WO2011090089A1 - 磁気共鳴イメージング装置及び血管画像撮像方法 - Google Patents
磁気共鳴イメージング装置及び血管画像撮像方法 Download PDFInfo
- Publication number
- WO2011090089A1 WO2011090089A1 PCT/JP2011/050913 JP2011050913W WO2011090089A1 WO 2011090089 A1 WO2011090089 A1 WO 2011090089A1 JP 2011050913 W JP2011050913 W JP 2011050913W WO 2011090089 A1 WO2011090089 A1 WO 2011090089A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement
- magnetic resonance
- trajectory
- space
- imaging
- Prior art date
Links
- 210000004204 blood vessel Anatomy 0.000 title claims abstract description 52
- 238000002595 magnetic resonance imaging Methods 0.000 title claims description 53
- 238000000034 method Methods 0.000 title claims description 44
- 238000005259 measurement Methods 0.000 claims abstract description 268
- 230000033001 locomotion Effects 0.000 claims abstract description 34
- 230000000737 periodic effect Effects 0.000 claims abstract description 8
- 238000003384 imaging method Methods 0.000 claims description 160
- 238000012545 processing Methods 0.000 claims description 35
- 230000001360 synchronised effect Effects 0.000 claims description 23
- 230000017531 blood circulation Effects 0.000 claims description 21
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 claims description 11
- 230000005415 magnetization Effects 0.000 claims description 8
- 238000005070 sampling Methods 0.000 description 39
- 238000001514 detection method Methods 0.000 description 17
- 230000005540 biological transmission Effects 0.000 description 12
- 210000003462 vein Anatomy 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000005481 NMR spectroscopy Methods 0.000 description 10
- 238000009877 rendering Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000003068 static effect Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 210000001367 artery Anatomy 0.000 description 4
- 239000002872 contrast media Substances 0.000 description 4
- 230000003205 diastolic effect Effects 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 210000001015 abdomen Anatomy 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 210000003141 lower extremity Anatomy 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000008321 arterial blood flow Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/352—Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7285—Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
Definitions
- the present invention relates to a technique for improving the image quality of an acquired blood vessel image by performing imaging in synchronization with body motion information of a subject in magnetic resonance imaging (hereinafter referred to as “MRI”).
- MRI magnetic resonance imaging
- An MRI apparatus is a measurement apparatus that obtains an image of a subject using a nuclear magnetic resonance (NMR) phenomenon, and irradiates a subject with a high-frequency magnetic field (hereinafter referred to as RF) pulse, and in response, Measure NMR signals generated by the nuclear spins that make up the tissue. Based on the measured NMR signal, the form and function of the subject's head, abdomen, limbs, etc. are imaged two-dimensionally or three-dimensionally. At the time of imaging, the NMR signal is provided with different phase encoding and slice encoding, and with frequency encoding, and is measured as time series data by the gradient magnetic field. The measured NMR signal is reconstructed into an image by two-dimensional or three-dimensional Fourier transform.
- NMR nuclear magnetic resonance
- a delay time (Delay ⁇ Time, DT) set from the signal in synchronization with the signal representing the cardiac time phase of the subject collected by the time phase detection means
- FSE spin echo
- a dephase or rephase gradient magnetic field pulse is applied in the phase encoding direction in order to improve the rendering ability of blood vessels traveling in the phase encoding direction. It is also possible to apply a dephase or rephase gradient magnetic field pulse in the readout direction. In this case, the ability to depict blood vessels traveling in the readout direction is improved. Furthermore, it is possible to apply a dephase or rephase gradient magnetic field pulse in both the readout direction and the phase encoding direction.
- an object of the present invention is to obtain a non-contrast-enhanced MRA image in which the blurring of the blood vessel is suppressed and the rendering performance is improved even if there is an influence of T2 attenuation in the echo data.
- the present invention provides an imaging sequence for measuring echo data along a measurement trajectory that is non-parallel to two directions perpendicular to the readout direction in a three-dimensional K space. It executes in synchronization with the information, and at this time, the repetition time (TR) of the imaging sequence is set to be a plurality of periods of the periodic body motion information.
- the MRI apparatus of the present invention synchronizes with the periodic body motion information based on the body motion information detection unit that detects the body motion information about the periodic body motion of the subject and the imaging sequence.
- a measurement control unit that controls the measurement of 3D K-space data and an arithmetic processing unit that reconstructs a blood vessel image of the subject using the 3D K-space data.
- a sequence measures echo data along a measurement trajectory that is non-parallel to two directions perpendicular to the readout direction in the three-dimensional K space, and the measurement control unit uses the repetition time (TR) of the imaging sequence as the body movement. Synchronous imaging is controlled so as to be a plurality of periods of information.
- the measurement trajectory is a plurality of linear measurement trajectories obtained by rotating one linear trajectory around the readout direction of the three-dimensional K space, and the measurement control unit repeats the imaging sequence. Measure echo data along different linear trajectories.
- the blood vessel image capturing method of the present invention includes a measurement step of measuring echo data along a predetermined measurement trajectory in a three-dimensional K space, by synchronous imaging that synchronizes an imaging sequence with an electrocardiogram of a subject.
- the measurement trajectory is a measurement trajectory that is non-parallel to two directions perpendicular to the readout direction in the three-dimensional K space, and
- the repetition time (TR) is a plurality of cycles of the electrocardiogram.
- the MRI apparatus and the blood vessel imaging method of the present invention it is possible to acquire a non-contrast-enhanced MRA image in which the blurring of blood vessels is suppressed and the rendering ability is improved even if there is an influence of T2 attenuation in echo data.
- the lead-out direction is HF (Head-Foot)
- the rendering ability for blood vessels running in RL Right-Left
- AP Antterior-Posterior
- FIG. 1 is a block diagram showing the overall configuration of an embodiment of an MRI apparatus according to the present invention.
- FIG. 6 is a diagram showing a measurement locus for sampling a (k1-k2) space in a non-orthogonal system in the first embodiment.
- 3 is a sequence chart showing an imaging sequence for measuring echo data along the measurement trajectory shown in FIG. 3 is a flowchart illustrating an operation flow of the first embodiment.
- 2 is a sequence chart showing an example of a PC (Phase (Contrast) method pulse sequence used in the reference scan in the first embodiment.
- FIG. 6 is a sequence chart showing an imaging sequence of Example 2 in which a dephase gradient magnetic field pulse or a rephase gradient magnetic field pulse is added to the imaging sequence of Example 1 shown in FIG. 3 in three directions.
- FIG. 10 is a diagram illustrating a measurement locus for non-orthogonal sampling of a (k1-k2) space in the third embodiment.
- 10 is a sequence chart showing an imaging sequence for measuring echo data along the measurement trajectory shown in FIG.
- FIG. 10 is a diagram illustrating a measurement locus for non-orthogonal sampling of a (k1-k2) space in the fourth embodiment.
- 10 is a sequence chart showing an imaging sequence for measuring echo data along the measurement trajectory shown in FIG.
