WO2010045864A1 - 中继传输的方法及设备 - Google Patents

中继传输的方法及设备 Download PDF

Info

Publication number
WO2010045864A1
WO2010045864A1 PCT/CN2009/074506 CN2009074506W WO2010045864A1 WO 2010045864 A1 WO2010045864 A1 WO 2010045864A1 CN 2009074506 W CN2009074506 W CN 2009074506W WO 2010045864 A1 WO2010045864 A1 WO 2010045864A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
relay
uplink
downlink
relay link
Prior art date
Application number
PCT/CN2009/074506
Other languages
English (en)
French (fr)
Inventor
栗忠峰
尚政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42118959&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010045864(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP09821585.8A priority Critical patent/EP2352265B1/en
Priority to EP13177461.4A priority patent/EP2658148B1/en
Priority to BRPI0920592-6A priority patent/BRPI0920592B1/pt
Priority to KR1020117010997A priority patent/KR101217756B1/ko
Priority to RU2011120793/07A priority patent/RU2468526C1/ru
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010045864A1 publication Critical patent/WO2010045864A1/zh
Priority to US12/982,384 priority patent/US7953050B2/en
Priority to US13/018,093 priority patent/US7953051B1/en
Priority to US13/018,143 priority patent/US7961688B2/en
Priority to US13/108,716 priority patent/US8619724B2/en
Priority to ZA2011/03765A priority patent/ZA201103765B/en
Priority to US14/088,150 priority patent/US9203501B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1438Negotiation of transmission parameters prior to communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and device for relay transmission. Background technique
  • Wired transmission meets the requirements of communication rate and communication quality to a certain extent, but wired transmission requires operators to lay optical cables or lease wired resources. , which imposes constraints on the use of wired transmission.
  • relays as wireless backhaul transmissions to effectively solve this problem, the Relay technology can perform cell coverage expansion, cell capacity improvement, and cell throughput uniformity.
  • the introduction of Relay will bring changes to the frame structure of the original system.
  • FIG. 1 it is a schematic diagram of a structure of a relay frame in the prior art, which is a relay frame structure using a Time Division Duplex (TDD), and an enhanced base station.
  • TDD Time Division Duplex
  • eNB relay node
  • RN relay node
  • UE User Equipment
  • Subframe 1 is used for downlink (downlink, DL for short) relay link of base station->relay (eNB->Relay), and DL access for sub-frame 2 is used for relay->user (Relay->UE) Link, subframe 3 is used for relay->upline (>Layer->eNB) uplink (uplink, UL for short) relay link, and subframe 4 is used for user->relay (UE->Relay) UL access link.
  • Embodiments of the present invention provide a method and a device for relay transmission, so that a relay station under the TDD system can implement relay transmission.
  • an embodiment of the present invention provides a method for relay transmission, including: selecting a subframe in a time division duplex TDD relay frame as a relay link subframe, and selecting the time division duplex TDD relay
  • the subframe in the frame as the relay link subframe includes: selecting a downlink subframe in the TDD relay frame as a downlink relay link subframe, and/or selecting a downlink subframe in the TDD relay frame as an uplink.
  • the relay link subframe, and/or the uplink subframe in the selected TDD relay frame is used as an uplink relay link subframe; and the relay transmission is performed according to the relay link subframe.
  • the embodiment of the invention further provides a communication device, including:
  • a selection module configured to select a subframe in the TDD relay frame as a relay link subframe, where the subframe in the selected TDD relay frame is used as a relay link subframe, including: selecting a downlink in the TDD relay frame The subframe is used as a downlink relay link subframe, and/or the downlink subframe in the selected TDD relay frame is used as an uplink relay link subframe, and/or the uplink subframe in the TDD relay frame is selected as the uplink subframe.
  • the communication device selects a subframe that can be used for relay link transmission, and conforms to the TDD frame structure in the prior art when using the relay link for data transmission.
  • 1 is a schematic structural diagram of a relay frame in the prior art
  • 2 is a flowchart of a method for relay transmission according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a frame structure in which a relay transmission is not introduced in a TDD according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a frame structure used as a relay link in a complete subframe according to an embodiment of the present invention
  • the original DL subframe is used as the DL relay link
  • the original UL subframe is used as the frame structure diagram of the UL relay link.
  • FIG. 6 is a schematic diagram of a frame structure of a system including an eNB, an RN, and a UE according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a frame according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another frame according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another frame according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another frame according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another frame according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of another frame according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another frame according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another frame according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another frame according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a communication device according to an embodiment of the present invention. detailed description
  • FIG. 2 is a flowchart of a method for relay transmission according to an embodiment of the present invention. As shown in FIG. 2, the method for relay transmission includes:
  • Step S201 selecting a subframe in the time division duplex TDD relay frame as a relay link subframe; selecting a subframe in the TDD relay frame as the relay link subframe includes: selecting a downlink subframe in the TDD relay frame The frame is used as a downlink relay link subframe, and/or the downlink subframe in the TDD relay frame is selected as the uplink relay link subframe, and/or the uplink subframe in the TDD relay frame is selected as the uplink. Relay link subframe.
  • Step S202 Perform relay transmission according to the relay link subframe.
  • the downlink subframe is selected.
  • N Orthogonal Frequency Division Multiplexing (OFDM) symbols are used as relays and UEs under the relay, or as access links between the base station and the UE under the base station, and are used for Transmitting a downlink pilot, or downlink pilot and control signaling, where the remaining OFDM symbols in the downlink subframe are used as a relay link transmission and/or guard time, that is, in the first N OFDM symbols except the downlink subframe. The time outside is used as the relay link transmission and/or guard time.
  • LTE Long Term Evolution
  • LTE Advanced LTE Advanced, LTE-A
  • LTE versions Rel-8, Rel-9, Rel-). 10 etc.
  • WiMax Global Interoperability for Microwave Access
  • UMB Ultra-Wideband
  • a communication device performs data transmission according to a TDD relay frame, where one frame of the TDD relay frame includes 10 subframes, and the length of one frame is 10 ms, wherein each subframe has a length of 1 ms. .
  • a relay link subframe Included in the LTE/LTE-A TDD relay frame, a relay link subframe, an access link subframe, and a guard time, where the relay link subframe occupies one or more subframes, and the access link sub
  • the frame occupies one or more subframes, and the guard time occupies a part of the special subframe of the LTE/LTE-A TDD; or the guard time occupies a part of the subframe of the relay link.
  • the communication between the relay station and the user equipment served by the relay station is performed following the link subframe.
  • the TDD frame in which the same downlink subframe is matched with the uplink subframe may be used, or the same configured frame may be used.
  • the protection time specifically includes: a transceiving state transition time and an idle time, where the transceiving state transition time is a transceiving state transition time of the base station and/or a transceiving state transition time of the relay station; the guard time is an integer multiple of the sampling time, or the protection
  • the time is a divisor of the number of points of the Fourier transform, the number of points is a Fourier transform point / 2 ⁇ ⁇ , and the ⁇ is a natural number; or, the guard time can also be from a cyclic prefix of an OFDM symbol, an OFDM symbol And obtaining at least one of the sub-frames; Or the protection time is adjusted by the transmitting parties in the signaling.
  • D in the drawing represents a subframe for downlink
  • U in the drawing represents a subframe for uplink
  • S in the figure represents an LTE/LTE-A TDD system.
  • a special subframe in which a Downlink Pilot Timeslot (DwPTS), an Uplink Pilot Timeslot (UpPTS Timeslot), and a Protection Time (GP) are included in the special subframe.
  • the D in the table also represents a subframe for downlink
  • U in the table represents a subframe for uplink
  • S in the table represents a special subframe for DwPTS, UpPTS, and guard time.
  • the UE In the trunk frame structure of the TDD, if the UE sends a Physical Uplink Shared Channel (PUSCH) in a subframe, the UE will be the kth subframe after n, that is, DL subframe n. +k receives the Physical HARQ Indication Channel (PHICH), where ⁇ , k (the value of the k value is 0 to 6 in the configuration line) is as shown in Table 1.
  • Table 1 the Physical Uplink Shared Channel
  • the UE transmits the PUSCH in the 3rd subframe, and will be in the next frame.
  • the 0th subframe (3+7) receives the PHICH.
  • the next configuration for example, in the first configuration line, if the corresponding k value is 6, the UE transmits the PUSCH in the third subframe and receives the PHICH in the ninth subframe (3+6).
  • the UE receives a Physical Downlink Shared Channel (PDSCH) in the subframe n, it transmits (ACK/NACK) in the subframe n+k, where n, k (k value)
  • PDSCH Physical Downlink Shared Channel
  • ACK/NACK ACK/NACK
  • G in Table 3 indicates grant (scheduling UL data signaling), and Gn-k indicates that the UE receives the UL grant in the subframe n and transmits the PUSCH in the UL subframe n+k.
  • the pair of UL grant and PUSCH The relationship should be G1-6, that is, the UE receives the UL grant in the first subframe, and transmits the PUSCH in the seventh subframe (1+6).
  • FIG. 3 it is a schematic diagram of a frame structure in which no relay transmission is introduced in TDD according to an embodiment of the present invention.
  • the pattern A indicates the time unit in which the eNB performs DL and UL communication with the UE-eNB (the UE served by the eNB).
  • the time unit is a subframe (1 subframe is 1 ms).
  • Each DL subframe performs DL communication of eNB->UE-eNB, and each UL subframe performs UL communication of UE-eNB->eNB.
  • FIG. 4 it is a schematic diagram of a frame structure used as a relay link in the embodiment of the present invention.
  • FIG. 4 it is a schematic diagram of a frame structure used as a relay link in the embodiment of the present invention.
  • the DL may have one. Or a plurality of subframes are used as a relay link between the eNB and the RN, and corresponding one or more subframes in the UL are also used as a relay link between the RN and the eNB.
  • the relay link is dedicated to UL and DL communication between an eNB and an RN
  • the relay link is referred to as a dedicated relay link
  • the relay link is used as both an eNB and an RN and an eNB and a UE .
  • the DL and UL relay links of the RN shown in the non-dedicated relay may occupy a complete relay link subframe or may occupy a relay link subframe. Part of the protection time except the time.
  • a pattern A indicates a communication link between an eNB and a UE-eNB and an eNB and an RN, and a communication link between the RN and the UE-RN, which can be used to transmit a control channel, a data channel, a pilot, and a synchronization.
  • Channel, broadcast channel, etc. Channel used by LTE.
  • the access link (pattern B) is used to transmit the DL pilot, the control channel, the PHICH,
  • the PCFICH is configured to transmit only DL pilots, or to transmit DL pilots and physical downlink control channels (Physical Downlink Control Channels, PDCCHs), PHICHs, and Physical Control Format Indicator Channels (PCFICHs). Signaling.
  • the DL subframe in which the pattern B is located may be a Multi-media Broadcast over a Single Frequency Network (MBSFN) subframe, where the pattern B is equivalent to Unicast part of MBSFN subframe, as used in RN Transmitting a DL pilot on the access link with the UE-RN, or control signaling such as DL pilot and control channel, PHICH, PCFICH, etc., the remaining part of the MBSFN subframe is used as DL communication between the eNB and the RN And protection time, or both as communication between the eNB and the UE-eNB.
  • MBSFN Single Frequency Network
  • the subframe of the eNB in which the pattern B is located may also be a normal subframe, and the pattern B corresponds to the control channel portion in front of the normal subframe.
  • the channel estimation performance is further improved by performing pilot interpolation with the pilot of the previous subframe by transmitting the pilot in the pattern B.
  • FIG. 6 it is a schematic diagram of a frame structure of a system including an eNB, an RN, and a UE in the embodiment of the present invention.
  • the pattern A indicates the link between the eNB and the UE-eNB for DL and UL communication, and also indicates the link between the RN and the UE-RN for DL and UL communication;
  • the pattern B indicates the downlink relay link from the eNB to the RN, which can be used for sending Control channel, data channel, pilot, etc., which can also be sent to the UE-eNB at the same time;
  • the pattern C represents the downlink access link, which is used for the eNB to the UE eNB and the RN to the UE-RN, respectively, and can transmit the PHICH, UL grant, PCFICH, DL pilot and other channels.
  • the pattern E is to convert the DL subframe corresponding part of the original eNB to the UE-eNB into an uplink of the RN to the eNB, that is, a subframe in which the pattern E is located, and the original DL subframe is used as an uplink relay link subframe.
  • the DL subframe in which the pattern E is located may be an MBSFN subframe
  • the pattern C corresponds to a unicast portion in the MBSFN subframe, and is used for an access link between the eNB and the UE-eNB
  • DL pilots are transmitted on the access link between the RN and the UE-RN
  • control signaling such as PDCCH, PHICH, PCFICH, etc.
