WO2011091695A1 - 压缩天然气汽车碰撞试验后燃气系统高压密封性能安全检测方法 - Google Patents

压缩天然气汽车碰撞试验后燃气系统高压密封性能安全检测方法 Download PDF

Info

Publication number
WO2011091695A1
WO2011091695A1 PCT/CN2010/080293 CN2010080293W WO2011091695A1 WO 2011091695 A1 WO2011091695 A1 WO 2011091695A1 CN 2010080293 W CN2010080293 W CN 2010080293W WO 2011091695 A1 WO2011091695 A1 WO 2011091695A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
pressure
voltage
natural gas
compressed natural
Prior art date
Application number
PCT/CN2010/080293
Other languages
English (en)
French (fr)
Inventor
周阳
郑会军
李衡辉
Original Assignee
神龙汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神龙汽车有限公司 filed Critical 神龙汽车有限公司
Publication of WO2011091695A1 publication Critical patent/WO2011091695A1/zh
Priority to US13/548,239 priority Critical patent/US9097608B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/025Details with respect to the testing of engines or engine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/025Failure diagnosis or prevention; Safety measures; Testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/029Arrangement on engines or vehicle bodies; Conversion to gaseous fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0293Safety devices; Fail-safe measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • G01M3/3272Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers for verifying the internal pressure of closed containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/03006Gas tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/03006Gas tanks
    • B60K2015/03013Control systems for LPG tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03328Arrangements or special measures related to fuel tanks or fuel handling
    • B60K2015/03447Arrangements or special measures related to fuel tanks or fuel handling for improving the sealing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the invention belongs to the detection technology of a vehicle system, and particularly relates to a safety detection method for high-pressure sealing performance of a compressed gas automobile gas system. Background technique
  • the general test method standard for the vehicle in use is widely used at home and abroad, namely, the leak detection liquid (neutral foaming liquid) detection method and the gas explosion-proof detector.
  • this test method cannot be applied to the safety test of the high-pressure sealing performance of the gas system after the crash test of the compressed natural gas vehicle.
  • the CNG vehicle gas system of the CNG vehicle is filled with compressed air or nitrogen to 20Mpa without destroying the existing piping system and piping joints of the vehicle, and the vehicle gas system is implemented.
  • High pressure sealing performance testing First of all, the inspector does not know whether there is air leakage in the vehicle's gas system. When detecting, the leak detection liquid or gas explosion-proof detector is used for detection. This may have the following consequences: If there is a leak in the gas system, the inspector Personal safety will be unpredictable, which is contrary to the original intention.
  • the object of the present invention is to provide a safe and reliable method for detecting high-pressure sealing performance of a gas system after a crash test of a compressed natural gas vehicle to solve the above problems.
  • the technical scheme of the invention is: a safety detection method for high-pressure sealing performance of a gas system after a crash test of a compressed natural gas vehicle, which is to install a high-pressure sensor for a vehicle having a certain characteristic curve on a pipeline of a pressure reducer inlet, and to inject into a high-pressure pipeline Compressed gas at a safe pressure;
