WO2011087069A1 - ウエストゲートバルブ - Google Patents

ウエストゲートバルブ Download PDF

Info

Publication number
WO2011087069A1
WO2011087069A1 PCT/JP2011/050482 JP2011050482W WO2011087069A1 WO 2011087069 A1 WO2011087069 A1 WO 2011087069A1 JP 2011050482 W JP2011050482 W JP 2011050482W WO 2011087069 A1 WO2011087069 A1 WO 2011087069A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
exhaust gas
bypass passage
waste gate
wastegate
Prior art date
Application number
PCT/JP2011/050482
Other languages
English (en)
French (fr)
Inventor
星 徹
勲 冨田
横山 隆雄
林 慎之
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201180002876.4A priority Critical patent/CN102472160B/zh
Priority to US13/388,006 priority patent/US8733101B2/en
Priority to KR1020127000904A priority patent/KR101324882B1/ko
Priority to EP11732939.1A priority patent/EP2444625B1/en
Publication of WO2011087069A1 publication Critical patent/WO2011087069A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • F02B37/186Arrangements of actuators or linkage for bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/105Final actuators by passing part of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/20Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation arranged externally of valve member
    • F16K1/2007Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation arranged externally of valve member specially adapted operating means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/313Arrangement of components according to the direction of their main axis or their axis of rotation the axes being perpendicular to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/606Bypassing the fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a wastegate valve that is provided in a bypass passage that bypasses a turbine of a turbocharger on an exhaust gas passage of an engine and opens and closes the bypass passage.
  • turbocharger that pressurizes the supply air to the engine by the energy of the exhaust gas of the engine, in order to prevent the turbocharger from over-rotating due to an increase in the exhaust gas pressure, the turbocharger turbine is moved from the exhaust gas inlet side to the outlet side.
  • a bypass passage that is connected and opened and closed by a wastegate valve is provided.
  • FIG. 9 is a configuration diagram of an engine air supply / exhaust device to which the wastegate valve is applied.
  • the engine 52 is connected to an air supply passage 58 via an air supply manifold 56 and to an exhaust passage 60 via an exhaust manifold 54.
  • the air supply passage 58 is provided with a compressor 70 a of the turbocharger 70.
  • the compressor 70a is coaxially driven by a turbine 70b described later.
  • An intercooler 62 for exchanging heat between the intake air flowing through the air supply passage 58 and the atmosphere is provided downstream of the compressor 20a in the air supply passage 58.
  • a slot valve 64 for adjusting the flow rate of intake air flowing through the air supply passage 58 is provided on the downstream side of the air supply passage 58 from the intercooler 62.
  • a turbine 70b of the turbocharger 70 is provided in the exhaust passage 60.
  • the turbine 70b is driven by exhaust gas from the engine 52.
  • the exhaust passage 60 is provided with a bypass passage 2 that is connected from the exhaust gas inlet side to the outlet side of the turbine 70b and bypasses the turbine 70b.
  • the bypass passage 2 is provided with a waste gate valve 4 that opens and closes the bypass passage 2.
  • exhaust gas from the engine 52 gathers in the exhaust manifold 54 and is sent to the turbine 70b of the turbocharger 70 through the exhaust passage 60, and the turbine 70b is driven by the exhaust gas. .
  • the compressor 70a is coaxially driven by driving the turbine 70b to pressurize the supply air.
  • the pressurized supply air is supplied from the supply manifold 56 to the engine 2 via the supply passage 58, the intercooler 62, and the supply pipe 58.
  • the wastegate valve 4 is opened, and the exhaust gas bypasses the turbine 70b. Rotation can be prevented.
  • FIG. 11 is a side view showing a conventional wastegate valve
  • FIG. 12 is a view in the direction of arrow B in FIG. 11 and 12 are partially shown in cross section.
  • the wastegate valve 104 is supported at one end by the rotary shaft 146 and is rotatably supported around the axis r ′ of the rotary shaft 146 as indicated by an arrow W via a support arm 148.
  • the valve body 144 and the valve seat 142 on which the valve body 144 is seated are provided.
  • the wastegate valve 104 is configured to close when the valve element 144 is seated on the valve seat 142.
  • the valve seat 142 is configured on a plane perpendicular to the axial direction of the bypass passage.
  • valve body 144 When opening the valve body 144, by rotating the rotating shaft 146, the valve body 144 is rotated through the support arm 148 by the rotation as shown by an arrow W ′ that is separated from the valve seat 142, thereby opening the valve body. To do.
  • the wastegate valve is controlled to be fully opened when a parameter related to turbocharger overspeed, such as the outlet pressure of the compressor, is equal to or higher than a preset threshold value, and is fully closed otherwise. It was the Lord. However, in recent years, it has been demanded that the wastegate valve be actively used for turbocharger control.
  • the wastegate valve is not only fully opened and closed, but is used at an intermediate opening, and passes through the turbine bypass passage. It is required to adjust the amount of exhaust gas to be used.
  • FIG. 10 is a graph showing the relationship between the valve opening and the waste gate valve passage flow rate / full open flow rate [%] in the conventional waste gate valve as shown in FIG. 11 and FIG.
  • the fully open flow rate refers to the exhaust gas flow rate that flows through the bypass passage when the waste gate valve is fully open
  • the waste gate valve flow rate refers to the exhaust gas flow rate that flows through the bypass passage at the valve opening degree.
  • the slope of the valve opening-flow rate characteristic graph is not constant.
  • the slope of the graph is large, and the flow rate of the exhaust gas passing through the bypass passage varies greatly with a slight difference in the valve opening. Therefore, in the conventional wastegate valve, it is difficult to control the amount of exhaust gas passing through the bypass flow path, which is remarkable in a region where the valve opening is small.
  • the wastegate valve may have rattling for assembly.
  • the valve opening in a region where the valve opening is small, there is a possibility that the valve opening changes by the amount of play due to fluctuations in the exhaust gas flow, and the exhaust gas flow rate changes greatly.
  • the amount of exhaust gas passing through the bypass passage is controlled by adjusting the valve opening degree. It is difficult.
  • the present invention is a waste gate valve that is provided in a bypass passage that bypasses the turbine of the turbocharger on the exhaust gas passage and opens and closes the bypass passage, and adjusts the valve opening.
  • An object of the present invention is to provide a wastegate valve that can stably and easily control the flow rate of exhaust gas passing through the bypass passage.
  • a wastegate valve that bypasses the turbine of the turbocharger on the exhaust gas passage of the engine and opens and closes the bypass passage is provided on the bypass passage.
