WO2011090260A2 - Device for continuously manufacturing activated carbon - Google Patents

Device for continuously manufacturing activated carbon Download PDF

Info

Publication number
WO2011090260A2
WO2011090260A2 PCT/KR2010/007667 KR2010007667W WO2011090260A2 WO 2011090260 A2 WO2011090260 A2 WO 2011090260A2 KR 2010007667 W KR2010007667 W KR 2010007667W WO 2011090260 A2 WO2011090260 A2 WO 2011090260A2
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
kiln
combustion heat
raw material
carbide
Prior art date
Application number
PCT/KR2010/007667
Other languages
French (fr)
Korean (ko)
Other versions
WO2011090260A3 (en
Inventor
김신철
Original Assignee
신광화학공업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신광화학공업주식회사 filed Critical 신광화학공업주식회사
Priority to CN2010800619420A priority Critical patent/CN102844270A/en
Publication of WO2011090260A2 publication Critical patent/WO2011090260A2/en
Publication of WO2011090260A3 publication Critical patent/WO2011090260A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/02Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces
    • F27B9/021Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces having two or more parallel tracks
    • F27B9/022With two tracks moving in opposite directions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/39Apparatus for the preparation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • F27B19/02Combinations of furnaces of kinds not covered by a single preceding main group combined in one structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/02Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/02Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces
    • F27B9/021Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces having two or more parallel tracks
    • F27B9/022With two tracks moving in opposite directions
    • F27B9/023With two tracks moving in opposite directions with a U turn at one end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/02Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces
    • F27B9/021Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces having two or more parallel tracks
    • F27B9/022With two tracks moving in opposite directions
    • F27B9/023With two tracks moving in opposite directions with a U turn at one end
    • F27B9/024With two tracks moving in opposite directions with a U turn at one end with superimposed tracks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/12Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity with special arrangements for preheating or cooling the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/3005Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D13/00Apparatus for preheating charges; Arrangements for preheating charges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a continuous activated carbon production apparatus, and more particularly, a heat supply structure and a thermal circulation structure of a carbonization kiln and a gas activation kelon, which constitute a continuous kiln apparatus widely used as an activated carbon production apparatus.
  • the present invention relates to a continuous activated carbon production apparatus capable of producing high quality activated carbon by stabilizing the internal temperature of the continuous kiln apparatus in the shortest time with the least fuel gas.
  • the organic material which is the raw material of activated carbon
  • gas activation method which is the most commonly used gas
  • the organic material which is the raw material of activated carbon
  • the volatile tissues contained in the organic material are burned and the carbon crystals are formed into carbides.
  • Carbonization process to produce charcoal
  • the charcoal to which a gas catalyst such as steam gas (water vapor) is added may be classified into an activation process of reheating the carbonized carbon in the range of 800 to 1100 ° C. to generate fine porous adsorbed carbon.
  • Most of the activated carbon using the gas activation method as described above is a general kiln device having a known structure [combustion gas supply unit, raw material inlet, carbonization kiln, and activation kiln to generate activated carbon by gas activation by adding a gas catalyst. Furnace, consisting of a gas outlet, etc.].
  • activated carbon having good adsorption should have a larger surface area per unit area by forming more voids on the outer surface of the carbide without destroying the structure of the carbon crystals.
  • the interior of the first kiln furnace for carbonization and the second kiln furnace for gas activation, which constitute the kiln apparatus, must be maintained at a constant temperature. Sufficient preheating process will necessarily be required.
  • the length of the furnace is constant so that a large amount of activated carbon can be simultaneously heated due to the characteristics of the carbonization kiln furnace and the gas activation kiln furnace, in which the internal temperature must be maintained at a high temperature. It is generally composed of more than scale.
  • the inlet of the combustion gas capable of heating the internal temperature thereof is formed in only one of the bars.
  • the activated carbon is manufactured from rapidly heated carbide by supplying a large amount of fuel gas to the furnace without the preheating process.
  • the voids formed in the carbide produced in a state in which the internal temperature of the furnace was uneven were formed unstable, which caused a problem of degrading the quality of activated carbon.
  • the kiln for carbonization which constitutes the carbonization apparatus which extracts carbide which becomes a raw material of activated carbon
  • each kiln device using a single type of furnace cools carbides extracted from one furnace, some of them are used as ignition charcoal, and others are raw materials of activated carbon. It is supplied to (iii) and made into activated carbon through reheating,
  • the first object of the present invention for solving the above problems is to provide a structure in which the combustion heat supplied to the first kiln for carbonization and the second kiln for gas activation is simultaneously supplied from both ends of each kiln furnace in the shortest time. It is to implement a continuous activated carbon production apparatus that can improve productivity and produce high quality activated carbon by reducing the preheating process to keep the internal temperature of each kiln constant.
  • Another object of the present invention is to provide a structure in which the heat of combustion supplied to the first kiln for carbonization and the second kiln for gas activation circulates inside each kiln, thereby minimizing the consumption of combustion gas. It is to implement a continuous activated carbon production apparatus that can reduce fuel costs.
  • Still another object of the present invention is to provide a continuous activated carbon production apparatus capable of minimizing the scattering of exhaust gases discharged to the outside by providing an exhaust gas aggregation structure in the waste heat recovery unit.
  • the first combustion heat inlet 230 is provided with the combustion heat having a temperature range of 600 ⁇ 800 °C, respectively,
  • a separate transport pipe 240 and a carbide discharge port 250 are respectively provided,
  • the second combustion heat inlet 330 is formed to penetrate the transfer pipe 240 and provide combustion heat having a temperature range of 800 to 1100 ° C., respectively.
  • Carbide inlets 340 and activated carbon outlets 350 penetrating through the carbide outlets 250 are disposed at positions adjacent to the ventilation hole 320 and the second combustion heat inlet 330, respectively.
  • the second kiln furnace for gas activation to form a porous activated carbon 380 is formed in the inner space portion 360 of the second frame 310 to form a separate transport means 370 for transporting the carbide 280 ( 300);
  • An exhaust gas collection pipe 420 penetrating the ventilation hole 320 is formed at the center of the side of the body 410, the inside of which is sealed.
  • the reflux tube 430 one end of which penetrates the first combustion heat inlet 230, protrudes from the upper portion
  • the exhaust gas agglomeration tube 440 is installed at a lower portion of the body 410 by passing through the bottom surface, and a waste heat recovery part 400 in which a separate refrigerant 450 is filled in the outer circumferential surface of the exhaust gas agglomeration tube 440.
  • the present invention as described above has the advantage of improving the productivity by shortening the preheating process time by the improvement of the heat supply structure
  • FIG. 2 is a view illustrating an activated carbon generation route sequentially illustrating an activated carbon generation process of the present invention
  • FIG. 3 is a combustion gas supply path diagram showing a combustion gas supply form of the present invention.
  • 1 is an assembly of a raw material hopper 100, a carbonization first kiln 200, a gas-activated second kiln 300 and the waste heat recovery unit 400 constituting the continuous activated carbon production apparatus of the present invention Is the overall degree of coupling showing the state,
  • FIG. 2 is an activated carbon production path diagram sequentially illustrating a process of generating activated carbon of the present invention
  • FIG. 3 is a combustion gas supply path diagram illustrating a supply mode of the combustion gas of the present invention.
  • the raw material hopper 100 is stored organic raw material 110 corresponding to the raw material of the activated carbon, and
  • the second kiln 300 for gas activation to add a water gas catalyst to the carbide 280 to re-heat at a temperature range of 800 ⁇ 1100 °C to produce a porous activated carbon 380,
  • It is composed of a combination of the waste heat recovery unit 400 for discharging the exhaust gas generated in the carbonization first kiln 200 and the gas activation second kiln 300.
  • the individual structures of the raw material hopper 100, the carbonization first kiln 200 and the gas activating second kiln 300 are the individual structures used in the known kiln apparatus for producing activated carbon. I will say no,
  • the coupling structure of the present invention as shown in Figure 1, and the opposite end of the carbonization first kiln furnace 200, the first combustion heat inlet 230 is formed at one end,
  • the opposite end of the second kiln furnace 300 for gas activation provided with the second combustion heat inlet 330 is penetrated by the transfer pipe 240,
  • the carbide discharge port 250 formed at a position adjacent to the first combustion heat inlet 230 of the first kiln furnace 200 for carbonization is the second combustion heat inlet 330 of the second kiln furnace 300 for gas activation.
  • Penetrating the carbide inlet 340 formed in the opposite position to the exhaust gas collection pipe 420 of the waste heat recovery unit 400 is the second combustion heat inlet of the second kiln furnace 300 for gas activation. It is coupled with the ventilation hole 320 is formed in a position opposite to 330,
  • Reflux tube 430 formed on the upper portion of the body 410 constituting the waste heat recovery unit 400 is
  • the bottom surface of the body 410 has a structure in which the exhaust gas agglomeration tube 440 filled with the refrigerant 450 as an outer circumferential surface thereof penetrates the bottom surface of the body 410.
  • the combustion heat supplied from the first combustion heat inlet 230 of the first kiln furnace 200 for carbonization by the coupling structure of the present invention heats the internal space 260 of the first frame 210 and simultaneously discharges a carbide.
  • the internal space 360 of the second frame 310 constituting the second kiln 300 for gas activation is heated through the 250 and the carbide inlet 340,
  • the combustion heat supplied from the second combustion heat inlet 330 of the second kiln furnace 300 for gas activation heats the internal space 360 of the second framework 310 and is transferred through the transfer pipe 240. 1 by heating the inner space 260 of the frame 210,
  • Combustion heat and second combustion heat inlet 330 are supplied from the first combustion heat inlet 230 to the internal space 260 of the first frame 210 and the internal space 360 of the second frame 310. As the heat of combustion supplied from
  • the first kiln furnace 200 for carbonization and the second kiln furnace 300 for gas activation may improve productivity of activated carbon by shortening a preheating process stably maintaining a desired temperature in the shortest time.
  • the exhaust gas generated in the process of burning the impurities contained in the organic raw material 110 is formed through the carbide discharge port 250 and the transfer pipe 240 formed at both ends of the first frame 210, and the second frame body. Inflow into the exhaust gas collection pipe 420 constituting the internal space portion 360 and the waste heat recovery unit 400 of the 310 is discharged to the outside through the exhaust gas aggregation pipe 440.
  • the exhaust gas contains a large amount of high temperature organic volatile to maintain a very high temperature
  • High temperature organic volatiles containing the exhaust gas can be recycled to the heat of combustion
  • the organic volatile matter remaining in the exhaust gas introduced into the exhaust gas collection pipe 420 may also be recycled into the combustion heat of the first combustion heat inlet 230 through the reflux pipe 430.
  • the high temperature exhaust gas which is in a gas state, is filled in the outer circumferential surface of the exhaust gas condensing tube 440.
  • the internal temperature of the inner space portion 260 of the first frame 210 constituting the carbonization first kiln 200 is in the temperature range of 600 ⁇ 800 °C supplied from the first combustion heat inlet 230
  • the heat of combustion and the heat of combustion in the temperature range of 800 to 1100 ° C. supplied from the second combustion heat inlet 330 are simultaneously supplied, thereby shortening the preheating process in the shortest time.
  • the organic material raw material 110 transferred along the transfer means 270 provided in the inner space 260 of the first mold body 210 to maintain a desired temperature range uniformly is heated at a desired constant temperature.
  • the quality of the carbide 280 is to be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a device for continuously manufacturing activated carbon, and more particularly, to a device for continuously manufacturing activated carbon which is capable of manufacturing high-quality activated carbon by improving the heat supply structures and heat circulation structures of a kiln furnace for carbonization and a kiln furnace for activating gas, wherein the kiln furnace consists of a continuous kiln device widely used as a device for manufacturing activated carbon, to thereby stabilize the internal temperature of the continuous kiln device within the shortest amount of time and with a minimum amount of fuel gas.