  • the gas system Before the crash test of a CNG vehicle, the gas system is injected with a compressed gas in a normal working pressure, and the voltage value detected by the high-pressure sensor within 1 to 3 hours, when the detected voltage drop value is less than the set value At this time, it can be judged that the gas system sealing performance of the compressed natural gas vehicle is safely tested; otherwise, it is determined that the safety test of the gas system of the compressed natural gas vehicle is unqualified;
  • the characteristic curve of the high pressure sensor having the characteristic curve is : V.
  • the high pressure sensor is a piezoresistive pressure sensor.
  • the piezoresistive pressure sensor is a sensor based on the principle of piezoresistive effect of a semiconductor material (monocrystalline silicon).
  • the integrated circuit is used to directly form a diffusion varistor on a silicon flat film in a certain crystal orientation, when the silicon diaphragm is used. When pressed, the deformation of the diaphragm will change the resistance of the diffusion resistor.
  • the diffusion resistance on the silicon flat diaphragm usually constitutes a bridge measuring circuit, and the relative bridge arm resistance is symmetrically arranged. When the resistance changes, the bridge output voltage is proportional to the pressure of the diaphragm. That is, physical characteristics.
  • the vehicle high-pressure sensor feeds back the gas medium information monitored by the pressure reducer inlet to the gas management system (ECU).
  • the real-time information includes: gas volume dynamic information and gas volume abnormality information, and the ECU transmits it to the transfer switch and the high pressure solenoid valve according to the information classification. Wait for the terminal to execute.
  • V dd 5 volts
  • A 10
  • B 80
  • P max 260 volts
  • V dd 5 volts
  • P max 250 volts
  • V dd 5 volts
  • V 0.84V
  • V dd 5 volts
  • P max 260 volts
  • V dd 5 volts
  • P max 250 volts
  • the invention solves the problem that the high-pressure system pipeline and the joint have air leakage behavior judgment condition; 2. determines the safety judgment condition of the operation method used by the leakage point (using the detection liquid method); 3. protects the personal safety of the inspection personnel;
  • the sensitivity coefficient is 50-100 times larger.
  • the output of the piezoresistive pressure sensor can be directly measured without an amplifier.
  • the structure size is small and the weight is light; the structure is firm, impact resistance and vibration; pressure High resolution and frequency response. Detecting a pressure as small as blood pressure, it can also measure pulsating pressures of several tens of kilohertz; high reliability and precision, and long service life. The accuracy is up to ⁇ 0.2% ⁇ 0.02%; with temperature compensation; the gas system safety performance test index after the collision test is specifically quantified, easy to operate, high safety factor; DRAWINGS
  • Figure 1 shows the physical characteristics of sensor I.
  • Figure 2 shows the physical characteristics of sensor II.
  • Figure 3 shows the physical characteristics of sensor III.
  • V 0 (10 + 80 / P max * Pressure *! 1 ) / (100 * V dd )
  • V 0 (10 + 80 / P max * Pressure *! 1 ) / (100 * V dd )
  • V 0 (10 + 78.2 / P max * Pressure *! 1 ) / (100 * V dd )
  • Wire harness connection for vehicle high-voltage sensor and normal operation Wire harness specific connection method is: The high-voltage sensor data output "+” end of the vehicle is connected with the voltage digital display or the secondary converter "+” end, and the vehicle is used for high voltage. The "+” end of the sensor supply is connected to the "+” end of the adjustable power supply. The high-voltage sensor supply for the vehicle is connected to the "-" end of the adjustable power supply "-" terminal, the voltage digital display or the secondary converter "-”. .
  • the high-pressure sensor has the physical characteristics of Figure 1. It can be judged that the CNG gas system of the CNG gas system is safely inspected; otherwise, the sealing performance of the CNG gas system of the CNG vehicle is determined. Safety inspection failed;