  • a valve seat formed on a surface perpendicular or inclined with respect to the axial direction of the bypass passage, and an inclination angle ⁇ of 0 ° ⁇ ⁇ 90 ° with respect to the surface including the valve seat It has a valve body that can be rotated around the center of rotation and that opens and closes the valve by being separated from the valve seat by the rotation.
  • the resolution of the stroke of the waste gate valve becomes fine. Therefore, the exhaust gas flow rate passing through the wastegate valve is insensitive to the valve opening. This is particularly noticeable in a region where the valve opening is small. Therefore, it becomes generally easy to control the amount of exhaust gas passing through the bypass flow path by the valve opening, including the region where the valve opening is small.
  • the valve body may be supported on a rotary shaft having an inclination angle ⁇ with respect to the surface including the valve seat so as to be rotatable around the axis of the rotary shaft. Thereby, it becomes easy to rotate the said valve body with the rotation center of the direction perpendicular
  • 60 to 70 ° with respect to a plane perpendicular to the axial direction of the bypass passage.
  • a wastegate valve that opens and closes the bypass passage, and is provided in a bypass passage that bypasses the turbine of the turbocharger on the exhaust gas passage, and the flow rate of the exhaust gas that passes through the bypass passage is stabilized by adjusting the valve opening degree. And can be easily controlled.
  • the configuration of the air supply / exhaust device of the engine to which the wastegate valve of the present invention is applied is the same as the conventional configuration shown in FIG. 9, so FIG. 9 is used in this embodiment and the description thereof is omitted. To do.
  • FIG. 1 is a side view showing a wastegate valve of the present invention, which is partially shown in cross section.
  • FIG. 2 is a view in the direction of arrow A in FIG. The wastegate valve of the present embodiment will be described with reference to FIGS. 1 and 2.
  • the waste gate valve 4 has a valve seat 42 as an open end that opens to an exhaust passage 60 (not shown in FIG. 1) at an end of the bypass passage 2, and is supported by a rotary shaft 46 at one end, and an axis r of the rotary shaft.
  • the valve body 144 supported so as to be rotatable as indicated by an arrow W via the support arm 48 is closed by being seated on the valve body 142.
  • the valve seat 42 which is the open end of the bypass passage, is formed on a surface inclined by an angle ⁇ with respect to the axial direction of the bypass passage 2, that is, the virtual plane p perpendicular to the exhaust gas flow f in the bypass passage 2.
  • the rotation shaft 46 is rotated, and the rotation causes the valve body 44 to rotate as indicated by the arrow W separating from the valve seat 42 via the support arm 48. Open the valve.
  • the valve seat 42 which is the opening end of the bypass passage, is formed on the axial direction of the bypass passage 2, that is, on the surface inclined by the angle ⁇ with the virtual plane p perpendicular to the exhaust gas flow f. Is configured to rotate so that the center of rotation is in a direction having an inclination angle with the surface on which the valve seat 42 is formed, the resolution of the stroke of the wastegate valve becomes fine. Thereby, the exhaust gas flow rate passing through the waste gate valve becomes insensitive to the valve opening. This is particularly noticeable in a region where the valve opening is small.
  • the wastegate valve has a backlash for assembly, and even if the valve opening changes by a small amount due to the backlash, the flow rate passing through the wastegate valve is Therefore, the flow rate of exhaust gas passing through the waste gate valve does not change greatly, and no particular problem occurs.
  • FIG. 3 is a side view showing a waste gate valve in a modified example in which the angle ⁇ of the waste gate valve shown in FIG. 1 is modified to an angle close to 0 °
  • FIG. 4 is an angle ⁇ of the waste gate valve shown in FIG. It is a side view which shows the wastegate valve in the modification which deform
  • FIG. 5 is a side view showing the waste gate valve in a modification in which the angle ⁇ of the waste gate valve shown in FIG. 1 is modified to 0 °. That is, in FIG. 5, the valve seat is provided on a surface perpendicular to the axial direction of the bypass passage.
  • 6 is a side view showing a waste gate valve in a modified example in which the angle ⁇ of the waste gate valve shown in FIG. 5 is modified to an angle close to 0 °
  • FIG. 7 is an angle ⁇ of the waste gate valve shown in FIG. It is a side view which shows the wastegate valve in the modification which deform
  • the valve seat is provided on the plane where the angle ⁇ is 0 °, that is, perpendicular to the axial direction of the bypass passage, and the angle ⁇ is in the range of 0 ° ⁇ ⁇ 90 ° as shown in FIGS.
  • the resolution of the stroke of the waste gate valve becomes fine, and the exhaust gas flow rate passing through the waste gate valve can be insensitive to the valve opening.
  • FIG. 8 is a graph showing the relationship between the rotation amount and waste gate valve passage flow rate / full open flow rate [%] in the waste gate valve of the present embodiment shown in FIG.
  • the vertical axis represents the waste gate valve passage flow rate / full open flow rate [%]
  • the horizontal axis represents the rotation amount.
  • the amount of rotation is the amount of rotation of the valve body 44 about the rotation center in the axial direction of the bypass passage 2, that is, the direction perpendicular to the flow f of the exhaust gas, and corresponds to the valve opening.
  • FIG. 8 shows four types of graphs in which the inclination angle ⁇ shown in FIG. 1 is 0 °, 45 °, 60 °, and 70 °.
  • a graph with an inclination angle of 0 ° means a conventional wastegate valve. From FIG. 8, it can be confirmed that the exhaust gas flow rate passing through the wastegate valve is less sensitive to the valve opening as the inclination angle ⁇ is larger. Therefore, it can be said that as the inclination angle ⁇ is increased, the flow rate of the exhaust gas passing through the wastegate valve can be controlled more stably by adjusting the valve opening.
  • the lower limit value of the inclination angle ⁇ needs to be 45 °, and the exhaust gas flow rate is more stably controlled.
  • the lower limit value of the inclination angle ⁇ is preferably 60 °.
  • the upper limit value of the inclination angle ⁇ needs to be 80 °, and the upper limit value is preferably 70 °.
  • the inclination angle ⁇ is 45 to 80 °, more preferably 60 to 70 °, high sealing performance can be secured, and the exhaust gas passing through the wastegate valve can be adjusted by adjusting the opening of the wastegate valve.
  • the amount can be controlled stably.
  • a wastegate valve that opens and closes the bypass passage, and is provided in a bypass passage that bypasses the turbine of the turbocharger on the exhaust gas passage, and the flow rate of the exhaust gas that passes through the bypass passage is stabilized by adjusting the valve opening degree. It can be used as a wastegate valve that can be easily controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

