WO2017078225A1 - Bio oil recovering apparatus using plasma wind - Google Patents
Bio oil recovering apparatus using plasma wind Download PDFInfo
- Publication number
- WO2017078225A1 WO2017078225A1 PCT/KR2016/002273 KR2016002273W WO2017078225A1 WO 2017078225 A1 WO2017078225 A1 WO 2017078225A1 KR 2016002273 W KR2016002273 W KR 2016002273W WO 2017078225 A1 WO2017078225 A1 WO 2017078225A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hot air
- unit
- exhaust gas
- reactor
- plasma
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/02—Plant or installations having external electricity supply
- B03C3/04—Plant or installations having external electricity supply dry type
- B03C3/14—Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
- B03C3/15—Centrifugal forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04C—APPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
- B04C9/00—Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G31/00—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
- C10G31/10—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for with the aid of centrifugal force
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/40—Solid fuels essentially based on materials of non-mineral origin
- C10L5/44—Solid fuels essentially based on materials of non-mineral origin on vegetable substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/08—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Definitions
- the present invention relates to a bio-oil recovery apparatus using plasma hot air, and more particularly, to a bio-oil recovery apparatus using plasma hot air for recovering bio oil through pyrolysis using plasma hot air by introducing organic waste into a reactor. .
- RPF Refuse Plastic Fuel
- RDF Refuse Derived Fuel
- Korean Patent No. 10-1376737 discloses a bio-oil production apparatus and a bio-oil production process using the same.
- a bio oil is supplied through a reactor for receiving biomass from a silo, a cyclone for receiving a synthesis gas discharged from the reactor and then performing a separation process, and cooling the synthesis gas that is separated from the cyclone in the cyclone.
- a non-condensing gas storage unit for separating and storing the non-condensing gas discharged from the condensation unit in stages, wherein the non-condensing gas stored in the non-condensing gas supply unit can be supplied to the reactor again. It is configured to be.
- high temperature hot air of about 450 ° C. to 550 ° C. needs to be continuously supplied to the reactor as a pyrolysis reaction gas. Since the exhaust gas is used as a pyrolysis reaction gas, the combustion air injected when the oil or the gas is combusted is subjected to the combustion reaction, and the surplus oxygen remaining in the reactor is supplied to the reactor so that the oxygen concentration in the reactor gradually increases during continuous operation.
- the oxygen remaining in the reactor is combined with the carbon constituting the organic waste is converted into carbon dioxide gas has a problem that the production of the bio-oil rapidly decreases as the operating time is longer.
- the biooil recovered from the reactants produced by rapid pyrolysis of organic wastes has a higher viscosity than ordinary oils and is easily cured at room temperature so that they do not flow down as they stick to the inner surface of the reactor and the inner surface of the cyclone. Not only does the phenomenon occur frequently and the recovery rate drops, as well as a problem that takes a long time to clean the oil stuck to the inner surface of the reactor and the inner surface of the cyclone.
- the biofuel particles in the vapor state are cooled and condensed by the oil sprayed from the condensation recovery facility installed at the rear of the reactor, but the fine oil bioparticles of fine mist particles are recovered. Since it is recycled through the exhaust gas circulation duct with the exhaust gas without condensation, there is also a problem that the oil is stuck to the exhaust gas circulation duct and the blower blade, which is an important cause of mechanical failure.
- An object of the present invention for solving the problems according to the prior art is to thermally decompose using the plasma hot air generated by a plasma hot air fan in which the pyrolysis reaction gas is supplied only to nitrogen air, so that oxygen supply is essentially blocked in the entire system. Therefore, even if the operation time is long, the production of bio oil is not reduced and stable operation can be continued.
- the reactor, the cyclone, and the electrostatic precipitator are formed in a double partition structure, and thermal hot air is supplied between the double partition walls. Therefore, as the whole wall is kept warm, bio-oil using plasma hot air can increase the recovery efficiency and lengthen the cleaning cycle by preventing the high viscosity bio oil from sticking to the inner wall of the reactor, cyclone and electrostatic precipitator. In providing a recovery device.
- Bio oil recovery apparatus of the present invention for solving the above technical problem, pyrolysis unit for pyrolyzing the organic waste received by using the plasma hot air; An oil recovery unit for separating and cooling the biooil contained in the exhaust gas discharged from the pyrolysis unit to recover the oil; A gas circulation unit configured to circulate the exhaust gas discharged from the oil recovery unit to the pyrolysis unit; And an insulating hot wind supply unit for supplying thermal hot air for insulating the inside of the pyrolysis unit or the gas circulation unit.
- the pyrolysis unit the reactor for supplying the organic waste to discharge the pyrolyzed exhaust gas to the oil recovery unit; And a plasma hot air fan for supplying the mixed hot air to the inside of the reactor by mixing the plasma hot air and the exhaust gas supplied from the gas circulation unit.
- the reactor is formed of a double partition structure
- the heat insulating hot air supply unit may supply the hot air for keeping warm between the double partition walls of the reactor to keep the interior of the reactor.
- the inner bottom of the reactor may be provided with a plurality of flow nozzles or porous plates connected to the plasma hot air, and the mixed hot air may be supplied into the reactor through the plurality of flow nozzles or the porous plates.
- the plasma hot air may be generated by using nitrogen gas as a carrier gas.
- the hot air in which the plasma hot air and the exhaust gas supplied from the gas circulation unit are mixed may be 450 ° C to 550 ° C.
- the oil recovery unit a cyclone for performing a separation process after receiving the exhaust gas discharged from the pyrolysis unit;
- a cooling condenser connected to a rear end of the cyclone to recover bio-oil through cooling and condensing the exhaust gas which is separated from the fan in the cyclone;
- an electrostatic precipitator connected to the rear end of the cooling condenser to recover the biooil on the fine particles not recovered from the cooling condenser by an electrostatic precipitating method.
- the heat insulating hot air supply unit may supply the hot air for insulating between the double partition of the cyclone and the electrostatic precipitator to insulate the interior of the cyclone and the electrostatic precipitator .
- the electrostatic precipitator may be configured such that one or two or more of the electrostatic precipitators are connected in series using either a flat electrostatic precipitator or a cylindrical electrostatic precipitator.
- the gas circulation unit the storage tank for storing the exhaust gas discharged from the oil recovery unit; It may be configured to include; and a blower for supplying the exhaust gas stored in the reservoir to the pyrolysis unit.
- the thermal insulation hot air supply unit a combustion burner for generating thermal insulation; It may be configured to include; and a blower for blowing and supplying the heat of insulation.
- the high-temperature plasma hot air generated by using nitrogen as a carrier air in a plasma torch at the bottom of the reactor after inputting organic waste such as sawdust, palm oil residues, grasses, agricultural residues into the reactor as a pyrolysis reaction gas has the advantage of stable recovery of char and bio oil, which are economical, from the reactants generated by thermal decomposition of carbon components among the various components constituting the organic waste by supplying through cooling, collecting, and recycling.
- the pyrolysis reaction gas is pyrolyzed using the plasma hot air generated by the plasma hot air supplied only with nitrogen air, so that the oxygen supply is fundamentally blocked in the entire system, so that the production amount of bio oil does not decrease even if the operation time is long. There is an advantage that stable operation can be continued without.
- the reactor, the cyclone, the electrostatic precipitator is formed in a double partition structure, and as the hot air for thermal insulation is supplied between the double partition walls, the biooil with high viscosity is maintained in the reactor, cyclone, electrostatic precipitator. It is advantageous to increase the recovery efficiency and lengthen the cleaning cycle by suppressing the adhesion to the inner wall.
- FIG. 1 is a block diagram showing the overall connection between the components of the bio-oil recovery apparatus using the plasma hot air according to an embodiment of the present invention.
- FIG. 2 is a block diagram illustrating a pyrolysis unit of a biooil recovery apparatus using plasma hot air according to an embodiment of the present invention.
- FIG. 3 is a block diagram showing an oil recovery unit of the bio-oil recovery apparatus using the plasma hot air according to an embodiment of the present invention.
- Figure 4 is a block diagram showing a gas circulation unit of the bio-oil recovery apparatus using the plasma hot air according to an embodiment of the present invention.
- FIG. 5 is a block diagram showing a heat insulation hot wind supply unit of the bio-oil recovery apparatus using the plasma hot air according to an embodiment of the present invention.
- fluid carrier storage tank 107 fluid carrier
- Oil recovery part 201 Cyclone
- cooling condenser 203 spray nozzle
- electrostatic precipitator 300 gas circulation unit
- the terms are used only for the purpose of distinguishing one component from another.
- the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
- FIG. 1 is a block diagram showing the overall connection relationship between the components of the bio-oil recovery apparatus using the plasma hot air according to an embodiment of the present invention
- Figure 2 is a bio-oil using plasma hot air according to an embodiment of the present invention
- 3 is a block diagram illustrating a pyrolysis unit of a recovery device
- FIG. 3 is a block diagram showing an oil recovery unit of a biooil recovery device using plasma hot air according to an embodiment of the present invention
- FIG. 4 is an embodiment of the present invention.
- FIG. 5 is a diagram illustrating a gas circulation unit of a biooil recovery apparatus using plasma hot air
- FIG. 5 is a diagram illustrating a heat insulation hot wind supply unit of a biooil recovery apparatus using plasma hot air according to an embodiment of the present invention.
- Bio oil recovery apparatus using a plasma hot air as shown in Figure 1, the thermal decomposition unit 100, oil recovery unit 200, gas circulation unit 300 and thermal insulation hot air supply unit ( 400).
- the pyrolysis unit 100 is a component that thermally decomposes the organic waste received using plasma hot air.
- the oil recovery unit 200 is a component for separating and cooling the biooil contained in the exhaust gas discharged from the pyrolysis unit 100 and recovering the oil.
- the gas circulation unit 300 is a component that circulates the exhaust gas discharged from the oil recovery unit 200 to the pyrolysis unit 100.
- the heat insulation hot air supply unit 400 is a portion for supplying heat insulation for warming the inside of the thermal decomposition unit 100 or the gas circulation unit 300.
- thermal decomposition unit 100 First, the thermal decomposition unit 100 will be described.
- the pyrolysis unit 100 includes a reactor 101 and a plasma hot air blower 108.
- the reactor 101 is a component for supplying the organic waste and exhausting the pyrolyzed exhaust gas to the oil recovery part 200.
- the outer wall is formed in a double wall structure and has a cylindrical body 102 arranged vertically. It is configured to include.
