WO2011090061A1 - 易熱分解性バインダー樹脂、バインダー樹脂組成物および該組成物の用途 - Google Patents

易熱分解性バインダー樹脂、バインダー樹脂組成物および該組成物の用途 Download PDF

Info

Publication number
WO2011090061A1
WO2011090061A1 PCT/JP2011/050835 JP2011050835W WO2011090061A1 WO 2011090061 A1 WO2011090061 A1 WO 2011090061A1 JP 2011050835 W JP2011050835 W JP 2011050835W WO 2011090061 A1 WO2011090061 A1 WO 2011090061A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder resin
resin composition
binder
rosin derivative
rosin
Prior art date
Application number
PCT/JP2011/050835
Other languages
English (en)
French (fr)
Inventor
中谷 隆
Original Assignee
荒川化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荒川化学工業株式会社 filed Critical 荒川化学工業株式会社
Priority to US13/516,106 priority Critical patent/US8829077B2/en
Priority to EP11734667.6A priority patent/EP2527403A4/en
Priority to CN2011800065091A priority patent/CN102712813A/zh
Priority to KR1020127019556A priority patent/KR20120128613A/ko
Priority to JP2011550923A priority patent/JP5664875B2/ja
Publication of WO2011090061A1 publication Critical patent/WO2011090061A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63492Natural resins, e.g. rosin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J193/00Adhesives based on natural resins; Adhesives based on derivatives thereof
    • C09J193/04Rosin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]

