, TAC ) , 终端收到 TAC后将在对应的子帧提前发射。 如图 2所示, LTE-A系统中引入中继节点(relay )之后增加了新的链路: 基站 , 即演进型节点 B ( eNode B, eNB )与 relay之间的链路称为回程链路或 中继链路(backhaul link ) , relay与用户设备 ( User Equipment, UE )之间 的链路称为接入链路 ( access link ) , eNode-B与 UE之间的链路称为直传链 路 ( direct link ) 。 在釆用带内中继( inband-relay )时 , eNode-B到 relay链路和 relay到 UE 链路运作在相同的频率资源上。由于带内 relay发射机会对自己的接收机产生 干扰(自干扰) , 因此, eNode-B到 relay链路和 relay到 UE链路不能同时 在相同的频率资源上, 除非有足够的信号分离和天线隔离度。 相似的, relay 也不可能在接收 UE所发射的数据的同时再给 eNode-B发射,即 relay无法同 时进行收发。 一个可能的收发干扰问题的解决方法是在发射和接收之间增加 1个间隔 ( gap )来完成收发或发收状态的转换, 使得 relay在接收来自 eNode-B的数 据时, 不向 UE进行发射操作, 也就是说在 relay到 UE链路后需要增加 gap, 通过配置多播组播单频网络 ( Multimedia Broadcast multicast service Single Frequency Network, MBSFN )子顿 ( subframe )用于 backhaul subframe , 使 得 UE在 gap时间范围内不进行任何接收 /发射操作,而 relay在 gap时间范围 内完成发射到接收的切换, 切换完成后在后面的 OFDM 符号接收来自 eNode-B 的数据。 目前, 在 LTE 中釆用 MBSFN subframe 用于 backhaul subframe , 其具体的方式是: 多媒体广播多播业务控制实体 (Multimedia Broadcast Multicast Service (MBMS) Control Entity, MCE )首先给 eNode-B 配置可用的 MBSFN subframe, eNode-B在这些可用的 MBSFN subframe中配 置可用的 backhaul subframe„ 因此,在下行时 relay首先在前 1或 2个 OFDM 符号给其下属的 UE发射控制信息, 包括上行 (Uplink, UL)发射数据的反馈 信息确认 /非确认信息 ( Acknowledgment/Negative Acknowledgment , ACK/NACK )和上行授权(UL grant )信息等。 目前, 对于引入中继节点后, 如带内中继釆用时分复用 ( Time Division Multiplexing, TDM )方式进行工作, 由于收发自干扰的原因, 在子帧的起始 或是结束位置需要保护间隔用于收 /发或是发 /收的切换, 但针对中继子帧及 接入子帧如何定时并未提出具体的解决方案。
发明内容 本发明要解决的技术问题是提供一种子帧定时的方法及系统, 适用于引 入中继节点后, 解决中继子帧和接入子帧的定时问题。 为了解决上述问题, 本发明提供了一种子帧定时方法, 应用于釆用中继 节点的通信系统, 该方法包括: 中继节点侧上行回程链路子帧根据中继节点侧下行回程链路子帧进行定 时, 定时量由基站发送的时间提前量命令(TAC )确定; 以及 所述中继节点在向所述基站发射上行信号时, 根据所述中继节点侧下行 回程链路子帧的起始时刻提前所述定时量进行发射。 所述方法还包括: 所述基站根据测量的所述基站与所述中继节点之间的传播时延确定所述 定时量, 并通过所述 TAC下发给所述中继节点。 所述定时量为所述基站与所述中继节点之间的传播时延的两倍。 所述方法适用于无线帧定时。 为了解决上述问题, 本发明还提供了一种子帧定时的方法, 应用于釆用 中继节点的通信系统, 该方法包括: 终端侧上行接入链路子帧根据中继节点侧上行回程链路子帧、 或中继节 点侧上行接入链路子帧进行定时, 定时量由中继节点发送的时间提前量命令 ( TAC )确定; 以及 所述终端在向所述中继节点发射上行信号时, 根据所述终端侧下行接入 链路子帧的起始时刻提前所述定时量进行发射。 所述方法还包括: 所述中继节点根据测量的所述中继节点与所述终端之间的传播时延, 及 根据基站侧下发的时间提前量命令确定的所述基站与所述中继节点之间的传 播时延确定所述定时量, 并通过所述 TAC下发给所述终端。 当所述终端侧上行接入链路子帧根据所述中继节点侧上行回程链路子帧 进行定时时,所述定时量为所述基站与所述中继节点之间的传播时延的两倍, 加上所述中继节点与所述终端之间的传播时延两倍。 所述方法适用于无线帧定时。 为了解决上述问题,本发明还提供了一种子帧定时的方法,其特征在于, 应用于釆用中继节点的通信系统, 该方法包括: 中继节点侧上行接入链路子帧的边界与中继节点侧上行回程链路子帧的 边界进行对齐。 所述中继节点侧上行接入链路子帧的边界与所述中继节点侧上行回程链 路子帧的边界釆用如下方式进行对齐:
如果所述中继节点侧上行回程链路子帧在发射时没有固定时延, 并且当 前子帧结束位置存在发 /收切换状态,则保护间隔位于当前子帧的最后一个正 交频分复用 (OFDM )符号内, 所述中继节点侧上行回程链路子帧的边界是 指最后一个 OFDM符号的边界; 如果所述中继节点侧上行回程链路子帧在发射时保持一个固定时延, 并 且当前子帧结束位置存在发 /收切换状态,则保护间隔位于当前子帧的最后一 个 OFDM符号外,所述中继节点侧上行回程链路子帧的边界是指当前子帧结 束位置保护间隔的边界。 所述方法适用于无线帧定时。 为了解决上述问题, 本发明还提供了一种子帧定时的方法, 应用于釆用 中继节点的通信系统, 该方法包括: 中继节点侧下行接入链路子帧的边界与中继节点侧下行回程链路子帧的 边界进行对齐。 所述中继节点侧下行接入链路子帧的边界与所述中继节点侧下行回程链 路子帧的边界釆用如下方式进行对齐: 如果所述中继节点侧下行回程链路子帧在第 1个或前 2个 OFDM符号发 射时没有固定时延, 并且当前子帧结束位置存在收 /发切换状态, 则保护间隔 位于当前子帧的最后一个正交频分复用 (OFDM )符号内, 所述中继节点侧 下行回程链路子帧的边界是指最后一个 OFDM符号的边界; 如果中继节点侧下行回程链路子帧在第 1个或前 2个 OFDM符号发射时 保持一个固定时延, 并且当前子帧结束位置存在收 /发切换状态, 则保护间隔 位于当前子帧的最后一个 OFDM符号外,所述中继节点侧下行回程链路子帧 的边界是指当前子帧结束位置保护间隔的边界。 所述方法适用于无线帧定时。 为了解决上述问题, 本发明还提供了一种子帧定时的方法, 应用于釆用 中继节点的通信系统, 该方法包括: 中继节点侧上行回程链路子帧根据中继节点侧下行回程链路子帧进行定 时,第一定时量由基站发送的 TAC确定; 所述中继节点在向所述基站发射上 行信号时, 根据所述中继节点侧下行回程链路子帧的起始时刻提前所述第一 定时量进行发射; 以及 终端侧上行接入链路子帧根据中继节点侧上行回程链路子帧、 或中继节 点侧上行接入链路子帧进行定时, 第二定时量由中继节点发送的时间提前量 命令(TAC )确定; 所述终端在向所述中继节点发射上行信号时, 根据所述 终端侧下行接入链路子帧的起始时刻提前所述第二定时量进行发射。 所述方法适用于无线帧定时。 为了解决上述问题, 本发明还提供了一种子帧定时的系统, 其包括基站 和中继节点, 其中: 所述基站设置为: 根据测量的所述基站与所述中继节点之间的传播时延 确定第一定时量, 并通过时间提前量命令(TAC ) 下发给所述中继节点; 所述中继节点设置为: 收到所述基站下发的所述包含第一定时量的 TAC 后, 根据中继节点侧下行回程链路子帧对中继节点侧上行回程链路子帧进行 定时, 在向基站发射上行信号时, 根据所述中继节点侧下行回程链路子帧的 起始时刻提前所述第一定时量进行发射。 为了解决上述问题,本发明还提供了一种子帧定时的系统,其包括基站、 中继节点和终端, 其中, 所述基站设置为: 根据测量的所述基站与所述中继节点之间的传播时延 确定第一定时量, 并通过时间提前量命令(TAC ) 下发给所述中继节点; 所述中继节点设置为: 根据测量的所述中继节点与所述终端之间的传播 时延,及所述基站下发的所述包含第一定时量的 TAC确定的所述基站与所述 中继节点之间的传播时延确定第二定时量, 并通过 TAC下发给所述终端; 所述终端设置为: 收到所述中继节点下发的所述包含第二定时量的 TAC 后, 根据中继节点侧上行回程链路子帧、 或中继节点侧上行接入链路子帧对 终端侧上行接入链路子帧进行定时, 在向所述中继节点发射上行信号时, 根 据所述终端侧下行接入链路子帧的起始时刻提前所述第二定时量进行发射。 