- FIG. 9 is a diagram illustrating a measurement locus for sampling a (k1-k2) space in a non-orthogonal system in the fifth embodiment.
- FIG. 10 is a sequence chart showing an imaging sequence for measuring echo data along the measurement trajectory shown in FIG. FIG.
- FIG. 16 is a diagram showing one basic zigzag measurement trajectory for non-orthogonal sampling of echo data of lattice points in the (k1-k2) space in the sixth embodiment.
- the figure shows a basic zigzag measurement trajectory with a narrower width in the k1 (k2) direction than in (b).
- FIG. 10 is a diagram illustrating a measurement locus in which non-orthogonal sampling is randomly performed on echo data of lattice points in the (k1-k2) space in the sixth embodiment.
- FIG. 1 is a block diagram showing the overall configuration of an embodiment of an MRI apparatus according to the present invention.
- This MRI apparatus uses a NMR phenomenon to obtain a tomographic image of a subject 101.
- a static magnetic field generating magnet 102, a gradient magnetic field coil 103, a gradient magnetic field power supply 109, and a transmission RF coil 104 and RF transmission unit 110, reception RF coil 105 and signal detection unit 106, signal processing unit 107, measurement control unit 111, overall control unit 108, display / operation unit 113, and subject 101 are mounted.
- a bed 112 for taking the subject 101 into and out of the static magnetic field generating magnet 102.
- the transmission RF coil 104 is a coil that irradiates the subject 101 with an RF pulse, and is connected to the RF transmission unit 110 to receive a high-frequency pulse current.
- an NMR phenomenon is induced in the nuclear spins of the atoms constituting the biological tissue of the subject 101.
- the RF transmission unit 110 is driven in accordance with a command from the measurement control unit 111, which will be described later, and the high-frequency pulse is amplitude-modulated and amplified.
- the subject 101 is irradiated with an RF pulse.
- the measurement controller 111 sets the repetition time (TR) of the imaging sequence to two or more heartbeats, and changes the rotation angle of the linear measurement trajectory between the multiple repetition times (TR).
- TR repetition time
- the encoding gradient magnetic field is applied by changing the application intensity and application amount according to the rotation angle of the linear measurement trajectory.
- the measurement control unit 111 controls application of the gradient magnetic field in each direction so as to perform the imaging sequence of FIG.
- phase control gradient magnetic fields 810 and 811 are applied before and after the read-out gradient magnetic field 309 applied when measuring the echo signal, respectively.
- the application amount of the dephase gradient magnetic field 308 to be originally applied is affected, so the application amount corresponding to the application amount of the added phase control gradient magnetic field 810, 811 (the portion indicated by the dotted line frame) is the original dephase.
- a dephase gradient magnetic field 808 subtracted from the gradient magnetic field 308 is applied.
- FIG. 8 shows a case where the original application amount of the dephase gradient magnetic field 308 and the subtraction amount cancel each other and the application amount of the dephase gradient magnetic field 808 becomes 0 (zero).
- the rephase gradient magnetic field pulse or dephase gradient magnetic field pulse for modulating the phase of the nuclear magnetization of the blood flow is applied in at least the k1 direction and the k2 direction in the three-axis direction. Preferably, it is applied in all directions including the lead-out (kr) direction.
- the visualization ability of the blood vessel traveling in the direction in which the rephase gradient magnetic field pulse or the dephase gradient magnetic field pulse is applied can be improved.
- the lead-out direction is the HF direction and the K1 direction and the K2 direction are the RL direction and the AP direction, respectively, in the blood vessel image, the ability to depict blood vessels that run in the RL direction and the AP direction can be improved.
- the application amount of the dephase gradient magnetic field pulse or the rephase gradient magnetic field pulse is changed according to the direction of the linear measurement locus in the k space. Also good.
- the dephase gradient magnetic field pulse or the rephase gradient magnetic field pulse may be applied only when the direction of the linear measurement locus coincides with the k1 direction or the k2 direction.
- FIG. 9 shows an example of a non-orthogonal measurement trajectory in the (k1-k2) space of this embodiment
- FIG. 10 is a sequence chart showing an imaging sequence for measuring echo data along the measurement trajectory of FIG. Show.
- a pulse sequence is referred to as a hybrid radial sequence.
- the measurement trajectory in the (k1-k2) space shown in FIG. 9 is obtained by rotating a blade including a plurality of parallel linear measurement trajectories about the lead-out (kr) direction as a rotation axis. Echo data is measured along a plurality of parallel linear measurement trajectories constituting each blade.
- FIG. 9 shows an example in which the blade is rotated at the origin of the (k1-k2) space, but the center of rotation may be a point near the origin other than the origin or an arbitrary reference point.
- a parallel linear measurement trajectory group including one linear measurement trajectory shown in FIG. 2 described in the first embodiment and a plurality of linear measurement trajectories parallel thereto is bladed. And A plurality of blades are generated by rotating this blade in the (k1-k2) space with the lead-out (kr) direction as the rotation axis.
- the number of linear measurement trajectories constituting each blade, the number of blades, and the rotation angle can be determined so as to obtain a desired image, and can be set by the operator in step 401 of FIG. 4, for example.
- FIG. 9 shows an example in which the number of parallel linear measurement trajectories constituting the blade is three (901, 902, 903). Echo data is measured along a plurality of parallel linear measurement trajectories constituting these blades.
- FIG. 2 is the flowchart of the first embodiment.
- G k / ( ⁇ ⁇ FOV ⁇ T) (3)
- k is the step number of the offset gradient magnetic field
- T is the application time of the offset gradient magnetic field
- FOV is the field size in the offset gradient magnetic field application direction
- ⁇ is the magnetic rotation ratio
- the measurement control unit 111 measures the offset gradient magnetic fields 1001 and 1002 obtained for each rotation angle by the equation (3) and the echo data along a plurality of parallel linear measurement tracks constituting the blade of the rotation angle. When applying.
- the other gradient magnetic fields are the same as those in the imaging sequence of FIG.
- the hybrid radial sequence can measure the data near the reference point of rotation in the (k1-k2) space (the origin in the case of FIG. 9) in a particularly dense or overlapping manner. It is said to be robust.
- the MRA image is acquired by performing the synchronous imaging described in the first embodiment or applying the dephase gradient magnetic field and the rephase gradient magnetic field described in the second embodiment. Therefore, detailed description is omitted. Then, by combining these to acquire a non-contrast MRA image, the same effect as in the first embodiment can be obtained.
- two line segment trajectories are a measurement trajectory formed by connecting at the origin of the (k1-k2) space or a point in the vicinity of the origin (hereinafter referred to as a broken line measurement trajectory), and the angle between the two line segments is different. It is assumed that non-orthogonal sampling for measuring echo data along the broken line measurement trajectory. That is, in the present embodiment, the broken line measurement trajectory is used as a unit measurement trajectory, and the broken line measurement trajectory is changed into a measurement trajectory rotated around an arbitrary reference point in the (k1-k2) space.