 エンジンの排気ガス通路上のターボチャージャのタービンをバイパスするバイパス通路に設けられ、該バイパス通路を開閉するウエストゲートバルブにおいて、前記バイパス通路上に、前記バイパス通路の軸方向に対して垂直又は傾斜角度を持った面上に形成される弁座と、前記弁座を含む面に対して0°<β<90°の傾斜角度βを持った回転中心をもって回動可能であり、回動によって前記弁座から離接して弁を開閉する弁体とを有する。

Description

ウエストゲートバルブ
 本発明は、エンジンの排気ガス通路上のターボチャージャのタービンをバイパスするバイパス通路に設けられ、該バイパス通路を開閉するウエストゲートバルブに関するものである。
 エンジンの排気ガスのエネルギーにより、エンジンへの給気を加圧するターボチャージャにおいては、排気ガス圧力の増大によるターボチャージャの過回転を防止するため、ターボチャージャのタービンの排気ガス入口側から出口側に接続され、ウエストゲートバルブにより開閉されるバイパス通路が設けられている。
 図9は、ウエストゲートバルブが適用されるエンジンの給排気装置の構成図である。
 図9において、エンジン52には、給気マニホールド56を介して給気通路58が接続されるとともに、排気マニホールド54を介して排気通路60が接続されている。
 給気通路58には、ターボチャージャ70のコンプレッサ70aが設けられている。コンプレッサ70aは後述するタービン70bに同軸駆動されるものである。給気通路58のコンプレッサ20aよりも下流側には、給気通路58を流れる吸入空気と大気で熱交換を行うインタークーラー62が設けられている。また、給気通路58のインタークーラー62よりも下流側には、給気通路58内を流通する吸入空気の流量を調節するスロットバルブ64が設けられている。
 排気通路60には、ターボチャージャ70のタービン70bが設けられている。タービン70bは、エンジン52からの排気ガスにより駆動されるものである。また、排気通路60には、タービン70bの排気ガス入口側から出口側に接続されてタービン70bをバイパスするバイパス通路2が設けられている。バイパス通路2には、該バイパス通路2を開閉するウエストゲートバルブ4が設けられている。
 かかる構成により、エンジン2が運転されると、エンジン52からの排気ガスは、排気マニホールド54に集合して、排気通路60を通してターボチャージャ70のタービン70bに送り込まれ、排気ガスによってタービン70bを駆動する。
 ターボチャージャ70においては、タービン70bの駆動によりコンプレッサ70aが同軸駆動されて給気を加圧する。該加圧された給気は、給気通路58、インタークーラー62、給気管58を経て給気マニホールド56からエンジン2に供給される。
 ここで、ターボチャージャ2の過回転を防止する場合に、ウエストゲートバルブ4を開とし、エンジン2からの排気ガスをバイパス通路を流通させてタービン70bをバイパスさせる運転を実施することがある。
 例えば、コンプレッサ70aの出口圧を検出し、該出口圧が予め設定した閾値以上になったときに、ウエストゲートバルブ4を開き、排気ガスがタービン70bをバイパスする運転とすることでターボチャージャの過回転を防止することができる。
 従来、かかるウエストゲートバルブとして、バイパス通路の開口端のバイパス通路の軸方向と垂直な面上に弁座を設けたスイング式のバルブが採用されており、このようなウエストゲートバルブは例えば特許文献1などに開示されている。
 図11は、従来のウエストゲートバルブを示す側面図であり、図12は、図11におけるB方向矢視図である。なお図11、図12とも一部断面で表している。
 図11及び図12において、ウエストゲートバルブ104は、一端を回転軸146に支持され該回転軸146の軸心r’周りに、支持アーム148を介して矢印Wのように回動自在に支持された弁体144と、弁体144が着座する弁座142とを備えている。ウエストゲートバルブ104は、弁体144が弁座142に着座することで閉弁する構成である。
 図11及び図12において、弁座142は、バイパス通路の軸方向と垂直な面上に構成されている。
 弁体144を開く際には、回転軸146を回動させることで、該回転により支持アーム148を介して弁体144が弁座142から離隔する矢印W’のように回動して開弁する。
特開2009-92026号公報
 従来、ウエストゲートバルブは、前記コンプレッサの出口圧などターボチャージャの過回転と関連のあるパラメータが予め設定した閾値以上となったときに全開、そうでないときに全閉とする開閉制御を行うことが主であった。
 しかし近年、ウエストゲートバルブを積極的にターボチャージャの制御に用いることが求められており、ウエストゲートバルブの開度を全開及び全閉だけでなく中間開度で使用し、タービンのバイパス通路を通過する排気ガス量を調整することが求められている。
 図10は、図11及び図12に示したような従来のウエストゲートバルブにおけるバルブ開度とウエストゲートバルブ通過流量/全開流量[%]の関係を表したグラフである。ここで全開流量とは、ウエストゲートバルブを全開にしたときに、バイパス通路を流れる排気ガス流量をいい、ウエストゲートバルブ通過流量とは当該バルブ開度のときにバイパス通路を流れる排気ガス流量をいう。