Description

연속식 활성탄 제조장치Continuous activated carbon manufacturing device
본 발명은 연속식 활성탄 제조장치에 관한 것으로서, 더욱 상세하게는 활성탄 제조장치로 널리 사용되는 연속식 킬른장치를 구성하고 있는 탄화용 킬른로와 가스 활성화용 킬론로의 열 공급구조 및 열 순환구조를 개량하여, The present invention relates to a continuous activated carbon production apparatus, and more particularly, a heat supply structure and a thermal circulation structure of a carbonization kiln and a gas activation kelon, which constitute a continuous kiln apparatus widely used as an activated carbon production apparatus. Improve,
최소한의 연료가스로 최단시간에 연속식 킬른장치의 내부온도를 안정시킴으로써 고품질의 활성탄을 제조할 수 있는 연속식 활성탄 제조장치에 관한 것이다. The present invention relates to a continuous activated carbon production apparatus capable of producing high quality activated carbon by stabilizing the internal temperature of the continuous kiln apparatus in the shortest time with the least fuel gas.
일반적으로 산업화에 의한 각종 물질문명의 발달된 도시지역에서는 인구집중과 각종 시설물들이 밀집되어 환경오염에 의한 대기 중의 공기가 심각하게 오염되어 도시지역에 생활하는 많은 사람들의 건강에 많은 위험이 상존하여 왔고,  In general, in urban areas where various material civilizations are developed by industrialization, population concentrations and various facilities are concentrated, and the air pollution caused by environmental pollution is seriously contaminated, and there are many risks to the health of many people living in urban areas. ,
이에 공기 중의 함유되는 각종 유해물질을 제거하기 위한 공기정화기술이 많이 개발되어 왔는데,  Many air purification technologies have been developed to remove various harmful substances contained in the air.
특히 다공질의 탄소 결정체에서 인체에 유익하지 않은 각종 유해물질이 흡착되어 주변 공기를 정화시키는 활성탄의 성능이 알려지면서 여러 형태의 활성탄이 개발되어 왔다. In particular, various types of activated carbon have been developed as the ability of activated carbon to purify the surrounding air by adsorbing various harmful substances that are not beneficial to the human body in porous carbon crystals.
최근에 가장 보편적으로 사용되고 있는 가스활성화법을 이용한 활성탄의 제조공정은 활성탄의 원료가 되는 유기물을 600~800℃의 범위에서 가열하여 유기물에 포함되어 있는 휘발성 조직은 연소시키고 탄소결정체로 조직화된 탄화물(탄화숯)을 생성하는 탄화공정과,  In the manufacturing process of activated carbon using gas activation method, which is the most commonly used gas, the organic material, which is the raw material of activated carbon, is heated in the range of 600 to 800 ° C, and the volatile tissues contained in the organic material are burned and the carbon crystals are formed into carbides. Carbonization process to produce charcoal),
스팀가스(수증기)등과 같은 가스 촉매제가 첨가된 상기 탄화숯을 800~1100℃의 범위에서 재 가열하여 미세한 다공질의 흡착탄을 생성하는 활성화 공정으로 구분할 수 있고,  The charcoal to which a gas catalyst such as steam gas (water vapor) is added may be classified into an activation process of reheating the carbonized carbon in the range of 800 to 1100 ° C. to generate fine porous adsorbed carbon.
상기와 같이 가스활성화법을 이용한 대부분의 활성탄은 공지의 구조로 되어 있는 일반적인 킬른장치[연소가스 공급부, 원료투입구, 탄화용 킬른로, 가스 촉매제를 첨가시켜 가스활성화 반응으로 활성탄을 생성하는 활성화용 킬른로, 가스배출구 등으로 구성되어 있음]를 이용하여 제조되고 있음을 알 수 있다. Most of the activated carbon using the gas activation method as described above is a general kiln device having a known structure [combustion gas supply unit, raw material inlet, carbonization kiln, and activation kiln to generate activated carbon by gas activation by adding a gas catalyst. Furnace, consisting of a gas outlet, etc.].
한편 흡착성이 우수한 활성탄은 탄소결정체에 대한 조직이 파괴되지 않으면서 탄화물의 외표면에 보다 많은 공극을 형성시켜 단위 면적당 표면적이 최대로 되어야 함은 주지의 사실에 해당한다 할 것이고,  On the other hand, it is well known that activated carbon having good adsorption should have a larger surface area per unit area by forming more voids on the outer surface of the carbide without destroying the structure of the carbon crystals.
고품질의 활성탄을 제조하기 위하여서는 무엇보다도 상기 킬른장치를 구성하고 있는 탄화용 제1 킬른로 및 가스활성화용 제2 킬른로의 내부가 적정한 온도로 일정하게 유지되어야 할 것인바, 상기 각 킬른로에 대한 충분한 예열공정이 필연적으로 요구되어야 할 것이다.  In order to manufacture high quality activated carbon, the interior of the first kiln furnace for carbonization and the second kiln furnace for gas activation, which constitute the kiln apparatus, must be maintained at a constant temperature. Sufficient preheating process will necessarily be required.
또한 상기 킬른장치를 이용하여 활성탄을 제조하기 위하여서는 내부온도가 고온으로 유지되어야 하는 탄화용 킬른로와 가스 활성화용 킬른로의 특성상 대량의 활성탄을 동시에 가열할 수 있도록 로(爐)의 길이가 일정규모 이상으로 길게 구성되어 있는 일반적이다. In addition, in order to manufacture activated carbon using the kiln apparatus, the length of the furnace is constant so that a large amount of activated carbon can be simultaneously heated due to the characteristics of the carbonization kiln furnace and the gas activation kiln furnace, in which the internal temperature must be maintained at a high temperature. It is generally composed of more than scale.
그런데 종래에 일반적인 연속식 킬른장치를 구성하고 있는 가열로와 가스활성화로의 경우 그 내부온도를 가열할 수 있는 연소가스의 투입구가 어느 한쪽으로만 형성되어 있는 바,  However, in the case of a heating furnace and a gas activating furnace constituting a conventional continuous kiln device, the inlet of the combustion gas capable of heating the internal temperature thereof is formed in only one of the bars.
길이가 길게 형성되어 있는 로(爐)의 내부 전체를 일정온도로 유지시키기 위한 예열공정의 단계에서부터 많은 시간과 연소가스가 소모됨에 따라 생산성과 경제성이 떨어지는 문제점이 있었다.  As a long time and combustion gas are consumed from the preheating step for maintaining the entire inside of the furnace having a long length at a constant temperature, there is a problem in that productivity and economy are inferior.
이에 일부에서는 상기 예열공정을 생략한 채 연료가스를 대량으로 상기 로(爐)에 공급하여 급속하게 가열된 탄화물로 활성탄을 제조하여 사용하고 있으나,  In some, the activated carbon is manufactured from rapidly heated carbide by supplying a large amount of fuel gas to the furnace without the preheating process.