  • the remainder of the MBSFN subframe is used as UL communication between the eNB and the RN, and Protection time.
  • the pattern D represents a guard time
  • the guard time includes a transceiving state transition time and an idle time
  • the transceiving state transition time is a transceiving state transition time of the base station and/or a transceiving state transition time of the relay station
  • the length of the guarding time may be a sampling time
  • the pattern ⁇ is the uplink relay link of the RN to the eNB.
  • the pattern A of the UL part may serve as a UL access link for transmitting a UE-eNB to an eNB, and may also serve as a UL access link for transmitting a UE-RN to an RN; a pattern A of the DL part,
  • the DL access link may be used as a DL access link for transmitting the eNB to the UE-eNB, and may also serve as a DL access link for transmitting the RN to the UE-RN, and the pattern B of the DL part may serve as a DL relay link for transmitting the eNB to the RN.
  • the pattern B of the DL part may also serve as a hybrid link of the DL relay link transmitting the eNB to the RN and the DL access link of the eNB to the UE-eNB; the pattern B acts as the relay link of the eNB to the RN, if The throughput required by the link does not need to use all the resources of the pattern B, and the pattern B can also transmit the eNB to the UE-eNB data channel, control channel, pilot channel, one or all of the channels.
  • the pattern D is the time when the eNB and the RN do not transmit data, and can be used as the transmission and reception state transition time of the eNB and/or the transmission/reception and transmission time of the RN, and can also be used as the idle time, as shown in FIG.
  • the portion between the pattern C and the pattern E may also have a pattern D depending on whether the time passing through the distance between the eNB and the RN satisfies the transmission and reception switching time of the eNB, when the distance between the eNB and the RN passes.
  • the time is greater than the transceiving conversion time, the eNB needs to be larger than the transceiving conversion time in the first pattern D of the subframe in which the UL is located.
  • the length of time is the difference between the transmission time of the eNB and the transmission time of the RN to the eNB. That is, the length of the pattern D may be different in length at different positions, but it needs to be located in the subframe in which the relay link is located.
  • the above conversion time or transmission time (for example, the pattern D of FIG. 6) may also be adjusted by the transmitting parties in the signaling, such as timing adjustment, without being represented in the frame structure.
  • the ratio of the downlink subframe to the uplink subframe is a ratio of the downlink subframe to the uplink subframe when the relay is not introduced, and after the trunk is introduced, the downlink subframe
  • the ratio with the uplink subframe may change, depending on the actual situation.
  • the frame structure of the LTE/LTE-A TDD relay frame is a frame structure when the ratio of the downlink subframe to the uplink subframe is 6:3.
  • the UL grant and the PUSCH are used.
  • the position correspondence is shown in Table 4. For example, if the UE receives the UL grant of the UE in subframe 0, the UE should send the PUSCH in the corresponding subframe 4. If the UE receives the UL grant to the UE in the subframe 8/9, the UE should transmit the PUSCH in the subframe 2/3 corresponding to the next frame. Table 4
  • Table 5 The correspondence between PHICH and UL ACK/NACK positions is shown in Table 5.
  • Table 5 has the same pattern for the corresponding positional relationship. For example, when the UE transmits the PUSCH in the subframe 4, the corresponding PHICH is transmitted in the subframe 0 position of the next frame, the PDSCH is transmitted in the subframe 0, and the UL ACK/NACK is transmitted in the subframe 4 of the current frame.
  • subframes 0, 1, 5, and 6 are used to transmit a primary broadcast channel (P-BCH), and a dynamic broadcast channel (D-BCH).
  • P-BCH primary broadcast channel
  • D-BCH dynamic broadcast channel
  • P/S-SCH Primary/Secondary Synchronization Channel
  • subframes 0, 1, 5, and 6 cannot be selected as downlink relay links. See Table 5 for details.
  • the available DL relay subframes can only be subframes 7, 8, 9. It can also be seen from Table 5 that the subframes in which the UL ACK/NACK corresponding to the subframes 0, 1, 5, and 6 respectively are 2 and 4, so the subframe 2 and the subframe 4 cannot be used as the UL trunk link. .
  • Table 5 only the sub-selectors can be selected.
  • Frame 3 is used as a UL relay link.
  • the UE receives the PDSCH in the subframe 7 and the subframe 8, and correspondingly needs to transmit the UL ACK/NACK in the subframe 3 (7+6 or 8+5) of the next frame, and may select the subframe 7 and the subframe 8 as the DL relay chain at the same time. road. It can be seen from Table 4 that the subframe 8 also needs to transmit the PUSCH of the subframe 2 of the next frame.
  • Control signaling and/or pilot signals such as PCFICH, PHICH, etc., may send control signaling and/or pilot signals such as downlink control channel, PCFICH, PHICH, etc. between the RN and the UE-RN.
  • the subframe 9 of the previous frame transmits the UL grant
  • the PUSCH needs to be sent in the subframe 3 of the current frame, and the subframe 3 is used as the relay link between the RN and the eNB.
  • the RN cannot receive the data transmitted by the UE-RN. Therefore, in the above combination, the subframe 9 of the previous frame cannot transmit the UL grant control channel in the PDCCH to schedule the UL data. Therefore, one or more of the subframes [3, 7, 8, 9] can be selected as the downlink relay link subframe, and the remaining subframes are used as the uplink relay link subframe, which is used as the uplink relay.
  • the number of link subframes is greater than or equal to one, and subframe 3 can only be used as an uplink relay link subframe.
  • a schematic diagram of a frame structure includes a ratio of a downlink link and an access link to a downlink subframe and an uplink subframe of the original LTE system of 6:3.
  • the combination of the subframes selected as the relay link is [3, 7, 8], and the D-Trunk link (Psubframe) and the U-Trunk link (Psubfame) in FIG. 7 are
  • the relay time used by the RN to communicate with the eNB indicates the DL and UL relay time of the RN communicating with the eNB, respectively.
  • the communication part between the RN and the eNB of the UL may also be used to transmit the UL control channel between the UE and the eNB.
  • the AB pattern in FIG. 7 indicates an access link for the eNB and the UE-eNB and an access link of the RN and the UE-RN, and may be used to transmit a pilot, a DL control channel, a PCFICH, a PHICH, for example, only transmit Pilot, or transmit pilot and DL control channels, PCFICH, PHICH and other control signaling.
  • the AC pattern of the subframe in which the relay link (Psubframe) is located may be used for the idle time of the RN's transmission/reception or transmission and conversion time and the propagation time delay between the eNB and the RN. In all the figures of the embodiments of the present invention, the same AB pattern as that of FIG.
  • the pattern 7 indicates an access link for the eNB and the UE-eNB and an access link of the RN and the UE-RN, and the same AC as that of FIG.
  • the patterns all indicate idle time for the RN's transceiving or sending/receiving conversion time and the propagation time delay between the eNB and the RN. The description of the face will not be repeated.
  • FIG. 8 is a schematic diagram of another frame structure according to an embodiment of the present invention.
  • the ratio of the downlink subframe to the uplink subframe of the original LTE system is 6:3.
  • the combination of subframes selected as the relay link is [3, 7 , 8, 9], that is, subframe 3 is used as RN->eNB, and subframes 7 and 8, 9 are used as eNB- >RN. That is, the selected subframe 3 is used as the uplink relay link subframe, and the subframe 7 and the subframe 8 and the subframe 9 are selected as the downlink relay link subframe.
  • the control channel such as UL grant, PHICH, PCFICH, etc.
  • the UL subframe is used as the DL of the relay link, since the communication from the RN to the eNB causes a large UL interference to the UE-eNB of the neighboring cell and the eNB, the feasibility is very low, and the DL subframe is used as the DL subframe.
  • the interference of the neighboring cell eNB in the UL direction is smaller than that when the UL subframe is used as the DL relay link, and the DL subframe can be selected as the UL relay link.
  • the UL grant sent by the subframe 9 of the previous frame corresponds to the subframe 3 to transmit the PUSCH, and if the subframe 9 is changed to the UL, there is no UL grant in the subframe 3, and the corresponding subframe 9 is It is not necessary to transmit the PHICH, and the subframe 7 can be selected as the eNB of the eNB->RN, that is, the relay link, and the subframe 9 is selected as the UL of the RN->eNB, that is, the relay link.
  • control channel may be transmitted using several OFDM symbols preceding the subframe 9, such as UL grant, PHICH, PCFICH, etc. for the subframe 3 of the next frame, and/or pilot.
  • the transmission of pilots also facilitates channel estimation interpolation between access link subframes.
  • FIG. 9 is a schematic diagram of another frame structure according to an embodiment of the present invention.
  • the ratio of the downlink subframe to the uplink subframe of the original LTE system including the relay link and the access link is 6:3.
  • the combination of the subframes selected as the relay link is [7, 9], and the subframe 7 can be selected as the downlink relay link subframe, and the subframe 9 is selected as the uplink relay link.
  • the selected subframe 7 is used as an uplink relay link subframe
  • the selected subframe 9 is used as a downlink relay link subframe.
  • the uplink and downlink access links of the eNB to the UE-eNB, and the uplink and downlink access links of the RN to the UE-RN respectively.
  • the eNB and the UE-eNB transmit a control channel, a data channel, and a pilot channel to each other on the access link.
  • the eNB On the DL access link, the eNB also sends a broadcast channel and a synchronization channel, and the RN and the UE-RN are on the access link.
  • the control channel, the data channel, and the pilot channel are mutually transmitted.
  • the RN On the DL access link, the RN also transmits a broadcast channel and a synchronization channel; in the subframe where the relay link is located, the subframe in the frame structure as shown in FIG. 9, 1 to 4 OFDM symbols in front of the subframe of the eNB
  • the eNB sends a pilot and/or control channel to the UE under it, and the next part is the eNB's transmit and receive transition time, followed by the relay link (Psubframe) time, followed by the eNB's transceiving transition time.
  • the first 1 or 2 or 3 or 4 OFDM symbols of the subframe are used by the eNB and the RN to respectively send control channels, PHICH, PCFICH and the like to the UE below it, and control signaling and/or pilot.
  • the transmission of pilots also facilitates channel estimation interpolation between access link subframes.
  • the next part is the RN's relay link Psubframe time, followed by the RN's transmit and receive transition time, which takes into account the time that the eNB can effectively receive the relay zone Psubframe.
  • the Psubframe can be located in multiple subframes and is part of the subframe.
  • the ratio of the downlink subframe to the uplink subframe of the original LTE system including the relay link and the access link is a 6:3 frame structure, and in the frame structure, it is selected as a relay link.
  • the combination of subframes is [7, 8], and subframe 7 can be selected as the downlink relay link subframe, and subframe 8 is selected as the uplink relay link subframe; or vice versa, subframe 7 is selected as the uplink.
  • a relay link subframe the selected subframe 8 is used as a downlink relay link subframe; or one or more of the selected subframes [3, 7, 8, 9] are used as a downlink relay link subframe.
  • the remaining subframes are used as uplink relay link subframes, and the number of uplink relay link subframes is greater than or equal to one, and subframe 3 can only be used as an uplink relay link subframe.
  • the subframe used for the relay link transmission is selected in the 6:3 frame structure in which the ratio of the downlink subframe to the uplink subframe is 6:3, and the data transmission is performed when using the relay link.
  • the embodiment of the present invention provides a frame structure in which a ratio of a LTE/LTE-A TDD frame is a ratio of a downlink subframe to an uplink subframe of 3:1.
  • a location relationship between a UL grant and a PUSCH is as follows. Table 6 shows. For the channel, the UE receives the UL grant in subframe 8, and transmits the PUSCH channel in subframe2 of the next frame.
  • Table 7 has the same pattern for the corresponding positional relationship.
  • subframes 0, 1, 5, 6 are used to transmit the broadcast channel and the synchronization channel, and are not selected as the relay link.
  • Subframes 2 and 7 receive UL ACK/NACK from the above subframe (first frame or this frame).
  • the PHICH is transmitted in the subframe 8
  • the data is transmitted in the subframe 7 of the previous frame
  • the PHICH is transmitted in the subframe 3 of the current frame.
  • Subframe 4 and subframe 9 need to be used as the downlink and uplink of the relay link, that is, one or more of the subframes [3, 4, 8, 9] can be selected as the downlink relay link subframe, and the remaining Used as an uplink relay link subframe, the number of subframes used as uplink relay links is greater than or equal to one.
  • subframe 4 may be used as the DL of the relay link, that is, the eNB to the RN
  • the subframe 9 is used as the uplink of the relay link, that is, the RN to the eNB, or vice versa
  • the subframe 4 is selected as the uplink relay.
  • the link subframe, the selected subframe 9 is used as a downlink relay link subframe.
  • FIG. 10 is a schematic diagram of another frame structure proposed by an embodiment of the present invention.
  • the subframe 4 can be used as a DL of a relay link, that is, eNB->RN, and the subframe 9 is used as a relay.
  • the pattern AC in subframe 4 and subframe 9 represents the transition time for the RN to send and receive. The length can be adjusted according to the distance from the eNB to the RN and the actual transceiving state transition time.
  • the first OFDM symbols of the subframe may be used for the access link eNB->UE and RN->UE, DL control channel, PCIFICH, PHICH, etc.
  • a subframe for relay link transmission is selected in a frame structure in which a ratio of a downlink subframe to an uplink subframe is 3:1, and the data is transmitted when using the relay link for data transmission.