 図10に示すように、バイパス通路の軸方向と垂直な面上に弁座を設けた従来のウエストゲートバルブにおいては、バルブ開度-流量特性のグラフの傾きが一定ではない。特にバルブ開度が小さいときには該グラフの傾きが大きく、バルブ開度の少しの違いでバイパス通路を通過する排気ガス流量が大きく変化する。そのため、従来のウエストゲートバルブでは、バイパス流路を通過する排気ガス量の制御が難しく、これはバルブ開度の小さな領域で顕著である。
 また、ウエストゲートバルブには組み立てのためのがたつきが存在している場合がある。この場合、バルブ開度の小さな領域では、排気ガスの流れの変動により前記がたつき分だけバルブ開度が変化し、排気ガス流量が大きく変化してしまう可能性がある。
 以上のように、バイパス通路の軸方向と垂直な面上に弁座を設けた従来の構造のウエストゲートバルブでは、バルブ開度を調整して、バイパス通路を通過する排気ガス量を制御することは困難である。
 なお、近年ストロークセンサ付きのアクチュエータの適用化も進んでおり、エンジン側からの過給圧のより細かな制御が要求されている。該より細かな制御を行う方法としてVG Nozzleがあるが、高価なことや構造が複雑なことからガソリンエンジン用の高温度では信頼性が充分ではない。
 従って、本発明はかかる従来技術の問題に鑑み、排気ガス通路上のターボチャージャのタービンをバイパスするバイパス通路に設けられ、該バイパス通路を開閉するウエストゲートバルブであって、バルブ開度を調整することで前記バイパス通路を通過する排気ガス流量を安定して容易に制御することができるウエストゲートバルブを提供することを目的とする。
 上記の課題を解決するために、本発明においては、エンジンの排気ガス通路上のターボチャージャのタービンをバイパスするバイパス通路に設けられ、該バイパス通路を開閉するウエストゲートバルブにおいて、前記バイパス通路上に、前記バイパス通路の軸方向に対して垂直又は傾斜角度を持った面上に形成される弁座と、前記弁座を含む面に対して0°<β<90°の傾斜角度βを持った回転中心をもって回動可能であり、回動によって前記弁座から離接して弁を開閉する弁体とを有することを特徴とする。
 これにより、ウエストゲートバルブのストロークの分解能が細かくなる。よって、ウエストゲートバルブを通過する排気ガス流量がバルブ開度に対して鈍感になる。これは特にバルブ開度の小さい領域で顕著である。
 従って、バルブ開度によってバイパス流路を通過する排気ガス量を制御することがバルブ開度の小さな領域を含めて全般に容易となる。
 また、前記弁体は、前記弁座を含む面に対して傾斜角βを持った回転軸に、該回転軸の軸心周りに回動可能に支持されているとよい。
 これにより、前記弁体を排気ガスの流れと垂直な方向の回転中心をもって回動させることが容易になる。
 また、前記弁座は、バイパス通路の軸方向と垂直な面に対して、α=45~80°の傾斜角で傾斜しているとよい。
 前記傾斜角が80°を超えると閉弁したときのシール性の確保が難しくなり、閉弁時においてもウエストゲートバルブを排気ガスが通過してしまう可能性がある。
 また、傾斜角が45°を下回ると、排気ガス流量を安定して制御することができる効果が小さい。
 また、前記弁座は、バイパス通路の軸方向と垂直な面に対して、α=60~70°の傾斜角で傾斜しているとよい。
 前記傾斜角が70°以下であると閉弁したときに高いシール性を確保することができる。また、前記傾斜角が60°以上であると、ウエストゲートバルブを通過する排気ガス流量をより安定して制御することができる。
 排気ガス通路上のターボチャージャのタービンをバイパスするバイパス通路に設けられ、該バイパス通路を開閉するウエストゲートバルブであって、バルブ開度を調整することで前記バイパス通路を通過する排気ガス流量を安定して容易に制御することができる。
本発明のウエストゲートバルブを示す側面図であって、傾斜角度αを有する一部断面で示したものである。 図1におけるA方向矢視図である。 図1に示したウエストゲートバルブの角度βを0°に近い角度に変形した変形例におけるウエストゲートバルブを示す側面図である。 図1に示したウエストゲートバルブの角度βを90°に近い角度に変形した変形例におけるウエストゲートバルブを示す側面図 図1に示したウエストゲートバルブの角度αを0°に変形した変形例におけるウエストゲートバルブを示す側面図である。 図5に示したウエストゲートバルブの角度βを0°に近い角度に変形した変形例におけるウエストゲートバルブを示す側面図である。 図5に示したウエストゲートバルブの角度βを90°に近い角度に変形した変形例におけるウエストゲートバルブを示す側面図である。 図1に示した本実施例のウエストゲートバルブにおける回転量とウエストゲートバルブ通過流量/全開流量[%]の関係を示すグラフである。 ウエストゲートバルブが適用されるエンジンの給排気装置の構成図である。 従来のウエストゲートバルブにおけるバルブ開度とウエストゲートバルブ通過流量/全開流量[%]の関係を表したグラフである。 従来のウエストゲートバルブを示す側面図であり、一部断面で示したものである。 図11におけるB方向矢視図である。
 以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
 実施例において、本発明のウエストゲートバルブが適用されるエンジンの給排気装置の構成は、図9に示した従来の構成と同様であるため、図9を本実施例に流用しその説明を省略する。
 図1は、本発明のウエストゲートバルブを示す側面図であって、一部断面で示したものである。図2は、図1におけるA方向矢視図である。
 図1及び図2を用いて本実施例のウエストゲートバルブについて説明する。