为了解决上述问题,本发明还提供了一种子帧定时的系统,其包括基站、 中继节点和终端, 其中, 所述基站设置为: 根据测量的所述基站与所述中继节点之间的传播时延 确定第一定时量, 并通过时间提前量命令(TAC ) 下发给所述中继节点; 所述中继节点设置为: 收到所述基站下发的所述包含第一定时量的 TAC 后, 根据中继节点侧下行回程链路子帧对中继节点侧上行回程链路子帧进行 定时, 在向基站发射上行信号时, 根据所述中继节点侧下行回程链路子帧的 起始时刻提前所述第一定时量进行发射; 以及, 根据测量的所述中继节点与 所述终端之间的传播时延, 及所述基站下发的所述包含第一定时量的 TAC 确定的所述基站与所述中继节点之间的传播时延确定第二定时量, 并通过 TAC下发给所述终端; 所述终端设置为: 收到所述中继节点下发的所述包含第二定时量的 TAC 后, 根据中继节点侧上行回程链路子帧、 或中继节点侧上行接入链路子帧对 终端侧上行接入链路子帧进行定时, 在向所述中继节点发射上行信号时, 根 据所述终端侧下行接入链路子帧的起始时刻提前所述第二定时量进行发射。 为了解决上述问题, 本发明还提供了一种子帧定时的系统, 其包括中继 节点, 其中,
中继节点侧上行接入链路子帧的边界与中继节点侧上行回程链路子帧的 边界釆用如下方式进行对齐: 如果所述中继节点侧上行回程链路子帧在发射时没有固定时延, 并且当 前子帧结束位置存在发 /收切换状态,则保护间隔位于当前子帧的最后一个正 交频分复用 (OFDM )符号内, 所述中继节点侧上行回程链路子帧的边界是 指最后一个 OFDM符号的边界; 如果所述中继节点侧上行回程链路子帧在发射时保持一个固定时延, 并 且当前子帧结束位置存在发 /收切换状态,则保护间隔位于当前子帧的最后一 个 OFDM符号外,所述中继节点侧上行回程链路子帧的边界是指当前子帧结 束位置保护间隔的边界。 为了解决上述问题, 本发明还提供了一种子帧定时的系统, 其包括中继 节点, 其中, 中继节点侧下行接入链路子帧的边界与中继节点侧下行回程链路子帧的 边界釆用如下方式进行对齐: 如果所述中继节点侧下行回程链路子帧在第 1个或前 2个正交频分复用
( OFDM )符号发射时没有固定时延, 并且当前子帧结束位置存在收 /发切换 状态, 则保护间隔位于当前子帧的最后一个 OFDM符号内, 所述中继节点侧 下行回程链路子帧的边界是指最后一个 OFDM符号的边界; 如果中继节点侧下行回程链路子帧在第 1个或前 2个 OFDM符号发射时 保持一个固定时延, 并且当前子帧结束位置存在收 /发切换状态, 则保护间隔 位于当前子帧的最后一个 OFDM符号外,所述中继节点侧下行回程链路子帧 的边界是指当前子帧结束位置保护间隔的边界。 综上, 本发明提供了一种子帧定时的方法及系统, 可以很好地适用于中 继节点到基站链路, 定时方式灵活, 没有增加信令开销, 既保证了后向兼容 性(兼容 LTE系统) , 也解决了中继子帧和接入子帧定时的问题。
附图概述 图 1是 OFDM系统的资源块、 子载波示意图; 图 2是 LTE-A系统的架构示意图; 图 3帧结构的示意图; 图 4是回程链路子帧定时示意图; 图 5是接入链路子帧定时的示意图; 图 6是直传链路子帧定时的示意图; 图 7是中继节点侧下行接入链路子帧和中继节点侧下行回程链路子帧对 齐的示意图 (无固定时延) ; 图 8是中继节点侧下行接入链路子帧和中继节点侧下行回程链路子帧对 齐的示意图 (有固定时延) ; 图 9 是中继节点侧上行接入链路子帧和中继节点侧上行回程链路子帧 对齐的示意图 (无固定时延) ; 图 10 是中继节点侧上行接入链路子帧和中继节点侧上行回程链路子帧 对齐的示意图 (有固定时延) 。
本发明的较佳实施方式
本发明的基本思想是: 针对引入中继节点的 LTE和 LTE-A系统, 提出 相应的子帧定时方案。 该方案包括单链路子帧定时和多链路子帧定时, 其中 单链路子帧定时是指回程链路、 接入链路、 以及直传链路各自的子帧定时; 多链路子帧定时是指回程链路和接入链路的子帧定时。 其中, 单链路子帧定时包括:
A , 中继节点侧上行回程链路子帧根据中继节点侧下行回程链路子帧进 行定时, 其定时量由时间提前量命令或者传播时延决定;
B, 终端侧上行接入链路子帧根据中继节点侧上行回程链路子帧, 或是 根据中继节点侧上行接入链路子帧进行定时, 其定时量由时间提前量命令或 是传播时延决定;
其定时量由时间提前量命令或是传播时延决定。 多链路子帧定时, 即回程链路和接入链路的子帧定时包括:
D , 中继节点侧下行接入链路子帧的边界与中继节点侧下行回程链路子 帧边界对齐;