  • Rel-8 of the LTE system when the ratio is 3:1, and the coverage extension of the LTE/LTE-A system by using the LTE/LTE-A TDD relay frame, so that the throughput is enhanced.
  • the embodiment of the present invention provides a frame structure in which the ratio of the LTE/LTE-A TDD frame is 7: 2 in the downlink subframe and the uplink subframe.
  • the PHICH and the UL ACK/NACK position are corresponding to each other.
  • the positional correspondence between the UL grant and the PUSCH is as shown in Table 9.
  • subframes 0, 1, 5, and 6 cannot be used as relay links, and their corresponding UL ACK/NACKs are transmitted in two UL subframes, so DL subframes are selected.
  • DL and UL of the relay link respectively, one or more of the subframes [4, 7, 8, 8] can be selected as the downlink relay link subframe, and the remaining ones are used as the relay link.
  • the number of uplink subframes used as uplink relay link subframes is greater than or equal to one. As shown in FIG.
  • another frame structure diagram of the embodiment of the present invention includes a frame structure of a relay link and an access link, and DL subframe 4 can be selected as an eNB->RN, and a DL subframe 7 As the RN->eNB, or, the subframe 4 is used as the uplink relay link subframe, and the subframe 7 is selected as the downlink relay link subframe.
  • the subframe used for the relay link transmission is selected in the 7:2 frame structure of the downlink subframe and the uplink subframe, and the data transmission is performed when using the relay link.
  • the inherent constraint of Rel-8 of the LTE system when the ratio is 7:2 and the coverage extension of the LTE/LTE-A system by using the LTE/LTE-A TDD relay frame, so that the throughput is enhanced.
  • the embodiment of the present invention provides a frame structure in which the ratio of the LTE/LTE-A TDD frame is 2:2 for the downlink subframe and the uplink subframe.
  • the inherent constraints of LTE R-8 in this ratio show that DL subframes [0, 1, 5, 6] and UL subframes [2, 7] are not suitable for relay links, so they can be selected.
  • One or more of the subframes [3, 4, 8, 9] are used as downlink relay link subframes, and the remaining subframes are used as uplink relay link subframes, and are used as uplink relay link subframes.
  • the number of frames is greater than or equal to one, and subframe 3 and subframe 8 can only be used as uplink relay link subframes.
  • FIG. 12 another frame structure diagram is provided in the embodiment of the present invention.
  • the transmission and reception conversion time of the relay is placed at the relay link.
  • the frame Since the value can be adjusted according to actual needs, such as the RN distance from the eNB and the transmission/reception/transmission time, they can also be placed adjacent to the UL and DL relay subframes.
  • the subframe where the relay link Psubframe is located is [3, 4, 8, 9].
  • the above is a pair of relay links in a 10 ms frame structure, and there may be only one pair of relay links.
  • FIG. 13 another frame structure diagram proposed in the embodiment of the present invention, where the relay link is The transceiving conversion time can be implicitly represented in the frame structure, that is, by informing the RN to transmit the time or the receiving eNB's expiration time, it can also be explicitly identified by the AC area in the figure.
  • the combination is [3, 9] in the figure, that is, subframe 9 is used as eNB->RN, and subframe 3 is used as RN->eNB.
  • the selected subframe 4 is used as the downlink relay link subframe, and the selected subframe 8 is used as the uplink relay link subframe; when the combination is [3, 4, 8, 9], the selected subframe 4, 9 is used as the downlink relay link subframe, and the selected subframe 3, 8 is used as the uplink relay link subframe.
  • the subframe used for the relay link transmission is selected in the 2:2 frame structure in which the ratio of the downlink subframe to the uplink subframe is 2, and the data is transmitted when the data is transmitted by using the relay link.
  • the ratio is 2: 2, the inherent constraint of Rel-8 of the LTE system, and the coverage extension of the LTE/LTE-A system by using the LTE/LTE-A TDD relay frame, so that the throughput is enhanced.
  • FIG. 14 is a schematic diagram of another frame structure according to an embodiment of the present invention.
  • the frame structure of the LTE/LTE-A TDD frame is a frame ratio of a downlink subframe to an uplink subframe of 3:5, as shown in FIG. , for the group [4, 9] is used as the subframe in which the relay link Psubframe is located.
  • Subframe 4 is the uplink for RN->eNB
  • subframe 9 is the downlink, for eNB->RN
  • subframe 9 has a similar control channel as above. Since the relay link subframe is close to the position of the uplink and downlink conversion of the original system, the original system has protection time, so the protection time may not be drawn in the figure.
  • the pattern AB in front of the ninth subframe indicates the access link of the eNB->UE_eNB and the RN->UE-RN, respectively, and the length may be one of 1, 2, 3, and 4 symbols, and the pilot may be transmitted. , or pilot and DCCH, PHICH, PCFICH and other control signaling.
  • the subframe used for the relay link transmission is selected in the structure of the downlink subframe and the uplink subframe in the ratio of the 3:5 frame, and the data is transmitted when using the relay link for data transmission.
  • the ratio is 3: 5
  • the inherent constraint of Rel-8 of the LTE/LTE-A system and the coverage extension of the LTE/LTE-A system by using the LTE/LTE-A TDD relay frame, so that the throughput is enhanced.
  • the embodiment of the present invention provides a frame structure in which the ratio of the LTE/LTE-A TDD frame is 8:1 for the downlink subframe and the uplink subframe.
  • the inherent constraints of LTE R-8 in this ratio show that DL subframes [0, 1, 5, 6] and UL subframe [2] are not suitable for relay links, so subframes can be selected.
  • One or more of [3, 4, 7, 8, 9] are used as downlink relay link subframes, and the remaining subframes are used as uplink relay link subframes, which are used as uplink relay link sub-frames.
  • the number of frames is greater than or equal to one.
  • FIG. 15 is a schematic diagram of another frame structure according to an embodiment of the present invention.
  • the frame ratio of the LTE/LTE-A TDD frame is a frame ratio of a downlink subframe to an uplink subframe of 8:1.
  • DL subframe 3 is selected for the uplink relay link RN to the eNB, DL subframes [7, 8, 9] are used as the downlink relay link eNB to the RN, and the DL subframes [7, 8, 9] are MBSFN subframe, the first 1, 2 or 3 OFDM symbols of each of these downlink subframes are unicast portions, the remaining time is used for relay link transmission between the RN and the eNB, and the guard time (such as a pattern) AC shows).
  • the unicast of the DL subframe 8 is used to transmit the DL pilot, and the unicast of the control channel, PCFICH, PHICH, DL subframe 7 and DL subframe 8 is used to transmit the DL pilot.
  • the original downlink subframe used for the UL or DL relay link may also be an MBSFN subframe in the LTE/LTE-A TDD system, and the unicast of the MBSFN subframe.
  • the method is also applicable In the case of other ratios, they will not be described here.
  • the guard time of the relay subframe includes the guard time of the downlink relay subframe and the guard time of the uplink relay subframe, and the guard time of the downlink relay subframe, for the subframe 7 and the sub-frame in FIG. 7
  • the transmission time (idle time) is greater than the conversion time (the received time of the RN or the transmission time of the transmission to the receiving)
  • the subframe 7 where the Psubframe is located is taken as an example.
  • the guard time in the frame is divided into two parts.
  • the relay subframe corresponding to the relay frame where the eNB is located, RGPf 0, RGPb Transmit time + RN received the conversion time (hereinafter referred to as RN conversion time).
  • the method of selecting the guard time when the DL subframe is used as the relay subframe is the same.
  • RGPb RN conversion time.
  • the protection time of the uplink relay subframe includes the protection time of the downlink subframe used as the UL relay subframe and the protection time of the uplink subframe as the uplink relay subframe.
  • RGPf RN conversion time, RGPb dedicated transmission Time
  • RGPf RN conversion time + transmission time
  • RGPb 0.
  • the protection time consisting of any one or more of the conversion time, the transmission time, and the Idle time may also be adjusted by the transmitting parties in the signaling, such as timing adjustment, without being represented in the frame structure. Come.
  • FIG. 16 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • the method includes: a selecting module 151, configured to select a subframe in a TDD relay frame as a subframe of a relay link, where the selecting The subframe in the TDD relay frame as the relay link subframe includes: selecting the downlink subframe in the TDD relay frame as the downlink relay link subframe, and/or selecting the downlink subframe in the TDD relay frame as the uplink.
  • the relay link subframe, and/or the uplink subframe in the selected TDD relay frame is used as the uplink relay link subframe.
  • the transmission module 152 is configured to perform relay transmission according to the relay module subframe 151.
  • the downlink subframe is selected.
  • N OFDM symbols are used as relays and UEs under the repeater, or as access links between the base station and the UE under the base station, for transmitting downlink pilots, or downlink pilot and control signaling,
  • the remaining OFDM symbols in the downlink subframe are used for relay link transmission and/or guard time, that is, for use in relay link transmission and/or guard time at times other than the first N OFDM symbols in the downlink subframe.
  • the access link transmission between the base station and the UE under the base station may be simultaneously performed.
  • M OFDM symbols in the downlink subframe There are M OFDM symbols in the downlink subframe, and the M and N are natural numbers, and N is less than M.
  • the solution provided by the embodiment of the present invention can be applied to various versions of LTE, LTE Advanced, LTE (Rel-8, Rel-9, Rel-10, etc.), WiMax, UMB, and the like.
  • the selecting module 151 includes:
  • the first selecting unit 1511 is configured to: when the ratio of the downlink subframe to the uplink subframe is 6:3, select the subframe 3 as the uplink relay link subframe, and select the subframe 7 and the subframe 8 as the downlink. Following the link subframe; or select subframe 3 as the uplink relay link subframe, select subframe 7 and subframe 8 and subframe 9 as the downlink relay link subframe; or select subframe 7 as the downlink Following the link subframe, the selected subframe 9 is used as the uplink relay link subframe; or the selected subframe 7 is used as the uplink relay link subframe, and the selected subframe 9 is used as the downlink relay link subframe; or The selected subframe 7 is used as a downlink relay link subframe, and the selected subframe 8 is used as an uplink relay link subframe; or the selected subframe 7 is used as an uplink relay link subframe, and the selected subframe 8 is used as a downlink.
  • the second selecting unit 1512 is configured to: when the ratio of the downlink subframe to the uplink subframe is 3:1, select the subframe 4 as the downlink relay link subframe, and select the subframe 9 as the uplink relay chain.
  • Path sub-frame or select subframe 4 as the uplink relay link subframe, select subframe 9 as the downlink relay link subframe; or select one of the subframes [3, 4, 8, 9] Or a plurality of downlink relay link subframes are used, and the remaining ones are used as uplink relay link subframes, and the number of uplink relay link subframes is greater than or equal to one.
  • the third selecting unit 1513 is configured to: when the ratio of the downlink subframe to the uplink subframe is 7:2, select the subframe 4 as the downlink relay link subframe, and select the subframe 7 as the uplink relay chain. Path subframe; or select subframe 4 as the uplink relay link subframe, select subframe 7 as the downlink relay link subframe; or select one of the subframes [4, 7, 8, 9] Or a plurality of downlink relay link subframes are used, and the remaining ones are used as uplink relay link subframes, and the number of uplink relay link subframes is greater than or equal to one.
  • the fourth selecting unit 1514 is configured to: when the ratio of the downlink subframe to the uplink subframe is 2:2, select the subframe 9 as the downlink relay link subframe, and select the subframe 3 as the uplink relay chain. Path subframe; or select subframe 4 as a downlink relay link subframe, select subframe 8 as an uplink relay link subframe; or select subframe 4 and subframe 9 as a downlink relay link subframe , selecting subframe 3 and subframe 8 as the uplink relay link subframe; or selecting one or more of the subframes [3, 4, 8, 9] as the downlink relay link subframe, and remaining
  • the subframe is used as an uplink relay link subframe, and the number of uplink relay link subframes is greater than or equal to one, and subframe 3 and subframe 8 can only be used as uplink relay link subframes.
  • the fifth selecting unit 1515 is configured to: when the ratio of the downlink subframe to the uplink subframe is 3:5, select the subframe 9 as the downlink relay link subframe, and select the subframe 4 as the uplink relay chain. Road sub-frame.
  • the sixth selecting unit 1516 is configured to: when the ratio of the downlink subframe to the uplink subframe is 8:1, select one or more of the subframes [3, 4, 7, 8, 9] to use as one or more of the subframes [3, 4, 7, 8, 9]
  • the downlink relay link subframe is used as the relay link uplink subframe, and the number of uplink relay link subframes is greater than or equal to one.
  • the communication device of the embodiment of the present invention may be applied to the foregoing method embodiments.
  • the communication device selects a subframe that can be used for relay link transmission, and uses a relay link.
  • the data transmission conforms to the inherent constraints of the TDD frame structure in the prior art, and the coverage extension is extended to the system using the TDD relay frame, so that the throughput is enhanced.
  • the present invention can be implemented by hardware, or can be implemented by means of software plus a necessary general hardware platform. Based on such understanding, the technical solution of the present invention can be embodied in the form of a software product.
  • the software product can be stored in a non-volatile storage medium (which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), and includes a number of instructions for causing a computer device (which can be a personal computer, a server, or a network device) Etc.) Performing the methods described in various embodiments of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