- the thermal hot air supplied from the thermal hot air supply unit 400 is supplied between the double wall structures, and the inside of the reactor 101 may be warmed by the thermal hot air, and thus, the reactor 101 ) It is possible to prevent the biooil having a high viscosity from adhering to and sticking to the inner inner wall.
- the main body 102 of the reactor 101 has a heat insulating hot air inlet 112 formed at one point of the outer wall of the double wall structure, and the heat insulating hot air outlet 113 is formed at another point of the outer wall of the double wall structure.
- the wall temperature of the reactor 101 is maintained at an average of 300 ° C. by the hot air of about 150 ° C. to 400 ° C. supplied from the heat insulating hot air supply unit 400.
- a hot air supplied from the plasma hot air blower 108 is connected to the inside of the reactor 101 at the bottom of the inner bottom of the main body 102 forming the overall shape of the reactor 101.
- a plurality of flow nozzles 103 for supplying are provided, and a supply port 109 connected to the plasma hot air fan 108 is formed below the main body 102, and hot air supplied through the supply port 109 is provided.
- Hot air may be uniformly supplied through the plurality of flow nozzles 103. In order to supply the hot air evenly, the plurality of flow nozzles 103 may be replaced to allow hot air to be injected through the porous plate through the porous plate.
- a raw material input conveyor 104 for dumping organic waste is installed on one side of the main body 102 so that the organic waste supplied through the raw material input conveyor 104 is supplied into the reactor 101.
- the raw material injection hole 105 is formed.
- a flow yarn inlet 107 for supplying the flow yarn supplied from the flow yarn storage tank 106 to the inside of the reactor 101 is formed at the other side of the center portion of the body 102, and The other side of the lower side is formed with a flow yarn discharge port 110 for discharging the supplied flow yarn, the rear end of the flow yarn discharge port 110 is connected conveyor 111 for transferring the discharged flow yarn to the flow yarn storage tank 106 Is installed.
- the plasma hot air blower 108 mixes the plasma hot air generated by itself and the exhaust gas supplied from the gas circulation unit 300 to mix the hot air mixed into the reactor 101 (plasma hot air and exhaust gas are mixed. Hot air).
- the plasma hot air blower 108 is formed in a rocket shape, the plasma torch 114 is provided at the inlet portion (left side of FIG. 2), the exhaust gas circulation duct 115 is connected to the middle portion thereof, and the outlet portion ( 2 is connected to the supply port 109.
- the plasma torch 114 is composed of a cathode 116 and an anode 117, and when a high current of DC is applied between the cathode 116 and the anode 117 between the cathode 116 and the anode 117 Plasma flame is generated in this case, and when nitrogen, which is a reaction gas, is blown into the plasma torch 114, a nitrogen-based ultra high temperature plasma flame of about 1200 ° C. to 1500 ° C. is generated.
- the temperature of the reaction gas suitable for supplying the reactor 101 is about 500 ° C., it is mixed with the low temperature circulating exhaust gas supplied from the exhaust gas circulation duct 115 inside the plasma hot air fan 108 to 450 ° C. A reaction gas in the range of 550 ° C. is generated and supplied to the reactor 101.
- thermal decomposition unit 100 As described above, it is possible to thermally decompose organic waste such as sawdust, palm oil residues, grasses, agricultural residues, etc. supplied into the main body 102 of the reactor 101.
- the oil recovery unit 200 includes a cyclone 201, a cooling condenser 202, and an electrostatic precipitator 204.
- the cyclone 201 is a component for recovering char by separating the particulate matter by centrifugal force after accommodating the exhaust gas that is pyrolyzed and discharged from the pyrolysis unit 100, and has an outer wall having a double wall structure.
- the inside of the reactor 101 by the warm hot air can be kept warm, Therefore, it is possible to prevent the biooil having a high viscosity from adhering to and sticking to the inner wall of the reactor 101.
- an inlet for insulated hot air and an outlet for insulated hot air flow are formed at one point and another point of the outer wall of the double wall structure of the cyclone 201, respectively, and are supplied from the hot air supply unit 400.
- the hot air of about 150 °C to 400 °C to maintain the wall temperature of the cyclone 201 can be an average of 300 °C.
- Centrifuged ⁇ is collected and collected at the center lower portion of the cyclone 201, and exhaust gas containing bio-oil is supplied to the cooling condenser 202 through the upper portion of the cyclone 201.
- the cooling condenser 202 is connected to a rear end of the cyclone 201 to recover bio-oil through cooling and condensation of the exhaust gas that is separably treated from the cyclone 201 and cooling condensation.
- the bio oil is recovered through.
- the cooling condenser 202 may be configured such that one or two or more are connected in series, and the biooil condensed through the cooling condenser 202 is stored in a separate oil storage tank (not shown). Can be.
- the condensation of the biooil in the cooling condenser 202 may be achieved by spraying the bio-oil recovered in the oil storage tank through the injection nozzle 203 installed on the cooling condenser 202, the initial operation Since there is no biooil recovered from the cooling condenser 202, it is preferable to use paraffin oil or oil similar in physical properties to biocondensate as the condensate until the biooil is recovered to a certain amount.
- the electrostatic precipitator 204 is connected to the rear end of the cooling condenser 202 to recover the biooil on the fine particles that are not recovered from the cooling condenser 202, to recover the biooil through the electrostatic precipitating method do.
- Bio-oil contained in the gas is almost collected in the cooling condenser 202, but in the exhaust gas discharged from the cooling condenser 202, the bio-oil on the microparticles, which are not condensed and fly again, remain.
- One or two or more units are provided in series at the rear end of the cooling condenser 202 to collect oil.
- the outer wall of the electrostatic precipitator 204 is formed of a double partition wall structure
- the heat insulating hot air supply unit 400 supplies the hot air for insulating between the double partition walls of the electrostatic precipitator 204 to the electrostatic precipitator 204 It is configured to insulate the interior of the.
- an inlet for insulated hot air and an outlet for inflowing the warmed hot air are formed at one point and the other point of the outer wall of the double partition wall structure of the electrostatic precipitator 204, respectively.
- the hot air supplied from about 150 ° C. to 400 ° C. maintains the wall temperature of the cyclone 201 to be 300 ° C. on average.
- the electrostatic precipitator 204 may be any one of a flat plate-type electrostatic precipitator having a flat plate or a cylindrical electrostatic precipitator having a cylindrical plate, but to increase the mist collecting efficiency of the droplet state contained in the exhaust gas, a cylindrical electrostatic precipitator. It is preferable to use a flat type electrostatic precipitator for stable operation, and it is preferable to configure the cylindrical electrostatic precipitator and the flat type electrostatic precipitator in order to achieve both mist collection efficiency and stable operation.
- the oil recovery unit 200 As described above, it is possible to recover the bio-oil contained in the exhaust gas supplied from the pyrolysis unit 100, in particular, fine contained in the exhaust gas through the electrostatic precipitator 204 Since the biooil on the particles is collected and recovered, the biooil microparticles are prevented from mechanical failure due to attachment and fixation inside the components, and the recovery rate of the biooil can be maximized.
- the gas circulation unit 300 includes a reservoir 301 and a blower 302.
- the storage tank 301 is a component for storing the exhaust gas discharged from the oil recovery unit 200, the blower 302 for supplying the exhaust gas stored in the storage tank 301 to the pyrolysis unit 100. Component.
- the blower 302 allows the exhaust gas stored in the reservoir 301 to be supplied into the plasma hot air blower 108 through the circulation duct 115 connected to the middle portion of the plasma hot air blower 108.
- the reservoir 301 and the exhaust gas circulation duct 115 is preferably configured in a closed structure, because the outside air is introduced into the exhaust gas while the oxygen is not included, and the organic waste is thermally decomposed Char and bio-oil are recovered from the generated reactants, but the remainder is gasified to be included in the exhaust gas, and if the operation continues, the amount of exhaust gas gradually increases, so that the gas vent valve 303 is attached to the upper portion of the exhaust gas storage tank 301. It is preferable to allow some of the exhaust gas to be discharged manually or automatically.
- the bio-oil is recovered, and the low temperature exhaust gas is supplied back to the plasma hot air fan 108 so that the temperature of the plasma hot air can be properly adjusted.
- thermal insulation hot air supply unit 400 Next, the thermal insulation hot air supply unit 400 will be described.
- the warm hot air supply unit 400 as shown in Figure 5, comprises a combustion burner 401 and a blower 402.
- the combustion burner 401 is a component that generates warm heat through combustion using LNG or oil as fuel
- the blower 402 is a component that blows and supplies the warm heat.
- blower 402 is blown so that hot air can be supplied through the inlet of the thermal hot air of the reactor 101, the cyclone 201, the electrostatic precipitator 204.
- the wall temperature of the reactor 101, the cyclone 201, the electrostatic precipitator 204 can be maintained to be an average of 300 °C, through which the bio-oil It can flow along the inner wall of the to increase the collection efficiency, it is possible to increase the internal cleaning cycle of the recovery facility.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
Abstract
The present invention relates to a bio oil recovering apparatus using plasma wind, the apparatus introducing organic waste into a reactor and recovering bio oil by means of pyrolysis using plasma wind. To this end, the bio oil recovering apparatus using plasma wind of the present invention is configured to include: a pyrolysis unit that uses plasma wind and pyrolyzes received organic waste; an oil recovery unit that separates, cools, and recovers bio oil contained in exhaust gas discharged from the pyrolysis unit; a gas circulation unit that supplies the exhaust gas discharged from the oil recovery unit to the pyrolysis unit and circulates the gas; and a thermal wind supply unit that supplies thermal wind for maintaining heat inside the pyrolysis unit or the gas circulation unit.
Description
본 발명은 플라즈마 열풍을 이용한 바이오오일 회수장치에 관한 것으로서, 더욱 상세하게는, 유기성 폐기물을 반응기에 투입하여 플라즈마 열풍을 이용한 열분해를 통해 바이오오일을 회수하는 플라즈마 열풍을 이용한 바이오오일 회수장치에 관한 것이다.The present invention relates to a bio-oil recovery apparatus using plasma hot air, and more particularly, to a bio-oil recovery apparatus using plasma hot air for recovering bio oil through pyrolysis using plasma hot air by introducing organic waste into a reactor. .
최근 다양한 분야에서 발생되는 각종 산업용 폐기물들은 단순한 매립이나 소각 대상이 아닌 RPF(Refuse Plastic Fuel) 또는 RDF(Refuse Derived Fuel) 등과 같은 고형연료로 제조되어 재활용이 되고 있다.Recently, various industrial wastes generated in various fields are recycled because they are manufactured from solid fuels such as RPF (Refuse Plastic Fuel) or RDF (Refuse Derived Fuel), which are not simply landfilled or incinerated.