E, 中继节点侧上行接入链路子帧的边界与中继节点侧上行回程链路子 帧边界对齐。 其中, 中继节点侧下行接入链路子帧的边界与中继节点侧下行回程链路 子帧边界进行对齐时, 如果中继节点侧下行回程链路子帧在前 1 或 2 个 OFDM符号发射时没有固定时延(Fixed delay ) , 且当前子帧结束位置存在 收 /发切换状态, 则保护间隔位于当前子帧的最后一个 OFDM符号内, 即此 时的边界是指最后一个 OFDM符号的边界;如果中继节点侧下行回程链路子 帧在前 1或 2个 OFDM符号发射时保持固定时延,且当前子帧结束位置存在 收 /发切换状态, 则保护间隔位于当前子帧的最后一个 OFDM符号外, 即此 时的边界是指当前子帧结束位置保护间隔的边界, 所述固定时延要大于等于 保护间隔对应的时间。 其中, 中继节点侧上行接入链路子帧的边界与中继节点侧上行回程链路 子帧边界进行对齐时, 如果中继节点侧上行回程链路子帧在发射时没有固定 时延, 且当前子帧结束位置存在发 /收切换状态, 则保护间隔位于当前子帧的 最后一个 OFDM符号内, 即此时的边界是指最后一个 OFDM符号的边界; 如果中继节点侧上行回程链路子帧在发射时保持一个固定时延, 且当前子帧 结束位置存在发 /收切换状态, 则保护间隔位于当前子帧的最后一个 OFDM 符号外, 即此时的边界是指当前子帧结束位置保护间隔的边界, 所述固定时 延要大于等于保护间隔对应的时间。
此外, 上述的所述子帧定时, 同样适合于无线帧定时, 每个无线帧由十 个子帧构成, 子帧定时完成也即完成无线帧定时, 无线帧定时完成也即完成 子帧定时。
下面将结合附图和具体实施例对本发明的技术方案的实施作进一步详细 阐述。 实例一 如图 4所示为回程链路子帧的定时方式, 基站根据基站和中继节点之间 的传播时延确定时间提前量, 并以提前量命令的形式下发给中继节点, 所述 的时间提前量(本文中也称作定时量) 为两倍基站和中继节点之间的传播时 延。 中继节点侧上行回程链路子帧根据中继节点侧下行回程链路子帧对应的 时间进行提前发射。 其中, Tx是指发射数据; Rx是指接收数据; Tx控制(control )是指第 一个或前两个 OFDM符号内 relay给其下属的 UE发射的控制信息; BRTT 是指回程链路的来回传播时间。
实例二 如图 5所示为接入链路子帧的定时方式。 其中 ARTT是指接入链路的来 回传播时间。 中继节点根据测量的中继节点到终端之间的传播时延, 及收到 的基站下发的 TAC确定的基站与中继节点之间的传播时延确定定时量,并以 提前量命令的形式下发给终端。 所述的定时量为两倍基站和中继节点之间的 传播时延, 再加上两倍中继节点和终端之间的传播时延。 终端侧上行接入链路子帧根据中继节点侧上行回程链路子帧、 或中继节 点侧上行接入链路子帧对应的时间进行提前发射。
实例三 如图 6所示为直传链路子帧的定时方式, 其中 DRTT是指直传链路的来 回传播时间。 基站测量基站和终端之间的传播时延后, 确定时间提前量并以 提前量命令的形式下发给中继节点, 终端侧上行直传链路子帧根据终端侧下 行直传链路子帧对应的时间进行提前发射, 所述的时间提前量为两倍基站和 终端之间的传播时延。
实例四 图 5中还示出了回程链路和接入链路的子帧定时, 如图 5所示, 中继节点侧下行接入链路子帧的边界和中继节点侧下行回程链路子帧边界进 行对齐; 中继节点侧上行接入链路子帧的边界和中继节点侧上行回程链路子 帧边界进行对齐。 子帧间对齐后, 可以充分利用时间资源。 如图 7和图 8所示, 中继节点侧下行接入链路子帧的边界和中继节点侧 下行回程链路子帧边界进行对齐时, 如果中继节点侧下行回程链路子帧在前
1或 2个 OFDM符号发射时没有固定时延, 并且当前子帧结束位置存在收 / 发切换状态, 则保护间隔位于当前子帧的最后一个 OFDM符号内(正常循环 前缀时最后一个 OFDM符号为子帧内第 14个 OFDM符号,扩展循环前缀时 最后一个 OFDM符号为第 12个 OFDM符号), 即此时的边界是指最后一个 OFDM符号的边界。 如果中继节点侧下行回程链路子帧在前 1或 2个 OFDM符号发射时保持 固定时延, 并且当前子帧结束位置存在收 /发切换状态, 则保护间隔位于当前 子帧的最后一个 OFDM符号外 (正常循环前缀时最后一个 OFDM符号为子 帧内第 14个 OFDM符号, 扩展循环前缀时最后一个 OFDM符号为第 12个 OFDM符号) , 即此时的边界是指当前子帧结束位置保护间隔的边界。 如图 9和图 10所示,中继节点侧上行接入链路子帧的边界和中继节点侧 上行回程链路子帧边界进行对齐时, 如果中继节点侧上行回程链路子帧在发 射时没有一个固定时延, 并且当前子帧结束位置存在发 /收切换状态, 则保护 间隔位于当前子帧的最后一个 OFDM符号内 (正常循环前缀时最后一个 OFDM符号为子帧内第 14个 OFDM符号, 扩展循环前缀时最后一个 OFDM 符号为第 12个 OFDM符号), 即此时的边界是指最后一个 OFDM符号的边 界。