 ウエストゲートバルブ4は、バイパス通路2の端部で排気通路60(図1においては不図示)に開口した開口端を弁座42とし、一端を回転軸46に支持され該回転軸の軸心r周りに、支持アーム48を介して矢印Wのように回動自在に支持された弁体144が弁体142に着座することで閉弁する構成である。
 バイパス通路の開口端である弁座42は、バイパス通路2の軸方向、即ちバイパス通路2内の排気ガスの流れfと垂直な仮想面pに対して角度αだけ傾斜した面上に形成されている。
 また、支持アーム48を介して弁体44を支持している回転軸46は、回転軸46の回転中心rと弁座42が形成される面とが0°<β<90°である傾斜角度βを持つように配置される。本実施例においては、回転軸46の回転中心rが前記仮想面pと平行な面上にあり、β=αである例を示している。
 これにより、弁体44を開く際には、回転軸46を回動させることで、該回転により支持アーム48を介して弁体44が弁座42から離隔する矢印Wのように回動して開弁する。
 以上のように、バイパス通路の開口端である弁座42をバイパス通路2の軸方向、即ち排気ガスの流れfと垂直な仮想面pと角度αだけ傾斜した面上に形成し、弁体44を回転中心が弁座42が形成される面と傾斜角度を持った方向となるように回転させる構成とすることで、ウエストゲートバルブのストロークの分解能が細かくなる。これにより、ウエストゲートバルブを通過する排気ガス流量がバルブ開度に対して鈍感になる。これは特にバルブ開度の小さい領域で顕著である。
 従って、バルブ開度によってバイパス流路2を通過する排気ガス量を制御することが、バルブ開度の小さな領域を含めて全般に容易となる。
 また、ウエストゲートバルブには組み立てのためのがたつきが存在している場合であって、前記がたつきによってバルブ開度が少量変化しても、ウエストゲートバルブを通過する流量がバルブ開度に鈍感であるので、ウエストゲートバルブを通過する排気ガス流量は大きく変化せず特に問題は生じない。
 図3は、図1に示したウエストゲートバルブの角度βを0°に近い角度に変形した変形例におけるウエストゲートバルブを示す側面図、図4は、図1に示したウエストゲートバルブの角度βを90°に近い角度に変形した変形例におけるウエストゲートバルブを示す側面図である。
 角度βが図1、図3、図4に示したように、0°<β<90°の範囲であれば、ウエストゲートバルブのストロークの分解能が細かくなり、ウエストゲートバルブを通過する排気ガス流量がバルブ開度に対して鈍感になる効果を得ることができる。
 図5は、図1に示したウエストゲートバルブの角度αを0°に変形した変形例におけるウエストゲートバルブを示す側面図である。即ち、図5においてはバイパス通路の軸方向と垂直な面上に弁座が設けられている。図6は、図5に示したウエストゲートバルブの角度βを0°に近い角度に変形した変形例におけるウエストゲートバルブを示す側面図、図7は、図5に示したウエストゲートバルブの角度βを90°に近い角度に変形した変形例におけるウエストゲートバルブを示す側面図である。
 角度αが0°、即ちバイパス通路の軸方向と垂直な面上に弁座が設けられており、角度βが図5~図7に示したように、0°<β<90°の範囲である場合にも、ウエストゲートバルブのストロークの分解能が細かくなり、ウエストゲートバルブを通過する排気ガス流量がバルブ開度に対して鈍感になる効果を得ることができる。
 図8は、図1に示した本実施例のウエストゲートバルブにおける回転量とウエストゲートバルブ通過流量/全開流量[%]の関係を示すグラフである。縦軸はウエストゲートバルブ通過流量/全開流量[%]、横軸は回転量を表している。ここで回転量とは、弁体44がバイパス通路2の軸方向、即ち排気ガスの流れfと垂直な方向の回転中心を中心に回転した量であって、バルブ開度に相当する。
 図8には、図1に示した傾斜角度αが0°、45°、60°、70°の4種類のグラフを示している。傾斜角度0°のグラフは従来のウエストゲートバルブを意味する。
 図8から、傾斜角度αが大きいほどウエストゲートバルブを通過する排気ガス流量がバルブ開度に対して鈍感になっていることが確認できる。従って傾斜角度αを大きくするほど、バルブ開度を調整してウエストゲートバルブを通過する排気ガス流量を安定して制御することができるといえる。
 傾斜角度αが45°を下回ると、排気ガス流量を安定して制御することができる効果が小さいことから傾斜角度αの下限値は45°とする必要があり、より安定して排気ガス流量を制御するために傾斜角度αの下限値を60°とすることが好ましい。
 また、傾斜角度αが大きすぎると閉弁したときのシール性の確保が難しくなり、傾斜角度αが80°を超えると閉弁時においてもウエストゲートバルブを排気ガスが通過してしまう可能性がある。そのため傾斜角度αの上限値は80°とする必要があり、該上限値を70°とすることが好ましい。
 即ち、傾斜角度αが45~80°、より好ましくは60~70°であれば、高いシール性を確保することができ、しかもウエストゲートバルブの開度調整によって、ウエストゲートバルブを通過する排気ガス量を安定して制御することができる。
 排気ガス通路上のターボチャージャのタービンをバイパスするバイパス通路に設けられ、該バイパス通路を開閉するウエストゲートバルブであって、バルブ開度を調整することで前記バイパス通路を通過する排気ガス流量を安定して容易に制御することができるウエストゲートバルブとして使用することができる。