- FIG. 11 shows an example of a polygonal line measurement trajectory in the (k1-k2) space of the present embodiment
- FIG. 12 is a sequence chart showing an imaging sequence for measuring echo data along the polygonal line measurement trajectory of FIG. Show.
- the (k1-k2) space is filled with a plurality of broken line measurement trajectories having the same connection point and different angles between the two line segments. If the number of the broken line measurement trajectory is k, the relationship with the bend angle ⁇ can be expressed, for example, by equation (4).
- the (k1-k2) space can be filled with all these broken line measurement trajectories.
- 11 and (4) show an example of filling the (k1-k2) space with eleven line trajectories. Note that all the broken line measurement trajectories in FIG. 11 are bent at the origin of the (k1-k2) space, but the bent points of a plurality of broken line measurement trajectories may be different.
- Echo data on the first and second half segments of such a broken line measurement trajectory have a non-complex conjugate relationship with respect to the (k1-k2) space origin.
- echo data having a complex conjugate relation with respect to the K-space origin has substantially the same amount of information. That is, the echo data group along the broken line measurement trajectory of the present embodiment has a larger amount of information than the echo data group along the linear measurement trajectory of the first embodiment. Therefore, the broken line measurement trajectory of the present embodiment can acquire a large amount of information in a short time and is suitable for asymmetric measurement / reconstruction of the K space.
- the bending points of the plurality of bent line measurement trajectories are different (k1-k2) and the low-frequency echo data near the space origin is obtained symmetrically. good.
- FIG. 2 is the flowchart of the first embodiment.
- the imaging sequence for measuring echo data along the measurement trajectory shown in FIG. 12 is compared with the imaging sequence shown in FIG. 3 described in the first embodiment, and the encoded gradient magnetic field pulse 1206 in the dotted frame portion. And the polarity and amplitude of the rewind gradient magnetic field pulse 1207 are different. This is because the imaging sequence of FIG. 3 described above measures echo data along a linear measurement trajectory, so the measurement trajectory is a straight line extending from the third quadrant of the (k1-k2) space to the first quadrant. In some cases, the encoding gradient and the rewind gradient also increase or decrease their amplitude monotonically. On the other hand, the imaging sequence of FIG. 12 measures echo data along the polygonal line measurement trajectory.
- the imaging sequence of FIG. when measuring echo data along the first half of the polygonal line measurement trajectory, the imaging sequence of FIG. Similarly, the amplitudes of the encode gradient magnetic field pulse and the rewind gradient magnetic field pulse will monotonously increase or decrease. However, when measuring echo data along the second half of the broken line measurement trajectory, the measurement trajectory is bent, and therefore the encode gradient magnetic field 1206 and the rewind gradient magnetic field 1207 monotonously increase or decrease following the first half. It does not become a thing, and the way of increase or decrease is reversed. That is, focusing on the dotted line frame portion of the sequence chart of FIG. 12, in FIG. 3, the encode gradient magnetic field pulse has a positive polarity and the amplitude monotonically increases, whereas in FIG.
- the encode gradient magnetic field pulse 1206 has a negative polarity. It decreases monotonically with sex. The method of changing the amplitude changes corresponding to the bending angle of the broken line. Further, the rewind gradient magnetic field pulse 1207 has a change in polarity opposite to that of the encode gradient magnetic field pulse 1206. Such changes in the encode gradient magnetic field and the rewind gradient magnetic field enable measurement of echo data along the broken line locus.
- MRA images are acquired by performing the synchronous imaging described in the first embodiment and applying the dephase gradient magnetic field and the rephase gradient magnetic field described in the second embodiment. Detailed description will be omitted. Then, by combining these to acquire a non-contrast MRA image, the same effect as in the first embodiment can be obtained.
- the MRI apparatus and the blood vessel imaging method of the present embodiment are bent at the origin in the (k1-k2) space or at a point near the origin, and the angle formed by the broken line is different for each measurement trajectory. Since non-orthogonal sampling for measuring echo data along the measurement trajectory is performed, the same effect as in the first embodiment can be obtained. Furthermore, the effect of being able to acquire a large amount of information in a short time can be obtained by using a broken line measurement trajectory.
- the measurement trajectory is a spiral shape (spiral shape) passing through the origin of the (k1-k2) space or a point near the origin. Then, non-orthogonal sampling is performed to measure echo data along a plurality of spiral trajectories obtained by rotating one spiral trajectory with the readout (kr) direction as a rotation axis. That is, in this embodiment, the spiral measurement trajectory is a unit measurement trajectory, and this spiral measurement trajectory is a measurement trajectory rotated around the origin in the (k1-k2) space or a point near the origin.
- the difference from the first embodiment is the shape of the imaging sequence and the measurement trajectory. Others are the same as those of the first embodiment, and the description thereof is omitted.
- the imaging sequence and the shape of the measurement trajectory of the present embodiment will be described in detail.
- FIG. 13 shows an example of a spiral measurement trajectory in the (k1-k2) space of the present embodiment
- FIG. 14 shows a sequence chart representing an imaging sequence for measuring echo data along the spiral measurement trajectory of FIG. .
- An arbitrary measurement trajectory in the (k1-k2) space shown in FIG. 13 is a spiral trajectory passing through the origin of the (k1-k2) space or a point near the origin. Then, one spiral measurement trajectory is rotated by a predetermined angle about the lead-out (kr) direction as a rotation axis to obtain a plurality of spiral measurement trajectories.
- FIG. 13 shows a spiral measurement trajectory represented by a solid line and a dotted spiral measurement trajectory obtained by rotating the spiral measurement trajectory around the origin.
- the number of revolutions around the origin of each spiral measurement trajectory or around the origin can be set arbitrarily, and may be a measurement trajectory in which the number of revolutions around the origin in the (k1-k2) space is one revolution or less. It may be a rotating measurement trajectory.
- echo data may be measured sequentially from the center (low range) to the end (high range), or conversely from the end (high range) to the center (low range).
- the echo data may be measured by moving randomly on the spiral measurement trajectory.
- echo data is measured in the order of 1301-1 to 1301-7, that is, one spiral trajectory from the end side toward the center, and further on the same trajectory, returning from the center to the end side. An example is shown.
- Such a spiral measurement trajectory can scan the (k1-k2) space almost uniformly with a single measurement trajectory, so the influence of T2 attenuation and the influence of body motion on the measured echo data are more three-dimensionally distributed. As a result, it is possible to reduce the influence of blurring and body motion artifacts on the MRA image, and to improve the image quality.
- FIG. 2 is the flowchart of the first embodiment.
- the imaging sequence for measuring the echo data along the spiral measurement trajectory shown in FIG. 14 is compared with the encoding gradient magnetic field G1 (G2) compared to the imaging sequence shown in FIG. 3 described in the first embodiment.
- G2 (G1) is different.
- the encode gradient magnetic fields G1 (G2) and G2 (G1) in the imaging sequence shown in FIG. 3 are monotonic in amplitude or applied amount of each encode gradient magnetic field pulse in order to measure echo data along a linear measurement trajectory. Increase or decrease.
- the encode gradient magnetic fields G1 (G2) and G2 (G1) of the present embodiment are waveforms applied to measure echo data along the spiral measurement trajectory. Based on the complex changes. For example, the echo data of the measurement points 1301-1 to 1301-7 on the spiral measurement trajectory of FIG.
- FIG. 13 correspond to the echo signals 303-1 to 303-7 in the sequence chart of FIG.
- the encode gradient magnetic field pulses 1404 and 1406 and the rewind gradient magnetic field pulses 1405 and 1407 applied to measure 1 to 303-7 are as shown in FIG. Note that details of the spalice measurement trajectory are described in Patent Document 3, for example, and detailed description thereof is omitted.
- the MRI apparatus and the blood vessel imaging method of the present embodiment are non-orthogonal that measure echo data along a spiral measurement trajectory passing through the origin or a point near the origin in the (k1-k2) space. Since system sampling is performed, the same effect as in the first embodiment can be obtained. Furthermore, by using a spiral measurement trajectory, it is possible to reduce the influence of blur and body motion artifacts in the MRA image, and to improve the image quality.
- Example 6 a sixth embodiment of the MRI apparatus and the blood vessel image capturing method of the present invention will be described.
- the difference from the first embodiment described above is that the imaging sequence and the shape of the measurement trajectory and gridding are not required. Others are the same as those of the first embodiment, and the description thereof is omitted.
- the imaging sequence and the shape of the measurement trajectory of the present embodiment will be described in detail.
- FIGS. 15 and 16 show an example of a measurement trajectory for measuring the echo data while moving the lattice points in the (k1-k2) space in a zigzag manner or randomly.
- the measurement trajectory shown in FIG. 15 is an example of one basic zigzag measurement trajectory for non-orthogonal sampling of the echo data of lattice points in the (k1-k2) space.
- the echo data of the nearest lattice point is measured while rotating this basic zigzag measurement trajectory at a predetermined angle around the origin or an arbitrary reference point.
- the echo data of the nearest lattice point is measured while rotating the basic zigzag measurement trajectory at a predetermined angle for each repetition time (TR) of the imaging sequence.
- TR repetition time
- FIG. 15 (a) shows an example of a basic zigzag measurement trajectory having a narrow width in the k1 (k2) direction, and shows an example in which echo data of each lattice point is measured in the direction of the dotted arrow in the figure.
- FIG. 15 (b) shows an example of a basic zigzag measurement trajectory that is wider in the k1 (k2) direction than the basic zigzag measurement trajectory of FIG. 15 (a). Rotating in the (k1-k2) space is the same as FIG. 15 (a).
- echo data of a lattice point nearest to each non-orthogonal measurement locus described in the first to fourth embodiments may be measured.
- FIG. 16 is an example in which echo data of lattice points in the (k1-k2) space is randomly sampled, and an example of measuring echo data of each lattice point in the order of dotted arrows.
- the measurement control unit 111 In order to randomly measure the echo data of each lattice point, the measurement control unit 111 generates a pseudo random number to determine the lattice point, and according to the determined lattice point position, encode gradient magnetic fields G1, G2 of the imaging sequence Is applied based on equation (1). Then, the measurement control unit 111 changes the position of the grid point to be measured for each repetition time of the imaging sequence.
- the positions of the measurement grid points for each repetition time are made different so that the positions of the measurement grid points do not overlap.
- the application of the encoding gradient magnetic field is controlled so that only effective TE echo data becomes K-space center data.
- the imaging sequence according to the present embodiment for measuring the echo data while moving the lattice points in the (k1-k2) space in a zigzag manner or at random is shown in FIG. 3 described in the first embodiment.
- the encode gradient magnetic fields G1 (G2) and G2 (G1) are different.
- the amplitude or applied amount of each encode gradient magnetic field pulse and each rewind gradient magnetic field pulse is zigzag or for each lattice point to be measured randomly, based on the coordinate value of the lattice point, based on equation (1) You only have to set it.
- the amplitude or application amount of each encode gradient magnetic field pulse and each rewind gradient magnetic field pulse becomes irregular. Detailed illustration and description are omitted.
- MRA images are acquired by performing the synchronous imaging described in the first embodiment and applying the dephase gradient magnetic field and the rephase gradient magnetic field described in the second embodiment. Detailed description will be omitted. Then, by combining these to acquire a non-contrast MRA image, the same effect as in the first embodiment can be obtained.
- the arithmetic processing unit 115 skips without performing the gridding process in step 407 in the process flow of FIG. 4 described in the first embodiment, and directly performs the Fourier transform on the K space data measured in step 408.
- the MRI apparatus and the blood vessel image capturing method of the present embodiment in the (k1-k2) space, send echo signals along the measurement trajectory that makes the echo data of the lattice points zigzag or random. Since the non-orthogonal sampling to be measured is performed, the same effect as in the first embodiment can be obtained. Furthermore, since the echo data of the lattice points are directly measured, no gridding process is required. For this reason, in the present embodiment in which the gridding process is not required, the image reconstruction process can be simplified and shortened.
- the present invention is not limited to the contents disclosed in each of the above embodiments, and can take various forms based on the gist of the present invention.
