WO2011090089A1 - 磁気共鳴イメージング装置及び血管画像撮像方法 - Google Patents

磁気共鳴イメージング装置及び血管画像撮像方法 Download PDF

Info

Publication number
WO2011090089A1
WO2011090089A1 PCT/JP2011/050913 JP2011050913W WO2011090089A1 WO 2011090089 A1 WO2011090089 A1 WO 2011090089A1 JP 2011050913 W JP2011050913 W JP 2011050913W WO 2011090089 A1 WO2011090089 A1 WO 2011090089A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
magnetic resonance
trajectory
space
imaging
Prior art date
Application number
PCT/JP2011/050913
Other languages
English (en)
French (fr)
Inventor
延之 吉澤
博幸 板垣
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2011550937A priority Critical patent/JP5858791B2/ja
Priority to US13/520,400 priority patent/US20120281901A1/en
Publication of WO2011090089A1 publication Critical patent/WO2011090089A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal

Definitions

  • the present invention relates to a technique for improving the image quality of an acquired blood vessel image by performing imaging in synchronization with body motion information of a subject in magnetic resonance imaging (hereinafter referred to as “MRI”).
  • MRI magnetic resonance imaging
  • An MRI apparatus is a measurement apparatus that obtains an image of a subject using a nuclear magnetic resonance (NMR) phenomenon, and irradiates a subject with a high-frequency magnetic field (hereinafter referred to as RF) pulse, and in response, Measure NMR signals generated by the nuclear spins that make up the tissue. Based on the measured NMR signal, the form and function of the subject's head, abdomen, limbs, etc. are imaged two-dimensionally or three-dimensionally. At the time of imaging, the NMR signal is provided with different phase encoding and slice encoding, and with frequency encoding, and is measured as time series data by the gradient magnetic field. The measured NMR signal is reconstructed into an image by two-dimensional or three-dimensional Fourier transform.
  • NMR nuclear magnetic resonance
  • a delay time (Delay ⁇ Time, DT) set from the signal in synchronization with the signal representing the cardiac time phase of the subject collected by the time phase detection means
  • FSE spin echo
  • a dephase or rephase gradient magnetic field pulse is applied in the phase encoding direction in order to improve the rendering ability of blood vessels traveling in the phase encoding direction. It is also possible to apply a dephase or rephase gradient magnetic field pulse in the readout direction. In this case, the ability to depict blood vessels traveling in the readout direction is improved. Furthermore, it is possible to apply a dephase or rephase gradient magnetic field pulse in both the readout direction and the phase encoding direction.
  • an object of the present invention is to obtain a non-contrast-enhanced MRA image in which the blurring of the blood vessel is suppressed and the rendering performance is improved even if there is an influence of T2 attenuation in the echo data.
  • the present invention provides an imaging sequence for measuring echo data along a measurement trajectory that is non-parallel to two directions perpendicular to the readout direction in a three-dimensional K space. It executes in synchronization with the information, and at this time, the repetition time (TR) of the imaging sequence is set to be a plurality of periods of the periodic body motion information.
  • the MRI apparatus of the present invention synchronizes with the periodic body motion information based on the body motion information detection unit that detects the body motion information about the periodic body motion of the subject and the imaging sequence.
  • a measurement control unit that controls the measurement of 3D K-space data and an arithmetic processing unit that reconstructs a blood vessel image of the subject using the 3D K-space data.
  • a sequence measures echo data along a measurement trajectory that is non-parallel to two directions perpendicular to the readout direction in the three-dimensional K space, and the measurement control unit uses the repetition time (TR) of the imaging sequence as the body movement. Synchronous imaging is controlled so as to be a plurality of periods of information.
  • the measurement trajectory is a plurality of linear measurement trajectories obtained by rotating one linear trajectory around the readout direction of the three-dimensional K space, and the measurement control unit repeats the imaging sequence. Measure echo data along different linear trajectories.
  • the blood vessel image capturing method of the present invention includes a measurement step of measuring echo data along a predetermined measurement trajectory in a three-dimensional K space, by synchronous imaging that synchronizes an imaging sequence with an electrocardiogram of a subject.
  • the measurement trajectory is a measurement trajectory that is non-parallel to two directions perpendicular to the readout direction in the three-dimensional K space, and
  • the repetition time (TR) is a plurality of cycles of the electrocardiogram.
  • the MRI apparatus and the blood vessel imaging method of the present invention it is possible to acquire a non-contrast-enhanced MRA image in which the blurring of blood vessels is suppressed and the rendering ability is improved even if there is an influence of T2 attenuation in echo data.
  • the lead-out direction is HF (Head-Foot)
  • the rendering ability for blood vessels running in RL Right-Left
  • AP Antterior-Posterior
  • FIG. 1 is a block diagram showing the overall configuration of an embodiment of an MRI apparatus according to the present invention.
  • FIG. 6 is a diagram showing a measurement locus for sampling a (k1-k2) space in a non-orthogonal system in the first embodiment.
  • 3 is a sequence chart showing an imaging sequence for measuring echo data along the measurement trajectory shown in FIG. 3 is a flowchart illustrating an operation flow of the first embodiment.
  • 2 is a sequence chart showing an example of a PC (Phase (Contrast) method pulse sequence used in the reference scan in the first embodiment.
  • FIG. 6 is a sequence chart showing an imaging sequence of Example 2 in which a dephase gradient magnetic field pulse or a rephase gradient magnetic field pulse is added to the imaging sequence of Example 1 shown in FIG. 3 in three directions.
  • FIG. 10 is a diagram illustrating a measurement locus for non-orthogonal sampling of a (k1-k2) space in the third embodiment.
  • 10 is a sequence chart showing an imaging sequence for measuring echo data along the measurement trajectory shown in FIG.
  • FIG. 10 is a diagram illustrating a measurement locus for non-orthogonal sampling of a (k1-k2) space in the fourth embodiment.
  • 10 is a sequence chart showing an imaging sequence for measuring echo data along the measurement trajectory shown in FIG.
  • FIG. 9 is a diagram illustrating a measurement locus for sampling a (k1-k2) space in a non-orthogonal system in the fifth embodiment.
  • FIG. 10 is a sequence chart showing an imaging sequence for measuring echo data along the measurement trajectory shown in FIG. FIG.
  • FIG. 16 is a diagram showing one basic zigzag measurement trajectory for non-orthogonal sampling of echo data of lattice points in the (k1-k2) space in the sixth embodiment.
  • the figure shows a basic zigzag measurement trajectory with a narrower width in the k1 (k2) direction than in (b).
  • FIG. 10 is a diagram illustrating a measurement locus in which non-orthogonal sampling is randomly performed on echo data of lattice points in the (k1-k2) space in the sixth embodiment.
  • FIG. 1 is a block diagram showing the overall configuration of an embodiment of an MRI apparatus according to the present invention.
  • This MRI apparatus uses a NMR phenomenon to obtain a tomographic image of a subject 101.
  • a static magnetic field generating magnet 102, a gradient magnetic field coil 103, a gradient magnetic field power supply 109, and a transmission RF coil 104 and RF transmission unit 110, reception RF coil 105 and signal detection unit 106, signal processing unit 107, measurement control unit 111, overall control unit 108, display / operation unit 113, and subject 101 are mounted.
  • a bed 112 for taking the subject 101 into and out of the static magnetic field generating magnet 102.
  • the transmission RF coil 104 is a coil that irradiates the subject 101 with an RF pulse, and is connected to the RF transmission unit 110 to receive a high-frequency pulse current.
  • an NMR phenomenon is induced in the nuclear spins of the atoms constituting the biological tissue of the subject 101.
  • the RF transmission unit 110 is driven in accordance with a command from the measurement control unit 111, which will be described later, and the high-frequency pulse is amplitude-modulated and amplified.
  • the subject 101 is irradiated with an RF pulse.
  • the measurement controller 111 sets the repetition time (TR) of the imaging sequence to two or more heartbeats, and changes the rotation angle of the linear measurement trajectory between the multiple repetition times (TR).
  • TR repetition time
  • the encoding gradient magnetic field is applied by changing the application intensity and application amount according to the rotation angle of the linear measurement trajectory.
  • the measurement control unit 111 controls application of the gradient magnetic field in each direction so as to perform the imaging sequence of FIG.
  • phase control gradient magnetic fields 810 and 811 are applied before and after the read-out gradient magnetic field 309 applied when measuring the echo signal, respectively.
  • the application amount of the dephase gradient magnetic field 308 to be originally applied is affected, so the application amount corresponding to the application amount of the added phase control gradient magnetic field 810, 811 (the portion indicated by the dotted line frame) is the original dephase.
  • a dephase gradient magnetic field 808 subtracted from the gradient magnetic field 308 is applied.
  • FIG. 8 shows a case where the original application amount of the dephase gradient magnetic field 308 and the subtraction amount cancel each other and the application amount of the dephase gradient magnetic field 808 becomes 0 (zero).
  • the rephase gradient magnetic field pulse or dephase gradient magnetic field pulse for modulating the phase of the nuclear magnetization of the blood flow is applied in at least the k1 direction and the k2 direction in the three-axis direction. Preferably, it is applied in all directions including the lead-out (kr) direction.
  • the visualization ability of the blood vessel traveling in the direction in which the rephase gradient magnetic field pulse or the dephase gradient magnetic field pulse is applied can be improved.
  • the lead-out direction is the HF direction and the K1 direction and the K2 direction are the RL direction and the AP direction, respectively, in the blood vessel image, the ability to depict blood vessels that run in the RL direction and the AP direction can be improved.
  • the application amount of the dephase gradient magnetic field pulse or the rephase gradient magnetic field pulse is changed according to the direction of the linear measurement locus in the k space. Also good.
  • the dephase gradient magnetic field pulse or the rephase gradient magnetic field pulse may be applied only when the direction of the linear measurement locus coincides with the k1 direction or the k2 direction.
  • FIG. 9 shows an example of a non-orthogonal measurement trajectory in the (k1-k2) space of this embodiment
  • FIG. 10 is a sequence chart showing an imaging sequence for measuring echo data along the measurement trajectory of FIG. Show.
  • a pulse sequence is referred to as a hybrid radial sequence.
  • the measurement trajectory in the (k1-k2) space shown in FIG. 9 is obtained by rotating a blade including a plurality of parallel linear measurement trajectories about the lead-out (kr) direction as a rotation axis. Echo data is measured along a plurality of parallel linear measurement trajectories constituting each blade.
  • FIG. 9 shows an example in which the blade is rotated at the origin of the (k1-k2) space, but the center of rotation may be a point near the origin other than the origin or an arbitrary reference point.
  • a parallel linear measurement trajectory group including one linear measurement trajectory shown in FIG. 2 described in the first embodiment and a plurality of linear measurement trajectories parallel thereto is bladed. And A plurality of blades are generated by rotating this blade in the (k1-k2) space with the lead-out (kr) direction as the rotation axis.
  • the number of linear measurement trajectories constituting each blade, the number of blades, and the rotation angle can be determined so as to obtain a desired image, and can be set by the operator in step 401 of FIG. 4, for example.
  • FIG. 9 shows an example in which the number of parallel linear measurement trajectories constituting the blade is three (901, 902, 903). Echo data is measured along a plurality of parallel linear measurement trajectories constituting these blades.
  • FIG. 2 is the flowchart of the first embodiment.
  • G k / ( ⁇ ⁇ FOV ⁇ T) (3)
  • k is the step number of the offset gradient magnetic field
  • T is the application time of the offset gradient magnetic field
  • FOV is the field size in the offset gradient magnetic field application direction
  • is the magnetic rotation ratio
  • the measurement control unit 111 measures the offset gradient magnetic fields 1001 and 1002 obtained for each rotation angle by the equation (3) and the echo data along a plurality of parallel linear measurement tracks constituting the blade of the rotation angle. When applying.
  • the other gradient magnetic fields are the same as those in the imaging sequence of FIG.
  • the hybrid radial sequence can measure the data near the reference point of rotation in the (k1-k2) space (the origin in the case of FIG. 9) in a particularly dense or overlapping manner. It is said to be robust.
  • the MRA image is acquired by performing the synchronous imaging described in the first embodiment or applying the dephase gradient magnetic field and the rephase gradient magnetic field described in the second embodiment. Therefore, detailed description is omitted. Then, by combining these to acquire a non-contrast MRA image, the same effect as in the first embodiment can be obtained.
  • two line segment trajectories are a measurement trajectory formed by connecting at the origin of the (k1-k2) space or a point in the vicinity of the origin (hereinafter referred to as a broken line measurement trajectory), and the angle between the two line segments is different. It is assumed that non-orthogonal sampling for measuring echo data along the broken line measurement trajectory. That is, in the present embodiment, the broken line measurement trajectory is used as a unit measurement trajectory, and the broken line measurement trajectory is changed into a measurement trajectory rotated around an arbitrary reference point in the (k1-k2) space.
  • FIG. 11 shows an example of a polygonal line measurement trajectory in the (k1-k2) space of the present embodiment
  • FIG. 12 is a sequence chart showing an imaging sequence for measuring echo data along the polygonal line measurement trajectory of FIG. Show.
  • the (k1-k2) space is filled with a plurality of broken line measurement trajectories having the same connection point and different angles between the two line segments. If the number of the broken line measurement trajectory is k, the relationship with the bend angle ⁇ can be expressed, for example, by equation (4).
  • the (k1-k2) space can be filled with all these broken line measurement trajectories.
  • 11 and (4) show an example of filling the (k1-k2) space with eleven line trajectories. Note that all the broken line measurement trajectories in FIG. 11 are bent at the origin of the (k1-k2) space, but the bent points of a plurality of broken line measurement trajectories may be different.
  • Echo data on the first and second half segments of such a broken line measurement trajectory have a non-complex conjugate relationship with respect to the (k1-k2) space origin.
  • echo data having a complex conjugate relation with respect to the K-space origin has substantially the same amount of information. That is, the echo data group along the broken line measurement trajectory of the present embodiment has a larger amount of information than the echo data group along the linear measurement trajectory of the first embodiment. Therefore, the broken line measurement trajectory of the present embodiment can acquire a large amount of information in a short time and is suitable for asymmetric measurement / reconstruction of the K space.
  • the bending points of the plurality of bent line measurement trajectories are different (k1-k2) and the low-frequency echo data near the space origin is obtained symmetrically. good.
  • FIG. 2 is the flowchart of the first embodiment.
  • the imaging sequence for measuring echo data along the measurement trajectory shown in FIG. 12 is compared with the imaging sequence shown in FIG. 3 described in the first embodiment, and the encoded gradient magnetic field pulse 1206 in the dotted frame portion. And the polarity and amplitude of the rewind gradient magnetic field pulse 1207 are different. This is because the imaging sequence of FIG. 3 described above measures echo data along a linear measurement trajectory, so the measurement trajectory is a straight line extending from the third quadrant of the (k1-k2) space to the first quadrant. In some cases, the encoding gradient and the rewind gradient also increase or decrease their amplitude monotonically. On the other hand, the imaging sequence of FIG. 12 measures echo data along the polygonal line measurement trajectory.
  • the imaging sequence of FIG. when measuring echo data along the first half of the polygonal line measurement trajectory, the imaging sequence of FIG. Similarly, the amplitudes of the encode gradient magnetic field pulse and the rewind gradient magnetic field pulse will monotonously increase or decrease. However, when measuring echo data along the second half of the broken line measurement trajectory, the measurement trajectory is bent, and therefore the encode gradient magnetic field 1206 and the rewind gradient magnetic field 1207 monotonously increase or decrease following the first half. It does not become a thing, and the way of increase or decrease is reversed. That is, focusing on the dotted line frame portion of the sequence chart of FIG. 12, in FIG. 3, the encode gradient magnetic field pulse has a positive polarity and the amplitude monotonically increases, whereas in FIG.
  • the encode gradient magnetic field pulse 1206 has a negative polarity. It decreases monotonically with sex. The method of changing the amplitude changes corresponding to the bending angle of the broken line. Further, the rewind gradient magnetic field pulse 1207 has a change in polarity opposite to that of the encode gradient magnetic field pulse 1206. Such changes in the encode gradient magnetic field and the rewind gradient magnetic field enable measurement of echo data along the broken line locus.
  • MRA images are acquired by performing the synchronous imaging described in the first embodiment and applying the dephase gradient magnetic field and the rephase gradient magnetic field described in the second embodiment. Detailed description will be omitted. Then, by combining these to acquire a non-contrast MRA image, the same effect as in the first embodiment can be obtained.
  • the MRI apparatus and the blood vessel imaging method of the present embodiment are bent at the origin in the (k1-k2) space or at a point near the origin, and the angle formed by the broken line is different for each measurement trajectory. Since non-orthogonal sampling for measuring echo data along the measurement trajectory is performed, the same effect as in the first embodiment can be obtained. Furthermore, the effect of being able to acquire a large amount of information in a short time can be obtained by using a broken line measurement trajectory.
  • the measurement trajectory is a spiral shape (spiral shape) passing through the origin of the (k1-k2) space or a point near the origin. Then, non-orthogonal sampling is performed to measure echo data along a plurality of spiral trajectories obtained by rotating one spiral trajectory with the readout (kr) direction as a rotation axis. That is, in this embodiment, the spiral measurement trajectory is a unit measurement trajectory, and this spiral measurement trajectory is a measurement trajectory rotated around the origin in the (k1-k2) space or a point near the origin.
  • the difference from the first embodiment is the shape of the imaging sequence and the measurement trajectory. Others are the same as those of the first embodiment, and the description thereof is omitted.
  • the imaging sequence and the shape of the measurement trajectory of the present embodiment will be described in detail.
  • FIG. 13 shows an example of a spiral measurement trajectory in the (k1-k2) space of the present embodiment
  • FIG. 14 shows a sequence chart representing an imaging sequence for measuring echo data along the spiral measurement trajectory of FIG. .
  • An arbitrary measurement trajectory in the (k1-k2) space shown in FIG. 13 is a spiral trajectory passing through the origin of the (k1-k2) space or a point near the origin. Then, one spiral measurement trajectory is rotated by a predetermined angle about the lead-out (kr) direction as a rotation axis to obtain a plurality of spiral measurement trajectories.
  • FIG. 13 shows a spiral measurement trajectory represented by a solid line and a dotted spiral measurement trajectory obtained by rotating the spiral measurement trajectory around the origin.
  • the number of revolutions around the origin of each spiral measurement trajectory or around the origin can be set arbitrarily, and may be a measurement trajectory in which the number of revolutions around the origin in the (k1-k2) space is one revolution or less. It may be a rotating measurement trajectory.
  • echo data may be measured sequentially from the center (low range) to the end (high range), or conversely from the end (high range) to the center (low range).
  • the echo data may be measured by moving randomly on the spiral measurement trajectory.
  • echo data is measured in the order of 1301-1 to 1301-7, that is, one spiral trajectory from the end side toward the center, and further on the same trajectory, returning from the center to the end side. An example is shown.
  • Such a spiral measurement trajectory can scan the (k1-k2) space almost uniformly with a single measurement trajectory, so the influence of T2 attenuation and the influence of body motion on the measured echo data are more three-dimensionally distributed. As a result, it is possible to reduce the influence of blurring and body motion artifacts on the MRA image, and to improve the image quality.
  • FIG. 2 is the flowchart of the first embodiment.
  • the imaging sequence for measuring the echo data along the spiral measurement trajectory shown in FIG. 14 is compared with the encoding gradient magnetic field G1 (G2) compared to the imaging sequence shown in FIG. 3 described in the first embodiment.
  • G2 (G1) is different.
  • the encode gradient magnetic fields G1 (G2) and G2 (G1) in the imaging sequence shown in FIG. 3 are monotonic in amplitude or applied amount of each encode gradient magnetic field pulse in order to measure echo data along a linear measurement trajectory. Increase or decrease.
  • the encode gradient magnetic fields G1 (G2) and G2 (G1) of the present embodiment are waveforms applied to measure echo data along the spiral measurement trajectory. Based on the complex changes. For example, the echo data of the measurement points 1301-1 to 1301-7 on the spiral measurement trajectory of FIG.
  • FIG. 13 correspond to the echo signals 303-1 to 303-7 in the sequence chart of FIG.
  • the encode gradient magnetic field pulses 1404 and 1406 and the rewind gradient magnetic field pulses 1405 and 1407 applied to measure 1 to 303-7 are as shown in FIG. Note that details of the spalice measurement trajectory are described in Patent Document 3, for example, and detailed description thereof is omitted.
  • the MRI apparatus and the blood vessel imaging method of the present embodiment are non-orthogonal that measure echo data along a spiral measurement trajectory passing through the origin or a point near the origin in the (k1-k2) space. Since system sampling is performed, the same effect as in the first embodiment can be obtained. Furthermore, by using a spiral measurement trajectory, it is possible to reduce the influence of blur and body motion artifacts in the MRA image, and to improve the image quality.
  • Example 6 a sixth embodiment of the MRI apparatus and the blood vessel image capturing method of the present invention will be described.
  • the difference from the first embodiment described above is that the imaging sequence and the shape of the measurement trajectory and gridding are not required. Others are the same as those of the first embodiment, and the description thereof is omitted.
  • the imaging sequence and the shape of the measurement trajectory of the present embodiment will be described in detail.
  • FIGS. 15 and 16 show an example of a measurement trajectory for measuring the echo data while moving the lattice points in the (k1-k2) space in a zigzag manner or randomly.
  • the measurement trajectory shown in FIG. 15 is an example of one basic zigzag measurement trajectory for non-orthogonal sampling of the echo data of lattice points in the (k1-k2) space.
  • the echo data of the nearest lattice point is measured while rotating this basic zigzag measurement trajectory at a predetermined angle around the origin or an arbitrary reference point.
  • the echo data of the nearest lattice point is measured while rotating the basic zigzag measurement trajectory at a predetermined angle for each repetition time (TR) of the imaging sequence.
  • TR repetition time
  • FIG. 15 (a) shows an example of a basic zigzag measurement trajectory having a narrow width in the k1 (k2) direction, and shows an example in which echo data of each lattice point is measured in the direction of the dotted arrow in the figure.
  • FIG. 15 (b) shows an example of a basic zigzag measurement trajectory that is wider in the k1 (k2) direction than the basic zigzag measurement trajectory of FIG. 15 (a). Rotating in the (k1-k2) space is the same as FIG. 15 (a).
  • echo data of a lattice point nearest to each non-orthogonal measurement locus described in the first to fourth embodiments may be measured.
  • FIG. 16 is an example in which echo data of lattice points in the (k1-k2) space is randomly sampled, and an example of measuring echo data of each lattice point in the order of dotted arrows.
  • the measurement control unit 111 In order to randomly measure the echo data of each lattice point, the measurement control unit 111 generates a pseudo random number to determine the lattice point, and according to the determined lattice point position, encode gradient magnetic fields G1, G2 of the imaging sequence Is applied based on equation (1). Then, the measurement control unit 111 changes the position of the grid point to be measured for each repetition time of the imaging sequence.
  • the positions of the measurement grid points for each repetition time are made different so that the positions of the measurement grid points do not overlap.
  • the application of the encoding gradient magnetic field is controlled so that only effective TE echo data becomes K-space center data.
  • the imaging sequence according to the present embodiment for measuring the echo data while moving the lattice points in the (k1-k2) space in a zigzag manner or at random is shown in FIG. 3 described in the first embodiment.
  • the encode gradient magnetic fields G1 (G2) and G2 (G1) are different.
  • the amplitude or applied amount of each encode gradient magnetic field pulse and each rewind gradient magnetic field pulse is zigzag or for each lattice point to be measured randomly, based on the coordinate value of the lattice point, based on equation (1) You only have to set it.
  • the amplitude or application amount of each encode gradient magnetic field pulse and each rewind gradient magnetic field pulse becomes irregular. Detailed illustration and description are omitted.
  • MRA images are acquired by performing the synchronous imaging described in the first embodiment and applying the dephase gradient magnetic field and the rephase gradient magnetic field described in the second embodiment. Detailed description will be omitted. Then, by combining these to acquire a non-contrast MRA image, the same effect as in the first embodiment can be obtained.
  • the arithmetic processing unit 115 skips without performing the gridding process in step 407 in the process flow of FIG. 4 described in the first embodiment, and directly performs the Fourier transform on the K space data measured in step 408.
  • the MRI apparatus and the blood vessel image capturing method of the present embodiment in the (k1-k2) space, send echo signals along the measurement trajectory that makes the echo data of the lattice points zigzag or random. Since the non-orthogonal sampling to be measured is performed, the same effect as in the first embodiment can be obtained. Furthermore, since the echo data of the lattice points are directly measured, no gridding process is required. For this reason, in the present embodiment in which the gridding process is not required, the image reconstruction process can be simplified and shortened.
  • the present invention is not limited to the contents disclosed in each of the above embodiments, and can take various forms based on the gist of the present invention.
  • non-orthogonal sampling in which the measurement trajectories described in each embodiment are mixed can be performed. What is required is a non-orthogonal measurement trajectory in which the influence of T2 attenuation in the measured echo data is three-dimensionally distributed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 エコーデータにおけるT2減衰の影響があっても、血管のボケが抑制され描出能が向上された非造影MRA像を取得するために、3次元K空間におけるリードアウト方向に垂直な2方向に非平行な計測軌跡に沿ってエコーデータを計測する撮像シーケンスを、被検体の周期的体動情報に同期させて実行し、その際、撮像シーケンスの繰り返し時間(TR)を周期的体動情報の複数周期となるようにする。