Claims (4)

  1.  エンジンの排気ガス通路上のターボチャージャのタービンをバイパスするバイパス通路に設けられ、該バイパス通路を開閉するウエストゲートバルブにおいて、
     前記バイパス通路上に、前記バイパス通路の軸方向に対して垂直又は傾斜角度を持った面上に形成される弁座と、
     前記弁座を含む面に対して0°<β<90°の傾斜角度βを持った回転中心をもって回動可能であり、回動によって前記弁座から離接して弁を開閉する弁体とを有することを特徴とするウエストゲートバルブ。
  2.  前記弁体は、前記弁座を含む面に対して傾斜角βを持った回転軸に、該回転軸の軸心周りに回動可能に支持されていることを特徴とする請求項1記載のウエストゲートバルブ。
  3.  前記弁座は、バイパス通路の軸方向と垂直な面に対して、45~80°の傾斜角αで傾斜していることを特徴とする請求項1又は2に記載のウエストゲートバルブ。
  4.  前記傾斜角αは、60~70°であることを特徴とする請求項3記載のウエストゲートバルブ。
PCT/JP2011/050482 2010-01-15 2011-01-13 ウエストゲートバルブ WO2011087069A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180002876.4A CN102472160B (zh) 2010-01-15 2011-01-13 废气旁通阀
US13/388,006 US8733101B2 (en) 2010-01-15 2011-01-13 Wastegate valve
KR1020127000904A KR101324882B1 (ko) 2010-01-15 2011-01-13 웨이스트 게이트 밸브
EP11732939.1A EP2444625B1 (en) 2010-01-15 2011-01-13 Waste gate valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010006685A JP2011144762A (ja) 2010-01-15 2010-01-15 ウエストゲートバルブ
JP2010-006685 2010-01-15