中继传输的方法及设备 本申请要求于 2008 年 10 月 24 日提交中国专利局、 申请号为 200810170763. 5 , 发明名称为 "支持中继传输的方法及设备" , 以及 2009 年 02月 02 日提交中国专利局、 申请号为 200910009900. 1、 发明名称为 "中 继传输的方法及设备"的中国专利申请的优先权, 其全部内容通过引用结合 在本申请中。 技术领域
本发明涉及通信技术领域, 特别是涉及中继传输的方法及设备。 背景技术
随着无线通信技术的发展, 对通信速率和通信质量有了更高的需求, 有 线传输在一定程度上满足了对通信速率和通信质量的需求, 但是有线传输要 求运营商铺设光缆或租用有线资源, 对有线传输的使用造成了约束。 通过使 用中继 (Relay )作为无线回程传输有效的解决了这个问题, Relay技术可以 进行小区的覆盖扩展, 小区容量提升以及小区吞吐量的均匀化。 而 Relay的 引入会对原系统的帧结构带来变化。
现有技术中, 如图 1所示, 为现有技术中中继帧结构示意图, 这是一种 使用时分双工 (Time Division Duplex, 简称: TDD ) 的中继帧结构, 基站 ( enhanced Node Base, 简称: eNB )与中继站( Relay Node/ Relay, 简称: RN )和 RN与用户设备 ( User Equipment, 简称: UE )在子帧 ( subframe ) 1 到子帧 4进行通信。子帧 1用于基站 ->中继( eNB->Relay )的下行( Downlink, 简称: DL )中继链路, 子帧 2用于中继- >用户( Relay->UE )的 DL接入链路, 子帧 3用于中继- >基站 (Relay->eNB ) 的上行(Uplink, 简称: UL ) 中继链 路, 子帧 4用于用户- >中继 ( UE->Relay ) 的 UL接入链路。
在实现本发明过程中, 发明人发现现有技术中至少存在如下问题: 在现有的中继系统中, 根据现有技术中的 TDD帧结构进行数据传输时, 无法实现中继传输。 发明内容
本发明实施例提供一种中继传输的方法及设备, 使得 TDD 系统下的中 继站能够实现中继传输。
为了达到上述目的, 本发明实施例提出了一种中继传输的方法, 包括: 选取时分双工 TDD中继帧中的子帧作为中继链路子帧,所述选取时分双 工 TDD中继帧中的子帧作为中继链路子帧包括: 选取 TDD中继帧中的下行 子帧用作下行中继链路子帧, 和 /或选取 TDD 中继帧中的下行子帧用作上行 中继链路子帧, 和 /或选取 TDD中继帧中的上行子帧用作上行中继链路子帧; 根据所述中继链路子帧进行中继传输。
本发明实施例还提出了一种通信设备, 包括:
选取模块, 用于选取 TDD中继帧中的子帧作为中继链路子帧, 所述选取 TDD中继帧中的子帧作为中继链路子帧包括: 选取 TDD中继帧中的下行子 帧用作下行中继链路子帧, 和 /或选取 TDD 中继帧中的下行子帧用作上行中 继链路子帧, 和 /或选取 TDD中继帧中的上行子帧用作上行中继链路子帧; 传输模块, 用于根据所述选取模块选取的中继链路子帧进行中继传输。 根据本发明实施例提供的技术方案, 通信设备在进行数据传输时, 选取 了可以用于中继链路传输的子帧, 在使用中继链路进行数据传输时符合现有 技术中 TDD帧结构固有约束,而且对使用 TDD中继帧的系统进行覆盖扩展, 使得吞吐量增强。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中中继帧结构示意图; 图 2为本发明实施例提出的一种中继传输的方法流程图;
图 3为本发明实施例中 TDD中未引入中继传输的帧结构的示意图; 图 4为本发明实施例中使用完整子帧用作中继链路的帧结构示意图; 图 5为本发明实施例中使用原 DL子帧作为 DL中继链路,使用原 UL子 帧作为 UL中继链路的帧结构示意图;
图 6为本发明实施例中含有 eNB, RN, UE的系统的帧结构示意图; 图 7为本发明实施例提出的一种帧结构示意图;
图 8为本发明实施例提出的另一种帧结构示意图;
图 9为本发明实施例提出的另一种帧结构示意图;
图 10为本发明实施例提出的另一种帧结构示意图;
图 11为本发明实施例提出的另一种帧结构示意图;
图 12为本发明实施例提出的另一种帧结构示意图;
图 13为本发明实施例提出的另一种帧结构示意图;
图 14为本发明实施例提出的另一种帧结构示意图;
图 15为本发明实施例提出的另一种帧结构示意图;
图 16为本发明实施例提出的一种通信设备结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例 , 都属于本发明保护的范围。
图 2为本发明实施例提出的一种中继传输的方法流程图, 如图 2所示, 该中继传输的方法包括:
步骤 S201 , 选取时分双工 TDD中继帧中的子帧作为中继链路子帧; 选取 TDD中继帧中的子帧作为中继链路子帧包括: 选取 TDD中继帧中 的下行子帧用作下行中继链路子帧, 和 /或选取 TDD 中继帧中的下行子帧用 作上行中继链路子帧, 和 /或选取 TDD 中继帧中的上行子帧用作上行中继链 路子帧。 步骤 S202, 根据中继链路子帧进行中继传输。
在根据选择的中继链路子帧进行中继传输时, 若中继帧中下行子帧用作 上行中继链路子帧或下行中继链路子帧时, 选取该下行子帧中前 N个正交频 分复用 ( Orthogonal Frequency Division Multiplexing, 简称: OFDM )符号作 为中继器和中继器下的 UE,或者作为基站和基站下的 UE之间的接入链路传 输, 用于发送下行导频, 或者下行导频和控制信令, 该下行子帧中其余的 OFDM符号用作中继链路传输和 /或保护时间 ,即在除该下行子帧中的前 N个 OFDM符号外的时间用作中继链路传输和 /或保护时间。
所述下行子帧中有 M个 OFDM符号, 所述 M、 N为自然数, N小于 M。 本发明实施例提供的方案可以应用在长期演进(Long Term Evolution, 简称: LTE ) 、 高级 LTE ( LTE Advanced, 简称: LTE-A ) 、 LTE的各个版 本 (Rel-8 , Rel-9 , Rel- 10等)、全球微波接入互操作( World Interoperability for Microwave Access, 简称: WiMax ) 、 超宽带无线通信 ( Ultra- Wideband, 简 称: UMB )等系统中。
例如,在 LTE/LTE- Advanced 系统中,通信设备根据 TDD中继帧进行数 据的传输, 该 TDD中继帧的 1帧中包含 10个子帧, 1帧长度为 10ms, 其中 每个子帧长度为 lms。 在该 LTE/LTE- A TDD中继帧中包含中继链路子帧、 接入链路子帧和保护时间, 该中继链路子帧占用一个或多个子帧, 该接入链 路子帧占用一个或多个子帧, 该保护时间占用 LTE/LTE-A TDD的特殊子帧 的一部分; 或该保护时间占用该中继链路子帧的一部分。 可以根据该中继链 路子帧进行基站与基站服务的用户设备之间的通信; 和 /或根据所述中继链路 子帧进行基站与中继站之间的通信; 和 /或根据所述中继链路子帧进行中继站 与中继站服务的用户设备之间的通信。 基站或者中继站在进行中继传输时, 可以使用相同的下行子帧与上行子帧配比的 TDD帧,也可以使用相同配置的 帧。 该保护时间具体包括: 收发状态转换时间和空闲时间, 该收发状态转换 时间为基站的收发状态转换时间和 /或中继站的收发状态转换时间; 该保护时 间为釆样时间的整数倍,或该保护时间是釆样点数为傅立叶变换点数的约数, 所述釆样点数为傅立叶变换点数 /2Λη, 所述 η为自然数; 或者, 所述保护时 间也可以从 OFDM符号的循环前缀、 OFDM符号和子帧中的至少一种获得; 或该保护时间由发送双方在信令中进行调整。
本发明的所有实施例中, 附图中的 D均代表用于下行的子帧, 附图中的 U均代表用于上行的子帧, 附图中的 S表示 LTE/ LTE-A TDD系统中的特殊 子帧, 在该特殊子帧内, 包括下行导频时隙(Downlink Pilot Timeslot, 简称: DwPTS ) , 上行导频时隙 ( Uplink Pilot Timeslot, 简称: UpPTS )和保护时 间 (GP ) , 同样的, 表中的 D也代表用于下行的子帧, 表中的 U代表用于 上行的子帧, 表中的 S表示用于 DwPTS, UpPTS和保护时间的特殊子帧。
在 TDD的中继帧结构中, 若 UE在 subframe (子帧) n发送物理上行共 享信道( Physical Uplink Shared Channel, 简称: PUSCH ) , 则 UE将在 n后 面的第 k个 subframe, 即 DL subframe n+k接收物理混合自动重传指示信道 ( Physical HARQ Indication Channel, 简称: PHICH ) , 其中 η, k ( k值为 0 ~ 6配置行中的数值 ) 的值如表 1所示。 表 1
Figure imgf000007_0001
例如, 在表 1中, 对于该帧中的第 3 ( n=3 )个子帧, 在第 0配置行中, 对应的 k值为 7 , 则 UE在第 3个子帧发送 PUSCH, 将在下一帧的第 0子帧 ( 3+7 )接收 PHICH。 对于下一个配置, 例如在第 1配置行中, 对应的 k值 为 6, 则 UE在第 3个子帧发送 PUSCH, 将在第 9子帧 ( 3+6 )接收 PHICH。
在该 TDD的 Relay帧结构中, 若 UE在 subframe n接收物理下行共享信 道( Physical Downlink Shared Channel, 简称: PDSCH ) , 则在 subframe n+k 发送( ACK/NACK ) , 其中 n, k ( k值为 0 ~ 6配置行中的数值 )的值如表 2 所示。 表 2
Figure imgf000008_0001
例如, 在表 2中, 对于该帧中的第 3个子帧, 在第 2配比行中, 对应的 k 值为 4,则 UE在第 3个子帧接收 PDSCH,将在第 7子帧( 3+4 )发送 ACK/NACK 对于下一个配比, 例如在第 5配比行中, 对应的 k值为 9, 则 UE在 UL 的第 3个子帧接收的 PDSCH, 将在下一帧中的第 2子帧 ( 3+9 )发送 ACK/NACK 在该 TDD的 Relay帧结构中, 若 UE在 subframe n接收 UL grant/PHICH (调动上行数据 /或 UL PUSCH的 ANK/NACK ) , 则在 subframe n+k发送
PUSCH, UL grant/PHICH与 PUSCH的对应关系如表 3所示(下表 UL grant 可以替换成 PHICH, 下面不再标出) 。
表 3
Figure imgf000008_0002
其中,表 3中的 G表示 grant(调度 UL数据信令 ) , Gn-k表示 UE在 subframe n接收到 UL grant, 在 UL子帧 n+k发送 PUSCH。 例如, 在第 1子帧, 当 DL (下行子帧)与 UL (上行子帧) 的比为 2: 2时, UL grant与 PUSCH的对 应关系为 G1-6, 即 UE在第 1子帧接收到 UL grant, 将在第 7子帧( 1+6 )发 送 PUSCH。
如图 3所示,为本发明实施例中 TDD中未引入中继传输的帧结构的示意 图。 图案 A表示 eNB与 UE— eNB ( eNB所服务的 UE )进行 DL和 UL通信 的时间单位, 图 3中该时间单位为 subframe ( 1个子帧为 1ms )。 每个 DL子 帧进行 eNB->UE— eNB的 DL通信, 每个 UL子帧进行 UE— eNB->eNB的 UL 通信。 当在 TDD中引入中继传输的帧结构时, 如图 4所示, 为本发明实施例 中使用完整子帧用作中继链路的帧结构示意图, 在图 4中, DL可以有 1个或 多个子帧用作 eNB与 RN之间的中继链路, 对应的在 UL中也会有 1个或多 个子帧用作 RN到 eNB之间的中继链路。 当该中继链路专门用于 eNB与 RN 之间的 UL和 DL通信时,该中继链路称为专用中继链路, 当该中继链路同时 用作 eNB与 RN和 eNB与 UE— eNB的通信时, 该中继链路称为非专用中继 中所示的 RN的 DL和 UL中继链路可以占用完整的中继链路子帧,也可以占 用中继链路子帧中除保护时间之外的一部分。当在 TDD中引入中继传输的帧 结构时, 如图 5所示, 为本发明实施例中使用原 DL子帧作为 DL中继链路, 使用原 UL子帧作为 UL中继链路的帧结构示意图。 在图 5中, 图案 A表示 eNB与 UE— eNB和 eNB与 RN之间的通信链路以及 RN与 UE— RN之间的通 信链路, 可以用来传输控制信道, 数据信道, 导频, 同步信道, 广播信道等 LTE所使用的信道。 为了进行时域 DL子帧间的信道插值, 将 DL中继链路 所在子帧的前面几个( 1个或 2个或 3个或 4个 ) OFDM符号 ( symbol ) , 如图 5中的图案 B ,作为 eNB与 UE— eNB之间的接入链路以及 RN与 UE— RN 之间的接入链路,该接入链路(图案 B )用于发送 DL导频,控制信道, PHICH, PCFICH,如只发送 DL导频,或者发送 DL导频和物理下行控制信道( Physical Downlink Control Channel, 简称: PDCCH ) 、 PHICH, 物理控制格式指示信 道( Physical Control Format Indicator Channel, 简称: PCFICH )等控制信令。 在 LTE/LTE-A TDD系统中, 图案 B所在的 DL子帧可以是多播组播单频网 ( Multi-media Broadcast over a Single Frequency Network, 简称: MBSFN )子 帧, 此时图案 B相当于 MBSFN子帧中单播(unicast )部分, 如用于在 RN 与 UE— RN之间的接入链路上发送 DL导频,或者 DL导频和控制信道, PHICH, PCFICH等控制信令,该 MBSFN子帧的剩余部分用作 eNB与 RN之间的 DL 通信以及保护时间, 或同时用作 eNB与 UE— eNB之间的通信。 图案 B所在 eNB的子帧也可以是正常 (normal)子帧, 此时图案 B相当于正常子帧前面的 控制信道部分。 通过在图案 B中发送导频使得与前 1个子帧的导频之间进行 信道估计的插值, 以进一步提高信道估计性能。 当在 TDD的 Relay帧结构中 引入中继传输的帧结构时, 如图 6所示, 为本发明实施例中含有 eNB, RN, UE的系统的帧结构示意图。 图案 A表示 eNB与 UE— eNB进行 DL和 UL通 信的链路,也表示 RN与 UE— RN进行 DL和 UL通信的链路;图案 B表示 eNB 到 RN的下行中继链路, 可以用来发送控制信道, 数据信道, 导频等, 其也 可以同时发送给 UE— eNB; 图案 C 表示下行接入链路, 分别用于 eNB 到 UE eNB和 RN到 UE— RN, 可以传输 PHICH, UL grant, PCFICH, DL导频 等信道。 占用图案 C所在子帧的前面几个( 1个或 2个或 3个或 4个) OFDM symbol, 用于下行接入链路 eNB到 UE— eNB和下行接入链路 RN到 UE— RN, 可以传输包括 PHICH, UL grant, PCFICH等控制信令和 /或 DL导频等信息。 图案 E是将原来 eNB到 UE— eNB的 DL子帧对应部分转变为 RN到 eNB的上 行, 即图案 E 所在的子帧, 将原有 DL 子帧用作上行中继链路子帧。 在 LTE/LTE-A TDD系统中, 图案 E所在的 DL子帧可以是 MBSFN子帧, 图案 C相当于 MBSFN子帧中 unicast部分,用于在 eNB与 UE— eNB之间的接入链 路以及 RN与 UE— RN之间的接入链路上发送 DL导频 , 和 /或诸如 PDCCH, PHICH, PCFICH等控制信令, 该 MBSFN子帧的剩余部分用作 eNB与 RN 之间的 UL通信以及保护时间。 图案 D表示保护时间, 该保护时间包括收发 状态转换时间和空闲时间, 该收发状态转换时间为基站的收发状态转换时间 和 /或中继站的收发状态转换时间; 该保护时间的长度可以为釆样时间的整数 倍或者等于 [Ν/(2Λη)χ釆样时间] , 其中 Ν为 LTE或 LTE-A系统中使用的傅立 叶变换点数, η为自然数 1 , 2, 3... , 2Λη<=Ν。 图案 Ε为 RN到 eNB的上行 中继链路。