如果中继节点侧上行回程链路子帧在发射时保持一个固定时延, 并且当 前子帧结束位置存在发 /收切换状态, 则保护间隔位于当前子帧的最后一个 OFDM符号外(正常循环前缀时最后一个 OFDM符号为子帧内第 14个 OFDM 符号, 扩展循环前缀时最后一个 OFDM符号为第 12个 OFDM符号), 即此 时的边界是指当前子帧结束位置保护间隔的边界。 此外, 本发明实施例中还提供了一种子帧定时系统, 包括基站和中继节 点, 其中: 所述基站设置为: 根据测量的所述基站与所述中继节点之间的传播时延 确定第一定时量, 并通过 TAC下发给所述中继节点; 所述中继节点设置为: 收到所述基站下发的所述包含第一定时量的 TAC 后, 根据中继节点侧下行回程链路子帧对中继节点侧上行回程链路子帧进行 定时, 在向基站发射上行信号时, 根据所述中继节点侧下行回程链路子帧的 起始时刻提前所述第一定时量进行发射。 本发明另一实施例中, 子帧定时系统包括基站、 中继节点和终端, 其中, 所述基站设置为: 根据测量的所述基站与所述中继节点之间的传播时延 确定第一定时量, 并通过 TAC下发给所述中继节点; 所述中继节点设置为: 根据测量的所述中继节点与所述终端之间的传播 时延,及所述基站下发的所述包含第一定时量的 TAC确定的所述基站与所述 中继节点之间的传播时延确定第二定时量, 并通过 TAC下发给所述终端; 所述终端设置为: 收到所述中继节点下发的所述包含第二定时量的 TAC 后, 根据中继节点侧上行回程链路子帧、 或中继节点侧上行接入链路子帧对 终端侧上行接入链路子帧进行定时, 在向所述中继节点发射上行信号时, 根 据所述终端侧下行接入链路子帧的起始时刻提前所述第二定时量进行发射。 本发明另一实施例中, 子帧定时系统包括基站、 中继节点和终端, 其中, 所述基站设置为: 根据测量的所述基站与所述中继节点之间的传播时延 确定第一定时量, 并通过 TAC下发给所述中继节点; 所述中继节点设置为: 收到所述基站下发的所述包含第一定时量的 TAC 后, 根据中继节点侧下行回程链路子帧对中继节点侧上行回程链路子帧进行 定时, 在向基站发射上行信号时, 根据所述中继节点侧下行回程链路子帧的 起始时刻提前所述第一定时量进行发射; 以及, 根据测量的所述中继节点与 所述终端之间的传播时延, 及所述基站下发的所述包含第一定时量的 TAC 确定的所述基站与所述中继节点之间的传播时延确定第二定时量, 并通过 TAC下发给所述终端; 所述终端设置为: 收到所述中继节点下发的所述包含第二定时量的 TAC 后, 根据中继节点侧上行回程链路子帧、 或中继节点侧上行接入链路子帧对 终端侧上行接入链路子帧进行定时, 在向所述中继节点发射上行信号时, 根 据所述终端侧下行接入链路子帧的起始时刻提前所述第二定时量进行发射。 本发明另一实施例中, 子帧定时系统包括中继节点, 其中, 中继节点侧上行接入链路子帧的边界与中继节点侧上行回程链路子帧的 边界釆用如下方式进行对齐: 如果所述中继节点侧上行回程链路子帧在发射时没有固定时延, 并且当 前子帧结束位置存在发 /收切换状态, 则保护间隔位于当前子帧的最后一个 OFDM 符号内, 所述中继节点侧上行回程链路子帧的边界是指最后一个 OFDM符号的边界; 如果所述中继节点侧上行回程链路子帧在发射时保持一个固定时延, 并 且当前子帧结束位置存在发 /收切换状态,则保护间隔位于当前子帧的最后一 个 OFDM符号外,所述中继节点侧上行回程链路子帧的边界是指当前子帧结 束位置保护间隔的边界。 本发明另一实施例中, 子帧定时系统包括中继节点, 其中, 中继节点侧下行接入链路子帧的边界与中继节点侧下行回程链路子帧的 边界釆用如下方式进行对齐: 如果所述中继节点侧下行回程链路子帧在第 1个或前 2个 OFDM符号发 射时没有固定时延, 并且当前子帧结束位置存在收 /发切换状态, 则保护间隔 位于当前子帧的最后一个 OFDM符号内,所述中继节点侧下行回程链路子帧 的边界是指最后一个 OFDM符号的边界; 如果中继节点侧下行回程链路子帧在第 1个或前 2个 OFDM符号发射时 保持一个固定时延, 并且当前子帧结束位置存在收 /发切换状态, 则保护间隔 位于当前子帧的最后一个 OFDM符号外,所述中继节点侧下行回程链路子帧 的边界是指当前子帧结束位置保护间隔的边界。 本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业实用性 本发明提供了子帧定时的方法及系统, 可以很好地适用于中继节点到基 站链路,定时方式灵活,没有增加信令开销,既保证了后向兼容性(兼容 LTE 系统) , 也解决了中继子帧和接入子帧定时的问题。