Publications (1)

Publication Number Publication Date
WO2011087069A1 true WO2011087069A1 (ja) 2011-07-21

Family

ID=44304339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050482 WO2011087069A1 (ja) 2010-01-15 2011-01-13 ウエストゲートバルブ

Country Status (6)

Country Link
US (1) US8733101B2 (ja)
EP (1) EP2444625B1 (ja)
JP (1) JP2011144762A (ja)
KR (1) KR101324882B1 (ja)
CN (1) CN102472160B (ja)
WO (1) WO2011087069A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2832968A4 (en) * 2012-03-30 2015-07-08 Toyota Motor Co Ltd CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP5939052B2 (ja) 2012-06-26 2016-06-22 株式会社Ihi 過給機
DE102012217920B4 (de) * 2012-10-01 2020-12-31 Vitesco Technologies GmbH Wastegateventil und Verfahren zum Einbauen eines Wastegateventils in das Turbinengehäuse eines Abgasturboladers
DE102012111558A1 (de) * 2012-11-29 2014-06-05 Firma IHI Charging Systems International GmbH Regelvorrichtung für einen Abgasführungsabschnitt einer Turbine
KR101383720B1 (ko) * 2012-12-13 2014-04-08 기아자동차(주) 웨이스트게이트를 구비한 터보차저
US9874139B2 (en) * 2012-12-17 2018-01-23 Honeywell International Inc. Assembly with wastegate opening, wastegate seat and wall
KR20150097567A (ko) * 2012-12-19 2015-08-26 보르그워너 인코퍼레이티드 터보차저를 위한 90도 웨이스트게이트에서의 손실 감소를 위한 방법 및 구조
JP6075923B2 (ja) * 2013-03-28 2017-02-08 株式会社オティックス ターボチャージャ
US10066540B2 (en) * 2013-04-30 2018-09-04 Borgwarner Inc. Control arrangement of an exhaust-gas turbocharger
GB201312505D0 (en) * 2013-07-12 2013-08-28 Cummins Ltd Turbine
FR3009019B1 (fr) * 2013-07-23 2015-08-21 Renault Sa Soupape de decharge de turbocompresseur
US9376930B2 (en) * 2013-10-30 2016-06-28 Hyundai Motor Company Waste gate valve
DE102014102635A1 (de) * 2014-02-27 2015-09-10 Ihi Charging Systems International Gmbh Abgasturbolader mit einer Umblaseeinrichtung
DE102014102636A1 (de) * 2014-02-27 2015-08-27 Ihi Charging Systems International Gmbh Abgasturbolader mit einer Umblaseeinrichtung
GB2528097A (en) * 2014-07-09 2016-01-13 Jaguar Land Rover Ltd Wastegate valve
CN106662006B (zh) 2014-08-29 2019-03-29 株式会社Ihi 增压器
JP6458676B2 (ja) * 2014-09-12 2019-01-30 株式会社デンソー バルブ装置
DE102015001763A1 (de) * 2015-02-11 2016-08-11 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Wastegateventil-Stellglied
DE102016204076A1 (de) * 2015-05-18 2016-11-24 Bosch Mahle Turbo Systems Gmbh & Co. Kg Abgasturbolader
DE102015122351A1 (de) 2015-12-21 2017-06-22 Ihi Charging Systems International Gmbh Abgasführungsabschnitt für einen Abgasturbolader und Verfahren zum Betreiben eines Abgasturboladers
DE102015122355A1 (de) 2015-12-21 2017-06-22 Ihi Charging Systems International Gmbh Abgasführungsabschnitt für einen Abgasturbolader und Verfahren zum Betreiben eines Abgasturboladers
US10526958B2 (en) * 2016-03-23 2020-01-07 Borgwarner Inc. Reverse offset wastegate valve assembly for improved catalyst light-off performance
DE102016208159B4 (de) 2016-05-12 2022-02-03 Vitesco Technologies GmbH Turbine für einen Abgasturbolader mit zweiflutigem Turbinengehäuse und einem Ventil zur Flutenverbindung
JP6566134B2 (ja) * 2016-06-07 2019-08-28 株式会社Ihi 流量可変バルブ機構及び過給機
US10125671B2 (en) * 2016-11-09 2018-11-13 Ford Global Technologies, Llc Wastegate for an engine system
KR101981464B1 (ko) 2017-12-14 2019-05-23 영화금속 주식회사 터빈 하우징과 부시의 결합 구조 및 결합 방법
US11634998B2 (en) 2018-10-08 2023-04-25 Borgwarner Inc. Wastegate assembly for use in a turbocharger and system including the same
DE112020004247T5 (de) * 2019-10-10 2022-06-09 Ihi Corporation Turbolader
DE112020007240T5 (de) * 2020-08-17 2023-03-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Wastegateventilvorrichtung, turbine und turbolader