로(爐)의 내부온도가 불균일한 상태에서 제조된 탄화물에 형성되는 공극이 불안정하게 형성되어 활성탄의 품질이 저하되는 문제점이 발생하게 되었던 것이다. The voids formed in the carbide produced in a state in which the internal temperature of the furnace was uneven were formed unstable, which caused a problem of degrading the quality of activated carbon.
다른 한편 활성탄의 원료가 되는 탄화물이 추출되는 탄화장치를 구성하는 탄화용 킬른로와,  On the other hand, the kiln for carbonization which constitutes the carbonization apparatus which extracts carbide which becomes a raw material of activated carbon,
상기 탄화물과 가스촉매를 반응시켜 다공질의 활성탄을 추출하는 가스활성화용 킬른로가 별도의 구성으로 분리되어 있는 일반적인 연속식 킬른장치와는 달리, 최근에는 가스활성화로만으로 탄화로에 의한 탄화공정과 가스활성화로로에 의한 가스활성화공정을 동시에 수행할 수 있는 단일 종류의 로(爐)를 이용한 여러형태의 킬른장치들이 선행기술로 제시된 바 있다.  Unlike a general continuous kiln device in which a gas activation kiln furnace for extracting porous activated carbon by reacting the carbide with a gas catalyst is separated into a separate configuration, in recent years, a carbonization process and gas by a carbonization furnace using only gas activation furnace Various types of kiln devices using a single type of furnace capable of simultaneously performing a gas activation process by an activation furnace have been proposed in the prior art.
그런데 위와 같이 단일 종류의 로(爐)를 이용한 각 킬른장치들은 하나의 로(爐)에서 추출된 탄화물을 냉각시켜 일부는 착화용 숯으로 사용하고 나머지는 활성탄의 원료로 하여 또 다시 탄화물을 추출한 로(爐)에 공급시켜 재 가열을 통하여 활성탄으로 제조하게 되는 바,  However, as above, each kiln device using a single type of furnace cools carbides extracted from one furnace, some of them are used as ignition charcoal, and others are raw materials of activated carbon. It is supplied to (iii) and made into activated carbon through reheating,
이는 냉각된 탄화물을 고온으로 상승시키는 데 많은 연료가스가 새롭게 공급되어야 함으로써 불필요한 연료가 투입되어야 하는 문제점이 있었던 것이다. This is because a lot of fuel gas must be newly supplied to raise the cooled carbide to a high temperature, there is a problem that unnecessary fuel is to be injected.
또 다른 한편 종래의 일반적인 킬른장치를 통해 배출되는 배기가스에는 인해에 유해한 각종 오염물질이 함유되어 있는 바,  On the other hand, the exhaust gas emitted through a conventional general kiln device contains various pollutants harmful to the bar,
상기 배출가스에 함유된 각종 오염물질들이 공기 중에 비산됨으로써 인체 건강에 많은 유해함이 존재하고 있었던 것이다. Various contaminants contained in the exhaust gas were scattered in the air, and thus there were many harmful to human health.
상기와 같은 문제점을 해결하기 위한 본 발명의 첫째목적은 탄화용 제1 킬른로와 가스활성화용 제2 킬른로에 공급되는 연소열이 각 킬른로의 양쪽 끝단에서 동시에 공급되는 구조를 제공하여 최단시간에 각 킬른로의 내부온도가 일정하게 유지되게 하는 예열공정을 감소시킴으로써 생산성 향상과 고품질의 활성탄을 제조할 수 있는 연속식 활성탄 제조장치를 구현하는 데 있는 것이다. The first object of the present invention for solving the above problems is to provide a structure in which the combustion heat supplied to the first kiln for carbonization and the second kiln for gas activation is simultaneously supplied from both ends of each kiln furnace in the shortest time. It is to implement a continuous activated carbon production apparatus that can improve productivity and produce high quality activated carbon by reducing the preheating process to keep the internal temperature of each kiln constant.
그리고 본 발명의 다른 목적은 탄화용 제1 킬른로와 가스활성화용 제2 킬른로에 공급된 연소열이 각 킬른로의 내부를 순환하는 구조를 제공하여 연소가스의 소비를 최소로 억제할 수 있게 함으로써 연료비를 절감할 수 있는 연속식 활성탄 제조장치를 구현하는 데 있는 것이다. Another object of the present invention is to provide a structure in which the heat of combustion supplied to the first kiln for carbonization and the second kiln for gas activation circulates inside each kiln, thereby minimizing the consumption of combustion gas. It is to implement a continuous activated carbon production apparatus that can reduce fuel costs.
본 발명의 또 다른 목적은 폐열회수부에 배기가스 응집구조를 제공하여 외부로 배출되는 배출가스의 비산을 최소로 억제할 수 있는 연속식 활성탄 제조장치를 구현하는 데 있는 것이다. Still another object of the present invention is to provide a continuous activated carbon production apparatus capable of minimizing the scattering of exhaust gases discharged to the outside by providing an exhaust gas aggregation structure in the waste heat recovery unit.
상기와 같은 목적을 달성하기 위한 수단을 보다 상세하게 설명하고자 한다. It will be described in more detail the means for achieving the above object.
본 발명에 의한 연속식 활성탄 제조장치는  Continuous activated carbon production apparatus according to the present invention
활성탄의 원료가 되는 유기물 원료(110)가 저장되는 원료호퍼(100)와; A raw material hopper 100 in which the organic material raw material 110 serving as a raw material of the activated carbon is stored;
내주면이 내화재질로 되면서 내부가 관통된 제1 틀체(210)의 양단에는 원료유입구(220)와,  Raw material inlet 220 and both ends of the first frame 210 through which the inner circumferential surface is made of refractory material and penetrated therein;
600~800℃의 온도 범위를 가지는 연소열이 제공되는 제1 연소열 유입부(230)가 각각 형성되어 있되,  The first combustion heat inlet 230 is provided with the combustion heat having a temperature range of 600 ~ 800 ℃, respectively,
상기 원료유입구(220) 및 제1 연소열 유입부(230)와 인접한 위치에는 별도의 이송관체(240)와 탄화물 토출구(250)가 각각 부설되어 있으며,  In a position adjacent to the raw material inlet 220 and the first combustion heat inlet 230, a separate transport pipe 240 and a carbide discharge port 250 are respectively provided,
상기 제1 틀체(210)의 내부 공간부(260)에는 상기 유기물 원료(110)의 이송수단(270)이 형성되어 탄화물(280)을 생성하는 탄화용 제1 킬른로(200)와; A first kiln for carbonization (200) for forming a carbide (280) in the inner space portion (260) of the first frame (210), wherein the transport means (270) of the organic material (110) is formed;