在图 6中, UL部分的图案 A可以作为传输 UE— eNB到 eNB的 UL接入 链路, 还可以作为传输 UE— RN到 RN的 UL接入链路; DL部分的图案 A, 可以作为传输 eNB到 UE— eNB的 DL接入链路,还可以作为传输 RN到 UE— RN 的 DL接入链路, DL部分的图案 B, 可以作为传输 eNB到 RN的 DL中继链 路, DL部分的图案 B, 还可以作为传输 eNB到 RN的 DL中继链路和 eNB 到 UE— eNB的 DL接入链路的混合链路;图案 B作为 eNB到 RN的中继链路, 若中继链路需要的吞吐量不需要使用全部图案 B的资源, 图案 B也可以同时 传输 eNB到 UE— eNB的数据信道, 控制信道, 导频信道之一或全部。 图案 D 为 eNB和或 RN不传输数据的时间, 可以作为 eNB的收发状态转换时间和 / 或 RN的收发或发收转换时间, 还可以作为 idle (空闲) 时间, 如图 6所示, RN的图案 C和图案 E之间部分也可以有图案 D, 该图案 D取决于经过 eNB 和 RN之间的距离的时间是否满足 eNB的发收转换时间 , 当经过该 eNB和 RN之间之间的距离的时间大于收发转换时间时, eNB在 UL所在子帧的第 1 个图案 D需要大于收发转换时间。当经过该距离的时间小于收发转换时间时 , 需要在 RN的图案 C和图案 E之间增加图案 D,该时间长度(图案 D )为 eNB 发收转换时间与 RN到 eNB的传输时间的差。 即图案 D的时间长度在不同位 置上长度可以不一样, 但是均需位于中继链路所在的子帧内。 上述转换时间 或传输时间 (例如图 6的图案 D ) , 也可以由发送双方在信令中如定时调整 中进行调整, 而不在帧结构中表示出来。
可见, 在本实施例中, 通信设备在进行数据传输时, 选取了可以用于中 继链路传输的子帧, 在使用中继链路进行数据传输时符合 LTE系统的 Rel-8 的固有约束, 而且通过使用 LTE/LTE-A TDD中继帧对 LTE系统进行覆盖扩 展, 使得吞吐量增强。
在本发明的所有实施例中, 该下行子帧与上行子帧的配比均是在未引入 中继时的下行子帧与上行子帧的配比, 当引入中继后, 该下行子帧与上行子 帧的配比可能会发生变化, 具体将根据实际的情况而定。
本发明实施例提出的一种 LTE/LTE-A TDD中继帧的配比为下行子帧与 上行子帧的配比为 6: 3时的帧结构, 本实施例中, UL grant与 PUSCH的位 置对应关系如表 4所示。 例如, 若 UE在子帧 0收到该 UE的 UL grant, 该 UE应该在对应的子帧 4发送 PUSCH。 若 UE在子帧 8/9收到给该 UE的 UL grant, 该 UE应该在对应下 1帧的子帧 2/3发送 PUSCH。 表 4
Figure imgf000012_0002
PHICH和 UL ACK/NACK位置对应关系如表 5所示。表 5中具有相同图 案的为有对应位置关系的。 例如, 在 UE在子帧 4发送 PUSCH时, 对应的在 下 1帧的子帧 0位置发送 PHICH, 在子帧 0发送 PDSCH, 对应的在本帧的 子帧 4发送 UL ACK/NACK。
Figure imgf000012_0001
Figure imgf000012_0003
在 LTE TDD的帧结构中,子帧 0, 1 , 5, 6用于发送主广播信道 ( Primary Broadcast Channel,简称: P-BCH ),动态广播信道( Dynamic Broadcast Channel, 简称: D-BCH )主 /辅同步信道 ( Primary/Secondary Synchronization Channel, 简称: P/S-SCH ) , 在该帧结构中, 无法选取子帧 0, 1 , 5 , 6做为下行中继 链路, 从表 5可以看出, 可用的 DL中继子帧只能是子帧 7, 8, 9。 从表 5 中还可以看出, 子帧 0, 1 , 5 , 6分别对应的 UL ACK/NACK在中的子帧为 2 和 4, 所以子帧 2和子帧 4无法用作 UL中继链路。 从表 5看出, 只能选取子 帧 3用作 UL中继链路。 UE在子帧 7和子帧 8接收 PDSCH, 对应需要在下 一帧的子帧 3 ( 7+6或 8+5 )发送 UL ACK/NACK, 可以选择将子帧 7和子帧 8同时作为 DL中继链路。从表 4中可以看出, 子帧 8还需要发送下一帧的子 帧 2的 PUSCH,当子帧 8不发送 UL grant时,将导致子帧 2无法发送 PUSCH, 造成资源的浪费,因此可以选取子帧 8前几个( 1或 2或 3或 4 )OFDM symbol 用作接入链路的传输, 通过子帧 8的前几个 symbol可以在 eNB与 UE— eNB 之间发送下行控制信道, PCFICH, PHICH等控制信令和 /或导频, 可以在 RN 与 UE— RN之间发送下行控制信道, PCFICH, PHICH等控制信令和 /或导频。 表 4中可以看出, 当上一帧的子帧 9发送 UL grant时, 需要在本帧的子帧 3 发送 PUSCH,而子帧 3用作 RN与 eNB之间的中继链路,当子帧 3发送 PUSCH 时, RN无法接收 UE— RN发送的数据, 因此, 在上述的组合下, 上一帧的子 帧 9不能发送 PDCCH中的 UL grant控制信道来调度 UL数据。 所以可以选 取子帧 [3 , 7 , 8 , 9]中的 1个或多个用作下行中继链路子帧, 剩余的子帧用作 上行中继链路子帧, 用作上行中继链路子帧的数量大于或等于 1个, 且子帧 3仅能用作上行中继链路子帧。
如图 7所示, 为本发明实施例提出的一种帧结构示意图, 包含中继链路 和接入链路的对原 LTE系统下行子帧与上行子帧的配比为 6:3 , 在该帧结构 中, 选取作为中继链路的子帧的组合为 [3 , 7 , 8] , 在图 7 中的 D-中继链路 ( Psubframe )和 U-中继链路 ( Psubfame )为用于 RN与 eNB通信的中继时 间 ,分别表示 RN与 eNB通信的 DL和 UL中继时间 , UL的 RN与 eNB之间 的通信部分也可以用于在 UE与 eNB之间传输 UL控制信道, 数据信道, 导 频等。 在图 7中的 AB图案表示用于 eNB与 UE— eNB的接入链路以及 RN与 UE— RN的接入链路, 可以用来发送导频, DL控制信道, PCFICH, PHICH, 例如只发送导频, 或者发送导频和 DL控制信道, PCFICH, PHICH等控制信 令。 在中继链路 (Psubframe)所在子帧的 AC图案可以用于 RN的收发或发收 转换时间以及 eNB到 RN之间的传播时间延迟等空闲时间。 在本发明实施例 的所有附图中, 与图 7相同的 AB图案均表示用于 eNB与 UE— eNB的接入链 路以及 RN与 UE— RN的接入链路, 与图 7相同的 AC图案均表示用于 RN的 收发或发收转换时间以及 eNB到 RN之间的传播时间延迟等空闲时间, 在后 面的描述中便不再赘述。
如图 8所示, 为本发明实施例提出的另一种帧结构示意图, 包含中继链 路和接入链路的对原 LTE系统下行子帧与上行子帧的配比为 6:3 , 在该帧结 构中,选取作为中继链路的子帧的组合为 [3 , 7 , 8, 9] ,即子帧 3用作 RN->eNB, 子帧 7 , 8, 9用作 eNB->RN。 即选取子帧 3用作上行中继链路子帧, 选取子 帧 7和子帧 8和子帧 9用作下行中继链路子帧。 可以使用子帧 7 , 8, 9前面 的 OFDM symbol为接入链路发送控制信道, 如 UL grant, PHICH, PCFICH 等控制信令和 /或导频。 当釆用 UL子帧作为中继链路的 DL时, 由于 RN到 eNB的通信会对邻小区的 UE— eNB与 eNB的通信时造成较大的 UL干扰, 可 行性很低, DL子帧作为 RN与 eNB通信的 UL时, UL方向受到的相邻小区 eNB的干扰相对 UL子帧作为 DL中继链路时的干扰要小 ,可以选取 DL子帧 作为 UL中继链路。 从表 4中可以看出, 上一帧的子帧 9发送的 UL grant对 应子帧 3发送 PUSCH,若子帧 9改为 UL则对应的在子帧 3就没有 UL grant, 对应的在子帧 9就不需要发送 PHICH, 可以选择子帧 7作为 eNB->RN即中 继链路的 DL, 选择子帧 9作为 RN->eNB即中继链路的 UL。 为了不浪费子 帧 3资源, 可以使用子帧 9前面的几个 OFDM symbol发送控制信道,如对下 一个帧的子帧 3的 UL grant, PHICH, PCFICH等控制信令和 /或导频。 导频 的发送也有助于接入链路子帧间的信道估计插值。
如图 9所示, 为本发明实施例提出的另一种帧结构示意图, 包含中继链 路和接入链路的原 LTE系统的下行子帧与上行子帧的配比为 6:3 , 在该帧结 构中, 选取作为中继链路的子帧的组合为 [7 , 9] , 可以选取子帧 7用作下行中 继链路子帧, 选取子帧 9用作上行中继链路子帧; 或反之, 选取子帧 7用作 上行中继链路子帧, 选取子帧 9用作下行中继链路子帧。 具体的, 在子帧 0, 1 , 2, 3 , 4, 5 , 6, 8分别作为 eNB到 UE— eNB的上下行接入链路, 和 RN 到 UE— RN的上下行接入链路时, eNB和 UE— eNB在接入链路互相发送控制 信道, 数据信道, 导频信道, 在 DL接入链路, eNB还会发送广播信道和同 步信道, RN和 UE— RN在接入链路互相发送控制信道,数据信道,导频信道, 在 DL接入链路, RN还会发送广播信道和同步信道;在中继链路所在的子帧, 如图 9所示的帧结构中子帧 9, 对 eNB该子帧的前面 1 ~ 4个 OFDM symbol 用于 eNB向其下的 UE发送导频和 /或控制信道, 紧接着的一部分是 eNB的 发收转换时间, 接着是中继链路(Psubframe )时间, 再后面是 eNB的收发转 换时间。 对 RN该子帧的前面 1或 2或 3或 4个 OFDM symbol用于 eNB和 RN分别向其下的 UE发送控制信道, PHICH, PCFICH等控制信令和 /或导频。 导频的发送也有助于接入链路子帧间的信道估计插值。紧接着的一部分是 RN 的中继链路 Psubframe时间,再后面是 RN的发收转换时间,该转换时间考虑 了 eNB可以有效接收中继区域 Psubframe的时间。 根据业务和系统容量的需 求, Psubframe可以位于多个 subframe中, 且是 subframe的一部分。 此夕卜, 在包含中继链路和接入链路的原 LTE 系统的下行子帧与上行子帧的配比为 6:3帧结构, 在该帧结构中, 选取作为中继链路的子帧的组合为 [7, 8] , 可以 选取子帧 7用作下行中继链路子帧, 选取子帧 8用作上行中继链路子帧; 或 反之, 选取子帧 7用作上行中继链路子帧, 选取子帧 8用作下行中继链路子 帧; 或选取子帧 [3 , 7, 8, 9]中的 1个或多个用作下行中继链路子帧, 剩余的 子帧用作上行中继链路子帧,用作上行中继链路子帧的数量大于或等于 1个, 且子帧 3仅能用作上行中继链路子帧。
可见, 在本实施例中, 通过在下行子帧与上行子帧的配比为 6: 3帧结构 中选取用于中继链路传输的子帧, 在使用中继链路进行数据传输时符合和配 比为 6: 3时 LTE系统的 Rel-8的固有约束, 而且通过使用 LTE/LTE-A TDD 中继帧对 LTE/LTE-A系统进行覆盖扩展, 使得吞吐量增强。
本发明实施例提出一种 LTE/LTE-A TDD帧的配比为下行子帧与上行子帧的配 比为 3: 1的帧结构,本实施例中, UL grant与 PUSCH的位置对应关系如表 6所示。 信道, UE在子帧 8收到 UL grant, 会在下 1帧的 subframe2发送 PUSCH信道。
表 6
TDD UL/DL
Subframe index n
Configuration DL/UL ratio
UL grant VS. PUSCH
0 1 2 3 4 5 6 7 8 9
3:1 D s U D D D S U D D
2 UL grant VS. PUSCH G3-4 G8-4
PUSCH Position PHICH和 UL ACK/NACK位置对应关系如表 7所示。表 7中具有相同图 案的为有对应位置关系的。
表 7
Figure imgf000016_0001
在表 7中, 子帧 0, 1 , 5, 6用于发送广播信道和同步信道, 不选取作为 中继链路。子帧 2和 7会收到来自上述子帧(前 1帧或本帧)的 UL ACK/NACK。 当本帧的子帧 2和子帧 7发送数据时对应的会在子帧 8发送 PHICH, 在上 1 帧的子帧 7发送数据时, 会在本帧的子帧 3发送 PHICH。 需要使用子帧 4和 子帧 9作为中继链路的下行和上行, 即可以选取子帧 [3 , 4, 8, 9]中的 1个或 多个用作下行中继链路子帧, 剩余的用作上行中继链路子帧, 用作上行中继 链路子帧的数量大于或等于 1个。 具体地, 可以使用子帧 4作为中继链路的 DL, 即 eNB到 RN, 使用子帧 9作为中继链路的上行, 即 RN到 eNB, 或反 之, 选取子帧 4用作上行中继链路子帧, 选取子帧 9用作下行中继链路子帧。