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220132U (ja) * 1985-07-22 1987-02-06
JP2009092026A (ja) 2007-10-11 2009-04-30 Mitsubishi Heavy Ind Ltd 流体切換弁装置とこれを備えた排気ガス制御バルブ及びウェストゲートバルブ
WO2009107555A1 (ja) * 2008-02-26 2009-09-03 三菱重工業株式会社 ターボチャージャの排気バイパス弁
JP2009539018A (ja) * 2006-05-31 2009-11-12 カミンズ・ターボ・テクノロジーズ・リミテッド デュアルウェストゲートを具えたターボチャージャ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US413941A (en) * 1889-10-29 Valve for pneumatic pipes or tubes
US401680A (en) * 1889-04-16 Edwaed s
JPS5588018U (ja) * 1978-12-14 1980-06-18
DE3922491A1 (de) * 1988-08-23 1990-03-01 Asea Brown Boveri Gasdynamischer druckwellenlader mit abgas bypass
US5046317A (en) 1989-06-09 1991-09-10 Allied-Signal Inc. Wastegate valve for turbocharger
SE520219C2 (sv) * 2001-10-19 2003-06-10 Saab Automobile Ventil och motorarrangemang
JP2004332686A (ja) * 2003-05-12 2004-11-25 Hitachi Ltd 内燃機関の排気通路切替え装置
DE102004048860B4 (de) * 2004-10-07 2017-05-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ansteuerung eines Stellgliedes in einer Massenstromleitung
US20090014674A1 (en) * 2005-05-10 2009-01-15 Borgwarner Inc. Valve regulation assembly
US7360362B2 (en) * 2006-01-20 2008-04-22 Honeywell International, Inc. Two-stage turbocharger system with integrated exhaust manifold and bypass assembly
US20070257223A1 (en) * 2006-05-08 2007-11-08 Van De Moosdijk Frank Valve assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220132U (ja) * 1985-07-22 1987-02-06
JP2009539018A (ja) * 2006-05-31 2009-11-12 カミンズ・ターボ・テクノロジーズ・リミテッド デュアルウェストゲートを具えたターボチャージャ
JP2009092026A (ja) 2007-10-11 2009-04-30 Mitsubishi Heavy Ind Ltd 流体切換弁装置とこれを備えた排気ガス制御バルブ及びウェストゲートバルブ
WO2009107555A1 (ja) * 2008-02-26 2009-09-03 三菱重工業株式会社 ターボチャージャの排気バイパス弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2444625A4 *

Also Published As

Publication number Publication date
EP2444625A1 (en) 2012-04-25
JP2011144762A (ja) 2011-07-28
CN102472160B (zh) 2015-04-01
KR20120017090A (ko) 2012-02-27
EP2444625B1 (en) 2016-01-13
CN102472160A (zh) 2012-05-23
US20130199175A1 (en) 2013-08-08
KR101324882B1 (ko) 2013-11-01
EP2444625A4 (en) 2014-11-05
US8733101B2 (en) 2014-05-27

Similar Documents

Publication Publication Date Title
WO2011087069A1 (ja) ウエストゲートバルブ
US8342206B2 (en) Dual butterfly control valve and method of use
JP4885105B2 (ja) 流体切換弁装置とこれを備えた排気ガス制御バルブ及びウェストゲートバルブ
US7353811B2 (en) Exhaust gas recirculation device
US8210793B2 (en) Radial flow compressor for a turbo-supercharger
CN102892994B (zh) 控制轴密封件
US10294856B2 (en) VTG turbocharger with wastegate controlled by a common actuator
KR101794365B1 (ko) 내연 엔진용 신선 가스 공급 장치 및 이런 신선 가스 공급 장치의 작동 방법
US20120312010A1 (en) Waste gate valve device
US10697377B2 (en) Turbine supercharger and two-stage supercharging system
US9726074B2 (en) Turbocharger integrated valve unit
KR20110060934A (ko) 가변 흐름 웨이스트게이트
WO2013192029A1 (en) Exhaust-gas turbocharger
CN110513159B (zh) 具有单轴、自定心枢转特征件的可变涡轮几何形状叶片
US20160024998A1 (en) A compact rotary wastegate valve
US10844778B2 (en) Exhaust-flow-rate control valve, and two-stage supercharging system provided with same
KR102102334B1 (ko) 가변 구조 터보차저 메커니즘을 위한 일체형 베인 정지부
JP2015513037A (ja) 流体循環バルブ
JP5660056B2 (ja) リンク装置
WO2015066258A1 (en) Rotary wastegate valve
WO2012176866A1 (ja) 多段過給システム
JP2008133808A (ja) 多段過給式ターボエンジン
US8479717B2 (en) Three-way controllable valve
JP2011058425A (ja) 調整バルブ及び過給装置
CN107208533B (zh) 制动挡板和排气系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002876.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20127000904

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011732939

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13388006

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1201000286

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE