WO2013125928A1 - Combustion apparatus for waste carbonization and pyrolysis gasification - Google Patents

Combustion apparatus for waste carbonization and pyrolysis gasification Download PDF

Info

Publication number
WO2013125928A1
WO2013125928A1 PCT/KR2013/001497 KR2013001497W WO2013125928A1 WO 2013125928 A1 WO2013125928 A1 WO 2013125928A1 KR 2013001497 W KR2013001497 W KR 2013001497W WO 2013125928 A1 WO2013125928 A1 WO 2013125928A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
main body
gas
pyrolysis
carbonization
Prior art date
Application number
PCT/KR2013/001497
Other languages
French (fr)
Korean (ko)
Inventor
김필성
이석정
Original Assignee
Kim Pill Sung
Lee Suk Jung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120018712A external-priority patent/KR101270721B1/en
Priority claimed from KR1020120137631A external-priority patent/KR101270724B1/en
Application filed by Kim Pill Sung, Lee Suk Jung filed Critical Kim Pill Sung
Publication of WO2013125928A1 publication Critical patent/WO2013125928A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/303Burning pyrogases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/80Furnaces with other means for moving the waste through the combustion zone
    • F23G2203/801Furnaces with other means for moving the waste through the combustion zone using conveyors
    • F23G2203/8013Screw conveyors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/20Supplementary heating arrangements using electric energy
    • F23G2204/203Microwave
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation

Definitions

  • the present invention relates to a carbonization and pyrolysis gasification combustion apparatus using microwave, and more particularly to carbonization and pyrolysis gasification of various wastes by a dielectric heating element heated by microwaves, and to the gas generated in the carbonization and pyrolysis gasification process
  • the present invention relates to a carbonization and pyrolysis gasification combustion apparatus of waste that can be energized by combustion.
  • waste is a generic term for materials that become obsolete.
  • 'waste, combustible sludge, waste oil, waste acid, waste alkali, animal carcass, synthetic resin, etc. are required for human life or industrial activities. Substance that is lost.
  • waste treatment methods include weight loss, recycling, recycling, landfilling, and incineration.
  • reduction, recycling, and regeneration are not the final waste disposal methods, and landfilling is a strong regulation subject in each country because it causes serious soil and water pollution over a long period of time. Therefore, the incineration method is mainly used, which is to remove the waste by burning the flame ( ⁇ ).
  • incineration waste treatment is an incineration method that directly applies a flame to the waste, and it is practically impossible to burn completely due to various factors such as waste load, density, moisture content, incinerator size, and heating temperature. Soot, dust, air pollution pollution gases have a problem that a large amount occurs.
  • Korean Patent Registration No. 0019679 discloses a pyrolysis method of waste using a pyrolysis device
  • Patent Registration No. 0777616 discloses a low temperature pyrolysis device of high carbonaceous industrial waste
  • Patent Registration No. 0375569 discloses pyrolysis for polymer waste. The device is published.
  • the waste treatment apparatus using the conventional pyrolysis requires a process of forming / maintaining the inside of the pyrolysis in a vacuum during pyrolysis, and thus, having a temperature control device for pyrolysis heated to a high temperature, the overall apparatus becomes excessively complicated. There is a problem.
  • Patent Publication No. 1994-06872 discloses an external rotary carbonization furnace for organic waste carbonization. Waste carbon incinerators are published in 0372775.
  • the carbonization device uses gas, fossil fuel, etc. as a heat source, so it requires a relatively high maintenance cost, and the structure is relatively complicated.
  • the present invention is to solve the problems as described above, to provide a carbonization and pyrolysis gasification combustion apparatus of the waste that can pyrolyze or carbonize the waste by using a heat generating body made of a dielectric heating element generated by microwaves.
  • the purpose to provide a carbonization and pyrolysis gasification combustion apparatus of the waste that can pyrolyze or carbonize the waste by using a heat generating body made of a dielectric heating element generated by microwaves.
  • Waste and carbonization and pyrolysis gasification combustion apparatus for achieving the above object is a carbon or pyrolysis space, the heat generating body consisting of a dielectric heating element that generates heat by microwave, and installed adjacent to the heat generating body Microwave oscillators for heating the main body by heat generation, a transfer unit for transporting carbonized or pyrolyzed residues to the outlet side installed at the lower side of the main body by the heat generation, and in the carbonization or pyrolysis space of the main body
  • a waste supply unit for supplying waste for carbonization or pyrolysis is provided.
  • the heating unit may further include a gas combustion unit connected by the main body and the gas supply pipe to combust the gas generated during carbonization or pyrolysis. It is preferable.
  • the transfer unit transfers the waste or ash flowing into the carbonization or pyrolysis furnace to the remnant outlet of the main body of the heating furnace, the screw is installed in the longitudinal direction on the lower side of the main body of the heating furnace, and installed on the frame to the outside of the main body of the heating furnace It is preferable to have a drive motor for driving the rotating shaft of the screw protruding.
  • the waste supply unit includes a hopper for storing waste installed adjacent to the heat generating furnace body, and a screw feeder connected to the hopper and supplying waste in the hopper to the inlet of the heat generating furnace.
  • a heat transfer unit may further include a cooling unit to prevent the screw feeder from overheating.
  • the gas combustion unit includes a gas supply pipe connected to the main body by the heat generation unit, a combustor main body including a heating space part connected to the gas supply pipe and a dielectric body that generates heat by microwaves, and has a heating space part and a combustion part therein;
  • An air supply pipe for supplying air to the combustion unit through a heating space of the combustor body, electrodes provided at an end of the air supply pipe to generate a glow discharge plasma, and a combustor cover member surrounding the combustor body. It is desirable to have a microwave oscillator for heating the combustor body.
  • the pyrolysis space of the main body may be formed by partitioning into an oxygen-free melting chamber and a pyrolysis vaporization chamber.
  • the waste carbonization and pyrolysis gasification combustion apparatus may include an oscillator cooling unit for preventing overheating of the microwave oscillator, wherein the heat generating body protrudes vertically from the bottom of the inner circumferential surface and extends along a longitudinal direction to pyrolyze the pyrolysis.
  • a partition plate is provided for partitioning the space into two parts, and the transport unit may be formed to include a transport screw rotatably installed at the lower portions of the partitioned two spaces, respectively.
  • the waste supply unit includes a hopper for storing waste to be pyrolyzed, a waste supply pipe interconnecting the hopper and an inlet of the heating furnace main body, and a waste supply pipe installed at a discharge port side of the hopper through the waste supply pipe. And a waste pressurizing unit for introducing waste into the main body by the heat generation, wherein the waste pressurizing unit presses the waste discharged from the discharge port toward the inlet side while driving forward and backward along the waste supply pipe at a connection position where the discharge port of the hopper and the waste supply pipe are connected.
  • a piston a connecting rod having one end rotatably connected to the piston, and a rotating plate connected to the other end of the connecting rod and rotating by a driving motor, wherein the connecting rod is radially directed from the center of rotation of the rotating plate. Connected to spaced intervals The lock may be formed.
  • the gas combustion unit includes a gas supply pipe connected to the main body by the heat generating unit, a combustor body having a heating space part and a combustion part connected to the gas supply pipe and heating gas therein, and a combustion part through a heating space part of the combustor body.
  • the collection box is connected to the outlet of the main body is further provided with a collection box for receiving the residue of the pyrolysis waste, the collection box is formed on the one side for discharging the gas generated by the residue of the waste in the collection box, the gas
  • the gas discharge port and the gas supply pipe or an auxiliary gas supply pipe that connects the combustor body may be formed to supply the gas discharged from the discharge port to the combustor body.
  • the body since the body generates heat by using heat generated by a dielectric heating element using a microwave, it can be used as a heat source, thereby reducing the cost of securing a heat source and improving the pyrolysis efficiency of the waste. You can.
  • waste carbonization and pyrolysis gasification combustion apparatus of the present invention can completely burn the gas generated during carbonization and pyrolysis, thereby reducing secondary environmental pollution due to carbonization and pyrolysis.
  • infectious wastes discharged from sewage treatment plants and hospitals can be carbonized and pyrolyzed in a short time without using fuel.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a waste carbonization and pyrolysis gasification combustion apparatus according to the present invention
  • Figure 2 is a cross-sectional view of the main body of the heat generation of the carbonization and thermal splitting device of the waste of FIG.
  • FIG. 3 is an enlarged cross-sectional view showing an extract of an electrode for forming a supply tube and a glow discharge plasma of FIG. 1;
  • FIG. 4 is a cross-sectional view showing a second embodiment of a waste carbonization and pyrolysis gasification combustion apparatus
  • FIG. 5 is a cross-sectional view showing a third embodiment of a waste carbonization and pyrolysis gasification combustion apparatus according to the present invention.
  • FIG. 6 is a front sectional view showing a main body and a cover part by the heat generated in FIG. 5;
  • FIG. 7 is a cross-sectional view showing another embodiment formed to fill an inert gas on the outside of the main body by heating;
  • FIG. 8 is an enlarged cross-sectional view of the gas combustion unit of FIG. 5;
  • the present invention is capable of carbonizing or pyrolyzing waste, that is, industrial waste, medical waste, and polymer waste capable of carbonization and pyrolysis.
  • waste that is, industrial waste, medical waste, and polymer waste capable of carbonization and pyrolysis.
  • carbonization and pyrolysis gasification combustion of waste according to the present invention will be described with reference to the accompanying drawings. The apparatus will be described in more detail.
  • FIG. 1 to 3 show a first embodiment of a waste carbonization and pyrolysis gasification combustion apparatus 10.
  • the waste carbonization and pyrolysis gasification combustion apparatus 10 of the present embodiment forms a carbonization or pyrolysis space for carbonizing and pyrolyzing the waste, and generates heat generated by microwaves and the main body 20.
  • Microwave oscillators 40 are installed on the frame 31 supporting the main body 20 to generate heat, and are installed on the lower side of the main body 20 to generate heat.
  • a transfer unit 50 for transferring the carbonized or pyrolyzed residue and the waste being decomposed.
  • a waste supply unit 60 for supplying waste for carbonizing or pyrolyzing the carbonization or pyrolysis space of the body 20 of the heating furnace, and being connected to the carbonization or body by the heating body 20 and the gas supply pipe 71. It is further provided with a gas combustion unit 70 for burning the gas generated during pyrolysis.
  • the body 20 forms the carbonization or pyrolysis space 21 for carbonizing the waste 100 supplied from the gas combustion unit 70, and the waste 100 supplied from the waste supply unit 60. It is formed into a tube of a predetermined length so that it can be carbonized and pyrolyzed in the process of being transferred.
  • the heat generating body main body 20 has a cross-sectional shape of the upper light narrow narrow upper part is wide and the lower part as shown in the cross-sectional view of FIG.
  • the heating body main body 20 is made of a compound in which alumina for liquid molding is mixed with silicon carbide.
  • the heating furnace body 20 is wrapped by the cover member 32 supported by the frame 31 and the heat insulating space 33 between the inner peripheral surface of the cover member 32 and the outer peripheral surface of the heating furnace body 20. Is formed. This insulation space can be filled with insulation, which must be sufficiently heat resistant.
  • the transfer unit 50 transfers the waste or ash introduced into the carbonization or pyrolysis furnace to the residue discharge port 22 side of the main body 20 in the heat generating furnace, and is installed in the longitudinal direction at the lower side of the main body 20 in the heating furnace.
  • a screw 51 and a drive motor 52 for driving the rotating shaft of the screw 51 is installed in the frame 31 and protrudes to the outside of the main body 20 by the heat generated.
  • the transfer unit 50 is not limited to the above-described embodiment, and may be any structure as long as the transfer unit 50 can transfer the residue or residue along the carbonization or pyrolysis space.
  • the microwave oscillator 40 is installed in the frame 31 or the cover member 32 corresponding to the main body 20 by the heat generation.
  • the microwave oscillator 40 is preferably installed on both sides of the main body 20 by heat.
  • microwave refers to a radio wave having a wavelength of 1 m or less at a frequency between 300 MHz and 300 kHz.
  • the microwave oscillator 40 for heating the main body 20 by the heat generation includes an oscillator which oscillates microwaves of 2.45 GHz or more. It is preferable to use.
  • the microwave oscillator 40 may be made of a magnetron.
  • a shielding gasket (not shown) is provided on the cover member 32 or the frame 31 to prevent leakage of microwaves generated from the microwave oscillator 40 to an area other than the main body 20 by heat generation. Can be installed.
  • an auxiliary heating device or auxiliary heat source may be further provided to heat the main body 20 at a uniform angle by the heat generation.
  • the auxiliary heat source may be a structure that does not interfere with the heat generated by the body 20 by heat and is not damaged by heat generated from the body 20 by heat.
  • a heating wire may be used.
  • the waste supply unit 60 supplies waste to the carbonization and pyrolysis space 21 of the main body 20 by heat, and a hopper 61 in which wastes installed adjacent to the main body 20 are stored. And a screw feeder 62 connected to the hopper 61 and supplying waste in the hopper 61 to the inlet 24 of the main body 20 with heat.
  • a cooling unit 65 is provided to prevent the overheating of the screw feeder 62.
  • the screw feeder 62 has a conveying space 62a and the hopper 61 is installed at one side and the other end is provided with a screw main body 62b connected to the inlet 24 of the main body 20 by the heat generation.
  • the inside of the conveying space 62a of the screw body 62b is provided with a conveying screw 62c for conveying the waste 100.
  • the transfer screw 62c may be made of a double screw to facilitate the transfer of waste.
  • the cooling unit is configured to prevent the screw body 62b from being overheated by the body 20 due to heat generation, and may include a water jacket 66 installed on the outer circumferential surface of the screw body 62b. 66 is provided with a supply pump for supplying water.
  • the waste supply unit 60 may further include a crushing means for crushing the waste and supplying the waste to the hopper.
  • a crushing means for crushing the waste and supplying the waste to the hopper.
  • waste plastic waste may be further provided with a neutralizer input for injecting the neutralizing material (ca (OH) 2) after crushing.
  • the gas combustion unit 70 is for burning the gas generated during the carbonization or pyrolysis of the waste, as shown in Figures 1 and 3, the gas supply pipe 71 connected to the main body 20, and the It is provided with a combustor body 74 connected to the gas supply pipe 71 and having a heating space portion 72 and a combustion portion 73 for heating a gas therein.
  • the combustor body 74 is formed of a dielectric heating element in which the outer circumference of the heating space portion 72 generates heat by microwaves.
  • the combustor main body 74 is provided with an air supply pipe 75 for supplying air to the combustion unit 73 through the heating space portion 72.
  • the end of the air supply pipe 75 is provided with a nozzle portion 75a for injecting air.
  • An electrode 76 for generating a glow discharge plasma is installed at an end of the nozzle portion 75a of the air supply pipe 75.
  • the flame spraying hole 77 is formed in the combustor main body 74 corresponding to the nozzle part 75a.
  • the combustor frame or combustor cover member 78 surrounding the combustor body 74 is provided with microwave oscillators 79 for heating the combustor body 74 made of a dielectric heating element.
  • An adiabatic space is formed between the combustor cover member 78 and the combustor body 74.
  • the inner space of the main body 20 can be partitioned into an oxygen-free melting chamber 27 and the pyrolysis vaporization chamber 28.
  • the oxygen-free melting chamber 27 and the pyrolysis vaporization chamber 28 has a passage formed so that waste plastic, which is waste melted in the oxygen-free melting chamber, is introduced into the pyrolysis vaporization chamber.
  • wastes for carbonization are supplied to the hopper 61.
  • the waste is preferably crushed and supplied to a predetermined size.
  • the microwave generator 40 is used to heat the main body 20 with heat generated by a dielectric heating element. Since the heat generating furnace body 20 is made of a dielectric heating element, an electron band of + ions and-adjacent thereto is formed in the dielectric heating element. In this state, when a strong electric field is applied to the inside, the electron bands are aligned in the direction of the electric field, and when the electric field is applied, the electron bands are also arranged in reverse. In such a molecule, dipole rotation or vibration occurs to generate heat inside.
  • the microwave When the microwave is irradiated to the heat generating body main body 20 as described above, the waste in the hopper 61 by the waste supply unit 60 is transferred to the inside of the main body 20 by the heat generating.
  • the conveyed waste is carbonized in the pyrolysis space 21 of the main body 20 by heat generation.
  • the pyrolysis is performed in an anoxic state.
  • the waste carbonized in the pyrolysis space 21 is carbonized while slowly moving toward the residue discharge port 22 by the screw 51 of the transfer unit 50 installed in the lower portion, and the carbonized residue is discharged through the residue discharge port 22. Discharged.
  • the residue discharge port 22 may be provided with two or more shut-off valves that are sequentially operated to open and close stepwise to prevent oxygen, that is, air, from entering the pyrolysis space 25.
  • the pyrolysis gas generated in the carbonization process is supplied to the gas combustion unit 70 through the gas supply pipe 71 to be completely burned.
  • Combustion of the pyrolysis gas is supplied to the heating space portion 72 of the combustor body 74 through the gas supply pipe 71, and the combustion gas supplied to the heating space portion is generated by the microwave oscillator 75. Heated by 74).
  • the combustor body 74 is heated to 1300 °C or more by microwave. Since the heating of the combustor main body 74 is made in the same state as the main body 20 by heat generation, it will not be described again.
  • the pyrolysis gas supplied to the heating space 72 of the combustor main body 74 and heated is mixed with air supplied through the air supply pipe 75 and combusted.
  • the air supplied through the air supply pipe 75 is heated to an extremely high temperature (1000 to 5000 degrees) by the electrodes 76 generating the glow discharge plasma and then mixed with the pyrolysis gas to induce complete combustion of the pyrolysis gas. do.
  • the polymer resin such as waste plastic is supplied to the pyrolysis space portion 25 of the main body 20 by heat by the waste transfer unit 60, and the waste plastic transferred to the pyrolysis space portion is oxygen-free.
  • the molten waste plastic is melted in the melting chamber 27 and vaporized in the pyrolysis vaporization chamber 28 to generate pyrolysis gas, which is supplied to the gas combustion unit 70 through the gas supply pipe 71. It burns as mentioned above.
  • 5 to 9 show a third embodiment of the carbonization and pyrolysis gasification combustion apparatus 100 of waste according to the present invention.
  • the carbonization and pyrolysis gasification combustion apparatus 100 of the present invention includes a microwave oscillator 113 for generating a heat generating body 110 and a heat generating body 110 to provide a pyrolysis space in which the waste is pyrolyzed. Cooling the transfer unit 114 is installed in the main body 110 to transfer waste and residue, the waste supply unit 150 for supplying waste to the main body 110, and the microwave oscillator 113 Oscillator cooling unit 116 and the gas combustion unit 170 for collecting and burning the gas generated in the pyrolysis process of the waste.
  • the heat generating body 110 is provided with a pyrolysis space 111 for pyrolyzing the waste supplied from the waste supply unit 150, is made of a dielectric heating element to the microwave oscillated in the microwave oscillator 113 to be described later Heated by
  • the heat generating furnace body 110 is also provided with a partition plate 112 which projects upwardly from the bottom of the inner circumferential surface and extends in the longitudinal direction as shown in FIG. 6, by which the pyrolysis space is divided into two parts. It is divided into
  • the partition plate 112 is also made of a dielectric heating element, and because it is heated by microwaves, the contact area in contact with the main body 110 by heat generated by heating waste in the pyrolysis space 111 is increased.
  • the heating furnace main body 110 is supported on the frame 115 through the fixing support 116, the fixing support 116 is a heat-resistant elasticity is formed to extend along the longitudinal direction at the bottom of the heating body 110
  • Electromagnetic reflection support having an inverted triangular cross-section that is formed to extend along the longitudinal direction of the main body 110 by heat generation at the lower portion of the support 117 and the heat-resistant elastic support 117 and becomes narrower downwardly ( 118 and a plurality of heat shield supporters 119 extending downward from the electromagnetic wave reflection type support 118 and spaced apart from each other in the longitudinal direction.
  • an inlet 113 is formed in one upper portion of the main body 110 so that the waste can be injected.
  • waste is respectively disposed into the pyrolysis spaces 111 of both sides partitioned by the partition plate 112.
  • Two inlets 113 are provided in communication with each of the pyrolysis spaces 111 to be introduced.
  • an outlet 114 is formed in the lower portion of the other side of the heat generating body 110 so that the residues of carbonized or pyrolyzed wastes may be discharged from the body 110 by heat while passing through the body 110 in the heat generating furnace. 114 communicates with a collection box 112 described later.
  • the heat insulating material 161 is filled in the heat insulating space between the main body 110 and the frame 115, the gas tank 162 for supplying inert gas to the heat insulating space is Is installed.
  • the gas tank 162 is filled with nitrogen-argon gas as an inert gas, and by supplying an inert gas to the insulated space, the insulated space is stably maintained and the oxygen is prevented from flowing out.
  • the pressure side 163 is installed on one side of the frame 115, the inert gas supplied to the heat insulation space is increased in volume and pressure increases as the main body 110 is heated by heat, so the pressure of the inert gas in the heat insulation space
  • the pressure valve 163 is provided to block the rise above this predetermined level.
  • the heat generating body 110 has a heat-resistant coating layer formed on the inner circumferential surface of the waste pyrolysis.
  • the heat-resistant coating layer is formed by mixing alumina cement made by mixing bauxite and limestone, water and sodium silicate.
  • Alumina cement, water and sodium silicate are mixed at a ratio of 2: 1: 1 to coat the inside of the main body 110 with a heat generation, thereby protecting the main body 110 with a heat generation during the pyrolysis process.
  • the mixing ratio of alumina cement, water, and sodium silicate is set at a ratio of 2: 1: 1, as described above.
  • the mixing ratio of each component is not limited thereto, and water is 30 to 30 parts by weight based on 100 parts by weight of alumina cement. 60 parts by weight, sodium sodium silicate 30 to 60 parts by weight may be mixed to form a heat-resistant coating layer.
  • the transfer unit 114 is for discharging the residues of the waste and pyrolyzed waste introduced into the main body 110 as a heat generation as described above. Transfer the residues of the waste and pyrolyzed waste introduced into each pyrolysis space 111 around the partition plate 112, the transfer screw 141 extending along the longitudinal direction at the bottom of the main body 110 and the heat generation; It includes a drive motor 142 for rotating the transfer screw 141.
  • the waste supply unit 150 is to supply waste to the pyrolysis object to the heat generating furnace main body 110, the hopper 151 is installed adjacent to the heat generating furnace main body 110, the inlet of the hopper 151 and the heat generator main body
  • the waste supply pipe 153 connecting the 113 and the waste pressurizing unit 154 for introducing the waste of the hopper 151 to the main body 110 through the waste supply pipe 153 periodically.
  • the hopper 151 has an accommodating space in which waste to be pyrolyzed can be accommodated, and a discharge port 152 through which waste is discharged is formed at a lower end thereof.
  • the waste supply pipe 153 is connected to the discharge port 152 so that the waste discharged from the discharge port 152 moves along the waste supply pipe 153, and the waste supply pipe 153 is an inlet port 113 of the main body 110 by heating. By connecting to the waste is input to the main body 110 to generate heat.
  • the waste pressurizing unit 154 pressurizes the waste introduced into the waste supply pipe 153 to be introduced into the main body 110 by heat generation, and a piston 155 installed in the waste supply pipe 153 to be retractable, and a rotating motor.
  • Rotating plate 156 rotated by 157, and the connecting rod 158 for connecting the piston 155 and the rotating plate 156.
  • the piston 155 is installed to be retractable in the waste supply pipe 153 as described above, and pushes the waste introduced into the waste supply pipe 153 in the direction in which it is injected into the main body 110 by heating.
  • the piston 155 is installed at a connection point to which the discharge port 152 of the hopper 151 and the waste supply pipe 153 are connected, and blocks the discharge port 152 to advance to pressurize the waste to the hopper 151.
  • the stored waste is prevented from flowing into the waste supply pipe 153, and upon retreat, the discharge port 152 is opened to allow the waste to flow into the waste supply pipe 153.
  • the rotating plate 156 is connected to the rotary motor 157 and rotates to be connected to the piston 155 through a connecting rod 158.
  • One end and the other end of the connecting rod 158 is connected to the piston 155 and the rotating plate 156, respectively, and the connecting rod 158 is fastened at a position spaced apart at a predetermined interval in the radial direction from the rotation axis of the rotating plate 156. Therefore, when the rotary plate 156 is rotated by the rotary motor 157, the piston 155 is driven forward and backward according to the rotation of the rotary plate 156.
  • two waste supply pipes 153 are also installed to connect two hoppers 151 and the inlet port 113, respectively.
  • Piston 155 is installed in the 153 so as to be retractable, in particular, the retraction drive of the two piston 155 to be opposite to each other so that the waste is introduced into the two waste supply pipe 153 alternately.
  • the microwave oscillator 113 is installed in the frame 115 supporting the main body 110 by heat.
  • the oscillator cooling unit 116 is to prevent overheating of the microwave oscillator 113, an air hose 117 for supplying cooling air to the microwave oscillator 113, and air to the air hose 117. It includes a blower 118 for blowing. Therefore, the air supplied from the blower 118 is an air-cooled cooling means for cooling the microwave oscillator 113 while passing through the microwave oscillator 113.
  • Reference numeral 119 denotes a power supply for supplying power to the microwave oscillator 113, and a cooling fan 164 is installed in the power supply 119 to prevent overheating.
  • the gas combustion unit 170 is for burning gas generated in a process in which waste is pyrolyzed in the main body 110 by heat generation.
  • the gas combustion unit 170 includes a gas supply pipe 171 connected to the main body 110 by heat generation, a heating space part 173 connected to the gas supply pipe 171, and a gas combustion unit 174. And a combustor body 172 having
  • the combustor main body 172 is provided with an air supply pipe 176 for supplying air to the combustion unit 174 through the heating space portion 173, the nozzle portion for injecting air at the end of the air supply pipe 176 Is formed.
  • An electrode 177 for generating a glow discharge plasma is provided at the end of the nozzle portion of the air supply pipe 176, and a flame spray port 175 is formed at the combustor main body 172 corresponding to the nozzle portion.
  • a spiral guide portion 178 is formed on the inner circumferential surface of the combustor body 172 so as to extend in a spiral direction to induce rotational flow of the gas introduced into the combustor body 172, thereby allowing the combustor to flow through the gas supply pipe 171.
  • the gas introduced into the main body 172 moves along the spiral guide part 178 and moves to the combustion part 174 side, so that the gas is easily burned as the residence time in the heating space part 173 increases. Sufficient heating is achieved, and carbon sludge does not accumulate on the inner wall of the combustor body 172, and is combusted in the combustor body 172 or discharged to the outside of the combustor body 172 together with the gas flowing in rotation.
  • a gas discharge port 121 is formed at one side of the collection box 112 to discharge the gas in the collection box 112.
  • the gas outlet 121 is connected to the gas supply pipe 171 through the auxiliary gas supply pipe 122 so that the gas in the collection box 112 flows into the combustor main body 172 through the gas supply pipe 171. It is.
  • the piston 155 of the waste pressurizing unit 154 drives the waste material stored in the hopper 151 into the heat generating furnace 110 while moving forward and backward in the waste supply pipe 153. Waste introduced into the main body 110 through the inlet 113 is heated to the outlet 114 side along the main body 110 by the transfer unit 114.
  • the heat generating body 110 is made of a dielectric heating element, when microwave is irradiated from the microwave oscillator 113, a strong electric field is applied to the inside of the dielectric heating element, and the positive ion and negative electrons are generated in the heating body 110.
  • the electromagnetic field made is aligned in the direction of the electric field, and when the electric field is applied in reverse, the electron band is also arranged in reverse. As the dipole rotation or vibration occurs in the molecule, heat is generated inside the main body 110 due to heat generation.
  • waste that is transferred through the transfer unit 114 is pyrolyzed by heat generated in the main body 110 by heat generation.
  • pyrolysis proceeds in an anoxic state because oxygen is not supplied to the pyrolysis space 111 of the main body 110 by heat generation, the residue of the pyrolyzed waste is collected through the outlet 114 by the transfer unit 114 (112). Transported and stored.
  • the microwave oscillator 113 for heating the main body 110 by the heat is cooled by blowing air in the oscillator cooling unit 116 so as not to overheat during the oscillation process of the microwave.
  • the gas generated in the process of pyrolysis of waste in the main body 110 and the gas generated in the residue of the waste collected in the collection box 112 are supplied to the combustor main body 172 through the gas supply pipe 171 and completely burned. do.
  • the gas is supplied to the heating space 173 of the combustor main body 172 through the heating supply pipe, and moves toward the combustion section 174 while proceeding in a spiral direction from the heating space 173 through the spiral guide part 178. .
  • the gas transferred to the combustion unit 174 is mixed with the air supplied into the combustor main body 172 through the air supply pipe 176, and is exploded while being heated to extremely high temperature by the electrodes 177 generating the glow discharge plasma. Combustion occurs. Gas and air to be combusted are injected to the outside of the combustor body 172 through the flame spray port (175).
  • the carbonization and pyrolysis gasification combustion apparatus 100 of the waste according to the present invention described above is not incinerated but by heating the body 110 by heat generation made of a dielectric heating element using a microwave in an anoxic state of 500 ⁇ 1600 °C Because of thermal pyrolysis method, the risk of fire or explosion accident can be lowered compared to the conventional incineration method, and the residue of the pyrolyzed waste does not smell and can be stored indoors.
  • industrial waste, hospital waste, and the like can fundamentally prevent secondary environmental pollution by completely burning pyrolysis gas by carbonization.
  • the present invention is widely applicable to various decomposition apparatuses using heat as well as carbonization or pyrolysis of various wastes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

The present invention relates to a combustion apparatus for waste carbonization and pyrolysis gasification which is capable of carbonizing and pyrolysis gasifying various wastes by means of a dielectric heating element heated by microwaves, and combustion gas generated in the process of carbonization and pyrolysis gasification and converting the gas to energy. The combustion apparatus for waste carbonization and pyrolysis gasification of the present invention comprises: a furnace main body defining a carbonization or pyrolysis space, and formed of a dielectric heating element for generating heat by means of microwaves; microwave oscillators installed adjacent to the furnace main body in order to heat the furnace main body; a transfer unit installed at the lower side of the furnace main body in order to transfer carbonized or pyrolyzed residue to a discharge outlet; and a waste feeding unit for feeding waste into the carbonization or pyrolysis space of the furnace main body in order to carbonize or pyrolyze the waste.