如图 10所示, 为本发明实施例提出的另一种帧结构示意图, 可以釆用子 帧 4用作中继链路的 DL, 即 eNB->RN, 釆用子帧 9用作中继链路的 UL, 即 RN->eNB。 在子帧 4和子帧 9中的图案 AC表示用于 RN发到收和收到发的 转换时间。 该长度可以根据 eNB到 RN的距离以及实际收发状态转换时间进 行调整。可选的,在原 DL子帧用作中继子帧时,可以将该子帧的前几个 OFDM symbol用于接入链路 eNB->UE和 RN -〉 UE, DL控制信道, PCIFICH, PHICH 等控制信令和 /或导频, 该导频的插入有助于在前面接入链路子帧的导频和该 导频之间进行信道估计插值 , 有助于提高信道估计的性能。 可见, 在本实施例中, 通过在下行子帧与上行子帧的配比为 3: 1帧结构 中选取用于中继链路传输的子帧, 在使用中继链路进行数据传输时符合和配 比为 3: 1时 LTE系统的 Rel-8的固有约束, 而且通过使用 LTE/LTE-A TDD 中继帧对 LTE/LTE-A系统进行覆盖扩展, 使得吞吐量增强。
本发明实施例提出一种 LTE/LTE-A TDD帧的配比为下行子帧与上行子 帧的配比为 7: 2的帧结构, 本实施例中, PHICH和 UL ACK/NACK位置对 应关系如表 8所示, UL grant与 PUSCH的位置对应关系如表 9所示。
表 8
Figure imgf000017_0001
表 9
Figure imgf000017_0002
从表 8和表 9可以看到, 子帧 0, 1 , 5 , 6不能作为中继链路, 而其对应 的 UL ACK/NACK在 2个 UL子帧中均有发送, 所以选用 DL子帧分别作为 中继链路的 DL和 UL, 即可以选取子帧 [4, 7 , 8, 9]中的 1个或多个用作下 行中继链路子帧, 剩余的用作中继链路上行子帧, 用作上行中继链路子帧的 数量大于或等于 1个。 如图 11所示, 为本发明实施例提出的另一种帧结构示 意图,包含中继链路和接入链路的帧结构,可以选择 DL子帧 4作为 eNB->RN, DL子帧 7作为 RN->eNB, 或者, 取子帧 4用作上行中继链路子帧, 选取子 帧 7用作下行中继链路子帧。 可见, 在本实施例中, 通过在下行子帧与上行子帧的配比为 7: 2帧结构 中选取用于中继链路传输的子帧, 在使用中继链路进行数据传输时符合和配 比为 7: 2时 LTE系统的 Rel-8的固有约束, 而且通过使用 LTE/LTE-A TDD 中继帧对 LTE/LTE-A系统进行覆盖扩展, 使得吞吐量增强。
本发明实施例提出一种 LTE/LTE-A TDD帧的配比为下行子帧与上行子 帧的配比为 2: 2的帧结构。类似的, 居该配比下 LTE R-8的固有约束可知, DL子帧 [0 , 1 , 5 , 6]和 UL子帧 [2, 7]不适合用于中继链路, 所以可以选取 子帧 [3 , 4 , 8, 9]中的 1个或多个用作下行中继链路子帧, 剩余的子帧用作上 行中继链路子帧, 用作上行中继链路子帧的数量大于或等于 1个, 且子帧 3 和子帧 8仅能用作上行中继链路子帧。
如图 12所示,为本发明实施例提出的另一种帧结构图,本实施例中, 10ms 中具有 2对中继链路时, 中继的收发转换时间放在中继链路所在子帧中。 由 于可以根据实际需要,如 RN距离 eNB远近和收发 /发收转换时间来调整该值, 他们也可以放在 UL和 DL中继子帧相邻的位置。该中继链路 Psubframe所在 子帧为 [3 , 4, 8, 9]。
上述为 10ms帧结构中 2对中继链路, 也可以只有 1对中继链路, 如图 13所示, 为本发明实施例提出的另一种帧结构图, 其中中继链路处的收发转 换时间可以隐含的在帧结构中表示出来,即通过告知 RN发送时间或接收 eNB 的截止时间, 也可以显式的由图中 AC区域标识出来。 图中组合为 [3 , 9] , 即 子帧 9作为 eNB->RN, 子帧 3作为 RN->eNB。 此外, 当组合为 [4, 8]时, 选 取子帧 4用作下行中继链路子帧, 选取子帧 8用作上行中继链路子帧; 当组 合为 [3 , 4 , 8, 9]时, 选取子帧 4, 9用作下行中继链路子帧, 选取子帧 3 , 8 用作上行中继链路子帧。
可见, 在本实施例中, 通过在下行子帧与上行子帧的配比为 2: 2帧结构 中选取用于中继链路传输的子帧, 在使用中继链路进行数据传输时符合和配 比为 2: 2时 LTE系统的 Rel-8的固有约束, 而且通过使用 LTE/LTE-A TDD 中继帧对 LTE/LTE-A系统进行覆盖扩展, 使得吞吐量增强。
图 14为本发明实施例提出另一种帧结构示意图, 是 LTE/LTE-A TDD帧 的配比为下行子帧与上行子帧的配比为 3: 5的帧结构, 如图 14所示, 为组 合 [4 , 9]用作中继链路 Psubframe所在子帧。子帧 4是上行链路,用于 RN->eNB , 子帧 9是下行链路, 用于 eNB->RN, 在子帧 9有与上面类似的控制信道。 由 于中继链路子帧靠近原系统上下行转换的位置, 原系统中具有保护时间, 所 以图中也可以不画出保护时间。 在第 9 子帧前面的图案 AB 分别表示 eNB->UE_eNB和 RN->UE— RN的接入链路,其长度可以为 1 , 2 , 3 , 4个 symbol 中的一种, 可以发送导频, 或者导频和 DCCH, PHICH, PCFICH等控制信 令。
可见, 在本实施例中, 通过在下行子帧与上行子帧的配比为 3: 5帧结构 中选取用于中继链路传输的子帧, 在使用中继链路进行数据传输时符合和配 比为 3: 5时 LTE/LTE-A系统的 Rel-8的固有约束,而且通过使用 LTE/LTE-A TDD中继帧对 LTE/LTE-A系统进行覆盖扩展, 使得吞吐量增强。
本发明实施例提出一种 LTE/LTE-A TDD帧的配比为下行子帧与上行子 帧的配比为 8: 1的帧结构。类似的, 居该配比下 LTE R-8的固有约束可知, DL子帧 [0, 1 , 5 , 6]和 UL子帧 [2]不适合用于中继链路, 所以可以选取子帧 [3 , 4, 7, 8, 9]中的 1个或多个用作下行中继链路子帧, 剩余的子帧用作上 行中继链路子帧, 用作上行中继链路子帧的数量大于或等于 1个。
如图 15 所示, 为本发明实施例提出的另一种帧结构示意图, 是 LTE/LTE-A TDD帧的配比为下行子帧与上行子帧的配比为 8: 1的帧结构 , 选取 DL子帧 3用于上行中继链路 RN到 eNB, DL子帧 [7 , 8, 9]用作下行中 继链路 eNB到 RN, 且 DL子帧 [7, 8, 9]均是 MBSFN子帧, 这些下行子帧 中每个子帧的前 1个、 2个或 3个 OFDM symbol是 unicast部分,剩余时间用 于 RN与 eNB之间的中继链路传输, 和保护时间(如图案 AC所示)。 其中 DL 子帧 8的 unicast用于发送 DL导频, 和控制信道, PCFICH, PHICH, DL子 帧 7和 DL子帧 8的 unicast用于发送 DL导频。
在本发明实施例中提出的帧结构中,用于 UL或 DL中继链路的原有下行 子帧,在 LTE/LTE-A TDD系统中也可以是 MBSFN子帧,且 MBSFN子帧的 unicast部分, 用于发送 DL导频, 和 /或控制信令, 如控制信道, PCFICH, PHICH, 剩余的时间用于 RN与 eNB之间的中继链路传输 , 和保护时间 , 该 方法也可适用于到其它配比的情况, 在此不再赘述。 在上述的所有实施例中, 该中继子帧的保护时间包括下行中继子帧的保 护时间和上行中继子帧的保护时间, 对于下行中继子帧的保护时间, 如图 7 中的子帧 7和子帧 8, 当传输时间 (空闲时间 )大于转换时间 (RN的收到发 或发到收的转换时间 )时, 对于 RN所在的中继帧 , 以 Psubframe所在子帧 7 为例, 需将该子帧内的保护时间分成 2部分。 Psubframe前的保护时间 RGPf (中继保护时间前部)和 Psubframe后的保护时间 RGPb(中继保护时间后部), Psubframe前面的保护时间 RGPf 专输时间(RN到 eNB的传输时间, 下面简 称为传输时间) , Psubframe后面的保护时间 = RN发到收的转换时间 (下简 称 RN转换时间 ) ; 在图 7中, 对应 eNB所在的中继帧对应的中继子帧 7 , RGPf=0, RGPb 专输时间 + RN收到发的转换时间 (下简称 RN转换时间)。 在上述的所有实施例中, DL子帧用作中继子帧时选取保护时间的方法相同。 当传输时间小于转换时间时, RN所在中继帧的中继子帧 7, RGPf=RN转换 时间, RGPb=RN转换时间。 对应 eNB 所在的中继帧对应的中继子帧 7 , RGPf=0 , RGPb= RN转换时间与 RN转换时间的和。
对于上行中继子帧的保护时间, 包括下行子帧用作 UL 中继子帧的保护 时间和上行子帧做上行中继子帧的保护时间。 对于下行子帧用作 UL 中继子 帧的保护时间, 如图 9中的子帧 9, 当传输时间大于转换时间时, RN中继帧 的子帧 9中, RGPf=RN转换时间, RGPb 专输时间; eNB中继帧的子帧 9中, RGPf=RN转换时间 +传输时间, RGPb=0。 当传输时间小于转换时间时, RN 中继帧的子帧 9中, RGPf=RN转换时间, RGPb=转换时间; eNB中继帧的子 帧 9中, RGPf=RN转换时间 +传输时间, RGPb 转换时间 -传输时间。 对于 上行子帧做上行中继子帧的保护时间, 如图 7 中的子帧 3。 当传输时间大于 转换时间时, RN中继帧的子帧 3中, RGPf=RN转换时间, RGPb=传输时间; eNB中继帧的子帧 3中, RGPf=RN转换时间 +传输时间, RGPb=0。 当传输 时间 d、于转换时间时, RN中继帧的子帧 3中, RGPf=RN转换时间, RGPb= 转换时间; eNB中继帧的子帧 3中, RGPf=RN转换时间 +传输时间, RGPb= 转换时间 -传输时间。
上述由转换时间, 传输时间以及 Idle时间任一或多种组成的保护时间, 也可以由发送双方在信令中如定时调整中进行调整而不在帧结构中表示出 来。
图 16为本发明实施例提出的一种通信设备结构示意图, 如图 16所示, 包括: 选取模块 151 , 用于选取 TDD中继帧中的子帧作为中继链路子帧, 所 述选取 TDD中继帧中子帧作为中继链路子帧包括: 选取 TDD中继帧中下行 子帧用作下行中继链路子帧, 和 /或选取 TDD 中继帧中下行子帧用作上行中 继链路子帧, 和 /或选取 TDD 中继帧中上行子帧用作上行中继链路子帧; 传 输模块 152, 用于根据选取模块 151中继链路子帧进行中继传输。
在根据选择的中继链路子帧进行中继传输时, 若中继帧中下行子帧用作 上行中继链路子帧或下行中继链路子帧时, 选取该下行子帧中前 N个 OFDM 符号作为中继器和中继器下的 UE,或者作为基站和基站下的 UE之间的接入 链路传输, 用于发送下行导频, 或者下行导频和控制信令, 该下行子帧中其 余的 OFDM符号用作中继链路传输和 /或保护时间,即在除该下行子帧中的前 N个 OFDM符号外的时间用作中继链路传输和 /或保护时间,或也可以同时进 行基站和基站下的 UE之间的接入链路传输。
所述下行子帧中有 M个 OFDM符号, 所述 M、 N为自然数, N小于 M。 本发明实施例提供的方案可以应用在 LTE、 LTE Advanced, LTE的各个 版本 (Rel-8, Rel-9, Rel-10等)、 WiMax、 UMB等系统中。
本发明实施例中以在 LTE/LTE-A 系统中为例进行说明, 进一步的, 该 选取模块 151包括:
第一选取单元 1511 , 用于当下行子帧与上行子帧的配比为 6: 3 时, 选 取子帧 3用作上行中继链路子帧, 选取子帧 7和子帧 8用作下行中继链路子 帧; 或选取子帧 3用作上行中继链路子帧, 选取子帧 7和子帧 8和子帧 9用 作下行中继链路子帧; 或选取子帧 7用作下行中继链路子帧, 选取子帧 9用 作上行中继链路子帧; 或选取子帧 7用作上行中继链路子帧, 选取子帧 9用 作下行中继链路子帧; 或选取子帧 7用作下行中继链路子帧, 选取子帧 8用 作上行中继链路子帧; 或选取子帧 7用作上行中继链路子帧, 选取子帧 8用 作下行中继链路子帧; 或选取子帧 [3 , 7 , 8, 9]中的 1个或多个用作下行中继 链路子帧, 剩余的子帧用作上行中继链路子帧, 用作上行中继链路子帧的数 量大于或等于 1个, 且子帧 3仅能用作上行中继链路子帧。 第二选取单元 1512, 用于当该下行子帧与上行子帧的配比为 3: 1 时, 选取子帧 4用作下行中继链路子帧, 选取子帧 9用作上行中继链路子帧; 或 选取子帧 4用作上行中继链路子帧, 选取子帧 9用作下行中继链路子帧; 或 选取子帧 [3 , 4, 8 , 9]中的 1个或多个用作下行中继链路子帧, 剩余的用作上 行中继链路子帧, 用作上行中继链路子帧的数量大于或等于 1个。
第三选取单元 1513 , 用于当该下行子帧与上行子帧的配比为 7: 2时, 选取子帧 4用作下行中继链路子帧, 选取子帧 7用作上行中继链路子帧; 或 选取子帧 4用作上行中继链路子帧, 选取子帧 7用作下行中继链路子帧; 或 选取子帧 [4 , 7 , 8 , 9]中的 1个或多个用作下行中继链路子帧, 剩余的用作上 行中继链路子帧, 用作上行中继链路子帧的数量大于或等于 1个。
第四选取单元 1514, 用于当该下行子帧与上行子帧的配比为 2: 2时, 选取子帧 9用作下行中继链路子帧, 选取子帧 3用作上行中继链路子帧; 或 选取子帧 4用作下行中继链路子帧, 选取子帧 8用作上行中继链路子帧; 或 选取子帧 4和子帧 9用作下行中继链路子帧, 选取子帧 3和子帧 8用作上行 中继链路子帧; 或选取子帧 [3 , 4, 8 , 9]中的 1个或多个用作下行中继链路子 帧, 剩余的子帧用作上行中继链路子帧, 用作上行中继链路子帧的数量大于 或等于 1个, 且子帧 3和子帧 8仅能用作上行中继链路子帧。
第五选取单元 1515 , 用于当该下行子帧与上行子帧的配比为 3: 5时, 选取子帧 9用作下行中继链路子帧, 选取子帧 4用作上行中继链路子帧。
第六选取单元 1516, 用于当所述下行子帧与上行子帧的配比为 8: 1时, 选取子帧 [3 , 4 , 7 , 8 , 9]中的 1个或多个用作下行中继链路子帧, 剩余的用 作中继链路上行子帧, 用作上行中继链路子帧的数量大于或等于 1个。
本发明实施例的通信装置可以应用上述各方法实施例, 通过本发明实施 例, 通信设备在进行数据传输时, 选取了可以用于中继链路传输的子帧, 在 使用中继链路进行数据传输时符合现有技术中 TDD帧结构固有约束,而且对 使用 TDD中继帧的系统进行覆盖扩展, 使得吞吐量增强。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本发 明可以通过硬件实现, 也可以可借助软件加必要的通用硬件平台的方式来实 现。 基于这样的理解, 本发明的技术方案可以以软件产品的形式体现出来, 该软件产品可以存储在一个非易失性存储介质 (可以是 CD-ROM, U盘, 移 动硬盘等)中, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述的方法。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润 饰, 这些改进和润饰也应视本发明的保护范围。

Claims

权 利 要 求
1、 一种中继传输的方法, 其特征在于, 包括:
选取时分双工 TDD中继帧中的子帧作为中继链路子帧,所述选取时分双 工 TDD中继帧中的子帧作为中继链路子帧包括: 选取 TDD中继帧中的下行 子帧用作下行中继链路子帧, 和 /或选取 TDD 中继帧中的下行子帧用作上行 中继链路子帧, 和 /或选取 TDD中继帧中的上行子帧用作上行中继链路子帧; 根据所述中继链路子帧进行中继传输。
2、 如权利要求 1所述的中继传输的方法, 其特征在于, 若中继帧中下行 子帧用作中继链路子帧 ,选取该下行子帧中前 N个正交频分复用 OFDM符号 作为接入链路传输, 用于发送下行导频, 或者下行导频和控制信令, 该下行 子帧中其余的 OFDM符号用作中继链路传输和 /或保护时间;
所述下行子帧中有 M个 OFDM符号, 所述 M、 N为自然数, N小于 M。
3、 如权利要求 1或 2所述的中继传输的方法, 其特征在于, 所述 TDD 中继帧为 LTE/LTE-A 系统中 TDD帧结构, 该 TDD 中继帧中包含中继链路 子帧、 接入链路子帧和保护时间, 所述中继链路子帧占用一个或多个子帧, 所述接入链路子帧占用一个或多个子帧,所述保护时间占用 LTE/LTE-A TDD 的特殊子帧的一部分; 或,
所述保护时间占用所述中继链路子帧的一部分。
4、 如权利要求 3所述的中继传输的方法, 其特征在于, 所述根据所述中 继链路子帧进行中继传输包括:
根据所述中继链路子帧进行基站与基站服务的用户设备之间的通信; 和 / 或
根据所述中继链路子帧进行基站与中继站之间的通信; 和 /或 信。
5、 如权利要求 3所述的中继传输的方法, 其特征在于, 所述保护时间具 体包括: 收发状态转换时间和空闲时间, 所述收发状态转换时间为基站的收 发状态转换时间和 /或中继站的收发状态转换时间; 所述保护时间为釆样时间的整数倍, 或所述保护时间是釆样点数为傅立 叶变换点数的约数, 所述釆样点数为傅立叶变换点数 /2Λη, 所述 η为自然数; 或,
所述保护时间从 OFDM符号的循环前缀、 OFDM符号或子帧中至少一种 获得 或,
所述保护时间由发送双方在信令中进行调整获得。
6、 如权利要求 5所述的中继传输的方法, 其特征在于, 所述保护时间还 包括: 下行中继子帧的保护时间和上行中继子帧的保护时间;
在所述下行中继子帧的保护时间内, 当所述空闲时间大于所述收发状态 转换时间时, 一个中继子帧内的保护时间由两部分组成, 第一部分为所述空 闲时间, 第二部分为所述收发状态转换时间; 或, 当所述空闲时间小于所述 收发状态转换时间时, 一个中继子帧内的保护时间由两部分组成, 两部分均 为所述收发状态转换时间; 和 /或
在所述上行中继子帧的保护时间内,使用下行子帧用作上行中继子帧时, 当所述空闲时间大于所述收发状态转换时间时, 一个中继子帧内的保护时间 由两部分组成, 第一部分为所述收发状态转换时间, 第二部分为所述空闲时 间; 或当所述空闲时间小于所述收发状态转换时间时, 一个中继子帧内的保 护时间由两部分组成两部分均为所述收发状态转换时间; 和 /或
在所述上行中继子帧的保护时间内,使用上行子帧用作上行中继子帧时, 当所述空闲时间大于所述收发状态转换时间时, 一个中继子帧内的保护时间 由两部分组成, 第一部分为所述收发状态转换时间, 第二部分为所述空闲时 间; 或当所述空闲时间小于所述收发状态转换时间时, 一个中继子帧内的保 护时间由两部分组成, 两部分均为所述收发状态转换时间。
7、 如权利要求 2所述的中继传输的方法, 其特征在于, 所述 N为 1、 2、 3或 4; 所述控制信令为控制信道、 物理混合自动请求重传指示信道 PHICH 或物理控制格式指示信道 PCFICH。
8、如权利要求 1、 2或 7所述的中继传输的方法,其特征在于, LTE/LTE-A TDD中继帧中下行子帧是多播组播单频网 MBSFN子帧。
9、如权利要求 8所述的中继传输的方法, 其特征在于, 所述 LTE/LTE-A TDD中继帧的上行中继链路子帧和下行中继链路子帧的数目不等。
10、 如权利要求 2所述的中继传输的方法, 其特征在于, 所述 TDD中继 帧包括不同的下行子帧与上行子帧的配比, 所述下行子帧与上行子帧的配比 具体为:
下行子帧与上行子帧的配比为 6 3的 LTE/LTE- ■A TDD中继帧 或, 下行子帧与上行子帧的配比为 3 1的 LTE/LTE- ■A TDD中继帧 或, 下行子帧与上行子帧的配比为 7 2的 LTE/LTE- ■A TDD中继帧 或, 下行子帧与上行子帧的配比为 2 2的 LTE/LTE- ■A TDD中继帧 或, 下行子帧与上行子帧的配比为 8 1的 LTE/LTE- ■A TDD中继帧 或, 下行子帧与上行子帧的配比为 3 5的 LTE/LTE- ■A TDD中继帧
所述下行子帧与上行子帧的配比均是在未引入中继传输时的 LTE/LTE-A TDD帧结构中下行子帧与上行子帧的配比。
11、 如权利要求 2或 10所述的中继传输的方法, 其特征在于, 所述根据 所述中继链路子帧进行中继传输包括: 基站与中继站使用相同的下行子帧与 上行子帧配比或相同配置的帧进行中继传输。
12、 如权利要求 10所述的中继传输的方法, 其特征在于, 当所述下行子 帧与上行子帧的配比为 6: 3时, 选取子帧 3用作上行中继链路子帧, 选取子 帧 7和子帧 8用作下行中继链路子帧; 或,
选取子帧 3用作上行中继链路子帧, 选取子帧 7和子帧 8和子帧 9用作 下行中继链路子帧; 或,
选取子帧 7用作下行中继链路子帧,选取子帧 9用作上行中继链路子帧; 或,
选取子帧 7用作上行中继链路子帧,选取子帧 9用作下行中继链路子帧; 或,
选取子帧 7用作下行中继链路子帧,选取子帧 8用作上行中继链路子帧; 或,
选取子帧 7用作上行中继链路子帧,选取子帧 8用作下行中继链路子帧; 或,
选取子帧 [3 , 7 , 8 , 9]中的 1个或多个用作下行中继链路子帧, 剩余的子 帧用作上行中继链路子帧, 用作上行中继链路子帧的数量大于或等于 1个, 且子帧 3仅能用作上行中继链路子帧。
13、 如权利要求 10所述的中继传输的方法, 其特征在于, 当所述下行子 帧与上行子帧的配比为 3 : 1时, 选取子帧 4用作下行中继链路子帧, 选取子 帧 9用作上行中继链路子帧; 或,
选取子帧 4用作上行中继链路子帧,选取子帧 9用作下行中继链路子帧; 或,
选取子帧 [3 , 4, 8 , 9]中的 1个或多个用作下行中继链路子帧, 剩余的用 作上行中继链路子帧, 用作上行中继链路子帧的数量大于或等于 1个。
14、 如权利要求 10所述的中继传输的方法, 其特征在于, 当所述下行子 帧与上行子帧的配比为 7: 2时, 选取子帧 4用作下行中继链路子帧, 选取子 帧 7用作上行中继链路子帧; 或,
选取子帧 4用作上行中继链路子帧,选取子帧 7用作下行中继链路子帧; 或,
选取子帧 [4 , 7 , 8 , 9]中的 1个或多个用作下行中继链路子帧, 剩余的用 作中继链路上行子帧, 用作上行中继链路子帧的数量大于或等于 1个。
15、 如权利要求 10所述的中继传输的方法, 其特征在于, 当所述下行子 帧与上行子帧的配比为 2: 2时, 选取子帧 9用作下行中继链路子帧, 选取子 帧 3用作上行中继链路子帧; 或,
选取子帧 4用作下行中继链路子帧,选取子帧 8用作上行中继链路子帧; 或,
选取子帧 4和子帧 9用作下行中继链路子帧, 选取子帧 3和子帧 8用作 上行中继链路子帧; 或,
选取子帧 [3 , 4, 8 , 9]中的 1个或多个用作下行中继链路子帧, 剩余的子 帧用作上行中继链路子帧, 用作上行中继链路子帧的数量大于或等于 1个, 且子帧 3和子帧 8仅能用作上行中继链路子帧。
16、 如权利要求 10所述的中继传输的方法, 其特征在于, 当所述下行子 帧与上行子帧的配比为 8: 1时, 选取子帧 [3 , 4, 7 , 8, 9]中的 1个或多个用 作下行中继链路子帧, 剩余的用作中继链路上行子帧, 用作上行中继链路子 帧的数量大于或等于 1个。
17、 如权利要求 10所述的中继传输的方法, 其特征在于, 当所述下行子 帧与上行子帧的配比为 3: 5时, 选取子帧 9用作下行中继链路子帧, 选取子 帧 4用作上行中继链路子帧。
18、 一种通信设备, 其特征在于, 包括:
选取模块, 用于选取 TDD中继帧中的子帧作为中继链路子帧, 所述选取 TDD中继帧中的子帧作为中继链路子帧包括: 选取 TDD中继帧中的下行子 帧用作下行中继链路子帧, 和 /或选取 TDD 中继帧中的下行子帧用作上行中 继链路子帧, 和 /或选取 TDD中继帧中的上行子帧用作上行中继链路子帧; 传输模块, 用于根据所述选取模块选取的中继链路子帧进行中继传输。
19、 如权利要求 18所述的通信设备, 其特征在于, 所述选取模块用于若 中继帧中下行子帧用作中继链路子帧,选取该下行子帧中前 N个 OFDM符号 作为接入链路传输, 用于发送下行导频, 或者下行导频和控制信令, 该下行 子帧中其余的 OFDM符号用作中继链路传输和 /或保护时间;
所述下行子帧中有 M个 OFDM符号, 所述 M、 N为自然数, N小于 M。
20、 如权利要求 18或 19所述的通信设备, 其特征在于, 所述选取模块 包括:
第一选取单元, 用于当下行子帧与上行子帧的配比为 6: 3时, 选取子帧 3用作上行中继链路子帧, 选取子帧 7和子帧 8用作下行中继链路子帧; 或 选取子帧 3用作上行中继链路子帧, 选取子帧 7和子帧 8和子帧 9用作下行 中继链路子帧; 或选取子帧 7用作下行中继链路子帧, 选取子帧 9用作上行 中继链路子帧; 或选取子帧 7用作上行中继链路子帧, 选取子帧 9用作下行 中继链路子帧; 或选取子帧 7用作下行中继链路子帧, 选取子帧 8用作上行 中继链路子帧; 或选取子帧 7用作上行中继链路子帧, 选取子帧 8用作下行 中继链路子帧; 或选取子帧 [3 , 7, 8, 9]中的 1个或多个用作下行中继链路子 帧, 剩余的子帧用作上行中继链路子帧, 用作上行中继链路子帧的数量大于 或等于 1个, 且子帧 3仅能用作上行中继链路子帧; 或者,
第二选取单元, 用于当所述下行子帧与上行子帧的配比为 3: 1时, 选取 子帧 4用作下行中继链路子帧, 选取子帧 9用作上行中继链路子帧; 或选取 子帧 4用作上行中继链路子帧, 选取子帧 9用作下行中继链路子帧; 或选取 子帧 [3 , 4 , 8, 9]中的 1个或多个用作下行中继链路子帧, 剩余的用作上行中 继链路子帧, 用作上行中继链路子帧的数量大于或等于 1个; 或者,
第三选取单元, 用于当所述下行子帧与上行子帧的配比为 7: 2时, 选取 子帧 4用作下行中继链路子帧, 选取子帧 7用作上行中继链路子帧; 或选取 子帧 4用作上行中继链路子帧, 选取子帧 7用作下行中继链路子帧; 或选取 子帧 [4 , 7 , 8, 9]中的 1个或多个用作下行中继链路子帧, 剩余的用作中继链 路上行子帧, 用作上行中继链路子帧的数量大于或等于 1个; 或者,
第四选取单元, 用于当所述下行子帧与上行子帧的配比为 2: 2时, 选取 子帧 9用作下行中继链路子帧, 选取子帧 3用作上行中继链路子帧; 或选取 子帧 4用作下行中继链路子帧, 选取子帧 8用作上行中继链路子帧; 或选取 子帧 4和子帧 9用作下行中继链路子帧, 选取子帧 3和子帧 8用作上行中继 链路子帧; 选取子帧 [3 , 4, 8, 9]中的 1个或多个用作下行中继链路子帧, 剩 余的子帧用作上行中继链路子帧, 用作上行中继链路子帧的数量大于或等于 1个, 且子帧 3和子帧 8仅能用作上行中继链路子帧; 或者,
第五选取单元, 用于当所述下行子帧与上行子帧的配比为 3 : 5时, 选取 子帧 9用作下行中继链路子帧, 选取子帧 4用作上行中继链路子帧; 或者, 第六选取单元, 用于当所述下行子帧与上行子帧的配比为 8: 1时, 选取 子帧 [3 , 4, 7 , 8, 9]中的 1个或多个用作下行中继链路子帧, 剩余的用作中 继链路上行子帧, 用作上行中继链路子帧的数量大于或等于 1个。
PCT/CN2009/074506 2008-10-24 2009-10-19 中继传输的方法及设备 WO2010045864A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP09821585.8A EP2352265B1 (en) 2008-10-24 2009-10-19 Relay transmission method and device
EP13177461.4A EP2658148B1 (en) 2008-10-24 2009-10-19 Relay transmission method and device
BRPI0920592-6A BRPI0920592B1 (pt) 2008-10-24 2009-10-19 método e nó de retransmissão
KR1020117010997A KR101217756B1 (ko) 2008-10-24 2009-10-19 중계 전송 방법 및 장치
RU2011120793/07A RU2468526C1 (ru) 2008-10-24 2009-10-19 Способ и устройство ретрансляционной передачи
US12/982,384 US7953050B2 (en) 2008-10-24 2010-12-30 Relay transmission method and apparatus
US13/018,143 US7961688B2 (en) 2008-10-24 2011-01-31 Relay transmission method and apparatus
US13/018,093 US7953051B1 (en) 2008-10-24 2011-01-31 Relay transmission method and apparatus
US13/108,716 US8619724B2 (en) 2008-10-24 2011-05-16 Relay transmission method and apparatus
ZA2011/03765A ZA201103765B (en) 2008-10-24 2011-05-23 Relay transmission method and apparatus
US14/088,150 US9203501B2 (en) 2008-10-24 2013-11-22 Relay transmission method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810170763 2008-10-24
CN200810170763.5 2008-10-24
CN200910009900.1 2009-02-02
CN2009100099001A CN101730115B (zh) 2008-10-24 2009-02-02 中继传输的方法及设备

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/982,384 Continuation US7953050B2 (en) 2008-10-24 2010-12-30 Relay transmission method and apparatus
US13/018,093 Continuation US7953051B1 (en) 2008-10-24 2011-01-31 Relay transmission method and apparatus
US13/018,143 Continuation US7961688B2 (en) 2008-10-24 2011-01-31 Relay transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2010045864A1 true WO2010045864A1 (zh) 2010-04-29