Claims

权 利 要 求 书
1、一种子帧定时的方法,其特征在于,应用于釆用中继节点的通信系统, 该方法包括: 中继节点侧上行回程链路子帧根据中继节点侧下行回程链路子帧进行定 时, 定时量由基站发送的时间提前量命令(TAC )确定; 以及 所述中继节点在向所述基站发射上行信号时, 根据所述中继节点侧下行 回程链路子帧的起始时刻提前所述定时量进行发射。
2、 如权利要求 1所述的方法, 其中, 所述方法还包括: 所述基站根据测量的所述基站与所述中继节点之间的传播时延确定所述 定时量, 并通过所述 TAC下发给所述中继节点。
3、 如权利要求 2所述的方法, 其中, 所述定时量为所述基站与所述中继节点之间的传播时延的两倍。
4、 如权利要求 1所述的方法, 其中, 所述方法适用于无线帧定时。
5、一种子帧定时的方法,其特征在于,应用于釆用中继节点的通信系统, 该方法包括: 终端侧上行接入链路子帧根据中继节点侧上行回程链路子帧、 或中继节 点侧上行接入链路子帧进行定时, 定时量由中继节点发送的时间提前量命令 ( TAC )确定; 以及 所述终端在向所述中继节点发射上行信号时, 根据所述终端侧下行接入 链路子帧的起始时刻提前所述定时量进行发射。
6、 如权利要求 5所述的方法, 其中, 所述方法还包括: 所述中继节点根据测量的所述中继节点与所述终端之间的传播时延, 及 根据基站侧下发的时间提前量命令确定的所述基站与所述中继节点之间的传 播时延确定所述定时量, 并通过所述 TAC下发给所述终端。
7、 如权利要求 6所述的方法, 其中, 当所述终端侧上行接入链路子帧根据所述中继节点侧上行回程链路子帧 进行定时时,所述定时量为所述基站与所述中继节点之间的传播时延的两倍, 加上所述中继节点与所述终端之间的传播时延两倍。
8、 如权利要求 5所述的方法, 其中, 所述方法适用于无线帧定时。
9、一种子帧定时的方法,其特征在于,应用于釆用中继节点的通信系统, 该方法包括: 中继节点侧上行接入链路子帧的边界与中继节点侧上行回程链路子帧的 边界进行对齐。
10、 如权利要求 9所述的方法, 其中, 所述中继节点侧上行接入链路子帧的边界与所述中继节点侧上行回程链 路子帧的边界釆用如下方式进行对齐: 如果所述中继节点侧上行回程链路子帧在发射时没有固定时延, 并且当 前子帧结束位置存在发 /收切换状态,则保护间隔位于当前子帧的最后一个正 交频分复用 (OFDM )符号内, 所述中继节点侧上行回程链路子帧的边界是 指最后一个 OFDM符号的边界; 如果所述中继节点侧上行回程链路子帧在发射时保持一个固定时延, 并 且当前子帧结束位置存在发 /收切换状态,则保护间隔位于当前子帧的最后一 个 OFDM符号外,所述中继节点侧上行回程链路子帧的边界是指当前子帧结 束位置保护间隔的边界。
11、 如权利要求 9所述的方法, 其中, 所述方法适用于无线帧定时。
12、 一种子帧定时的方法, 其特征在于, 应用于釆用中继节点的通信系 统, 该方法包括: 中继节点侧下行接入链路子帧的边界与中继节点侧下行回程链路子帧的 边界进行对齐。
13、 如权利要求 12所述的方法, 其中, 所述中继节点侧下行接入链路子帧的边界与所述中继节点侧下行回程链 路子帧的边界釆用如下方式进行对齐: 如果所述中继节点侧下行回程链路子帧在第 1个或前 2个 OFDM符号发 射时没有固定时延, 并且当前子帧结束位置存在收 /发切换状态, 则保护间隔 位于当前子帧的最后一个正交频分复用 (OFDM )符号内, 所述中继节点侧 下行回程链路子帧的边界是指最后一个 OFDM符号的边界; 如果中继节点侧下行回程链路子帧在第 1个或前 2个 OFDM符号发射时 保持一个固定时延, 并且当前子帧结束位置存在收 /发切换状态, 则保护间隔 位于当前子帧的最后一个 OFDM符号外,所述中继节点侧下行回程链路子帧 的边界是指当前子帧结束位置保护间隔的边界。
14、 如权利要求 12所述的方法, 其中, 所述方法适用于无线帧定时。
15、 一种子帧定时的方法, 其特征在于, 应用于釆用中继节点的通信系 统, 该方法包括: 中继节点侧上行回程链路子帧根据中继节点侧下行回程链路子帧进行定 时,第一定时量由基站发送的 TAC确定; 所述中继节点在向所述基站发射上 行信号时, 根据所述中继节点侧下行回程链路子帧的起始时刻提前所述第一 定时量进行发射; 以及 终端侧上行接入链路子帧根据中继节点侧上行回程链路子帧、 或中继节 点侧上行接入链路子帧进行定时, 第二定时量由中继节点发送的时间提前量 命令(TAC )确定; 所述终端在向所述中继节点发射上行信号时, 根据所述 终端侧下行接入链路子帧的起始时刻提前所述第二定时量进行发射。