하지만, 유기성 폐기물은 발열량이 낮아서 직접 고형연료로 전환하기에는 경제성이 부족하여 유기성 폐기물을 고온으로 열분해시켜 촤(Char)와 바이오오일로 생산하는 기술이 개발되고 있다.However, organic wastes are low in calorific value and thus lack of economic feasibility to directly convert to solid fuels. Therefore, a technology for producing char and bio-oil by pyrolysing organic wastes at high temperature is being developed.
예를 들어, 한국등록특허 제10-1376737호에는 '바이오오일 제조 장치 및 이를 이용한 바이오오일 제조 공정'에 대해 개시되어 있다.For example, Korean Patent No. 10-1376737 discloses a bio-oil production apparatus and a bio-oil production process using the same.
구체적으로, 사일로에서 바이오매스를 공급받는 반응기, 상기 반응기에서 토출되는 합성가스를 수용한 후 분리공정을 수행하는 사이클론, 상기 사이클론에서 촤와 분리 가능하게 처리된 상기 합성가스에 대한 냉각을 통해 바이오오일을 단계적으로 생산하는 응축부 및 상기 응축부에서 배출된 비응축가스를 분리하여 저장하는 비응축가스 저장부를 포함하여 구성되며, 상기 비응축가스 공급부에 저장된 비응축가스는 상기 반응기에 재공급될 수 있도록 구성된다.Specifically, a bio oil is supplied through a reactor for receiving biomass from a silo, a cyclone for receiving a synthesis gas discharged from the reactor and then performing a separation process, and cooling the synthesis gas that is separated from the cyclone in the cyclone. And a non-condensing gas storage unit for separating and storing the non-condensing gas discharged from the condensation unit in stages, wherein the non-condensing gas stored in the non-condensing gas supply unit can be supplied to the reactor again. It is configured to be.
한편, 반응기에 투입된 유기성 폐기물을 급속 열분해 시키기 위하여 450 ℃ 내지 550 ℃ 정도의 고온 열풍을 열분해반응 가스로 반응기에 지속적으로 공급하여야 하는데, 상기에 개시된 기술은 기름 또는 가스 연료를 연소시켜 발생하는 고온의 배기가스를 열분해반응가스로 사용하고 있어서 기름 또는 가스를 연소시킬때 주입되는 연소공기가 연소 반응하고 남은 잉여 산소가 반응기에 공급되어 연속 운전 시 반응기 내의 산소농도가 점차 증가하게 된다.Meanwhile, in order to rapidly pyrolyze the organic waste introduced into the reactor, high temperature hot air of about 450 ° C. to 550 ° C. needs to be continuously supplied to the reactor as a pyrolysis reaction gas. Since the exhaust gas is used as a pyrolysis reaction gas, the combustion air injected when the oil or the gas is combusted is subjected to the combustion reaction, and the surplus oxygen remaining in the reactor is supplied to the reactor so that the oxygen concentration in the reactor gradually increases during continuous operation.
이러한 이유로, 반응기 내에 잔존하는 산소가 유기성 폐기물을 구성하고 있는 탄소와 결합하여 이산화탄소가스로 전환되어 운전 시간이 길어질수록 바이오오일의 생산량이 급격히 저하되는 문제점이 있다.For this reason, the oxygen remaining in the reactor is combined with the carbon constituting the organic waste is converted into carbon dioxide gas has a problem that the production of the bio-oil rapidly decreases as the operating time is longer.
따라서, 장기간 운전 시 점차적으로 바이오오일 생산효율이 낮아지는 문제점이 있고, 연료 연소로 발생되는 고온의 배기가스로 질소가스를 열교환기를 통하여 승온시켜 열분해 반응가스로 사용하면 열 교환에 따른 질소가스의 가온효율이 낮아서 연료소모량이 많아지는 문제점이 있다.Therefore, there is a problem in that the biooil production efficiency gradually decreases during long-term operation, and when the nitrogen gas is heated as a pyrolysis reaction gas by using a heat exchanger to heat up nitrogen gas as a high temperature exhaust gas generated by fuel combustion, heating of nitrogen gas due to heat exchange The efficiency is low, there is a problem that the fuel consumption increases.
또한, 유기성 폐기물이 급속 열분해 되면서 생성되는 반응물에서 회수된 바이오오일은 일반적인 기름에 비하여 점도가 높고 상온에서 쉽게 경화되어 반응기의 내부 표면 및 싸이크론의 내부 표면 등에 달라붙어 굳어짐에 따라 흘러내리지 않게 되어 회수가 되지 않는 현상이 자주 발생하여 회수율이 떨어지게 되는 문제점이 있을 뿐만 아니라, 반응기의 내부 표면 및 싸이크론의 내부 표면에 고착된 오일을 청소하는데 많은 시간이 소요되는 문제점이 있다.In addition, the biooil recovered from the reactants produced by rapid pyrolysis of organic wastes has a higher viscosity than ordinary oils and is easily cured at room temperature so that they do not flow down as they stick to the inner surface of the reactor and the inner surface of the cyclone. Not only does the phenomenon occur frequently and the recovery rate drops, as well as a problem that takes a long time to clean the oil stuck to the inner surface of the reactor and the inner surface of the cyclone.
또한, 반응기에서 열분해되어 발생되는 반응물에서 바이오오일을 회수하기 위하여 반응기 후단에 설치된 응축회수설비에서 분사되는 오일에 의해 증기 상태의 바이오오일 입자가 냉각되면서 응축되어 대부분 회수되지만 미세한 미스트 입자의 바이오오일은 응축되지 않고 배기가스와 함께 배기가스 순환 덕트를 통해 재순환하므로 배기가스 순환 덕트와 송풍기 날개에 오일이 고착되어 기계고장의 중요한 원인이 되는 문제점도 있다.In addition, in order to recover the biooil from the reaction product generated by pyrolysis in the reactor, the biofuel particles in the vapor state are cooled and condensed by the oil sprayed from the condensation recovery facility installed at the rear of the reactor, but the fine oil bioparticles of fine mist particles are recovered. Since it is recycled through the exhaust gas circulation duct with the exhaust gas without condensation, there is also a problem that the oil is stuck to the exhaust gas circulation duct and the blower blade, which is an important cause of mechanical failure.
상기 종래 기술에 따른 문제점을 해결하기 위한 본 발명의 목적은, 열분해 반응가스가 질소공기로만 공급되는 플라즈마 열풍기에 의해 발생된 플라즈마 열풍을 이용하여 열분해를 하게 되므로, 전체 시스템 내에 산소 공급이 근원적으로 차단되므로 운전 시간이 길어지더라도 바이오오일의 생산량이 저하되지 않고 안정적인 운전이 지속될 수 있도록 하고, 또한, 반응기, 사이클론, 전기집진기가 2중 격벽 구조로 형성되고, 2중 격벽 사이로 보온용 열풍이 공급됨에 따라 벽면 전체를 지속적으로 보온시킴에 따라 점도가 높은 바이오오일이 반응기, 사이클론, 전기집진기의 내측 벽면에 부착되어 고착되는 것을 억제하여 회수효율을 높이고 청소주기를 길게 할 수 있는 플라즈마 열풍을 이용한 바이오오일 회수장치를 제공함에 있다.An object of the present invention for solving the problems according to the prior art is to thermally decompose using the plasma hot air generated by a plasma hot air fan in which the pyrolysis reaction gas is supplied only to nitrogen air, so that oxygen supply is essentially blocked in the entire system. Therefore, even if the operation time is long, the production of bio oil is not reduced and stable operation can be continued. In addition, the reactor, the cyclone, and the electrostatic precipitator are formed in a double partition structure, and thermal hot air is supplied between the double partition walls. Therefore, as the whole wall is kept warm, bio-oil using plasma hot air can increase the recovery efficiency and lengthen the cleaning cycle by preventing the high viscosity bio oil from sticking to the inner wall of the reactor, cyclone and electrostatic precipitator. In providing a recovery device.
상기 기술적 과제를 해결하기 위한 본 발명의 바이오오일 회수장치는, 플라즈마 열풍을 이용하여 공급받은 유기성 폐기물을 열분해하는 열분해부; 상기 열분해부에서 배출되는 배기가스에 포함된 바이오오일을 분리 및 냉각하여 회수하는 오일회수부; 상기 오일회수부에서 배출되는 배기가스를 상기 열분해부로 공급하여 순환시키는 가스순환부; 및 상기 열분해부 또는 가스순환부의 내부를 보온하기 위한 보온용 열풍을 공급하는 보온열풍공급부;를 포함한다.Bio oil recovery apparatus of the present invention for solving the above technical problem, pyrolysis unit for pyrolyzing the organic waste received by using the plasma hot air; An oil recovery unit for separating and cooling the biooil contained in the exhaust gas discharged from the pyrolysis unit to recover the oil; A gas circulation unit configured to circulate the exhaust gas discharged from the oil recovery unit to the pyrolysis unit; And an insulating hot wind supply unit for supplying thermal hot air for insulating the inside of the pyrolysis unit or the gas circulation unit.
바람직하게, 상기 열분해부는, 상기 유기성 폐기물을 공급받아 열분해된 배기가스를 상기 오일회수부로 배출하는 반응기; 및 플라즈마 열풍과 상기 가스순환부에서 공급되는 배기가스를 혼합하여 상기 반응기의 내부로 혼합된 열풍을 공급하는 플라즈마 열풍기;를 포함하여 구성될 수 있다.Preferably, the pyrolysis unit, the reactor for supplying the organic waste to discharge the pyrolyzed exhaust gas to the oil recovery unit; And a plasma hot air fan for supplying the mixed hot air to the inside of the reactor by mixing the plasma hot air and the exhaust gas supplied from the gas circulation unit.
바람직하게, 상기 반응기는 2중 격벽 구조로 형성되고, 상기 보온열풍공급부는 상기 반응기의 2중 격벽 사이로 보온용 열풍을 공급하여 상기 반응기의 내부를 보온할 수 있다.Preferably, the reactor is formed of a double partition structure, the heat insulating hot air supply unit may supply the hot air for keeping warm between the double partition walls of the reactor to keep the interior of the reactor.
바람직하게, 상기 반응기의 내측 저부에는 상기 플라즈마 열풍기와 연결된 복수의 유동노즐 또는 다공판이 구비되고, 상기 복수의 유동노즐 또는 다공판을 통해 상기 혼합된 열풍이 반응기의 내부로 공급될 수 있다.Preferably, the inner bottom of the reactor may be provided with a plurality of flow nozzles or porous plates connected to the plasma hot air, and the mixed hot air may be supplied into the reactor through the plurality of flow nozzles or the porous plates.
바람직하게, 상기 플라즈마 열풍은 질소 가스를 케리어 가스로 하여 생성될 수 있다.Preferably, the plasma hot air may be generated by using nitrogen gas as a carrier gas.
바람직하게, 상기 플라즈마 열풍과 상기 가스순환부에서 공급되는 배기가스가 혼합된 열풍은 450 ℃ 내지 550 ℃일 수 있다.Preferably, the hot air in which the plasma hot air and the exhaust gas supplied from the gas circulation unit are mixed may be 450 ° C to 550 ° C.
바람직하게, 상기 오일회수부는, 상기 열분해부에서 배출되는 배기가스를 수용한 후 분리공정을 수행하는 사이클론; 상기 사이클론의 후단에 연결되어 상기 사이클론에서 촤와 분리 가능하게 처리된 배기가스를 냉각 및 응축시켜 통해 바이오오일을 회수하는 냉각응축기; 및 상기 냉각응축기의 후단에 연결되어 상기 냉각응축기에서 회수되지 않은 미세입자 상의 바이오오일을 전기집진방식으로 회수하는 전기집진기;를 포함하여 구성될 수 있다.Preferably, the oil recovery unit, a cyclone for performing a separation process after receiving the exhaust gas discharged from the pyrolysis unit; A cooling condenser connected to a rear end of the cyclone to recover bio-oil through cooling and condensing the exhaust gas which is separated from the fan in the cyclone; And an electrostatic precipitator connected to the rear end of the cooling condenser to recover the biooil on the fine particles not recovered from the cooling condenser by an electrostatic precipitating method.
바람직하게, 상기 사이클론 및 전기집진기는 2중 격벽 구조로 형성되고, 상기 보온열풍공급부는 상기 사이클론 및 전기집진기의 2중 격벽 사이로 보온용 열풍을 공급하여 상기 사이클론 및 전기집진기의 내부를 보온할 수 있다.Preferably, the cyclone and the electrostatic precipitator is formed in a double partition structure, the heat insulating hot air supply unit may supply the hot air for insulating between the double partition of the cyclone and the electrostatic precipitator to insulate the interior of the cyclone and the electrostatic precipitator .
바람직하게, 상기 전기집진기는 평판형 전기집진기 또는 원통형 전기집진기 중 어느 것을 사용하여 1대 또는 2대 이상이 직렬로 연결되도록 구성될 수 있다.Preferably, the electrostatic precipitator may be configured such that one or two or more of the electrostatic precipitators are connected in series using either a flat electrostatic precipitator or a cylindrical electrostatic precipitator.
바람직하게, 상기 가스순환부는, 상기 오일회수부에서 배출되는 배기가스를 저장하는 저장조; 및 상기 저장조에 저장된 배기가스를 상기 열분해부로 공급하는 송풍기;를 포함하여 구성될 수 있다.Preferably, the gas circulation unit, the storage tank for storing the exhaust gas discharged from the oil recovery unit; It may be configured to include; and a blower for supplying the exhaust gas stored in the reservoir to the pyrolysis unit.
바람직하게, 상기 보온열풍공급부는, 보온열을 발생하는 연소버너; 및 상기 보온열을 송풍하여 공급하는 송풍기;를 포함하여 구성될 수 있다.Preferably, the thermal insulation hot air supply unit, a combustion burner for generating thermal insulation; It may be configured to include; and a blower for blowing and supplying the heat of insulation.
상술한 바와 같은 본 발명은, 톱밥, 팜유 찌꺼기, 목초, 농산 잔재물 등의 유기성 폐기물을 반응기에 투입 후 반응기 하부에 플라즈마 토치에서 질소를 케리어 공기로 사용하여 발생시킨 고온의 플라즈마 열풍을 열분해반응가스로 공급하여 유기성 폐기물을 구성하고 있는 여러 성분 중 탄소성분을 열분해시켜 발생되는 반응물 중에서 경제성이 있는 촤(Char) 와 바이오오일을 냉각, 포집, 재순환과정을 통해 안정적으로 회수할 수 있는 이점이 있다.In the present invention as described above, the high-temperature plasma hot air generated by using nitrogen as a carrier air in a plasma torch at the bottom of the reactor after inputting organic waste such as sawdust, palm oil residues, grasses, agricultural residues into the reactor as a pyrolysis reaction gas. It has the advantage of stable recovery of char and bio oil, which are economical, from the reactants generated by thermal decomposition of carbon components among the various components constituting the organic waste by supplying through cooling, collecting, and recycling.
또한, 열분해 반응가스가 질소공기로만 공급되는 플라즈마 열풍기에 의해 발생된 플라즈마 열풍을 이용하여 열분해를 하게 되므로, 전체 시스템 내에 산소 공급이 근원적으로 차단되므로 운전 시간이 길어지더라도 바이오오일의 생산량이 저하되지 않고 안정적인 운전이 지속될 수 있다는 이점이 있다.In addition, since the pyrolysis reaction gas is pyrolyzed using the plasma hot air generated by the plasma hot air supplied only with nitrogen air, the oxygen supply is fundamentally blocked in the entire system, so that the production amount of bio oil does not decrease even if the operation time is long. There is an advantage that stable operation can be continued without.
또한, 반응기, 사이클론, 전기집진기가 2중 격벽 구조로 형성되고, 2중 격벽 사이로 보온용 열풍이 공급됨에 따라 벽면 전체를 지속적으로 보온시킴에 따라 점도가 높은 바이오오일이 반응기, 사이클론, 전기집진기의 내측 벽면에 부착되어 고착되는 것을 억제하여 회수효율을 높이고 청소주기를 길게 하는 이점이 있다.In addition, the reactor, the cyclone, the electrostatic precipitator is formed in a double partition structure, and as the hot air for thermal insulation is supplied between the double partition walls, the biooil with high viscosity is maintained in the reactor, cyclone, electrostatic precipitator. It is advantageous to increase the recovery efficiency and lengthen the cleaning cycle by suppressing the adhesion to the inner wall.
또한, 전기집진기를 통해 배기가스 내의 미세한 바이오오일 미스트를 포집하여 배기가스의 순환 사용에 따른 바이오오일 미스트가 기기에 부착하는 것을 방지하여 기기의 고장요인을 줄여서 설비의 사용수명을 연장시키는 이점이 있다.In addition, by collecting the fine biooil mist in the exhaust gas through the electrostatic precipitator has the advantage of preventing the biooil mist due to the circulation use of the exhaust gas attached to the device to reduce the failure factor of the device to extend the service life of the equipment .
도 1은 본 발명의 일실시예에 따른 플라즈마 열풍을 이용한 바이오오일 회수장치의 구성요소 간 전체적인 연결관계를 도시한 구성도이다.1 is a block diagram showing the overall connection between the components of the bio-oil recovery apparatus using the plasma hot air according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 플라즈마 열풍을 이용한 바이오오일 회수장치의 열분해부를 도시한 구성도이다.2 is a block diagram illustrating a pyrolysis unit of a biooil recovery apparatus using plasma hot air according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 플라즈마 열풍을 이용한 바이오오일 회수장치의 오일회수부를 도시한 구성도이다.3 is a block diagram showing an oil recovery unit of the bio-oil recovery apparatus using the plasma hot air according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 플라즈마 열풍을 이용한 바이오오일 회수장치의 가스순환부를 도시한 구성도이다.Figure 4 is a block diagram showing a gas circulation unit of the bio-oil recovery apparatus using the plasma hot air according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 플라즈마 열풍을 이용한 바이오오일 회수장치의 보온열풍공급부를 도시한 구성도이다.5 is a block diagram showing a heat insulation hot wind supply unit of the bio-oil recovery apparatus using the plasma hot air according to an embodiment of the present invention.
<부호의 설명><Description of the code>
100:열분해부 101:반응기100: pyrolysis unit 101: reactor
102:본체 103:유동노즐102: body 103: flow nozzle
104:원료투입 컨베이어 105:원료투입구104: raw material input conveyor 105: raw material input opening
106:유동사 저장탱크 107:유동사 투입구106: fluid carrier storage tank 107: fluid carrier
108:플라즈마 열풍기 109:공급구108: plasma hot air fan 109: supply port
110:유동사 토출구 111:연결 컨베이어110: fluid flow outlet 111: connection conveyor
112:보온열풍 유입구 113:보온열풍 유출구112: heat insulation hot air inlet 113: heat insulation hot air outlet
114:플라즈마 토치 115: 배기가스 순환 덕트114: plasma torch 115: exhaust gas circulation duct
116:음극 117:양극116: negative electrode 117: positive electrode
200:오일회수부 201:사이클론200: Oil recovery part 201: Cyclone
202:냉각응축기 203:분사노즐202: cooling condenser 203: spray nozzle
204:전기집진기 300:가스순환부204: electrostatic precipitator 300: gas circulation unit
301:저장조 302, 402:송풍기301: reservoir 302, 402: blower
303:가스 벤트 밸브 400:보온열풍공급부303: gas vent valve 400: heat insulation hot air supply
401:연소버너401: burner
본 발명은 그 기술적 사상 또는 주요한 특징으로부터 벗어남이 없이 다른 여러가지 형태로 실시될 수 있다. 따라서, 본 발명의 실시예들은 모든 점에서 단순한 예시에 지나지 않으며 한정적으로 해석되어서는 안된다.The present invention can be embodied in many other forms without departing from the spirit or main features thereof. Therefore, the embodiments of the present invention are merely examples in all respects and should not be interpreted limitedly.
제1, 제2등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms.
상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1구성요소는 제2구성요소로 명명될 수 있고, 유사하게 제2구성요소도 제1구성요소로 명명될 수 있다.The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.The term and / or includes a combination of a plurality of related items or any item of a plurality of related items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어"있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.\When a component is referred to as being "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that other components may exist in the middle. It should be. \
반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 출원에서, "포함하다" 또는 "구비하다", "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this application, the terms "comprise", "comprise", "have", and the like are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification. Or other features or numbers, steps, operations, components, parts or combinations thereof in any way should not be excluded in advance.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are not construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be denoted by the same reference numerals regardless of the reference numerals and redundant description thereof will be omitted.
본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 1은 본 발명의 일실시예에 따른 플라즈마 열풍을 이용한 바이오오일 회수장치의 구성요소 간 전체적인 연결관계를 도시한 구성도이고, 도 2는 본 발명의 일실시예에 따른 플라즈마 열풍을 이용한 바이오오일 회수장치의 열분해부를 도시한 구성도이며, 도 3은 본 발명의 일실시예에 따른 플라즈마 열풍을 이용한 바이오오일 회수장치의 오일회수부를 도시한 구성도이고, 도 4는 본 발명의 일실시예에 따른 플라즈마 열풍을 이용한 바이오오일 회수장치의 가스순환부를 도시한 구성도이며, 도 5는 본 발명의 일실시예에 따른 플라즈마 열풍을 이용한 바이오오일 회수장치의 보온열풍공급부를 도시한 구성도이다.1 is a block diagram showing the overall connection relationship between the components of the bio-oil recovery apparatus using the plasma hot air according to an embodiment of the present invention, Figure 2 is a bio-oil using plasma hot air according to an embodiment of the present invention 3 is a block diagram illustrating a pyrolysis unit of a recovery device, FIG. 3 is a block diagram showing an oil recovery unit of a biooil recovery device using plasma hot air according to an embodiment of the present invention, and FIG. 4 is an embodiment of the present invention. FIG. 5 is a diagram illustrating a gas circulation unit of a biooil recovery apparatus using plasma hot air, and FIG. 5 is a diagram illustrating a heat insulation hot wind supply unit of a biooil recovery apparatus using plasma hot air according to an embodiment of the present invention.
본 발명의 일실시예에 따른 플라즈마 열풍을 이용한 바이오오일 회수장치는, 도 1에 도시된 바와 같이, 열분해부(100), 오일회수부(200), 가스순환부(300) 및 보온열풍공급부(400)를 포함하여 구성된다.Bio oil recovery apparatus using a plasma hot air according to an embodiment of the present invention, as shown in Figure 1, the thermal decomposition unit 100, oil recovery unit 200, gas circulation unit 300 and thermal insulation hot air supply unit ( 400).
상기 열분해부(100)는 플라즈마 열풍을 이용하여 공급받은 유기성 폐기물을 열분해하는 구성요소이다.The pyrolysis unit 100 is a component that thermally decomposes the organic waste received using plasma hot air.
상기 오일회수부(200)는 상기 열분해부(100)에서 배출되는 배기가스에 포함된 바이오오일을 분리 및 냉각하여 회수하는 구성요소이다.The oil recovery unit 200 is a component for separating and cooling the biooil contained in the exhaust gas discharged from the pyrolysis unit 100 and recovering the oil.
상기 가스순환부(300)는 상기 오일회수부(200)에서 배출되는 배기가스를 상기 열분해부(100)로 공급하여 순환시키는 구성요소이다.The gas circulation unit 300 is a component that circulates the exhaust gas discharged from the oil recovery unit 200 to the pyrolysis unit 100.
상기 보온열풍공급부(400)는 상기 열분해부(100) 또는 가스순환부(300)의 내부를 보온하기 위한 보온용 열풍을 공급하는 부분이다.The heat insulation hot air supply unit 400 is a portion for supplying heat insulation for warming the inside of the thermal decomposition unit 100 or the gas circulation unit 300.
한편, 본 실시예의 플라즈마 열풍을 이용한 바이오오일 회수장치의 초기 운전 시에는, 연속 운전할 때 순환되는 저온의 배기가스 내에 산소가 유입되는 것을 차단하기 위하여 모든 설비 내에는 질소를 충진한 후 운전을 개시하는 것이 바람직하다.On the other hand, during the initial operation of the biooil recovery apparatus using the plasma hot air of the present embodiment, in order to block the inflow of oxygen into the low-temperature exhaust gas circulated during continuous operation, all the facilities are filled with nitrogen to start the operation. It is preferable.
먼저, 상기 열분해부(100)에 대하여 설명하도록 한다.First, the thermal decomposition unit 100 will be described.
상기 열분해부(100)는, 도 2에 도시된 바와 같이, 반응기(101)와 플라즈마 열풍기(108)를 포함하여 구성된다.As illustrated in FIG. 2, the pyrolysis unit 100 includes a reactor 101 and a plasma hot air blower 108.
상기 반응기(101)는 상기 유기성 폐기물을 공급받아 열분해된 배기가스를 상기 오일회수부(200)로 배출하는 구성요소로서, 외벽이 2중벽 구조로 형성되어 수직으로 배열된 원통형상의 본체(102)를 포함하여 구성된다.The reactor 101 is a component for supplying the organic waste and exhausting the pyrolyzed exhaust gas to the oil recovery part 200. The outer wall is formed in a double wall structure and has a cylindrical body 102 arranged vertically. It is configured to include.
상기 2중벽 구조의 사이에는 상기 보온열풍공급부(400)에서 공급되는 보온용 열풍이 공급되고, 상기 보온용 열풍에 의해 상기 반응기(101)의 내부가 보온이 될 수 있으며, 이에 따라, 반응기(101) 내부의 내벽에 점도가 높은 바이오오일이 부착되어 고착되는 것을 억제할 수 있다.The thermal hot air supplied from the thermal hot air supply unit 400 is supplied between the double wall structures, and the inside of the reactor 101 may be warmed by the thermal hot air, and thus, the reactor 101 ) It is possible to prevent the biooil having a high viscosity from adhering to and sticking to the inner inner wall.
구체적으로, 상기 반응기(101)의 본체(102)가 2중벽 구조의 외벽의 일 지점에 보온열풍 유입구(112)가 형성되고, 2중벽 구조의 외벽의 타 지점에 보온열풍 유출구(113)가 형성되며, 상기 보온열풍공급부(400)로부터 공급되는 약 150 ℃ 내지 400 ℃의 열풍에 의해 반응기(101)의 벽면 온도가 평균 300 ℃가 될 수 있도록 유지시키게 된다.In detail, the main body 102 of the reactor 101 has a heat insulating hot air inlet 112 formed at one point of the outer wall of the double wall structure, and the heat insulating hot air outlet 113 is formed at another point of the outer wall of the double wall structure. The wall temperature of the reactor 101 is maintained at an average of 300 ° C. by the hot air of about 150 ° C. to 400 ° C. supplied from the heat insulating hot air supply unit 400.
한편, 상기 반응기(101)의 전체적은 형상을 이루는 본체(102)의 내측 저부 바닥에는 상기 플라즈마 열풍기(108)와 연결되어 상기 플라즈마 열풍기(108)에서 공급되는 열풍을 상기 반응기(101)의 내부로 공급하는 복수의 유동노즐(103)이 구비되고, 상기 본체(102)의 하부에는 상기 플라즈마 열풍기(108)와 연결된 공급구(109)가 형성되며, 상기 공급구(109)를 통해 공급되는 열풍이 복수의 유동노즐(103)을 통해 열풍이 균등하게 공급될 수 있다. 상기 열풍이 균등하게 공급하기 위하여 상기 복수의 유동노즐(103)을 대체하여 다공성 판을 통해 열풍이 상기 다공성 판을 통과하여 분사될 수 있도록 할 수도 있다.Meanwhile, a hot air supplied from the plasma hot air blower 108 is connected to the inside of the reactor 101 at the bottom of the inner bottom of the main body 102 forming the overall shape of the reactor 101. A plurality of flow nozzles 103 for supplying are provided, and a supply port 109 connected to the plasma hot air fan 108 is formed below the main body 102, and hot air supplied through the supply port 109 is provided. Hot air may be uniformly supplied through the plurality of flow nozzles 103. In order to supply the hot air evenly, the plurality of flow nozzles 103 may be replaced to allow hot air to be injected through the porous plate through the porous plate.
또한, 상기 본체(102)의 상부 일측에는 유기성 폐기물을 투기하기 위한 원료투입 컨베이어(104)가 설치되고, 상기 원료투입 컨베이어(104)를 통해 공급되는 유기성 폐기물이 반응기(101)의 내부로 공급되도록 하는 원료투입구(105)가 형성된다.In addition, a raw material input conveyor 104 for dumping organic waste is installed on one side of the main body 102 so that the organic waste supplied through the raw material input conveyor 104 is supplied into the reactor 101. The raw material injection hole 105 is formed.
또한, 상기 본체(102)의 중앙부 타측에는 유동사 저장탱크(106)로부터 공급되는 유동사를 반응기(101)의 내부로 공급하기 위한 유동사 투입구(107)가 형성되고, 상기 본체(102)의 하부 타측에는 공급된 유동사를 토출하기 위한 유동사 토출구(110)가 형성되며, 유동사 토출구(110) 후단에는 토출된 유동사를 유동사 저장탱크(106)로 이송해 주는 연결 컨베이어(111)가 설치된다.In addition, a flow yarn inlet 107 for supplying the flow yarn supplied from the flow yarn storage tank 106 to the inside of the reactor 101 is formed at the other side of the center portion of the body 102, and The other side of the lower side is formed with a flow yarn discharge port 110 for discharging the supplied flow yarn, the rear end of the flow yarn discharge port 110 is connected conveyor 111 for transferring the discharged flow yarn to the flow yarn storage tank 106 Is installed.
상기 플라즈마 열풍기(108)는 자체적으로 생성된 플라즈마 열풍과 상기 가스순환부(300)에서 공급되는 배기가스를 혼합하여 상기 반응기(101)의 내부로 혼합된 열풍(플라즈마 열풍과 배기가스가 혼합된 혼합 열풍)을 공급하는 구성요소이다.The plasma hot air blower 108 mixes the plasma hot air generated by itself and the exhaust gas supplied from the gas circulation unit 300 to mix the hot air mixed into the reactor 101 (plasma hot air and exhaust gas are mixed. Hot air).
구체적으로, 상기 플라즈마 열풍기(108)는 로켓형태로 형성되어 입구부(도 2의 좌측부)에 플라즈마 토치(114)가 구비되고, 중간부에 배기가스 순환덕트(115)가 연결되며, 출구부(도 2의 우측부)는 상기 공급구(109)에 연결된다.Specifically, the plasma hot air blower 108 is formed in a rocket shape, the plasma torch 114 is provided at the inlet portion (left side of FIG. 2), the exhaust gas circulation duct 115 is connected to the middle portion thereof, and the outlet portion ( 2 is connected to the supply port 109.
한편, 상기 플라즈마 토치(114)는 음극(116)과 양극(117)으로 구성되어 있고, 음극(116)과 양극(117) 사이에 직류의 고전류를 인가시키면 음극(116)과 양극(117) 사이에 플라즈마 불꽃이 발생하게 되고, 이때, 반응가스인 질소를 플라즈마 토치(114)로 불어넣으면 대략 1200 ℃ 내지 1500 ℃의 질소 기반 초고온 플라즈마 화염이 발생하게 된다.On the other hand, the plasma torch 114 is composed of a cathode 116 and an anode 117, and when a high current of DC is applied between the cathode 116 and the anode 117 between the cathode 116 and the anode 117 Plasma flame is generated in this case, and when nitrogen, which is a reaction gas, is blown into the plasma torch 114, a nitrogen-based ultra high temperature plasma flame of about 1200 ° C. to 1500 ° C. is generated.
한편, 반응기(101)에 공급하기에 적절한 반응가스의 온도는 대략 500 ℃ 정도이므로, 플라즈마 열풍기(108) 내부에서 배기가스 순환 덕트(115)로부터 공급되는 저온의 순환 배기가스와 혼합하여 450 ℃ 내지 550 ℃ 범위의 반응가스를 생성하여 반응기(101)로 공급하게 된다.On the other hand, since the temperature of the reaction gas suitable for supplying the reactor 101 is about 500 ° C., it is mixed with the low temperature circulating exhaust gas supplied from the exhaust gas circulation duct 115 inside the plasma hot air fan 108 to 450 ° C. A reaction gas in the range of 550 ° C. is generated and supplied to the reactor 101.
상술한 바와 같은 열분해부(100)를 통해, 반응기(101)의 본체(102) 내부로 공급된 톱밥, 팜유 찌꺼기, 목초, 농산 잔재물 등의 유기성 폐기물을 열분해시킬 수 있게 된다.Through the thermal decomposition unit 100 as described above, it is possible to thermally decompose organic waste such as sawdust, palm oil residues, grasses, agricultural residues, etc. supplied into the main body 102 of the reactor 101.
다음으로, 상기 오일회수부(200)에 대하여 설명하도록 한다.Next, the oil recovery unit 200 will be described.
상기 오일회수부(200)는, 도 3에 도시된 바와 같이, 사이클론(201), 냉각응축기(202) 및 전기집진기(204)를 포함하여 구성된다.As shown in FIG. 3, the oil recovery unit 200 includes a cyclone 201, a cooling condenser 202, and an electrostatic precipitator 204.
상기 사이클론(201)은 상기 열분해부(100)에서 열분해 되어 배출되는 배기가스를 수용한 후 입자상 물질을 원심력으로 분리하여 촤(Char)를 회수하는 구성요소로서, 외벽이 2중벽 구조로 형성된다.The cyclone 201 is a component for recovering char by separating the particulate matter by centrifugal force after accommodating the exhaust gas that is pyrolyzed and discharged from the pyrolysis unit 100, and has an outer wall having a double wall structure.
상기 사이클론(201)의 2중벽 구조의 사이에는 상기 보온열풍공급부(400)에서 공급되는 보온용 열풍이 공급되고, 상기 보온용 열풍에 의해 상기 반응기(101)의 내부가 보온이 될 수 있으며, 이에 따라, 반응기(101) 내부의 내벽에 점도가 높은 바이오오일이 부착되어 고착되는 것을 억제할 수 있다.Between the double-wall structure of the cyclone 201 is supplied with the hot air for warmth supplied from the warm hot air supply unit 400, the inside of the reactor 101 by the warm hot air can be kept warm, Therefore, it is possible to prevent the biooil having a high viscosity from adhering to and sticking to the inner wall of the reactor 101.
구체적으로, 상기 사이클론(201)의 2중벽 구조의 외벽의 일 지점과 타 지점에 각각 보온열풍이 유입되는 유입구와 유입된 보온열풍이 유출되는 유출구가 형성되며, 상기 보온열풍공급부(400)로부터 공급되는 약 150 ℃ 내지 400 ℃의 열풍에 의해 사이클론(201)의 벽면 온도가 평균 300 ℃가 될 수 있도록 유지시키게 된다.In detail, an inlet for insulated hot air and an outlet for insulated hot air flow are formed at one point and another point of the outer wall of the double wall structure of the cyclone 201, respectively, and are supplied from the hot air supply unit 400. The hot air of about 150 ℃ to 400 ℃ to maintain the wall temperature of the cyclone 201 can be an average of 300 ℃.
상기 사이클론(201)의 중심 하부에는 원심분리된 촤가 모여 회수되고, 상기 사이클론(201)의 상부를 통해 냉각응축기(202)로 바이오오일이 포함된 배기가스가 공급된다.Centrifuged 촤 is collected and collected at the center lower portion of the cyclone 201, and exhaust gas containing bio-oil is supplied to the cooling condenser 202 through the upper portion of the cyclone 201.
상기 냉각응축기(202)는 상기 사이클론(201)의 후단에 연결되어 상기 사이클론(201)에서 촤와 분리 가능하게 처리된 배기가스를 냉각 및 응축시켜 통해 바이오오일을 회수하는 구성요소로서, 냉각응축방식을 통해 바이오오일을 회수하게 된다.The cooling condenser 202 is connected to a rear end of the cyclone 201 to recover bio-oil through cooling and condensation of the exhaust gas that is separably treated from the cyclone 201 and cooling condensation. The bio oil is recovered through.
예를 들어, 상기 냉각응축기(202)는 1대 또는 2대 이상이 직렬로 연결되도록 구성될 수 있으며, 냉각응축기(202)를 통해 응축된 바이오오일은 별도의 오일보관탱크(미도시)에 보관될 수 있다.For example, the cooling condenser 202 may be configured such that one or two or more are connected in series, and the biooil condensed through the cooling condenser 202 is stored in a separate oil storage tank (not shown). Can be.
한편, 상기 냉각응축기(202)에서 바이오오일의 응축은 상기 오일보관탱크에 회수된 바이오오일을 냉각응축기(202) 상부에 설치된 분사노즐(203)을 통하여 분사시키는 방식을 통해 이뤄질 수 있으며, 운전 초기에는 냉각응축기(202)에서 회수된 바이오오일이 없으므로 바이오오일이 일정량 회수되기 전까지는 응축액으로 파라핀유나 바이오오일과 물성이 유사한 오일을 응축액으로 사용하는 것이 바람직하다.On the other hand, the condensation of the biooil in the cooling condenser 202 may be achieved by spraying the bio-oil recovered in the oil storage tank through the injection nozzle 203 installed on the cooling condenser 202, the initial operation Since there is no biooil recovered from the cooling condenser 202, it is preferable to use paraffin oil or oil similar in physical properties to biocondensate as the condensate until the biooil is recovered to a certain amount.
상기 전기집진기(204)는 상기 냉각응축기(202)의 후단에 연결되어 상기 냉각응축기(202)에서 회수되지 않은 미세입자 상의 바이오오일을 회수하는 구성요소로서, 전기집진방식을 통해 바이오오일을 회수하게 된다.The electrostatic precipitator 204 is connected to the rear end of the cooling condenser 202 to recover the biooil on the fine particles that are not recovered from the cooling condenser 202, to recover the biooil through the electrostatic precipitating method do.
상기 냉각응축기(202)에서 가스에 포함된 바이오오일이 거의 포집되지만, 냉각응축기(202)에서 배출되는 배기가스 중에는 응축되지 않고 재비산하는 미세입자 상의 바이오오일이 잔존하게 되는데, 이러한 미세입자 상의 바이오오일을 포집하기 위하여 상기 냉각응축기(202)의 후단에 1대 또는 2대 이상이 직렬로 연결되도록 구비된다.Bio-oil contained in the gas is almost collected in the cooling condenser 202, but in the exhaust gas discharged from the cooling condenser 202, the bio-oil on the microparticles, which are not condensed and fly again, remain. One or two or more units are provided in series at the rear end of the cooling condenser 202 to collect oil.
한편, 상기 전기집진기(204)의 외벽은 2중 격벽 구조로 형성되고, 상기 보온열풍공급부(400)는 상기 전기집진기(204)의 2중 격벽 사이로 보온용 열풍을 공급하여 상기 전기집진기(204)의 내부를 보온하도록 구성된다.On the other hand, the outer wall of the electrostatic precipitator 204 is formed of a double partition wall structure, the heat insulating hot air supply unit 400 supplies the hot air for insulating between the double partition walls of the electrostatic precipitator 204 to the electrostatic precipitator 204 It is configured to insulate the interior of the.
구체적으로, 상기 전기집진기(204)의 2중 격벽 구조의 외벽의 일 지점과 타 지점에 각각 보온열풍이 유입되는 유입구와 유입된 보온열풍이 유출되는 유출구가 형성되며, 상기 보온열풍공급부(400)로부터 공급되는 약 150 ℃ 내지 400 ℃의 열풍에 의해 사이클론(201)의 벽면 온도가 평균 300 ℃가 될 수 있도록 유지시키게 된다.In detail, an inlet for insulated hot air and an outlet for inflowing the warmed hot air are formed at one point and the other point of the outer wall of the double partition wall structure of the electrostatic precipitator 204, respectively. The hot air supplied from about 150 ° C. to 400 ° C. maintains the wall temperature of the cyclone 201 to be 300 ° C. on average.
한편, 상기 전기집진기(204)는 집진판이 평평한 평판형 전기집진기 또는 집진판이 원통형인 원통형 전기집진기 중 어느 것을 사용하여도 무방하지만, 배기가스에 함유된 액적 상태의 미스트 포집 효율을 높이기 위해서는 원통형 전기집진기가 바람직하고, 안정적 운전을 위해서는 평판형 전기집진기가 바람직하며, 미스트 포집 효율과 안정적인 운전을 모두 도모하기 위하여 원통형 전기집진기와 평판형 전기집진기를 연결하여 구성하는 것이 바람직하다.On the other hand, the electrostatic precipitator 204 may be any one of a flat plate-type electrostatic precipitator having a flat plate or a cylindrical electrostatic precipitator having a cylindrical plate, but to increase the mist collecting efficiency of the droplet state contained in the exhaust gas, a cylindrical electrostatic precipitator. It is preferable to use a flat type electrostatic precipitator for stable operation, and it is preferable to configure the cylindrical electrostatic precipitator and the flat type electrostatic precipitator in order to achieve both mist collection efficiency and stable operation.
상술한 바와 같은 오일회수부(200)를 통해, 열분해부(100)에서 공급되 배기가스에 함유된 바이오오일을 회수할 수 있게 되며, 특히, 전기집진기(204)를 통해 배기가스에 함유된 미세입자 상의 바이오오일까지 포집 및 회수하게 되므로, 바이오오일 미세입자가 각 구성요소의 내부에 부착되어 고착됨에 따른 기계고장을 방지하고, 바이오오일의 회수율을 최대화할 수 있게 된다.Through the oil recovery unit 200 as described above, it is possible to recover the bio-oil contained in the exhaust gas supplied from the pyrolysis unit 100, in particular, fine contained in the exhaust gas through the electrostatic precipitator 204 Since the biooil on the particles is collected and recovered, the biooil microparticles are prevented from mechanical failure due to attachment and fixation inside the components, and the recovery rate of the biooil can be maximized.
다음으로, 상기 가스순환부(300)에 대하여 설명하도록 한다.Next, the gas circulation unit 300 will be described.
상기 가스순환부(300)는, 도 4에 도시된 바와 같이, 저장조(301)와 송풍기(302)를 포함하여 구성된다.As shown in FIG. 4, the gas circulation unit 300 includes a reservoir 301 and a blower 302.
상기 저장조(301)는 상기 오일회수부(200)에서 배출되는 배기가스를 저장하는 구성요소이고, 상기 송풍기(302)는 상기 저장조(301)에 저장된 배기가스를 상기 열분해부(100)로 공급하는 구성요소이다.The storage tank 301 is a component for storing the exhaust gas discharged from the oil recovery unit 200, the blower 302 for supplying the exhaust gas stored in the storage tank 301 to the pyrolysis unit 100. Component.
구체적으로, 상기 송풍기(302)는 상기 플라즈마 열풍기(108)의 중간부에 연결된 순환 덕트(115)를 통해 상기 저장조(301)에 저장된 배기가스가 상기 플라즈마 열풍기(108)의 내부로 공급되도록 한다.Specifically, the blower 302 allows the exhaust gas stored in the reservoir 301 to be supplied into the plasma hot air blower 108 through the circulation duct 115 connected to the middle portion of the plasma hot air blower 108.
한편, 상기 저장조(301) 및 배기가스 순환 덕트(115)는 밀폐형 구조로 구성되는 것이 바람직하며, 이는, 배기가스가 순환하면서 외부 공기가 유입되어 산소가 포함되지 않아야 하기 때문이며, 유기성 폐기물이 열분해되면서 발생하는 반응물 중에서 촤(Char)와 바이오오일은 회수되지만, 나머지는 가스화하여 배기가스에 포함되어 운전이 지속되면 배기가스량이 점차 많아지므로 배기가스 저장조(301) 상부에 가스 벤트 밸브(303)를 부착하여 배기가스 중의 일부가 수동 또는 자동으로 배출될 수 있도록 하는 것이 바람직하다.On the other hand, the reservoir 301 and the exhaust gas circulation duct 115 is preferably configured in a closed structure, because the outside air is introduced into the exhaust gas while the oxygen is not included, and the organic waste is thermally decomposed Char and bio-oil are recovered from the generated reactants, but the remainder is gasified to be included in the exhaust gas, and if the operation continues, the amount of exhaust gas gradually increases, so that the gas vent valve 303 is attached to the upper portion of the exhaust gas storage tank 301. It is preferable to allow some of the exhaust gas to be discharged manually or automatically.
상술한 바와 같은 가스순환부(300)를 통해, 바이오오일이 회수되고, 저온이 된 배기가스를 상기 플라즈마 열풍기(108)로 재공급하여 플라즈마 열풍의 온도를 적절하게 조절할 수 있게 된다.Through the gas circulation unit 300 as described above, the bio-oil is recovered, and the low temperature exhaust gas is supplied back to the plasma hot air fan 108 so that the temperature of the plasma hot air can be properly adjusted.
다음으로, 상기 보온열풍공급부(400)에 대하여 설명하도록 한다.Next, the thermal insulation hot air supply unit 400 will be described.
상기 보온열풍공급부(400)는, 도 5에 도시된 바와 같이, 연소버너(401)와 송풍기(402)를 포함하여 구성된다.The warm hot air supply unit 400, as shown in Figure 5, comprises a combustion burner 401 and a blower 402.
상기 연소버너(401)는 LNG나 기름을 연료로 사용하는 연소를 통해 보온열을 발생하는 구성요소이고, 상기 송풍기(402)는 상기 보온열을 송풍하여 공급하는 구성요소이다.The combustion burner 401 is a component that generates warm heat through combustion using LNG or oil as fuel, and the blower 402 is a component that blows and supplies the warm heat.
구체적으로, 상기 송풍기(402)는 상기 반응기(101), 사이클론(201), 전기집진기(204)의 각 보온열풍 유입구를 통해 열풍이 공급될 수 있도록 송풍한다.Specifically, the blower 402 is blown so that hot air can be supplied through the inlet of the thermal hot air of the reactor 101, the cyclone 201, the electrostatic precipitator 204.
상술한 바와 같은 보온열풍공급부(400)를 통해, 상기 반응기(101), 사이클론(201), 전기집진기(204)의 벽면 온도가 평균 300℃가 될 수 있도록 유지시킬 수 있게 되며, 이를 통해 바이오오일의 내측 벽면을 따라 잘 흘러내리도록 하여 포집효율을 높이고, 회수설비 내부청소 주기를 길게 할 수 있게 된다.Through the thermal insulation hot air supply unit 400 as described above, the wall temperature of the reactor 101, the cyclone 201, the electrostatic precipitator 204 can be maintained to be an average of 300 ℃, through which the bio-oil It can flow along the inner wall of the to increase the collection efficiency, it is possible to increase the internal cleaning cycle of the recovery facility.
본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 기술되었지만 당업자라면 이러한 기재로부터 본 발명의 범주를 벗어남이 없이 많은 다양하고 자명한 변형이 가능하다는 것은 명백하다. 따라서 본 발명의 범주는 이러한 많은 변형예들을 포함하도록 기술된 특허청구범위에 의해서 해석돼야 한다.Although the present invention has been described with reference to the accompanying drawings, it will be apparent to those skilled in the art that many different and obvious modifications are possible without departing from the scope of the invention from this description. Therefore, the scope of the invention should be construed by the claims described to include many such variations.
Claims (11)
- 플라즈마 열풍을 이용하여 공급받은 유기성 폐기물을 열분해하는 열분해부;A pyrolysis unit for pyrolysing the organic wastes supplied using plasma hot air;상기 열분해부에서 배출되는 배기가스에 포함된 바이오오일을 분리 및 냉각하여 회수하는 오일회수부;An oil recovery unit for separating and cooling the biooil contained in the exhaust gas discharged from the pyrolysis unit to recover the oil;상기 오일회수부에서 배출되는 배기가스를 상기 열분해부로 공급하여 순환시키는 가스순환부; 및A gas circulation unit configured to circulate the exhaust gas discharged from the oil recovery unit to the pyrolysis unit; And상기 열분해부 또는 가스순환부의 내부를 보온하기 위한 보온용 열풍을 공급하는 보온열풍공급부;를 포함하는 바이오오일 회수장치.And a thermal hot air supply unit for supplying hot air for warming the thermal decomposition unit or the gas circulation unit.
- 제1항에 있어서,The method of claim 1,상기 열분해부는,The pyrolysis unit,상기 유기성 폐기물을 공급받아 열분해된 배기가스를 상기 오일회수부로 배출하는 반응기; 및A reactor configured to receive the organic waste and discharge the pyrolyzed exhaust gas to the oil recovery unit; And플라즈마 열풍과 상기 가스순환부에서 공급되는 배기가스를 혼합하여 상기 반응기의 내부로 혼합된 열풍을 공급하는 플라즈마 열풍기;를 포함하여 구성된 것을 특징으로 하는 바이오오일 회수장치.And a plasma hot air fan for supplying hot air mixed into the reactor by mixing plasma hot air and exhaust gas supplied from the gas circulation unit.
- 제2항에 있어서,The method of claim 2,상기 반응기는 2중 격벽 구조로 형성되고, 상기 보온열풍공급부는 상기 반응기의 2중 격벽 사이로 보온용 열풍을 공급하여 상기 반응기의 내부를 보온하는 것을 특징으로 하는 바이오오일 회수장치.The reactor is formed of a double partition structure, wherein the heat insulating hot air supply unit to maintain the interior of the reactor by supplying hot air for keeping warm between the double partition walls of the reactor.
- 제2항에 있어서,The method of claim 2,상기 반응기의 내측 저부에는 상기 플라즈마 열풍기와 연결된 복수의 유동노즐 또는 다공판이 구비되고, 상기 복수의 유동노즐 또는 다공판을 통해 상기 혼합된 열풍이 반응기의 내부로 공급되는 것을 특징으로 하는 바이오오일 회수장치.The inner bottom of the reactor is provided with a plurality of flow nozzles or porous plates connected to the plasma hot air, and the mixed hot air is supplied to the inside of the reactor through the plurality of flow nozzles or porous plates. Device.
- 제2항에 있어서,The method of claim 2,상기 플라즈마 열풍은 질소 가스를 케리어 가스로 하여 생성되는 것을 특징으로 하는 바이오오일 회수장치.The plasma hot air is generated by using nitrogen gas as a carrier gas.
- 제2항에 있어서,The method of claim 2,상기 플라즈마 열풍과 상기 가스순환부에서 공급되는 배기가스가 혼합된 열풍은 450℃ 내지 550℃인 것을 특징으로 하는 바이오오일 회수장치.The hot air mixed with the plasma hot air and the exhaust gas supplied from the gas circulation unit is 450 ℃ to 550 ℃ bio oil recovery apparatus, characterized in that.
- 제1항에 있어서,The method of claim 1,상기 오일회수부는,The oil recovery unit,상기 열분해부에서 배출되는 배기가스를 수용한 후 분리공정을 수행하는 사이클론;A cyclone that receives the exhaust gas discharged from the pyrolysis unit and then performs a separation process;상기 사이클론의 후단에 연결되어 상기 사이클론에서 촤와 분리 가능하게 처리된 배기가스를 냉각 및 응축시켜 통해 바이오오일을 회수하는 냉각응축기; 및A cooling condenser connected to a rear end of the cyclone to recover bio-oil through cooling and condensing the exhaust gas which is separated from the fan in the cyclone; And상기 냉각응축기의 후단에 연결되어 상기 냉각응축기에서 회수되지 않은 미세입자 상의 바이오오일을 전기집진방식으로 회수하는 전기집진기;를 포함하여 구성된 것을 특징으로 하는 바이오오일 회수장치.And an electrostatic precipitator connected to a rear end of the cooling condenser to recover the biooil on the fine particles not recovered from the cooling condenser by an electrostatic precipitating method.