Description

磁気共鳴イメージング装置及び血管画像撮像方法
 本発明は、磁気共鳴イメージング(以下、「MRI」という)における、被検体の体動情報に同期して撮像を行い、取得する血管画像の画質を向上させる技術に関する。
 MRI装置は、核磁気共鳴(NMR)現象を利用して被検体の画像を得る計測装置であって、被検体に高周波磁場(以下、RFという)パルスを照射し、その応答として、被検体の組織を構成する原子核スピンが発生するNMR信号を計測する。そして計測したNMR信号に基づいて、被検体の頭部、腹部、四肢等の形態や機能を2次元的に或いは3次元的に画像化する。撮像の際には、傾斜磁場によって、NMR信号は、異なる位相エンコードやスライスエンコードが付与されると共に、周波数エンコードが付与されて、時系列データとして計測される。計測されたNMR信号は、2次元又は3次元フーリエ変換されることにより画像に再構成される。
 上記MRI装置を用いて、非造影で、即ち造影剤が被検体に投与されることなく、被検体の血管画像(MRA画像)を取得することが行われている。
 その方法の一つとして、特許文献1のように、時相検出手段により収集された被検体の心時相を表す信号に同期して、該信号から設定された遅延時間(Delay Time、DT)を空けて所定のスライスエンコード量分のエコー信号を高速スピンエコー(FSE)シーケンスで収集する動作を、複数心拍毎に繰り返す方法がある。例えば、遅延時間を収縮期に設定してエコー信号を収集すれば静脈が主に描出された静脈画像が得られ、拡張期に設定すれば動脈と静脈が共に描出された動静脈画像が得られる。また、これらの2つの画像データを差分することで動脈が主に描出された動脈画像が得られる。
 また、特許文献2では、位相エンコード方向に走行する血管の描出能を向上するために、位相エンコード方向にディフェーズ(Dephase)又はリフェーズ(Rephase)傾斜磁場パルスを印加する。リードアウト(Readout)方向にディフェーズ又はリフェーズ傾斜磁場パルスを印加することも可能であり、この場合はリードアウト方向に走行する血管の描出能が向上する。さらに、リードアウト方向、位相エンコード方向の両方にディフェーズ又はリフェーズ傾斜磁場パルスを印加することも可能である。
特許第4090619号公報 特許第4309632号公報 特開平7-284485号公報
J. I. Jackson  et. al., Selection of a Convolution Function for Fourier Inversion Using Gridding, IEEE Trans. Med. Imaging, vol. 10, pp. 473-478, 1991
 特許文献1は、位相エンコード方向又はスライスエンコード方向、のどちらか1方向にT2減衰の影響が入ったエコーデータが取得され、そのエコーデータをフーリエ変換して画像化することで非造影MRA画像を取得する。そのため、どちらか1方向にT2減衰の影響が入ったエコーデータを画像化すると、位相エンコード方向又はスライスエンコード方向にボケた非造影MRA画像となり、診断に悪影響を与える可能性がある。
 また、特許文献2では、スライスエンコード方向にはディフェーズ又はリフェーズ傾斜磁場パルスを印加しないため、スライスエンコード方向に走行する血管の描出能については考慮されていない。
 そこで、本発明は、エコーデータにおけるT2減衰の影響があっても、血管のボケが抑制され描出能が向上された非造影MRA像を取得することを目的とする。
 上記目的を達成するために、本発明は、3次元K空間におけるリードアウト方向に垂直な2方向に非平行な計測軌跡に沿ってエコーデータを計測する撮像シーケンスを、被検体の周期的体動情報に同期させて実行し、その際、撮像シーケンスの繰り返し時間(TR)を周期的体動情報の複数周期となるようにする。
 具体的には、本発明のMRI装置は、被検体の周期的な体動についての体動情報を検出する体動情報検出部と、撮像シーケンスに基づいて、周期的な体動情報に同期させた同期撮像を実行して、3次元K空間データの計測を制御する計測制御部と、3次元K空間データを用いて被検体の血管画像を再構成する演算処理部と、を有し、撮像シーケンスは、3次元K空間におけるリードアウト方向に垂直な2方向に非平行な計測軌跡に沿ってエコーデータを計測するものであり、計測制御部は、撮像シーケンスの繰り返し時間(TR)が体動情報の複数周期となるように、同期撮像を制御することを特徴とする。
 好ましくは、計測軌跡は、一つの直線状軌跡を、3次元K空間のリードアウト方向を回転軸として回転させて得られる複数の直線状計測軌跡であり、計測制御部は、撮像シーケンスを繰り返して、異なる直線状軌跡に沿うエコーデータをそれぞれ計測する。
 また、本発明の血管画像撮像方法は、被検体の心電図に撮像シーケンスを同期させる同期撮像によって、3次元K空間内の所定の計測軌跡に沿ってエコーデータを計測する計測ステップと、計測されたエコーデータを用いて、被検体の血管画像を取得するステップと、を有し、計測軌跡は、3次元K空間におけるリードアウト方向に垂直な2方向に非平行な計測軌跡であり、撮像シーケンスの繰り返し時間(TR)が心電図の複数周期であることを特徴とする。
 本発明のMRI装置及び血管画像撮像方法によれば、エコーデータにおけるT2減衰の影響があっても、血管のボケが抑制され描出能が向上された非造影MRA像を取得することができる。特に、リードアウト方向以外の方向(例えばリードアウト方向がH-F(Head-Foot)の場合は、R-L(Right-Left)とA-P(Anterior-Posterior))に走行する血管に対する描出能が向上された非造影MRA画像を取得できることができる。
本発明に係るMRI装置の一実施例の全体構成を示すブロック図。 実施例1における、(k1-k2)空間を非直交系サンプリングするための計測軌跡を示す図。 実施例1における、図2に示した計測軌跡に沿ってエコーデータの計測を行なう撮像シーケンスを表すシーケンスチャート。 実施例1の動作フローを表すフローチャート。 実施例1における、リファレンススキャンで用いる、PC(Phase Contrast)法パルスシーケンスの一例を示すシーケンスチャート。 撮像領域内の動脈と静脈の血流速度の変化と心電図との関係を表す血流変化グラフの一例を示す図。 心電図に同期する同期撮像であって、撮像シーケンスの繰り返し時間(TR)を複数の心拍(R-R)毎とする一例を示す図。(a)図は遅延時間(DT)が収縮期に設定されて静脈画像を取得する例を、(b)図は遅延時間(DT)が拡張期にされて動静脈画像を取得する例を、それぞれ示す。 実施例2の撮像シーケンスを示すシーケンスチャートであって、図3に示した実施例1の撮像シーケンスに、ディフェーズ傾斜磁場パルス又はリフェーズ傾斜磁場パルスを3方向に追加したもの。 実施例3における、(k1-k2)空間を非直交系サンプリングするための計測軌跡を示す図。 実施例3における、図9に示した計測軌跡に沿ってエコーデータの計測を行なう撮像シーケンスを示すシーケンスチャート。 実施例4における、(k1-k2)空間を非直交系サンプリングするための計測軌跡を示す図。 実施例4における、図9に示した計測軌跡に沿ってエコーデータの計測を行なう撮像シーケンスを示すシーケンスチャート。 実施例5における、(k1-k2)空間を非直交系サンプリングするための計測軌跡を示す図。 実施例5における、図9に示した計測軌跡に沿ってエコーデータの計測を行なう撮像シーケンスを示すシーケンスチャート。 実施例6における、(k1-k2)空間の格子点のエコーデータをジグザグに非直交系サンプリングするための一つの基本ジグザグ計測軌跡を示す図。(a)図は、(b)図よりk1(k2)方向の幅の狭い基本ジグザグ計測軌跡を示す。 実施例6における、(k1-k2)空間の格子点のエコーデータをランダムに非直交系サンプリングを行なう計測軌跡を示す図。
 以下、添付図面に従って本発明のMRI装置の好ましい実施形態について詳説する。なお、発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
 最初に、本発明に係るMRI装置の一例の全体概要を図1に基づいて説明する。図1は、本発明に係るMRI装置の一実施例の全体構成を示すブロック図である。このMRI装置は、NMR現象を利用して被検体101の断層画像を得るもので、図1に示すように、静磁場発生磁石102と、傾斜磁場コイル103及び傾斜磁場電源109と、送信RFコイル104及びRF送信部110と、受信RFコイル105及び信号検出部106と、信号処理部107と、計測制御部111と、全体制御部108と、表示・操作部113と、被検体101を搭載してその被検体101を静磁場発生磁石102の内部に出し入れするベッド112と、を備えて構成される。
 静磁場発生磁石102は、垂直磁場方式であれば被検体101の体軸と直交する方向に、水平磁場方式であれば体軸方向に、それぞれ均一な静磁場を発生させるもので、被検体101の周りに永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源が配置されている。
 傾斜磁場コイル103は、MRI装置の実空間座標系(静止座標系)であるX,Y,Zの3軸方向に巻かれたコイルであり、それぞれの傾斜磁場コイルは、それを駆動する傾斜磁場電源109に接続され電流が供給される。具体的には、各傾斜磁場コイルの傾斜磁場電源109は、それぞれ後述の計測制御部111からの命令に従って駆動されて、それぞれの傾斜磁場コイルに電流を供給する。これにより、X,Y,Zの3軸方向に傾斜磁場Gx,Gy,Gzが発生する。
 2次元スライス面の撮像時には、スライス面(撮像断面)に直交する方向にスライス傾斜磁場パルス(Gs)が印加されて被検体101に対するスライス面が設定され、そのスライス面に直交して且つ互いに直交する残りの2つの方向に位相エンコード傾斜磁場パルス(Gp)と周波数エンコード(リードアウト)傾斜磁場パルス(Gf)が印加されて、エコー信号にそれぞれの方向の位置情報がエンコードされる。本発明に係る3次元領域の撮像時の制御については後述する。
 送信RFコイル104は、被検体101にRFパルスを照射するコイルであり、RF送信部110に接続され高周波パルス電流が供給される。これにより、被検体101の生体組織を構成する原子の原子核スピンにNMR現象が誘起される。具体的には、RF送信部110が、後述の計測制御部111からの命令に従って駆動されて、高周波パルスが振幅変調され、増幅された後に被検体101に近接して配置された送信RFコイル104に供給されることにより、RFパルスが被検体101に照射される。
 受信RFコイル105は、被検体101の生体組織を構成する原子核スピンのNMR現象により放出されるNMR信号(エコー信号)を受信するコイルであり、信号検出部106に接続されて受信したエコー信号が信号検出部106に送られる。信号検出部106は、受信RFコイル105で受信されたエコー信号の検出処理を行う。具体的には、RF送信コイル104から照射されたRFパルスによって誘起された被検体101の応答のエコー信号が被検体101に近接して配置された受信RFコイル105で受信され、後述の計測制御部111からの命令に従って、信号検出部106が、受信されたエコー信号を増幅し、直交位相検波により直交する二系統の信号に分割し、それぞれを所定数(例えば128,256,512等)サンプリングし、各サンプリング信号をA/D変換してディジタル量に変換し、後述の信号処理部107に送る。 従って、エコー信号は所定数のサンプリングデータからなる時系列のデジタルデータ(以下、エコーデータという)として得られる。
 信号処理部107は、エコーデータに対して各種処理を行い、処理されたエコーデータを計測制御部111に送る。
 計測制御部111は、被検体101の断層画像の再構成に必要なデータ収集のための種々の命令を、主に、傾斜磁場電源109と、RF送信部110と、信号検出部106に送信してこれらを制御する制御部である。具体的には、計測制御部111は、後述する全体制御部108の制御で動作し、ある所定のパルスシーケンスに基づいて、傾斜磁場電源109、RF送信部110及び信号検出部106を制御して、被検体101へのRFパルスと傾斜磁場パルスの印加及び被検体101からのエコー信号の検出を繰り返し実行し、被検体101の撮像領域についての画像の再構成に必要なエコーデータを収集する。
 全体制御部108は、計測制御部111の制御、及び、各種データ処理と処理結果の表示及び保存等の制御を行うものであって、CPU及びメモリを内部に有する演算処理部114と、光ディスク、磁気ディスク等の記憶部115とを有して成る。具体的には、計測制御部111を制御してエコーデータの収集を実行させ、計測制御部111からのエコーデータが入力されると、演算処理部114がそのエコーデータに印加されたエンコード情報に基づいて、メモリのK空間に相当する領域に記憶させる。メモリのK空間に相当する領域に記憶されたエコーデータ群をK空間データともいう。そして演算処理部114はこのK空間データに対して信号処理やフーリエ変換による画像再構成等の処理を実行し、その結果である被検体101の画像を、後述の表示・操作部113に表示させると共に記憶部115に記録する。
 表示・操作部113は、再構成された被検体101の画像を表示する表示部と、MRI装置の各種制御情報や上記全体制御部108で行う処理の制御情報を入力するトラックボール又はマウス及びキーボード等の操作部と、から成る。この操作部は表示部に近接して配置され、操作者が表示部を見ながら操作部を通してインタラクティブにMRI装置の各種処理を制御する。
 また、本発明に係るMRI装置は、被検体の体動情報を検出する体動情報検出部を備える。この体動情報検出部は、被検体101に装着されて被検体の体動情報を検出するセンサー部116と、センサー部116からの信号を処理して、その処理した体動情報を計測制御部111に送る体動情報処理部117とを有してなる。体動情報検出部が被検体の心電図(心電波形)を検出するものであれば、センサー部116は心電図を検出する電極であり、体動情報処理部117は電極からのアナログ信号を処理する。計測制御部111は、体動情報検出部で検出された被検体の体動情報に同期させて、パルスシーケンスの実行による撮像を行なう同期撮像を制御する。
 なお、図1において、送信側のRF送信コイル104と傾斜磁場コイル103は、被検体101が挿入される静磁場発生磁石102の静磁場空間内に、垂直磁場方式であれば被検体101に対向して、水平磁場方式であれば被検体101を取り囲むようにして設置されている。また、受信側の受信RFコイル105は、被検体101に対向して、或いは取り囲むように設置されている。
 現在のMRI装置の撮像対象核種は、臨床で普及しているものとしては、被検体の主たる構成物質である水素原子核(プロトン)である。プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態または、機能を2次元もしくは3次元的に撮像する。
 (本発明の計測軌跡の特徴について)
 本発明は、3次元K空間(kr、k1、k2)において、リードアウト方向に対応するkr方向に直交する方向であるk1方向及びk2方向からなる(k1-k2)空間内で、(k1-k2)空間の座標軸(k1、k2)に非平行(非直交的)な計測軌跡に沿ってエコーデータを計測する(以下このような計測を非直交系(Non-Cartesian)サンプリングともいう)。計測軌跡に沿うエコーデータの計測は、該計測軌跡を等間隔又は不等間隔のいずれでも良い。その結果、K空間の格子点から外れたエコーデータが殆どとなる。これに対して、従来はK空間座標軸の一つに平行(直交系的)な計測軌跡に沿ってK空間格子点上のエコーデータの計測を行なう(以下このような計測を直交系(Cartesian)サンプリングともいう)。
 (k1-k2)空間の座標軸(k1、k2)に非平行な計測軌跡の例としては、基本計測軌跡を、3次元K空間のリードアウト(kr)方向を回転軸として回転させた計測軌跡とすることができる。換言すれば、(k1-k2)空間内の任意の基準点(例えば原点又は原点近傍の点或いはこれら以外の任意の点)の周りで基本計測軌跡を回転させた計測軌跡とすることができる。或いは、(k1-k2)空間内をランダムに計測しても良い。
 以上の様に本発明は(k1-k2)空間を非直交系サンプリングするので、従来の直交系サンプリングにおける位相エンコード方向とスライスエンコード方向の区別が全く無くなり、これらの両エンコード方向を区別して定義することができない。それ故に、本発明では、リードアウト方向に垂直な2方向をk1方向とk2方向とし、これらの2方向が張る空間を(k1-k2)空間とした。当業者には、直交系サンプリングにおいては、3次元K空間における位相エンコード方向とスライスエンコード方向を明確に意識して、それぞれkp方向及びks方向と記載する習慣が有るが、本発明は非直交系サンプリングに基づき、位相エンコード方向とスライスエンコード方向の意識が全く無い。このような当業者の習慣に従うことは誤解を招くので、本明細書では、敢えて異なる記載を行なう。
 なお、K空間の各座標軸と、実空間における各傾斜磁場の印加方向とはそれぞれ対応する。即ち、実空間におけるリードアウト傾斜磁場の印加方向がK空間のリードアウト方向に対応し、実空間におけるリードアウト傾斜磁場の印加方向に垂直な2方向が、K空間のリードアウト方向に垂直な2方向にそれぞれ対応する。以下の説明では、この対応に基づいて、適宜、2つの座標空間を区別することなく同じ表現で方向を指定する。
 (本発明の撮像シーケンスの特徴について)
 本発明の撮像シーケンスは、(k1-k2)空間を非直交系サンプリングするようにエンコード傾斜磁場の印加量を制御する。具体的には、(k1-k2)空間における任意の計測点(k1、k2)に対応するエンコード傾斜磁場の印加強度(G1,G2)を、矩形波で傾斜磁場パルスを印加する場合を想定すると、以下の(1)式で表すことができる。
   G1 = k1/(γ・FOV1・T)    (1)
   G2 = k2/(γ・FOV2・T)
 ここでTはエンコード傾斜磁場の印加時間、FOV1はk1方向の視野サイズ、FOV2はk2方向の視野サイズ、γは磁気回転比を表す。即ち、本発明では、非直交サンプリングする(k1-k2)空間における任意の計測点のエコーデータを計測する際には、その計測点の座標に応じて(1)式で定まるエンコード傾斜磁場を印加して、該エコーデータを計測する。
 以上説明したように、本発明では、(k1-k2)空間を非直交サンプリングするため、取得されたエコーデータにおけるT2減衰の影響が、リードアウト(kr)方向のみならず、k1方向及びk2方向にも分散することになる。つまり、T2減衰の影響が3次元K空間において3次元的に分散することになる。これにより、フーリエ変換して得られるMRA画像のボケを低減することができる。従来は、(k1-k2)空間を直交系サンプリングするため、T2減衰の影響が特定の方向に集中し、その方向にMRA画像がぼけてしまう課題があった。本発明ではこの課題が解消される。
 また好ましくは、本発明は、MRA画像の画質を向上させるために、少なくともk1方向とk2方向にディフェーズ傾斜磁場又はリフェーズ傾斜磁場を印加する。好ましくはkr方向も含めた3方向にディフェーズ傾斜磁場又はリフェーズ傾斜磁場を印加する。これにより、MRA画像における血管の描出能を向上させることができる。
 また好ましくは、本発明は、上記非直交系サンプリング行なう撮像シーケンスを、被検体の体動情報に同期させた同期撮像を行なうことで、MRA画像を取得する。そこで、撮像シーケンスの繰り返し時間(TR)を複数心拍とするが、これはT2強調(T2W)画像を取得するためである。血液のT1値を考慮すると、一般的な心拍数(60前後)の被検体では、2~3心拍程度の繰り返し時間とすることが望ましい。
 また、同期タイミング(例えば心電図のR波)から撮像シーケンスが起動されるまでの時間或いは実効TEで指定されるエコー信号のピーク位置までの時間(つまり実効TEまでの時間)である遅延時間(Delay Time;DT)を制御する。具体的には、遅延時間(DT)を収縮期に設定して静脈画像を取得する。また、遅延時間(DT)を拡張期に設定して動静脈画像を取得する。同期方法は心電同期又は脈波同期のいずれでも良い。以下、心電同期を例にして、遅延時間(DT)をR波から実効TEまでの時間として、本発明に係る同期非直交系サンプリングについての複数の実施例を説明する。
 (実施例1)
 次に、本発明のMRI装置及び血管画像撮像方法についての実施例1を説明する。本実施例は、一つの直線状軌跡を、3次元K空間のリードアウト(kr)方向を回転軸として回転させて得られる複数の直線状計測軌跡に沿ってエコーデータを計測する。即ち、本実施例は、直線状計測軌跡を基本計測軌跡とし、(k1-k2)空間内でリードアウト(kr)方向を回転軸としてこの直線状計測軌跡を回転させた計測軌跡を用い、このような回転対称な直線状計測軌跡に沿ってラディアル的な非直交系サンプリングを行なう。本実施例に係る撮像シーケンスは、これらの直線状計測軌跡に沿ってエコーデータを計測する。これにより、エコーデータにおけるT2減衰の影響をリードアウト方向以外の2方向にも分散させることができるため、MRA画像において血管のボケを抑制して血管の描出能を向上させることができる。
 図2に、本実施例に係り、(k1-k2)空間を非直交系サンプリングするための計測軌跡を示す。図2は(k1-k2)空間のみを示しており、リードアウト(kr)方向はこの(k1-k2)空間に垂直な方向であって紙面に垂直な方向である。以降の説明においても同様である。
 本実施例の計測軌跡は、(k1-k2)空間の原点又は原点近傍の点(任意の基準点)を通過する直線状の計測軌跡である。各直線状計測軌跡は、リードアウト(kr)方向を回転軸とする回転対称な関係にあり、任意の一つの直線状計測軌跡を(k1-k2)空間内の原点又は原点近傍の点の周りに所定角度回転して他の直線状計測軌跡が得られる。原点周りの回転であれば回転軸はリードアウト軸となり、任意の基準点周りの回転であれば回転軸は該基準点を通るリードアウト軸に平行な直線となる。別の表現をすれば、本実施例は、(k1-k2)空間内でラディアルサンプリングを行なう計測軌跡とする。そして、各直線状計測軌跡に沿って所定の間隔でエコーデータが計測される。各直線状計測軌跡に沿う複数のエコーデータが、撮像シーケンスの1繰り返し時間(TR)内で計測されるか、又は、複数の繰り返し時間に分割して計測される。
 図2は、(k1-k2)空間の原点周りに直線状計測軌跡を回転させる例であって、原点を通る直線状計測軌跡201に沿って、等間隔又は不等間隔の7つの計測点(202-1~202-7)のエコーデータが計測される例を示す。他の直線状計測軌跡に沿うエコーデータの計測も同様である。
 また、本実施例は、上記(k1-k2)空間の原点を通過する直線状計測軌跡に沿うエコーデータの計測を、被検体の体動情報に同期させて行う。具体的には、撮像シーケンスの繰り返し時間(TR)を複数心拍にして、複数の繰り返し時間(TR)間で、直線状計測軌跡の回転角を変える。計測軌跡の回転のさせ方は、撮像シーケンスの繰り返し時間毎に所定角度ずつ回転させても良いし、ランダムに回転させても良い。撮像が終了した時点で、画像再構成に必要な3次元K空間データが取得されていれば良い。
 (実施例1に係る撮像シーケンス)
 次に、本実施例に係り、図2に示した(k1-k2)空間の原点を通過する直線状計測軌跡に沿うエコーデータの計測を行なう撮像シーケンスを図3に基づいて説明する。図3は、本実施例の撮像シーケンスのシーケンスチャート(タイミング図)であり、エコーファクター=7の例、即ち、1繰り返し時間(TR)内或いは1回の励起で7つのエコー信号を計測する例を示す。ECG、RF/Echo、G1(G2)、G2(G1)、及びGrは、それぞれ心電図(心電波形)、RFパルス/エコー信号、k1(k2)方向に印加する傾斜磁場パルス波形、k2(k1)方向に印加する傾斜磁場波形、及びリードアウト方向に印加する傾斜磁場波形を意味する。以下、後述する各シーケンスチャートにおいて同様とする。なお、k1方向とk2方向は、特に区別する必要が無く、いずれがk1方向又はk2方向で良いので、k1(k2)方向とk2(k1)方向の様に記載している。
 計測制御部111は、図3に示すシーケンスチャートに基づいて、傾斜磁場電源109、RF送信部110及び信号検出部106を制御してエコー信号の計測を行なう。具体的には、90°RFパルス301がスライス選択傾斜磁場310と共に印加されて所望の撮像領域(後述のステップ401で設定される撮像領域)が励起される。なお、図3では、心電図R波を簡略表示してある。その後、所定の時間間隔で180°反転RFパルス302が複数回印加される。図3の例はエコーファクター=7なので、7回の180°反転RFパルス(302-1~302-7)が印加される。そして180°反転RFパルス302の後でエコー信号303が発生し、7つのエコー信号(303-1~303-7)がそれぞれ計測される。この際、心電図でR波からの遅延時間(DT)は、R波から実効TEまでの時間である(つまり、R波から、K空間中心に配置されるエコー信号303-4のピーク位置までの時間)。また、180°反転RFパルスは、スライス選択又はスライス非選択のどちらでもよい。スライス非選択にすることでプロファイルの改善、血管描出能の改善が見込める可能性がある。図3はスライス非選択の例を示す。図3以降のシーケンスチャートも同様である。
 各エコー信号303には、(k1-k2)空間内の直線軌跡上のエコーデータとするために、k1方向とk2方向にエンコード傾斜磁場304と306がそれぞれ印加される。各エコー信号303の計測の後には、印加されたエンコード傾斜磁場304,306の印加量をキャンセルして横磁化の位相を元のゼロに戻すために、エンコード傾斜磁場と逆極性で絶対値が同じ印加量(=印加波形と時間軸との囲む面積)を有するリワインド傾斜磁場305と307がk1方向とk2方向にそれぞれ印加される。これらのエンコード傾斜磁場304,306及びリワインド傾斜磁場305,307の印加量は、(k1-k2)空間内の計測点の位置に応じて(1)式に基づいて変更される。図3の例では、エンコード傾斜磁場304,306は、エコー信号の計測毎に負極性大振幅→振幅0(ゼロ)→正極性大振幅と変更され、反対にリワインド傾斜磁場305,307は、エコー信号の計測毎に正極性大振幅→振幅0(ゼロ)→負極性大振幅と変更される。これにより、図2に示す一つの直線状計測軌跡201上において、一方の端部から原点を通って他方の端部迄の各計測点のエコーデータがそれぞれ計測される。図2の例では、直線軌跡201上の7つの計測点202-1~202-7のエコーデータが計測されることになる。
 k1方向とk2方向のエンコード傾斜磁場304,306の振幅比は、(k1-k2)空間内での直線状計測軌跡の回転角度に応じて変わる。即ち、回転角ゼロで定まる最大振幅のエンコード傾斜磁場を、直線状計測軌跡の回転角度に応じて、k1方向とk2方向のエンコード傾斜磁場にそれぞれ分配される。したがって、直線状計測軌跡の回転角度を変えて計測する際には、これらのk1方向とk2方向に分配されるエンコード傾斜磁場の印加量が回転角度に応じて変更される。つまり、図3のように、計測される各エコー信号に付与されるk1、k2方向のエンコード量を回転角度に対応して共に変化させることで、図2のような直線状計測軌跡を(k1-k2)空間の原点の周りで回転させながら、ラディアル的なk空間走査を行なうことが可能になる。
 なお、各エコー信号303の計測の際には、リードアウト傾斜磁場309が印加されて、リードアウト方向の空間位置情報が各エコー信号303にエンコードされる。また、各エコー信号をそのサンプリング期間の略中央でピークとなるように計測するために、各リードアウト傾斜磁場309の半分の印加量となるディフェーズ傾斜磁場308がリードアウト傾斜磁場309の前であってスライス選択傾斜磁場310の後に印加される。
 計測制御部111は、以上の一繰り返し時間(TR)分のパルスシーケンスを、複数心拍ごとに繰り返す。その際、複数の繰り返し時間(TR)の間で、直線状計測軌跡の回転角を変える。即ち、上述したように、エンコード傾斜磁場及びリワインド傾斜磁場の印加量を変えて、直線状計測軌跡の回転角度を異ならせる。好ましくは、繰り返し時間(TR)毎に直線状計測軌跡の回転角度を異ならせる。異ならせ方は、前述したとおり、所定の一定角度毎でも良いし、ランダムであっても良い。或いは、一つの直線状計測軌跡に沿うエコーデータの計測を複数の繰り返しで分割して行っても良い。
 以上の本実施例の撮像シーケンスによれば、リードアウト方向に垂直な(k1-k2)空間内でエコーデータをラディアル的に計測することで、計測されたエコーデータにおけるT2減衰の影響を3次元的に(少なくともk1方向とk2方向に)分散できるようになり、フーリエ変換して得られるMRA画像における血管のボケを低減することができる。
 (リファレンススキャン)
 また、本実施例は、上記撮像シーケンスを用いて、被検体に造影剤を投与することなく、即ち非造影で、MRA画像を取得する。そこで、計測制御部111は、レファレンススキャンを行い、上記撮像シーケンスを用いて所望の非造影MRA画像の取得に好適な撮像パラメータの値を決定するためのデータを取得する。レファレンススキャンは撮像シーケンスの実施前に実施される。撮像シーケンスは、このレファレンススキャンで取得されたデータを用いて決定された好適な撮像パラメータ値に基づいて実施される。
 撮像シーケンスにより取得される非造影MRA画像の画質を左右する撮像パラメータは、心周期における拡張期と収縮期の時相を特定するためのR波からの遅延時間(DT)と、撮像領域における血管内の血流速度と、を含むので、決定すべき撮像パラメータ値としては、その遅延時間(DT)血流速度の値である。
 例えば、リファレンススキャンとして、図5に示すPC(Phase Contrast)法パルスシーケンスを用いる場合は、所望の(後述するステップ401で設定される)撮像領域を時系列で複数撮像し、該撮像領域の位相画像を時系列で複数取得する。そして、得られた時系列位相画像を用いて、注目する血流部分の位相の時間変化を求めて、該血流の流速変化グラフを作成する。位相画像の位相と血流速度との関係は以下の(2)式に基づいて求めることができる。
Figure JPOXMLDOC01-appb-I000001
 ここで、γはラーモア周波数、Gは傾斜磁場強度、vは血流速度、tは傾斜磁場印加時間である。
 図6に血流変化グラフの一例を示す。この血流変化グラフは、心電図と同じ時間スケールで並列に表示したものである。実線が動脈血流の流速変化グラフであり、点線が静脈の流速変化グラフである。これにより、心電時相と血流速度との関係が一目瞭然となり、拡張期又は収縮期を特定するための遅延時間(DT)と、撮像領域における血管内の血流速度の設定が容易となる。設定は、例えば、操作者が表示・操作部113を介して、この流速変化グラフ上で所望の点又は期間を指定することにより行なわれる。
 一般的には、図6に示す様に、心電図の特徴箇所にP、Q、R、S、Tの符号が付されており、R-T期間が収縮期であり、T-R期間が拡張期である。そこで、R-T期間のいずれかを計測期間として設定すると、その期間のエコーデータを用いて収縮期画像(静脈画像)が取得され、T-R期間のいずれかを計測期間として設定すると、その期間のエコーデータを用いて拡張期画像(動静脈画像)が取得さる。
 また、リファレンススキャンとして、本撮像シーケンスに準ずるパルスシーケンスでリファレンススキャンを行う場合は、操作者は、得られた画像における動脈、静脈の描出能を視覚的に評価して、遅延時間(DT)や血流速度を決定し、表示・操作部113を介して、それらの値を入力設定する。
 (実施例1に係る処理フロー)
 次に、本実施例の、(k1-k2)空間内計測軌跡に沿うエコーデータの計測を行なう撮像シーケンスを用いた非造影MRA画像の取得を実現する処理フローを図4に基づいて説明する。図4は、本実施例の処理フローを表すフローチャートである。この動作フローの全体フロー及び各ステップにおける個別処理はプログラムとして予め磁気ディスク等の記憶部115に記憶されており、CPUが必要に応じてメモリに読み込んで実行することにより実施される。以下、各ステップを詳細に説明する。なお、非造影MRA画像を取得するので、被検体に造影剤を投与するステップは無い。
 ステップ401で、操作者は、表示・操作部113を介して、撮像シーケンスの撮像条件(撮像領域、FOV,リードアウト方向、画像のマトリックス数等)を設定する。特にリードアウト方向の設定は、(k1-k2)空間をラディアル的にサンプリングするため、位相エンコード方向とスライスエンコード方向の区別が無くなるので、リードアウト方向のみを設定する。リードアウト方向は、H-F(Head-Foot)、R-L(Right-Left)、A-P(Anterior-Posterior)のいずれか1方向に実質的に一致させることが好ましい。さらに、リードアウト方向を血管の走行方向に合わせることが望ましい。例えば、下肢の非造影MRA画像を取得したい場合には、下肢の血管の走行方向は主にH-F方向となるので、リードアウト方向をH-F方向に合わせることが望ましい。
 また、操作者は、取得するMRA画像種として動静脈画像(拡張期画像)か静脈画像(収縮期画像)かを決定する。この決定に基づいて、後述するステップにおける画像演算の手法が設定される。
 ステップ402で、計測制御部111は、ステップ401で設定された撮像領域に対し、レファレンススキャンを実行する。レファレンススキャンにより計測されたエコーデータ又は画像は、後述のステップにおいて、撮像シーケンスを用いた所望の非造影MRA画像の取得に好適な撮像パラメータ値を決定するために用いられる。
 リファレンススキャンに用いるパルスシーケンスとしては、前述したとおり、図5に示すような、ベロシティーエンコード(VENC)パルスを用いる公知のPC法に基づくパルスシーケンスでもよし、撮像シーケンスに準ずるパルスシーケンスでもよい。詳細は前述したとおりである。
 ステップ403で、演算処理部114は、ステップ402のリファレンススキャンで計測されたデータ(エコーデータ又は画像データ)に基づいて、撮像シーケンスを用いた所望の非造影MRA画像の取得に好適な撮像パラメータ値を決定する。導出すべき撮像パラメータ値については前述したとおりである。そして、演算処理部114は、ステップ401で設定された撮像条件とステップ403で決定された撮像パラメータ値に基づいて、前述した図3の撮像シーケンスを具体的に設定する。
 ステップ404で、計測制御部111は、ステップ403で具体的に設定された撮像シーケンスを用いて、本実施例の非直交系サンプリングを例えば被検体から検出した心電図に同期させて、同期撮像(本撮像)を開始する。
 同期撮像の際には、計測制御部111は、撮像シーケンスの繰り返し時間(TR)を2以上の複数心拍とし、複数の繰り返し時間(TR)の間で直線状計測軌跡の回転角を変えるために、直線状計測軌跡の回転角に応じたエンコード傾斜磁場の印加強度や印加量を変更して印加する。
 また、ステップ401で設定されたMRA画像種とステップ403で決定された遅延時間(DT)に基づいて、計測制御部111は、R波からの遅延時間を設定する。具体的には、静脈画像を取得する場合には心電図R波からの遅延時間(DT)を収縮期に設定し、動静脈画像を取得する場合には心電図R波からの遅延時間(DT)を拡張期に設定する。
 計測制御部111は、以上のような、繰り返し時間(TR)を複数心拍とする心電同期非直交系サンプリングを行なう撮像シーケンスを設定して開始する。
 図7は、心電図に同期する同期撮像であって、撮像シーケンスの繰り返し時間(TR)を複数の心拍(R-R)毎とする一例として、TR=3心拍(3R-R)の場合を示す。また、図7は、遅延時間(DT)の後の黒枠の期間に撮像シーケンスが実行される例を示す。図7(a)は、遅延時間(DT)が収縮期に設定されて静脈画像を取得する例を、図7(b)は遅延時間(DT)が拡張期にされて動静脈画像を取得する例を、それぞれ示す。
 ステップ405で、計測制御部111は、ステップ404で設定し開始した、繰り返し時間(TR)を複数心拍とする心電同期非直交系サンプリングを行なう撮像シーケンスを繰り返し実行して、所望の非造影MRA画像を取得するためのエコーデータを計測する。その際、計測制御部111は、直線状計測軌跡が、3次元K空間のリードアウト(kr)方向を回転軸として、(k1-k2)空間内で回転するように各エンコード傾斜磁場の出力(印加強度、印加量)を制御し、各直線状計測軌跡に沿うエコーデータを計測する。好ましくは、計測制御部111は、繰り返し時間(TR)毎に計測軌跡の角度を変える。そして、各直線状計測軌跡に沿うエコーデータの計測の際に、計測制御部111は、撮像シーケンスを心電図R波に同期させて、ステップ404で設定された遅延時間(DT)を空けてこのような非直交系サンプリングを行なう。
 ステップ406で、計測制御部111は、ステップ401で設定された撮像条件に基づくエコーデータ量、即ち、画像再構成に必要なエコーデータ量の計測が完了したか否かを判定し、否(No)であれば、ステップ405に戻って、本実施例の非直交系サンプリングを継続する。その際、計測制御部111は、直線状計測軌跡の回転軸の周りの回転角を変えて、異なる直線状計測軌跡に沿ってエコーデータの計測を継続する。完了(Yes)であればステップ407に移行する。
 ステップ407で、演算処理部114は、ステップ405で計測されたエコーデータを、3次元K空間の各格子点に再配置(グリッディング)する。グリッディング処理は、例えばSinc関数やKaiser-Bessel関数の補間用関数を用いて行う(非特許文献1)。
 ステップ408で、演算処理部114は、ステップ407でグリッディングされた3次元K空間データをフーリエ変換して3次元画像を再構成する。そして、ステップ401で設定された画像種に応じて、演算処理部114は、静脈画像(収縮期画像)と動静脈画像(拡張期画像)間で各種演算を行う。例えば、ステップ401で動脈画像の取得が設定されていたならば、収縮期画像と拡張期画像との間で差分演算を施して、その差分演算の結果取得された3次元画像を3次元動脈画像とする。
 ステップ409で、演算処理部114は、ステップ408で演算の結果取得した3次元画像データを用いて、所望の方向の投影画像を作成し、最終的な非造影MRA画像とする。投影画像を作成する処理としては、例えば公知のMIP(Maximum Intensity Projection)法やボリュームレンダリング法を用いることができる。
 以上までが本実施例の処理フローの説明である。なお、リファレンススキャンを実行することなく、所定の、或いは、事前に決定された撮像パラメータ値を用いてもよい。この場合は、これらの事前の撮像パラメータ値を用いて撮像シーケンスを生成しておくことになり、前述のステップ402と403を実行する必要はない。
 以上説明したように、本実施例のMRI装置及び血管画像撮像方法は、3次元K空間のリードアウト方向を回転軸とする複数の直線状計測軌跡に沿ってエコーデータを計測する撮像シーケンスを、被検体の体動情報に同期させて行なう。その際、撮像シーケンスの繰り返し時間(TR)を複数心拍にして、複数の繰り返し時間(TR)の間で、直線状計測軌跡の(k1-k2)空間内での回転角を変える。これにより、計測されたエコーデータにおけるT2減衰の影響が3次元的に分散するため、このように計測されたエコーデータをフーリエ変換して得られる非造影MRA画像のボケを低減することができ、画質を向上させることができる。
 (実施例2)
 本発明のMRI装置及び血管画像撮像方法についての実施例2を説明する。本実施例は、3次元K空間のリードアウト方向に垂直な2方向に対応する実空間の方向に、それぞれ、前記被検体の血流の核磁化の位相を変調するためのリフェーズ傾斜磁場又はディフェーズ傾斜磁場を印加する。具体的には、前述の実施例1の撮像シーケンスにおいて、3軸方向の少なくともk1方向とk2方向に、リフェーズ傾斜磁場又はディフェーズ傾斜磁場を印加する。好ましくはリードアウト(kr)方向を含めた全方向に印加する。例えば、H-F方向をリードアウト方向とすると、H-F方向、R-L方向、及びA-P方向にリフェーズ傾斜磁場又はディフェーズ傾斜磁場を印加する。これにより、MRA画像において、リフェーズ傾斜磁場又はディフェーズ傾斜磁場を印加した方向に走行する血管に対する描出能を向上させることができる。他については、前述の実施例1と同じなので説明を省略する。以下、図8に基づいて、本実施例を詳細に説明する。
 図8は、本実施例の撮像シーケンスのシーケンスチャートを示し、前述の実施例1で説明した図3に示した撮像シーケンスに、ディフェーズ傾斜磁場パルス又はリフェーズ傾斜磁場パルスを3方向に追加したものである。
 具体的には、各方向の傾斜磁場に追加された黒塗矩形の傾斜磁場パルス(801,802,,810,811)が、ディフェーズ傾斜磁場パルス又はリフェーズ傾斜磁場パルスに相当する(以下まとめて位相制御傾斜磁場という)。具体的には、リードアウト傾斜磁場(Gr)の印加方向に関しては、傾斜磁場パルス810,309,811の印加量比が略1:2:1の関係となるようにすれば、血流の核磁化の位相をリフェーズすることができる。逆に傾斜磁場パルス810,309,811の印加量比が略1:2:1の関係からずれるようにすれば、血流の核磁化の位相をディフェーズすることができる。一方、G1(G2)、及びG2(G2)傾斜磁場の印加方向に関しては、傾斜磁場パルス801,802はディフェーズ傾斜磁場パルスとなり血流の核磁化の位相をディフェーズすることができる。計測制御部111は、図8の撮像シーケンスを実施するよう、各方向の傾斜磁場印加を制御する。
 上述の通り、k1(k2)方向のエンコード傾斜磁場G1(G2)と、k2(k1)方向のエンコード傾斜磁場G2(G1)には、90°パルス後に、位相制御傾斜磁場801,802がそれぞれ印加される。しかし、これらの位相制御傾斜磁場801,802によって、エコー信号に印加されるべき所望のエンコード量が影響を受ける。そこで、k1(k2)方向とk2(k1)方向では、位相制御傾斜磁場801,802の印加量に相当する分を、元々の各エンコード傾斜磁場304,306とリワインド傾斜磁場305,307の印加量に対して加算又は減算して得た印加量を、本実施例のエンコード傾斜磁場804,606とリワインド傾斜磁場805,807とする。図8の点線枠で示した部分が加算又は減算分に相当する。具体的には、エンコード傾斜磁場G1(G2)では、元々のエンコード傾斜磁場304の印加量から位相制御傾斜磁場801の印加量相当分を減算したエンコード傾斜磁場804が印加される。また、元々のリワインド傾斜磁場305の印加量に位相制御傾斜磁場801の印加量相当分を加算したリワインド傾斜磁場805が印加される。同様に、エンコード傾斜磁場G2(G1)では、元々のエンコード傾斜磁場306の印加量から位相制御傾斜磁場802の印加量相当分を減算したエンコード傾斜磁場806が印加される。また、元々のリワインド傾斜磁場307の印加量に位相制御傾斜磁場802の印加量相当分を加算したリワインド傾斜磁場807が印加される。
 また、リードアウト(kr)方向では、エコー信号の計測に際に印加するリードアウト傾斜磁場309の前後に位相制御傾斜磁場810,811がそれぞれ印加される。これにより、本来印加すべきディフェーズ傾斜磁場308の印加量が影響を受けるので、追加された位相制御傾斜磁場810,811の印加量に相当する印加量(点線枠で示した部分)を元々のディフェーズ傾斜磁場308から減算したディフェーズ傾斜磁場808が印加される。図8の例では、元々のディフェーズ傾斜磁場308の印加量と減算分とが相殺して、ディフェーズ傾斜磁場808の印加量が0(ゼロ)となった場合を示す。
 以上の血流の核磁化の位相を変調するためのリフェーズ傾斜磁場パルス又はディフェーズ傾斜磁場パルスは、3軸方向の少なくともk1方向とk2方向に印加する。好ましくはリードアウト(kr)方向を含めた全方向に印加する。これにより、リフェーズ傾斜磁場パルス又はディフェーズ傾斜磁場パルスが印加された方向に走行する血管の描出能を向上させることができる。例えば、リードアウト方向をH-F方向としてK1方向とK2方向とをそれぞれR-L方向とA-P方向とした場合には、血管画像において、R-L方向とA-P方向に走行する血管の描出能を向上することができる。
 また、ディフェーズ傾斜磁場パルス又はリフェーズ傾斜磁場パルスの印加量を、前述の実施例1で説明したラディアル的な非直交系サンプリングの場合に、k空間上で直線状計測軌跡の方向により変化させてもよい。例えば、直線状計測軌跡の方向がk1方向又はk2方向に一致している場合にのみ、ディフェーズ傾斜磁場パルス又はリフェーズ傾斜磁場パルスを印加してもよい。
 以上の本実施例の撮像シーケンスを用いて、(k1-k2)空間を非直交系サンプリングすることや、被検体の体動情報に同期させた同期撮像を行なうことは前述の実施例1と同じなので詳細な説明は省略する。なお、本実施例は非造影MRA画像の取得に好適であり、血管描出能の向上効果が非造影MRA画像において顕著となる。
 以上説明したように、本実施例のMRI装置及び血管画像撮像方法は、少なくともk1方向とk2方向にディフェーズ傾斜磁場パルス又はリフェーズ傾斜磁場パルスを印加してMRA画像を取得するので、そのMRA画像において、ディフェーズ傾斜磁場又はリフェーズ傾斜磁場を印加した方向に走行する血管の描出能力を向上させることができる。特に、リードアウト(kr)方向をH-F方向とした場合には、MRA画像において、リードアウト(kr)方向ではない方向(R-L方向とA-P方向)に走行する血管の描出能を向上させることができる。特に非造影MRA画像の取得において、本実施例の効果が顕著となる。
 (実施例3)
 本発明のMRI装置及び血管画像撮像方法についての実施例3を説明する。本実施例は、複数の平行直線状計測軌跡を含んで成る単位軌跡群(ブレード)を、リードアウト(kr)方向を回転軸として回転させて得られる複数の単位軌跡群に沿ってエコーデータを計測する非直交系サンプリングを行う。即ち、本実施例は、ブレードを構成する複数の平行直線状計測軌跡を基本計測軌跡とし、ブレードを(k1-k2)空間内の任意の基準点の回りで回転させた計測軌跡とする。したがって、前述の実施例1と異なる箇所は撮像シーケンス及び計測軌跡の形状である。他については前述の実施例1と同じなので詳細な説明を省略する。以下、本実施例の撮像シーケンス及び計測軌跡の形状について詳細に説明する。
 図9は、本実施例の(k1-k2)空間における非直交系計測軌跡の一例を示し、図10は、図9の計測軌跡に沿ってエコーデータの計測を行なう撮像シーケンスを表すシーケンスチャートを示す。以下、このようなパルスシーケンスをハイブリッドラディアルシーケンスという。
 図9に示す(k1-k2)空間内の計測軌跡は、複数の平行直線状計測軌跡を含んで成るブレードを、リードアウト(kr)方向を回転軸として回転させたものであり、回転後の各ブレードを構成する複数の平行直線状計測軌跡に沿ったエコーデータがそれぞれ計測される。なお、図9は、(k1-k2)空間の原点でブレードを回転させた例を示すが、回転中心は原点以外の原点近傍の点又は任意の基準点でよい。
 具体的には、前述の実施例1で説明した図2に示した一つの直線状計測軌跡と、これに平行な複数の直線状計測軌跡と、を含んで成る平行直線状計測軌跡群をブレードとする。このブレードを(k1-k2)空間内でリードアウト(kr)方向を回転軸として回転させて複数のブレードを生成する。各ブレードを構成する直線状計測軌跡の数、ブレードの個数及び回転角度は、所望の画像が取得されるように決定することができ、例えば図4のステップ401で操作者が設定可能である。図9はブレードを構成する平行直線状計測軌跡の数が3つ(901,902,903)の例を示している。これらのブレードを構成する複数の平行直線状計測軌跡に沿ったエコーデータが計測される。
 なお、本実施例の非直交系計測軌跡では、グリッディング処理が必要となるため、本実施例のフローチャートは実施例1のフローチャートである図2と同様となる。
 図10に示すハイブリッドラディアルシーケンスは、一つのブレードにおいて複数の平行直線状計測軌跡に沿ってエコー信号を計測するために、エンコード傾斜磁場G1(G2)とG2(G1)には、90°RFパルス後に、オフセット傾斜磁場1001、1002が印加される。このオフセット傾斜磁場1001、1002は、平行直線状計測軌跡の数とそれらの間隔に応じて、印加量及び印加ステップ数が異なり、(3)式に応じて決定することができる。
    G =  k/(γ・FOV・T)    (3)
 ここで、kはオフセット傾斜磁場のステップ番号、Tはオフセット傾斜磁場の印加時間、FOVはオフセット傾斜磁場印加方向の視野サイズ、γは磁気回転比を表す。
 計測制御部111は、この(3)式で回転角度毎に求められるオフセット傾斜磁場1001、1002を、当該回転角のブレードを構成する複数の平行直線状計測軌跡に沿ったエコーデータの計測を行なう際に、印加する。他の傾斜磁場については、前述の実施例1で説明した図3の撮像シーケンスと同様なので詳細な説明は省略する。
 上記ハイブリッドラディアルシーケンスは、(k1-k2)空間における回転の基準点(図9の場合は原点)近傍のデータを特に密に、或いは、重複させて計測することができるので、被検体の体動にロバストといわれている。
 なお、本実施例のハイブリッドラディアルシーケンスにおいても、実施例1で説明した同期撮像や、実施例2で説明したディフェーズ傾斜磁場とリフェーズ傾斜磁場の印加を行って、MRA画像を取得することは同様であり、詳細な説明は省略する。そして、これらを組み合わせて非造影MRA画像の取得を行えば、実施例1と同様の効果が得られる。
 以上説明したように、本実施例のMRI装置及び血管画像撮像方法は、複数の平行直線状計測軌跡を含んで成るブレードを、リードアウト(kr)方向を回転軸として回転させて得られる複数の平行直線状計測軌跡に沿ってエコー信号を計測する非直交系サンプリングを行う。これにより、前述の実施例1と同様の効果を得ることができる。さらに、このような計測軌跡を用いるので被検体の体動にロバストなMRA画像を取得することが可能になる。
 (実施例4)
 次に、本発明のMRI装置及び血管画像撮像方法についての実施例4を説明する。本実施例は、2つの線分軌跡が(k1-k2)空間の原点又は原点近傍の点で接続して成る計測軌跡(以下、折れ線計測軌跡という)とし、2つの線分間の角度が異なる複数の折れ線計測軌跡に沿ったエコーデータを計測する非直交系サンプリングとする。即ち、本実施例は、折れ線計測軌跡を単位計測軌跡とし、折れ線計測軌跡を折れ曲がり角度を変えて、(k1-k2)空間内の任意の基準点の回りで回転させた計測軌跡とする。したがって、前述の実施例1と異なる箇所は撮像シーケンス及び計測軌跡の形状である。他については前述の実施例1と同じなので詳細な説明を省略する。以下、本実施例の撮像シーケンス及び計測軌跡の形状について詳細に説明する。
 図11は、本実施例の、(k1-k2)空間における折れ線計測軌跡の一例を示し、図12は、図11の折れ線計測軌跡に沿ってエコーデータの計測を行なう撮像シーケンスを表すシーケンスチャートを示す。
 図11に示す(k1-k2)空間内の任意の一つの計測軌跡は、(k1-k2)空間の原点又は原点近傍の点で、角度θで折れ曲がり、結果として2つの線分が原点又は原点近傍の点で接続して成る折れ線計測軌跡である。つまり、(k1-k2)空間の端部(高域側)から中央部(低域)に向かう線分軌跡と、中央部(低域)から(k1-k2)空間の別の端部(高域側)に向かう線分軌跡と、が角度θを成して原点又は原点近傍の点で接続する折れ線計測軌跡である。そして、接続点が同一であって2つの線分間の角度が異なる複数の折れ線計測軌跡で(k1-k2)空間を充填する。折れ線計測軌跡の番号をkとすると、折れ曲がり角θとの関係を、例えば(4)式のようにすることができる。
   θ=(π/12)X(2k-1)   (k=1,2,3・・11)   (4)
 k=1の計測軌跡の前半部を図11の線分軌跡1101-1とすると、その後半部の線分軌跡1102-1との折れ曲がり角θは、θ=π/12となる。同様に、k=2の計測軌跡の前半部を図11の線分軌跡1101-2とすると、その後半部の線分軌跡1102-2との折れ曲がり角θは、θ=π/4となる。以下同様に、計測軌跡の前半部の線分軌跡1101を反時計回りに順次選択していくと、各計測軌跡の後半部の線分軌跡1102は時計回りとなり、これら2つの線分軌跡間の角度が順次開いていくことになる。したがって、これら全ての折れ線計測軌跡で、(k1-k2)空間を充填することができる。図11及び(4)式は、11本の折れ線軌跡で(k1-k2)空間を充填する例を示す。なお、図11の折れ線計測軌跡は、全て(k1-k2)空間原点で折れ曲がっているが、複数の折れ線計測軌跡の折れ曲がり点を異ならせても良い。
 このような折れ線計測軌跡の前半線分と後半線分上のエコーデータは、(k1-k2)空間原点に関して互いに複素共役でない関係となる。一般的にK空間原点に関して複素共役関係にあるエコーデータは実質的に同じ情報量を持つ。つまり、本実施例の折れ線計測軌跡に沿うエコーデータ群は、実施例1の直線状計測軌跡に沿うエコーデータ群よりもより多くの情報量を持っていることになる。したがって、本実施例の折れ線計測軌跡は多くの情報量を短時間で取得でき、K空間の非対称計測・再構成に好適である。本実施例の折れ曲がり計測軌跡を用いて非対称計測・再構成を行なう場合は、複数の折れ線計測軌跡の折れ曲がり点を異ならせて(k1-k2)空間原点近傍の低域エコーデータを対称に取得すると良い。
 なお、本実施例の非直交系計測軌跡では、グリッディング処理が必要となるため、本実施例のフローチャートは実施例1のフローチャートである図2と同様となる。
 図12に示す、上記計測軌跡に沿ったエコーデータの計測を行なう撮像シーケンスは、前述の実施例1で説明した図3に示した撮像シーケンスと比較して、点線枠部分のエンコード傾斜磁場パルス1206及びリワインド傾斜磁場パルス1207の極性及び振幅が異なる。これは、前述の図3の撮像シーケンスは、直線状計測軌跡に沿ってエコーデータを計測するものであるため、計測軌跡が(k1-k2)空間の第3象限から第1象限に伸びる直線である場合に、エンコード傾斜磁場及びリワインド傾斜磁場も、それらの振幅が単調に増加又は減少することになる。これに対して、図12の撮像シーケンスは、折れ線計測軌跡に沿ってエコーデータを計測するものであるため、折れ線計測軌跡の前半部に沿うエコーデータの計測に際には、図3の撮像シーケンスと同様に、エンコード傾斜磁場パルスとリワインド傾斜磁場パルスは、それらの振幅が単調に増加又は減少することになる。しかし、折れ線計測軌跡の後半部に沿うエコーデータの計測の際には、計測軌跡が折れ曲がっているために、エンコード傾斜磁場1206とリワインド傾斜磁場1207は、前半部に引き続いて単調に増加又は減少するものとはならず、増加又は減少の仕方が反転する。即ち、図12のシーケンスチャートの点線枠部分に着目すると、図3では、エンコード傾斜磁場パルスは正極性で振幅が単調増加しているのに対して、図12では、エンコード傾斜磁場パルス1206が負極性で単調減少している。振幅の変化の仕方は、折れ線の折れ曲がり角度に対応して変化する。また、リワインド傾斜磁場パルス1207は、エンコード傾斜磁場パルス1206と逆極性の変化となる。エンコード傾斜磁場及びリワインド傾斜磁場のこのような変化により、折れ線軌跡に沿ったエコーデータの計測が可能になる。
 なお、本実施例の撮像シーケンスにおいても、実施例1で説明した同期撮像や、実施例2で説明したディフェーズ傾斜磁場とリフェーズ傾斜磁場の印加を行って、MRA画像を取得することは同様であり、詳細な説明は省略する。そして、これらを組み合わせて非造影MRA画像の取得を行えば、実施例1と同様の効果が得られる。
 以上説明したように本実施例のMRI装置及び血管画像撮像方法は、(k1-k2)空間内の原点又は原点近傍の点で折れ曲がり、かつ、折れ線がなす角度が計測軌跡毎に異なるような折れ線計測軌跡に沿ってエコーデータを計測する非直交系サンプリングを行なうので、前述の実施例1と同様の効果を得ることができる。さらに、折れ線計測軌跡とすることで、多くの情報量を短時間で取得できる効果を得ることができる。
 (実施例5)
 次に、本発明のMRI装置及び血管画像撮像方法についての実施例5を説明する。本実施例は、(k1-k2)空間の原点又は原点近傍の点を通過する渦巻状(スパイラル状)の計測軌跡とする。そして、一つのスパイラル軌跡を、リードアウト(kr)方向を回転軸として回転させて得た複数のスパイラル軌跡に沿ってエコーデータを計測する非直交系サンプリングを行なう。即ち、本実施例は、スパイラル計測軌跡を単位計測軌跡とし、このスパイラル計測軌跡を(k1-k2)空間内の原点又は原点近傍の点の回りで回転させた計測軌跡とする。したがって、前述の実施例1と異なる箇所は撮像シーケンス及び計測軌跡の形状である。他については前述の実施例1と同じなので説明を省略する。以下、本実施例の撮像シーケンス及び計測軌跡の形状について詳細に説明する。
 図13は、本実施例の(k1-k2)空間におけるスパイラル計測軌跡の一例を示し、図14は、図13のスパイラル計測軌跡に沿ってエコーデータの計測を行なう撮像シーケンスを表すシーケンスチャートを示す。
 図13に示す(k1-k2)空間内の任意の一つの計測軌跡は、(k1-k2)空間の原点又は原点近傍の点を通過する渦巻状(スパイラル状)の軌跡である。そして、一つのスパイラル計測軌跡を、リードアウト(kr)方向を回転軸として所定角度回転させて複数のスパイラル計測軌跡を得る。図13は、実線で表したスパイラル計測軌跡と、これを原点周りに回転させて得た点線のスパイラル計測軌跡を示す。各スパイラル計測軌跡の原点又は原点近傍の点回りの回転数は任意に設定可能であり、(k1-k2)空間の原点の周りを1周以下の回転数とする計測軌跡でも良いし、複数周回転する計測軌跡でも良い。
 これらのスパイラル計測軌跡上を中心(低域)から端部(高域)に向けて、或いは逆に端部(高域)から中心(低域)に向けて順にエコーデータを計測しても良いし、スパイラル計測軌跡上をランダムに移動してエコーデータを計測してもよい。図13は、1301-1~1301-7の順で、つまり一つのスパイラル軌跡を端部側から中心に向けて、さらに同じ軌跡上を中心から端部側に戻る順序で、エコーデータを計測する例を示す。
 このようなスパイラル計測軌跡は、一つの計測軌跡で(k1-k2)空間を略均等に走査できるので、計測されたエコーデータにおけるT2減衰の影響や、体動の影響をより3次元的に分散できるようになるので、MRA画像におけるボケや体動アーチファクトの影響を低減でき、画質を向上させることができる。
 なお、本実施例の非直交系計測軌跡では、グリッディング処理が必要となるため、本実施例のフローチャートは実施例1のフローチャートである図2と同様となる。
 図14に示す、上記スパイラル計測軌跡に沿ったエコーデータの計測を行なう撮像シーケンスは、前述の実施例1で説明した図3に示した撮像シーケンスと比較して、エンコード傾斜磁場G1(G2)とG2(G1)が異なる。図3に示した撮像シーケンスにおけるエンコード傾斜磁場G1(G2)とG2(G1)は、直線状計測軌跡に沿ったエコーデータを計測するためには、各エンコード傾斜磁場パルスの振幅又は印加量が単調に増加又は減少するものであった。これに対して、本実施例のエンコード傾斜磁場G1(G2)とG2(G1)は、スパイラル計測軌跡に沿ってエコーデータを計測するために印加される波形であるため、前述の(1)式に基づいて複雑に変化する。例えば、図13のスパイラル計測軌跡上の計測点1301-1~1301-7のエコーデータが図14のシーケンスチャートにおけるエコー信号303-1~303-7にそれぞれ対応するので、これらのエコー信号303-1~303-7を計測するために印加されるエンコード傾斜磁場パルス1404,1406及びリワインド傾斜磁場パルス1405,1407は、図14に示すとおりとなる。なお、スパライス計測軌跡の詳細は、例えば特許文献3に説明されており、詳細な説明は省略する。
 なお、本実施例の撮像シーケンスにおいても、実施例1で説明した同期撮像や、実施例2で説明したディフェーズ傾斜磁場とリフェーズ傾斜磁場の印加を行って、MRA画像を取得することは同様であり、詳細な説明は省略する。そして、これらを組み合わせて非造影MRA画像の取得を行えば、実施例1と同様の効果が得られる。
 以上説明したように、本実施例のMRI装置及び血管画像撮像方法は、(k1-k2)空間内でその原点又は原点近傍の点を通過するスパイラル測軌跡に沿ってエコーデータを計測する非直交系サンプリングを行なうので、前述の実施例1と同様の効果を得ることができる。さらに、スパイラル計測軌跡とすることで、MRA画像におけるボケや体動アーチファクトの影響を低減でき、画質を向上させることができる。
 (実施例6)
 次に、本発明のMRI装置及び血管画像撮像方法についての実施例6を説明する。本実施例は、3次元K空間におけるリードアウト方向に垂直な2方向において、複数の格子点をジグザグ又はランダムに通過する計測軌跡とする。即ち、本実施例は、(k1-k2)空間内で複数の格子点をジグザグ又はランダムに通過する計測軌跡に沿ってエコーデータを計測する非直交系サンプリングを行なう。したがって、前述の実施例1と異なる箇所は撮像シーケンス及び計測軌跡の形状とグリッディングが不要となる点である。他については前述の実施例1と同じなので説明を省略する。以下、本実施例の撮像シーケンス及び計測軌跡の形状について詳細に説明する。
 図15,16は、本実施例の、(k1-k2)空間の格子点をジグザグ又はランダムに移動しながらそのエコーデータを計測するための計測軌跡の一例を示す。
 図15に示す計測軌跡は、(k1-k2)空間の格子点のエコーデータをジグザグに非直交系サンプリングするための一つの基本ジグザグ計測軌跡の一例である。この基本ジグザグ計測軌跡を原点又は任意の基準点の周りに所定の角度で回転させながら、最寄りの格子点のエコーデータを計測する。好ましくは、撮像シーケンスの繰り返し時間(TR)毎に基本ジグザグ計測軌跡を所定の角度で回転させながら最寄りの格子点のエコーデータを計測する。図15(a)は、k1(k2)方向の幅の狭い基本ジグザグ計測軌跡の一例であって、図の点線矢印方向に各格子点のエコーデータを計測する例を示す。図15(b)は、図15(a)の基本ジグザグ計測軌跡よりもk1(k2)方向の幅が広い基本ジグザグ計測軌跡の例を示す。(k1-k2)空間内で回転させることは図15 (a)と同じである。或いは、前述の実施例1~実施例4で説明した各非直交系計測軌跡に最寄りの格子点のエコーデータを計測するようにしてもよい。
 図16は、(k1-k2)空間の格子点のエコーデータをランダムに非直交系サンプリングを行なう例であり、点線矢印の順序で各格子点のエコーデータを計測する例を示す。各格子点のエコーデータをランダムに計測するために、計測制御部111は、擬似乱数を発生させて格子点を決定し、決定した格子点位置に応じて、撮像シーケンスのエンコード傾斜磁場G1、G2の印加量を(1)式に基づいて決定する。そして、計測制御部111は、撮像シーケンスの繰り返し時間毎に、計測する格子点の位置を変える。好ましくは、計測格子点の位置が重複しないように、繰り返し時間毎の計測格子点の位置を異ならせる。また、好ましくは、実効TEのエコーデータだけはK空間中心データとなるようにエンコード傾斜磁場の印加を制御する。
 上記のように、(k1-k2)空間の格子点をジグザグ又はランダムに移動しながらそのエコーデータを計測するための、本実施例に係る撮像シーケンスは、前述の実施例1で説明した図3の撮像シーケンスと比較してエンコード傾斜磁場G1(G2)とG2(G1)が異なる。具体的には、各エンコード傾斜磁場パルス及び各リワインド傾斜磁場パルスの振幅又は印加量を、ジグザグ又はランダムに計測する格子点毎に、該格子点の座標値に応じて(1)式に基づいて設定すればよい。その結果、各エンコード傾斜磁場パルス及び各リワインド傾斜磁場パルスの振幅又は印加量は不規則になる。詳細な図示及び説明を省略する。
 なお、本実施例の撮像シーケンスにおいても、実施例1で説明した同期撮像や、実施例2で説明したディフェーズ傾斜磁場とリフェーズ傾斜磁場の印加を行って、MRA画像を取得することは同様であり、詳細な説明は省略する。そして、これらを組み合わせて非造影MRA画像の取得を行えば、実施例1と同様の効果が得られる。
 以上のように、ジグザグ又はランダムいずれの場合もK空間の格子点位置のエコーデータが計測されるので、画像再構成する際にグリッディング処理を行う必要が無くなる。そのため、演算処理部115は、実施例1で説明した図4の処理フローにおいて、ステップ407のグリッディング処理を行わずにスキップして、ステップ408で計測されたK空間データをそのままフーリエ変換する。
 以上説明したように、本実施例のMRI装置及び血管画像撮像方法は、(k1-k2)空間内で、その格子点のエコーデータをジグザグ又はランダムとなるような計測軌跡に沿ってエコー信号を計測する非直交系サンプリングを行なうので、前述の実施例1と同様の効果を得ることができる。さらに、格子点のエコーデータを直接計測するのでグリッディング処理が必要ない。そのため、グリッディング処理の必要が無い本実施例においては、画像再構成処理を簡略・短時間化することが可能になる。
 以上が、本発明を適用する具体的な実施例である。しかし、本発明は、以上の各実施例で開示された内容にとどまらず、本発明の趣旨を踏まえた上で各種形態を取りえる。例えば、各実施例で説明した計測軌跡を混合した非直交系サンプリングを行なうことができる。必要なことは、計測されたエコーデータにおけるT2減衰の影響が3次元的に分散さるような非直交系計測軌跡とすることである。
 また、本発明の各実施例の説明では、被検体に造影剤を投与しないで、非造影MRA画像を取得する例を説明したが、造影剤を投与して造影MRA画像を取得する場合にも、本発明の各実施例を適用することにより、画質を向上させることができる。
 101 被検体、102 静磁場発生磁石、103 傾斜磁場コイル、104 送信RFコイル、105 受信RFコイル、106 信号検出部106、107 信号処理部、108 全体制御部、109 傾斜磁場電源、110 RF送信部、111 計測制御部、112 ベッド、113 表示・操作部、114 演算処理部、116 記憶部、117 センサー部、117 体動情報処理部

Claims (17)

  1.  被検体の周期的な体動についての体動情報を検出する体動情報検出部と、
     撮像シーケンスに基づいて、前記周期的な体動情報に同期させた同期撮像を実行して、3次元K空間データの計測を制御する計測制御部と、
     前記3次元K空間データを用いて前記被検体の血管画像を再構成する演算処理部と、
    を有する磁気共鳴イメージング装置であって、
     前記撮像シーケンスは、前記3次元K空間におけるリードアウト方向に垂直な2方向に非平行な計測軌跡に沿ってエコーデータを計測するものであり、
     前記計測制御部は、前記撮像シーケンスの繰り返し時間(TR)が前記体動情報の複数周期となるように、前記同期撮像を制御することを特徴とする磁気共鳴イメージング装置。
  2.  請求項1記載の磁気共鳴イメージング装置において、
     前記計測軌跡は、一つの直線状軌跡を、前記3次元K空間のリードアウト方向を回転軸として回転させて得られる複数の直線状計測軌跡であり、
     前記計測制御部は、前記撮像シーケンスを繰り返して、異なる直線状軌跡に沿うエコーデータをそれぞれ計測することを特徴とする磁気共鳴イメージング装置。
  3.  請求項1記載の磁気共鳴イメージング装置において、
     前記周期的な体動情報は、心電図であり、
     前記同期撮像は、心電図のR波に同期する撮像であり、
     前記計測制御部は、前記R波から所定の遅延時間(DT)を空けて前記撮像シーケンスを開始することを特徴とする磁気共鳴イメージング装置。
  4.  請求項3記載の磁気共鳴イメージング装置において、
     前記遅延時間は、前記撮像シーケンスの実行が、拡張期又は収縮期となる時間であることを特徴とする磁気共鳴イメージング装置。
  5.  請求項1記載の磁気共鳴イメージング装置において、
     前記演算処理部は、レファレンススキャンにより前記被検体を事前に撮像して取得されたデータに基づいて、前記撮像シーケンスを用いて所望の画像を取得できるような撮像パラメータ値を決定し、該決定した撮像パラメータ値に基づいて前記撮像シーケンスを設定し、
     前記計測制御部は、前記設定された撮像シーケンスを実行することを特徴とする磁気共鳴イメージング装置。
  6.  請求項5記載の磁気共鳴イメージング装置において、
     前記撮像パラメータ値は、前記撮像シーケンスの実行が、前記被検体の心電図において収縮期又は拡張期となるような、心電図R波からの遅延時間(DT)を含むことを特徴とする磁気共鳴イメージング装置。
  7.  請求項5記載の磁気共鳴イメージング装置において、
     前記計測制御部は、PC法パルスシーケンスを用いて前記リファレンススキャンを行い、
     前記演算処理部は、前記リファレンススキャンで取得されたデータに基づいて、注目する血流部分の流速変化情報を取得することを特徴する磁気共鳴イメージング装置。
  8.  請求項7記載の磁気共鳴イメージング装置において、
     前記流速変化情報を血流変化グラフとして表示する表示部と、
     前記表示部に表示された前記流速変化グラフ上で、前記遅延時間(DT)の設定入力を受け付ける入力部と、
     を備えたことを特徴とする磁気共鳴イメージング装置。
  9.  請求項1記載の磁気共鳴イメージング装置において、
     前記撮像シーケンスは、前記3次元K空間のリードアウト方向に垂直な2方向に対応する実空間の方向に、それぞれ、前記被検体の血流の核磁化の位相を変調するためのリフェーズ傾斜磁場又はディフェーズ傾斜磁場を印加するものであることを特徴とする磁気共鳴イメージング装置。
  10.  請求項1記載の磁気共鳴イメージング装置において、
     前記計測軌跡は、複数の平行直線状計測軌跡を含んで成る単位軌跡群を、前記3次元K空間のリードアウト方向を回転軸として回転させて得られる複数の単位軌跡群であることを特徴とする磁気共鳴イメージング装置。
  11.  請求項1記載の磁気共鳴イメージング装置において、
     前記計測軌跡は、2つの線分軌跡が接続して成る折れ線計測軌跡であって、前記2つの線分軌跡間の角度が異なる複数の折れ線軌跡であることを特徴とする磁気共鳴イメージング装置。
  12.  請求項1記載の磁気共鳴イメージング装置において、
     前記計測軌跡は、スパライス計測軌跡であることを特徴とする磁気共鳴イメージング装置。
  13.  請求項1記載の磁気共鳴イメージング装置において、
     前記計測軌跡は、前記3次元K空間におけるリードアウト方向に垂直な2方向において、複数の格子点をジグザグ又はランダムに通過する計測軌跡であることを特徴とする磁気共鳴イメージング装置。
  14.  被検体の心電図に撮像シーケンスを同期させる同期撮像によって、3次元K空間内の計測軌跡に沿ってエコーデータを計測する計測ステップと、
     前記計測されたエコーデータを用いて、前記被検体の血管画像を取得するステップと、
    を有して成る血管画像撮像方法であって、
     前記計測軌跡は、前記3次元K空間におけるリードアウト方向に垂直な2方向に非平行な計測軌跡であり、
     前記撮像シーケンスの繰り返し時間(TR)が前記心電図の複数周期であることを特徴とする血管画像撮像方法。
  15.  請求項14記載の血管画像撮像方法において、
     前記計測軌跡は、一つの直線状軌跡を、前記3次元K空間のリードアウト方向を回転軸として回転させて得られる複数の直線状計測軌跡であり、
     前記計測ステップでは、前記撮像シーケンスを繰り返して、異なる直線状軌跡に沿うエコーデータがそれぞれ計測されることを特徴とする血管画像撮像方法。
  16.  請求項14記載の血管画像撮像方法において、
     前記撮像シーケンスは、前記3次元K空間のリードアウト方向に垂直な2方向に対応する実空間の方向に、それぞれ、前記被検体の血流の核磁化の位相を変調するためのリフェーズ傾斜磁場又はディフェーズ傾斜磁場を印加するものであることを特徴とする血管画像撮像方法。
  17.  請求項14記載の血管画像撮像方法において、
    レファレンススキャンにより前記被検体を事前に撮像してデータを取得するステップと、
     前記レファレンススキャンにより取得されたデータに基づいて、前記撮像シーケンスを用いて前記血管画像を取得するための撮像パラメータ値を決定するステップと、
     前記決定された撮像パラメータ値に基づいて前記撮像シーケンスを設定するステップと、
     を更に備えることを特徴とする血管画像撮像方法。
PCT/JP2011/050913 2010-01-22 2011-01-20 磁気共鳴イメージング装置及び血管画像撮像方法 WO2011090089A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011550937A JP5858791B2 (ja) 2010-01-22 2011-01-20 磁気共鳴イメージング装置及び血管画像撮像方法
US13/520,400 US20120281901A1 (en) 2010-01-22 2011-01-20 Magnetic resonance imaging apparatus and blood vessel image capturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010011733 2010-01-22
JP2010-011733 2010-01-22

Publications (1)

Publication Number Publication Date
WO2011090089A1 true WO2011090089A1 (ja) 2011-07-28

Family

ID=44306889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050913 WO2011090089A1 (ja) 2010-01-22 2011-01-20 磁気共鳴イメージング装置及び血管画像撮像方法

Country Status (3)

Country Link
US (1) US20120281901A1 (ja)
JP (1) JP5858791B2 (ja)
WO (1) WO2011090089A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132454A (ja) * 2011-12-27 2013-07-08 Ge Medical Systems Global Technology Co Llc 磁気共鳴装置およびプログラム
WO2013133391A1 (ja) * 2012-03-08 2013-09-12 株式会社東芝 磁気共鳴イメージング装置
CN103901376A (zh) * 2012-12-30 2014-07-02 上海联影医疗科技有限公司 磁共振成像方法与装置
JP2015123232A (ja) * 2013-12-26 2015-07-06 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴装置
KR20180088194A (ko) * 2017-01-26 2018-08-03 삼성전자주식회사 자기 공명 영상 획득 방법 및 그 자기 공명 영상 장치
JP2019005289A (ja) * 2017-06-26 2019-01-17 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8838204B2 (en) * 2012-01-13 2014-09-16 Siemens Medical Solutions Usa, Inc. System and method for phase contrast imaging with improved efficiency
US10746830B2 (en) 2018-08-28 2020-08-18 General Electric Company Systems and methods for hybrid slice encoding in three-dimensional magnetic resonance imaging
CN112584738B (zh) * 2018-08-30 2024-04-23 奥林巴斯株式会社 记录装置、图像观察装置、观察系统、观察系统的控制方法及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005144A (ja) * 1998-04-20 2000-01-11 Toshiba Corp Mri装置およびmrイメ―ジング方法
JP2001046354A (ja) * 1999-08-13 2001-02-20 Ge Yokogawa Medical Systems Ltd 磁気共鳴信号収集方法および装置並びに磁気共鳴撮像装置
JP2004515288A (ja) * 2000-12-08 2004-05-27 フィリップス メディカル システムズ (クリーヴランド),インコーポレイテッド 奥行き分解を用いて高速スキャンを行うmri装置及び方法
JP2007313303A (ja) * 2006-04-25 2007-12-06 Toshiba Corp 磁気共鳴イメージング装置および磁気共鳴イメージング装置における撮影条件設定方法
JP2009153966A (ja) * 2007-12-07 2009-07-16 Toshiba Corp 画像表示装置および磁気共鳴イメージング装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3707829B2 (ja) * 1995-06-22 2005-10-19 株式会社東芝 磁気共鳴イメージング装置
JP4413304B2 (ja) * 1998-03-05 2010-02-10 株式会社東芝 Mri装置
JP4082779B2 (ja) * 1998-04-17 2008-04-30 株式会社東芝 Mri装置
US20020188190A1 (en) * 1998-03-05 2002-12-12 Yoshimori Kassai Mr imaging providing tissue/blood contrast image
US7254437B2 (en) * 1998-04-17 2007-08-07 Kabushiki Kaisha Toshiba MR imaging providing tissue/blood contrast image
US6782286B2 (en) * 1998-04-20 2004-08-24 Kabushiki Kaisha Toshiba MRI system and MR imaging method
JP3853585B2 (ja) * 2000-10-11 2006-12-06 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Mri装置
JP4489277B2 (ja) * 2000-10-31 2010-06-23 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Mri装置
US6411089B1 (en) * 2000-11-22 2002-06-25 Philips Medical Systems (Cleveland), Inc. Two-dimensional phase-conjugate symmetry reconstruction for 3d spin-warp, echo-planar and echo-volume magnetic resonance imaging
JP4309632B2 (ja) * 2002-10-08 2009-08-05 株式会社東芝 磁気共鳴イメージング装置
US6798199B2 (en) * 2003-02-06 2004-09-28 Siemens Medical Solutions Usa, Inc. Method for synchronizing magnetic resonance imaging data to body motion
DE10337932B4 (de) * 2003-08-18 2009-02-05 Siemens Ag Gerät und Verfahren zur Minimierung von Streifenartefakten bei radialer oder spiralförmiger k-Raum-Abtastung in der Magnetresonanzbildgebung
US7046004B2 (en) * 2004-05-07 2006-05-16 University Of Basel Generic eddy-current compensation in magnetic resonance imaging
US7292032B1 (en) * 2004-09-28 2007-11-06 General Electric Company Method and system of enhanced phase suppression for phase-contrast MR imaging
JP5179182B2 (ja) * 2005-07-27 2013-04-10 株式会社日立メディコ 磁気共鳴イメージング装置
US7265547B2 (en) * 2005-09-16 2007-09-04 General Electric Company Method and apparatus for acquiring MR data with a segmented multi-shot radial fan beam encoding order
EP1946139A1 (en) * 2005-09-22 2008-07-23 Wisconsin Alumni Research Foundation Functional mri involving a highly constrained backprojection
US9700220B2 (en) * 2006-04-25 2017-07-11 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP5100181B2 (ja) * 2006-09-06 2012-12-19 株式会社東芝 磁気共鳴イメージング装置
US10098563B2 (en) * 2006-11-22 2018-10-16 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus
US9538936B2 (en) * 2006-11-22 2017-01-10 Toshiba Medical Systems Corporation MRI apparatus acquires first and second MR data and generates therefrom third image data having higher contrast between blood and background tissues
JP5022696B2 (ja) * 2006-12-22 2012-09-12 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴イメージング装置
US8571288B2 (en) * 2007-12-07 2013-10-29 Kabushiki Kaisha Toshiba Image display apparatus and magnetic resonance imaging apparatus
US7898254B2 (en) * 2008-02-19 2011-03-01 Advanced Mri Technologies, Llc Arterial spin labeled, segmented, interleaved 3D GRASE MRI
WO2009134820A2 (en) * 2008-04-28 2009-11-05 Cornell University Tool for accurate quantification in molecular mri
US20110142316A1 (en) * 2009-10-29 2011-06-16 Ge Wang Tomography-Based and MRI-Based Imaging Systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005144A (ja) * 1998-04-20 2000-01-11 Toshiba Corp Mri装置およびmrイメ―ジング方法
JP2001046354A (ja) * 1999-08-13 2001-02-20 Ge Yokogawa Medical Systems Ltd 磁気共鳴信号収集方法および装置並びに磁気共鳴撮像装置
JP2004515288A (ja) * 2000-12-08 2004-05-27 フィリップス メディカル システムズ (クリーヴランド),インコーポレイテッド 奥行き分解を用いて高速スキャンを行うmri装置及び方法
JP2007313303A (ja) * 2006-04-25 2007-12-06 Toshiba Corp 磁気共鳴イメージング装置および磁気共鳴イメージング装置における撮影条件設定方法
JP2009153966A (ja) * 2007-12-07 2009-07-16 Toshiba Corp 画像表示装置および磁気共鳴イメージング装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHRISTOPHER J. HARDY ET AL.: "A one-dimensional velocity technique for NMR measurement of aortic distensibility", MAGNETIC RESONANCE IN MEDICINE, vol. 31, no. 5, May 1994 (1994-05-01), pages 513 - 520, XP000443546 *
G. J. WILSON ET AL.: "Flow-independent, Non-contrast-enhanced, Free Breathing Renal MR Angiography", PROC. INTL. SOC. MAG. RESON. MED., vol. 17, April 2009 (2009-04-01), pages 1882 *
H. MORIGUCHI ET AL.: "Bunched Phase Encoding in Projection Reconstruction", PROC. INTL. SOC. MAG. RESON. MED., vol. 14, May 2006 (2006-05-01), pages 694 *
MITSUE MIYAZAKI ET AL.: "Improvement in Separation of Arteries from Veins in Peripheral Non-Contrast MRA using Flow-Dephasing Spoiler Gradient Pulses in ECG-triggered 3D half- Fourier FSE", PROC. INTL. SOC. MAG. RESON. MED., vol. 10, May 2002 (2002-05-01), pages 1751 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132454A (ja) * 2011-12-27 2013-07-08 Ge Medical Systems Global Technology Co Llc 磁気共鳴装置およびプログラム
WO2013133391A1 (ja) * 2012-03-08 2013-09-12 株式会社東芝 磁気共鳴イメージング装置
JP2013184063A (ja) * 2012-03-08 2013-09-19 Toshiba Corp 磁気共鳴イメージング装置
US9414765B2 (en) 2012-03-08 2016-08-16 Toshiba Medical Systems Corporation Fresh blood imaging (FBI) with independently controlled MRI data acquisition parameters for diastolic and systolic MRI acquisition sub-sequences
CN103901376A (zh) * 2012-12-30 2014-07-02 上海联影医疗科技有限公司 磁共振成像方法与装置
JP2015123232A (ja) * 2013-12-26 2015-07-06 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴装置
KR20180088194A (ko) * 2017-01-26 2018-08-03 삼성전자주식회사 자기 공명 영상 획득 방법 및 그 자기 공명 영상 장치
KR101939775B1 (ko) 2017-01-26 2019-01-17 삼성전자주식회사 자기 공명 영상 획득 방법 및 그 자기 공명 영상 장치
JP2019005289A (ja) * 2017-06-26 2019-01-17 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置
JP7055601B2 (ja) 2017-06-26 2022-04-18 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置

Also Published As

Publication number Publication date
JPWO2011090089A1 (ja) 2013-05-23
JP5858791B2 (ja) 2016-02-10
US20120281901A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5858791B2 (ja) 磁気共鳴イメージング装置及び血管画像撮像方法
JP5719968B2 (ja) Mrデータを収集する方法及び装置
JP5917077B2 (ja) 磁気共鳴イメージング装置
JP3693766B2 (ja) 磁気共鳴イメージング装置
JP5942268B2 (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング方法
JP5740307B2 (ja) 磁気共鳴イメージング装置及び傾斜磁場印加方法
JP5942272B2 (ja) 磁気共鳴イメージング装置及びそれを用いた血管撮像方法
JP2010246596A (ja) 磁気共鳴イメージング装置
JP5735916B2 (ja) 磁気共鳴イメージング装置及び同期計測方法
US10132902B2 (en) Intrinsic navigation from velocity-encoding gradients in phase-contrast MRI
JP5372015B2 (ja) 磁気共鳴イメージング装置および同期撮像方法
JP2004329614A (ja) 磁気共鳴イメージング装置
JP2017136113A (ja) 磁気共鳴イメージング装置
JP4018107B2 (ja) 磁気共鳴イメージング装置
WO2017167937A1 (en) Dynamic mr imaging with increased temporal and spatial resolution
JP6230882B2 (ja) 磁気共鳴イメージング装置及びエコー時間設定方法
JP2007275481A (ja) 磁気共鳴イメージング装置
JP4454268B2 (ja) 磁気共鳴イメージング装置
JP5738120B2 (ja) 非造影血管像再構成法及び磁気共鳴イメージング装置
JP5371620B2 (ja) 核磁気共鳴イメージング装置
JP4745650B2 (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550937

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13520400

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11734695

Country of ref document: EP

Kind code of ref document: A1