16、 如权利要求 15所述的方法, 其中, 所述方法适用于无线帧定时。
17、 一种子帧定时的系统, 其包括基站和中继节点, 其中: 所述基站设置为: 根据测量的所述基站与所述中继节点之间的传播时延 确定第一定时量, 并通过时间提前量命令(TAC ) 下发给所述中继节点; 所述中继节点设置为: 收到所述基站下发的所述包含第一定时量的 TAC 后, 根据中继节点侧下行回程链路子帧对中继节点侧上行回程链路子帧进行 定时, 在向基站发射上行信号时, 根据所述中继节点侧下行回程链路子帧的 起始时刻提前所述第一定时量进行发射。
18、 一种子帧定时的系统, 其包括基站、 中继节点和终端, 其中, 所述基站设置为: 根据测量的所述基站与所述中继节点之间的传播时延 确定第一定时量, 并通过时间提前量命令(TAC ) 下发给所述中继节点; 所述中继节点设置为: 根据测量的所述中继节点与所述终端之间的传播 时延,及所述基站下发的所述包含第一定时量的 TAC确定的所述基站与所述 中继节点之间的传播时延确定第二定时量, 并通过 TAC下发给所述终端; 所述终端设置为: 收到所述中继节点下发的所述包含第二定时量的 TAC 后, 根据中继节点侧上行回程链路子帧、 或中继节点侧上行接入链路子帧对 终端侧上行接入链路子帧进行定时, 在向所述中继节点发射上行信号时, 根 据所述终端侧下行接入链路子帧的起始时刻提前所述第二定时量进行发射。
19、 一种子帧定时的系统, 其包括基站、 中继节点和终端, 其中, 所述基站设置为: 根据测量的所述基站与所述中继节点之间的传播时延 确定第一定时量, 并通过时间提前量命令(TAC ) 下发给所述中继节点; 所述中继节点设置为: 收到所述基站下发的所述包含第一定时量的 TAC 后, 根据中继节点侧下行回程链路子帧对中继节点侧上行回程链路子帧进行 定时, 在向基站发射上行信号时, 根据所述中继节点侧下行回程链路子帧的 起始时刻提前所述第一定时量进行发射; 以及, 根据测量的所述中继节点与 所述终端之间的传播时延, 及所述基站下发的所述包含第一定时量的 TAC 确定的所述基站与所述中继节点之间的传播时延确定第二定时量, 并通过 TAC下发给所述终端; 所述终端设置为: 收到所述中继节点下发的所述包含第二定时量的 TAC 后, 根据中继节点侧上行回程链路子帧、 或中继节点侧上行接入链路子帧对 终端侧上行接入链路子帧进行定时, 在向所述中继节点发射上行信号时, 根 据所述终端侧下行接入链路子帧的起始时刻提前所述第二定时量进行发射。
20、 一种子帧定时的系统, 其包括中继节点, 其中, 中继节点侧上行接入链路子帧的边界与中继节点侧上行回程链路子帧的 边界釆用如下方式进行对齐: 如果所述中继节点侧上行回程链路子帧在发射时没有固定时延, 并且当 前子帧结束位置存在发 /收切换状态,则保护间隔位于当前子帧的最后一个正 交频分复用 (OFDM )符号内, 所述中继节点侧上行回程链路子帧的边界是 指最后一个 OFDM符号的边界; 如果所述中继节点侧上行回程链路子帧在发射时保持一个固定时延, 并 且当前子帧结束位置存在发 /收切换状态,则保护间隔位于当前子帧的最后一 个 OFDM符号外,所述中继节点侧上行回程链路子帧的边界是指当前子帧结 束位置保护间隔的边界。
21、 一种子帧定时的系统, 其包括中继节点, 其中, 中继节点侧下行接入链路子帧的边界与中继节点侧下行回程链路子帧的 边界釆用如下方式进行对齐: 如果所述中继节点侧下行回程链路子帧在第 1个或前 2个正交频分复用
( OFDM )符号发射时没有固定时延, 并且当前子帧结束位置存在收 /发切换 状态, 则保护间隔位于当前子帧的最后一个 OFDM符号内, 所述中继节点侧 下行回程链路子帧的边界是指最后一个 OFDM符号的边界; 如果中继节点侧下行回程链路子帧在第 1个或前 2个 OFDM符号发射时 保持一个固定时延, 并且当前子帧结束位置存在收 /发切换状态, 则保护间隔 位于当前子帧的最后一个 OFDM符号外,所述中继节点侧下行回程链路子帧 的边界是指当前子帧结束位置保护间隔的边界。
PCT/CN2010/078252 2009-10-30 2010-10-29 一种子帧定时的方法及系统 WO2011050747A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910205940.3 2009-10-30
CN2009102059403A CN102055518A (zh) 2009-10-30 2009-10-30 一种子帧定时的方法及系统