내주면이 내화재질로 되면서 내부가 관통된 제2 틀체(310)의 양단에는 환기구멍(320)과,  Ventilation holes 320 and both ends of the second frame 310 through which the inner circumferential surface is made of refractory material and penetrated therein;
상기 이송관체(240)와 관통되면서 800~1100℃의 온도 범위를 가지는 연소열이 제공되는 제2 연소열 유입부(330)가 각각 형성되어 있되,  The second combustion heat inlet 330 is formed to penetrate the transfer pipe 240 and provide combustion heat having a temperature range of 800 to 1100 ° C., respectively.
상기 환기구멍(320) 및 제2 연소열 유입부(330)와 인접한 위치에는 상기 탄화물 토출구(250)에 관통된 탄화물 유입구(340)와 활성탄 배출구(350)가 각각 부설되어 있으며,  Carbide inlets 340 and activated carbon outlets 350 penetrating through the carbide outlets 250 are disposed at positions adjacent to the ventilation hole 320 and the second combustion heat inlet 330, respectively.
상기 제2 틀체(310)의 내부 공간부(360)에는 상기 탄화물(280)을 이송하는 별도의 이송수단(370)이 형성되어 다공질의 활성탄(380)을 생성하는 가스 활성화용 제2 킬른로(300)와;  The second kiln furnace for gas activation to form a porous activated carbon 380 is formed in the inner space portion 360 of the second frame 310 to form a separate transport means 370 for transporting the carbide 280 ( 300);
내부가 밀폐된 몸체(410)의 측면 중앙에는 상기 환기구멍(320)를 관통하는 배기가스 수집관(420)이 형성되어 있고,  An exhaust gas collection pipe 420 penetrating the ventilation hole 320 is formed at the center of the side of the body 410, the inside of which is sealed.
상부에는 한쪽 끝 단부가 상기 제1 연소열 유입부(230)를 관통하고 있는 환류관(430)이 돌설되어 있으며,  The reflux tube 430, one end of which penetrates the first combustion heat inlet 230, protrudes from the upper portion,
하부에는 배기가스 응집관(440)이 상기 몸체(410)의 바닥면을 관통하여 설치되어 있되, 배기가스 응집관(440)의 외주면에는 별도의 냉매제(450)가 충진되어 있는 폐열 회수부(400):의 조합으로 이루어져 있다. The exhaust gas agglomeration tube 440 is installed at a lower portion of the body 410 by passing through the bottom surface, and a waste heat recovery part 400 in which a separate refrigerant 450 is filled in the outer circumferential surface of the exhaust gas agglomeration tube 440. ): Consists of a combination of.
상기와 같이 된 본 발명은 열 공급구조의 개량에 의하여 예열공정 시간을 단축하여 생산성을 향상할 수 있는 잇점이 있고,  The present invention as described above has the advantage of improving the productivity by shortening the preheating process time by the improvement of the heat supply structure,
열 순환구조를 순환식으로 개량하여 연소가스의 소비를 최소로 억제함으로써 연료비를 절감할 수 있을 뿐만 아니라,  By improving the thermal circulation structure to the circulation type, it is possible to reduce fuel costs by minimizing the consumption of combustion gas.
배기가스를 응집시켜 배기가스의 비산을 최소로 억제함으로써 주변환경을 개선할 수 있는 등 매우 큰 효과가 나타나는 것이다.  By aggregating the exhaust gas to minimize the scattering of the exhaust gas to improve the surrounding environment, such a great effect appears.
도 1은 본 발명의 조립상태를 도시한 전체적인 결합도 1 is an overall coupling view showing the assembled state of the present invention
도 2는 본 발명의 활성탄 생성과정을 순차적으로 도시한 활성탄 생성경로도 2 is a view illustrating an activated carbon generation route sequentially illustrating an activated carbon generation process of the present invention;
도 3은 본 발명의 연소가스 공급형태를 도시한 연소가스 공급경로도 3 is a combustion gas supply path diagram showing a combustion gas supply form of the present invention;
도 4은 본 발명에 의한 활성탄 제조과정 4 is an activated carbon manufacturing process according to the present invention
◎부호의 설명◎◎ Description of the sign ◎
100: 원료 호퍼100: raw material hopper
110: 유기물 원료110: organic material raw material
200: 탄화용 제1 킬른로200: first kiln for carbonization
210: 제1 틀체 210: first framework
220: 원료 유입구220: raw material inlet
230: 제1 연소열 유입부 230: first combustion heat inlet
240: 이송관체240: transfer pipe
250: 탄화물 토출구 250: carbide outlet
260,360 : 공간부260,360: Space
270,370 : 이송수단 270,370: transfer means
280: 탄화물 280: carbide
300: 가스활성화용 제1 킬른로300: the first kiln for gas activation
310: 제1 틀체320: 환기구멍310: first frame 320: ventilation hole
330: 제2 연소열 유입부 330: second combustion heat inlet
340: 탄화물 유입구340: carbide inlet
350: 활성탄 배출구 350: activated carbon outlet
380: 활성탄380 activated carbon
400: 폐열 회수부400: waste heat recovery unit
410: 몸체 410: body
420: 배기가스 수집관420: exhaust gas collection pipe
420: 환류관 420: reflux tube
440: 배기가스 토출관440: exhaust gas discharge pipe
450: 냉매제450: refrigerant
상기와 같은 구성 및 효과를 극명하여 나타내어 주는 본 발명의 실시예를 첨부도면에 의거하여 보다 상세하게 설명하고자 한다. On the basis of the accompanying drawings an embodiment of the present invention showing the configuration and effects as described above will be described in more detail.
도 1은 본 발명의 연속식 활성탄 제조장치를 구성하고 있는 원료호퍼(100)와 탄화용 제1 킬른로(200)와 가스활성용 제2 킬른로(300) 및 폐열회수부(400)의 조립상태를 도시한 전체적인 결합도이고,  1 is an assembly of a raw material hopper 100, a carbonization first kiln 200, a gas-activated second kiln 300 and the waste heat recovery unit 400 constituting the continuous activated carbon production apparatus of the present invention Is the overall degree of coupling showing the state,
도 2는 본 발명의 활성탄의 생성과정을 순차적으로 도시한 활성탄 생성경로도이며, 도 3은 본 발명의 연소가스의 공급형태를 도시한 연소가스 공급경로도이다.  FIG. 2 is an activated carbon production path diagram sequentially illustrating a process of generating activated carbon of the present invention, and FIG. 3 is a combustion gas supply path diagram illustrating a supply mode of the combustion gas of the present invention.
본 발명의 연속식 활성탄 제조장치는 도 1에 나타낸 바와 같이, 활성탄의 원료에 해당하는 유기물 원료(110)가 저장된 원료호퍼(100)와,  Continuous activated carbon production apparatus of the present invention, as shown in Figure 1, the raw material hopper 100 is stored organic raw material 110 corresponding to the raw material of the activated carbon, and