- non-orthogonal sampling in which the measurement trajectories described in each embodiment are mixed can be performed. What is required is a non-orthogonal measurement trajectory in which the influence of T2 attenuation in the measured echo data is three-dimensionally distributed.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- High Energy & Nuclear Physics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Radiology & Medical Imaging (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
本発明は、3次元K空間(kr、k1、k2)において、リードアウト方向に対応するkr方向に直交する方向であるk1方向及びk2方向からなる(k1-k2)空間内で、(k1-k2)空間の座標軸(k1、k2)に非平行(非直交的)な計測軌跡に沿ってエコーデータを計測する(以下このような計測を非直交系(Non-Cartesian)サンプリングともいう)。計測軌跡に沿うエコーデータの計測は、該計測軌跡を等間隔又は不等間隔のいずれでも良い。その結果、K空間の格子点から外れたエコーデータが殆どとなる。これに対して、従来はK空間座標軸の一つに平行(直交系的)な計測軌跡に沿ってK空間格子点上のエコーデータの計測を行なう(以下このような計測を直交系(Cartesian)サンプリングともいう)。
本発明の撮像シーケンスは、(k1-k2)空間を非直交系サンプリングするようにエンコード傾斜磁場の印加量を制御する。具体的には、(k1-k2)空間における任意の計測点(k1、k2)に対応するエンコード傾斜磁場の印加強度(G1,G2)を、矩形波で傾斜磁場パルスを印加する場合を想定すると、以下の(1)式で表すことができる。
G2 = k2/(γ・FOV2・T)
ここでTはエンコード傾斜磁場の印加時間、FOV1はk1方向の視野サイズ、FOV2はk2方向の視野サイズ、γは磁気回転比を表す。即ち、本発明では、非直交サンプリングする(k1-k2)空間における任意の計測点のエコーデータを計測する際には、その計測点の座標に応じて(1)式で定まるエンコード傾斜磁場を印加して、該エコーデータを計測する。
次に、本発明のMRI装置及び血管画像撮像方法についての実施例1を説明する。本実施例は、一つの直線状軌跡を、3次元K空間のリードアウト(kr)方向を回転軸として回転させて得られる複数の直線状計測軌跡に沿ってエコーデータを計測する。即ち、本実施例は、直線状計測軌跡を基本計測軌跡とし、(k1-k2)空間内でリードアウト(kr)方向を回転軸としてこの直線状計測軌跡を回転させた計測軌跡を用い、このような回転対称な直線状計測軌跡に沿ってラディアル的な非直交系サンプリングを行なう。本実施例に係る撮像シーケンスは、これらの直線状計測軌跡に沿ってエコーデータを計測する。これにより、エコーデータにおけるT2減衰の影響をリードアウト方向以外の2方向にも分散させることができるため、MRA画像において血管のボケを抑制して血管の描出能を向上させることができる。
次に、本実施例に係り、図2に示した(k1-k2)空間の原点を通過する直線状計測軌跡に沿うエコーデータの計測を行なう撮像シーケンスを図3に基づいて説明する。図3は、本実施例の撮像シーケンスのシーケンスチャート(タイミング図)であり、エコーファクター=7の例、即ち、1繰り返し時間(TR)内或いは1回の励起で7つのエコー信号を計測する例を示す。ECG、RF/Echo、G1(G2)、G2(G1)、及びGrは、それぞれ心電図(心電波形)、RFパルス/エコー信号、k1(k2)方向に印加する傾斜磁場パルス波形、k2(k1)方向に印加する傾斜磁場波形、及びリードアウト方向に印加する傾斜磁場波形を意味する。以下、後述する各シーケンスチャートにおいて同様とする。なお、k1方向とk2方向は、特に区別する必要が無く、いずれがk1方向又はk2方向で良いので、k1(k2)方向とk2(k1)方向の様に記載している。
また、本実施例は、上記撮像シーケンスを用いて、被検体に造影剤を投与することなく、即ち非造影で、MRA画像を取得する。そこで、計測制御部111は、レファレンススキャンを行い、上記撮像シーケンスを用いて所望の非造影MRA画像の取得に好適な撮像パラメータの値を決定するためのデータを取得する。レファレンススキャンは撮像シーケンスの実施前に実施される。撮像シーケンスは、このレファレンススキャンで取得されたデータを用いて決定された好適な撮像パラメータ値に基づいて実施される。
ここで、γはラーモア周波数、Gは傾斜磁場強度、vは血流速度、tは傾斜磁場印加時間である。
次に、本実施例の、(k1-k2)空間内計測軌跡に沿うエコーデータの計測を行なう撮像シーケンスを用いた非造影MRA画像の取得を実現する処理フローを図4に基づいて説明する。図4は、本実施例の処理フローを表すフローチャートである。この動作フローの全体フロー及び各ステップにおける個別処理はプログラムとして予め磁気ディスク等の記憶部115に記憶されており、CPUが必要に応じてメモリに読み込んで実行することにより実施される。以下、各ステップを詳細に説明する。なお、非造影MRA画像を取得するので、被検体に造影剤を投与するステップは無い。
本発明のMRI装置及び血管画像撮像方法についての実施例2を説明する。本実施例は、3次元K空間のリードアウト方向に垂直な2方向に対応する実空間の方向に、それぞれ、前記被検体の血流の核磁化の位相を変調するためのリフェーズ傾斜磁場又はディフェーズ傾斜磁場を印加する。具体的には、前述の実施例1の撮像シーケンスにおいて、3軸方向の少なくともk1方向とk2方向に、リフェーズ傾斜磁場又はディフェーズ傾斜磁場を印加する。好ましくはリードアウト(kr)方向を含めた全方向に印加する。例えば、H-F方向をリードアウト方向とすると、H-F方向、R-L方向、及びA-P方向にリフェーズ傾斜磁場又はディフェーズ傾斜磁場を印加する。これにより、MRA画像において、リフェーズ傾斜磁場又はディフェーズ傾斜磁場を印加した方向に走行する血管に対する描出能を向上させることができる。他については、前述の実施例1と同じなので説明を省略する。以下、図8に基づいて、本実施例を詳細に説明する。
本発明のMRI装置及び血管画像撮像方法についての実施例3を説明する。本実施例は、複数の平行直線状計測軌跡を含んで成る単位軌跡群(ブレード)を、リードアウト(kr)方向を回転軸として回転させて得られる複数の単位軌跡群に沿ってエコーデータを計測する非直交系サンプリングを行う。即ち、本実施例は、ブレードを構成する複数の平行直線状計測軌跡を基本計測軌跡とし、ブレードを(k1-k2)空間内の任意の基準点の回りで回転させた計測軌跡とする。したがって、前述の実施例1と異なる箇所は撮像シーケンス及び計測軌跡の形状である。他については前述の実施例1と同じなので詳細な説明を省略する。以下、本実施例の撮像シーケンス及び計測軌跡の形状について詳細に説明する。
ここで、kはオフセット傾斜磁場のステップ番号、Tはオフセット傾斜磁場の印加時間、FOVはオフセット傾斜磁場印加方向の視野サイズ、γは磁気回転比を表す。
次に、本発明のMRI装置及び血管画像撮像方法についての実施例4を説明する。本実施例は、2つの線分軌跡が(k1-k2)空間の原点又は原点近傍の点で接続して成る計測軌跡(以下、折れ線計測軌跡という)とし、2つの線分間の角度が異なる複数の折れ線計測軌跡に沿ったエコーデータを計測する非直交系サンプリングとする。即ち、本実施例は、折れ線計測軌跡を単位計測軌跡とし、折れ線計測軌跡を折れ曲がり角度を変えて、(k1-k2)空間内の任意の基準点の回りで回転させた計測軌跡とする。したがって、前述の実施例1と異なる箇所は撮像シーケンス及び計測軌跡の形状である。他については前述の実施例1と同じなので詳細な説明を省略する。以下、本実施例の撮像シーケンス及び計測軌跡の形状について詳細に説明する。
k=1の計測軌跡の前半部を図11の線分軌跡1101-1とすると、その後半部の線分軌跡1102-1との折れ曲がり角θは、θ=π/12となる。同様に、k=2の計測軌跡の前半部を図11の線分軌跡1101-2とすると、その後半部の線分軌跡1102-2との折れ曲がり角θは、θ=π/4となる。以下同様に、計測軌跡の前半部の線分軌跡1101を反時計回りに順次選択していくと、各計測軌跡の後半部の線分軌跡1102は時計回りとなり、これら2つの線分軌跡間の角度が順次開いていくことになる。したがって、これら全ての折れ線計測軌跡で、(k1-k2)空間を充填することができる。図11及び(4)式は、11本の折れ線軌跡で(k1-k2)空間を充填する例を示す。なお、図11の折れ線計測軌跡は、全て(k1-k2)空間原点で折れ曲がっているが、複数の折れ線計測軌跡の折れ曲がり点を異ならせても良い。
次に、本発明のMRI装置及び血管画像撮像方法についての実施例5を説明する。本実施例は、(k1-k2)空間の原点又は原点近傍の点を通過する渦巻状(スパイラル状)の計測軌跡とする。そして、一つのスパイラル軌跡を、リードアウト(kr)方向を回転軸として回転させて得た複数のスパイラル軌跡に沿ってエコーデータを計測する非直交系サンプリングを行なう。即ち、本実施例は、スパイラル計測軌跡を単位計測軌跡とし、このスパイラル計測軌跡を(k1-k2)空間内の原点又は原点近傍の点の回りで回転させた計測軌跡とする。したがって、前述の実施例1と異なる箇所は撮像シーケンス及び計測軌跡の形状である。他については前述の実施例1と同じなので説明を省略する。以下、本実施例の撮像シーケンス及び計測軌跡の形状について詳細に説明する。