Description

压缩天然气汽车碰撞试验后
燃气系统高压密封性能安全检测方法 技术领域
本发明属于车辆系统的检测技术,具体涉及一种压缩天然气汽车燃气系 统高压密封性能安全检测方法。 背景技术
在国内, 由于压缩天然气汽车的发展迅速, 而针对压缩天然气汽车实施 碰撞试验及碰撞试验后对燃气系统高压密封性能安全检测技术及方法的相 应法规、 标准制定出现空缺。
目前在国内、 外都普遍使用在用车的通用检测方法标准, 即检漏液(中 性发泡液)检测法和气体防爆检测仪。 而此检测方法不能适用于压缩天然气 汽车碰撞试验后对燃气系统高压密封性能安全检测。
针对压缩天然气汽车在实施碰撞试验后, 在不破坏车辆现有管路系统及 管路接头的情况下, 对压缩天然气汽车 CNG车辆燃气系统充压缩空气或氮 气至 20Mpa后, 并对车辆燃气系统实施高压密封性能检测。 首先检测人员 并不知道车辆燃气系统是否存在漏气行为,在检测时直接采用检漏液或气体 防爆检测仪进行检测, 这样有可能造成的后果是: 如果燃气系统某处存在漏 气, 检测人员的人身安全将受到不可预见性的伤害, 这样违背初衷。
国内、 外现状
压缩天然气汽车碰撞试验后燃气系统高压密封性能安全检测技术及方 法, 国外并没有详细地给出方法检测, 相应法规标准定义地比较模糊。 而此 行业在国内、 外的现状如下:
国外: 目前只有美国做过压缩天然气汽车碰撞试验后燃气系统高压密封 性能安全检测, 在 FMVSS303标准中只规定了燃气系统的密封要求, 即在 一定的时间内压力下降值的量化指标,并没有定义详细地检测技术及检测方 法, 并且安全性不高, 操作性不强; 而在其它国家(包括中国)及地区、 行 业中目前还尚处于空白。也就是目前在压缩天然气汽车碰撞试验后燃气系统 高压密封性能安全检测方面,国内外上没有一个安全可靠的具体定义的检测 技术及方法。 发明内容
本发明的目的在于提供一种安全可靠的压缩天然气汽车碰撞试验后燃气 系统高压密封性能安全检测方法, 以解决上述问题。
本发明的技术方案为:压缩天然气汽车碰撞试验后燃气系统高压密封性 能安全检测方法,它是将具有一定特性曲线的车用高压传感器安装在减压器 进气口管道上, 高压管路中注入安全压力的压缩气体; 压缩天然气汽车碰撞 试验前, 对燃气系统注入正常工作压力内的压缩气体, 在 1 ~ 3小时内通过 高压传感器检测的电压值, 当检测到的电压下降值小于设定值时, 就可判定 此辆压缩天然气汽车的燃气系统密封性能安全检验合格;否则就判定此辆压 缩天然气汽车的燃气系统密封性能安全检验不合格;所述具有特性曲线的高 压传感器的特性曲线公式为: V。=(A+B/Pmax* Pressure*!1) / (100* Vdd) 其中 Pmax — 车用高压传感器最大量程压力值(bar ), Pressure 一 输入燃气系统的压力值(bar ), Vdd — 车用高压传感器供给电压值(V ), Vo 一车用高压传感器输出电压值, A-当 Pressure为 0时对应的 V。值, B- 当 Pressure = Pmax时对应的 V。值 -A; T-检测时间; 所述高压传感器为压阻式 压力传感器。
压阻式压力传感器是基于半导体材料 (单晶硅)的压阻效应原理制成的传 感器, 利用集成电路工艺直接在硅平膜片上按一定晶向制成扩散压敏电阻, 当硅膜片受压时,膜片的变形将使扩散电阻的阻值发生变化。硅平膜片上的 扩散电阻通常构成桥式测量电路,相对的桥臂电阻是对称布置的, 电阻变化 时, 电桥输出电压与膜片所受压力成比例变化关系。 即物理特性。
车用高压传感器把减压器进气口实时监控的气体介质信息反馈给燃气管 理系统 (ECU), 实时信息包括: 气量动态信息和气量异常信息, ECU根据信 息分类传递给转换开关和高压电磁阀等终端执行。
我们在不破坏高压系统管路及接头前提下,利用物理特性的检测方法(即 敏感元件在压力的作用下, 其某些物理特性发生与压力成比例变化的原理, 将被测压力直接转换为各种电量)。 在车用高压传感器的三端口线束插接件 上,安装一个线束插接件转换接头,通过转换接头引出两根线束接入标定的数 字显示万能表或二次转换仪, 读取车用高压传感器反馈给 ECU的电压数值 信号进行检测。