Definitions

  • the present invention relates to an easily thermally decomposable binder resin, a binder resin composition containing the resin, and uses of the binder resin composition.
  • the inorganic solid powder is dispersed in a thermoplastic binder and a lubricant to obtain a composition for producing a molded body, and then preformed by injection molding,
  • a method is known in which the obtained preform is heated to decompose and volatilize components other than the inorganic solid powder in the molded body, degrease, and fire to obtain a molded body that is a sintered body. .
  • behenic acid has a structure having a long-chain alkyl group, and depending on the type of thermoplastic binder, the compatibility with the thermoplastic binder is insufficient. was there.
  • a metal nanoparticle-containing dispersion liquid is applied onto a substrate in a pattern shape, and fired at a low temperature of, for example, 300 ° C. or less to form a conductive layer having a fine pattern shape composed of a sintered body layer of the particles.
  • the method of doing is well-known (refer patent document 2).
  • a dense sintered body can be obtained by adding a rosin derivative as a hydrogen atom supply source to the metal nanoparticle-containing dispersion and removing the oxide film on the surface of the metal nanoparticles.
  • An object of the present invention is an easily decomposable binder resin which is excellent in heat decomposability and can be suitably used as a binder of an inorganic solid powder molded body, instead of a thermoplastic binder and a lubricant, and a binder resin containing the resin It is in providing the use of a composition and this binder resin composition.
  • the present inventor has intensively studied to achieve the above-mentioned problems. As a result, it has been found that a specific rosin derivative is excellent in decomposability by heat and can be suitably used as a binder for an inorganic solid powder molded body in place of a thermoplastic binder and a lubricant. The present inventor has further studied based on such findings and has completed the present invention.
  • the present invention provides the following readily thermally decomposable binder resin, a binder resin composition containing the resin, and uses of the binder resin composition.
  • the rosins (a) are obtained by distillation and disproportionation treatment and / or hydrogenation treatment.
  • the ratio of the component having a molecular weight of 600 or more in terms of styrene by GPC is 1.5% by weight or less, and the absorbance at 300 nm by ultraviolet spectrophotometry (measurement conditions: sample concentration 1 g / dm 3 , cell length 1 cm) ) Is 0.3 or less,
  • Item 2 The binder resin according to Item 1, wherein a residue is not left after heating at a rate of 5 ° C per minute under a nitrogen atmosphere and heat treatment from 25 ° C to 500 ° C.
  • a binder resin composition comprising the readily thermally decomposable binder resin according to Item 1.
  • Item 5 The binder resin composition according to Item 4, which is a binder for powder metallurgy.
  • Item 5 The binder resin composition according to Item 4, which is a ceramic firing binder.
  • Item 8 The binder resin composition according to Item 7, wherein the ceramic is indium tin oxide.
  • Item 5 A binder resin composition according to Item 4, which is a glass baking binder.
  • the easily thermally decomposable binder resin of the present invention is excellent in heat decomposability, and can be suitably used as a binder resin for an inorganic solid powder molded body in place of the conventional thermoplastic binder and lubricant. .
  • the heat-decomposable binder resin of the present invention is an injection molding for producing a molded body of an inorganic solid powder such as a metal powder, a ceramic powder or a glass powder by itself or in the form of a composition containing the resin. It is suitable as a heat-decomposable binder for use in molding and molding.
  • the ceramic powder molding binder is optimal when used as a binder for indium tin oxide powder molding.
  • the readily thermally decomposable binder resin of the present invention has good compatibility with various polymers, it can be used in combination with other thermally decomposable polymers if necessary.
  • a metal nanoparticle-containing dispersion is applied on a substrate in a pattern shape and fired at a low temperature to form a conductive layer having a fine pattern shape composed of a sintered body of the particles.
  • a dispersion containing metal nanoparticles and the present thermally decomposable binder resin can be used as the dispersion.
  • the easily-heat-decomposable binder resin of the present invention is characterized by containing a rosin derivative (A) as an active ingredient.
  • the binder resin is itself or in the form of a composition containing the resin, a thermally decomposable binder for injection molding, mold molding, etc. when producing a molded body of an inorganic solid powder; heat for forming a conductive pattern It can be suitably used as a degradable binder.
  • the rosin derivative (A) can be prepared by subjecting the rosin (a) to distillation and disproportionation treatment and / or hydrogenation treatment. Further, the obtained rosin derivative (A) is characterized by excellent thermal decomposability such that a 99 wt% weight loss temperature in a thermogravimetric measurement at a heating rate of 5 ° C / min in an air atmosphere is 500 ° C or less. It is done.
  • rosins (a) natural rosins such as wood rosin, tall oil rosin and gum rosin can be used.
  • the rosins (a) are a mixture of resin acids including abietic acid, parastrinic acid, levopimaric acid and the like.
  • rosins (a) what is marketed as a hydrogenation thing of the said natural rosins can also be used.
  • this hydrotreated product in order to impart the excellent thermal decomposability, it is usually necessary to perform the same treatment as in the case of natural rosins.
  • the distillation is usually performed at a temperature of about 200 to 300 ° C. and a pressure of about 130 to 1300 Pa.
  • disproportionation treatment known disproportionation conditions for rosins can be employed. Specifically, for example, heating may be performed in the range of about 100 to 300 ° C. using an organic solvent as necessary in the presence of a disproportionation catalyst.
  • the reaction pressure is preferably less than 1 MPa, and may be normal pressure.
  • the disproportionation catalyst is not particularly limited, and any known catalyst can be used, but it is preferable to use a palladium catalyst, a platinum catalyst, or the like.
  • the palladium-based catalyst include palladium carbon, palladium alumina, palladium silica, palladium silica alumina, and zeolite-supported palladium.
  • platinum-based catalyst include platinum carbon, platinum silica, platinum silica alumina, and zeolite-supported platinum.
  • the hydrogenation process can employ known rosin hydrogenation conditions. Specifically, for example, the rosins (a) are heated to about 100 to 300 ° C. in the presence of a hydrogenation catalyst in a hydrogen atmosphere at about 2 to 20 MPa using an organic solvent as necessary. By doing.
  • the reaction pressure is preferably about 5 to 20 MPa.
  • the reaction temperature is preferably about 150 to 290 ° C.
  • the hydrogenation catalyst various known catalysts such as a supported catalyst, metal powder, iodine, and iodide can be used. Examples of the supported catalyst include palladium carbon, rhodium carbon, ruthenium carbon, platinum carbon and the like. Examples of the metal powder include nickel powder and platinum powder. Examples of the iodide include iron iodide.
  • a catalyst containing palladium, rhodium, ruthenium, and platinum is preferable because the hydrogenation rate of rosins is increased and the hydrogenation time is shortened.
  • the amount of the hydrogenation catalyst used is usually about 0.01 to 5 parts by weight, preferably about 0.01 to 2 parts by weight with respect to 100 parts by weight of the rosins (a).
  • rosins (a) may be subjected to distillation and disproportionation treatment, or may be subjected to distillation and hydrogenation treatment.
  • the rosin derivative (A) may be one obtained by subjecting the rosins (a) to all of distillation, disproportionation treatment and hydrogenation treatment.
  • the order of each treatment is not particularly limited, but it is preferable to perform disproportionation, distillation, and hydrogenation in order from the viewpoint of reducing coloring and improving thermal decomposability.
  • the rosin derivative (A) thus obtained is required to have a 99% by weight weight loss temperature of 500 ° C. or less in a thermogravimetric measurement at a heating rate of 5 ° C./min in an air atmosphere.
  • the softening point is preferably about 75 to 95 ° C. and the acid value is preferably about 160 to 190 mgKOH / g.
  • the softening point is a value measured by the ring and ball method of JIS K 5902, and the acid value is a value measured by JIS K 2501.
  • the ratio of components having a molecular weight of 600 or more in terms of styrene by GPC is 1.5% by weight or less, and the absorbance at 300 nm by ultraviolet absorption spectrometry (measurement conditions: sample concentration 1 g / dm 3 , cell length 1 cm). ) Is preferably 0.3 or less.
  • the rosin derivative (A) is a mixture of various molecular weight components, and also contains components having a molecular weight of 600 or more. Components having a molecular weight of 600 or more are less volatile than diterpenes such as abietic acid, parastrinic acid, and levopimaric acid, which are the main components of rosin. There is a tendency for the 99 wt% weight loss temperature in thermogravimetry at 5 ° C / min to increase. Further, in the rosin derivative (A), the absorbance at 300 nm is increased unless the compound having a conjugated double bond is sufficiently reduced. When the absorbance at 300 nm exceeds 0.3, a reaction such as polymerization occurs at the time of heating, and the 99% by weight weight loss temperature in the thermogravimetric measurement at a heating rate of 5 ° C./min tends to increase.
  • the residue stain is not left after heating at 25 ° C. to 500 ° C. in a nitrogen atmosphere at a rate of 5 ° C. per minute. .
  • Binder resin composition The binder resin composition of the present invention is an easily heat decomposable composition containing the heat decomposable binder resin of the present invention.
  • the binder resin composition of the present invention can contain an organic solvent in addition to the heat decomposable binder resin. Moreover, a thermodegradable polymer and another additive can also be contained as needed.
  • organic solvent that can be contained in the binder resin composition of the present invention, those used in the disproportionation treatment and / or hydrogenation treatment at the time of preparation of the rosin derivative (A) may be included as they are. Depending on the case, an organic solvent may be further blended.
  • the organic solvent is not particularly limited.
  • alcohol solvents such as ethyl alcohol, isopropyl alcohol and n-propyl alcohol
  • cellosolv solvents such as methoxy alcohol and ethoxy alcohol
  • Carbitol solvents such as ethanol and butoxyethoxyethanol
  • ester solvents such as ethyl acetate, butyl acetate, methyl methoxypropionate and ethyl lactate
  • cellosolve acetate solvents such as methoxyethyl acetate, ethoxyethyl acetate and ethyl cellosolve acetate
  • methoxy Carbitol acetate solvents such as ethoxyethyl acetate and diethoxyethyl acetate
  • ethylene glycol dimethyl ether diethylene glycol dimethyl ether
  • Ether solvents such as lahydrofuran
  • aprotic amide solvents such as N, N-dimethylform
  • aromatic solvents such as aliphatic hydrocarbon solvents such as n-heptane, n-hexane and n-octane.
  • the content thereof is not particularly limited, but it is preferably within the range of about 10 to 2000 parts by weight per 100 parts by weight of the rosin derivative (A).
  • thermally decomposable polymer examples include acrylic resins, cellulose derivatives, poly- ⁇ -methylstyrene, styrene- ⁇ -methylstyrene copolymers, polyvinyl acetate, and polyvinyl acetate.
  • examples include butyral and polyvinyl alcohol.
  • the use of a thermally decomposable polymer substance having a 99% by weight weight loss temperature of 500 ° C. or less in thermogravimetric measurement at a rate of temperature increase of 5 ° C./min indicates that the composition has good thermal decomposability. Therefore, it is preferable.