Description

폐기물의 탄화 및 열분해 가스화 연소장치Waste Carbonization and Pyrolysis Gasification Combustors
본 발명은 마이크로 웨이브를 이용한 탄화 및 열분해 가스화 연소장치에 관한 것으로, 더 상세하게는 마이크로 웨이브에 의해 가열되는 유전발열체에 의해 각종 폐기물을 탄화 및 열분해 가스화하고, 탄화 및 열분해 가스화 과정에서 발생되는 가스를 연소시켜 에너지화 할 수 있는 폐기물의 탄화 및 열분해 가스화 연소장치에 관한 것이다.The present invention relates to a carbonization and pyrolysis gasification combustion apparatus using microwave, and more particularly to carbonization and pyrolysis gasification of various wastes by a dielectric heating element heated by microwaves, and to the gas generated in the carbonization and pyrolysis gasification process The present invention relates to a carbonization and pyrolysis gasification combustion apparatus of waste that can be energized by combustion.
일반적으로 폐기물이란 쓸모없게 되어 버리는 물질을 총칭하며, 통상적 관념내지는 폐기물 관리법에 따르면 '쓰레기, 연소재 오니(汚泥), 폐유, 폐산, 폐알칼리, 동물 사체, 합성수지 등 사람의 생활이나 산업활동에 필요없게 되어버리는 물질' 로 정의된다.In general, waste is a generic term for materials that become obsolete. According to the conventional waste management law, 'waste, combustible sludge, waste oil, waste acid, waste alkali, animal carcass, synthetic resin, etc. are required for human life or industrial activities. Substance that is lost.
한편, 현재 사용되고 있는 폐기물 처리방안에는 감량, 재활용, 재생, 매립, 소각 등이 있다. 이 중에서 감량, 재활용, 재생 등은 최종적인 폐기물 처리방안이 되지 못하며, 매립은 장기간에 걸쳐 심각한 토질 및 수질오염을 초래하므로 각국의 강력한 규제대상이 되고 있다. 따라서 소각방법이 주로 사용되는데, 이는 화염(火焰)을 이용하여 폐기물을 태워 제거하는 방법이다.Meanwhile, currently used waste treatment methods include weight loss, recycling, recycling, landfilling, and incineration. Among them, reduction, recycling, and regeneration are not the final waste disposal methods, and landfilling is a strong regulation subject in each country because it causes serious soil and water pollution over a long period of time. Therefore, the incineration method is mainly used, which is to remove the waste by burning the flame (火焰).
그러나 소각에 의한 폐기물 처리방법은 폐기물에 직접적인 화염을 가하는 소각방법으로 폐기물의 적재량, 밀도, 수분 함유량, 소각로의 크기, 가열 온도와 같은 여러 요인으로 인해 완전연소가 실질적으로 불가능하고, 불완전 연소에 따른 그을음, 먼지, 대기오염 공해 배출가스 등이 다량 발생하는 문제점이 있다.However, incineration waste treatment is an incineration method that directly applies a flame to the waste, and it is practically impossible to burn completely due to various factors such as waste load, density, moisture content, incinerator size, and heating temperature. Soot, dust, air pollution pollution gases have a problem that a large amount occurs.
이러한 점을 감안하여 고온 및 진공환경에서 폐기물을 열분해(pyrolysis)하거나 탄화시키는 방법이 제안되었다. In view of this, a method of pyrolysis or carbonization of waste in a high temperature and vacuum environment has been proposed.
대한민국 특허등록 제 0019679호에는 열분해 장치를 이용한 폐기물의 열분해 방법이 게시되어 있으며, 특허등록 제 0777616호에는 고탄소성 산업폐기물의 저온 열분해장치가 게시되어 있고, 특허등록 제 0375569호에는 고분자 폐기물을 위한 열분해장치가 게시되어 있다. Korean Patent Registration No. 0019679 discloses a pyrolysis method of waste using a pyrolysis device, and Patent Registration No. 0777616 discloses a low temperature pyrolysis device of high carbonaceous industrial waste, and Patent Registration No. 0375569 discloses pyrolysis for polymer waste. The device is published.
이러한 종래의 열분해를 이용한 폐기물 처리장치는 열분해 과정에서 열분해로 내부를 진공으로 조성/유지시키는 과정이 필요하고, 이로 인해 고온으로 가열된 열분해의 온도관리 장치를 구비해야 하므로 전체적인 장치가 과다하게 복잡해지는 문제점이 있다.The waste treatment apparatus using the conventional pyrolysis requires a process of forming / maintaining the inside of the pyrolysis in a vacuum during pyrolysis, and thus, having a temperature control device for pyrolysis heated to a high temperature, the overall apparatus becomes excessively complicated. There is a problem.
한편, 산업폐기물의 탄화장치가 특허공고 제 1994-06872호에 폐기물 탄화 처리 소각장치가 게시되어 있으며, 특허 등록 제 787948호에는 유기성 폐기물 탄화를 위한 외열식 로타리 탄화로 장치가 게시되어 있고, 특허등록 제 0372775호에는 폐기물 탄화 소각장치가 게시되어 있다. On the other hand, the carbonization device of industrial wastes is published in Patent Publication No. 1994-06872, and the waste carbonization incineration device is registered. Patent registration No. 787948 discloses an external rotary carbonization furnace for organic waste carbonization. Waste carbon incinerators are published in 0372775.
이러한 탄화장치는 열원으로 가스, 화석연료 등을 사용하고 있으므로 상대적으로 많은 유지비가 소요되며, 구조가 상대적으로 복잡하다.The carbonization device uses gas, fossil fuel, etc. as a heat source, so it requires a relatively high maintenance cost, and the structure is relatively complicated.
본 발명은 상술한 바와 같은 문제점을 해결하기 위한 것으로, 마이크로 웨이브에 의해 발열되는 유전 발열체로 이루어진 발열로 본체를 이용하여 폐기물을 열분해하거나 탄화시킬 수 있는 폐기물의 탄화 및 열분해 가스화 연소장치를 제공하는 것을 목적으로 한다.The present invention is to solve the problems as described above, to provide a carbonization and pyrolysis gasification combustion apparatus of the waste that can pyrolyze or carbonize the waste by using a heat generating body made of a dielectric heating element generated by microwaves. The purpose.
본 발명의 다른 목적은 구조가 상대적으로 간단하고, 적은 에너지원을 이용하여 고열을 발생시킬 수 있으며, 폐기물의 탄화 및 열분해 시 발생되는 가스를 연소시킬 수 있는 폐기물의 탄화 및 열분해 가스화 연소장치를 제공하는 것이다.It is another object of the present invention to provide a carbonization and pyrolysis gasification combustion apparatus of waste which is relatively simple in structure, can generate high heat using a small energy source, and can burn gas generated during carbonization and pyrolysis of waste. It is.
상기 목적을 달성하기 위한 본 발명에 따른 폐기물의 탄화 및 열분해 가스화 연소장치는 탄화 또는 열분해 공간을 형성하며, 마이크로 웨이브에 의해 발열하는 유전발열체로 이루어진 발열로 본체와, 상기 발열로 본체와 인접하게 설치되어 발열로 본체가 발열되도록 하기 위한 마이크로 웨이브 발진기들과, 상기 발열로 본체의 하부측에 설치되어 탄화 또는 열분해 된 잔재를 배출구 측으로 이송시키기 위한 이송유닛과, 상기 발열로 본체의 탄화 또는 열분해 공간에 탄화 또는 열분해 시키기 위한 폐기물을 공급하기 위한 폐기물 공급유닛을 구비한다.Waste and carbonization and pyrolysis gasification combustion apparatus according to the present invention for achieving the above object is a carbon or pyrolysis space, the heat generating body consisting of a dielectric heating element that generates heat by microwave, and installed adjacent to the heat generating body Microwave oscillators for heating the main body by heat generation, a transfer unit for transporting carbonized or pyrolyzed residues to the outlet side installed at the lower side of the main body by the heat generation, and in the carbonization or pyrolysis space of the main body A waste supply unit for supplying waste for carbonization or pyrolysis is provided.
상기 발열로 본체와 가스 공급관에 의해 연결되어 탄화 또는 열분해 시 발생되는 가스를 연소시키기 위한 가스 연소유닛을 더 구비할 수 있으며, 상기 발열로 본체는 상부가 넓고 하부가 좁은 상광 하협의 단면 형상을 가진 것이 바람직하다.The heating unit may further include a gas combustion unit connected by the main body and the gas supply pipe to combust the gas generated during carbonization or pyrolysis. It is preferable.
상기 이송유닛은 탄화 또는 열분해 로로 유입되는 폐기물 또는 재를 발열로 본체의 잔재 배출구 측으로 이송시키는 것으로, 발열로 본체의 하부측에 길이 방향으로 설치되는 스크류와, 프레임에 설치되어 상기 발열로 본체의 외부로 돌출되는 스크류의 회전축을 구동시키기 위한 구동모터를 구비하는 것이 바람직하다.The transfer unit transfers the waste or ash flowing into the carbonization or pyrolysis furnace to the remnant outlet of the main body of the heating furnace, the screw is installed in the longitudinal direction on the lower side of the main body of the heating furnace, and installed on the frame to the outside of the main body of the heating furnace It is preferable to have a drive motor for driving the rotating shaft of the screw protruding.
상기 폐기물 공급유닛은 상기 발열로 본체와 인접하게 설치되는 폐기물이 저장되는 호퍼와, 상기 호퍼와 연결되며 상기 호퍼 내의 폐기물을 발열로 본체의 주입구로 공급하는 스크류 피더를 구비하고, 상기 발열로 본체부터 열이 전달되어 상기 스크류 피더가 과열되는 것을 방지하기 위한 냉각유닛을 더 구비할 수 있다.The waste supply unit includes a hopper for storing waste installed adjacent to the heat generating furnace body, and a screw feeder connected to the hopper and supplying waste in the hopper to the inlet of the heat generating furnace. A heat transfer unit may further include a cooling unit to prevent the screw feeder from overheating.
상기 가스연소유닛은 상기 발열로 본체와 연결된 가스 공급관과, 상기 가스 공급관과 연결되고 내부에 가스를 가열하는 가열공간부와 연소부들을 가지며 마이크로 웨이브에 의해 발열되는 유전 발열체로 이루어진 연소기 본체와, 상기 연소기 본체의 가열 공간부를 통하여 상기 연소부에 에어를 공급하기 위한 에어 공급관과, 에어 공급관의 단부에 설치되어 글로우방전 플라스마를 발생시키기 위한 전극들과, 상기 연소기 본체를 감싸고 있는 연소기 커버부재에 설치되어 연소기 본체를 가열하기 위한 마이크로 웨이브 발진기을 구비하는 것이 바람직하다.The gas combustion unit includes a gas supply pipe connected to the main body by the heat generation unit, a combustor main body including a heating space part connected to the gas supply pipe and a dielectric body that generates heat by microwaves, and has a heating space part and a combustion part therein; An air supply pipe for supplying air to the combustion unit through a heating space of the combustor body, electrodes provided at an end of the air supply pipe to generate a glow discharge plasma, and a combustor cover member surrounding the combustor body. It is desirable to have a microwave oscillator for heating the combustor body.
상기 발열로 본체의 열분해 공간이 무산소 용융실과 열분해 기화실로 구획되어 형성될 수 있다.The pyrolysis space of the main body may be formed by partitioning into an oxygen-free melting chamber and a pyrolysis vaporization chamber.
아울러 폐기물의 탄화 및 열분해 가스화 연소장치는 상기 마이크로 웨이브 발진기의 과열을 방지하기 위한 발진기 냉각부를 구비할 수 있으며, 상기 발열로 본체는 내주면 바닥으로부터 상하 수직상으로 돌출되고 길이방향을 따라 연장되어 상기 열분해 공간을 두 부분으로 구획하는 구획판이 마련되어 있고, 상기 이송유닛은 상기 구획된 두 공간의 하부에 각각 회전 가능하게 설치되는 이송스크류를 포함하도록 형성될 수 있다.In addition, the waste carbonization and pyrolysis gasification combustion apparatus may include an oscillator cooling unit for preventing overheating of the microwave oscillator, wherein the heat generating body protrudes vertically from the bottom of the inner circumferential surface and extends along a longitudinal direction to pyrolyze the pyrolysis. A partition plate is provided for partitioning the space into two parts, and the transport unit may be formed to include a transport screw rotatably installed at the lower portions of the partitioned two spaces, respectively.
상기 폐기물 공급유닛은 열분해 대상의 폐기물이 저장되는 호퍼와, 상기 호퍼와 상기 발열로 본체의 투입구를 상호 연결하는 폐기물 공급관과, 상기 호퍼의 토출구측에 설치되어 폐기물을 상기 폐기물 공급관을 거쳐 투입구를 통해 상기 발열로 본체로 폐기물을 투입시키는 폐기물 가압부를 포함하며, 상기 폐기물 가압부는 상기 호퍼의 토출구와 폐기물 공급관이 연결되는 연결위치에서 상기 폐기물 공급관을 따라 진퇴 구동하면서 상기 토출구로부터 토출되는 폐기물을 투입구 측으로 가압하는 피스톤과, 상기 피스톤에 일단이 회전 가능하게 연결되는 연결로드와, 상기 연결로드의 타단이 연결되며 구동모터에 의해 회전하는 회전판을 구비하되, 상기 연결로드는 상기 회전판의 회전중심으로부터 방사상의 방향으로 소정간격 이격된 위치에 연결되도록 형성될 수 있다.The waste supply unit includes a hopper for storing waste to be pyrolyzed, a waste supply pipe interconnecting the hopper and an inlet of the heating furnace main body, and a waste supply pipe installed at a discharge port side of the hopper through the waste supply pipe. And a waste pressurizing unit for introducing waste into the main body by the heat generation, wherein the waste pressurizing unit presses the waste discharged from the discharge port toward the inlet side while driving forward and backward along the waste supply pipe at a connection position where the discharge port of the hopper and the waste supply pipe are connected. A piston, a connecting rod having one end rotatably connected to the piston, and a rotating plate connected to the other end of the connecting rod and rotating by a driving motor, wherein the connecting rod is radially directed from the center of rotation of the rotating plate. Connected to spaced intervals The lock may be formed.
상기 가스 연소유닛은 상기 발열로 본체와 연결된 가스공급관과, 상기 가스공급관과 연결되고 내부에 가스를 가열하는 가열공간부와 연소부를 가지는 연소기 본체와, 상기 연소기 본체의 가열공간부를 통해 상기 연소부에 에어를 공급하기 위한 에어공급관과, 상기 에어공급관의 단부에 설치되어 글로우방전 플라스마를 발생시키는 전극과, 상기 연소기 본체에 설치되어 상기 연소기 본체로 유입된 가스의 회전유동을 유도하는 나선가이드부를 구비할 수 있다.The gas combustion unit includes a gas supply pipe connected to the main body by the heat generating unit, a combustor body having a heating space part and a combustion part connected to the gas supply pipe and heating gas therein, and a combustion part through a heating space part of the combustor body. An air supply pipe for supplying air, an electrode installed at an end of the air supply pipe to generate a glow discharge plasma, and a spiral guide part installed at the combustor main body to induce rotational flow of gas introduced into the combustor main body; Can be.
상기 본체의 배출구와 연결되어 열분해된 폐기물의 잔재가 수용되는 수거함을 더 구비하며, 상기 수거함은 일측에 수거함 내에서 폐기물의 잔재에 의해 발생하는 가스를 배출하기 위한 가스배출구가 형성되어있고, 상기 가스배출구로부터 토출되는 가스를 상기 연소기 본체로 공급하도록 상기 가스배출구와 상기 가스공급관 또는 상기 연소기 본체를 연하는 보조가스공급관을 구비하여 형성될 수 있다.The collection box is connected to the outlet of the main body is further provided with a collection box for receiving the residue of the pyrolysis waste, the collection box is formed on the one side for discharging the gas generated by the residue of the waste in the collection box, the gas The gas discharge port and the gas supply pipe or an auxiliary gas supply pipe that connects the combustor body may be formed to supply the gas discharged from the discharge port to the combustor body.
본 발명의 폐기물의 탄화 및 열분해 가스화 연소장치는 마이크로 웨이브를 이용하여 유전 발열체로 이루어진 발열로 본체를 발열시켜 이를 열원으로 이용하게 되므로 열원의 확보에 따른 비용을 줄일 수 있으며, 폐기물의 열분해 효율을 향상시킬 수 있다. In the waste carbonization and pyrolysis gasification combustion apparatus of the present invention, since the body generates heat by using heat generated by a dielectric heating element using a microwave, it can be used as a heat source, thereby reducing the cost of securing a heat source and improving the pyrolysis efficiency of the waste. You can.
또한 본 발명의 폐기물의 탄화 및 열분해 가스화 연소장치는 탄화(carbonization) 및 열분해 시 발생되는 가스를 완전 연소시킬 수 있으므로 탄화 및 열분해에 따른 2차 환경오염을 줄일 수 있다. 특히, 하수처리장, 병원에서 배출되는 감염성 폐기물 등을 짧은 시간 내에 연료를 사용하지 않고 탄화 및 열분해 시킬 수 있다.In addition, the waste carbonization and pyrolysis gasification combustion apparatus of the present invention can completely burn the gas generated during carbonization and pyrolysis, thereby reducing secondary environmental pollution due to carbonization and pyrolysis. In particular, infectious wastes discharged from sewage treatment plants and hospitals can be carbonized and pyrolyzed in a short time without using fuel.
도 1은 본 발명에 따른 폐기물의 탄화 및 열분해 가스화 연소장치의 제1 실시예를 도시한 단면도,1 is a cross-sectional view showing a first embodiment of a waste carbonization and pyrolysis gasification combustion apparatus according to the present invention,
도 2는 도 1의 폐기물의 탄화 및 열분장치의 발열로 본체의 단면도. Figure 2 is a cross-sectional view of the main body of the heat generation of the carbonization and thermal splitting device of the waste of FIG.
도 3은 도 1의 공급관과 글로우 방전 플라즈마를 형성하기 위한 전극을 발췌하여 도시한 확대 단면도,3 is an enlarged cross-sectional view showing an extract of an electrode for forming a supply tube and a glow discharge plasma of FIG. 1;
도 4는 폐기물의 탄화 및 열분해 가스화 연소장치의 제2 실시예를 도시한 단면도,4 is a cross-sectional view showing a second embodiment of a waste carbonization and pyrolysis gasification combustion apparatus,
도 5는 본 발명에 따른 폐기물의 탄화 및 열분해 가스화 연소장치의 제3 실시예를 도시한 단면도,5 is a cross-sectional view showing a third embodiment of a waste carbonization and pyrolysis gasification combustion apparatus according to the present invention;
도 6은 도 5의 발열로 본체 및 커버부를 도시한 정단면도,6 is a front sectional view showing a main body and a cover part by the heat generated in FIG. 5;
도 7은 발열로 본체의 외측에 불활성 가스가 충진되도록 형성된 다른 실시예를 도시한 단면도,7 is a cross-sectional view showing another embodiment formed to fill an inert gas on the outside of the main body by heating;
도 8은 도 5의 가스연소부를 발췌하여 확대 도시한 단면도,8 is an enlarged cross-sectional view of the gas combustion unit of FIG. 5;
도 9는 폐기물 공급유닛의 폐기물 투입부를 발췌하여 확대 도시한 단면도이다.9 is an enlarged cross-sectional view of the waste input unit of the waste supply unit.
본 발명은 폐기물 즉, 탄화 및 열분해가 가능한 산업폐기물, 의료폐기물 및 고분자 폐기물 등을 탄화 또는 열분해 처리할 수 있는 것으로, 이하에서, 첨부된 도면을 참조하여 본 발명에 따른 폐기물의 탄화 및 열분해 가스화 연소장치를 더욱 상세하게 설명한다.The present invention is capable of carbonizing or pyrolyzing waste, that is, industrial waste, medical waste, and polymer waste capable of carbonization and pyrolysis. Hereinafter, carbonization and pyrolysis gasification combustion of waste according to the present invention will be described with reference to the accompanying drawings. The apparatus will be described in more detail.
도 1 내지 도 3에는 폐기물의 탄화 및 열분해 가스화 연소장치(10)의 제1 실시예가 도시되어 있다. 1 to 3 show a first embodiment of a waste carbonization and pyrolysis gasification combustion apparatus 10.
도면을 참조하면, 본 실시예의 폐기물의 탄화 및 열분해 가스화 연소장치(10)는 폐기물을 탄화 및 열분해 시키기 위한 탄화 또는 열분해 공간을 형성하는 것으로, 마마이크로 웨이브에 의해 발열되는 발열로 본체(20)와, 상기 발열로 본체(20)를 지지하는 프레임(31)에 설치되어 상기 발열로 본체(20)를 발열시키기 위한 마이크로 웨이브 발진기(40)들과, 상기 발열로 본체(20)의 하부 측에 설치되어 탄화 또는 열분해 된 잔재 및 분해중인 폐기물을 이송시키기 위한 이송유닛(50)을 구비한다. 그리고 상기 발열로 본체(20)의 탄화 또는 열분해 공간에 탄화 또는 열분해 시키기 위한 폐기물을 공급하는 폐기물 공급유닛(60)과, 상기 발열로 본체(20)와 가스 공급관(71)에 의해 연결되어 탄화 또는 열분해 시 발생되는 가스를 연소시키기 위한 가스 연소유닛(70)을 더 구비한다. Referring to the drawings, the waste carbonization and pyrolysis gasification combustion apparatus 10 of the present embodiment forms a carbonization or pyrolysis space for carbonizing and pyrolyzing the waste, and generates heat generated by microwaves and the main body 20. Microwave oscillators 40 are installed on the frame 31 supporting the main body 20 to generate heat, and are installed on the lower side of the main body 20 to generate heat. And a transfer unit 50 for transferring the carbonized or pyrolyzed residue and the waste being decomposed. And a waste supply unit 60 for supplying waste for carbonizing or pyrolyzing the carbonization or pyrolysis space of the body 20 of the heating furnace, and being connected to the carbonization or body by the heating body 20 and the gas supply pipe 71. It is further provided with a gas combustion unit 70 for burning the gas generated during pyrolysis.
상술한 바와 같이 구성된 본 발명에 따른 폐기물의 탄화 및 열분해 가스화 연소장치(10)를 구성 요소별로 보다 상세하게 설명하면 다음과 같다.The carbonization and pyrolysis gasification combustion apparatus 10 of waste according to the present invention configured as described above will be described in more detail by component.
상기 발열로 본체(20)는 가스 연소유닛(70)으로부터 공급된 폐기물(100)을 탄화시키기 위한 탄화 또는 열분해공간(21)을 형성하는 것으로, 폐기물 공급유닛(60)으로부터 공급되는 폐기물(100)이 이송되는 과정에서 탄화 및 열분해 될 수 있도록 소정 길이의 관체로 형성된다. 이 발열로 본체(20)는 도 2의 단면도에 도시된 바와 같이 상부가 넓고 하부가 좁은 상광 하협의 단면 형상을 가진다. 상기 발열로 본체(20)는 탄화규소(silicon carbide)에 액상 성형용 산화 알루미나가 혼합된 화합물로 이루어진다. The body 20 forms the carbonization or pyrolysis space 21 for carbonizing the waste 100 supplied from the gas combustion unit 70, and the waste 100 supplied from the waste supply unit 60. It is formed into a tube of a predetermined length so that it can be carbonized and pyrolyzed in the process of being transferred. The heat generating body main body 20 has a cross-sectional shape of the upper light narrow narrow upper part is wide and the lower part as shown in the cross-sectional view of FIG. The heating body main body 20 is made of a compound in which alumina for liquid molding is mixed with silicon carbide.
상기 발열로 본체(20)는 프레임(31)에 지지된 커버부재(32)에 의해 감싸지며 상기 커버부재(32)의 내주면과 상기 발열로 본체(20)의 외주면에 사이에는 단열공간(33)이 형성된다. 이 단열공간에는 단열재가 충전될 수 있는데, 이 단열재는 충분히 열에 견딜 수 있어야 함은 당연하다.The heating furnace body 20 is wrapped by the cover member 32 supported by the frame 31 and the heat insulating space 33 between the inner peripheral surface of the cover member 32 and the outer peripheral surface of the heating furnace body 20. Is formed. This insulation space can be filled with insulation, which must be sufficiently heat resistant.
상기 이송유닛(50)은 탄화 또는 열분해로로 유입되는 폐기물 또는 재를 발열로 본체(20)의 잔재 배출구(22) 측으로 이송시키는 것으로, 발열로 본체(20)의 하부측에 길이 방향으로 설치되는 스크류(51)와, 프레임(31)에 설치되어 상기 발열로 본체(20)의 외부로 돌출되는 스크류(51)의 회전축을 구동시키기 위한 구동모터(52)를 구비한다. 상기 이송유닛(50)은 상술한 실시예에 의해 한정되지 않고, 잔재 또는 잔사를 탄화 또는 열분해 공간을 따라 이송시킬 수 있는 구조이면 어느 것이나 가능하다. The transfer unit 50 transfers the waste or ash introduced into the carbonization or pyrolysis furnace to the residue discharge port 22 side of the main body 20 in the heat generating furnace, and is installed in the longitudinal direction at the lower side of the main body 20 in the heating furnace. A screw 51 and a drive motor 52 for driving the rotating shaft of the screw 51 is installed in the frame 31 and protrudes to the outside of the main body 20 by the heat generated. The transfer unit 50 is not limited to the above-described embodiment, and may be any structure as long as the transfer unit 50 can transfer the residue or residue along the carbonization or pyrolysis space.
상기 마이크로 웨이브 발진기(40)는 상기 발열로 본체(20)와 대응되는 프레임(31) 또는 커버부재(32)에 설치된다. 상기 마이크로 웨이브 발진기(40)는 발열로 본체(20)의 양측에 설치함이 바람직하다. The microwave oscillator 40 is installed in the frame 31 or the cover member 32 corresponding to the main body 20 by the heat generation. The microwave oscillator 40 is preferably installed on both sides of the main body 20 by heat.
통상적으로 마이크로 웨이브는 300㎒ 내지 300㎓ 사이의 주파수에 파장 1m 이하의 전파를 말하는데, 상기 발열로 본체(20)를 가열하기 위한 마이크로 웨이브 발진기(40)는 2.45㎓ 이상의 마이크로 웨이브를 발진하는 발진기를 사용함이 바람직하다. 상기 마이크로 웨이브 발진기(40)는 마그네트론으로 이루어질 수도 있다. 상기 커버부재(32) 또는 프레임(31)에는 마이크로 웨이브 발진기(40)로부터 발생되는 마이크로 웨이브가 발열로 본체(20) 이외의 영역으로 누설되는 것을 차단하기 위한 쉴드부재(shielding gasket;미도시)가 설치될 수 있다. 한편, 상기 발열로 본체(20)를 균일한 각도로 가열하기 위하여 보조 가열장치 또는 보조 열원이 더 구비될 수 있다. 보조 열원은 발열로 본체(20)의 발열에 간섭되지 않으며 발열로 본체(20)로부터 발생되는 열에 의해 손상되지 않은 구조이면 가능하다. 예컨대, 전열선이 이용될 수 있다. In general, microwave refers to a radio wave having a wavelength of 1 m or less at a frequency between 300 MHz and 300 kHz. The microwave oscillator 40 for heating the main body 20 by the heat generation includes an oscillator which oscillates microwaves of 2.45 GHz or more. It is preferable to use. The microwave oscillator 40 may be made of a magnetron. A shielding gasket (not shown) is provided on the cover member 32 or the frame 31 to prevent leakage of microwaves generated from the microwave oscillator 40 to an area other than the main body 20 by heat generation. Can be installed. On the other hand, an auxiliary heating device or auxiliary heat source may be further provided to heat the main body 20 at a uniform angle by the heat generation. The auxiliary heat source may be a structure that does not interfere with the heat generated by the body 20 by heat and is not damaged by heat generated from the body 20 by heat. For example, a heating wire may be used.
상기 폐기물 공급유닛(60)은 발열로 본체(20)의 탄화 및 열분해 공간(21)에 폐기물을 공급하기 것으로, 상기 발열로 본체(20)와 인접되게 설치되는 폐기물이 저장되는 호퍼(61)와, 이 호퍼(61)와 연결되며 상기 호퍼(61) 내의 폐기물을 발열로 본체(20)의 주입구(24)로 공급하는 스크류 피더(62)를 구비하며, 상기 발열로 본체(20)로부터 열이 전달되어 스크류 피더(62)의 과열을 방지하기 위한 냉각유닛(65)을 구비한다. 상기 스크류 피더(62)는 이송공간(62a)을 가지며 일측에 상기 호퍼(61)가 설치되고 타측 단부가 상기 발열로 본체(20)의 주입구(24)와 연결되는 스크류 본체(62b)를 구비하며, 상기 스크류 본체(62b)의 이송공간(62a)의 내부에는 폐기물(100)을 이송시키기 위한 이송스크류(62c)가 설치된다. 이 이송스크류(62c)는 폐기물의 이송을 원활하게 하기 위하여 더블 스크류로 이루어질 수 있다. The waste supply unit 60 supplies waste to the carbonization and pyrolysis space 21 of the main body 20 by heat, and a hopper 61 in which wastes installed adjacent to the main body 20 are stored. And a screw feeder 62 connected to the hopper 61 and supplying waste in the hopper 61 to the inlet 24 of the main body 20 with heat. A cooling unit 65 is provided to prevent the overheating of the screw feeder 62. The screw feeder 62 has a conveying space 62a and the hopper 61 is installed at one side and the other end is provided with a screw main body 62b connected to the inlet 24 of the main body 20 by the heat generation. The inside of the conveying space 62a of the screw body 62b is provided with a conveying screw 62c for conveying the waste 100. The transfer screw 62c may be made of a double screw to facilitate the transfer of waste.
그리고 상기 냉각유닛은 스크류 본체(62b)가 발열로 본체(20)에 의해 과열되는 것을 방지하기 위한 것으로 스크로 본체(62b)의 외주면에 설치된 워터자켓(66)으로 이루어질 수 있으며, 이 워터 자켓(66)에 물을 공급하기 위한 공급펌프가 구비된다. The cooling unit is configured to prevent the screw body 62b from being overheated by the body 20 due to heat generation, and may include a water jacket 66 installed on the outer circumferential surface of the screw body 62b. 66 is provided with a supply pump for supplying water.
상기 폐기물 공급유닛(60)은 상기 폐기물을 파쇄하여 상기 호퍼에 공급하는 파쇄수단을 더 구비할 수 있다. 또한 폐기물의 폐플라스틱인 경우 분쇄 후 중화재(ca(OH)2)를 투입하기 위한 중화재 투입기가 더 구비될 수 있다. The waste supply unit 60 may further include a crushing means for crushing the waste and supplying the waste to the hopper. In addition, in the case of waste plastic waste may be further provided with a neutralizer input for injecting the neutralizing material (ca (OH) 2) after crushing.
상기 가스연소유닛(70)은 도 1 및 도 3에 도시된 바와 같이 폐기물의 탄화 또는 열분해 시 발생되는 가스를 연소시키기 위한 것으로, 상기 발열로 본체(20)와 연결된 가스 공급관(71)과, 상기 가스 공급관(71)과 연결되며 내부에 가스를 가열하는 가열공간부(72)와 연소부(73)들을 가지는 연소기 본체(74)를 구비한다. 상기 연소기 본체(74)는 가열공간부(72)의 외주가 마이크로 웨이브에 의해 발열되는 유전 발열체로 이루어진다. The gas combustion unit 70 is for burning the gas generated during the carbonization or pyrolysis of the waste, as shown in Figures 1 and 3, the gas supply pipe 71 connected to the main body 20, and the It is provided with a combustor body 74 connected to the gas supply pipe 71 and having a heating space portion 72 and a combustion portion 73 for heating a gas therein. The combustor body 74 is formed of a dielectric heating element in which the outer circumference of the heating space portion 72 generates heat by microwaves.
상기 연소기 본체(74)에는 상기 가열 공간부(72)를 통하여 상기 연소부(73)에 에어를 공급하기 위한 에어 공급관(75)이 설치된다. 상기 에어 공급관(75)의 단부에는 에어를 분사하기 위한 노즐부(75a)가 설치된다. 그리고 상기 에어공급관(75)의 노즐부(75a)의 단부에는 글로우 방전플라스마를 발생시키기 위한 전극(76)이 설치된다. 상기 노즐부(75a)와 대응되는 연소기 본체(74)에는 화염분사구(77)가 형성된다.The combustor main body 74 is provided with an air supply pipe 75 for supplying air to the combustion unit 73 through the heating space portion 72. The end of the air supply pipe 75 is provided with a nozzle portion 75a for injecting air. An electrode 76 for generating a glow discharge plasma is installed at an end of the nozzle portion 75a of the air supply pipe 75. The flame spraying hole 77 is formed in the combustor main body 74 corresponding to the nozzle part 75a.
상기 연소기 본체(74)를 감싸고 있는 연소기 프레임 또는 연소기 커버부재(78)에는 유전 발열체로 이루어진 연소기 본체(74)를 가열하기 위한 마이크로 웨이브 발진기(79)들이 설치된다. 상기 연소기 커버부재(78)와 연소기 본체(74)의 사이에는 단열공간이 형성된다. The combustor frame or combustor cover member 78 surrounding the combustor body 74 is provided with microwave oscillators 79 for heating the combustor body 74 made of a dielectric heating element. An adiabatic space is formed between the combustor cover member 78 and the combustor body 74.
한편, 도 4 도시된 바와 같이 폐플라스틱과 같이 고분자 합성수지를 열분해시키기 위해서 발열로 본체(20)의 내부공간을 무산소 용융실(27)과 열분해 기화실(28)로 구획할 수 있다. 상기 무산소 용융실(27)과 열분해 기화실(28)은 통로가 형성되어 무산소 용융실에서 용융된 폐기물인 폐플라스틱이 열분해 기화실로 유입 된다. On the other hand, as shown in Figure 4 in order to thermally decompose the polymer synthetic resin, such as waste plastic, the inner space of the main body 20 can be partitioned into an oxygen-free melting chamber 27 and the pyrolysis vaporization chamber 28. The oxygen-free melting chamber 27 and the pyrolysis vaporization chamber 28 has a passage formed so that waste plastic, which is waste melted in the oxygen-free melting chamber, is introduced into the pyrolysis vaporization chamber.
상술한 바와 같이 구성된 본 발명에 따른 마이크로웨이브를 이용한 탄화 및 열분해 가스화 연소장치의 작용을 설명하면 다음과 같다. Referring to the operation of the carbonization and pyrolysis gasification combustion apparatus using the microwave according to the present invention configured as described above are as follows.
먼저, 폐기물 즉, 병원 감염성 폐기물, 동물의 벼, 각종 PCB 기판, 통신선 등과 같은 폐전선 등, 각종 폐기물을 탄화처리 하기 위해서는 탄화를 위한 폐기물을 호퍼(61)에 공급한다. 이 과정에서 상기 폐기물은 소정의 크기로 분쇄하여 공급하는 것이 바람직하다. First, in order to carbonize various wastes such as hospital infectious wastes, animal rice, waste wires such as various PCB substrates, communication lines, etc., wastes for carbonization are supplied to the hopper 61. In this process, the waste is preferably crushed and supplied to a predetermined size.
이 상태에서 상기 마이크로 웨이브 발진기(40)를 이용하여 유전발열체로 이루어진 발열로 본체(20)를 가열한다. 발열로 본체(20)는 유전 발열체로 이루어져 있으므로 이 유전체 발열체에는 +이온과 그에 근접되는 -의 전자대가 형성되어 있다. 이 상태에서 내부에 강한 전계를 가하면, 전자대가 전계의 방향으로 정열되고, 역으로 전계가 가해지면 전자대도 역으로 배열된다. 이와 같은 분자 내에서 쌍극자 회전이나 진동이 발생하여 내부에서 열이 발생하게 되는 것이다. In this state, the microwave generator 40 is used to heat the main body 20 with heat generated by a dielectric heating element. Since the heat generating furnace body 20 is made of a dielectric heating element, an electron band of + ions and-adjacent thereto is formed in the dielectric heating element. In this state, when a strong electric field is applied to the inside, the electron bands are aligned in the direction of the electric field, and when the electric field is applied, the electron bands are also arranged in reverse. In such a molecule, dipole rotation or vibration occurs to generate heat inside.
상기와 같이 발열로 본체(20)에 마이크로 웨이브가 조사되어 발열되면, 상기 폐기물 공급유닛(60)에 의해 호퍼(61) 내의 폐기물이 발열로 본체(20)의 내부로 이송된다. 이송된 폐기물은 발열로 본체(20)의 열분해 공간(21) 내에서 탄화된다. 이때에 상기 발열로 본체(20)의 열분해 공간(21)에는 산소가 공급되지 않게 되므로 무산소 상태에서 열분해 된다. 열분해 공간(21)에서 탄화되는 폐기물은 하부에 설치된 이송유닛(50)의 스크류(51)에 의해 잔재 배출구(22)측으로 서서히 이동하면서 탄화가 완료되며, 탄화된 잔재는 잔재 배출구(22)를 통하여 배출된다. 상기 잔재 배출구(22)는 순차적으로 작동하는 두 개 이상의 차단밸브가 설치되어 단계적으로 개폐가 이루어짐에 따라 상기 열분해 공간(25)로 산소 즉, 공기가 유입되는 것을 방지할 수 있다. When the microwave is irradiated to the heat generating body main body 20 as described above, the waste in the hopper 61 by the waste supply unit 60 is transferred to the inside of the main body 20 by the heat generating. The conveyed waste is carbonized in the pyrolysis space 21 of the main body 20 by heat generation. At this time, since the oxygen is not supplied to the pyrolysis space 21 of the main body 20, the pyrolysis is performed in an anoxic state. The waste carbonized in the pyrolysis space 21 is carbonized while slowly moving toward the residue discharge port 22 by the screw 51 of the transfer unit 50 installed in the lower portion, and the carbonized residue is discharged through the residue discharge port 22. Discharged. The residue discharge port 22 may be provided with two or more shut-off valves that are sequentially operated to open and close stepwise to prevent oxygen, that is, air, from entering the pyrolysis space 25.
상술한 바와 같이 탄화과정에서 발생된 열분해 가스는 가스 공급관(71)을 통하여 가스 연소유닛(70)으로 공급되어 완전 연소된다. 열분해 가스의 연소는 가스 공급관(71)을 통하여 연소기 본체(74)의 가열 공간부(72)로 공급되고, 이 가열공간부로 공급된 연소가스는 마이크로 웨이브 발진기(75)에 의해 발열되는 연소기 본체(74)에 의해 가열된다. 이때에 상기 연소기 본체(74)는 마이크로 웨이브에 의해 1300℃ 이상으로 가열된다. 상기 연소기 본체(74)의 가열은 발열로 본체(20)와 같은 상태로 이루어지므로 다시 설명하지 않기로 한다. As described above, the pyrolysis gas generated in the carbonization process is supplied to the gas combustion unit 70 through the gas supply pipe 71 to be completely burned. Combustion of the pyrolysis gas is supplied to the heating space portion 72 of the combustor body 74 through the gas supply pipe 71, and the combustion gas supplied to the heating space portion is generated by the microwave oscillator 75. Heated by 74). At this time, the combustor body 74 is heated to 1300 ℃ or more by microwave. Since the heating of the combustor main body 74 is made in the same state as the main body 20 by heat generation, it will not be described again.
상기와 같이 연소기 본체(74)의 가열 공간부(72)로 공급되어 가열된 열분해가스는 상기 에어 공급관(75)을 통하여 공급되는 에어와 혼합되어 연소된다. 이때에 에어 공급관(75)를 통하여 공급되는 공기는 글로우 방전 플라즈마를 발생시키는 전극(76)들에 의해서 초고온(1000~ 5000도)으로 가열된 후 열분해가스와 혼합되어 열분해 가스의 완전연소를 유도하게 된다.As described above, the pyrolysis gas supplied to the heating space 72 of the combustor main body 74 and heated is mixed with air supplied through the air supply pipe 75 and combusted. At this time, the air supplied through the air supply pipe 75 is heated to an extremely high temperature (1000 to 5000 degrees) by the electrodes 76 generating the glow discharge plasma and then mixed with the pyrolysis gas to induce complete combustion of the pyrolysis gas. do.
그리고 도 4에 도시된 바와 같이 폐플라스틱과 같은 고분자수지는 폐기물 이송유닛(60)에 의해 발열로 본체(20)의 열분해 공간부(25)로 공급되고, 이 열분해 공간부로 이송된 폐플라스틱은 무산소 용융실(27)에서 용융되고, 이 용융된 폐플라스틱은 열분해 기화실(28)에서 기화되어 열분해가스가 발생되고, 이 열분해 가스는 가스 공급관(71)을 통하여 가스 연소유닛(70)으로 공급되어 상술한 바와 같이 연소된다.As shown in FIG. 4, the polymer resin such as waste plastic is supplied to the pyrolysis space portion 25 of the main body 20 by heat by the waste transfer unit 60, and the waste plastic transferred to the pyrolysis space portion is oxygen-free. The molten waste plastic is melted in the melting chamber 27 and vaporized in the pyrolysis vaporization chamber 28 to generate pyrolysis gas, which is supplied to the gas combustion unit 70 through the gas supply pipe 71. It burns as mentioned above.
도 5 내지 도 9에는 본 발명에 따른 폐기물의 탄화 및 열분해 가스화 연소장치(100)의 제3 실시예가 도시되어 있다. 5 to 9 show a third embodiment of the carbonization and pyrolysis gasification combustion apparatus 100 of waste according to the present invention.
본 발명의 폐기물의 탄화 및 열분해 가스화 연소장치(100)는 폐기물이 열분해되는 열분해공간을 제공하는 발열로 본체(110)와, 발열로 본체(110)를 발열시키기 위한 마이크로 웨이브 발진기(113)와, 발열로 본체(110)에 설치되어 폐기물 및 잔재를 이송시키는 이송유닛(114)과, 발열로 본체(110)로 폐기물을 공급하기 위한 폐기물 공급유닛(150)과, 마이크로 웨이브 발진기(113)를 냉각시키기 위한 발진기 냉각부(116) 및 폐기물의 열분해과정에서 발생하는 가스를 포집하여 연소시키는 가스 연소유닛(170)을 포함한다.The carbonization and pyrolysis gasification combustion apparatus 100 of the present invention includes a microwave oscillator 113 for generating a heat generating body 110 and a heat generating body 110 to provide a pyrolysis space in which the waste is pyrolyzed. Cooling the transfer unit 114 is installed in the main body 110 to transfer waste and residue, the waste supply unit 150 for supplying waste to the main body 110, and the microwave oscillator 113 Oscillator cooling unit 116 and the gas combustion unit 170 for collecting and burning the gas generated in the pyrolysis process of the waste.
상기 발열로 본체(110)는 폐기물 공급유닛(150)으로부터 공급된 폐기물을 열분해하기 위한 열분해 공간(111)을 제공하며, 유전발열체로 제작되어 후술하는 마이크로 웨이브 발진기(113)에서 발진되는 마이크로 웨이브에 의해 가열된다. 발열로 본체(110)는 또한 도 6에 도시되어 있는 것처럼 내주면 바닥으로부터 상방으로 돌출되고 길이방향을 따라 연장되는 구획판(112)이 마련되어 있는데, 이 구획판(112)에 의해 열분해공간이 두 부분으로 구획된다. 상기 구획판(112)도 유전발열체로 이루어지며, 마이크로 웨이브에 가열되기 때문에 상기 열분해 공간(111) 내에서 폐기물이 가열된 발열로 본체(110)와 접촉하는 접촉면적이 증가하게 된다. The heat generating body 110 is provided with a pyrolysis space 111 for pyrolyzing the waste supplied from the waste supply unit 150, is made of a dielectric heating element to the microwave oscillated in the microwave oscillator 113 to be described later Heated by The heat generating furnace body 110 is also provided with a partition plate 112 which projects upwardly from the bottom of the inner circumferential surface and extends in the longitudinal direction as shown in FIG. 6, by which the pyrolysis space is divided into two parts. It is divided into The partition plate 112 is also made of a dielectric heating element, and because it is heated by microwaves, the contact area in contact with the main body 110 by heat generated by heating waste in the pyrolysis space 111 is increased.
발열로 본체(110)는 고정지지대(116)를 통해 프레임(115)에 지지되어 있는데, 상기 고정지지대(116)는 발열로 본체(110)의 하단에 길이방향을 따라 연장되도록 형성되어 있는 내열탄성 지지대(117)와, 내열탄성 지지대(117)의 하부에 발열로 본체(110)의 길이방향을 따라 연장되도록 형성되고 하방으로 갈수록 폭이 점점 좁아지는 역삼각형 형태의 단면을 갖는 전자파 반사형 지지대(118)와, 전자파 반사형 지지대(118)로부터 하방으로 연장되고 길이방향을 따라 상호 이격되어 있는 복수개의 전열차폐용 지지대(119)를 포함한다.The heating furnace main body 110 is supported on the frame 115 through the fixing support 116, the fixing support 116 is a heat-resistant elasticity is formed to extend along the longitudinal direction at the bottom of the heating body 110 Electromagnetic reflection support having an inverted triangular cross-section that is formed to extend along the longitudinal direction of the main body 110 by heat generation at the lower portion of the support 117 and the heat-resistant elastic support 117 and becomes narrower downwardly ( 118 and a plurality of heat shield supporters 119 extending downward from the electromagnetic wave reflection type support 118 and spaced apart from each other in the longitudinal direction.
아울러 발열로 본체(110)의 일측 상부에는 폐기물이 투입될 수 있도록 투입구(113)가 형성되어 있는데, 본 실시예의 경우 상기 구획판(112)으로 구획된 양측의 열분해 공간(111)으로 각각 폐기물이 투입될 수 있게 각각의 열분해 공간(111)과 연통되는 두 개의 투입구(113)가 마련된다. 그리고 발열로 본체(110)의 타측 하부에 발열로 본체(110)를 통과하면서 탄화 또는 열분해된 폐기물의 잔재가 발열로 본체(110)로부터 배출될 수 있게 배출구(114)가 형성되어 있으며, 상기 배출구(114)는 후술하는 수거함(112)과 연통된다.In addition, an inlet 113 is formed in one upper portion of the main body 110 so that the waste can be injected. In the present embodiment, waste is respectively disposed into the pyrolysis spaces 111 of both sides partitioned by the partition plate 112. Two inlets 113 are provided in communication with each of the pyrolysis spaces 111 to be introduced. In addition, an outlet 114 is formed in the lower portion of the other side of the heat generating body 110 so that the residues of carbonized or pyrolyzed wastes may be discharged from the body 110 by heat while passing through the body 110 in the heat generating furnace. 114 communicates with a collection box 112 described later.
도 7에 도시된 실시예의 경우에는 발열로 본체(110)와 프레임(115) 사이의 단열공간에 단열재(161)가 충진되어 있고, 이 단열공간에 불활성가스를 공급하기 위한 가스탱크(162)가 설치된다. 가스탱크(162)에는 불활성 가스로서 질소-아르곤 가스가 충진되어 있고, 단열공간에 불활성 가스를 공급함으로써 단열공간을 안정적으로 유지시키고 외부로부터 산소가 유입되는 것을 차단한다. 그리고 프레임(115)의 일측에는 압력변(163)이 설치되어 있는데, 단열공간으로 공급된 불활성 가스는 발열로 본체(110)가 가열됨에 따라 부피가 커지고 압력이 높아지게 되므로 단열공간에서 불활성가스의 압력이 일정 수준 이상으로 높아지는 것을 차단하도록 압력변(163)이 마련된다.In the case of the embodiment shown in Figure 7, the heat insulating material 161 is filled in the heat insulating space between the main body 110 and the frame 115, the gas tank 162 for supplying inert gas to the heat insulating space is Is installed. The gas tank 162 is filled with nitrogen-argon gas as an inert gas, and by supplying an inert gas to the insulated space, the insulated space is stably maintained and the oxygen is prevented from flowing out. And the pressure side 163 is installed on one side of the frame 115, the inert gas supplied to the heat insulation space is increased in volume and pressure increases as the main body 110 is heated by heat, so the pressure of the inert gas in the heat insulation space The pressure valve 163 is provided to block the rise above this predetermined level.
그리고 상기 발열로 본체(110)에는 폐기물의 열분해가 이루어지는 내주면에 내열코팅층이 형성되어 있다.The heat generating body 110 has a heat-resistant coating layer formed on the inner circumferential surface of the waste pyrolysis.
내열코팅층은 보크사이트와 석회석을 혼합하여 만든 알루미나 시멘트와 물과 규산소다 나트륨을 혼합하여 형성한다.The heat-resistant coating layer is formed by mixing alumina cement made by mixing bauxite and limestone, water and sodium silicate.
알루미나 시멘트와 물 및 규산소다 나트륨을 2:1:1의 비율로 혼합하여 발열로 본체(110)의 내측에 코팅함으로써 열분해 과정에서 발열로 본체(110)를 보호한다. 본 실시예에서는 알루미나 시멘트와 물 및 규산소다 나트륨의 혼합비를 상술한 것처럼 2:1:1의 비율로 하였으나, 각 구성요소의 혼합비는 이에 한정되지 않고, 알루미나 시멘트 100 기준 중량부에 대하여 물 30~60 중량부, 규산소다 나트륨 30~60 중량부를 혼합하여 내열코팅층을 형성할 수 있다.Alumina cement, water and sodium silicate are mixed at a ratio of 2: 1: 1 to coat the inside of the main body 110 with a heat generation, thereby protecting the main body 110 with a heat generation during the pyrolysis process. In the present embodiment, the mixing ratio of alumina cement, water, and sodium silicate is set at a ratio of 2: 1: 1, as described above. However, the mixing ratio of each component is not limited thereto, and water is 30 to 30 parts by weight based on 100 parts by weight of alumina cement. 60 parts by weight, sodium sodium silicate 30 to 60 parts by weight may be mixed to form a heat-resistant coating layer.
상기 이송유닛(114)은 상술한 것처럼 발열로 본체(110)로 투입된 폐기물과 열분해 된 폐기물의 잔재를 배출하기 위한 것이다. 상기 구획판(112)을 중심으로 각각의 열분해 공간(111)으로 투입된 폐기물 및 열분해된 폐기물의 잔재를 이송시키는데, 발열로 본체(110)의 하단에 길이방향을 따라 연장되는 이송스크류(141)와, 상기 이송스크류(141)를 회전시키는 구동모터(142)를 포함한다.The transfer unit 114 is for discharging the residues of the waste and pyrolyzed waste introduced into the main body 110 as a heat generation as described above. Transfer the residues of the waste and pyrolyzed waste introduced into each pyrolysis space 111 around the partition plate 112, the transfer screw 141 extending along the longitudinal direction at the bottom of the main body 110 and the heat generation; It includes a drive motor 142 for rotating the transfer screw 141.
상기 폐기물 공급유닛(150)은 발열로 본체(110)로 열분해 대상의 폐기물을 공급하는 것으로서, 발열로 본체(110)와 인접하게 설치되는 호퍼(151)와, 호퍼(151)와 발열기 본체의 투입구(113)를 연결하는 폐기물 공급관(153)과, 호퍼(151)의 폐기물을 주기적으로 폐기물 공급관(153)을 통해 발열로 본체(110)에 투입시키는 폐기물 가압부(154)를 포함한다.The waste supply unit 150 is to supply waste to the pyrolysis object to the heat generating furnace main body 110, the hopper 151 is installed adjacent to the heat generating furnace main body 110, the inlet of the hopper 151 and the heat generator main body The waste supply pipe 153 connecting the 113 and the waste pressurizing unit 154 for introducing the waste of the hopper 151 to the main body 110 through the waste supply pipe 153 periodically.
상기 호퍼(151)는 열분해 대상 폐기물이 수용될 수 있는 수용공간을 가지며, 하단에 폐기물이 토출되는 토출구(152)가 형성되어 있다. 그리고 폐기물 공급관(153)은 토출구(152)와 연결되어 토출구(152)에서 배출되는 폐기물이 폐기물 공급관(153)을 따라 이동하는데, 이 폐기물 공급관(153)이 발열로 본체(110)의 투입구(113)와 연결됨으로써 폐기물이 발열로 본체(110)로 투입된다.The hopper 151 has an accommodating space in which waste to be pyrolyzed can be accommodated, and a discharge port 152 through which waste is discharged is formed at a lower end thereof. In addition, the waste supply pipe 153 is connected to the discharge port 152 so that the waste discharged from the discharge port 152 moves along the waste supply pipe 153, and the waste supply pipe 153 is an inlet port 113 of the main body 110 by heating. By connecting to the waste is input to the main body 110 to generate heat.
상기 폐기물 가압부(154)는 폐기물 공급관(153)으로 유입된 폐기물을 발열로 본체(110)에 투입되도록 가압하는 것으로서, 폐기물 공급관(153)에 진퇴 가능하게 설치되는 피스톤(155)과, 회전모터(157)에 의해 회전하는 회전판(156)과, 상기 피스톤(155)과 회전판(156)을 연결하는 연결로드(158)로 이루어져 있다.The waste pressurizing unit 154 pressurizes the waste introduced into the waste supply pipe 153 to be introduced into the main body 110 by heat generation, and a piston 155 installed in the waste supply pipe 153 to be retractable, and a rotating motor. Rotating plate 156 rotated by 157, and the connecting rod 158 for connecting the piston 155 and the rotating plate 156.
상기 피스톤(155)은 상술한 것처럼 폐기물 공급관(153)에 진퇴 가능하게 설치되어 전진 시 폐기물 공급관(153)에 유입된 폐기물을 발열로 본체(110)에 투입되는 방향으로 밀어 가압한다. 상기 피스톤(155)은 호퍼(151)의 토출구(152)와 폐기물 공급관(153)이 연결되는 연결지점에 설치되어 폐기물을 가압하기 위해 전진할 때 상기 토출구(152)를 차단하여 호퍼(151)에 저장된 폐기물이 폐기물 공급관(153)으로 유입되는 것을 차단하고, 후퇴시에는 상기 토출구(152)를 개방하여 폐기물이 폐기물 공급관(153)으로 유입되도록 허용한다. The piston 155 is installed to be retractable in the waste supply pipe 153 as described above, and pushes the waste introduced into the waste supply pipe 153 in the direction in which it is injected into the main body 110 by heating. The piston 155 is installed at a connection point to which the discharge port 152 of the hopper 151 and the waste supply pipe 153 are connected, and blocks the discharge port 152 to advance to pressurize the waste to the hopper 151. The stored waste is prevented from flowing into the waste supply pipe 153, and upon retreat, the discharge port 152 is opened to allow the waste to flow into the waste supply pipe 153.
상기 회전판(156)은 회전모터(157)에 연결되어 회전하는데 연결로드(158)를 통해 상기 피스톤(155)과 연결된다. 연결로드(158)는 일단과 타단이 각각 피스톤(155)과 회전판(156)에 연결되는데, 연결로드(158)가 회전판(156)의 회전축으로부터 방사상의 방향으로 소정간격 이격된 위치에서 체결이 되기 때문에 회전판(156)이 회전모터(157)에 의해 회전하면 피스톤(155)이 회전판(156)의 회전에 따라 진퇴구동이 이루어진다.The rotating plate 156 is connected to the rotary motor 157 and rotates to be connected to the piston 155 through a connecting rod 158. One end and the other end of the connecting rod 158 is connected to the piston 155 and the rotating plate 156, respectively, and the connecting rod 158 is fastened at a position spaced apart at a predetermined interval in the radial direction from the rotation axis of the rotating plate 156. Therefore, when the rotary plate 156 is rotated by the rotary motor 157, the piston 155 is driven forward and backward according to the rotation of the rotary plate 156.
도시되어 있지는 않지만 발열로 본체(110)에 두 개의 투입구(113)가 형성되어 있으므로 폐기물 공급관(153) 역시 두 개가 각각 호퍼(151)와 투입구(113)를 연결하도록 설치되고, 상기 각각의 폐기물 공급관(153)에 피스톤(155)이 진퇴 가능하게 설치되며, 특히 상기 두 개의 피스톤(155)의 진퇴 구동을 서로 반대가 되게하여 두 개의 폐기물 공급관(153)에서 폐기물이 교번 투입되게 한다.Although not shown, since two inlets 113 are formed in the main body 110 by heating, two waste supply pipes 153 are also installed to connect two hoppers 151 and the inlet port 113, respectively. Piston 155 is installed in the 153 so as to be retractable, in particular, the retraction drive of the two piston 155 to be opposite to each other so that the waste is introduced into the two waste supply pipe 153 alternately.
아울러 상기 마이크로 웨이브 발진기(113)는 발열로 본체(110)를 지지하는 프레임(115)에 설치된다. In addition, the microwave oscillator 113 is installed in the frame 115 supporting the main body 110 by heat.
상기 발진기 냉각부(116)는 마이크로 웨이브 발진기(113)의 과열을 방지하기 위한 것으로서, 마이크로 웨이브 발진기(113)로 냉각공기를 공급하기 위한 에어호스(117)와, 상기 에어호스(117)로 공기를 불어넣는 송풍기(118)를 포함한다. 따라서 송풍기(118)에서 공급되는 공기가 마이크로 웨이브 발진기(113)를 지나면서 마이크로 웨이브 발진기(113)를 냉각시키는 공냉식 냉각수단이 된다. The oscillator cooling unit 116 is to prevent overheating of the microwave oscillator 113, an air hose 117 for supplying cooling air to the microwave oscillator 113, and air to the air hose 117. It includes a blower 118 for blowing. Therefore, the air supplied from the blower 118 is an air-cooled cooling means for cooling the microwave oscillator 113 while passing through the microwave oscillator 113.
도면부호 119는 마이크로 웨이브 발진기(113)에 전원을 공급하기 위한 전원공급장치이며, 전원공급장치(119)에도 과열을 방지하도록 냉각팬(164)이 설치되어 있다. Reference numeral 119 denotes a power supply for supplying power to the microwave oscillator 113, and a cooling fan 164 is installed in the power supply 119 to prevent overheating.
상기 가스 연소유닛(170)은 발열로 본체(110)에서 폐기물이 열분해되는 과정에서 발생하는 가스를 연소시키기 위한 것이다. 가스 연소유닛(170)은 발열로 본체(110)와 연결되는 가스공급관(171)과, 가스공급관(171)에 연결되고 가스를 가열하는 가열공간부(173)와 가스가 연소되는 연소부(174)를 가지는 연소기 본체(172)를 포함한다.The gas combustion unit 170 is for burning gas generated in a process in which waste is pyrolyzed in the main body 110 by heat generation. The gas combustion unit 170 includes a gas supply pipe 171 connected to the main body 110 by heat generation, a heating space part 173 connected to the gas supply pipe 171, and a gas combustion unit 174. And a combustor body 172 having
연소기 본체(172)에는 가열공간부(173)를 통하여 연소부(174)에 에어를 공급하기 위한 에어공급관(176)이 설치되고, 이 에어공급관(176)의 단부에는 에어를 분사하기 위한 노즐부가 형성된다. 그리고 에어공급관(176)의 노즐부의 단부에는 글로우 방전 플라즈마를 발생시키기 위한 전극(177)이 설치되어 있으며, 노즐부와 대응하는 연소기 본체(172)에는 화염분사구(175)가 형성되어 있다. The combustor main body 172 is provided with an air supply pipe 176 for supplying air to the combustion unit 174 through the heating space portion 173, the nozzle portion for injecting air at the end of the air supply pipe 176 Is formed. An electrode 177 for generating a glow discharge plasma is provided at the end of the nozzle portion of the air supply pipe 176, and a flame spray port 175 is formed at the combustor main body 172 corresponding to the nozzle portion.
아울러 연소기 본체(172)의 내주면에는 연소기 본체(172)로 유입된 가스의 회전유동을 유도하기 위해 나선방향으로 연장되도록 돌출된 나선가이드부(178)가 형성되어 있어서 가스공급관(171)을 통해 연소기 본체(172)로 유입된 가스는 나선가이드부(178)를 따라 회전하면서 연소부(174)측으로 이동하게 되며, 따라서 가스가 가열공간부(173)에서의 체류시간이 길어짐에 따라 연소가 용이하도록 충분한 가열이 이루어지게 되며, 연소기 본체(172) 내벽에 카본 슬러지가 쌓이지 않고 회전유동하는 가스와 함께 연소기 본체(172) 내에서 연소되거나 연소기 본체(172)의 외부로 배출된다. In addition, a spiral guide portion 178 is formed on the inner circumferential surface of the combustor body 172 so as to extend in a spiral direction to induce rotational flow of the gas introduced into the combustor body 172, thereby allowing the combustor to flow through the gas supply pipe 171. The gas introduced into the main body 172 moves along the spiral guide part 178 and moves to the combustion part 174 side, so that the gas is easily burned as the residence time in the heating space part 173 increases. Sufficient heating is achieved, and carbon sludge does not accumulate on the inner wall of the combustor body 172, and is combusted in the combustor body 172 or discharged to the outside of the combustor body 172 together with the gas flowing in rotation.
그리고 상술한 수거함(112)에서도 수거함(112)으로 투입된 폐기물의 잔재에서 가스가 발생하게 되므로 수거함(112)의 일측에 가스배출구(121)가 형성되어 수거함(112) 내의 가스를 배출시킬 수 있도록 되어 있고, 이 가스배출구(121)가 보조가스공급관(122)을 통해 상기 가스공급관(171)과 연결되어 있어서 수거함(112)의 가스가 가스공급관(171)을 거쳐 연소기 본체(172) 내로 유입되도록 형성되어 있다. In addition, since the gas is generated in the remnants of the waste introduced into the collection box 112 in the above-described collection box 112, a gas discharge port 121 is formed at one side of the collection box 112 to discharge the gas in the collection box 112. The gas outlet 121 is connected to the gas supply pipe 171 through the auxiliary gas supply pipe 122 so that the gas in the collection box 112 flows into the combustor main body 172 through the gas supply pipe 171. It is.
이상에서 설명한 본 발명에 따른 폐기물의 탄화 및 열분해 가스화 연소장치(100)의 구동과정을 다시 한번 설명하면 다음과 같다.The driving process of the carbonization and pyrolysis gasification combustion apparatus 100 of waste according to the present invention described above will be described once again.
먼저 폐기물 공급유닛(150)에서는 호퍼(151)에 저장되어 있는 폐기물을 폐기물 가압부(154)의 피스톤(155)이 폐기물 공급관(153) 내에서 진퇴 구동하면서 발열로 본체(110) 내로 투입시킨다. 투입구(113)를 통해 발열로 본체(110)로 유입된 폐기물은 이송유닛(114)에 의해 발열로 본체(110)를 따라 배출구(114) 측으로 이송된다.First, in the waste supply unit 150, the piston 155 of the waste pressurizing unit 154 drives the waste material stored in the hopper 151 into the heat generating furnace 110 while moving forward and backward in the waste supply pipe 153. Waste introduced into the main body 110 through the inlet 113 is heated to the outlet 114 side along the main body 110 by the transfer unit 114.
아울러 상기 발열로 본체(110)는 유전발열체로 제작되기 때문에 마이크로 웨이브 발진기(113)에서 마이크로 웨이브를 조사하면 유전발열체의 내부에 강한 전계가 가해지면서 발열로 본체(110)에 플러스 이온과 마이너스 전자로 이루어진 전자대가 전계의 방향 정렬되고, 역으로 전계가 가해지면 전자대도 역으로 배열된다. 이와 같은 분자 내에서 쌍극자 회전이나 진동이 발생하면서 발열로 본체(110)의 내부에서 열이 발생하게 된다. In addition, since the heat generating body 110 is made of a dielectric heating element, when microwave is irradiated from the microwave oscillator 113, a strong electric field is applied to the inside of the dielectric heating element, and the positive ion and negative electrons are generated in the heating body 110. The electromagnetic field made is aligned in the direction of the electric field, and when the electric field is applied in reverse, the electron band is also arranged in reverse. As the dipole rotation or vibration occurs in the molecule, heat is generated inside the main body 110 due to heat generation.
따라서 이송유닛(114)을 통해 이송되던 폐기물은 발열로 본체(110)에서 발생하는 열에 의해 열분해가 이루어지게 된다. 여기서 발열로 본체(110)의 열분해 공간(111)에는 산소가 공급되지 않으므로 무산소 상태에서 열분해가 진행되고, 열분해된 폐기물의 잔재는 이송유닛(114)에 의해 배출구(114)를 통해 수거함(112)으로 운반되어 저장된다.Therefore, waste that is transferred through the transfer unit 114 is pyrolyzed by heat generated in the main body 110 by heat generation. Here, since pyrolysis proceeds in an anoxic state because oxygen is not supplied to the pyrolysis space 111 of the main body 110 by heat generation, the residue of the pyrolyzed waste is collected through the outlet 114 by the transfer unit 114 (112). Transported and stored.
상기 발열로 본체(110)를 가열하기 위한 마이크로 웨이브 발진기(113)는 마이크로 웨이브의 발진 과정에서 과열되지 않도록 발진기 냉각부(116)에서 공기를 송풍시켜 냉각시키게 된다.The microwave oscillator 113 for heating the main body 110 by the heat is cooled by blowing air in the oscillator cooling unit 116 so as not to overheat during the oscillation process of the microwave.
아울러 발열로 본체(110)에서 폐기물이 열분해되는 과정에서 발생하는 가스 및 수거함(112)에 수거된 폐기물의 잔재에서 발생하는 가스는 가스공급관(171)을 통해 연소기 본체(172)로 공급되어 완전 연소된다. 가스는 가열공급관을 통해 연소기 본체(172)의 가열공간부(173)로 공급되고, 가열공간부(173)에서 나선가이드부(178)를 통해 나선방향으로 진행하면서 연소부(174) 측으로 이동한다. 연소부(174) 측으로 이송된 가스는 에어공급관(176)을 통해 연소기 본체(172) 내부로 공급되는 에어와 혼합되고, 글로우 방전 플라즈마를 발생시키는 전극(177)들에 의해 초고온으로 가열되면서 폭발적으로 연소가 이루어지게 된다. 연소되는 가스와 공기는 화염분사구(175)를 통해 연소기 본체(172)의 외부로 분사된다.In addition, the gas generated in the process of pyrolysis of waste in the main body 110 and the gas generated in the residue of the waste collected in the collection box 112 are supplied to the combustor main body 172 through the gas supply pipe 171 and completely burned. do. The gas is supplied to the heating space 173 of the combustor main body 172 through the heating supply pipe, and moves toward the combustion section 174 while proceeding in a spiral direction from the heating space 173 through the spiral guide part 178. . The gas transferred to the combustion unit 174 is mixed with the air supplied into the combustor main body 172 through the air supply pipe 176, and is exploded while being heated to extremely high temperature by the electrodes 177 generating the glow discharge plasma. Combustion occurs. Gas and air to be combusted are injected to the outside of the combustor body 172 through the flame spray port (175).
이상에서 설명한 본 발명에 따른 폐기물의 탄화 및 열분해 가스화 연소장치(100)는 소각방식이 아니라 마이크로 웨이브를 이용하여 유전발열체로 제작되는 발열로 본체(110)를 가열함으로써 무산소 상태로 500~1600℃의 열로 열분해하는 방식이므로 기존의 소각방식에 비해 상대적으로 화재나 폭발사고의 위험을 낮출 수 있고, 이렇게 열분해된 폐기물의 잔재는 냄새가 나지 않아 실내보관이 가능하다.The carbonization and pyrolysis gasification combustion apparatus 100 of the waste according to the present invention described above is not incinerated but by heating the body 110 by heat generation made of a dielectric heating element using a microwave in an anoxic state of 500 ~ 1600 ℃ Because of thermal pyrolysis method, the risk of fire or explosion accident can be lowered compared to the conventional incineration method, and the residue of the pyrolyzed waste does not smell and can be stored indoors.
특히, 산업폐기물, 병원폐기물 등은 탄화에 의해 열분해가스를 완전연소시킴으로써 2차 환경오염을 근본적으로 방지할 수 있다.In particular, industrial waste, hospital waste, and the like can fundamentally prevent secondary environmental pollution by completely burning pyrolysis gas by carbonization.
본 발명은 각종 폐기물의 탄화 또는 열분해 뿐만아니라 열을 이용한 각종 분해 장치에 널리 적용 가능하다. The present invention is widely applicable to various decomposition apparatuses using heat as well as carbonization or pyrolysis of various wastes.

Claims (13)

  1. 탄화 또는 열분해 공간을 형성하며, 마이크로 웨이브에 의해 발열하는 유전발열체로 이루어진 발열로 본체와, 상기 발열로 본체와 인접하게 설치되어 발열로 본체가 발열되도록 하기 위한 마이크로 웨이브 발진기들과, 상기 발열로 본체의 하부측에 설치되어 탄화 또는 열분해 된 잔재를 배출구 측으로 이송시키기 위한 이송유닛과, A heat generation body consisting of a dielectric heating element that generates carbonization or pyrolysis space and generates heat by microwaves, microwave oscillators installed adjacent to the heat generation furnace body to generate heat by heat generation, and the heat generation body A transfer unit installed at the lower side of the transfer unit for transferring carbonized or pyrolyzed residue to an outlet side;
    상기 발열로 본체의 탄화 또는 열분해 공간에 탄화 또는 열분해 시키기 위한 폐기물을 공급하기 위한 폐기물 공급유닛을 구비한 것을 특징으로 하는 폐기물의 탄화 및 열분해 가스화 연소장치.And a waste supply unit for supplying waste for carbonizing or pyrolyzing the carbonization or pyrolysis space of the main body by the heat generation.
  2. 제 1항에 있어서, The method of claim 1,
    상기 발열로 본체와 가스 공급관에 의해 연결되어 탄화 또는 열분해 시 발생되는 가스를 연소시키기 위한 가스 연소유닛을 더 구비한 것을 특징으로 하는 폐기물의 탄화 및 열분해 가스화 연소장치. And a gas combustion unit connected to the heat generating furnace by the main body and the gas supply pipe to burn the gas generated during carbonization or pyrolysis.
  3. 제 1항에 있어서, The method of claim 1,
    상기 발열로 본체는 상부가 넓고 하부가 좁은 상광 하협의 단면 형상을 가진 것을 특징으로 하는 폐기물의 탄화 및 열분해 가스화 연소장치. The heating furnace main body is a carbonization and pyrolysis gasification combustion apparatus of the waste, characterized in that the upper portion has a cross-sectional shape of the upper light narrow narrow narrow.
  4. 제 1항에 있어서, The method of claim 1,
    상기 이송유닛은 탄화 또는 열분해 로로 유입되는 폐기물 또는 재를 발열로 본체의 잔재 배출구 측으로 이송시키는 것으로, 발열로 본체의 하부측에 길이 방향으로 설치되는 스크류와, 프레임에 설치되어 상기 발열로 본체의 외부로 돌출되는 스크류의 회전축을 구동시키기 위한 구동모터를 구비한 것을 특징으로 하는 폐기물의 탄화 및 열분해 가스화 연소장치.The transfer unit transfers the waste or ash flowing into the carbonization or pyrolysis furnace to the remnant outlet of the main body of the heating furnace, the screw is installed in the longitudinal direction on the lower side of the main body of the heating furnace, and installed on the frame to the outside of the main body of the heating furnace And a drive motor for driving a rotating shaft of the screw protruding into the waste carbonization and pyrolysis gasification combustion apparatus.
  5. 제 1항에 있어서, The method of claim 1,
    상기 폐기물 공급유닛은 상기 발열로 본체와 인접하게 설치되는 폐기물이 저장되는 호퍼와, 상기 호퍼와 연결되며 상기 호퍼 내의 폐기물을 발열로 본체의 주입구로 공급하는 스크류 피더를 구비하고, The waste supply unit includes a hopper for storing the waste installed adjacent to the main body by the heat generation, and a screw feeder connected to the hopper and supplying waste in the hopper to the inlet of the main body by the heat generation,
    상기 발열로 본체부터 열이 전달되어 상기 스크류 피더가 과열되는 것을 방지하기 위한 냉각유닛을 더 구비하는 것을 특징으로 하는 폐기물의 탄화 및 열분해 가스화 연소장치.The carbonization and pyrolysis gasification combustion apparatus of the waste, characterized in that further comprising a cooling unit for preventing the screw feeder from overheating heat is transferred from the body by the heat generation.
  6. 제 2항에 있어서, The method of claim 2,
    상기 가스연소유닛은 상기 발열로 본체와 연결된 가스 공급관과, 상기 가스 공급관과 연결되고 내부에 가스를 가열하는 가열공간부와 연소부들을 가지며 마이크로 웨이브에 의해 발열되는 유전 발열체로 이루어진 연소기 본체와, 상기 연소기 본체의 가열 공간부를 통하여 상기 연소부에 에어를 공급하기 위한 에어 공급관과, 에어 공급관의 단부에 설치되어 글로우방전 플라스마를 발생시키기 위한 전극들과, 상기 연소기 본체를 감싸고 있는 연소기 커버부재에 설치되어 연소기 본체를 가열하기 위한 마이크로 웨이브 발진기을 구비하는 것을 특징으로 하는 폐기물의 탄화 및 열분해 가스화 연소장치.The gas combustion unit includes a gas supply pipe connected to the main body by the heat generation unit, a combustor main body including a heating space part connected to the gas supply pipe and a dielectric body that generates heat by microwaves, and has a heating space part and a combustion part therein; An air supply pipe for supplying air to the combustion unit through a heating space of the combustor body, electrodes provided at an end of the air supply pipe to generate a glow discharge plasma, and a combustor cover member surrounding the combustor body. A waste carbonization and pyrolysis gasification combustion apparatus comprising a microwave oscillator for heating the combustor body.
  7. 제 1항에 있어서, The method of claim 1,
    상기 발열로 본체의 열분해 공간이 무산소 용융실과 열분해 기화실로 구획된 것을 특징으로 하는 폐기물의 탄화 및 열분해 가스화 연소장치.The carbonization and pyrolysis gasification combustion apparatus of the waste, characterized in that the pyrolysis space of the main body is divided into an oxygen-free melting chamber and a pyrolysis vaporization chamber.
  8. 제 1항에 있어서,The method of claim 1,
    상기 마이크로 웨이브 발진기의 과열을 방지하기 위한 발진기 냉각부를 구비하는 것을 특징으로 하는 폐기물의 탄화 및 열분해 가스화 연소장치.And an oscillator cooling unit for preventing overheating of the microwave oscillator.
  9. 제 1항에 있어서,The method of claim 1,
    상기 발열로 본체는 내주면 바닥으로부터 상하 수직상으로 돌출되고 길이방향을 따라 연장되어 상기 열분해 공간을 두 부분으로 구획하는 구획판이 마련되어 있고,The heat generating body has a partition plate protruding vertically from the bottom of the inner circumferential surface and extending along the longitudinal direction to divide the pyrolysis space into two parts.
    상기 이송유닛은 상기 구획된 두 공간의 하부에 각각 회전 가능하게 설치되는 이송스크류를 포함하는 것을 특징으로 하는 폐기물의 탄화 및 열분해 가스화 연소장치.The transfer unit is a carbonization and pyrolysis gasification combustion apparatus of the waste, characterized in that it comprises a transfer screw rotatably installed in the lower portion of the two divided spaces.
  10. 제 1항에 있어서,The method of claim 1,
    상기 폐기물 공급유닛은 열분해 대상의 폐기물이 저장되는 호퍼와, 상기 호퍼와 상기 발열로 본체의 투입구를 상호 연결하는 폐기물 공급관과, 상기 호퍼의 토출구측에 설치되어 폐기물을 상기 폐기물 공급관을 거쳐 투입구를 통해 상기 발열로 본체로 폐기물을 투입시키는 폐기물 가압부를 포함하며,The waste supply unit includes a hopper for storing waste to be pyrolyzed, a waste supply pipe interconnecting the hopper and an inlet of the heating furnace main body, and a waste supply pipe installed at a discharge port side of the hopper through the waste supply pipe. It includes a waste pressurizing unit for injecting waste into the body by the heat generated,
    상기 폐기물 가압부는 상기 호퍼의 토출구와 폐기물 공급관이 연결되는 연결위치에서 상기 폐기물 공급관을 따라 진퇴 구동하면서 상기 토출구로부터 토출되는 폐기물을 투입구 측으로 가압하는 피스톤과, 상기 피스톤에 일단이 회전 가능하게 연결되는 연결로드와, 상기 연결로드의 타단이 연결되며 구동모터에 의해 회전하는 회전판을 구비하되,The waste pressurizing unit is a piston for pressing the waste discharged from the discharge port toward the inlet side while driving forward and backward along the waste supply pipe at a connection position where the discharge port of the hopper and the waste supply pipe are connected, and one end of which is rotatably connected to the piston. A rod and the other end of the connecting rod is connected and provided with a rotating plate rotated by a drive motor,
    상기 연결로드는 상기 회전판의 회전중심으로부터 방사상의 방향으로 소정간격 이격된 위치에 연결된 것을 특징으로 하는 폐기물의 탄화 및 열분해 가스화 연소장치.The connecting rod is carbonized and pyrolysis gasification combustion apparatus of the waste, characterized in that connected to a position spaced apart a predetermined interval in the radial direction from the rotation center of the rotary plate.
  11. 제 2항에 있어서,The method of claim 2,
    상기 가스 연소유닛은 상기 발열로 본체와 연결된 가스공급관과, 상기 가스공급관과 연결되고 내부에 가스를 가열하는 가열공간부와 연소부를 가지는 연소기 본체와, 상기 연소기 본체의 가열공간부를 통해 상기 연소부에 에어를 공급하기 위한 에어공급관과, 상기 에어공급관의 단부에 설치되어 글로우방전 플라스마를 발생시키는 전극과, 상기 연소기 본체에 설치되어 상기 연소기 본체로 유입된 가스의 회전유동을 유도하는 나선가이드부를 구비하는 것을 특징으로 하는 폐기물의 탄화 및 열분해 가스화 연소장치.The gas combustion unit includes a gas supply pipe connected to the main body by the heat generating unit, a combustor body having a heating space part and a combustion part connected to the gas supply pipe and heating gas therein, and a combustion part through a heating space part of the combustor body. An air supply pipe for supplying air, an electrode installed at an end of the air supply pipe to generate a glow discharge plasma, and a spiral guide part installed at the combustor main body to induce rotational flow of gas introduced into the combustor main body; Carbonization and pyrolysis gasification of the waste combustion apparatus.
  12. 제 11항에 있어서,The method of claim 11,
    상기 본체의 배출구와 연결되어 열분해된 폐기물의 잔재가 수용되는 수거함을 더 구비하며,It is further provided with a collection box that is connected to the outlet of the main body and the residue of the pyrolyzed waste is accommodated,
    상기 수거함은 일측에 수거함 내에서 폐기물의 잔재에 의해 발생하는 가스를 배출하기 위한 가스배출구가 형성되어있고, 상기 가스배출구로부터 토출되는 가스를 상기 연소기 본체로 공급하도록 상기 가스배출구와 상기 가스공급관 또는 상기 연소기 본체를 연하는 보조가스공급관을 구비하는 것을 특징으로 하는 폐기물의 탄화 및 열분해 가스화 연소장치.The collection box has a gas discharge port for discharging the gas generated by the residue of the waste in the collection box on one side, the gas discharge port and the gas supply pipe or the gas outlet to supply the gas discharged from the gas discharge port to the combustor body A waste carbonization and pyrolysis gasification combustion apparatus comprising an auxiliary gas supply pipe for connecting the combustor body.
  13. 제 1항에 있어서,The method of claim 1,
    상기 발열로 본체는 프레임의 내부에 설치되며, 발열로 본체와 프레임 사이의 단열공간에는 단열재가 마련되고,The heat generating body is installed inside the frame, the heat insulating material is provided in the heat insulating space between the body and the heat generating furnace,
    상기 단열공간으로 불활성 가스를 공급하기 위한 가스탱크와, 상기 단열공간 내에서 불활성 가스의 온도 상승에 따라 상기 단열공간의 압력이 일정 수준 이상으로 상승하면 불활성 가스를 배출시켜 압력을 유지시키기 위한 압력변을 더 구비하는 것을 특징으로 하는 탄화 및 열분해 가스화 연소장치.A gas tank for supplying an inert gas to the insulated space, and a pressure valve for maintaining the pressure by discharging the inert gas when the pressure of the insulated space rises above a predetermined level according to an increase in temperature of the inert gas in the insulated space. Carbonization and pyrolysis gasification combustion apparatus characterized in that it further comprises.
PCT/KR2013/001497 2012-02-23 2013-02-25 Combustion apparatus for waste carbonization and pyrolysis gasification WO2013125928A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0018712 2012-02-23
KR1020120018712A KR101270721B1 (en) 2012-02-23 2012-02-23 Carbonizing and thermal decomposition apparatus utilizing of waste
KR1020120137631A KR101270724B1 (en) 2012-11-30 2012-11-30 Thermal decomposition apparatus for waste
KR10-2012-0137631 2012-11-30

Publications (1)

Publication Number Publication Date
WO2013125928A1 true WO2013125928A1 (en) 2013-08-29

Family

ID=49006022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001497 WO2013125928A1 (en) 2012-02-23 2013-02-25 Combustion apparatus for waste carbonization and pyrolysis gasification

Country Status (1)

Country Link
WO (1) WO2013125928A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109647865A (en) * 2019-01-11 2019-04-19 南开大学 A kind of organic waste anaerobic low temperature pyrogenation device and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081622A (en) * 2000-08-31 2002-03-22 Ryoji Watabe Thermal decomposition furnace
KR200332769Y1 (en) * 2003-08-11 2003-11-07 채영욱 Fuel supplier of boiler for solid fuel
KR20110076013A (en) * 2009-12-29 2011-07-06 주식회사 쌤앤파커스 The apparatus for treatment of food garbage using microwave
KR20110079247A (en) * 2009-12-31 2011-07-07 코오롱건설주식회사 Combustible waste gasification system
KR101073661B1 (en) * 2011-02-28 2011-10-14 황창성 Apparatus for incinerating radioactive waste matter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081622A (en) * 2000-08-31 2002-03-22 Ryoji Watabe Thermal decomposition furnace
KR200332769Y1 (en) * 2003-08-11 2003-11-07 채영욱 Fuel supplier of boiler for solid fuel
KR20110076013A (en) * 2009-12-29 2011-07-06 주식회사 쌤앤파커스 The apparatus for treatment of food garbage using microwave
KR20110079247A (en) * 2009-12-31 2011-07-07 코오롱건설주식회사 Combustible waste gasification system
KR101073661B1 (en) * 2011-02-28 2011-10-14 황창성 Apparatus for incinerating radioactive waste matter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109647865A (en) * 2019-01-11 2019-04-19 南开大学 A kind of organic waste anaerobic low temperature pyrogenation device and application

Similar Documents

Publication Publication Date Title
KR101516789B1 (en) Reductional thermal decomposition apparatus with microwave
KR101270721B1 (en) Carbonizing and thermal decomposition apparatus utilizing of waste
US6619214B2 (en) Method and apparatus for treatment of waste
WO2009136737A9 (en) Combustible waste pyrolysis system and pyrolysis method
BRPI0607812A2 (en) process for waste treatment and apparatus for carrying out the process
WO2013094879A1 (en) Apparatus for pyrolysis using molten metal
WO2009041989A1 (en) Pyrolyzer with dual processing shafts
WO2015186866A1 (en) Dry distillation gas fluidized bed pyrolysis gasification combustion device using microwaves
CN109237490A (en) A kind of gasification plasma waste processing system
KR101270724B1 (en) Thermal decomposition apparatus for waste
JP2017020673A (en) Low temperature heat decomposition treatment device
CN108870399A (en) Heat-accumulating type high-temperature waste-heat recovery device for hot plasma waste treatment system
JPH11223476A (en) Method and system for carbonizing organic matter
KR20080101522A (en) Apparatus for pulverizing and incinerating food waste
WO2013125928A1 (en) Combustion apparatus for waste carbonization and pyrolysis gasification
KR101415450B1 (en) Incineration device for solid wastes
KR101440142B1 (en) thermal decomposition apparatus with microwave
KR102289057B1 (en) Pyrolysis apparatus using combustible waste movable
US20060124040A1 (en) Method and apparatus for treatment of waste
CN215675198U (en) Reaction device of medical waste treatment equipment
KR100311904B1 (en) Method and system for incinerating garbage by high temperature thermal decomposition action of gas amplified plasma
JP2004175921A (en) Carbonization method for organic waste
JPH11128878A (en) Thermal decomposition reactor for waste treating device
JP2010285467A (en) Carbonization furnace recycling system
KR20020063943A (en) Thermal cracking system with a movable grate in a incinerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751187

Country of ref document: EP

Kind code of ref document: A1