所述燃气系统中的压力下降值小于设定值是依据高压气体泄漏对人体 的最小伤害值; 它是根据不同车用燃气系统类型的人为设定的可以是 0.5 ~ 3Mpa, 一般为 IMpa但不限于上述范围; 燃气气瓶中注入核定压力值也是 一个认为的设定值, 可以是 0 ~ 20Mpa, 一般在测试时燃气气瓶中注入核定 压力值为 20 Mpa但不限于上述范围; 本发明中利用具有 V =(A+B/P * Pressure*!1) / (100* Vdd) 特性曲线 性能的车用高压传感器在单位时间内检测到的电压的下降值来判断压缩天 然气汽车碰撞试验后燃气系统是否泄漏;其中对于不同类型的车用高压传感 器输入电压值 Vdd, 对应的有不同的 A值和 B值, A值和 B值的得到是依据 欧洲 1999年出版的《EURUPEAN STANDARD》 EP60770-1 1999《传感器 输入输出特性的测试标准》 而定的。 对于采用 Vdd=5伏特, A=10, B=80, Pmax=250伏特类型的车用高压传感 器时, 当对车辆检测时间在 1 小时内时, 相应检测的电压下降值须小于 V=0.67V。
对于采用 Vdd=5伏特, A=10, B=80, Pmax=260伏特类型的车用高压传感 器时, 当对车辆检测时间在 1 小时内时, 相应检测的电压下降值须小于 V=0.66V。
对于采用 Vdd=5伏特, A=10, B=78.2 , Pmax=250伏特类型的车用高压传 感器时, 当对车辆检测时间在 1小时内时,相应检测的电压下降值须小于 Δ V=0.67V。
对于采用 Vdd=5伏特, A=10, B=80, Pmax=250伏特类型的车用高压传感 器时, 当对车辆检测时间在 2 小时内时, 相应检测的电压下降值须小于 V=0.84V。
对于采用 Vdd=5伏特, A=10, B=80, Pmax=250伏特类型的车用高压传感 器时, 当对车辆检测时间在 2 小时内时, 相应检测的电压下降值须小于 V=1.01V 。 对于采用 Vdd=5伏特, A=10, B=80, Pmax=260伏特类型的车用高压传感 器时, 当对车辆检测时间在 2 小时内时, 相应检测的电压下降值须小于 Δ V=0.83V。
对于采用 Vdd=5伏特, A=10, B=80, Pmax=260伏特类型的车用高压传感 器时, 当对车辆检测时间在 3 小时内时, 相应检测的电压下降值须小于 Δ V=0.99V。
对于采用 Vdd=5伏特, A=10, B=78.2, Pmax=250伏特类型的车用高压传 感器时, 当对车辆检测时间在 3小时内时,相应检测的电压下降值须小于 Δ V=0.83V。
对于采用 Vdd=5伏特, A=10, B=78.2, Pmax=250伏特类型的车用高压传 感器时, 当对车辆检测时间在 3小时内时,相应检测的电压下降值须小于 Δ V=1.00V。 本发明 1、 解决高压系统管路及接头是否存在漏气行为判断条件; 2、 确定泄露点所使用的操作方法 (利用检露液法) 的安全判断条件; 3、 保护 检测人员的人身安全;
特点: 它具有灵敏系数高。 比金属应变式压力传感器的灵敏度系数要大 50-100倍,压阻式压力传感器的输出不需要放大器就可直接测量; 结构尺寸 小, 重量轻; 结构坚固、 抗沖击性和振动性; 压力分辨率、 频率响应高。 检 测出像血压那么小的 压 ,也可测量几十千赫的脉动压力 ; 工作可靠性和 精度高, 且使用寿命长。 其精度可达 ± 0.2 % ~ 0.02 % ; 具有温度补偿; 碰撞 试验后的燃气系统安全性能检验指标具体量化, 易操作性、 安全系数高; 附图说明
图 1传感器 I的物理特性图。
图 2传感器 II的物理特性图。
图 3传感器 III的物理特性图。
图 1中, V0=(10+80/Pmax* Pressure*!1) / (100* Vdd)
Pmax = 260 bar; Vdd = 5伏特 T = 1小时或 2小时或 3小时。
图 2中, V0=(10+80/Pmax* Pressure*!1) / (100* Vdd)
Pmax = 250 bar; Vdd = 5伏特 T = 1小时或 2小时或 3小时。
图 3中, V0=(10+78.2/Pmax* Pressure*!1) / (100* Vdd)
Pmax = 250 bar; Vdd = 5伏特 T = 1小时或 2小时或 3小时。
具体实施方式
本实施例用于对本发明权利要求的解释,本领域的技术人员依据本发明 技术方案做出的不同于本实施例的改变均属于本发明的保护范围。
碰撞试验后燃气系统高压密封性能安全检测方法及步骤:
对压缩天然气汽车压缩天然气汽车 CNG 的高压管路及接头处进行目视 检查, 在确认压缩天然气汽车 CNG系统高压管路及接头处没有明显的损坏 和泄露的情况下进行压缩天然气汽车燃气系统高压密封性能安全检验。
试验前的准备:
( 1 )对压缩天然气汽车压缩天然气汽车的高压管路及接头处进行目视 检查, 在确认压缩天然气汽车系统高压管路及接头处没有明显的损坏和泄 ( 2 )在减压器进气口安装具有特性曲线的高压传感器, 连接外用标定 的外接电压电源;
( 3 )对车用高压传感器实施线束连接并正常工作; 线束具体接法为: 车用高压传感器数据输出 "+"端与电压数字显示仪或二次转换仪" +"端相连, 车用高压传感器供给电源 "+"端与可调电源 "+"端相连,车用高压传感器供给 电源" -"端与可调电源 "-"端、 电压数字显示仪或二次转换仪" -"端相连。
( 4 )对压缩天然气汽车 CNG车辆燃气系统加压至 20MPa的氮气( N2 ) 或压缩干燥空气, 并在通风的试验间内放置 2 ~ 8小时后, 再次对压缩天然 气汽车 CNG车辆燃气系统加压至 20MPa的氮气( N2 )或压缩干燥空气, 且气瓶的温度保持在 20°C; 碰撞试验后的燃气系统高压检验方法
a)启动外接电压电源的开启开关, 使车辆处于通电状态。 并在压缩天然 气汽车燃料系统高压一侧的选取特定区域进行测量及记录电压值;
b) 车辆放置在检测车间内检测 1 ~ 3小时, 每隔 15 ~ 30分钟观测一次 万能表或二次转换仪, 记录相应的电压值和检测时间;
c) 以最后一次测量的电压值为准, 和第一次测量电压值进行比较, 如 果电压下降值小于 0.67 V (或 2小时内对应的电压下降值须小于 0.84V, 或 3小时内对应的电压下降值须小于 1.01V ),该高压传感器具有图 2的物理特 性;
注: (10+80/250bar*10.62bar) 1 100*5V=0.66992V « 0.67V
(10+80/250bar*10.62bar*2) / 100*5V=0.83984V « 0.84V (10+80/250bar*10.62bar*3) / 100*5V=1 .00976V « 1 .01 V 如果电压下降值小于 0.67 V (或 2 小时内对应的电压下降值须小于 0.83V, 或 3小时内对应的电压下降值须小于 1.00V ), 该高压传感器具有图 3的物理特性;
注: (10+78.2/250bar*10.62bar) 1 100*5V=0.66610V « 0.67V
(10+78.2/250bar*10.62bar*2) 1 100*5V=0.83219V « 0.83V
(10+78.2/250bar*10.62bar*3) 1 100*5V=0.99829V « 1 .00V 如果电压下降值小于 0.66V (或 2 小时内对应的电压下降值须小于 0.83V, 或 3小时内对应的电压下降值须小于 0.99V )该高压传感器具有图 1 的物理特性; 就可判定此辆压缩天然气汽车 CNG燃气系统密封性能安全检 险合格; 否则就判定此辆压缩天然气汽车 CNG燃气系统密封性能安全检险 不合格;
注: (10+80/260bar*10.62bar) 1 100*5V=0.66338V « 0.66V
(10+80/260bar*10.62bar*2) 1 100*5V=0.82677V « 0.83V
(10+80/260bar*10.62bar*3) / 100*5V=0.99015V « 0.99V d) 如果所检测的压缩天然气汽车 CNG 燃气系统密封性能安全检验不 合格, 须待整车高压系统内的气体降至安全保护压力范围内, 高压实时检测 的电压值 < 0.98V或高压实时检测的电压值 < 0.96V或高压实时检测的电压 值 < 0.97V后, 再采取检漏液检测法确定泄露的具体位置并做相应地记录、 拍照。
注: (10+80/250bar*30bar) 1 100*5V=0.98V « 0.98V
(10+80/260bar*30bar) 1 100*5V=0.96154V « 0.96V
(10+78.2/250bar*30bar) 1 100*5V=0.9692V « 0.97V
30bar是引用 ECE R110-2008版欧洲经济技术委员会汽车技术法规(筒称
ECE法规)条款 2压力分类定义中的安全工作压力的中压定义的上限值。

Claims

权 利 要 求 书
1、 压缩天然气汽车碰撞试验后燃气系统高压密封性能安全检测方法, 它是将具有一定特性曲线的车用高压传感器安装在减压器进气口管道上,高 压管路中注入安全压力的压缩气体; 压缩天然气汽车碰撞试验前,对燃气系 统注入正常工作压力的压缩气体,在 1 ~ 3小时内检测高压传感器的电压值, 当在规定的时间内检测到的电压下降值小于设定值时,对应检测到的高压传 感器电压下降值,就可判定此辆压缩天然气汽车的燃气系统密封性能安全检 验合格;否则就判定此辆压缩天然气汽车的燃气系统密封性能安全检验不合 格; 所述具有特性曲线的高压传感器的特性曲线公式为: V =(A+B/Pmax* Pressure*T)/(100* Vdd)
其中 Pmax—车用高压传感器最大量程压力值(bar ), Pressure―输入 燃气系统的压力值(bar ), Vdd—车用高压传感器供给电压值(V ), Vo— 车用高压传感器输出电压值, A-当 Pressure为 0时对应的 V0值,Β-当 Pressure = Pmax时对应的 V0值 -A, T-检测时间; 所述高压传感器为压阻式压力传感 器。
2、 如权利要求 1所述压缩天然气汽车碰撞试验后燃气系统高压密封性 能安全检测方法, 其特征在于采用 Vdd=5伏特, A=10, B=80, P =250伏 特类型的车用高压传感器时, 当对车辆检测时间在 1小时内时,相应检测的 电压下降值须小于 AV=0.67V
3、 如权利要求 1所述压缩天然气汽车碰撞试验后燃气系统高压密封性 能安全检测方法, 其特征在于采用 Vdd=5伏特, A=10, B=80, P =260伏 特类型的车用高压传感器时, 当对车辆检测时间在 1小时内时,相应检测的 电压下降值须小于 AV=0.66 V
4、 如权利要求 1所述压缩天然气汽车碰撞试验后燃气系统高压密封性 能安全检测方法, 其特征在于采用 Vdd=5 伏特, A=10, B=78.2, P =250 伏特类型的车用高压传感器时, 当对车辆检测时间在 1小时内时,相应检测 的电压下降值须小于 AV=0.67 V
5、 如权利要求 1所述压缩天然气汽车碰撞试验后燃气系统高压密封性 能安全检测方法, 其特征在于采用 Vdd=5伏特, A=10, B=80, P =250伏 特类型的车用高压传感器时, 当对车辆检测时间在 2小时内时,相应检测的 电压下降值须小于 AV=0.84V
6、 如权利要求 1所述压缩天然气汽车碰撞试验后燃气系统高压密封性 能安全检测方法, 其特征在于采用 Vdd=5伏特, A=10, B=80, P =250伏 特类型的车用高压传感器时, 当对车辆检测时间在 2小时内时,相应检测的 电压下降值须小于 AV=1.01V
7、 如权利要求 1所述压缩天然气汽车碰撞试验后燃气系统高压密封性 能安全检测方法, 其特征在于采用 Vdd=5伏特, A=10, B=80, P =260伏 特类型的车用高压传感器时, 当对车辆检测时间在 2小时内时,相应检测的 电压下降值须小于 AV=0.83V
8、 如权利要求 1所述压缩天然气汽车碰撞试验后燃气系统高压密封性 能安全检测方法, 其特征在于采用 Vdd=5伏特, A=10, B=80, P =260伏 特类型的车用高压传感器时, 当对车辆检测时间在 3小时内时,相应检测的 电压下降值须小于 AV=0.99V
9、 如权利要求 1所述压缩天然气汽车碰撞试验后燃气系统高压密封性 能安全检测方法, 其特征在于采用 Vdd=5 伏特, A=10, B=78.2, P =250 伏特类型的车用高压传感器时, 当对车辆检测时间在 3小时内时,相应检测 的电压下降值须小于 AV=0.83V
10、如权利要求 1所述压缩天然气汽车碰撞试验后燃气系统高压密封性 能安全检测方法, 其特征在于采用 Vdd=5 伏特, A=10, B=78.2, P =250 伏特类型的车用高压传感器时, 当对车辆检测时间在 3小时内时,相应检测 的电压下降值须小于 AV=1.00V
11、如权利要求 1 ~ 10所述任一压缩天然气汽车碰撞试验后燃气系统高 压密封性能安全检测方法, 其特征在于在 1 ~ 3小时通过车用高压传感器检 测燃气系统的电压值, 每隔 15 ~ 30分钟观测一次万能表或二次转换仪, 记 录相应的电压值和检测时间; 以最后一次测量的电压值为准。
12、如权利要求 1 ~ 10所述任一压缩天然气汽车碰撞试验后燃气系统高 压密封性能安全检测方法,其特征在于所检测的压缩天然气汽车燃气系统高 压密封性能安全检验不合格时,须待整车高压系统内的气体降至安全保护压 力范围内, 即高压实时检测的电压值 < 0.98V 或高压实时检测的电压值 <
0.96V或高压实时检测的电压值〈电 0.97V后, 再采取检漏液检测法确定泄 露的具体位置并记录、 拍照。
13、如权利要求 1所述压缩天然气汽车碰撞试验后燃气系统高压密封性 能安全检测方法,其特征在于所述燃气系统中注入正常工作范围压力的压缩 气体,即对压缩天然气汽车燃气系统加压至 20MPa的氮气或压缩干燥空气。