Publications (1)

Publication Number Publication Date
WO2011050747A1 true WO2011050747A1 (zh) 2011-05-05

Family

ID=43921356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078252 WO2011050747A1 (zh) 2009-10-30 2010-10-29 一种子帧定时的方法及系统

Country Status (2)

Country Link
CN (1) CN102055518A (zh)
WO (1) WO2011050747A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102781089A (zh) * 2011-05-13 2012-11-14 中兴通讯股份有限公司 下行子帧边界的调整方法及系统
CN107113750A (zh) * 2014-12-26 2017-08-29 华为技术有限公司 一种数据传输方法和装置
CN108601079B (zh) * 2018-04-04 2021-11-23 中兴通讯股份有限公司 定时方法、装置、通信节点设备及计算机存储介质
CN110475336B (zh) * 2018-05-11 2022-06-28 华为技术有限公司 一种实现网络同步的方法及装置
CN110505636A (zh) * 2018-11-29 2019-11-26 中国电子科技集团公司第七研究所 一种用于中继通信的同步控制方法
CN109802997B (zh) * 2018-12-20 2021-02-09 华为技术服务有限公司 一种节点设备的选择方法及其相关设备
CN113508624B (zh) * 2019-03-28 2022-05-24 华为技术有限公司 一种定时对齐的方法和装置
CN112399585B (zh) * 2019-08-16 2023-08-04 华为技术有限公司 一种资源复用方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1145704A (zh) * 1995-01-19 1997-03-19 诺基亚电信公司 在移动通信系统中同步电信连接
JP2008178074A (ja) * 2006-11-03 2008-07-31 Fujitsu Ltd モバイルネットワークで動作する中継局とそのフレーム構成方法
CN101262691A (zh) * 2007-03-09 2008-09-10 大唐移动通信设备有限公司 支持中继的蜂窝系统避免上下行干扰的实现方法及装置
CN101867406A (zh) * 2009-04-20 2010-10-20 大唐移动通信设备有限公司 子帧位置获取方法和系统以及基站和中继节点

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1145704A (zh) * 1995-01-19 1997-03-19 诺基亚电信公司 在移动通信系统中同步电信连接
JP2008178074A (ja) * 2006-11-03 2008-07-31 Fujitsu Ltd モバイルネットワークで動作する中継局とそのフレーム構成方法
CN101262691A (zh) * 2007-03-09 2008-09-10 大唐移动通信设备有限公司 支持中继的蜂窝系统避免上下行干扰的实现方法及装置
CN101867406A (zh) * 2009-04-20 2010-10-20 大唐移动通信设备有限公司 子帧位置获取方法和系统以及基站和中继节点

Also Published As

Publication number Publication date
CN102055518A (zh) 2011-05-11

Similar Documents

Publication Publication Date Title
US10966199B2 (en) Method and apparatus for receiving or transmitting data
US8547896B2 (en) Signal transmitting/receiving method for a relay node and relay node using the method
US9271281B2 (en) Method and apparatus to improve inter-band carrier aggregation (CA) in TDD (time division duplex) mode
WO2011050747A1 (zh) 一种子帧定时的方法及系统
US9413450B2 (en) Signal transmission method using MBSFN subframe in radio communication system
KR101696489B1 (ko) 중계국을 포함하는 무선 통신 시스템에서 프레임 구성 방법 및 장치
KR101718285B1 (ko) 중계국을 위한 harq 수행방법
KR20100082291A (ko) Tdd에 기반한 무선통신 시스템에서 데이터 중계 방법
KR101611300B1 (ko) 전송 지시자를 이용한 중계기 통신 기법
WO2010045864A1 (zh) 中继传输的方法及设备
JP5319838B2 (ja) 無線リレーの方法およびデバイス
US8848596B2 (en) Method for controlling timing of backhaul link and relay system for the same
KR20110058889A (ko) 네트워크 엘리먼트 및 네트워크 엘리먼트를 동작시키는 방법
WO2012171465A1 (zh) 时分双工系统中的通信方法和设备
WO2013159437A1 (zh) 一种同步信号的发送方法及装置
WO2011091746A1 (zh) 一种回程链路上行控制信道的处理方法和系统
KR20110039207A (ko) 무선 통신 시스템에서 상향링크 백홀 신호를 송신 및 수신을 위한 장치 및 그 방법
CN101931960B (zh) 一种避免上行传输冲突的方法、系统和装置
WO2012126828A1 (en) Cooperative relay in mbms transmission
CN102573096B (zh) 回传链路上的半持续调度方法、接收方法、系统及装置
US11711175B2 (en) Methods and apparatuses for controlling timing of feedback transmissions
RU2516252C2 (ru) Ретрансляционный узел, система дуплексной связи с временным разделением и способ осуществления связи
CN110505636A (zh) 一种用于中继通信的同步控制方法
CN103138897A (zh) 一种确认信息反馈方法和系统
CN102474848B (zh) 避免mbsfn子帧外自干扰的方法、中继节点和用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826110

Country of ref document: EP

Kind code of ref document: A1