상기 유기물 원료(110)를 600~800℃의 범위에서 가열하여 탄소결정체로 조직화된 탄화물(280)을 생성하는 탄화용 제1 킬른로(200)와,  A first kiln for carbonization (200) for heating the organic material (110) in a range of 600 to 800 ° C. to produce carbides 280 organized into carbon crystals;
상기 탄화물(280)에 수성가스 촉매제를 첨가시켜 800~1100℃의 온도 범위에서 재 가열하여 다공질의 활성탄(380)을 생성하는 가스활성화용 제2 킬른로(300)와,  The second kiln 300 for gas activation to add a water gas catalyst to the carbide 280 to re-heat at a temperature range of 800 ~ 1100 ℃ to produce a porous activated carbon 380,
상기 탄화용 제1 킬른로(200) 및 가스활성화용 제2 킬른로(300)에서 발생되는 배기가스를 배출하는 폐열회수부(400)의 결합으로 구성되어 있다.  It is composed of a combination of the waste heat recovery unit 400 for discharging the exhaust gas generated in the carbonization first kiln 200 and the gas activation second kiln 300.
여기서 본원 발명의 원료호퍼(100)와 탄화용 제1 킬른로(200) 및 가스활성화용 제2 킬른로(300)에 관한 개별구조는 활성탄을 제조하기 위한 공지의 킬른장치에 사용되고 있는 개별구조와 다름없다 할 것인 바,  Herein, the individual structures of the raw material hopper 100, the carbonization first kiln 200 and the gas activating second kiln 300 are the individual structures used in the known kiln apparatus for producing activated carbon. I will say no,
본원 발명의 특징부에 해당하지 않는 상기 원료호퍼(100)와 탄화용 제1 킬른로(200) 및 가스활성화용 제2 킬른로(300)의 각 개별구조 및 그 작용효과에 관한 상세한 설명은 생략하기로 한다. Detailed description of each individual structure and its effect of the raw material hopper 100, carbonization first kiln 200 and gas activation second kiln 300 that do not correspond to the features of the present invention is omitted. Let's do it.
따라서 이하에서는 본원 발명의 특징부에 해당하는 원료호퍼(100)와 탄화용 제1 킬른로(200)와 가스활성화용 제2 킬른로(300) 및 폐열회수부(400)의 결합구조와,  Therefore, hereinafter, the coupling structure of the raw material hopper 100 corresponding to the features of the present invention, the first kiln furnace 200 for carbonization, the second kiln furnace 300 for gas activation, and the waste heat recovery unit 400,
그 결합에 의한 연소열의 공급순환구조 및 연소가스에 포함되어 있는 폐열 회수구조에 관하여 상세하게 설명하기로 한다. The supply circulation structure of combustion heat by the combination and the waste heat recovery structure contained in the combustion gas will be described in detail.
먼저 본원 발명의 결합구조는 도 1에 도시한 바와 같이, 한쪽 끝단으로 제1 연소열 유입부(230)가 형성된 상기 탄화용 제1 킬른로(200)의 반대쪽 끝단과,  First, the coupling structure of the present invention, as shown in Figure 1, and the opposite end of the carbonization first kiln furnace 200, the first combustion heat inlet 230 is formed at one end,
제2 연소열 유입부(330)가 구비된 가스활성화용 제2 킬른로(300)의 반대쪽 끝단이 이송관체(240)로 관통되어 있고,  The opposite end of the second kiln furnace 300 for gas activation provided with the second combustion heat inlet 330 is penetrated by the transfer pipe 240,
상기 탄화용 제1 킬른로(200)의 제1 연소열 유입부(230)와 인접한 위치에 형성되어 있는 탄화물 토출구(250)는 가스활성화용 제2 킬른로(300)의 제2 연소열 유입부(330)와 반대쪽 위치에 형성되어 있는 탄화물 유입구(340)과 관통되어 있으며, 폐열회수부(400)의 배기가스 수집관(420)은 상기 가스활성화용 제2 킬른로(300)의 제2 연소열 유입부(330)와 반대쪽 위치에 형성되어 있는 환기구멍(320)과 결합되어 있고,  The carbide discharge port 250 formed at a position adjacent to the first combustion heat inlet 230 of the first kiln furnace 200 for carbonization is the second combustion heat inlet 330 of the second kiln furnace 300 for gas activation. Penetrating the carbide inlet 340 formed in the opposite position to the exhaust gas collection pipe 420 of the waste heat recovery unit 400 is the second combustion heat inlet of the second kiln furnace 300 for gas activation. It is coupled with the ventilation hole 320 is formed in a position opposite to 330,
상기 폐열회수부(400)를 구성하고 있는 몸체(410)의 상부에 형성시킨 환류관(430)은  Reflux tube 430 formed on the upper portion of the body 410 constituting the waste heat recovery unit 400 is
상기 제1 연소열 유입부(230)와 관통된 구조로 되어 있으며,  It has a structure penetrated with the first combustion heat inlet 230,
상기 몸체(410)의 바닥면에는 외주면으로 냉매제(450)가 충진된 배기가스 응집관(440)이 상기 몸체(410)의 바닥면을 관통하는 구조로 되어 있다. The bottom surface of the body 410 has a structure in which the exhaust gas agglomeration tube 440 filled with the refrigerant 450 as an outer circumferential surface thereof penetrates the bottom surface of the body 410.
다음으로 본원 발명의 연소열 공급순환구조는 도 2에 도시한 바와 같이,  Next, the combustion heat supply circulation structure of the present invention, as shown in Figure 2,
본 발명의 결합구조에 의하여 탄화용 제1 킬른로(200)의 제1 연소열 유입부(230)에서 공급되는 연소열은 제1 틀체(210)의 내부 공간부(260)를 가열함과 동시에 탄화물 토출구(250)와 탄화물 유입구(340)를 통하여 가스활성화용 제2 킬른로(300)를 구성하고 있는 제2 틀체(310)의 내부 공간부(360)를 가열하게 되고,  The combustion heat supplied from the first combustion heat inlet 230 of the first kiln furnace 200 for carbonization by the coupling structure of the present invention heats the internal space 260 of the first frame 210 and simultaneously discharges a carbide. The internal space 360 of the second frame 310 constituting the second kiln 300 for gas activation is heated through the 250 and the carbide inlet 340,
가스활성화용 제2 킬른로(300)의 제2 연소열 유입부(330)에서 공급되는 연소열은 제2 틀체(310)의 내부 공간부(360)를 가열함과 동시에 이송관체(240)를 통하여 제1 틀체(210)의 내부 공간부(260)를 가열하게 됨으로써,  The combustion heat supplied from the second combustion heat inlet 330 of the second kiln furnace 300 for gas activation heats the internal space 360 of the second framework 310 and is transferred through the transfer pipe 240. 1 by heating the inner space 260 of the frame 210,