14、如权利要求 1所述压缩天然气汽车碰撞试验后燃气系统高压密封性 能安全检测方法, 其特征在于所述具体步骤为:
碰撞试险后的高压检险方法:
a)启动外接电压电源的开启开关, 使车辆处于通电状态。 并在压缩天然 气汽车燃料系统高压一侧的选取特定区域进行测量及记录电压值;
b) 车辆放置在检测车间内检测 1 ~ 3小时, 每隔 15 ~ 30分钟观测一次 万能表或二次转换仪, 记录相应的电压值和检测时间;
c) 以最后一次测量的电压值为准, 和第一次测量电压值进行比较: 如 果采用的是车用高压传感器 Π ,相应检测时间在 1小时内对应的电压下降值 小于 0.67 V或 2小时内对应的电压下降值须小于 0.84V或 3小时内对应的 电压下降值须小于 1.01V; 就可判定此辆压缩天然气汽车燃气系统密封性能 安全检验合格;否则就判定此辆压缩天然气汽车燃气系统密封性能安全检验 不合格;
车用高压传感器 II特性: V0=(10+80/Pmax* Pressure*T)/(100* Vdd) Pmax = 250 bar; Vdd = 5伏特;
或如果采用的是车用高压传感器 III,相应检测时间在 1小时内对应的电 压下降值小于 0.67 V或 2小时内对应的电压下降值须小于 0.83V或 3小时 内对应的电压下降值须小于 1.00V; 就可判定此辆压缩天然气汽车燃气系统 密封性能安全检险合格;否则就判定此辆压缩天然气汽车燃气系统密封性能 安全检验不合格;
车用高压传感器 III特性 V0=(10+78.2/Pmax* Pressure*T)/(100* Vdd) Pmax = 250 bar; Vdd = 5伏特
或如果采用的是车用高压传感器 I,相应检测时间在 1小时内对应的电 压下降值小于 0.66V或 2小时内对应的电压下降值须小于 0.83V或 3小时内 对应的电压下降值须小于 0.99V, 就可判定此辆压缩天然气汽车燃气系统密 封性能安全检险合格;否则就判定此辆压缩天然气汽车燃气系统密封性能安 全检验不合格; 车用高压传感器 I特性: V =(10+80/P * Pressure*T)/(100* Vdd) P 260 bar; Vdd = 5伏特
d) 如果所检测的压缩天然气汽车燃气系统密封性能安全检验不合格, 须待整车高压系统内的气体降至安全保护压力范围内,即高压实时检测的电 压值 < 0.98 V或高压实时检测的电压值 < 0.96V或高压实时检测的电压值 < 0.97V后, 再采取检漏液检测法确定泄露的具体位置并记录、 拍照。
15、 如权利要求 14所述压缩天然气汽车碰撞试验后燃气系统高压密封 性能安全检测方法,其特征在于碰撞试验后的高压检验之前进行试验前的准 备为:
( 1 )对压缩天然气汽车压缩天然气汽车的高压管路及接头处进行目视 检查, 在确认压缩天然气汽车系统高压管路及接头处没有明显的损坏和泄 露;
( 2 )在减压器进气口安装具有特性曲线的高压传感器, 连接外用标定 的外接电压电源;
( 3 )对高压传感器实施线束连接并正常工作;
( 4 )对压缩天然气汽车燃气系统加压至 20MPa 的氮气或压缩干燥空 气, 并在通风的试验间内放置 2 ~ 8小时后, 再次对压缩天然气汽车燃气系 统加压至 20MPa的氮气或压缩干燥空气, 且气瓶的温度保持在 20°C
PCT/CN2010/080293 2010-01-26 2010-12-27 压缩天然气汽车碰撞试验后燃气系统高压密封性能安全检测方法 WO2011091695A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/548,239 US9097608B2 (en) 2010-01-26 2012-07-13 Method for detecting high-pressure sealing performance of gas system after impact test of compressed natural gas vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010103805.0 2010-01-26
CN2010101038050A CN101793587B (zh) 2010-01-26 2010-01-26 压缩天然气汽车碰撞试验后燃气系统高压密封性能安全检测方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/548,239 Continuation-In-Part US9097608B2 (en) 2010-01-26 2012-07-13 Method for detecting high-pressure sealing performance of gas system after impact test of compressed natural gas vehicle