  • the content of the thermally decomposable polymer is not particularly limited.
  • the binder for powder metallurgy according to the present invention is a thermally decomposable binder for injection molding, mold molding, etc. in the case of producing a metal powder compact.
  • the binder resin composition of the present invention may be used as it is, or a known additive may be blended and used within a range that does not affect thermal decomposability and the like.
  • a lubricant, a dispersant and the like can be used.
  • the lubricant include wax.
  • various surfactants, polymer dispersants such as polycarboxylic acid, and the like can be used.
  • additives can be blended alone or in combination of two or more. Although it does not specifically limit as metal powder, for example, powders of metals, such as iron, copper, titanium, aluminum, tungsten, molybdenum, nickel, and chromium; Powders of various alloys of these metals, etc. can be mentioned.
  • Binder for firing ceramics is a thermally decomposable binder for injection molding, mold molding and the like in the case of producing a ceramic powder compact.
  • the binder resin composition of the present invention may be used as it is, or a known additive may be blended and used within a range that does not affect thermal decomposability and the like.
  • the additive include a crystal growth inhibitor, a dispersant, and a plasticizer.
  • the crystal growth inhibitor include oxides such as MgO and SiO 2 ; amino alcohols and the like.
  • the dispersant for example, various surfactants, polymer dispersants such as polycarboxylic acid, and the like can be used.
  • plasticizer known plasticizers can be used, and those having a boiling point of 200 ° C. or higher are preferable.
  • specific examples of the plasticizer include phthalic acid compounds, adipic acid compounds, sebacic acid compounds, azelaic acid compounds, phosphoric acid compounds, fatty acid compounds, epoxy compounds, and trimellitic acid compounds.
  • the ceramic powder is not particularly limited. For example, barium titanate, indium oxide, indium tin oxide, titanium oxide, aluminum oxide, barium oxide, lead oxide, zirconium oxide, silicon oxide, yttrium oxide And various ceramic powders. Moreover, what changes to ceramics, such as an indium tin oxide, by baking is also contained.
  • Binder for firing glass is a heat-decomposable binder for injection molding, mold molding and the like when a molded body of glass powder is produced.
  • the binder resin composition of the present invention may be used as it is, or a known additive may be blended and used within a range not affecting the thermal decomposability and the like.
  • the additive include a dispersant, a plasticizer, a stabilizer, and a surface tension adjuster.
  • the dispersant for example, various surfactants, polymer dispersants such as polycarboxylic acid, and the like can be used.
  • plasticizer known plasticizers can be used, and those having a boiling point of 200 ° C.
  • plasticizer examples include phthalic acid compounds, adipic acid compounds, sebacic acid compounds, azelaic acid compounds, phosphoric acid compounds, fatty acid compounds, epoxy compounds, and trimellitic acid compounds.
  • the glass powder is not particularly limited, and examples thereof include various glass powders such as PbO—B 2 O 3 —SiO 2 low melting point glass powder.
  • Absorbance 25.0 mg of test rosin derivative is precisely weighed into a 25 ml volumetric flask, dissolved in cyclohexane, and then adjusted to a 25 ml weighing line. Absorbance at 300 nm was read using a quartz cell having a cell length of 1 cm using a UV spectrophotometer (HITACHI u-3210 spectrophotometer).
  • Ratio of component having molecular weight of 600 or more was calculated by a gel permeation chromatograph (GPC) method using a polystyrene conversion value obtained from a standard polystyrene calibration curve.
  • the measurement conditions for the GPC method are as follows.
  • Analyzer HLC-8220 (manufactured by Tosoh Corporation)
  • Eluent Tetrahydrofuran
  • Flow rate 0.6mL / min
  • Injection volume 100 ⁇ L
  • Production Example 1 600 g of Chinese gum rosin and 1.8 g of catalyst 5% palladium carbon (water content 50%) were charged into a 1 L flask, heated to 275 ° C., and subjected to a disproportionation reaction for 3 hours. The catalyst was filtered off and distilled under reduced pressure of 400 Pa. The component distilled at 195 to 250 ° C. was designated as rosin derivative (i). The absorbance at 300 nm was 0.18, and the content of components having a molecular weight of 600 or more was 0.2%.
  • Production Example 2 600 g of a hydrogenated product of Chinese gum rosin was charged into a 1 L flask and distilled under the same conditions as in Production Example 1 to obtain a component distilled at 195 to 250 ° C. 400 g of this component distilled at 195 to 250 ° C. and 1.2 g of 5% palladium carbon (water content 50%) were charged into a 1 L flask, and a disproportionation reaction was carried out for 3 hours. The catalyst was filtered off to obtain rosin derivative (ii). Absorbance at 300 nm was 0.15, and the content of components having a molecular weight of 600 or more was 0.3%.
  • Production Example 3 600 g of a hydrogenated product of Chinese gum rosin was charged into a 1 L flask and distilled under the same conditions as in Production Example 1 to obtain a component distilled at 195 to 250 ° C. 200 g of components distilled at 195 to 250 ° C., 3.0 g of 5% palladium alumina, and 200 g of cyclohexane were charged into a 1 L autoclave, the inside of the system was sufficiently replaced with hydrogen gas, the initial hydrogen pressure was set to 6 MPa, and the pressure reached 200 ° C. After raising the temperature, the hydrogen pressure was set to 10 MPa, and the hydrogenation reaction was carried out for 4 hours while replenishing the pressure decrease appropriately.
  • the catalyst was filtered off, and cyclohexane was distilled off under reduced pressure to obtain rosin derivative (iii).
  • Absorbance at 300 nm was 0.01, and the content of components having a molecular weight of 600 or more was 0.3%.
  • Production Example 4 A hydrogenated product of Chinese gum rosin was distilled under the same conditions as in Production Example 1, and the component distilled at 195 to 250 ° C. was used as the rosin derivative (iv).
  • the absorbance at 300 nm was 0.07, and the content of components having a molecular weight of 600 or more was 1.4%.
  • Production Example 5 Chinese gum rosin was distilled under the same conditions as in Production Example 1, and the component distilled at 195 to 250 ° C. was used as the rosin derivative (v). Absorbance at 300 nm was 1.6, and the content of components having a molecular weight of 600 or more was 1.4%.
  • the 99% weight loss temperature was measured as follows in a thermogravimetric measurement at a heating rate of 5 ° C./min in a nitrogen atmosphere. That is, the rosin derivatives (i) to (viii) were heated at a rate of 5 ° C./min in a nitrogen atmosphere by a simultaneous differential heat / thermogravimetric measuring device (trade name “TG / DTA220” manufactured by Seiko Instruments Inc.). The 99% weight loss temperature when the temperature was increased from 25 ° C. to 550 ° C. at a speed was measured. Furthermore, the state of the residue after the test was evaluated according to the following criteria. 1: No residue is visually confirmed 2: Residue is slightly confirmed but the appearance is good 3: There is a black or brown residue and the appearance is poor
  • Table 1 shows 99% weight loss temperatures of Examples 1 to 4 [Rosin derivatives (i) to (iv)] and Comparative Examples 1 to 4 [Rosin derivatives (v) to (viii)] after heat treatment under a nitrogen stream. The state of the residue was indicated.
  • Example 5 An aluminum alloy powder (Al: 86%, Si: 10%, Fe: 1%, Cu: 2%, Mg) having an average particle diameter of 100 ⁇ m was added to 50 g of a 20% toluene solution of the rosin derivative (i) as the rosin derivative (A). : 1%) 100 g was added and mixed with a ball mill disperser to obtain a paste-like binder resin composition for powder metallurgy. This was coated on a glass substrate by screen printing to a thickness of 30 ⁇ m, fired at 450 ° C. for 10 minutes in a nitrogen atmosphere, and sintered. No black residue was found in the sintered body.
  • Examples 6-8 A sintered body was obtained by firing in the same manner as in Example 5 except that the rosin derivative (A) was changed as shown in Table 2.
  • Example 9 A binder resin composition for firing ceramics was obtained by mixing 100 g of barium titanate powder having an average particle size of 0.5 ⁇ m, 10 g of rosin derivative (i), 40 g of methyl ethyl ketone, and 30 g of toluene with a ball mill disperser. This was coated on a glass substrate to a thickness of 20 ⁇ m by screen printing, and was fired and sintered at 450 ° C. for 2 hours in a reducing atmosphere composed of N 2 , H 2 and H 2 O. No black residue was found in the sintered body.
  • Examples 10-12 A sintered body was obtained by firing in the same manner as in Example 9 except that the rosin derivative (A) was changed as described in Table 2.
  • Example 13 60 g of PbO—B 2 O 3 —SiO 2 low melting glass powder, 10 g of rosin derivative (i) and 20 g of butyl carbitol acetate were sufficiently kneaded with a roll mill disperser to obtain a binder resin composition for glass firing. This was applied to a glass substrate with a thickness of 200 ⁇ m by screen printing and baked at 580 ° C. for 30 minutes in a nitrogen atmosphere to obtain a sintered body. No black residue was found in the sintered body.
  • Example 14 to 16 The sintered body was obtained by firing in the same manner as in Example 13 except that the rosin derivative (A) was changed as shown in Table 2.
  • Example 17 40 g of indium oxide powder, 4.4 g of tin oxide powder, 5 g of rosin derivative (i), and 20 g of butyl carbitol acetate were mixed with a ball mill disperser to obtain a binder resin composition for ceramic firing. This was coated on a glass substrate to a thickness of 10 ⁇ m by screen printing and fired at 580 ° C. for 30 minutes in an air atmosphere to obtain a sintered body. No black residue was found in the sintered body.
  • Example 18-20 The sintered product was obtained by firing in the same manner as in Example 17 except that the rosin derivative (A) was changed as described in Table 2.
  • Example 21 40 g of indium acetylacetone, 0.1 g of acetylacetone tin, 42 g of paratertiary butylphenol, 14 g of di-2-ethylhexyl succinate and 10 g of rosin derivative (i) were mixed in a flask, heated to 130 ° C. and stirred for 2 hours. It cooled and obtained the binder resin composition for ceramic baking. This was coated on a glass substrate with an applicator to a thickness of 2 ⁇ m and fired in an air atmosphere at 500 ° C. for 1 hour to obtain a sintered body. No black residue was found in the sintered body.
  • Examples 22-24 A sintered body was obtained by firing in the same manner as in Example 21 except that the rosin derivative (A) was changed as described in Table 2.
  • Table 2 shows the evaluation results of the residue derived from the rosin derivative after the firing.
  • Comparative Examples 5-8 A sintered body was obtained by firing in the same manner as in Example 5 except that the rosin derivative used was changed as shown in Table 3.
  • Comparative Examples 9-12 A sintered body was obtained by firing in the same manner as in Example 9, except that the rosin derivative used was changed as shown in Table 3.
  • Comparative Examples 13-16 The sintered sinter was obtained by firing in the same manner as in Example 13 except that the rosin derivative used was changed as described in Table 3.
  • Comparative Examples 17-20 A sintered body was obtained by firing in the same manner as in Example 17 except that the rosin derivative used was changed as described in Table 3.
  • Table 3 shows the evaluation results of the residues derived from the rosin derivative after calcination performed in the same manner as described above for Comparative Examples 5 to 24 described above.
  • the thermally decomposable binder resin of the present invention is a thermally decomposable binder for injection molding, mold molding or the like when producing a molded body of an inorganic solid powder by itself or in the form of a composition containing the resin; It can be suitably used as a thermally decomposable binder for forming a conductive pattern.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明は、ロジン類(a)に、蒸留と不均化処理および/または水素化処理とをして得られる、空気雰囲気下に昇温速度5℃/分の熱重量測定における99重量%重量損失温度が500℃以下であるロジン誘導体(A)を有効成分とする易熱分解性バインダー樹脂、該樹脂を含有するバインダー樹脂組成物、並びに粉末冶金用バインダー、セラミックス焼成用バインダー又はガラス焼成用バインダーである該バインダー樹脂組成物の用途を提供する。