상기 제1 틀체(210)의 내부 공간부(260)와 제2 틀체(310)의 내부 공간부(360)에는 제1 연소열 유입부(230)에서 공급되는 연소열과 제2 연소열 유입부(330)에서 공급되는 연소열이 동시에 공급됨으로써,  Combustion heat and second combustion heat inlet 330 are supplied from the first combustion heat inlet 230 to the internal space 260 of the first frame 210 and the internal space 360 of the second frame 310. As the heat of combustion supplied from
탄화용 제1 킬른로(200)와 가스활성화용 제2 킬른로(300)는 최단시간에 소망하는 온도를 안정적으로 유지하게 되는 예열공정의 단축에 의하여 활성탄의 생산성을 향상시킬 수 있게 되는 것이다. The first kiln furnace 200 for carbonization and the second kiln furnace 300 for gas activation may improve productivity of activated carbon by shortening a preheating process stably maintaining a desired temperature in the shortest time.
다음으로 본원 발명의 연소가스에 포함되어 있는 폐열 회수구조는 도 3에 도시한 바와 같이,  Next, the waste heat recovery structure included in the combustion gas of the present invention is shown in Figure 3,
탄화용 제1 킬른로(200)의 내부 공간부(260)에서 상기 유기물 원료(110)가 가열되어 탄소결정체의 탄화물(280)으로 생성될 때,  When the organic material raw material 110 is heated in the internal space 260 of the first kiln furnace 200 for carbonization to be produced as carbide 280 of carbon crystals,
상기 유기물 원료(110)에 함유되어 있는 불순물이 연소되는 과정에서 발생되는 배기가스는 제1 틀체(210)의 양쪽 끝단으로 형성시킨 탄화물 토출구(250) 및 이송관체(240)를 경유하여 제2 틀체(310)의 내부 공간부(360) 및 폐열회수부(400)를 구성하고 있는 배기가스 수집관(420)으로 유입되어 배기가스 응집관(440)을 통하여 외부로 배출되어 진다. The exhaust gas generated in the process of burning the impurities contained in the organic raw material 110 is formed through the carbide discharge port 250 and the transfer pipe 240 formed at both ends of the first frame 210, and the second frame body. Inflow into the exhaust gas collection pipe 420 constituting the internal space portion 360 and the waste heat recovery unit 400 of the 310 is discharged to the outside through the exhaust gas aggregation pipe 440.
이때 상기 배기가스에는 고온의 유기 휘발성분이 다량으로 함유되어 매우 높은 온도를 유지하게 되는 데,  At this time, the exhaust gas contains a large amount of high temperature organic volatile to maintain a very high temperature,
본원 발명에서는 상기 배기가스의 배출통로를 제2 틀체(310)의 내부 공간부(360)로 경유하게 함으로써,  In the present invention, by passing the exhaust passage of the exhaust gas to the internal space portion 360 of the second frame 310,
상기 배기가스를 함유되어 있는 고온의 유기 휘발성분을 연소열로 재활용 할 수 있게 되는 것이고,  High temperature organic volatiles containing the exhaust gas can be recycled to the heat of combustion,
나아가 상기 배기가스 수집관(420)으로 유입된 배기가스에 잔존하고 있는 유기 휘발성분도 역시 환류관(430)을 통해 제1 연소열 유입부(230)의 연소열로 재활용할 수 있게 되는 것이다.  Furthermore, the organic volatile matter remaining in the exhaust gas introduced into the exhaust gas collection pipe 420 may also be recycled into the combustion heat of the first combustion heat inlet 230 through the reflux pipe 430.
그리고 상기 폐열회수부(400)를 구성하고 있는 몸체(410)의 하부 바닥면을 관통하여 형성되어 있는 배기가스 응집관(440)의 외주면에는 다량의 냉매제가 충진되어 있으므로,  Since the outer circumferential surface of the exhaust gas condensing tube 440 formed through the lower bottom surface of the body 410 constituting the waste heat recovery part 400 is filled with a large amount of refrigerant,
상기 고온의 열기를 가진 배기가스가 배기가스 응집관(440)을 따라 외부로 배출될 때, 기체상태로 된 고온의 배기가스는 배기가스 응집관(440)의 외주면에 충진되어 있는 냉매제(450)에 의하여 응집된 상태로 배출되게 함으로써, 외부로 배출되는 배기가스의 비산을 최소로 억제할 수 있게 되는 것이다. When the exhaust gas having the high temperature heat is discharged to the outside along the exhaust gas condensing tube 440, the high temperature exhaust gas, which is in a gas state, is filled in the outer circumferential surface of the exhaust gas condensing tube 440. By discharging in a condensed state, it is possible to minimize the scattering of the exhaust gas discharged to the outside.
다음으로 도 4에 도시한 바와 같이 본원 발명에 의한 활성탄의 제조과정을 살펴보면,  Next, look at the manufacturing process of the activated carbon according to the present invention as shown in Figure 4,
본 발명의 결합구조에 의하여 원료호퍼(100)에 저장된 유기물 원료(110)를 탄화용 제1 킬른로(200)의 원료유입구(220)에 투입하게 되면,  When the organic material raw material 110 stored in the raw material hopper 100 is introduced into the raw material inlet 220 of the first kiln furnace 200 for carbonization by the coupling structure of the present invention,
상기 탄화용 제1 킬른로(200)를 구성하고 있는 제1 틀체(210)의 내부 공간부(260)의 내부온도는 제1 연소열 유입부(230)에서 공급되는 600~800℃의 온도 범위의 연소열과 제2 연소열 유입부(330)에서 공급되는 800~1100℃의 온도 범위의 연소열이 동시에 공급되어 예열공정을 최단시간으로 단축할 수 있게 되고,  The internal temperature of the inner space portion 260 of the first frame 210 constituting the carbonization first kiln 200 is in the temperature range of 600 ~ 800 ℃ supplied from the first combustion heat inlet 230 The heat of combustion and the heat of combustion in the temperature range of 800 to 1100 ° C. supplied from the second combustion heat inlet 330 are simultaneously supplied, thereby shortening the preheating process in the shortest time.
소망하는 온도범위를 균일하게 유지하게 되는 제1 틀체(210)의 내부 공간부(260)에 구비되어 있는 이송수단(270)을 따라 이송되는 유기물 원료(110)가 소망하는 일정한 온도에서 가열됨에 따라 생성되는 탄화물(280)의 품질이 향상되어 지는 것이다. As the organic material raw material 110 transferred along the transfer means 270 provided in the inner space 260 of the first mold body 210 to maintain a desired temperature range uniformly, is heated at a desired constant temperature. The quality of the carbide 280 is to be improved.
본 발명은 상기와 같은 실시예에 한하여 설명하였으나, 본 발명의 기술사상을 벗어나지 아니하는 범위 내에서는 얼마든지 다양하게 실시할 수 있음은 물론이다. Although the present invention has been described with reference to the above embodiments, it can of course be carried out in various ways without departing from the technical spirit of the present invention.