Publications (1)

Publication Number Publication Date
WO2011091695A1 true WO2011091695A1 (zh) 2011-08-04

Family

ID=42586402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080293 WO2011091695A1 (zh) 2010-01-26 2010-12-27 压缩天然气汽车碰撞试验后燃气系统高压密封性能安全检测方法

Country Status (3)

Country Link
US (1) US9097608B2 (zh)
CN (1) CN101793587B (zh)
WO (1) WO2011091695A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850845B2 (en) 2011-12-07 2017-12-26 Agility Fuel Systems, Inc. Systems and methods for monitoring and controlling fuel systems

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101793587B (zh) * 2010-01-26 2011-12-28 神龙汽车有限公司 压缩天然气汽车碰撞试验后燃气系统高压密封性能安全检测方法
CN102410911B (zh) * 2011-07-29 2014-04-09 四川省特种设备检验研究院 Cng燃料系统的气密性检测方法及检测装置
DE102011083027A1 (de) * 2011-09-20 2013-03-21 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Erfassung des Aufpralls eines Objekts auf ein Fahrzeug
CN103257370A (zh) * 2012-09-03 2013-08-21 上海未来伙伴机器人有限公司 碰撞检测装置和包含其的机器人
DE102013007324A1 (de) * 2013-04-29 2014-10-30 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren und Vorrichtung zur Durchführung einer Dichtigkeitsprüfung eines Flüssiggas-treibstoffsystems eines Kraftfahrzeugs
US9417152B2 (en) * 2013-10-25 2016-08-16 Star Envirotech, Inc. Combination smoke machine and nitrogen generator
CN105675219B (zh) * 2016-03-25 2018-02-09 舟山万邦永跃船舶修造有限公司 船舶管路试压系统
CN106404316B (zh) * 2016-08-30 2019-10-08 承德市精密试验机有限公司 一种塑料管材密封性实验装置
CN109406712B (zh) * 2018-10-19 2021-06-11 上海复合材料科技有限公司 带安全隔离装置的气瓶火烧试验装置及使用方法
CN110657037B (zh) * 2019-09-29 2021-12-17 潍柴西港新能源动力有限公司 检测天然气发动机供气系统泄漏的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1229916A (zh) * 1999-02-08 1999-09-29 于志谦 双燃料汽车高压管路泄漏检测装置
CN2751291Y (zh) * 2004-11-15 2006-01-11 西安交通大学 天然气汽车泄漏监测装置
CN101520363A (zh) * 2008-02-21 2009-09-02 通用汽车环球科技运作公司 清除阀泄漏诊断系统和方法
CN101793588A (zh) * 2010-01-26 2010-08-04 神龙汽车有限公司 压缩天然气汽车燃气系统低中高压密封性能安全检测方法
CN101793587A (zh) * 2010-01-26 2010-08-04 神龙汽车有限公司 压缩天然气汽车碰撞试验后燃气系统高压密封性能安全检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644072A (en) * 1994-03-28 1997-07-01 K-Line Industries, Inc. Evaporative emissions test apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1229916A (zh) * 1999-02-08 1999-09-29 于志谦 双燃料汽车高压管路泄漏检测装置
CN2751291Y (zh) * 2004-11-15 2006-01-11 西安交通大学 天然气汽车泄漏监测装置
CN101520363A (zh) * 2008-02-21 2009-09-02 通用汽车环球科技运作公司 清除阀泄漏诊断系统和方法
CN101793588A (zh) * 2010-01-26 2010-08-04 神龙汽车有限公司 压缩天然气汽车燃气系统低中高压密封性能安全检测方法
CN101793587A (zh) * 2010-01-26 2010-08-04 神龙汽车有限公司 压缩天然气汽车碰撞试验后燃气系统高压密封性能安全检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850845B2 (en) 2011-12-07 2017-12-26 Agility Fuel Systems, Inc. Systems and methods for monitoring and controlling fuel systems
US10215127B2 (en) 2011-12-07 2019-02-26 Agility Fuel Systems Llc Systems and methods for monitoring and controlling fuel systems
US10865732B2 (en) 2011-12-07 2020-12-15 Agility Fuel Systems Llc Systems and methods for monitoring and controlling fuel systems

Also Published As

Publication number Publication date
US20130000380A1 (en) 2013-01-03
CN101793587B (zh) 2011-12-28
CN101793587A (zh) 2010-08-04
US9097608B2 (en) 2015-08-04

Similar Documents

Publication Publication Date Title
WO2011091695A1 (zh) 压缩天然气汽车碰撞试验后燃气系统高压密封性能安全检测方法
TW387981B (en) Pressure relife valve monitoring device
US7322228B2 (en) Evaluating the leaktightness of a device for storing fuel gas under high pressure
CN107150676B (zh) 一种轨道车制动过程监测装置及方法
CN103575465A (zh) 用于单晶过程流体压力传感器的热诊断
CN101349604B (zh) 一种管道实时压力测试监控装置及方法
CN101266187A (zh) 燃气调压器的测试装置
CN101793588B (zh) 压缩天然气汽车燃气系统低中高压密封性能安全检测方法
CN204988873U (zh) 飞机波纹管密封压力测试夹具
CN111912585A (zh) 带有温度补偿的管道严密性试验系统及试验方法
CN203688152U (zh) 一种新型气体减压器检验装置
JP3116134B2 (ja) 踏力検出装置、およびそれを用いたブレーキ装置の性能評価装置
CN113551824A (zh) 一种基于超声反射系数的螺栓连接界面压力检测方法及装置
CN106124924A (zh) 李萨如图形在线检测变压器绕组变形的负荷归一化方法
CN112880918B (zh) 一种用于检测液压设备泄漏的方法及装置
CN109682556A (zh) 法兰泄漏检测装置及方法
CN201210104Y (zh) 一种燃气调压器的测试装置
CN211232400U (zh) 一种检验液化气车罐体压力工具
CN217155462U (zh) 一种温压一体化传感器
CN209513248U (zh) 列车阀门试验台在线校准系统
CN103033457B (zh) 水泥混凝土渗透仪校准器
CN218765367U (zh) 一种变送器检具连接装置及变送器检测装置
CN213842560U (zh) 一种变压器加压试漏装置
CN214149672U (zh) 一种汽车发动机气缸压力检测传感器
CN212844384U (zh) 一种转向系统故障检测工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844472

Country of ref document: EP

Kind code of ref document: A1