Description

易熱分解性バインダー樹脂、バインダー樹脂組成物および該組成物の用途
 本発明は、易熱分解性バインダー樹脂、該樹脂を含有するバインダー樹脂組成物、および該バインダー樹脂組成物の用途に関する。
 金属粉末、セラミックス粉末等の無機固体粉末の成形体を製造する方法として、無機固体粉末を、熱可塑性バインダー及び滑剤に分散させて成形体製造用組成物とした後、射出成形により予備成形し、得られた予備成形体を加熱して、該成形体中の無機固体粉末以外の成分を分解揮発させて脱脂し、さらに焼成して、焼結体である成形体を得る方法が知られている。
 従来、上記滑剤として使用されていたステアリン酸は、比較的低温で分解するため、無機固体粉末及び熱可塑性バインダーとの混練中に分解し、混練不良を引き起こすことが問題となっていた。そこで、より分解温度の高いベヘン酸を用いる方法が提案されている(特許文献1参照)。
 特許文献1の方法によれば混練不良等の問題は解決できるものの、ベヘン酸は長鎖アルキル基を持つ構造のため、熱可塑性バインダーの種類によっては熱可塑性バインダーとの相溶性が不十分な場合があった。
 また、基板上に、金属ナノ粒子含有分散液をパターン形状に塗布し、例えば300℃以下の低温で焼成して、該粒子相互の焼結体層からなる微細なパターン形状を有する導電層を形成する方法が公知である(特許文献2参照)。特許文献2では、この金属ナノ粒子含有分散液に、水素原子供給源としてのロジン誘導体を含有させて、金属ナノ粒子表面の酸化被膜を除去することによって、緻密な焼結体が得られることが記載されている。しかし、特許文献2の方法においては、低温焼成のため、上記分散液中のロジン誘導体が十分に熱分解されず、焼結体中に不純物として残存するため、導通不良が発生する、外観が低下する等の問題があった。
特許第2732479号公報 特開2009-70727号公報
 本発明の目的は、熱による分解性に優れており、熱可塑性バインダー及び滑剤に代えて、無機固体粉末成形体のバインダーとして好適に使用できる易熱分解性バインダー樹脂、該樹脂を含有するバインダー樹脂組成物、および該バインダー樹脂組成物の用途を提供することにある。
 本発明者は、上記課題を達成すべく鋭意研究を重ねた。その結果、特定のロジン誘導体によれば、熱による分解性に優れること、熱可塑性バインダー及び滑剤に代えて、無機固体粉末成形体用のバインダーとして好適に使用できること等を見出した。本発明者は、かかる諸知見に基づいて、更に検討を重ねて、本発明を完成するに至った。
 本発明は、以下の易熱分解性バインダー樹脂、該樹脂を含有するバインダー樹脂組成物、および該バインダー樹脂組成物の用途を提供するものである。
 1.ロジン類(a)に、蒸留と不均化処理および/または水素化処理とをして得られる、空気雰囲気下に昇温速度5℃/分の熱重量測定における99重量%重量損失温度が500℃以下であるロジン誘導体(A)を有効成分とする易熱分解性バインダー樹脂。
 2.ロジン誘導体(A)が、GPCによるスチレン換算分子量600以上の成分の比率が1.5重量%以下であり、紫外線吸光光度法による300nmの吸光度(測定条件:試料濃度1g/dm、セル長1cm)が0.3以下である上記項1に記載のバインダー樹脂。
 3.窒素雰囲気下で、毎分5℃ずつ上昇させ、25℃から500℃まで熱処理した後に残渣汚れが残らない上記項1に記載のバインダー樹脂。
 4.上記項1の易熱分解性バインダー樹脂を含有することを特徴とするバインダー樹脂組成物。
 5.更に、有機溶剤を含有する上記項4に記載のバインダー樹脂組成物。
 6.粉末冶金用バインダーである上記項4に記載のバインダー樹脂組成物。
 7.セラミックス焼成用バインダーである上記項4に記載のバインダー樹脂組成物。
 8.セラミックスが酸化スズインジウムである上記項7に記載のバインダー樹脂組成物。
 9.ガラス焼成用バインダーである上記項4に記載のバインダー樹脂組成物。
 本発明によれば、下記の如き顕著な効果が得られる。
 (1)本発明の易熱分解性バインダー樹脂は、熱による分解性に優れており、しかも、従来の熱可塑性バインダー及び滑剤に代えて、無機固体粉末成形体用のバインダー樹脂として好適に使用できる。
 即ち、本発明の易熱分解性バインダー樹脂は、それ自体で又は該樹脂を含む組成物の形態で、金属粉末、セラミックス粉末、ガラス粉末等の無機固体粉末の成形体を製造する場合の射出成形用、鋳型成形用等の熱分解性バインダーとして、好適である。特に、セラミックス粉末成形用バインダーとしては、酸化スズインジウム粉末成形用バインダーとして用いる際に最適である。
 (2)本発明の易熱分解性バインダー樹脂は、各種ポリマーとの相溶性が良好であるので、必要であれば、他の熱分解性ポリマー等と併用することもできる。
 (3)また、基板上に、金属ナノ粒子含有分散液をパターン形状に塗布し、低温焼成して、該粒子相互の焼結体からなる微細なパターン形状を有する導電層を形成する場合に、該分散液として、金属ナノ粒子及び本発明易熱分解性バインダー樹脂を含有する分散液を用いることができる。
 易熱分解性バインダー樹脂
 本発明の易熱分解性バインダー樹脂は、ロジン誘導体(A)を有効成分とすることを特徴とする。当該バインダー樹脂は、それ自体で又は当該樹脂を含む組成物の形態で、無機固体粉末の成形体を製造する場合の射出成形用、鋳型成形用等の熱分解性バインダー;導電性パターン形成用熱分解性バインダー等として、好適に使用できる。
 ロジン誘導体(A)は、ロジン類(a)に、蒸留と不均化処理および/または水素化処理とをすることによって、調製することができる。また、得られたロジン誘導体(A)は、空気雰囲気下に昇温速度5℃/分の熱重量測定における99重量%重量損失温度が500℃以下であるという優れた熱分解性によって、特徴付けられる。
 原料のロジン類(a)としては、ウッドロジン、トール油ロジン、ガムロジン等の天然ロジン類等を用いることができる。ロジン類(a)は、アビエチン酸、パラストリン酸、レボピマル酸等を含む樹脂酸の混合物である。尚、ロジン類(a)としては、上記天然ロジン類の水素化処理物として市販されているものも用いることができる。この水素化処理物の場合も、上記優れた熱分解性を付与するためには、通常は、天然ロジン類の場合と同様の処理をする必要がある。
 蒸留は、通常、温度200~300℃程度、圧力130~1300Pa程度の範囲で行えばよい。
 不均化処理は、公知のロジン類の不均化条件を採用することができる。具体的には、例えば、不均化触媒の存在下、必要に応じて有機溶媒を用いて、100~300℃程度の範囲で加熱すれば良い。反応圧力は、1MPa未満が好ましく、常圧でもよい。不均化触媒としては、特に制限無く、公知のものが使用できるが、パラジウム系触媒、白金系触媒などを用いることが好ましい。パラジウム系触媒としては、パラジウムカーボン、パラジウムアルミナ、パラジウムシリカ、パラジウムシリカアルミナ、ゼオライト担持パラジウムなどが挙げられる。白金系触媒としては、白金カーボン、白金シリカ、白金シリカアルミナ、ゼオライト担持白金などが挙げられる。
 水素化処理は、公知のロジン類の水素化条件を採用することができる。具体的には、例えば、水素化触媒の存在下に、水素雰囲気下、必要に応じて有機溶媒を用いて、2~20MPa程度で、ロジン類(a)を100~300℃程度に、加熱することにより行なう。反応圧力は、5~20MPa程度とすることが好ましい。また、反応温度は、150~290℃程度とすることが好ましい。水素化触媒としては、担持触媒、金属粉末、ヨウ素、ヨウ化物等各種公知のものを使用することができる。担持触媒としては、パラジウムカーボン、ロジウムカーボン、ルテニウムカーボン、白金カーボン等が挙げられる。金属粉末としては、ニッケル粉末、白金粉末等が挙げられる。ヨウ化物としては、ヨウ化鉄等が挙げられる。これらのなかでは、パラジウム、ロジウム、ルテニウム、白金を含む触媒が、ロジン類の水素化率が高くなり、水素化時間が短くなるため好ましい。なお、水素化触媒の使用量は、ロジン類(a)100重量部に対して、通常0.01~5重量部程度、好ましくは0.01~2重量部程度である。
 ロジン誘導体(A)としては、ロジン類(a)に、蒸留と不均化処理を行ったものでもよく、蒸留と水素化処理を行ったものでもよい。また、ロジン誘導体(A)としては、ロジン類(a)に、蒸留、不均化処理、水素化処理のすべてを行ったものでもよい。なお、各処理の順番は、特に限定されないが、特に着色の低減及び熱分解性の向上の観点から、不均化、蒸留、水素化の順に行うことが好ましい。