Family

ID=42118959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074506 WO2010045864A1 (zh) 2008-10-24 2009-10-19 中继传输的方法及设备

Country Status (8)

Country Link
US (5) US7953050B2 (zh)
EP (4) EP2658148B1 (zh)
KR (1) KR101217756B1 (zh)
CN (1) CN101730115B (zh)
BR (1) BRPI0920592B1 (zh)
RU (4) RU2468526C1 (zh)
WO (1) WO2010045864A1 (zh)
ZA (3) ZA201103765B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086980A3 (ko) * 2010-12-20 2012-08-23 엘지전자 주식회사 무선 통신 시스템에서 장치 협력을 위한 프레임 구성 방법 및 장치
WO2012134115A2 (ko) * 2011-03-25 2012-10-04 엘지전자 주식회사 Tdd 기반 무선 통신 시스템에서 mbsfn 서브프레임을 이용한 통신 방법 및 장치

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2297872A1 (en) * 2008-07-10 2011-03-23 Telefonaktiebolaget L M Ericsson (PUBL) Insertion of signals by an intermediate device
CN101730115B (zh) * 2008-10-24 2013-01-30 华为技术有限公司 中继传输的方法及设备
KR101527977B1 (ko) 2008-10-27 2015-06-15 엘지전자 주식회사 무선통신 시스템에서 중계기의 동작 방법
KR101527975B1 (ko) * 2009-02-11 2015-06-15 엘지전자 주식회사 무선통신 시스템에서 데이터 중계 방법
CN101841846B (zh) * 2009-03-17 2012-12-26 电信科学技术研究院 Tdd模式下基于中继的上行数据传输方法、系统和设备
KR101729783B1 (ko) * 2009-12-18 2017-04-25 엘지전자 주식회사 중계국을 포함하는 통신 시스템에서 프레임을 통해 단말 및 기지국과 통신하는 방법 및 장치
WO2011086655A1 (ja) * 2010-01-12 2011-07-21 富士通株式会社 移動通信システム、無線通信装置、移動通信装置および無線通信方法
US9237583B2 (en) * 2010-05-03 2016-01-12 Qualcomm Incorporated Resource availability for PDSCH in relay backhaul transmissions
JP5530257B2 (ja) * 2010-05-27 2014-06-25 京セラ株式会社 基地局、基地局の通信方法、移動局、移動局の通信方法
CN102377550B (zh) * 2010-08-13 2016-06-15 中兴通讯股份有限公司 一种时分双工系统的中继链路harq传输方法及装置
CN102437904B (zh) * 2010-09-29 2015-05-13 中兴通讯股份有限公司 一种时分双工系统及其中继链路的下行反馈方法
KR101851240B1 (ko) * 2011-05-23 2018-04-23 삼성전자 주식회사 무선 통신 시스템을 위한 동적 시분할 복식 데이터 채널 전송 방법 및 이를 위한 장치
WO2013095034A1 (ko) * 2011-12-22 2013-06-27 엘지전자 주식회사 무선 접속 시스템에서 무선 통신 상태 측정 방법 및 이를 위한 장치
US20130242766A1 (en) * 2012-03-14 2013-09-19 Qualcomm Incorporated Pre-sib2 channel estimation and signal processing in the presence of mbsfn for lte
CN108282325B (zh) * 2012-03-19 2022-03-08 北京三星通信技术研究有限公司 一种lte tdd的特殊子帧信号传输方法和设备
CN103326840A (zh) * 2012-03-23 2013-09-25 电信科学技术研究院 一种时分双工通信的方法、系统和设备
CN103906261B (zh) * 2012-12-28 2018-06-05 中兴通讯股份有限公司 随机接入前导处理方法及装置
JP6216039B2 (ja) * 2013-05-15 2017-10-18 華為技術有限公司Huawei Technologies Co.,Ltd. 信号伝送方法、装置、通信システム、端末、及び基地局
CN104796996A (zh) * 2014-01-17 2015-07-22 中兴通讯股份有限公司 物理随机接入资源处理方法及装置
US20160212626A1 (en) * 2015-01-19 2016-07-21 Sinclair Broadcast Group, Inc. Next generation broadcast platform radio frame extensibility broadcast/unicast tdd in intelligent heterogeneous networks
US10439791B2 (en) 2015-08-11 2019-10-08 Kyocera Corporation Time division duplex (TDD) communication configuration for unconnected base stations
US9913283B1 (en) 2015-08-28 2018-03-06 Sprint Spectrum L.P. Assigning a frame configuration in a relay enabled communication network
US10574430B2 (en) * 2015-10-29 2020-02-25 Nippon Telegraph And Telephone Corporation Relay transmission system, relay transmission method, and relay transmission device
US10673579B2 (en) * 2016-03-03 2020-06-02 Lg Electronics Inc. Method and apparatus for transreceiving wireless signal in wireless communication system based on downlink scheduling information including different time unit types
US10015717B1 (en) 2017-10-25 2018-07-03 Sprint Spectrum Lp Cell reselection priority based on properties of communication bands

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040266339A1 (en) * 2003-05-28 2004-12-30 Telefonaktiebolaget Lm Ericsson (Publ). Method and architecture for wireless communication networks using cooperative relaying
WO2007064252A1 (en) * 2005-11-29 2007-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for improved relaying
CN101166055A (zh) * 2006-10-18 2008-04-23 华为技术有限公司 多跳中继方法和多跳中继系统

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020146129A1 (en) 2000-11-09 2002-10-10 Kaplan Ari D. Method and system for secure wireless database management
RU2205512C1 (ru) * 2002-04-25 2003-05-27 Приходько Виктор Владимирович Система подвижной радиосвязи
JP4652846B2 (ja) * 2004-03-11 2011-03-16 パナソニック株式会社 通信端末装置および通信中継方法
CN1941665B (zh) 2005-09-30 2011-06-01 华为技术有限公司 基于中转站实现无线中转的方法
CN1960207A (zh) 2005-11-01 2007-05-09 华为技术有限公司 基于fdd和tdd混合的无线中转通信系统及方法
CN1941666B (zh) * 2005-09-30 2014-07-30 华为技术有限公司 基于中转站实现带宽分配和调度管理的方法和系统
EP1931155B1 (en) * 2005-09-30 2014-01-01 Huawei Technologies Co., Ltd. Wireless relay communication system and method
US20070147333A1 (en) 2005-12-22 2007-06-28 Makhijani Mahesh A System and method of transmission scheduling in time-division duplex communication system to minimize interference
US8040826B2 (en) * 2006-03-03 2011-10-18 Samsung Electronics Co., Ltd Apparatus and method for supporting relay service in a multi-hop relay broadband wireless access communication system
US8014338B2 (en) * 2006-04-19 2011-09-06 Samsung Electronics Co., Ltd. Apparatus and method for supporting relay service in a multi-hop relay broadband wireless access communication system
CN101072424A (zh) * 2006-05-09 2007-11-14 华为技术有限公司 一种在中转系统中配置业务通路和移动站可靠切换的方法
EP1879409A1 (en) 2006-07-11 2008-01-16 Nokia Siemens Networks Gmbh & Co. Kg Time frame structure of a multi hop radio communication system
EP1890402B1 (en) * 2006-08-14 2018-10-17 Samsung Electronics Co., Ltd. Apparatus and method for providing relay service in multi-hop relay broadband wireless access communication system
JP4805751B2 (ja) * 2006-08-18 2011-11-02 富士通株式会社 無線通信装置および無線通信方法
KR101124027B1 (ko) * 2006-08-18 2012-03-23 후지쯔 가부시끼가이샤 멀티홉 중계 네트워크에서의 무선 자원 관리
CN101162936B (zh) * 2006-10-12 2011-05-25 中兴通讯股份有限公司 无线数字中继器的时隙分配方法
WO2008049028A1 (en) * 2006-10-17 2008-04-24 Intel Corporation Device, system, and method for partitioning and framing communication signals in broadband wireless access networks
EP2063552A4 (en) 2006-10-25 2014-05-28 Fujitsu Ltd RADIO BASE STATION, RELAY STATION, RADIO COMMUNICATION SYSTEM, AND RADIO COMMUNICATION METHOD
US20080181167A1 (en) 2006-10-25 2008-07-31 Sydir Jaroslaw J Interleaved frame structure enabling relay and access links to share a channel for multi-hop wireless broadband access communications
EP1916782A1 (en) * 2006-10-26 2008-04-30 Nortel Networks Limited Frame structure for a multi-hop wireless system
EP2080309B1 (en) * 2006-11-01 2017-01-11 Nokia Solutions and Networks GmbH & Co. KG Hierarchichal frame structure for ofdma system with relay
US7990906B2 (en) 2006-11-03 2011-08-02 Fujitsu Semiconductor Limited Frame structure for a relay station operating in mobile networks
JP2008172792A (ja) * 2007-01-08 2008-07-24 Samsung Electronics Co Ltd マルチホップ中継方式の広帯域無線接続通信システムにおけるフレーム情報伝送装置及び方法
CN101022666B (zh) * 2007-03-08 2013-10-23 北京邮电大学 在中继合作传输网络的帧结构中设置自适应转换点的方法
CN101282170B (zh) * 2007-04-05 2013-01-16 中兴通讯股份有限公司 一种共享中继系统中主从基站间负载均衡的方法
CN101345544B (zh) * 2007-07-09 2012-10-10 电信科学技术研究院 一种采用支持Relay的帧结构进行无线传输的方法和系统
CN101159526B (zh) 2007-10-29 2014-03-19 中兴通讯股份有限公司 数据传输方法
JP5463297B2 (ja) * 2007-11-09 2014-04-09 ゼットティーイー (ユーエスエー) インコーポレイテッド 通信システムのためのフレキシブルなofdm/ofdmaフレーム構造
WO2009088266A2 (en) * 2008-01-11 2009-07-16 Lg Electronics Inc. Enhanced tdd frame structure
CN101521538B (zh) 2008-02-25 2013-01-23 华为技术有限公司 一种支持中继传输的方法和通信设备
CN101237311B (zh) 2008-02-29 2012-11-28 中兴通讯股份有限公司 时分双工系统中上下行比例信息的发送方法和装置
US9867203B2 (en) 2008-07-11 2018-01-09 Qualcomm Incorporated Synchronous TDM-based communication in dominant interference scenarios
US9294219B2 (en) * 2008-09-30 2016-03-22 Qualcomm Incorporated Techniques for supporting relay operation in wireless communication systems
CN101730115B (zh) * 2008-10-24 2013-01-30 华为技术有限公司 中继传输的方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040266339A1 (en) * 2003-05-28 2004-12-30 Telefonaktiebolaget Lm Ericsson (Publ). Method and architecture for wireless communication networks using cooperative relaying
WO2007064252A1 (en) * 2005-11-29 2007-06-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for improved relaying
CN101166055A (zh) * 2006-10-18 2008-04-23 华为技术有限公司 多跳中继方法和多跳中继系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2352265A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086980A3 (ko) * 2010-12-20 2012-08-23 엘지전자 주식회사 무선 통신 시스템에서 장치 협력을 위한 프레임 구성 방법 및 장치
WO2012134115A2 (ko) * 2011-03-25 2012-10-04 엘지전자 주식회사 Tdd 기반 무선 통신 시스템에서 mbsfn 서브프레임을 이용한 통신 방법 및 장치
WO2012134115A3 (ko) * 2011-03-25 2013-01-03 엘지전자 주식회사 Tdd 기반 무선 통신 시스템에서 mbsfn 서브프레임을 이용한 통신 방법 및 장치

Also Published As

Publication number Publication date
ZA201103765B (en) 2012-10-31
RU2468526C1 (ru) 2012-11-27
US7953050B2 (en) 2011-05-31
EP2367296A3 (en) 2011-10-19
US20110110280A1 (en) 2011-05-12
RU2509431C1 (ru) 2014-03-10
EP2658148B1 (en) 2020-01-15
US20140078943A1 (en) 2014-03-20
EP2352265A4 (en) 2012-08-15
KR20110069884A (ko) 2011-06-23
EP2367296B1 (en) 2013-01-09
US8619724B2 (en) 2013-12-31
EP2352265B1 (en) 2013-08-28
EP2352265A1 (en) 2011-08-03
EP2363965A3 (en) 2011-10-19
US20110216675A1 (en) 2011-09-08
BRPI0920592A2 (pt) 2015-12-29
US7961688B2 (en) 2011-06-14
EP2658148A1 (en) 2013-10-30
CN101730115B (zh) 2013-01-30
EP2363965A2 (en) 2011-09-07
BRPI0920592B1 (pt) 2021-01-12
RU2012134792A (ru) 2014-02-20
RU2521475C2 (ru) 2014-06-27
EP2367296A2 (en) 2011-09-21
US20110085478A1 (en) 2011-04-14
EP2363965B1 (en) 2013-03-27
CN101730115A (zh) 2010-06-09
US9203501B2 (en) 2015-12-01
ZA201201987B (en) 2012-11-28
ZA201201988B (en) 2012-11-28
US20110110279A1 (en) 2011-05-12
RU2509432C1 (ru) 2014-03-10
KR101217756B1 (ko) 2013-01-02
US7953051B1 (en) 2011-05-31

Similar Documents

Publication Publication Date Title
WO2010045864A1 (zh) 中继传输的方法及设备
US10966199B2 (en) Method and apparatus for receiving or transmitting data
US10219260B2 (en) Dynamic TDD data channel transmission method and apparatus for wireless communication system
JP5395190B2 (ja) 無線通信システムにおける信号送信方法及び装置
JP5415629B2 (ja) リレー遷移時間のための装置および方法
US8797896B2 (en) System and method for assigning backhaul resources
US9350508B2 (en) Method and arrangement in a wireless communication network
US8848596B2 (en) Method for controlling timing of backhaul link and relay system for the same
KR101973465B1 (ko) 이동통신 시스템에서 백홀 링크 서브프레임 구조 및 그 정보 전송 방법
WO2010061053A1 (en) Relay node backhauling
WO2010121395A1 (zh) 无线中继的方法及其装置
US9509482B2 (en) Receiving method for interference cancellation, and terminal
WO2011079718A1 (zh) 基站、中继节点、中继子帧配置信息的通知方法及系统
CN103078718B (zh) 中继传输的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1785/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117010997

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009821585

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011120793

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0920592

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110425