Claims (1)

  1. 원료호퍼, 연소열 유입부, 탄화용 제1 킬른로, 가스활성화용 제2 킬른로 및 배기가스 배출부를 구비한 통상의 연속식 킬른장치에 의한 활성탄 제조장치에 있어서,  In the apparatus for producing activated carbon by a conventional continuous kiln apparatus having a raw material hopper, a combustion heat inlet, a carbonization first kiln, a gas activation second kiln and an exhaust gas discharge unit,
    활성탄의 원료가 되는 유기물 원료(110)가 저장되는 원료호퍼(100)와; A raw material hopper 100 in which the organic material raw material 110 serving as a raw material of the activated carbon is stored;
    내주면이 내화재질로 되면서 내부가 관통된 제1 틀체(210)의 양단에는 원료유입구(220)와,  Raw material inlet 220 and both ends of the first frame 210 through which the inner circumferential surface is made of refractory material and penetrated therein;
    600~800℃의 온도 범위를 가지는 연소열이 제공되는 제1 연소열 유입부(230)가 각각 형성되어 있되,  The first combustion heat inlet 230 is provided with the combustion heat having a temperature range of 600 ~ 800 ℃, respectively,
    상기 원료유입구(220) 및 제1 연소열 유입부(230)와 인접한 위치에는 별도의 이송관체(240)와 탄화물 토출구(250)가 각각 부설되어 있으며,  In a position adjacent to the raw material inlet 220 and the first combustion heat inlet 230, a separate transport pipe 240 and a carbide discharge port 250 are respectively provided,
    상기 제1 틀체(210)의 내부 공간부(260)에는 상기 유기물 원료(110)의 이송수단(270)이 형성되어 탄화물(280)을 생성하는 탄화용 제1 킬른로(200)와; A first kiln for carbonization (200) for forming a carbide (280) in the inner space portion (260) of the first frame (210), wherein the transport means (270) of the organic material (110) is formed;
    내주면이 내화재질로 되면서 내부가 관통된 제2 틀체(310)의 양단에는 환기구멍(320)과,  Ventilation holes 320 and both ends of the second frame 310 through which the inner circumferential surface is made of refractory material and penetrated therein;
    상기 이송관체(240)와 관통되면서 800~1100℃의 온도 범위를 가지는 연소열이 제공되는 제2 연소열 유입부(330)가 각각 형성되어 있되,  The second combustion heat inlet 330 is formed to penetrate the transfer pipe 240 and provide combustion heat having a temperature range of 800 to 1100 ° C., respectively.
    상기 환기구멍(320) 및 제2 연소열 유입부(330)와 인접한 위치에는 상기 탄화물 토출구(250)에 관통된 탄화물 유입구(340)와 활성탄 배출구(350)가 각각 부설되어 있으며,  Carbide inlets 340 and activated carbon outlets 350 penetrated through the carbide outlets 250 are disposed at positions adjacent to the ventilation hole 320 and the second combustion heat inlet 330, respectively.
    상기 제2 틀체(310)의 내부 공간부(360)에는 상기 탄화물(280)을 이송하는 별도의 이송수단(370)이 형성되어 다공질의 활성탄(380)을 생성하는 가스 활성화용 제2 킬른로(300)와;  The second kiln furnace for gas activation to form a porous activated carbon 380 is formed in the inner space portion 360 of the second frame 310 to form a separate transport means 370 for transporting the carbide 280 ( 300);
    내부가 밀폐된 몸체(410)의 측면 중앙에는 상기 환기구멍(320)를 관통하는 배기가스 수집관(420)이 형성되어 있고,  An exhaust gas collection pipe 420 penetrating the ventilation hole 320 is formed at the center of the side of the body 410, the inside of which is sealed.
    상부에는 한쪽 끝 단부가 상기 제1 연소열 유입부(230)를 관통하고 있는 환류관(430)이 돌설되어 있으며,  The reflux tube 430, one end of which penetrates the first combustion heat inlet 230, protrudes from the upper portion,
    하부에는 배기가스 응집관(440)이 상기 몸체(410)의 바닥면을 관통하여 설치되어 있되,  The exhaust gas agglomeration tube 440 is installed through the bottom surface of the body 410,
    배기가스 응집관(440)의 외주면에는 별도의 냉매제(450)가 충진되어 있는 폐열 회수부(400):의 조합으로 구성됨을 특징으로 하는 연속식 활성탄 제조장치. The outer peripheral surface of the exhaust gas agglomeration pipe 440, continuous activated carbon production apparatus, characterized in that consisting of a combination of the waste heat recovery unit 400: filled with a separate refrigerant (450).
PCT/KR2010/007667 2010-01-22 2010-11-02 Device for continuously manufacturing activated carbon WO2011090260A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800619420A CN102844270A (en) 2010-01-22 2010-11-02 Device for continuously manufacturing activated carbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0005789 2010-01-22
KR1020100005789A KR101070636B1 (en) 2010-01-22 2010-01-22 Equipment for continuously making active carbon

Publications (2)

Publication Number Publication Date
WO2011090260A2 true WO2011090260A2 (en) 2011-07-28
WO2011090260A3 WO2011090260A3 (en) 2011-11-03

Family

ID=42088887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007667 WO2011090260A2 (en) 2010-01-22 2010-11-02 Device for continuously manufacturing activated carbon

Country Status (3)

Country Link
KR (1) KR101070636B1 (en)
CN (1) CN102844270A (en)
WO (1) WO2011090260A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130220A (en) * 2013-03-27 2013-06-05 徐州天正活性炭厂 Internal heating type reduction activated carbon production converter
WO2014206154A1 (en) * 2013-06-27 2014-12-31 密西西比国际水务有限公司 Method and apparatus for utilizing waste heat of high-temperature flue gas
CN106698428A (en) * 2017-02-28 2017-05-24 福建省木源炭科技有限公司 Equipment for producing activated carbon and method for producing activated carbon by utilizing equipment
CN112551527A (en) * 2020-12-26 2021-03-26 河南省大潮炭能科技有限公司 Preparation device and preparation method of activated carbon for supercapacitor
CN113247896A (en) * 2021-04-15 2021-08-13 中国铝业股份有限公司 Activated carbon activation device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013082342A2 (en) * 2011-11-30 2013-06-06 Corning Incorporated Apparatus and method for carbon activation using multi-chamber periodic furnace
RU2638390C1 (en) * 2016-09-30 2017-12-13 Общество с ограниченной ответственностью "Сорбенты Кузбасса" Cap unit for high-temperature thermochemical activation of coals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339360A (en) * 2003-05-15 2004-12-02 Mitsubishi Heavy Ind Ltd Method and system for treating biomass and fluid fuel obtained by the method
JP2005103437A (en) * 2003-09-30 2005-04-21 Meidensha Corp Processing method of organic material containing water and its facility
KR100503490B1 (en) * 2005-03-26 2005-07-22 김창준 Drying and carbonization management system of sludge or food or life trash organic matter and waste matter
JP2007284543A (en) * 2006-04-14 2007-11-01 Okawa Transteel Corp Carbonization treatment method and carbonization treatment apparatus
JP2010013329A (en) * 2008-07-04 2010-01-21 Haruo Shiraishi System for producing activated carbon from polymer waste

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3184910B2 (en) * 1993-05-18 2001-07-09 株式会社ジェ・シィ・エー Activated carbon production equipment from waste tires

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339360A (en) * 2003-05-15 2004-12-02 Mitsubishi Heavy Ind Ltd Method and system for treating biomass and fluid fuel obtained by the method
JP2005103437A (en) * 2003-09-30 2005-04-21 Meidensha Corp Processing method of organic material containing water and its facility
KR100503490B1 (en) * 2005-03-26 2005-07-22 김창준 Drying and carbonization management system of sludge or food or life trash organic matter and waste matter
JP2007284543A (en) * 2006-04-14 2007-11-01 Okawa Transteel Corp Carbonization treatment method and carbonization treatment apparatus
JP2010013329A (en) * 2008-07-04 2010-01-21 Haruo Shiraishi System for producing activated carbon from polymer waste

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130220A (en) * 2013-03-27 2013-06-05 徐州天正活性炭厂 Internal heating type reduction activated carbon production converter
WO2014206154A1 (en) * 2013-06-27 2014-12-31 密西西比国际水务有限公司 Method and apparatus for utilizing waste heat of high-temperature flue gas
CN106698428A (en) * 2017-02-28 2017-05-24 福建省木源炭科技有限公司 Equipment for producing activated carbon and method for producing activated carbon by utilizing equipment
CN112551527A (en) * 2020-12-26 2021-03-26 河南省大潮炭能科技有限公司 Preparation device and preparation method of activated carbon for supercapacitor
CN112551527B (en) * 2020-12-26 2023-06-23 河南省大潮炭能科技有限公司 Preparation device and preparation method of active carbon for super capacitor
CN113247896A (en) * 2021-04-15 2021-08-13 中国铝业股份有限公司 Activated carbon activation device

Also Published As

Publication number Publication date
KR20100018008A (en) 2010-02-16
WO2011090260A3 (en) 2011-11-03
CN102844270A (en) 2012-12-26
KR101070636B1 (en) 2011-10-07

Similar Documents

Publication Publication Date Title
WO2011090260A2 (en) Device for continuously manufacturing activated carbon
WO2010150966A1 (en) Gas scrubber for removing ammonia from waste gas
WO2009136737A9 (en) Combustible waste pyrolysis system and pyrolysis method
WO2011145767A1 (en) Indirect-heating-type carbonization treatment system for waste, and carbonization treatment vehicle using same
WO2017078225A1 (en) Bio oil recovering apparatus using plasma wind
WO2013123918A1 (en) Sleeving cylinder-type coal matter pyrolysis device
WO2017111415A1 (en) Method for decomposing and recycling carbon dioxide using hot stove
WO2012129814A1 (en) Method for preparation of active carbon by pyrolysis of organics
WO2012002693A2 (en) Apparatus for burning greenhouse gases
JP3055686B1 (en) Method and apparatus for producing activated carbide
CN109675921B (en) Continuous organic contaminated soil direct thermal desorption system and thermal desorption method thereof
EP1118372B1 (en) Thermal decomposition furnace for exhaust gas
CN214223130U (en) VOC high-efficiency treatment equipment
CN210601657U (en) Novel high-efficient heat accumulation formula heating power burn burning furnace
WO2014166395A1 (en) Coal gangue pyrolysis device
WO2016032125A1 (en) Flameless regenerative thermal oxidizer system
CN209782666U (en) Heat accumulation incinerator with detachable heat energy recovery device
WO2014166397A1 (en) Steam generating device for water-gas reaction for coal gangue pyrolyzing gasification
WO2011074883A2 (en) Waste processing system
WO2019151567A1 (en) Heat exchange device
JP3702424B2 (en) Waste treatment method and treatment system
WO2024048822A1 (en) Pyrolysis system
CN118794023A (en) Pyrolysis flue gas recycling-based photovoltaic module pyrolysis system and method
WO2024048821A1 (en) Pyrolysis apparatus
CN216441352U (en) Paint waste treatment with waste system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061942.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844056

Country of ref document: EP

Kind code of ref document: A2