 かくして得られるロジン誘導体(A)は、空気雰囲気下に昇温速度5℃/分の熱重量測定における99重量%重量損失温度が500℃以下であることが必要である。また、軟化点が75~95℃程度で、酸価が160~190mgKOH/g程度であるのが好ましい。なお、軟化点はJIS K 5902の環球法による測定値であり、酸価はJIS K 2501による測定値である。
 ロジン誘導体(A)は、GPCによるスチレン換算分子量600以上の成分の比率が1.5重量%以下であり、紫外線吸光光度法による300nmの吸光度(測定条件:試料濃度1g/dm、セル長1cm)が0.3以下であることが好ましい。
 ロジン誘導体(A)は、種々の分子量成分の混合物であり、分子量600以上の成分も含有する。分子量600以上の成分は、ロジンの主成分である、アビエチン酸、パラストリン酸、レボピマル酸等のジテルペン類に比べて難揮発性であり、1.5重量%を超える量を含有すると、昇温速度5℃/分の熱重量測定における99重量%重量損失温度が高くなってしまう傾向がある。また、ロジン誘導体(A)において、共役2重結合を有する化合物が十分に削減されていないと300nmの吸光度が高くなる。300nmにおける上記吸光度が0.3を超えると加熱時に重合等の反応が起こってしまい昇温速度5℃/分の熱重量測定における99重量%重量損失温度が高くなってしまう傾向がある。
 また、ロジン誘導体(A)は、熱による分解性に優れることから、通常、窒素雰囲気下で、毎分5℃ずつ上昇させ、25℃から500℃まで熱処理した後に残渣汚れが残らないことが好ましい。
 バインダー樹脂組成物
 本発明のバインダー樹脂組成物は、本発明の易熱分解性バインダー樹脂を含有することを特徴とする易熱分解性の組成物である。本発明バインダー樹脂組成物は、該易熱分解性バインダー樹脂に加えて、有機溶剤を含有することができる。また、必要に応じて、熱分解性ポリマー、その他の添加剤を含有することもできる。
 本発明バインダー樹脂組成物が含有することができる有機溶剤としては、ロジン誘導体(A)の調製時の不均化処理及び/又は水素化処理において用いたものをそのまま含んでいてもよいし、必要に応じて、更に有機溶剤を配合してもよい。有機溶剤としては、特に限定されないが、具体的には、例えば、エチルアルコール、イソプロピルアルコール、n-プロピルアルコール等のアルコール系溶剤;メトキシアルコール、エトキシアルコール等のセロソルブ系溶剤;メトキシエトキシエタノール、ジエトキシエタノール、ブトキシエトキシエタノール等のカルビトール系溶剤;酢酸エチル、酢酸ブチル、メトキシプロピオン酸メチル、乳酸エチル等のエステル系溶剤;メトキシエチルアセテート、エトキシエチルアセテート、エチルセロソルブアセテート等のセロソルブアセテート系溶剤;メトキシエトキシエチルアセテート、ジエトキシエチルアセテート等のカルビトールアセテート系溶剤;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン等のエーテル系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等の非プロトン性アミド系溶剤;γ-ブチロラクトン等のラクトン系溶剤;トルエン、キシレン等の芳香族炭化水素系溶剤;n-ヘプタン、n-ヘキサン、n-オクタン等の脂肪族炭化水素系溶剤等の有機溶剤が挙げられる。有機溶剤を含有する場合、その含有量は、特に限定されないが、ロジン誘導体(A)100重量部当たり、通常、10~2000重量部程度の範囲内であるのが好ましい。
 また、本発明バインダー樹脂組成物が含有することができる熱分解性ポリマーとしては、例えばアクリル樹脂、セルロース誘導体、ポリ-α-メチルスチレン、スチレン-α-メチルスチレン共重合体、ポリ酢酸ビニル、ポリビニルブチラール、ポリビニルアルコール等が挙げられる。これらの中では、昇温速度5℃/分の熱重量測定における99重量%重量損失温度が500℃以下である熱分解性の高分子物質を用いることが、組成物の熱分解性が良好となるため好ましい。熱分解性ポリマーの含有量は、特に限定されない。
 粉末冶金用バインダー
 本発明の粉末冶金用バインダーは、金属粉末の成形体を製造する場合の射出成形用、鋳型成形用等の熱分解性バインダーである。粉末冶金用バインダーとしては、本発明バインダー樹脂組成物をそのまま使用してもよいし、更に、熱分解性等に影響を与えない範囲で、公知の添加剤を配合して用いてもよい。添加剤としては、潤滑剤、分散剤等を使用できる。潤滑剤としては、例えば、ワックス等を挙げることができる。分散剤としては、例えば、各種界面活性剤、ポリカルボン酸等の高分子系分散剤等を使用できる。これらの添加剤は、1種単独で又は2種以上組み合わせて配合できる。金属粉末としては、特に限定されないが、例えば、鉄、銅、チタン、アルミニウム、タングステン、モリブデン、ニッケル、クロム等の金属の粉末;これら金属の各種合金の粉末等を挙げることができる。
 セラミックス焼成用バインダー
 本発明のセラミックス焼成用バインダーは、セラミックス粉末の成形体を製造する場合の射出成形用、鋳型成形用等の熱分解性バインダーである。セラミックス焼成用バインダーとしては、本発明バインダー樹脂組成物をそのまま使用してもよいし、更に、熱分解性等に影響を与えない範囲で、公知の添加剤を配合して用いてもよい。添加剤としては、結晶成長阻止剤、分散剤、可塑剤等を挙げることができる。結晶成長阻止剤としては、例えば、MgO、SiO等の酸化物;アミノアルコール等を挙げることができる。分散剤としては、例えば、各種界面活性剤、ポリカルボン酸等の高分子系分散剤等を使用できる。可塑剤としては、公知の可塑剤を用いることができ、沸点が200℃以上であるものが好ましい。可塑剤としては、具体的には、例えば、フタル酸系化合物、アジピン酸系化合物、セバシン酸系化合物、アゼライン酸系化合物、リン酸系化合物、脂肪酸系化合物、エポキシ系化合物、トリメリット酸系化合物、オレイン酸ブチル、塩素化パラフィン、ポリブテン、ポリイソブチレン等が挙げられる。これらの添加剤は、1種単独で又は2種以上組み合わせて配合できる。セラミックス粉末としては、特に限定されないが、例えば、チタン酸バリウム、酸化インジウム、酸化スズインジウム、チタン酸化物、アルミニウム酸化物、バリウム酸化物、鉛酸化物、ジルコニウム酸化物、ケイ素酸化物、イットリウム酸化物等の各種セラミックスの粉末を挙げることができる。また、焼成により、酸化スズインジウム等のセラミックスに変化するものも含まれる。
 ガラス焼成用バインダー
 本発明のガラス焼成用バインダーは、ガラス粉末の成形体を製造する場合の射出成形用、鋳型成形用等の熱分解性バインダーである。ガラス焼成用バインダーとしては、本発明バインダー樹脂組成物をそのまま使用してもよいし、更に、熱分解性等に影響を与えない範囲で、公知の添加剤を配合して用いてもよい。添加剤としては、分散剤、可塑剤、安定剤、表面張力調整剤等を挙げることができる。分散剤としては、例えば、各種界面活性剤、ポリカルボン酸等の高分子系分散剤等を使用できる。可塑剤としては、公知の可塑剤を用いることができ、沸点が200℃以上であるものが好ましい。可塑剤としては、具体的には、例えば、フタル酸系化合物、アジピン酸系化合物、セバシン酸系化合物、アゼライン酸系化合物、リン酸系化合物、脂肪酸系化合物、エポキシ系化合物、トリメリット酸系化合物、オレイン酸ブチル、塩素化パラフィン、ポリブテン、ポリイソブチレン等が挙げられる。これらの添加剤は、1種単独で又は2種以上組み合わせて配合できる。ガラス粉末としては、特に限定されないが、例えば、PbO-B-SiO系低融点ガラス粉末等の各種ガラス粉末を挙げることができる。
 以下、製造例、実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明の範囲は、これらの各例によって、限定されるものではない。各例中、「%」は重量基準である。また、各例において、ロジン誘導体の吸光度及び分子量600以上の成分比率は、以下の方法により、測定した。
 吸光度
 被検ロジン誘導体25.0mgを、25mlメスフラスコに精秤し、シクロヘキサンで溶解した後、25mlの秤線まで定容する。UV分光光度計(HITACHI u-3210 spectrophotometer)にて、セル長1cmの石英セルを用いて、300nmでの吸光度を読み取った。
 分子量600以上の成分の比率
 被検ロジン誘導体について、ゲルパーミエーションクロマトグラフ(GPC)法により、標準ポリスチレンの検量線から求めたポリスチレン換算値で分子量600以上の比率を算出させた。なお、GPC法の測定条件は、以下の通りである。
 分析装置:HLC-8220(東ソー(株)製)
 カラム:TSK-GEL G1000HXL、TSK-GEL G2000HXL
 溶離液:テトラヒドロフラン
 注入試料濃度:5mg/mL
 流量:0.6mL/min
 注入量:100μL
 カラム温度:40℃
 検出器:RI
 製造例1
 中国産ガムロジン600gと触媒の5%パラジウムカーボン(含水率50%)1.8gを1Lフラスコに仕込み、275℃まで昇温し、3時間不均化反応を実施した。触媒をろ別後、400Paの減圧下で蒸留した。195~250℃で留出された成分をロジン誘導体(i)とした。300nmでの吸光度は0.18、分子量600以上の成分の含有率は0.2%であった。
 製造例2
 中国産ガムロジンの水素化処理物600gを1Lフラスコに仕込み、製造例1と同様の条件で蒸留し、195~250℃で留出された成分を得た。この195~250℃で留出された成分400gと5%パラジウムカーボン(含水率50%)1.2gを1Lフラスコに仕込み、3時間不均化反応を実施した。触媒をろ別して、ロジン誘導体(ii)を得た。300nmでの吸光度は0.15、分子量600以上の成分の含有率は0.3%であった。
 製造例3
 中国産ガムロジンの水素化処理物600gを1Lフラスコに仕込み、製造例1と同様の条件で蒸留し、195~250℃で留出された成分を得た。195~250℃で留出された成分200gと5%パラジウムアルミナ3.0g、シクロヘキサン200gを1Lオートクレーブに仕込み、系内を水素ガスで十分置換した後、反応初期水素圧力を6MPaとし、200℃まで昇温した後、水素圧力を10MPaとし、適宜圧力減少分を補給しながら4時間水素化反応させた。触媒をろ別し、減圧蒸留にてシクロヘキサンを留去し、ロジン誘導体(iii)を得た。300nmでの吸光度は0.01、分子量600以上の成分の含有率は0.3%であった。
 製造例4
 中国産ガムロジンの水素化処理物を製造例1と同様の条件で蒸留し、195~250℃で留出された成分をロジン誘導体(iv)とした。300nmでの吸光度は0.07、分子量600以上の成分の含有率は1.4%であった。
 製造例5
 中国産ガムロジンを製造例1と同様の条件で蒸留し、195~250℃で留出された成分をロジン誘導体(v)とした。300nmでの吸光度は1.6、分子量600以上の成分の含有率は1.4%であった。
 実施例1~4
 製造例1~4で得られたロジン誘導体(i)~(iv)について、示差熱・熱重量同時測定装置(セイコーインスツルメンツ(株)製、商品名「TG/DTA220」)を用い、空気雰囲気下、5℃/minの昇温速度にて99%重量損失温度を測定したところ、いずれも、500℃以下であり、本発明のロジン誘導体(A)に該当することが判った。
 比較例1~4
 製造例5で得られたロジン誘導体(v)、中国産ガムロジンであるロジン誘導体(vi)(300nmでの吸光度は1.6、分子量600以上の成分の含有率は3.0%)、中国産ガムロジンの水素化処理物であるロジン誘導体(vii)(300nmでの吸光度は0.07、分子量600以上の成分の含有率は2.0%)、及び中国産不均化ロジンであるロジン誘導体(viii)(300nmでの吸光度は0.17、分子量600以上の成分の含有率は4.9%)について、空気雰囲気下、5℃/minの昇温速度にて99%重量損失温度を測定したところ、いずれも、500℃を超えていて、本発明のロジン誘導体(A)には該当しないことが判った。
 窒素気流下の熱分解性試験
 窒素雰囲気下に昇温速度5℃/minの熱重量測定における99%重量損失温度の測定は、次の様にして、行った。即ち、ロジン誘導体(i)~(viii)について、示差熱・熱重量同時測定装置(セイコーインスツルメンツ(株)製、商品名「TG/DTA220」)により、窒素雰囲気下で5℃/minの昇温速度にて、25℃から550℃まで昇温したときの99%重量損失温度を測定した。さらに、試験後の残渣の状態を以下の基準で評価した。
 1:目視で全く残渣が確認されない
 2:わずかに残渣が確認されるが外観は良い
 3:黒色または褐色の残渣が有り、外観が悪い
 表1に、実施例1~4[ロジン誘導体(i)~(iv)]及び比較例1~4[ロジン誘導体(v)~(viii)]の99%重量損失温度及び窒素気流下熱処理後の残渣の状態を、示した。
Figure JPOXMLDOC01-appb-T000001
 実施例5
 ロジン誘導体(A)であるロジン誘導体(i)の20%トルエン溶液50gに、平均粒子径100μmのアルミニウム合金粉末(Al:86%、Si:10%、Fe:1%、Cu:2%、Mg:1%)100gを添加し、ボールミル分散機で混合し、ペースト状の粉末冶金用バインダー樹脂組成物を得た。これをガラス基板上に、スクリーン印刷で、30μmの厚みで塗工し、窒素雰囲気下において450℃で10分間焼成し、焼結させた。焼結体には黒色残渣は見られなかった。
 実施例6~8
 ロジン誘導体(A)を表2の記載のとおりに変更した他は、実施例5と同様にして焼成し、焼結体を得た。
 実施例9
 平均粒子径0.5μmのチタン酸バリウム粉末100g、ロジン誘導体(i)10g、メチルエチルケトン40g、トルエン30gを、ボールミル分散機で混合することにより、セラミックス焼成用バインダー樹脂組成物を得た。これを、ガラス基板上に、スクリーン印刷で20μmの厚みで塗工し、N、HおよびHOからなる還元性雰囲気中において450℃で2時間焼成し焼結させた。焼結体には黒色残渣は見られなかった。
 実施例10~12
 ロジン誘導体(A)を表2の記載のとおりに変更した他は、実施例9と同様にして焼成し、焼結体を得た。
 実施例13
 PbO-B-SiO系低融点ガラス粉末60g、ロジン誘導体(i)10g、ブチルカルビトールアセテート20gを、ロールミル分散機で十分に混練し、ガラス焼成用バインダー樹脂組成物を得た。これをガラス基板上にスクリーン印刷により厚み200μmで塗布し、窒素雰囲気下、580℃で30分間焼成し、焼結体を得た。焼結体には黒色残渣は見られなかった。
 実施例14~16
 ロジン誘導体(A)を表2の記載のとおりに変更した他は、実施例13と同様にして焼成し、焼結体を得た。
 実施例17
 酸化インジウム粉末40g、酸化スズ粉末4.4g、ロジン誘導体(i)5g、ブチルカルビトールアセテート20gを、ボールミル分散機で混合し、セラミック焼成用バインダー樹脂組成物を得た。これをガラス基板上にスクリーン印刷にて10μmの厚さに塗工し、空気雰囲気下、580℃で30分間焼成し、焼結体を得た。焼結体には黒色残渣は見られなかった。
 実施例18~20
 ロジン誘導体(A)を表2の記載のとおりに変更した他は、実施例17と同様にして焼成し、焼結体を得た。
 実施例21
 アセチルアセトンインジウム40g、アセチルアセトンスズ0.1g、パラターシャリーブチルフェノール42g、コハク酸ジ2-エチルヘキシル14g、ロジン誘導体(i)10gを、フラスコ中で混合し、130℃に加熱して2時間攪拌した。冷却し、セラミック焼成用バインダー樹脂組成物を得た。これをガラス基板上にアプリケーターで2μmの厚さに塗工し、空気雰囲気下で500℃、1時間焼成し、焼結体を得た。焼結体には黒色残渣は見られなかった。
 実施例22~24
 ロジン誘導体(A)を表2の記載のとおりに変更した他は、実施例21と同様にして焼成し、焼結体を得た。
 焼成後のロジン誘導体由来の残渣評価
 実施例5~24の焼成後のロジン誘導体由来の残渣の状態を、目視により、以下の基準で評価した。
 1:全く残渣が確認されない
 2:わずかに残渣が確認されるが外観は良い
 3:黒色または褐色の残渣が有り、外観が悪い
 上記焼成後のロジン誘導体由来の残渣の評価結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 比較例5~8
 用いるロジン誘導体を、表3の記載のとおりに変更した他は、実施例5と同様にして焼成し、焼結体を得た。
 比較例9~12
 用いるロジン誘導体を、表3の記載のとおりに変更した他は、実施例9と同様にして焼成し、焼結体を得た。
 比較例13~16
 用いるロジン誘導体を、表3の記載のとおりに変更した他は、実施例13と同様にして焼成し、焼結体を得た。
 比較例17~20
 用いるロジン誘導体を、表3の記載のとおりに変更した他は、実施例17と同様にして焼成し、焼結体を得た。
 比較例21~24
 用いるロジン誘導体を、表3の記載のとおりに変更した他は、実施例21と同様にして焼成し、焼結体を得た。
 上記比較例5~24について、前記と同様にして行った、焼成後のロジン誘導体由来の残渣の評価結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明の易熱分解性バインダー樹脂は、それ自体で又は該樹脂を含む組成物の形態で、無機固体粉末の成形体を製造する場合の射出成形用、鋳型成形用等の熱分解性バインダー;導電性パターン形成用熱分解性バインダー等として、好適に利用できる。
 