次に、本発明のMRI装置及び血管画像撮像方法についての実施例6を説明する。本実施例は、3次元K空間におけるリードアウト方向に垂直な2方向において、複数の格子点をジグザグ又はランダムに通過する計測軌跡とする。即ち、本実施例は、(k1-k2)空間内で複数の格子点をジグザグ又はランダムに通過する計測軌跡に沿ってエコーデータを計測する非直交系サンプリングを行なう。したがって、前述の実施例1と異なる箇所は撮像シーケンス及び計測軌跡の形状とグリッディングが不要となる点である。他については前述の実施例1と同じなので説明を省略する。以下、本実施例の撮像シーケンス及び計測軌跡の形状について詳細に説明する。
Claims (17)
- 被検体の周期的な体動についての体動情報を検出する体動情報検出部と、
撮像シーケンスに基づいて、前記周期的な体動情報に同期させた同期撮像を実行して、3次元K空間データの計測を制御する計測制御部と、
前記3次元K空間データを用いて前記被検体の血管画像を再構成する演算処理部と、
を有する磁気共鳴イメージング装置であって、
前記撮像シーケンスは、前記3次元K空間におけるリードアウト方向に垂直な2方向に非平行な計測軌跡に沿ってエコーデータを計測するものであり、
前記計測制御部は、前記撮像シーケンスの繰り返し時間(TR)が前記体動情報の複数周期となるように、前記同期撮像を制御することを特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置において、
前記計測軌跡は、一つの直線状軌跡を、前記3次元K空間のリードアウト方向を回転軸として回転させて得られる複数の直線状計測軌跡であり、
前記計測制御部は、前記撮像シーケンスを繰り返して、異なる直線状軌跡に沿うエコーデータをそれぞれ計測することを特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置において、
前記周期的な体動情報は、心電図であり、
前記同期撮像は、心電図のR波に同期する撮像であり、
前記計測制御部は、前記R波から所定の遅延時間(DT)を空けて前記撮像シーケンスを開始することを特徴とする磁気共鳴イメージング装置。 - 請求項3記載の磁気共鳴イメージング装置において、
前記遅延時間は、前記撮像シーケンスの実行が、拡張期又は収縮期となる時間であることを特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置において、
前記演算処理部は、レファレンススキャンにより前記被検体を事前に撮像して取得されたデータに基づいて、前記撮像シーケンスを用いて所望の画像を取得できるような撮像パラメータ値を決定し、該決定した撮像パラメータ値に基づいて前記撮像シーケンスを設定し、
前記計測制御部は、前記設定された撮像シーケンスを実行することを特徴とする磁気共鳴イメージング装置。 - 請求項5記載の磁気共鳴イメージング装置において、
前記撮像パラメータ値は、前記撮像シーケンスの実行が、前記被検体の心電図において収縮期又は拡張期となるような、心電図R波からの遅延時間(DT)を含むことを特徴とする磁気共鳴イメージング装置。 - 請求項5記載の磁気共鳴イメージング装置において、
前記計測制御部は、PC法パルスシーケンスを用いて前記リファレンススキャンを行い、
前記演算処理部は、前記リファレンススキャンで取得されたデータに基づいて、注目する血流部分の流速変化情報を取得することを特徴する磁気共鳴イメージング装置。 - 請求項7記載の磁気共鳴イメージング装置において、
前記流速変化情報を血流変化グラフとして表示する表示部と、
前記表示部に表示された前記流速変化グラフ上で、前記遅延時間(DT)の設定入力を受け付ける入力部と、
を備えたことを特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置において、
前記撮像シーケンスは、前記3次元K空間のリードアウト方向に垂直な2方向に対応する実空間の方向に、それぞれ、前記被検体の血流の核磁化の位相を変調するためのリフェーズ傾斜磁場又はディフェーズ傾斜磁場を印加するものであることを特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置において、
前記計測軌跡は、複数の平行直線状計測軌跡を含んで成る単位軌跡群を、前記3次元K空間のリードアウト方向を回転軸として回転させて得られる複数の単位軌跡群であることを特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置において、
前記計測軌跡は、2つの線分軌跡が接続して成る折れ線計測軌跡であって、前記2つの線分軌跡間の角度が異なる複数の折れ線軌跡であることを特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置において、
前記計測軌跡は、スパライス計測軌跡であることを特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置において、
前記計測軌跡は、前記3次元K空間におけるリードアウト方向に垂直な2方向において、複数の格子点をジグザグ又はランダムに通過する計測軌跡であることを特徴とする磁気共鳴イメージング装置。 - 被検体の心電図に撮像シーケンスを同期させる同期撮像によって、3次元K空間内の計測軌跡に沿ってエコーデータを計測する計測ステップと、
前記計測されたエコーデータを用いて、前記被検体の血管画像を取得するステップと、
を有して成る血管画像撮像方法であって、
前記計測軌跡は、前記3次元K空間におけるリードアウト方向に垂直な2方向に非平行な計測軌跡であり、
前記撮像シーケンスの繰り返し時間(TR)が前記心電図の複数周期であることを特徴とする血管画像撮像方法。 - 請求項14記載の血管画像撮像方法において、
前記計測軌跡は、一つの直線状軌跡を、前記3次元K空間のリードアウト方向を回転軸として回転させて得られる複数の直線状計測軌跡であり、
前記計測ステップでは、前記撮像シーケンスを繰り返して、異なる直線状軌跡に沿うエコーデータがそれぞれ計測されることを特徴とする血管画像撮像方法。 - 請求項14記載の血管画像撮像方法において、
前記撮像シーケンスは、前記3次元K空間のリードアウト方向に垂直な2方向に対応する実空間の方向に、それぞれ、前記被検体の血流の核磁化の位相を変調するためのリフェーズ傾斜磁場又はディフェーズ傾斜磁場を印加するものであることを特徴とする血管画像撮像方法。 - 請求項14記載の血管画像撮像方法において、
レファレンススキャンにより前記被検体を事前に撮像してデータを取得するステップと、
前記レファレンススキャンにより取得されたデータに基づいて、前記撮像シーケンスを用いて前記血管画像を取得するための撮像パラメータ値を決定するステップと、
前記決定された撮像パラメータ値に基づいて前記撮像シーケンスを設定するステップと、
を更に備えることを特徴とする血管画像撮像方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011550937A JP5858791B2 (ja) | 2010-01-22 | 2011-01-20 | 磁気共鳴イメージング装置及び血管画像撮像方法 |
US13/520,400 US20120281901A1 (en) | 2010-01-22 | 2011-01-20 | Magnetic resonance imaging apparatus and blood vessel image capturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010011733 | 2010-01-22 | ||
JP2010-011733 | 2010-01-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011090089A1 true WO2011090089A1 (ja) | 2011-07-28 |
Family
ID=44306889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/050913 WO2011090089A1 (ja) | 2010-01-22 | 2011-01-20 | 磁気共鳴イメージング装置及び血管画像撮像方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20120281901A1 (ja) |
JP (1) | JP5858791B2 (ja) |
WO (1) | WO2011090089A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013132454A (ja) * | 2011-12-27 | 2013-07-08 | Ge Medical Systems Global Technology Co Llc | 磁気共鳴装置およびプログラム |
WO2013133391A1 (ja) * | 2012-03-08 | 2013-09-12 | 株式会社東芝 | 磁気共鳴イメージング装置 |
CN103901376A (zh) * | 2012-12-30 | 2014-07-02 | 上海联影医疗科技有限公司 | 磁共振成像方法与装置 |
JP2015123232A (ja) * | 2013-12-26 | 2015-07-06 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 磁気共鳴装置 |
KR20180088194A (ko) * | 2017-01-26 | 2018-08-03 | 삼성전자주식회사 | 자기 공명 영상 획득 방법 및 그 자기 공명 영상 장치 |
JP2019005289A (ja) * | 2017-06-26 | 2019-01-17 | キヤノンメディカルシステムズ株式会社 | 磁気共鳴イメージング装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8838204B2 (en) * | 2012-01-13 | 2014-09-16 | Siemens Medical Solutions Usa, Inc. | System and method for phase contrast imaging with improved efficiency |
US10746830B2 (en) | 2018-08-28 | 2020-08-18 | General Electric Company | Systems and methods for hybrid slice encoding in three-dimensional magnetic resonance imaging |
CN112584738B (zh) * | 2018-08-30 | 2024-04-23 | 奥林巴斯株式会社 | 记录装置、图像观察装置、观察系统、观察系统的控制方法及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000005144A (ja) * | 1998-04-20 | 2000-01-11 | Toshiba Corp | Mri装置およびmrイメ―ジング方法 |
JP2001046354A (ja) * | 1999-08-13 | 2001-02-20 | Ge Yokogawa Medical Systems Ltd | 磁気共鳴信号収集方法および装置並びに磁気共鳴撮像装置 |
JP2004515288A (ja) * | 2000-12-08 | 2004-05-27 | フィリップス メディカル システムズ (クリーヴランド),インコーポレイテッド | 奥行き分解を用いて高速スキャンを行うmri装置及び方法 |
JP2007313303A (ja) * | 2006-04-25 | 2007-12-06 | Toshiba Corp | 磁気共鳴イメージング装置および磁気共鳴イメージング装置における撮影条件設定方法 |
JP2009153966A (ja) * | 2007-12-07 | 2009-07-16 | Toshiba Corp | 画像表示装置および磁気共鳴イメージング装置 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3707829B2 (ja) * | 1995-06-22 | 2005-10-19 | 株式会社東芝 | 磁気共鳴イメージング装置 |
JP4413304B2 (ja) * | 1998-03-05 | 2010-02-10 | 株式会社東芝 | Mri装置 |
JP4082779B2 (ja) * | 1998-04-17 | 2008-04-30 | 株式会社東芝 | Mri装置 |
US20020188190A1 (en) * | 1998-03-05 | 2002-12-12 | Yoshimori Kassai | Mr imaging providing tissue/blood contrast image |
US7254437B2 (en) * | 1998-04-17 | 2007-08-07 | Kabushiki Kaisha Toshiba | MR imaging providing tissue/blood contrast image |
US6782286B2 (en) * | 1998-04-20 | 2004-08-24 | Kabushiki Kaisha Toshiba | MRI system and MR imaging method |
JP3853585B2 (ja) * | 2000-10-11 | 2006-12-06 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | Mri装置 |
JP4489277B2 (ja) * | 2000-10-31 | 2010-06-23 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | Mri装置 |
US6411089B1 (en) * | 2000-11-22 | 2002-06-25 | Philips Medical Systems (Cleveland), Inc. | Two-dimensional phase-conjugate symmetry reconstruction for 3d spin-warp, echo-planar and echo-volume magnetic resonance imaging |
JP4309632B2 (ja) * | 2002-10-08 | 2009-08-05 | 株式会社東芝 | 磁気共鳴イメージング装置 |
US6798199B2 (en) * | 2003-02-06 | 2004-09-28 | Siemens Medical Solutions Usa, Inc. | Method for synchronizing magnetic resonance imaging data to body motion |
DE10337932B4 (de) * | 2003-08-18 | 2009-02-05 | Siemens Ag | Gerät und Verfahren zur Minimierung von Streifenartefakten bei radialer oder spiralförmiger k-Raum-Abtastung in der Magnetresonanzbildgebung |
US7046004B2 (en) * | 2004-05-07 | 2006-05-16 | University Of Basel | Generic eddy-current compensation in magnetic resonance imaging |
US7292032B1 (en) * | 2004-09-28 | 2007-11-06 | General Electric Company | Method and system of enhanced phase suppression for phase-contrast MR imaging |
JP5179182B2 (ja) * | 2005-07-27 | 2013-04-10 | 株式会社日立メディコ | 磁気共鳴イメージング装置 |
US7265547B2 (en) * | 2005-09-16 | 2007-09-04 | General Electric Company | Method and apparatus for acquiring MR data with a segmented multi-shot radial fan beam encoding order |
EP1946139A1 (en) * | 2005-09-22 | 2008-07-23 | Wisconsin Alumni Research Foundation | Functional mri involving a highly constrained backprojection |
US9700220B2 (en) * | 2006-04-25 | 2017-07-11 | Toshiba Medical Systems Corporation | Magnetic resonance imaging apparatus and magnetic resonance imaging method |
JP5100181B2 (ja) * | 2006-09-06 | 2012-12-19 | 株式会社東芝 | 磁気共鳴イメージング装置 |
US10098563B2 (en) * | 2006-11-22 | 2018-10-16 | Toshiba Medical Systems Corporation | Magnetic resonance imaging apparatus |
US9538936B2 (en) * | 2006-11-22 | 2017-01-10 | Toshiba Medical Systems Corporation | MRI apparatus acquires first and second MR data and generates therefrom third image data having higher contrast between blood and background tissues |
JP5022696B2 (ja) * | 2006-12-22 | 2012-09-12 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 磁気共鳴イメージング装置 |
US8571288B2 (en) * | 2007-12-07 | 2013-10-29 | Kabushiki Kaisha Toshiba | Image display apparatus and magnetic resonance imaging apparatus |
US7898254B2 (en) * | 2008-02-19 | 2011-03-01 | Advanced Mri Technologies, Llc | Arterial spin labeled, segmented, interleaved 3D GRASE MRI |
WO2009134820A2 (en) * | 2008-04-28 | 2009-11-05 | Cornell University | Tool for accurate quantification in molecular mri |
US20110142316A1 (en) * | 2009-10-29 | 2011-06-16 | Ge Wang | Tomography-Based and MRI-Based Imaging Systems |
-
2011
- 2011-01-20 US US13/520,400 patent/US20120281901A1/en not_active Abandoned
- 2011-01-20 JP JP2011550937A patent/JP5858791B2/ja active Active
- 2011-01-20 WO PCT/JP2011/050913 patent/WO2011090089A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000005144A (ja) * | 1998-04-20 | 2000-01-11 | Toshiba Corp | Mri装置およびmrイメ―ジング方法 |
JP2001046354A (ja) * | 1999-08-13 | 2001-02-20 | Ge Yokogawa Medical Systems Ltd | 磁気共鳴信号収集方法および装置並びに磁気共鳴撮像装置 |
JP2004515288A (ja) * | 2000-12-08 | 2004-05-27 | フィリップス メディカル システムズ (クリーヴランド),インコーポレイテッド | 奥行き分解を用いて高速スキャンを行うmri装置及び方法 |
JP2007313303A (ja) * | 2006-04-25 | 2007-12-06 | Toshiba Corp | 磁気共鳴イメージング装置および磁気共鳴イメージング装置における撮影条件設定方法 |
JP2009153966A (ja) * | 2007-12-07 | 2009-07-16 | Toshiba Corp | 画像表示装置および磁気共鳴イメージング装置 |
Non-Patent Citations (4)
Title |
---|
CHRISTOPHER J. HARDY ET AL.: "A one-dimensional velocity technique for NMR measurement of aortic distensibility", MAGNETIC RESONANCE IN MEDICINE, vol. 31, no. 5, May 1994 (1994-05-01), pages 513 - 520, XP000443546 * |
G. J. WILSON ET AL.: "Flow-independent, Non-contrast-enhanced, Free Breathing Renal MR Angiography", PROC. INTL. SOC. MAG. RESON. MED., vol. 17, April 2009 (2009-04-01), pages 1882 * |
H. MORIGUCHI ET AL.: "Bunched Phase Encoding in Projection Reconstruction", PROC. INTL. SOC. MAG. RESON. MED., vol. 14, May 2006 (2006-05-01), pages 694 * |
MITSUE MIYAZAKI ET AL.: "Improvement in Separation of Arteries from Veins in Peripheral Non-Contrast MRA using Flow-Dephasing Spoiler Gradient Pulses in ECG-triggered 3D half- Fourier FSE", PROC. INTL. SOC. MAG. RESON. MED., vol. 10, May 2002 (2002-05-01), pages 1751 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013132454A (ja) * | 2011-12-27 | 2013-07-08 | Ge Medical Systems Global Technology Co Llc | 磁気共鳴装置およびプログラム |
WO2013133391A1 (ja) * | 2012-03-08 | 2013-09-12 | 株式会社東芝 | 磁気共鳴イメージング装置 |
JP2013184063A (ja) * | 2012-03-08 | 2013-09-19 | Toshiba Corp | 磁気共鳴イメージング装置 |
US9414765B2 (en) | 2012-03-08 | 2016-08-16 | Toshiba Medical Systems Corporation | Fresh blood imaging (FBI) with independently controlled MRI data acquisition parameters for diastolic and systolic MRI acquisition sub-sequences |
CN103901376A (zh) * | 2012-12-30 | 2014-07-02 | 上海联影医疗科技有限公司 | 磁共振成像方法与装置 |
JP2015123232A (ja) * | 2013-12-26 | 2015-07-06 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 磁気共鳴装置 |
KR20180088194A (ko) * | 2017-01-26 | 2018-08-03 | 삼성전자주식회사 | 자기 공명 영상 획득 방법 및 그 자기 공명 영상 장치 |
KR101939775B1 (ko) | 2017-01-26 | 2019-01-17 | 삼성전자주식회사 | 자기 공명 영상 획득 방법 및 그 자기 공명 영상 장치 |
JP2019005289A (ja) * | 2017-06-26 | 2019-01-17 | キヤノンメディカルシステムズ株式会社 | 磁気共鳴イメージング装置 |
JP7055601B2 (ja) | 2017-06-26 | 2022-04-18 | キヤノンメディカルシステムズ株式会社 | 磁気共鳴イメージング装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011090089A1 (ja) | 2013-05-23 |
JP5858791B2 (ja) | 2016-02-10 |
US20120281901A1 (en) | 2012-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5858791B2 (ja) | 磁気共鳴イメージング装置及び血管画像撮像方法 | |
JP5719968B2 (ja) | Mrデータを収集する方法及び装置 | |
JP5917077B2 (ja) | 磁気共鳴イメージング装置 | |
JP3693766B2 (ja) | 磁気共鳴イメージング装置 | |
JP5942268B2 (ja) | 磁気共鳴イメージング装置および磁気共鳴イメージング方法 | |
JP5740307B2 (ja) | 磁気共鳴イメージング装置及び傾斜磁場印加方法 | |
JP5942272B2 (ja) | 磁気共鳴イメージング装置及びそれを用いた血管撮像方法 | |
JP2010246596A (ja) | 磁気共鳴イメージング装置 | |
JP5735916B2 (ja) | 磁気共鳴イメージング装置及び同期計測方法 | |
US10132902B2 (en) | Intrinsic navigation from velocity-encoding gradients in phase-contrast MRI | |
JP5372015B2 (ja) | 磁気共鳴イメージング装置および同期撮像方法 | |
JP2004329614A (ja) | 磁気共鳴イメージング装置 | |
JP2017136113A (ja) | 磁気共鳴イメージング装置 | |
JP4018107B2 (ja) | 磁気共鳴イメージング装置 | |
WO2017167937A1 (en) | Dynamic mr imaging with increased temporal and spatial resolution | |
JP6230882B2 (ja) | 磁気共鳴イメージング装置及びエコー時間設定方法 | |
JP2007275481A (ja) | 磁気共鳴イメージング装置 | |
JP4454268B2 (ja) | 磁気共鳴イメージング装置 | |
JP5738120B2 (ja) | 非造影血管像再構成法及び磁気共鳴イメージング装置 | |
JP5371620B2 (ja) | 核磁気共鳴イメージング装置 | |
JP4745650B2 (ja) | 磁気共鳴イメージング装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11734695 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011550937 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13520400 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11734695 Country of ref document: EP Kind code of ref document: A1 |