- 제7항에 있어서,The method of claim 7, wherein상기 사이클론 및 전기집진기는 2중 격벽 구조로 형성되고, 상기 보온열풍공급부는 상기 사이클론 및 전기집진기의 2중 격벽 사이로 보온용 열풍을 공급하여 상기 사이클론 및 전기집진기의 내부를 보온하는 것을 특징으로 하는 바이오오일 회수장치.The cyclone and the electrostatic precipitator is formed in a double partition structure, wherein the thermal insulation hot wind supply unit to supply the hot air for thermal insulation between the double partition of the cyclone and the electrostatic precipitator, characterized in that to warm the interior of the cyclone and the electrostatic precipitator Oil recovery unit.
- 제7항에 있어서,The method of claim 7, wherein상기 전기집진기는 평판형 전기집진기 또는 원통형 전기집진기 중 어느 것을사용하여 1대 또는 2대 이상이 직렬로 연결되도록 구성되는 것을 특징으로 하는 바이오오일 회수장치.The electrostatic precipitator is a bio-oil recovery apparatus, characterized in that one or two or more are configured in series by using any one of a flat type electrostatic precipitator or a cylindrical electrostatic precipitator.
- 제1항에 있어서,The method of claim 1,상기 가스순환부는,The gas circulation unit,상기 오일회수부에서 배출되는 배기가스를 저장하는 저장조; 및A storage tank for storing the exhaust gas discharged from the oil recovery unit; And상기 저장조에 저장된 배기가스를 상기 열분해부로 공급하는 송풍기;를 포함하여 구성된 것을 특징으로 하는 바이오오일 회수장치.And a blower for supplying the exhaust gas stored in the storage tank to the pyrolysis unit.
- 제1항에 있어서,The method of claim 1,상기 보온열풍공급부는,The thermal insulation hot wind supply unit,보온열을 발생하는 연소버너; 및A combustion burner that generates heat; And상기 보온열을 송풍하여 공급하는 송풍기;를 포함하여 구성된 것을 특징으로하는 바이오오일 회수장치.And a blower for blowing and supplying the warm heat.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150155882A KR101831897B1 (en) | 2015-11-06 | 2015-11-06 | Apparatus for collecting bio-oil using a plasma hot-air |
KR10-2015-0155882 | 2015-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017078225A1 true WO2017078225A1 (en) | 2017-05-11 |
Family
ID=58662141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/002273 WO2017078225A1 (en) | 2015-11-06 | 2016-03-08 | Bio oil recovering apparatus using plasma wind |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101831897B1 (en) |
WO (1) | WO2017078225A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107413524A (en) * | 2017-08-03 | 2017-12-01 | 可迪尔空气技术(北京)有限公司 | A kind of controlling device of mist of oil containing paraffin |
CN108800151A (en) * | 2018-04-29 | 2018-11-13 | 江燕婷 | A kind of environmentally protective industrial refuse and incineration stove |
US20210162315A1 (en) * | 2019-10-10 | 2021-06-03 | Boulder Creek Technologies, LLC | Continuous biomass extraction system and process |
CN112957868A (en) * | 2021-02-13 | 2021-06-15 | 徐逸萍 | Flue gas desulfurization and denitration device lower part sliding support for accelerating progress |
US20220234052A1 (en) * | 2019-10-10 | 2022-07-28 | Boulder Creek Technologies, LLC | Continuous biomass extraction system and process |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108097000B (en) * | 2017-12-29 | 2021-09-17 | 河南龙成煤高效技术应用有限公司 | Process for centralized recovery of coal gas and oil gas in coal chemical industry |
KR101987334B1 (en) * | 2018-10-01 | 2019-06-25 | 주식회사 비츠로넥스텍 | Apparatus for carbonizing organic materials using high temperature plasma and carbonizing method using the same |
CN110986031B (en) * | 2019-12-05 | 2021-01-19 | 西安交通大学 | System for avoiding water vapor condensation in gas boiler flue gas recirculation pipeline |
KR102188475B1 (en) * | 2020-06-23 | 2020-12-08 | 황제연 | Apparatus for treating organic waste |
KR102411128B1 (en) * | 2020-08-19 | 2022-06-22 | 보국에너텍주식회사 | Low nitrogen oxide pyrolysis gasification system |
KR102299415B1 (en) * | 2020-10-30 | 2021-09-08 | 주식회사 비츠로넥스텍 | Combined temperature treatment system using high-temperature plasma and its exhaust gas treatment method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110016609A (en) * | 2009-08-12 | 2011-02-18 | 한국기계연구원 | System and method for manufacturing biocrude-oil |
KR20110031800A (en) * | 2009-09-21 | 2011-03-29 | 한국에너지기술연구원 | Fluidized pyrolyzer of high viscosity oilsand bitumen for synthetic liquid fuel and liquid fuel production method using it |
KR20120055181A (en) * | 2010-11-23 | 2012-05-31 | 구자숭 | Apparatus and method for making fuel oil using glyserin |
KR20130113832A (en) * | 2012-04-06 | 2013-10-16 | 주식회사 대경에스코 | Apparatus for manufacturing bio-oil and bio-oil manufacturing process using the same |
KR101494238B1 (en) * | 2013-11-05 | 2015-02-23 | 한국에너지기술연구원 | Pyrolysis and Gasification Hybrid System for Extra Heavy Oil Fractions using Microwave Plasma |
-
2015
- 2015-11-06 KR KR1020150155882A patent/KR101831897B1/en active IP Right Grant
-
2016
- 2016-03-08 WO PCT/KR2016/002273 patent/WO2017078225A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110016609A (en) * | 2009-08-12 | 2011-02-18 | 한국기계연구원 | System and method for manufacturing biocrude-oil |
KR20110031800A (en) * | 2009-09-21 | 2011-03-29 | 한국에너지기술연구원 | Fluidized pyrolyzer of high viscosity oilsand bitumen for synthetic liquid fuel and liquid fuel production method using it |
KR20120055181A (en) * | 2010-11-23 | 2012-05-31 | 구자숭 | Apparatus and method for making fuel oil using glyserin |
KR20130113832A (en) * | 2012-04-06 | 2013-10-16 | 주식회사 대경에스코 | Apparatus for manufacturing bio-oil and bio-oil manufacturing process using the same |
KR101494238B1 (en) * | 2013-11-05 | 2015-02-23 | 한국에너지기술연구원 | Pyrolysis and Gasification Hybrid System for Extra Heavy Oil Fractions using Microwave Plasma |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107413524A (en) * | 2017-08-03 | 2017-12-01 | 可迪尔空气技术(北京)有限公司 | A kind of controlling device of mist of oil containing paraffin |
CN107413524B (en) * | 2017-08-03 | 2024-02-02 | 可迪尔空气技术(北京)有限公司 | Paraffin-containing oil mist treatment device |
CN108800151A (en) * | 2018-04-29 | 2018-11-13 | 江燕婷 | A kind of environmentally protective industrial refuse and incineration stove |
CN108800151B (en) * | 2018-04-29 | 2019-09-13 | 无锡方菱环保科技有限公司 | A kind of environmentally protective industrial refuse and incineration furnace |
US20210162315A1 (en) * | 2019-10-10 | 2021-06-03 | Boulder Creek Technologies, LLC | Continuous biomass extraction system and process |
US20220234052A1 (en) * | 2019-10-10 | 2022-07-28 | Boulder Creek Technologies, LLC | Continuous biomass extraction system and process |
US11624038B2 (en) * | 2019-10-10 | 2023-04-11 | Boulder Creek Technologies, LLC | Continuous biomass extraction system and process |
US20230242839A1 (en) * | 2019-10-10 | 2023-08-03 | Boulder Creek Technologies, LLC | Continuous biomass extraction system and process |
CN112957868A (en) * | 2021-02-13 | 2021-06-15 | 徐逸萍 | Flue gas desulfurization and denitration device lower part sliding support for accelerating progress |
CN112957868B (en) * | 2021-02-13 | 2023-07-28 | 佛山市昊泰源环保科技有限公司 | Lower sliding support of flue gas desulfurization and denitrification device for accelerating progress |
Also Published As
Publication number | Publication date |
---|---|
KR101831897B1 (en) | 2018-02-26 |
KR20170053789A (en) | 2017-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017078225A1 (en) | Bio oil recovering apparatus using plasma wind | |
WO2013094879A1 (en) | Apparatus for pyrolysis using molten metal | |
WO2019088399A1 (en) | System for drying sludge reheated by circulated steam | |
WO2010035960A2 (en) | System for recycling used tires | |
WO2012144700A1 (en) | Biomass solid manufacturing system and manufacturing method | |
WO2009136737A2 (en) | Combustible waste pyrolysis system and pyrolysis method | |
WO2013094878A1 (en) | Pyrolysis apparatus using liquid metal | |
WO2015137683A1 (en) | Burner device capable of reducing fuel | |
WO2010150966A1 (en) | Gas scrubber for removing ammonia from waste gas | |
WO2010041817A2 (en) | Waste tire recycling system | |
WO2012134125A2 (en) | Apparatus and method for decomposing carbon dioxide using microwaves | |
WO2015186866A1 (en) | Dry distillation gas fluidized bed pyrolysis gasification combustion device using microwaves | |
KR20200100292A (en) | Continuous pyrolysis device | |
WO2010064800A2 (en) | Method for recycling waste tires | |
WO2023277565A1 (en) | Device and method for continuous low-temperature pyrolysis | |
WO2016043484A1 (en) | Gasification apparatus and gasification method | |
WO2019098537A1 (en) | Environmentally friendly multilayer high-temperature incinerator | |
KR100281312B1 (en) | Method and Plant for Treating Solid Waste Products by Thermolysis | |
WO2020251132A1 (en) | Biochar manufacturing device using combustion and heat dissipation plate | |
WO2013125928A1 (en) | Combustion apparatus for waste carbonization and pyrolysis gasification | |
WO2024177198A1 (en) | Continuous pyrolysis emulsification system for polymer waste | |
WO2024090687A1 (en) | Eco-friendly gas treatment system | |
WO2021107181A1 (en) | Waste resin emulsification plant system | |
WO2024048822A1 (en) | Pyrolysis system | |
JPH05264021A (en) | Continuous generating device using carbonized gas from industrial waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16862244 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16862244 Country of ref document: EP Kind code of ref document: A1 |