Claims (9)

  1.  ロジン類(a)に、蒸留と不均化処理および/または水素化処理とをして得られる、空気雰囲気下に昇温速度5℃/分の熱重量測定における99重量%重量損失温度が500℃以下であるロジン誘導体(A)を有効成分とする易熱分解性バインダー樹脂。
  2.  ロジン誘導体(A)が、GPCによるスチレン換算分子量600以上の成分の比率が1.5重量%以下であり、紫外線吸光光度法による300nmの吸光度(測定条件:試料濃度1g/dm、セル長1cm)が0.3以下である請求項1に記載のバインダー樹脂。
  3.  窒素雰囲気下で、毎分5℃ずつ上昇させ、25℃から500℃まで熱処理した後に残渣汚れが残らない請求項1に記載のバインダー樹脂。
  4.  請求項1の易熱分解性バインダー樹脂を含有することを特徴とするバインダー樹脂組成物。
  5.  更に、有機溶剤を含有する請求項4に記載のバインダー樹脂組成物。
  6.  粉末冶金用バインダーである請求項4に記載のバインダー樹脂組成物。
  7.  セラミックス焼成用バインダーである請求項4に記載のバインダー樹脂組成物。
  8.  セラミックスが酸化スズインジウムである請求項7に記載のバインダー樹脂組成物。
  9.  ガラス焼成用バインダーである請求項4に記載のバインダー樹脂組成物。
PCT/JP2011/050835 2010-01-22 2011-01-19 易熱分解性バインダー樹脂、バインダー樹脂組成物および該組成物の用途 WO2011090061A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/516,106 US8829077B2 (en) 2010-01-22 2011-01-19 Easily thermally decomposable binder resin, binder resin composition and use of said composition
EP11734667.6A EP2527403A4 (en) 2010-01-22 2011-01-19 EASILY HEAT-RELATED BINDER RESIN, BINDER RESIN COMPOSITION, AND USE OF THIS COMPOSITION
CN2011800065091A CN102712813A (zh) 2010-01-22 2011-01-19 易热分解性粘结剂树脂、粘结剂树脂组合物和该组合物的用途
KR1020127019556A KR20120128613A (ko) 2010-01-22 2011-01-19 열분해가 용이한 바인더 수지, 바인더 수지 조성물 및 이의 사용
JP2011550923A JP5664875B2 (ja) 2010-01-22 2011-01-19 易熱分解性バインダー樹脂、バインダー樹脂組成物および該組成物の用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-011541 2010-01-22
JP2010011541 2010-01-22

Publications (1)

Publication Number Publication Date
WO2011090061A1 true WO2011090061A1 (ja) 2011-07-28

Family

ID=44306862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050835 WO2011090061A1 (ja) 2010-01-22 2011-01-19 易熱分解性バインダー樹脂、バインダー樹脂組成物および該組成物の用途

Country Status (7)

Country Link
US (1) US8829077B2 (ja)
EP (1) EP2527403A4 (ja)
JP (1) JP5664875B2 (ja)
KR (1) KR20120128613A (ja)
CN (1) CN102712813A (ja)
TW (1) TW201139591A (ja)
WO (1) WO2011090061A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147989A (ja) * 2014-02-07 2015-08-20 株式会社村田製作所 多孔質金属体およびその製造方法
JP2018098272A (ja) * 2016-12-08 2018-06-21 住友ベークライト株式会社 ペースト状接着剤組成物および電子装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150354313A1 (en) * 2014-06-04 2015-12-10 McClinton Energy Group, LLC Decomposable extended-reach frac plug, decomposable slip, and methods of using same
EP3266832B1 (en) * 2015-03-02 2020-02-26 National University Corporation Tokyo University Of Agriculture and Technology Thermally decomposable binder
JP6918445B2 (ja) * 2016-06-24 2021-08-11 日東電工株式会社 加熱接合用シート及びダイシングテープ付き加熱接合用シート
JP6864505B2 (ja) 2016-06-24 2021-04-28 日東電工株式会社 加熱接合用シート及びダイシングテープ付き加熱接合用シート

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820775A (ja) * 1981-07-24 1983-02-07 住友化学工業株式会社 無機焼結体の製造方法
JPS61261250A (ja) * 1985-05-13 1986-11-19 三井化学株式会社 セラミツクス製造用組成物
JPH03250701A (ja) * 1990-02-28 1991-11-08 Matsushita Electric Ind Co Ltd チップ抵抗体の製造方法
JPH0474760A (ja) * 1990-07-13 1992-03-10 Toyota Motor Corp セラミックス成形用バインダー組成物
JPH1077596A (ja) * 1996-09-02 1998-03-24 Nippon P M C Kk 紙塗工用組成物及び塗工紙
JP2732479B2 (ja) 1989-04-07 1998-03-30 三井化学株式会社 成形体製造用組成物
JP2000231990A (ja) * 1999-02-09 2000-08-22 Toray Ind Inc 発光素子およびその製造方法
JP2008030105A (ja) * 2006-07-31 2008-02-14 Arakawa Chem Ind Co Ltd はんだ付け用フラックス組成物、クリームはんだ組成物および電子部品
JP2008270027A (ja) * 2007-04-23 2008-11-06 Coki Engineering Inc 冷陰極放電管用電極の生産方法および生産システム、並びにそれに用いるトレー
JP2009070727A (ja) 2007-09-14 2009-04-02 Harima Chem Inc 微細なパターン形状を有する金属ナノ粒子焼結体層の形成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2485616A (en) * 1944-06-17 1949-10-25 Hercules Powder Co Ltd Emulsion polymerization of butadiene in the presence of a salt of a middle fraction o a dehydrogenated rosin
US2887475A (en) * 1956-12-18 1959-05-19 Hercules Powder Co Ltd Rosin having improved characteristics for use in size and rosin sizing compositions prepared therefrom
US3223696A (en) * 1963-02-18 1965-12-14 Francis J Boylan Polymerization emulsifiers comprising a soap of distilled rosin and an oil
US3320695A (en) * 1964-06-25 1967-05-23 Hercules Inc Degradable polyolefin mulching film
US4906733A (en) * 1987-01-29 1990-03-06 Arakawa Kagaku Kogyo Kabushiki Kaisha Process for preparing colorless rosin
JP2539851B2 (ja) * 1987-09-26 1996-10-02 荒川化学工業株式会社 無色ロジンの製造法
CN101146884A (zh) * 2005-03-30 2008-03-19 荒川化学工业株式会社 增粘剂以及增粘树脂乳胶

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820775A (ja) * 1981-07-24 1983-02-07 住友化学工業株式会社 無機焼結体の製造方法
JPS61261250A (ja) * 1985-05-13 1986-11-19 三井化学株式会社 セラミツクス製造用組成物
JP2732479B2 (ja) 1989-04-07 1998-03-30 三井化学株式会社 成形体製造用組成物
JPH03250701A (ja) * 1990-02-28 1991-11-08 Matsushita Electric Ind Co Ltd チップ抵抗体の製造方法
JPH0474760A (ja) * 1990-07-13 1992-03-10 Toyota Motor Corp セラミックス成形用バインダー組成物
JPH1077596A (ja) * 1996-09-02 1998-03-24 Nippon P M C Kk 紙塗工用組成物及び塗工紙
JP2000231990A (ja) * 1999-02-09 2000-08-22 Toray Ind Inc 発光素子およびその製造方法
JP2008030105A (ja) * 2006-07-31 2008-02-14 Arakawa Chem Ind Co Ltd はんだ付け用フラックス組成物、クリームはんだ組成物および電子部品
JP2008270027A (ja) * 2007-04-23 2008-11-06 Coki Engineering Inc 冷陰極放電管用電極の生産方法および生産システム、並びにそれに用いるトレー
JP2009070727A (ja) 2007-09-14 2009-04-02 Harima Chem Inc 微細なパターン形状を有する金属ナノ粒子焼結体層の形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2527403A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147989A (ja) * 2014-02-07 2015-08-20 株式会社村田製作所 多孔質金属体およびその製造方法
JP2018098272A (ja) * 2016-12-08 2018-06-21 住友ベークライト株式会社 ペースト状接着剤組成物および電子装置

Also Published As

Publication number Publication date
JPWO2011090061A1 (ja) 2013-05-23
CN102712813A (zh) 2012-10-03
TW201139591A (en) 2011-11-16
KR20120128613A (ko) 2012-11-27
US8829077B2 (en) 2014-09-09
EP2527403A4 (en) 2013-12-04
US20120296007A1 (en) 2012-11-22
EP2527403A1 (en) 2012-11-28
JP5664875B2 (ja) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5664875B2 (ja) 易熱分解性バインダー樹脂、バインダー樹脂組成物および該組成物の用途
EP2025435B1 (en) Ultra low-emissivity (Ultra Low E) silver coating
JP5522900B2 (ja) 電極形成用導電性組成物及び太陽電池の形成方法
JP4834170B1 (ja) 電極形成用の導電微粒子及び金属ペースト並びに電極
US10190198B2 (en) Thick film paste and use thereof
JPH03142808A (ja) 厚膜導電体組成物
JP6966461B2 (ja) 結晶化ガラス封着材
CN111739675B (zh) 一种厚膜电阻浆料
JP2014144910A (ja) ルテニウム酸化物を有する、鉛を含有しない抵抗組成物
KR900004079B1 (ko) 저항기 조성물
US20130004659A1 (en) Thick film paste and use thereof
TW201736605A (zh) 銀合金粉末及其製造方法
TW200417531A (en) Terminal electrode compositions for multilayer ceramic capacitors
WO2016029400A1 (en) Copper-containing conductive pastes and electrodes made therefrom
KR101138246B1 (ko) 낮은 온도저항계수를 갖는 저항체용 페이스트 조성물의 제조방법, 이를 이용한 후막 저항체 및 그 제조방법
JPH0622161B2 (ja) 厚膜抵抗体組成物および厚膜抵抗体素子
JPH08217990A (ja) セラミックコーティング組成物の製造に使用するための媒体、該媒体を含有するセラミックコーティング組成物およびコーティングされたガラス支持体の製造法
WO2017115462A1 (ja) 銀合金粉末およびその製造方法
JP2003511838A (ja) 導電体組成物
JP2023130209A (ja) ポリ乳酸、バインダー組成物、及び焼成用ペースト
JPS61166101A (ja) 抵抗体組成物
KR20120044053A (ko) 저항체용 페이스트 조성물 제조방법, 이를 이용한 후막 저항체 및 그 제조방법
JPH0598305A (ja) 酸化パラジウム被覆パラジウム粉末の製造方法
JPH03101101A (ja) 薄膜抵抗体形成用材料
TW201722878A (zh) 玻璃組成物、及應用其之玻璃層和密封層

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006509.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734667

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13516106

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011550923

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011734667

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127019556

Country of ref document: KR

Kind code of ref document: A