WO2011087046A1 - 太陽電池モジュール用耐侯性シートおよび該シートを用いた製品ならびに該太陽電池モジュール用耐侯性シートの製造方法 - Google Patents

太陽電池モジュール用耐侯性シートおよび該シートを用いた製品ならびに該太陽電池モジュール用耐侯性シートの製造方法 Download PDF

Info

Publication number
WO2011087046A1
WO2011087046A1 PCT/JP2011/050422 JP2011050422W WO2011087046A1 WO 2011087046 A1 WO2011087046 A1 WO 2011087046A1 JP 2011050422 W JP2011050422 W JP 2011050422W WO 2011087046 A1 WO2011087046 A1 WO 2011087046A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
solar cell
cell module
weather
hydroxyl group
Prior art date
Application number
PCT/JP2011/050422
Other languages
English (en)
French (fr)
Inventor
秀人 中川
健司 午坊
和子 青木
荒木 孝之
寛 鳥居
喜久 山本
英二 藤田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020147031895A priority Critical patent/KR20140139627A/ko
Priority to JP2011549998A priority patent/JPWO2011087046A1/ja
Priority to US13/522,098 priority patent/US10000616B2/en
Priority to CN201180006083.XA priority patent/CN102712184B/zh
Priority to EP11732916.9A priority patent/EP2524802B1/en
Publication of WO2011087046A1 publication Critical patent/WO2011087046A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated

Definitions

  • the present invention relates to a weather-resistant sheet for solar cell module, a product using the sheet, and a method for producing the weather-resistant sheet for solar cell module. More specifically, a cured coating layer having excellent adhesion to other layers (for example, a sealing agent layer) constituting the solar cell module can be formed while blocking during the roll in the preparation process can be suppressed. Further, the present invention relates to a weather-resistant sheet for solar cell module capable of remarkably suppressing UV transmission, a product using the sheet, and a method for producing the weather-resistant sheet for solar cell module.
  • the solar battery module is usually sealed with a solar battery cell 1 with a sealant layer 2 and sandwiched between a surface layer 3 made of glass or transparent resin and a weather-resistant sheet 4. It has a laminated structure.
  • a sealant ethylene / vinyl acetate copolymer (EVA) is used.
  • the weather-resistant sheet 4 in the solar cell module has a role of preventing moisture (water vapor) from entering the sealant layer 2 in addition to the purpose of increasing the mechanical strength of the module.
  • the weather-resistant sheet 4 has a structure in which a water-impermeable sheet 5 for providing water vapor barrier properties and a resin sheet 8 are bonded to one surface thereof.
  • the resin sheet 9 is also bonded to the other surface of the water-impermeable sheet 5.
  • Si vapor-deposited polyester Si vapor-deposited PET
  • metals such as aluminum and stainless steel
  • the film thickness is usually 10 to 20 ⁇ m. Has been.
  • Resin sheets 8 and 9 are required to have properties such as weather resistance, electrical insulation, flame retardancy, and design, and a polyvinyl fluoride polymer (PVF) sheet is used. Moreover, a polyethylene sheet may be used as the resin sheet 8 on the sealant layer 2 side.
  • PVF polyvinyl fluoride polymer
  • these resin sheets usually need to have a thickness of 20 to 100 ⁇ m in order to satisfy the required properties such as weather resistance and electrical insulation, and further weight reduction is required in terms of weight.
  • Patent Document 1 Patent Document 2
  • Patent Document 1 an epoxy resin paint is used as a resin paint.
  • epoxy resins are insufficient in terms of weather resistance and have not yet been put into practical use.
  • Patent Document 2 weather resistance of a two-layer structure in which a metal substrate (water-impermeable sheet) is coated with a PVdF-based paint in which a specific amount of tetraalkoxysilane or a partial hydrolyzate thereof is blended with PVdF having no functional group.
  • a sheet has been proposed. Since this PVdF-based paint does not have a functional group, PVdF alone is inferior in adhesion to EVA as a sealant. This point is improved in Patent Document 2 by blending a specific amount of tetraalkoxysilane or a partial hydrolyzate thereof and blending tetraalkoxysilane or a partial hydrolyzate thereof at the interface with EVA.
  • PVdF is crystalline and has no functional group, and must be heated and fired at 200 to 300 ° C. for 20 to 120 seconds in order to form a coating film. Offering has become difficult.
  • Patent Document 3 A weather-resistant sheet for solar cells having excellent adhesion is proposed (Patent Document 3).
  • a winding process after forming a coating layer on a water-impermeable sheet is employed.
  • a winding process (roll winding process) after forming a coating layer on a water-impermeable sheet is employed.
  • the incompletely cured coating film has tack, as shown in FIG. 8
  • the back surface of the water-impermeable sheet layer and the surface of the coating film layer are wound as shown in FIG. Has the problem of blocking.
  • Reference numeral 5 indicates a water-impermeable sheet
  • reference numeral 7 indicates a coating film.
  • the hydroxyl group-containing fluoropolymer paint of Patent Document 3 was evaluated by evaluating the adhesion between the coating film and the sheet after drying at 80 ° C. for 30 minutes with respect to the weather-resistant sheet composed of the water-impermeable sheet and the coating film layer.
  • the adhesion and the blocking resistance between the back surface of the water-impermeable sheet layer and the surface of the coating layer in the wound state there is room for improvement.
  • the EVA resin sheet is mounted on the coating surface of the weather-resistant sheet and the adhesion of the crimped sample is evaluated, there is also room for improvement.
  • the present invention further improves the adhesion and blocking resistance with the water-impermeable sheet achieved in Patent Document 3, and also improves the weather resistance of the solar cell module with improved adhesion with EVA as a sealant. It is an object of the present invention to provide a coating composition for a sheet, a weatherproof sheet for a solar cell module using the coating composition, a product using the sheet, and a method for producing the sheet.
  • the cured coating film layer of the weather-resistant sheet for solar cell module can significantly suppress UV transmission, and the solar cell module coating composition for weather-resistant sheet of the solar cell module and the solar cell module using the coating composition
  • An object of the present invention is to provide a weather resistant sheet for use, a product using the sheet, and a method for producing the sheet.
  • the present invention is a weather-resistant sheet for a solar cell module in which a cured coating layer formed of a crosslinked product of a coating composition containing a hydroxyl group-containing fluoropolymer is formed on a water-impermeable sheet, and the cured coating layer
  • a pressure-resistant adhesion test in accordance with JIS K5600-3-5 measured when the degree of cross-linking is 80 to 99%, a cured coating layer and a cured coating layer having a degree of crosslinking of 80 to 99% are not formed.
  • the present invention is a weather-resistant sheet for solar cell modules in which a cured coating film layer formed of a crosslinked product of a coating composition containing a hydroxyl group-containing fluoropolymer is formed on a water-impermeable sheet, and has a crosslinking degree of 80. It is a weather-resistant sheet for solar cell modules having a pencil hardness of B or more measured on the surface of a cured coating film layer measured at a time point of 99%.
  • the coating composition contains a hydroxyl group-containing fluoropolymer, an isocyanate curing agent, and an organometallic curing aid.
  • the organometallic curing aid is preferably contained in an amount of 0.001 to 10 mmol per 1 mol of the —NCO group of the isocyanate curing agent.
  • the coating composition contains a hydroxyl group-containing fluoropolymer, an isocyanate curing agent, and a pigment.
  • the weather-resistant sheet of the present invention is a two-layer structure in which a cured coating layer of a hydroxyl group-containing fluoropolymer paint is formed on only one side of a water-impermeable sheet, and a hydroxyl-containing fluorine-containing sheet on both sides of the water-impermeable sheet.
  • Three layers formed by forming a cured coating layer of a fluorine-containing polymer paint having no group, a fluorine-containing polymer sheet, a polyester sheet, or a coating film of a polyester coating (hereinafter also referred to as “other sheet or coating film”) It may be a structure.
  • a conventionally known 1 Or two or more intervening layers may be present.
  • a typical example of such an intervening layer is a primer layer.
  • the present invention also provides a solar cell module in which a sealing agent layer containing an ethylene / vinyl acetate copolymer that encapsulates solar cells and the weatherproof sheet are laminated, It is a solar cell module including a laminate structure in which a cured coating film layer is interposed between a stopper layer and a water-impermeable sheet of the weather-resistant sheet.
  • the present invention is a solar cell panel provided with the solar cell module.
  • the present invention also includes a hydroxyl group-containing fluoropolymer, an isocyanate-based curing agent, and an organometallic curing aid, and the organometallic curing aid is added in an amount of 0 to 1 mole of —NCO group of the isocyanate-based curing agent.
  • a coating composition for a weather-resistant sheet of a solar cell module containing 0.001 to 10 mmol.
  • the present invention also provides a weather resistance of a solar cell module comprising a hydroxyl group-containing fluoropolymer, an isocyanate curing agent, and a pigment, the pigment being contained in an amount of 0.84 to 3 parts by mass with respect to 1 part by mass of the hydroxyl group-containing fluoropolymer. It is a coating composition for sheets.
  • the present invention also provides an application step in which a coating composition containing a hydroxyl group-containing fluoropolymer is applied to the surface of a water-impermeable sheet to form an uncured coating layer, and the crosslinking degree of the uncured coating layer is 80 to 80%.
  • the water-impermeable sheet back surface that contacts when wound in the winding process and the degree of crosslinking is 80 to 99%.
  • the weather resistance for solar cell module characterized in that it is not in close contact with the free surface of the cured coating film after applying a load of 0.08 MPa for 24 hours in a pressure adhesion test according to JIS K5600-3-5 Sheet It is a manufacturing method.
  • the coating composition includes a hydroxyl group-containing fluoropolymer, an isocyanate-based curing agent, and an organometallic curing aid, and the organometallic curing aid is added to 0 mole of 1 mole of —NCO group of the isocyanate-based curing agent. It is preferable to contain 0.001 to 10 mmol.
  • the coating composition preferably contains a hydroxyl group-containing fluoropolymer, an isocyanate curing agent and a pigment, and the pigment is contained in an amount of 0.84 to 3 parts by mass with respect to 1 part by mass of the hydroxyl group-containing fluoropolymer.
  • the weather-resistant sheet for solar cell modules using the coating composition, the product using the sheet, and the method for producing the sheet
  • a coating composition for a weather-resistant sheet for a solar cell module which further improves the adhesion and blocking resistance to an impermeable sheet and also improves the adhesion to EVA as a sealing agent, and uses the coating composition It is possible to provide a weatherproof sheet for a solar cell module, a product using the sheet, and a method for producing the sheet.
  • the cured coating film layer of the weather-resistant sheet for solar cell module can significantly suppress UV transmission, and the solar cell module coating composition for weather-resistant sheet of the solar cell module and the solar cell module using the coating composition It is possible to provide a weather resistant sheet for use, a product using the sheet, and a method for producing the sheet.
  • the method for producing a weather-resistant sheet for a solar cell module includes a coating step of coating a coating composition containing a hydroxyl group-containing fluoropolymer on the surface of a water-impermeable sheet to form an uncured coating film layer, the uncured film A curing lamination step of curing the coating layer so that the degree of crosslinking is in the range of 80 to 99% to obtain a laminate comprising a water-impermeable sheet and a cured coating, a winding step of winding the laminate; And a method for producing a weather-resistant sheet for a solar cell module comprising a curing step for completely curing a cured coating film of the wound laminate, and a water-impermeable sheet that contacts when wound in the winding step.
  • the coating step is a step of forming an uncured coating layer by coating a coating composition containing a hydroxyl group-containing fluoropolymer on the surface of a water-impermeable sheet.
  • hydroxyl group-containing fluoropolymer examples include polymers in which a hydroxyl group is introduced into a fluoropolymer.
  • the fluorine-containing polymer includes a resinous polymer having a clear melting point, an elastomeric polymer exhibiting rubber elasticity, and an intermediate thermoplastic elastomeric polymer.
  • the hydroxyl group is usually introduced into the fluoropolymer by copolymerizing a hydroxyl group-containing monomer.
  • hydroxyl group-containing monomer examples include, but are not limited to, the following.
  • hydroxyl group-containing monomers examples include 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxy-2-methylpropyl vinyl ether, 4-hydroxybutyl vinyl ether, 4-hydroxy-2 -Hydroxyl-containing vinyl ethers such as methylbutyl vinyl ether, 5-hydroxypentyl vinyl ether and 6-hydroxyhexyl vinyl ether; hydroxyl-containing allyl ethers such as 2-hydroxyethyl allyl ether, 4-hydroxybutyl allyl ether and glycerol monoallyl ether can give.
  • hydroxyl group-containing vinyl ethers particularly 4-hydroxybutyl vinyl ether and 2-hydroxyethyl vinyl ether, are preferred from the viewpoint of excellent polymerization reactivity and functional group curability.
  • hydroxyl group-containing monomers examples include hydroxyalkyl esters of (meth) acrylic acid such as 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate.
  • Examples of the fluorine-containing polymer into which a hydroxyl group is introduced include the following from the viewpoint of the structural unit.
  • Perfluoroolefin polymer mainly composed of perfluoroolefin units Specific examples include a homopolymer of tetrafluoroethylene (TFE), a copolymer of TFE and hexafluoropropylene (HFP), perfluoro (alkyl vinyl ether) (PAVE), and the like, and further copolymerizable therewith. Examples thereof include copolymers with other monomers.
  • Examples of other copolymerizable monomers include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caproate, vinyl versatate, vinyl laurate, vinyl stearate, and cyclohexyl carboxylic acid.
  • Carboxylic acid vinyl esters such as vinyl, vinyl benzoate and vinyl para-t-butylbenzoate; alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether and cyclohexyl vinyl ether; non-ethylene, propylene, n-butene, isobutene, etc.
  • Fluorine-based olefins Fluorine-based olefins; Fluorine-based monomers such as vinylidene fluoride (VdF), chlorotrifluoroethylene (CTFE), vinyl fluoride (VF), and fluorovinyl ether But not limited thereto.
  • TFE-based polymers mainly composed of TFE are preferable in terms of excellent pigment dispersibility, weather resistance, copolymerization, and chemical resistance.
  • Specific hydroxyl group-containing perfluoroolefin-based polymers include, for example, TFE / isobutylene / hydroxybutyl vinyl ether / other monomer copolymer, TFE / vinyl versatate / hydroxybutyl vinyl ether / copolymer of other monomers. And a copolymer of TFE / VdF / hydroxybutyl vinyl ether / other monomers, especially a copolymer of TFE / isobutylene / hydroxybutyl vinyl ether / other monomers, TFE / vinyl versatate / hydroxy. A copolymer of butyl vinyl ether / other monomers is preferred.
  • TFE-based curable polymer paint examples include the Zaffle GK series manufactured by Daikin Industries, Ltd.
  • CTFE polymer mainly composed of chlorotrifluoroethylene (CTFE) unit Specific examples include, for example, a copolymer of CTFE / hydroxybutyl vinyl ether / other monomers.
  • CTFE-based curable polymer coating materials include Lumiflon manufactured by Asahi Glass Co., Ltd., Fluonate manufactured by Dainippon Ink Manufacturing Co., Ltd., Cefral Coat manufactured by Central Glass Co., Ltd., and ZAFLON manufactured by Toa Gosei Co. it can.
  • VdF polymers mainly composed of vinylidene fluoride (VdF) units Specific examples include VdF / TFE / hydroxybutyl vinyl ether / a copolymer of other monomers.
  • fluoroalkyl group-containing polymer examples include Unidyne and Ftone manufactured by Daikin Industries, Ltd., and Zonyl manufactured by DuPont.
  • perfluoroolefin polymers are preferred in consideration of weather resistance and moisture resistance.
  • the hydroxyl value of the hydroxyl group-containing fluoropolymer is preferably 5 mgKOH / g to 100 mgKOH / g.
  • the hydroxyl value is smaller than 5 mgKOH / g, there is a problem that the curing reactivity is poor, and when it exceeds 100 mgKOH / g, there is a problem that the solubility in a solvent is poor.
  • the coating composition containing these hydroxyl group-containing fluoropolymers as a film-forming component can be prepared in a conventional manner in the form of a solvent-type coating composition, an aqueous-type coating composition, or a powder-type coating composition.
  • a solvent-type coating composition is preferable from the viewpoint of easiness of film formation, curability, and good drying properties.
  • the present invention preferably contains an isocyanate curing agent as a curing agent for a coating composition containing such a hydroxyl group-containing fluoropolymer as a coating film forming component, and further contains an organometallic curing aid.
  • Examples of the isocyanate curing agent include 2,4-tolylene diisocyanate, diphenylmethane-4,4′-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, lysine methyl ester diisocyanate, methylcyclohexyl diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, Examples thereof include n-pentane-1,4-diisocyanate, trimers thereof, adducts and burettes thereof, polymers having two or more isocyanate groups, and blocked isocyanates. However, it is not limited to these.
  • the curing aid is not particularly limited as long as it is an organometallic curing aid.
  • an organic titanium curing aid, an organic tin curing aid, an organic zinc curing aid, an organic zirconium curing aid examples thereof include organic cobalt-based curing aids and organic lead-based curing aids.
  • organic titanium curing aids include titanium tetraisopropoxide, titanium tetranormal butoxide, titanium butoxide dimer, titanium tetra-2-ethylhexoxide, titanium diisopropoxybis (acetylacetonate), titanium tetraacetylacetonate, titanium Dioctyloxybis (octylene glycolate), titanium diisopropoxybis (ethyl acetoacetate), titanium diisopropoxybis (triethanolaminate), titanium lactate ammonium salt, titanium lactate, polyhydroxy titanium stearate It is done.
  • organic zirconium curing aids include zirconium tetranormal propoxide, zirconium tetranormal butoxide, zirconium tetraacetylacetonate, zirconium tributoxymonoacetylacetonate, zirconium monobutoxyacetylacetonate bis (ethylacetoacetate), zirconium Examples thereof include dibutoxybis (ethyl acetoacetate), zirconium tetraacetylacetonate, and zirconium tributoxy monostearate.
  • Organic zinc-based curing aids include zinc acrylate, zinc acetate, zinc citrate, zinc salicylate, zinc oxalate, zinc adipate, zinc carbamate, zinc phthalocyanine, zinc thiolate and zinc stearate, zinc naphthenate, decane Zinc acid zinc, zinc butyrate, zinc neodecanoate, zinc isobutyrate, zinc benzoate, zinc octylate, zinc 2-ethylhexanoate and the like.
  • the organometallic curing aid is 0.001 to 10 mmol, preferably 0.01 to 1.0 mmol, more preferably 0.02 to 0, per mole of —NCO group of the isocyanate curing agent. Contained 1 mmol. When the amount is less than 0.001 mmol, there is a problem that the blocking resistance is poor. When the amount exceeds 10 mmol, the pot life of the coating composition may be shortened or the coating film may be colored.
  • the coating composition for weather resistant sheets of another solar cell module of the present invention contains a pigment. It is strongly desired to add the pigment from the viewpoint of making the appearance of the solar cell module beautiful and protecting the water-impermeable sheet from ultraviolet rays.
  • titanium oxide and calcium carbonate as white pigments, carbon black as a black pigment, and composite metals such as Cu—Cr—Mn alloy are usually blended.
  • the pigment is preferably contained in an amount of 0.80 to 3 parts by mass with respect to 1 part by mass of the hydroxyl group-containing fluoropolymer.
  • the lower limit is preferably 0.84 parts by mass, more preferably 1.1 parts by mass, and particularly preferably 1.5 parts by mass.
  • a preferable upper limit is 2 mass parts.
  • the blending amount of the pigment and the curing aid is within the above-mentioned range (the pigment is 0.80 to 3 parts by mass with respect to 1 part by mass of the hydroxyl group-containing fluoropolymer, the organometallic curing aid is the isocyanate curing agent ⁇ 0.001 to 10 mmol) can be employed per mole of NCO group.
  • the organometallic curing aid is 0.02 to 0.1 mmol with respect to 1 mol of the —NCO group of the isocyanate curing agent, and the pigment is with respect to 1 part by mass of the hydroxyl group-containing fluoropolymer. 0.80 parts by mass or more and 2 parts by mass or less can be included.
  • additives and resins can be blended with the hydroxyl group-containing fluoropolymer coating composition according to the required properties.
  • Additives include antifoaming agents, leveling agents, UV absorbers, light stabilizers, thickeners, adhesion improvers, matting agents, flame retardants, pigments and the like.
  • the resin include acrylic resin, epoxy resin, ABS resin, melamine resin, polyurethane, polyethylene, polystyrene polypropylene, and polyvinyl acetate.
  • the water-impermeable sheet is a layer provided so that moisture does not permeate the EVA or solar cell as a sealant, and can be used if it is a material that does not substantially permeate water.
  • polyester resin sheets such as polyethylene terephthalate (PET) and polyethylene naphthalate
  • polyolefin resin sheets such as polyethylene and polypropylene
  • polyurethane resin sheets polycarbonate resin sheets, polyamide resin sheets
  • polystyrene resin sheets polyacrylonitrile resin sheets, polyvinyl chloride resin sheets, polyvinyl acetal resin sheets, polyvinyl butyral resin sheets, fluororesin sheets, Si deposited products of the above resin sheets such as Si deposited PET sheets ,Aluminum Like thin metal sheet such as um or stainless steel is often used.
  • Si-deposited PET sheets are particularly often used.
  • the thickness is usually about 10 to 20 ⁇ m.
  • a conventionally known surface treatment may be performed in order to improve adhesiveness.
  • the surface treatment include corona discharge treatment, plasma discharge treatment, chemical conversion treatment, and blast treatment in the case of a metal sheet.
  • Formation of the cured coating layer on the water-impermeable sheet is performed by coating a coating composition containing a hydroxyl group-containing fluoropolymer as a coating-forming component on at least one surface of the water-impermeable sheet according to the coating form. By doing. Thereby, the weather-resistant sheet laminate of the present invention is formed.
  • the coating temperature may be within the range of normal conditions in the coating form, and the coating film is cured at 10 to 300 ° C., usually at room temperature (20 to 30 ° C.) in the case of a solvent-type coating composition. Therefore, as the water-impermeable sheet, a material such as a Si-deposited PET sheet that is desired to avoid high-temperature processing can be used without any problem. Curing is usually completed at 20 to 300 ° C. for 1 minute to 3 days.
  • the coating on the water-impermeable sheet may be performed directly on the water-impermeable sheet to form a weather-resistant sheet laminate, or the weather-resistant sheet may be formed by painting through a primer layer or the like.
  • the primer layer is formed by a conventional method using a conventionally known primer coating.
  • Typical examples of the primer coating include epoxy resin, urethane resin, acrylic resin, silicone resin, and polyester resin.
  • the film thickness of the cured coating layer is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and particularly preferably 10 ⁇ m or more from the viewpoint of good concealability, weather resistance, chemical resistance, and moisture resistance.
  • the upper limit is preferably about 1000 ⁇ m, and more preferably 100 ⁇ m because if it is too thick, the effect of reducing the weight cannot be obtained.
  • the film thickness is particularly preferably 5 to 40 ⁇ m.
  • the curing lamination step is a step of obtaining a laminate composed of a water-impermeable sheet and a cured coating film by curing the uncured coating film layer so that the degree of crosslinking is in the range of 80 to 99%.
  • an uncured state having a crosslinking degree of 80 to 99% is referred to as an incompletely cured state.
  • the winding process is a process of winding the laminated body in an incompletely cured state.
  • the weather-resistant sheet for solar cell module of the present invention has a water-impermeable sheet back surface that comes into contact when wound in the winding step and a free surface of a cured coating film having a crosslinking degree of 80 to 99%, according to JIS K5600.
  • the adhesive is not adhered after applying a load of 0.08 MPa for 24 hours.
  • “not in close contact” means that the coating film and the water-impermeable sheet are naturally separated from each other as shown in the evaluation of blocking resistance in Examples described later, or with a very slight force.
  • the weather-resistant sheet for solar cell module of the present invention is characterized in that the pencil hardness of the surface of the cured coating layer measured when the degree of crosslinking is 80 to 99% is B or more.
  • B the pencil hardness of the surface of the cured coating layer measured when the degree of crosslinking is 80 to 99%.
  • the production method of the present invention has an unexpected effect that blocking does not occur despite the uncured state where the degree of crosslinking of the cured coating film is 80 to 99%. The reason why such an effect of blocking resistance is obtained is not clear, but can be estimated as follows.
  • the curing aid or pigment is in any specific cross-linked state (for example, the surface is selectively cross-linked, etc.) with the hydroxyl group-containing polymer and the isocyanate-based hardener. It is considered that a cured coating film different from the conventional crosslinked form is produced.
  • the degree of cross-linking since the degree of cross-linking is the same, the present invention has an effect of blocking resistance simply by increasing the degree of cross-linking by promoting curing. It is clear that it is not.
  • the curing step is a step of completely curing the cured coating film of the wound laminate.
  • a method for completely curing the cured coating film for example, a method of curing for 48 hours or more in a furnace at 40 ° C. can be mentioned.
  • the coating composition for weather-resistant sheets of the solar cell module of the present invention comprises a hydroxyl group-containing fluoropolymer, an isocyanate curing agent, and an organometallic curing aid, and the organometallic curing aid is used as the isocyanate curing agent. It is characterized by containing 0.001 to 10 mmol per 1 mol of -NCO group.
  • the organometallic curing aid is 0.001 to 10 mmol, preferably 0.01 to 1.0 mmol, more preferably 0.02 to 0, per mole of —NCO group of the isocyanate curing agent. Contained 1 mmol. When the amount is less than 0.001 mmol, there is a problem that the blocking resistance is poor. When the amount exceeds 10 mmol, the pot life of the coating composition may be shortened or the coating film may be colored.
  • the coating composition for weather resistant sheets of the solar cell module of the present invention contains a hydroxyl group-containing fluoropolymer, an isocyanate curing agent, and a pigment, and the pigment is added in an amount of 0.001 to 1 part by mass of the hydroxyl group-containing fluoropolymer. It is preferable to contain 80 to 3 parts by mass. When the amount is less than 0.80 parts by mass, there is a problem that UV transmission becomes large and the flame retardancy is inferior. On the other hand, when the amount is more than 3 parts by mass, there are problems that the dispersibility and adhesiveness are inferior.
  • the lower limit is preferably 0.84 parts by mass, more preferably 1.1 parts by mass, and particularly preferably 1.5 parts by mass. Moreover, a preferable upper limit is 2 mass parts.
  • the blending amount of the pigment and the curing aid is within the above-mentioned range (the pigment is 0.80 to 3 parts by mass with respect to 1 part by mass of the hydroxyl group-containing fluoropolymer, the organometallic curing aid is the isocyanate curing agent ⁇ 0.001 to 10 mmol) can be employed per mole of NCO group.
  • the organometallic curing aid is 0.02 to 0.1 mmol with respect to 1 mol of the —NCO group of the isocyanate curing agent, and the pigment is with respect to 1 part by mass of the hydroxyl group-containing fluoropolymer. 0.80 parts by mass or more and 2 parts by mass or less can be included.
  • hydroxyl group-containing fluoropolymer isocyanate-based curing agent, organometallic curing aid and pigment, those described in the above-mentioned method for producing a weather-resistant sheet for solar cell modules can be used.
  • the weather-resistant sheet for solar cell modules of the present invention is a weather-resistant sheet for solar cell modules in which a cured coating film layer made of a crosslinked product of a coating composition containing a hydroxyl group-containing fluoropolymer is formed on a water-impermeable sheet.
  • a pressure-resistant adhesion test in accordance with JIS K5600-3-5 measured when the degree of crosslinking of the cured coating layer is 80 to 99%, the cured coating layer having a degree of crosslinking of 80 to 99% It is characterized in that it is not in close contact after applying a load of 0.08 MPa for 24 hours in a state of being laminated with a water-impermeable sheet on which no film layer is formed.
  • the weather-resistant sheet for solar cell modules of the present invention is a weather-resistant sheet for solar cell modules in which a cured coating film layer formed of a crosslinked product of a coating composition containing a hydroxyl group-containing fluoropolymer is formed on a water-impermeable sheet.
  • the pencil hardness of the surface of the cured coating layer measured when the degree of crosslinking is 80 to 99% is B or more.
  • hydroxyl group-containing fluoropolymer and the water-impermeable sheet those described in the above-described method for producing a weather-resistant sheet for solar cell modules can be used.
  • the coating composition for weather-resistant sheets of the solar cell module of the present invention comprises a hydroxyl group-containing fluoropolymer, an isocyanate curing agent, and an organometallic curing aid, and the organometallic curing aid is used as the isocyanate curing agent. It is characterized by containing 0.001 to 10 mmol per 1 mol of -NCO group.
  • the organometallic curing aid is 0.001 to 10 mmol, preferably 0.01 to 1.0 mmol, more preferably 0.02 to 0, per mole of —NCO group of the isocyanate curing agent. Contained 1 mmol. When the amount is less than 0.001 mmol, there is a problem that the blocking resistance is poor. When the amount exceeds 10 mmol, the pot life of the coating composition may be shortened or the coating film may be colored.
  • the coating composition for weather resistant sheets of the solar cell module of the present invention contains a hydroxyl group-containing fluoropolymer, an isocyanate curing agent, and a pigment, and the pigment is added in an amount of 0.001 to 1 part by mass of the hydroxyl group-containing fluoropolymer. It is preferable to contain 80 to 3 parts by mass. When the amount is less than 0.80 parts by mass, there is a problem that UV transmission becomes large and the flame retardancy is inferior. On the other hand, when the amount is more than 3 parts by mass, there are problems that the dispersibility and adhesiveness are inferior.
  • the lower limit is preferably 0.84 parts by mass, more preferably 1.1 parts by mass, and particularly preferably 1.5 parts by mass. Moreover, a preferable upper limit is 2 mass parts.
  • the blending amount of the pigment and the curing aid is within the above-mentioned range (the pigment is 0.80 to 3 parts by mass with respect to 1 part by mass of the hydroxyl group-containing fluoropolymer, the organometallic curing aid is the isocyanate curing agent ⁇ 0.001 to 10 mmol) can be employed per mole of NCO group.
  • the organometallic curing aid is 0.02 to 0.1 mmol with respect to 1 mol of the —NCO group of the isocyanate curing agent, and the pigment is with respect to 1 part by mass of the hydroxyl group-containing fluoropolymer. 0.80 parts by mass or more and 2 parts by mass or less can be included.
  • the isocyanate-based curing agent the organometallic curing aid, and the pigment, those described in the above-described method for producing a weather-resistant sheet for a solar cell module can be used.
  • the weather-resistant sheet for solar cell modules of the present invention can be applied to the surface layer of the solar cell module or can be applied to the back surface.
  • the solar cell module of the present invention is a solar cell module in which a sealing agent layer containing an ethylene / vinyl acetate copolymer that seals solar cells inside and the weatherproof sheet are laminated, It is a solar cell module including a laminate structure in which a cured coating film layer is interposed between the sealant layer and the water-impermeable sheet of the weather-resistant sheet.
  • the solar cell module of the present invention is a solar cell module in which a sealing agent layer containing an ethylene / vinyl acetate copolymer that seals solar cells inside and the weather resistant sheet are laminated.
  • the solar cell module includes a laminate structure in which a water-impermeable sheet is interposed between the sealant layer and the cured coating layer of the weather-resistant sheet.
  • FIGS. 1-10 A preferred embodiment of the solar cell module of the present invention will be described with reference to FIG. In addition, schematic cross-sectional views of another preferred embodiment of the present invention are shown in FIGS.
  • reference numeral 1 denotes a solar battery cell, which is sealed with a sealant layer 2 typified by EVA, and is sandwiched between a surface layer 3 and a weather-resistant sheet 4.
  • the weather-resistant sheet 4 is further composed of a water-impermeable sheet 5 and a cured coating layer 6 of a hydroxyl group-containing fluoropolymer paint.
  • the cured coating film layer 6 is provided on the sealant (EVA) layer 2 side.
  • FIG. 2 shows a second embodiment, and the cured coating layer 6 is provided on the side opposite to the sealant (EVA) layer 2.
  • the cured coating film layer 6 it becomes excellent in terms of weather resistance.
  • the weather-resistant sheet of the present invention may have a two-layer structure (FIGS. 1 and 2) in which a cured coating film layer 6 is formed only on one side of the water-impermeable sheet 5, or a three-layer structure described below. It may be a structure.
  • FIG. 3 shows an embodiment (third embodiment) of a weather-resistant sheet having a three-layer structure.
  • This third embodiment has a three-layer structure in which a cured coating layer 6 of a hydroxyl group-containing fluoropolymer paint is formed on both surfaces of a water-impermeable sheet 5.
  • the third embodiment is somewhat retreated from the viewpoint of the film thickness of the weather-resistant sheet, but has the advantages of the first and second embodiments described above.
  • a cured coating layer of a hydroxyl group-containing fluoropolymer paint is formed on one side of a water-impermeable sheet, and a fluorine-containing sheet having no curable functional group on the other side.
  • a three-layer structure (FIGS. 4 and 5) formed by forming a cured coating layer of a polymer coating, a fluorine-containing polymer sheet, a polyester sheet, or a coating of polyester coating (another sheet or coating) may be used.
  • the fourth embodiment is a structure in which another coating film 7 is formed on the side opposite to the sealant (EVA) layer 2 of the first embodiment
  • the fifth embodiment is a structure in which another coating film 7 is formed on the sealing agent (EVA) layer 2 side of the second embodiment.
  • the material constituting the coating film 7 may be a cured coating layer of a fluorine-containing polymer paint having no curable functional group, a fluorine-containing polymer sheet, a polyester sheet, Polyester paint film may be used.
  • a cured coating film layer of a fluorine-containing polymer paint having no curable functional group for example, a cured coating film layer of a paint obtained by blending tetraalkoxysilane or a partial hydrolyzate thereof with PVdF described in Patent Document 2, VdF / TFE / CTFE copolymer and a cured coating layer of a mixed paint of an alkoxysilane unit-containing acrylic resin, a cured coating layer of a mixed paint of a VdF / TFE / HFP copolymer and a hydroxyl group-containing acrylic resin, VdF / HFP Examples thereof include a cured coating layer of a paint in which an aminosilane coupling agent is blended with a copolymer.
  • the film thickness is usually from 5 to 300 ⁇ m, more preferably from 10 to 100 ⁇ m, particularly preferably from 10 to 50 ⁇ m, from the viewpoint of a good balance of concealability, weather resistance, chemical resistance and moisture resistance.
  • a primer layer may be used.
  • fluoropolymer sheet examples include PVdF sheets, PVF sheets, PCTFE sheets, TFE / HFP / ethylene copolymer sheets, TFE / HFP copolymer (FEP) sheets, TFE / PAVE copolymer (PFA) sheets, ethylene /
  • fluorine-containing polymer sheets used for ordinary weather-resistant sheets such as TFE copolymer (ETFE) sheets and ethylene / CTFE copolymer (ECTFE) sheets.
  • the film thickness is usually 5 to 300 ⁇ m, more preferably 10 to 100 ⁇ m, and particularly preferably 10 to 50 ⁇ m from the viewpoint of good weather resistance.
  • polyester sheet those used in conventional weather-resistant sheets can be used as they are, and adhesion to the water-impermeable sheet 5 is acrylic adhesive, urethane adhesive, epoxy adhesive, polyester adhesive. It can be performed by an agent or the like.
  • the film thickness is usually from 5 to 300 ⁇ m, more preferably from 10 to 100 ⁇ m, particularly preferably from 10 to 50 ⁇ m, from the viewpoint of good weather resistance, cost, and transparency.
  • polyester paints include those using saturated polyester resins using polyvalent carboxylic acids and polyhydric alcohols, and those using unsaturated polyester resins using glycols such as maleic anhydride and fumaric acid.
  • a coating film can be formed by a coating method such as roll coating, curtain coating, spray coating or die coating.
  • the film thickness is preferably 5 to 300 ⁇ m, more preferably 10 to 100 ⁇ m, and particularly preferably 10 to 50 ⁇ m from the viewpoint of good concealability, weather resistance, chemical resistance, and moisture resistance.
  • a primer layer may be used.
  • the solar cell panel of the present invention includes the solar cell module.
  • the solar cell panel may take a configuration in which solar cell modules are arranged in a matrix in the vertical direction, the horizontal direction, or radially, and may take other known forms, and is not particularly limited.
  • Preparation Example 1 Hydroxyl group-containing TFE copolymer composition (Zeffle GK570, hydroxyl group-containing TFE copolymer 65% by mass) 202.0 g, titanium oxide (D918 manufactured by Sakai Chemical Co., Ltd.) 263.0 g as a white pigment, butyl acetate 167 0.0 g was pre-mixed with stirring, and then 820 g of glass beads having a diameter of 1.2 mm were added and dispersed with a pigment disperser at 1500 rpm for 1 hour.
  • Zeffle GK570 hydroxyl group-containing TFE copolymer 65% by mass
  • titanium oxide D918 manufactured by Sakai Chemical Co., Ltd.
  • butyl acetate 167 0.0 g was pre-mixed with stirring, and then 820 g of glass beads having a diameter of 1.2 mm were added and dispersed with a pigment disperser at 1500 rpm for 1 hour.
  • the glass beads were filtered through a # 80 mesh sieve, and 283.0 g of a hydroxyl group-containing TFE copolymer composition (Zeffle GK570) and 85.0 g of butyl acetate were added to the solution to prepare a white paint.
  • a hydroxyl group-containing TFE copolymer composition Zeffle GK570
  • 6.5 parts by mass of an isocyanate-based curing agent (Sumijoule N3300 manufactured by Sumika Bayer Co., Ltd.) and 100 parts by mass of this white paint, and an organometallic curing aid (Orgatechs of Matsumoto Trading Co., Ltd.) TC-750) 0.004 part by mass was blended to prepare a curable coating 1.
  • the pigment was 0.83 parts by mass with respect to 1 part by mass of the hydroxyl group-containing TFE copolymer (hydroxyl group-containing fluoropolymer).
  • the organometallic curing aid was 0.04 mmol with respect to 1 mol of the —NCO group of the isocyanate curing agent.
  • Preparation Example 2 After 202.0 g of a hydroxyl group-containing TFE copolymer composition (Zeffle GK570), 263.0 g of titanium oxide (D918 manufactured by Sakai Chemical Co., Ltd.) and 167.0 g of butyl acetate as a white pigment were premixed with stirring. 820 g of glass beads having a diameter of 1.2 mm were added and dispersed with a pigment disperser at 1500 rpm for 1 hour. Thereafter, the glass beads were filtered through a # 80 mesh sieve to prepare a white paint.
  • a hydroxyl group-containing TFE copolymer composition Zeffle GK570
  • titanium oxide D918 manufactured by Sakai Chemical Co., Ltd.
  • 167.0 g of butyl acetate 167.0 g of butyl acetate as a white pigment were premixed with stirring. 820 g of glass beads having a diameter of 1.2 mm were added and dispersed with a pigment disperser at 1500
  • a curable paint 2 was prepared by blending 4.4 parts by mass of an isocyanate curing agent (Sumidule N3300 manufactured by Sumika Bayer Co., Ltd.) with 100 parts by mass of the white paint.
  • the pigment was 2.0 parts by mass with respect to 1 part by mass of the hydroxyl group-containing TFE copolymer (hydroxyl group-containing fluoropolymer).
  • Preparation Example 3 After 202.0 g of a hydroxyl group-containing TFE copolymer composition (Zeffle GK570), 263.0 g of titanium oxide (D918 manufactured by Sakai Chemical Co., Ltd.) and 167.0 g of butyl acetate as a white pigment were premixed with stirring. 820 g of glass beads having a diameter of 1.2 mm were added and dispersed with a pigment disperser at 1500 rpm for 1 hour.
  • a hydroxyl group-containing TFE copolymer composition Zeffle GK570
  • titanium oxide D918 manufactured by Sakai Chemical Co., Ltd.
  • 167.0 g of butyl acetate 167.0 g of butyl acetate as a white pigment were premixed with stirring. 820 g of glass beads having a diameter of 1.2 mm were added and dispersed with a pigment disperser at 1500 rpm for 1 hour.
  • the glass beads were filtered through a # 80 mesh sieve, and 67.7 g of a hydroxyl group-containing TFE copolymer composition (Zeffle GK570) and 30.8 g of butyl acetate were added to the solution to prepare a white paint.
  • a hydroxyl group-containing TFE copolymer composition Zeffle GK570
  • a curable paint 3 was prepared by blending 6.5 parts by mass of an isocyanate curing agent (Sumidule N3300 manufactured by Sumika Bayer Co., Ltd.) with 100 parts by mass of the white paint.
  • the pigment was 1.5 parts by mass with respect to 1 part by mass of the hydroxyl group-containing TFE copolymer (hydroxyl group-containing fluoropolymer).
  • Preparation Example 4 After 202.0 g of a hydroxyl group-containing TFE copolymer composition (Zeffle GK570), 393.9 g of titanium oxide (D918 manufactured by Sakai Chemical Co., Ltd.) and 279.4 g of butyl acetate as a white pigment were premixed with stirring. 820 g of glass beads having a diameter of 1.2 mm were added and dispersed with a pigment disperser at 1500 rpm for 1 hour. Thereafter, the glass beads were filtered through a # 80 mesh sieve to prepare a white paint.
  • a hydroxyl group-containing TFE copolymer composition Zeffle GK570
  • titanium oxide D918 manufactured by Sakai Chemical Co., Ltd.
  • butyl acetate as a white pigment
  • a curable paint 4 was prepared by blending 6.5 parts by mass of an isocyanate curing agent (Sumidule N3300 manufactured by Sumika Bayer Co., Ltd.) with 100 parts by mass of the white paint.
  • the pigment was 3.0 parts by mass relative to 1 part by mass of the hydroxyl group-containing TFE copolymer (hydroxyl group-containing fluoropolymer).
  • Preparation Example 5 After 202.0 g of a hydroxyl group-containing TFE copolymer composition (Zeffle GK570), 263.0 g of titanium oxide (D918 manufactured by Sakai Chemical Co., Ltd.) and 167.0 g of butyl acetate as a white pigment were premixed with stirring. 820 g of glass beads having a diameter of 1.2 mm were added and dispersed with a pigment disperser at 1500 rpm for 1 hour. Thereafter, the glass beads were filtered through a # 80 mesh sieve to prepare a white paint.
  • a hydroxyl group-containing TFE copolymer composition Zeffle GK570
  • titanium oxide D918 manufactured by Sakai Chemical Co., Ltd.
  • 167.0 g of butyl acetate 167.0 g of butyl acetate as a white pigment were premixed with stirring. 820 g of glass beads having a diameter of 1.2 mm were added and dispersed with a pigment disperser at 1500
  • curable paint 5 6.5 parts by mass of an isocyanate-based curing agent (Sumijoule N3300 manufactured by Sumika Bayer Co., Ltd.) and 100 parts by mass of this white paint, and an organometallic curing aid (Orgatechs of Matsumoto Trading Co., Ltd.) TC-750) 0.004 part by mass was blended to prepare curable paint 5.
  • the pigment was 2.0 parts by mass with respect to 1 part by mass of the hydroxyl group-containing TFE copolymer (hydroxyl group-containing fluoropolymer).
  • the organometallic curing aid was 0.04 mmol with respect to 1 mol of the —NCO group of the isocyanate curing agent.
  • Preparation Example 6 After 202.0 g of a hydroxyl group-containing TFE copolymer composition (Zeffle GK570), 263.0 g of titanium oxide (D918 manufactured by Sakai Chemical Co., Ltd.) and 167.0 g of butyl acetate as a white pigment were premixed with stirring. 820 g of glass beads having a diameter of 1.2 mm were added and dispersed with a pigment disperser at 1500 rpm for 1 hour.
  • a hydroxyl group-containing TFE copolymer composition Zeffle GK570
  • titanium oxide D918 manufactured by Sakai Chemical Co., Ltd.
  • 167.0 g of butyl acetate 167.0 g of butyl acetate as a white pigment were premixed with stirring. 820 g of glass beads having a diameter of 1.2 mm were added and dispersed with a pigment disperser at 1500 rpm for 1 hour.
  • the glass beads were filtered through a # 80 mesh sieve, and 283.0 g of a hydroxyl group-containing TFE copolymer composition (Zeffle GK570) and 85.0 g of butyl acetate were added to the solution to prepare a white paint.
  • a hydroxyl group-containing TFE copolymer composition Zeffle GK570
  • a curable paint 6 was prepared by blending 6.5 parts by mass of an isocyanate curing agent (Sumidule N3300 manufactured by Sumika Bayer Co., Ltd.) with 100 parts by mass of the white paint.
  • an isocyanate curing agent Sudule N3300 manufactured by Sumika Bayer Co., Ltd.
  • Preparation Example 7 After 202.0 g of a hydroxyl group-containing TFE copolymer composition (Zeffle GK570), 263.0 g of titanium oxide (D918 manufactured by Sakai Chemical Co., Ltd.) and 167.0 g of butyl acetate as a white pigment were premixed with stirring. 820 g of glass beads having a diameter of 1.2 mm were added and dispersed with a pigment disperser at 1500 rpm for 1 hour.
  • the glass beads were filtered through a # 80 mesh sieve, and 283.0 g of a hydroxyl group-containing TFE copolymer composition (Zeffle GK570) and 85.0 g of butyl acetate were added to the solution to prepare a white paint.
  • a hydroxyl group-containing TFE copolymer composition Zeffle GK570
  • a curable coating 7 was prepared by blending 6.3 parts by mass of an isocyanate curing agent (Coronate HX manufactured by Nippon Polyurethane Co., Ltd.) with 100 parts by mass of this white coating.
  • an isocyanate curing agent Coronate HX manufactured by Nippon Polyurethane Co., Ltd.
  • Example 1 A PET sheet (Lumirror S10 manufactured by Toray Industries Inc., thickness 125 ⁇ m. Sheet A) was used as the water-impermeable sheet, and the curable paint 1 prepared in Preparation Example 1 was applied to one side of the sheet A as a dry coating film. The coating was applied to a thickness of 5 ⁇ m and dried at 120 ° C. for 2 minutes to produce a two-layer weather resistant sheet A1.
  • the blocking resistance (between the coating film and the sheet), the degree of crosslinking (coating film), and the pencil hardness (coating film) were examined.
  • a PCTFE sheet (DF0025C1 manufactured by Daikin Industries, Ltd., thickness 25 ⁇ m, sheet B) is used, and the curable paint 1 prepared in Preparation Example 1 is provided on one side of the sheet B with a dry coating thickness of 5 ⁇ m. And dried at 60 ° C. for 20 minutes to produce a two-layer sheet B1. The UV transmittance of this weather resistant sheet B1 was examined. The results are shown in Table 1.
  • Examples 2-5 and Comparative Examples 1-2 As the water-impermeable sheet, a PET sheet (Lumirror S10 manufactured by Toray Industries, Inc., thickness 125 ⁇ m, sheet A) was used, and curable paints 2 to 7 prepared in Preparation Examples 2 to 7 on one side of the sheet A were used. 7 was applied so that the dry coating thickness was 5 ⁇ m, and dried at 120 ° C. for 2 minutes to prepare two-layer weather resistant sheets A2 to A7.
  • a PET sheet Limirror S10 manufactured by Toray Industries, Inc., thickness 125 ⁇ m, sheet A
  • curable paints 2 to 7 prepared in Preparation Examples 2 to 7 on one side of the sheet A were used. 7 was applied so that the dry coating thickness was 5 ⁇ m, and dried at 120 ° C. for 2 minutes to prepare two-layer weather resistant sheets A2 to A7.
  • the weather resistance sheets A2 to A7 were examined for blocking resistance (between coating film and sheet), degree of crosslinking (coating film), and pencil hardness (coating film).
  • a PCTFE sheet (DF0025C1, manufactured by Daikin Industries, Ltd., thickness 25 ⁇ m, sheet B) was used, and the curable paints 2-7 prepared in Preparation Examples 2-7 were applied to one side of the sheet B with a dry coating film.
  • the coating was applied to a thickness of 5 ⁇ m and dried at 60 ° C. for 20 minutes to prepare two-layered sheets B2 to B7.
  • the UV transmittance of the weather resistant sheets B2 to B7 was examined. The results are shown in Table 1.
  • test method and measurement method are as follows.
  • Blocking resistance This was performed according to JIS K5600-3-5.
  • the prepared paint was applied to a 50 mm ⁇ 100 mm PET film and dried by heating in a dryer (SPHH-400 manufactured by ESPEC) for 2 minutes at 120 ° C. Thereafter, the test piece was taken out and allowed to cool to room temperature. Then, the films were sandwiched with glass so that the painted surface and the unpainted surface of the test piece overlap each other with an area of 50 mm ⁇ 50 mm.
  • a 20 kg weight was placed thereon, and maintained at 60 ° C. for 24 hours while a pressure of 0.08 MPa was applied to the contact surface between the films.
  • the two films were allowed to cool to room temperature, the two films were pulled left and right, and the blocking resistance was evaluated as they were.
  • the evaluation criteria are: ⁇ if the two are separated from each other by nature or very little force, peel off when applying force, ⁇ if the surface of the coating is slightly disturbed, peel off when applying force, The case where the surface was disturbed was evaluated as ⁇ , and the case where the surface could not be peeled off even when a force was applied was evaluated as ⁇ .
  • the prepared paint was applied to a polypropylene (hereinafter referred to as PP) plate, and dried by heating in a dryer (SPHH-400 manufactured by ESPEC) for 2 minutes at 120 ° C. Thereafter, the PP plate was taken out and allowed to cool to room temperature, and then the coating film was peeled off from the PP plate. Put the peeled film into a 50 cc plastic bottle and add 50 cc of acetone. The mixture was stirred for 24 hours with a mix rotor, and the residue was collected by filtration with a 400-mesh wire mesh. The residue collected by filtration was thoroughly washed with acetone, and then dried under reduced pressure with a wire mesh. Calculation of numerical value (%): 100 ⁇ (weight of residue after drying under reduced pressure) / (weight of coating film peeled off from PP plate)
  • UV transmittance This was performed according to JIS K7105.
  • the transmittance of 180 nm to 500 nm was measured with a spectrophotometer U-4100 manufactured by Hitachi, Ltd., and the transmittance of 400 nm was defined as the UV transmittance.
  • Example 1 and Example 5 which uses the hardening adjuvant, it turns out that the pencil hardness and the blocking resistance between a coating film and a sheet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Sealing Material Composition (AREA)

Abstract

 水不透過性シートとの密着性および耐ブロッキング性をさらに向上させるとともに、封止剤であるEVAとの密着性も向上させた太陽電池モジュール用耐侯性シート、該太陽電池モジュール用耐侯性シートの硬化塗膜層が、UV透過性を顕著に抑制することのできる太陽電池モジュール用耐侯性シートおよび該シートを用いた製品ならびに該太陽電池モジュール用耐侯性シートの製造方法を提供する。該太陽電池モジュール用耐侯性シートは、水酸基含有フッ素ポリマーを含む塗料組成物の架橋物からなる硬化塗膜層が水不透過性シートに形成されてなる太陽電池モジュール用耐侯性シートであって、該硬化塗膜層の架橋度が80~99%の時点で測定した耐圧着性試験において、硬化塗膜層と硬化塗膜層が形成されていない水不透過性シートとを重ね合わせた状態で、荷重を印加した後に密着していないことを特徴とする。

Description

太陽電池モジュール用耐侯性シートおよび該シートを用いた製品ならびに該太陽電池モジュール用耐侯性シートの製造方法
 本発明は、太陽電池モジュール用耐侯性シートおよび該シートを用いた製品ならびに該太陽電池モジュール用耐侯性シートの製造方法に関する。より詳しくは、調製の工程におけるロール時のブロッキングを抑制することができるとともに、太陽電池モジュールを構成する他の層(たとえば封止剤層)との優れた密着性を有する硬化塗膜層を形成することができ、さらに、UV透過性を顕著に抑制することのできる太陽電池モジュール用耐侯性シートおよび該シートを用いた製品ならびに該太陽電池モジュール用耐侯性シートの製造方法に関する。
 太陽電池モジュールは、通常、図6に示すように、太陽電池セル1を封止剤層2で封止し、これをガラスや透明な樹脂などからなる表面層3と耐侯性シート4で挟んで積層した構造となっている。そして封止剤としてはエチレン/酢酸ビニル共重合体(EVA)が用いられている。
 太陽電池モジュールにおける耐侯性シート4は、モジュールの機械的強度を高める目的のほか、水分(水蒸気)が封止剤層2に入らないように防止する役割もある。
 耐侯性シート4は、図7に示すように、水蒸気バリヤー性をもたすための水不透過性シート5とその一方の面に樹脂シート8が貼り合わされた構成とされている。通常、水不透過性シート5の他方の面にも樹脂シート9が貼り合わされている。
 水不透過性シート5の材料としては、水不透過性に優れたSi蒸着ポリエステル(Si蒸着PET)や、アルミニウムやステンレススチールなどの金属が使用されており、通常は10~20μmの膜厚とされている。
 樹脂シート8、9には、耐候性、電気絶縁性、難燃性、意匠性などといった特性が求められており、ポリフッ化ビニル重合体(PVF)のシートが使用されている。また、封止剤層2側の樹脂シート8として、ポリエチレンシートも使用されることがある。
 しかし、これらの樹脂シートは、要求される耐候性、電気絶縁性といった特性を満たすために、通常は厚さ20~100μmとする必要があり、重量面からさらなる軽量化が求められている。
 そこで、樹脂シートに代えて樹脂塗料を用いて同様の層を形成することが提案されている(特許文献1、特許文献2)。
 特許文献1では、樹脂塗料としてエポキシ樹脂塗料を使用している。しかしエポキシ樹脂では耐候性の点で不充分であり、実用化には至っていない。
 特許文献2では、官能基をもたないPVdFにテトラアルコキシシランまたはその部分加水分解物を特定量配合したPVdF系塗料で金属基材(水不透過性シート)を塗装する2層構造の耐侯性シートが提案されている。このPVdF系塗料はPVdFが官能基をもたないので、単独では封止剤であるEVAとの接着性にも劣っている。この点を特許文献2ではテトラアルコキシシランまたはその部分加水分解物を特定量配合し、EVAとの界面にテトラアルコキシシランまたはその部分加水分解物を配合させることで改善している。しかし、テトラアルコキシシランまたはその部分加水分解物がEVAとの界面に偏在しているため、依然としてPVdF塗膜と金属基材との接着性は改善されていない。しかも、PVdFは結晶性でありかつ官能基をもたず、塗膜を形成するためには200~300℃で20~120秒間加熱焼成しなければならないため、金属以外の水不透過性シートへの提供は困難となっている。
 かかる問題を解決するために、水不透過性シートの少なくとも一方の面に水酸基含有含フッ素ポリマー塗料の硬化塗膜層を形成した、水不透過性シートの種類に限らず水不透過性シートとの密着性に優れた太陽電池の耐侯性シートが提案されている(特許文献3)。
 ここで、実際の製造工程では、生産効率を向上させるために、水不透過性シートに塗膜層を形成した後に巻き取る工程(ロール巻き取り工程)が採用されている。かかるロール巻き取り工程において、不完全硬化状態の塗膜にタックが生じている場合、図8に示されるように、巻き取られた状態において水不透過性シート層の裏面と塗膜層の表面とがブロッキングしてしまうという問題がある。参照符号5は水不透過性シート、参照符号7は塗膜を示す。
 特許文献3の水酸基含有フッ素ポリマー塗料は、水不透過性シートと塗膜層とからなる耐侯性シートについて80℃で30分間乾燥した後に、塗膜とシートとの間の密着性を評価しているが、かかる密着性および巻き取られた状態における水不透過性シート層の裏面と塗膜層の表面との耐ブロッキング性は、いずれも改善の余地がある。また、該耐侯性シートの塗膜面上にEVA樹脂シートを載せ、圧着したサンプルの密着性を評価しているが、こちらも改善の余地がある。
特開平7-176775号公報 特開2004-214342号公報 特開2007-035694号公報
 本発明は、特許文献3で達成された水不透過性シートとの密着性および耐ブロッキング性をさらに向上させるとともに、封止剤であるEVAとの密着性も向上させた太陽電池モジュールの耐侯性シート用塗料組成物、該塗料組成物を用いた太陽電池モジュール用耐侯性シートおよび該シートを用いた製品ならびに該シートの製造方法を提供することを目的とする。
 また、該太陽電池モジュール用耐侯性シートの硬化塗膜層が、UV透過性を顕著に抑制することのできる太陽電池モジュールの耐侯性シート用塗料組成物、該塗料組成物を用いた太陽電池モジュール用耐侯性シートおよび該シートを用いた製品ならびに該シートの製造方法を提供することを目的とする。
 その他の課題については、具体的な実施形態に応じて説明する。
 すなわち本発明は、水酸基含有フッ素ポリマーを含む塗料組成物の架橋物からなる硬化塗膜層が水不透過性シートに形成されてなる太陽電池モジュール用耐侯性シートであって、該硬化塗膜層の架橋度が80~99%の時点で測定したJIS K5600-3-5に準拠した耐圧着性試験において、架橋度が80~99%の硬化塗膜層と硬化塗膜層が形成されていない水不透過性シートとを重ね合わせた状態で、荷重0.08MPaを24時間印加した後に密着していないこと(以下、架橋度が80~99%の未硬化のことを不完全硬化という)を特徴とする太陽電池モジュール用耐侯性シートである。
 また、本発明は、水酸基含有フッ素ポリマーを含む塗料組成物の架橋物からなる硬化塗膜層が水不透過性シートに形成されてなる太陽電池モジュール用耐侯性シートであって、架橋度が80~99%時点で測定した硬化塗膜層表面の鉛筆硬度がB以上である太陽電池モジュール用耐侯性シートである。
 前記塗料組成物が、水酸基含有フッ素ポリマーとイソシアネート系硬化剤と有機金属系硬化助剤とを含むことが好ましい。
 前記イソシアネート系硬化剤の-NCO基1モルに対して、前記有機金属系硬化助剤を0.001~10ミリモル含むことが好ましい。
 前記塗料組成物が、水酸基含有フッ素ポリマーとイソシアネート系硬化剤と顔料とを含むことが好ましい。
 前記水酸基含有フッ素ポリマー1質量部に対して、前記顔料を0.84~3質量部含むことが好ましい。
 本発明の耐侯性シートは、水不透過性シートの片面のみに水酸基含有含フッ素ポリマー塗料の硬化塗膜層が形成されている2層構造でも、水不透過性シートの両面に水酸基含有含フッ素ポリマー塗料の硬化塗膜層が形成されてなる3層構造、または水不透過性シートの一方の面に水酸基含有含フッ素ポリマー塗料の硬化塗膜層が形成され、他方の面に、硬化性官能基を有しない含フッ素ポリマー塗料の硬化塗膜層、含フッ素ポリマーシート、ポリエステルシートまたはポリエステル塗料の塗膜(以下、「他のシートまたは塗膜」ということもある)が形成されてなる3層構造でもよい。なお、水不透過性シートと硬化塗膜層および/または他のシートまたは塗膜の間に、接着性をさらに高めるためや隠蔽性を高めるため、水蒸気透過性を下げるために、従来公知の1または2以上の介在層が存在していてもよい。そうした介在層の代表例はプライマー層である。
 また、本発明は、太陽電池セルを内部に封止しているエチレン/酢酸ビニル共重合体を含む封止剤層と前記耐侯性シートとが積層されている太陽電池モジュールであって、該封止剤層と該耐候性シートの水不透過性シートとの間に硬化塗膜層が介在する積層体構造を含む太陽電池モジュールである。
 太陽電池セルを内部に封止しているエチレン/酢酸ビニル共重合体を含む封止剤層と前記耐侯性シートとが積層されている太陽電池モジュールであって、該封止剤層と該耐候性シートの硬化塗膜層との間に水不透過性シートが介在する積層体構造を含む太陽電池モジュールである。
 また、本発明は、前記太陽電池モジュールを備えた太陽電池パネルである。
 また、本発明は、水酸基含有フッ素ポリマーとイソシアネート系硬化剤と有機金属系硬化助剤とを含み、該有機金属系硬化助剤を、該イソシアネート系硬化剤の-NCO基1モルに対して0.001~10ミリモル含む太陽電池モジュールの耐候性シート用塗料組成物である。
 また、本発明は、水酸基含有フッ素ポリマーとイソシアネート系硬化剤と顔料とを含み、該顔料を、該水酸基含有フッ素ポリマー1質量部に対して0.84~3質量部含む太陽電池モジュールの耐候性シート用塗料組成物である。
 また、本発明は、水酸基含有フッ素ポリマーを含む塗料組成物を水不透過性シートの表面に塗布して未硬化塗膜層を形成する塗布工程、該未硬化塗膜層を架橋度が80~99%の範囲となるように硬化させて水不透過性シートと硬化塗膜とからなる積層体を得る硬化積層工程、該積層体を巻き取る巻取工程、および該巻き取られた積層体の硬化塗膜を完全に硬化させる養生工程を含む太陽電池モジュール用耐侯性シートの製造方法において、該巻取工程において巻き取られた際に接する水不透過性シート裏面と架橋度が80~99%の硬化塗膜の自由表面とが、JIS K5600-3-5に準拠した耐圧着性試験において、荷重0.08MPaを24時間印加した後に密着していないことを特徴とする太陽電池モジュール用耐侯性シートの製造方法である。
 前記塗料組成物が、水酸基含有フッ素ポリマーとイソシアネート系硬化剤と有機金属系硬化助剤とを含み、該有機金属系硬化助剤を、該イソシアネート系硬化剤の-NCO基1モルに対して0.001~10ミリモル含むことが好ましい。
 前記塗料組成物が、水酸基含有フッ素ポリマーとイソシアネート系硬化剤と顔料とを含み、該顔料を、該水酸基含有フッ素ポリマー1質量部に対して0.84~3質量部含むことが好ましい。
 本発明の太陽電池モジュールの耐侯性シート用塗料組成物、塗料組成物を用いた太陽電池モジュール用耐侯性シートおよび該シートを用いた製品ならびに該シートの製造方法によれば、従来と比べ、水不透過性シートとの密着性および耐ブロッキング性をさらに向上させるとともに、封止剤であるEVAとの密着性も向上させた太陽電池モジュールの耐侯性シート用塗料組成物、該塗料組成物を用いた太陽電池モジュール用耐侯性シートおよび該シートを用いた製品ならびに該シートの製造方法を提供することができる。
 また、該太陽電池モジュール用耐侯性シートの硬化塗膜層が、UV透過性を顕著に抑制することのできる太陽電池モジュールの耐侯性シート用塗料組成物、該塗料組成物を用いた太陽電池モジュール用耐侯性シートおよび該シートを用いた製品ならびに該シートの製造方法を提供することができる。
 その他の効果については、具体的な実施形態に応じて説明する。
本発明の太陽電池モジュールの第1の実施形態の概略断面図である。 本発明の太陽電池モジュールの第2の実施形態の概略断面図である。 本発明の太陽電池モジュールの第3の実施形態の概略断面図である。 本発明の太陽電池モジュールの第4の実施形態の概略断面図である。 本発明の太陽電池モジュールの第5の実施形態の概略断面図である。 従来の太陽電池モジュールの概略断面図である。 従来の太陽電池モジュールの耐侯性シートの概略断面図である。 本発明の耐侯性シートの不完全硬化塗膜層と硬化塗膜層が形成されていない水不透過性シートとの密着を説明するための説明図である。
 本発明の太陽電池モジュール用耐侯性シートの製造方法は、水酸基含有フッ素ポリマーを含む塗料組成物を水不透過性シートの表面に塗布して未硬化塗膜層を形成する塗布工程、該未硬化塗膜層を架橋度が80~99%の範囲となるように硬化させて水不透過性シートと硬化塗膜とからなる積層体を得る硬化積層工程、該積層体を巻き取る巻取工程、および該巻き取られた積層体の硬化塗膜を完全に硬化させる養生工程を含む太陽電池モジュール用耐侯性シートの製造方法において、該巻取工程において巻き取られた際に接する水不透過性シート裏面と架橋度が80~99%の硬化塗膜の自由表面とが、JIS K5600-3-5に準拠した耐圧着性試験において、荷重0.08MPaを24時間印加した後に密着していないことを特徴とする。
 塗布工程について説明する。塗布工程は、水酸基含有フッ素ポリマーを含む塗料組成物を水不透過性シートの表面に塗布して未硬化塗膜層を形成する工程である。
 水酸基含有フッ素ポリマーとしては、含フッ素ポリマーに水酸基を導入したポリマーがあげられる。なお、含フッ素ポリマーには明確な融点を有する樹脂性のポリマー、ゴム弾性を示すエラストマー性のポリマー、その中間の熱可塑性エラストマー性のポリマーが含まれる。
 水酸基は、通常、水酸基含有単量体を共重合することにより含フッ素ポリマーに導入される。
 水酸基含有単量体としては、たとえば次のものが例示できるが、これらのみに限定されるものではない。
 水酸基含有単量体の例としては、たとえば2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシ-2-メチルプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、4-ヒドロキシ-2-メチルブチルビニルエーテル、5-ヒドロキシペンチルビニルエーテル、6-ヒドロキシヘキシルビニルエーテルなどの水酸基含有ビニルエーテル類;2-ヒドロキシエチルアリルエーテル、4-ヒドロキシブチルアリルエーテル、グリセロールモノアリルエーテルなどの水酸基含有アリルエーテル類などがあげられる。これらのなかでも水酸基含有ビニルエーテル類、特に4-ヒドロキシブチルビニルエーテル、2-ヒドロキシエチルビニルエーテルが重合反応性、官能基の硬化性が優れる点で好ましい。
 他の水酸基含有モノマーとしては、たとえばアクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシエチルなどの(メタ)アクリル酸のヒドロキシアルキルエステルなどが例示できる。
 水酸基が導入される含フッ素ポリマーとしては、構成単位の観点から、たとえば次のものが例示できる。
(1)パーフルオロオレフィン単位を主体とするパーフルオロオレフィン系ポリマー:
 具体例としては、テトラフルオロエチレン(TFE)の単独重合体、またはTFEとヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)などとの共重合体、さらにはこれらと共重合可能な他の単量体との共重合体などがあげられる。
 共重合可能な他の単量体としては、たとえば酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、シクロヘキシルカルボン酸ビニル、安息香酸ビニル、パラ-t-ブチル安息香酸ビニルなどのカルボン酸ビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル、シクロヘキシルビニルエーテルなどのアルキルビニルエーテル類;エチレン、プロピレン、n-ブテン、イソブテンなど非フッ素系オレフィン類;ビニリデンフルオライド(VdF)、クロロトリフルオロエチレン(CTFE)、ビニルフルオライド(VF)、フルオロビニルエーテルなどのフッ素系単量体などがあげられるが、これらのみに限定されるものではない。
 これらのうち、TFEを主体とするTFE系ポリマーが、顔料分散性や耐候性、共重合性、耐薬品性に優れている点で好ましい。
 具体的な水酸基含有パーフルオロオレフィン系ポリマーとしては、たとえばTFE/イソブチレン/ヒドロキシブチルビニルエーテル/他の単量体の共重合体、TFE/バーサチック酸ビニル/ヒドロキシブチルビニルエーテル/他の単量体の共重合体、TFE/VdF/ヒドロキシブチルビニルエーテル/他の単量体の共重合体などがあげられ、特にTFE/イソブチレン/ヒドロキシブチルビニルエーテル/他の単量体の共重合体、TFE/バーサチック酸ビニル/ヒドロキシブチルビニルエーテル/他の単量体の共重合体などが好ましい。
 TFE系の硬化性ポリマー塗料としては、たとえばダイキン工業(株)製のゼッフルGKシリーズなどが例示できる。
(2)クロロトリフルオロエチレン(CTFE)単位を主体とするCTFE系ポリマー:
 具体例としては、たとえばCTFE/ヒドロキシブチルビニルエーテル/他の単量体の共重合体などがあげられる。
 CTFE系の硬化性ポリマー塗料としては、たとえば旭硝子(株)製のルミフロン、大日本インキ製造(株)製のフルオネート、セントラル硝子(株)製のセフラルコート、東亜合成(株)製のザフロンなどが例示できる。
(3)ビニリデンフルオライド(VdF)単位を主体とするVdF系ポリマー:
 具体例としては、たとえばVdF/TFE/ヒドロキシブチルビニルエーテル/他の単量体の共重合体などがあげられる。
(4)フルオロアルキル単位を主体とするフルオロアルキル基含有ポリマー:
 具体例としては、たとえばCF3CF2(CF2CF2nCH2CH2OCOCH=CH2(n=3と4の混合物)/2-ヒドロキシエチルメタクリレート/ステアリルアクリレート共重合体などがあげられる。
 フルオロアルキル基含有ポリマーとしては、たとえばダイキン工業(株)製のユニダインやエフトーン、デュポン社製のゾニールなどが例示できる。
 これらのうち、耐候性、防湿性を考慮すると、パーフルオロオレフィン系ポリマーが好ましい。
 また、水酸基含有フッ素ポリマーの水酸基価が5mgKOH/g~100mgKOH/gであることが好ましい。水酸基価が5mgKOH/gよりも小さい場合、硬化反応性に劣るという問題があり、100mgKOH/gを超える場合、溶剤への溶解性に劣るという問題がある。
 これらの水酸基含有フッ素ポリマーを塗膜形成成分とする塗料組成物は、溶剤型塗料組成物、水性型塗料組成物、粉体型塗料組成物の形態に、常法により調製することができる。なかでも成膜の容易さ、硬化性、乾燥性の良好さなどの点からは溶剤型塗料組成物が好ましい。
 本発明は、こうした水酸基含有フッ素ポリマーを塗膜形成成分とする塗料組成物の硬化剤としてイソシアネート系硬化剤を、さらに有機金属系硬化助剤を含むことが好ましい。
 イソシアネート系硬化剤としては、たとえば2,4-トリレンジイソシアネート、ジフェニルメタン-4,4'-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、リジンメチルエステルジイソシアネート、メチルシクロヘキシルジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート、n-ペンタン-1,4-ジイソシアネート、これらの三量体、これらのアダクト体やビュウレット体、これらの重合体で2個以上のイソシアネート基を有するもの、さらにブロック化されたイソシアネート類などがあげられるが、これらに限定されるものではない。
 硬化助剤としては、有機金属系硬化助剤であれば特に限定されず、たとえば、有機チタン系硬化助剤、有機スズ系硬化助剤、有機亜鉛系硬化助剤、有機ジルコニウム系硬化助剤、有機コバルト系硬化助剤、有機鉛系硬化助剤などがあげられる。中でも、分散性、安定性、入手容易性などの観点から、有機チタン系硬化助剤、有機ジルコニウム系硬化助剤および有機亜鉛系硬化助剤からなる群より選択される少なくとも1種であることが好ましい。
 有機チタン系硬化助剤としては、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンブトキシドダイマー、チタンテトラー2ーエチルヘキソキシド、チタンジイソプロポキシビス(アセチルアセトネート)、チタンテトラアセチルアセトネート、チタンジオクチロキシビス(オクチレングリコレート)、チタンジイソプロポキシビス(エチルアセトアセテート)、チタンジイソプロポキシビス(トリエタノールアミネート)、チタンラクテートアンモニウム塩、チタンラクテート、ポリヒドロキシチタンステアレートなどがあげられる。有機ジルコニウム系硬化助剤としては、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトラノルマルブトキシド、ジルコウニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムジブトキシビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノステアレートなどがあげられる。有機亜鉛系硬化助剤としては、アクリル酸亜鉛、酢酸亜鉛、クエン酸亜鉛、サリチル酸亜鉛、シュウ酸亜鉛、アジピン酸亜鉛、カルバミン酸亜鉛、亜鉛フタロシアニン、亜鉛チオラートおよびステアリン酸亜鉛、ナフテン酸亜鉛、デカン酸亜鉛、酪酸亜鉛、ネオデカン酸亜鉛、イソ酪酸亜鉛、安息香酸亜鉛、オクチル酸亜鉛、2-エチルヘキサン酸亜鉛などがあげられる。
 有機金属系硬化助剤は、前記イソシアネート系硬化剤の-NCO基1モルに対して0.001~10ミリモル、好ましくは、0.01~1.0ミリモル、より好ましくは、0.02~0.1ミリモル含まれる。0.001ミリモルよりも少ない場合、耐ブロッキング性に劣るという問題があり、10ミリモルを超える場合、塗料組成物のポットライフが短くなったり、塗膜が着色したりする場合がある。
 また、本発明のもう一つの太陽電池モジュールの耐侯性シート用塗料組成物は、顔料を含むことが好ましい。顔料は、太陽電池モジュールの外観を美麗にする点、紫外線から水不透過性シートを守る点から添加することが強く望まれている。特に白色顔料である酸化チタン、炭酸カルシウムや、黒色顔料であるカーボンブラックのほかCu-Cr-Mn合金などの複合金属類などが通常配合される。
 顔料は、前記水酸基含有フッ素ポリマー1質量部に対して0.80~3質量部含むことが好ましい。0.80質量部よりも小さい場合、UV透過が大きくなり、また、難燃性に劣るという問題があり、一方、3質量部よりも大きい場合、分散性、接着性に劣るという問題がある。好ましい下限は、0.84質量部であり、さらには1.1質量部、特に1.5質量部が好ましい。また、好ましい上限は2質量部である。
 耐ブロッキング性を向上させ、かつ表面硬度をさらに高める点から、顔料と硬化助剤を併用することが望ましい。併用する場合、顔料と硬化助剤の配合量は前述の範囲(顔料が水酸基含有フッ素ポリマー1質量部に対して0.80~3質量部、有機金属系硬化助剤がイソシアネート系硬化剤の-NCO基1モルに対して0.001~10ミリモル)が採用できる。具体的には、有機金属系硬化助剤は、前記イソシアネート系硬化剤の-NCO基1モルに対して0.02~0.1ミリモル、顔料は、前記水酸基含有フッ素ポリマー1質量部に対して0.80質量部以上、2質量部以下含ませることができる。
 また、水酸基含有フッ素ポリマー塗料組成物には、要求特性に応じて各種の添加剤や樹脂を配合することができる。添加剤としては、消泡剤、レベリング剤、UV吸収剤、光安定剤、増粘剤、密着改良剤、つや消し剤、難燃剤、顔料などがあげられる。樹脂としては、アクリル樹脂、エポキシ樹脂、ABS樹脂、メラミン樹脂、ポリウレタン、ポリエチレン、ポリスチレンポリプロピレン、ポリ酢酸ビニルなどがあげられる。
 水不透過性シートは、封止剤であるEVAや太陽電池セルに水分が透過しないように設けられる層であり、水が実質的に透過しない材料であれば使用できるが、重量や価格、可撓性などの点から、たとえば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートなどのポリエステル系樹脂シート;ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂シート;ポリウレタン系樹脂シート、ポリカーボネート系樹脂シート、ポリアミド系樹脂シート、ポリスチレン系樹脂シート、ポリアクリロニトリル樹脂系シート、ポリ塩化ビニル系樹脂シート、ポリビニルアセタール系樹脂シート、ポリビニルブチラール系樹脂シート、フッ素樹脂シートのほか、Si蒸着PETシートのような前記樹脂シートのSi蒸着品、アルミニウムやステンレススチールなどの金属薄シートなどが多用されている。なかでも特にSi蒸着PETシートがよく用いられている。厚さは通常10~20μm程度である。
 また接着性を向上させるために、従来公知の表面処理を行ってもよい。表面処理としては、たとえばコロナ放電処理、プラズマ放電処理、化成処理、金属シートの場合はブラスト処理などが例示できる。
 水不透過性シートへの硬化塗膜層の形成は、水酸基含有フッ素ポリマーを塗膜形成成分とする塗料組成物をその塗料形態に応じて、水不透過性シートの少なくとも一方の面に塗装することにより行う。これにより、本発明の耐侯性シート積層体が形成される。
 塗装温度は塗装形態における通常の条件の範囲内で行えばよく、塗膜の硬化も溶剤型塗料組成物の場合、10~300℃、通常は常温(20~30℃)で行う。したがって、水不透過性シートとして、Si蒸着PETシートのような高温での処理を避けたい材料も問題なく使用できる。硬化は、通常、20~300℃にて1分間~3日間で完了する。
 水不透過性シートへの塗装は、水不透過性シートに直接行って耐侯性シート積層体を形勢してもよく、プライマー層などを介して塗装することにより耐侯性シートを形成してよい。
 プライマー層の形成は、従来公知のプライマー用塗料を用いて、常法により行う。プライマー用の塗料としては、たとえばエポキシ樹脂、ウレタン樹脂、アクリル樹脂、シリコーン樹脂、ポリエステル樹脂などが代表例としてあげられる。
 硬化塗膜層の膜厚は、3μm以上、さらには5μm以上、特に10μm以上とすることが、隠蔽性、耐候性、耐薬品性、耐湿性が良好な点から好ましい。上限は、余り厚くすると軽量化効果が得られなくなるので、1000μm程度、さらには100μmが好ましい。膜厚としては、特に5~40μmが好ましい。
 硬化積層工程について説明する。硬化積層工程は、該未硬化塗膜層を架橋度が80~99%の範囲となるように硬化させて水不透過性シートと硬化塗膜とからなる積層体を得る工程である。本発明では、かかる架橋度が80~99%の未硬化状態を不完全硬化状態という。
 巻取工程について説明する。巻取工程は、不完全硬化状態にある積層体を巻き取る工程である。本発明の太陽電池モジュール用耐侯性シートは、該巻取工程において巻き取られた際に接する水不透過性シート裏面と架橋度が80~99%の硬化塗膜の自由表面とが、JIS K5600-3-5に準拠した耐圧着性試験において、荷重0.08MPaを24時間印加した後に密着していないことを特徴とする。なお、本発明において、「密着していない」とは、後述の実施例における耐ブロッキング性評価において示されるように、塗膜と水不透過性シートとが自然と離れる、あるいはごくわずかな力で離れるもの、または力を加えると剥がれ、塗膜の表面がわずかに乱れるものをいう。また、本発明の太陽電池モジュール用耐侯性シートは、架橋度が80~99%時点で測定した硬化塗膜層表面の鉛筆硬度がB以上であることを特徴とする。鉛筆硬度がBよりも小さい場合、塗膜の形成が不充分であり、耐ブロッキング性が悪くなるという問題がある。本発明の製造方法においては、硬化塗膜の架橋度が80~99%の未硬化状態にもかかわらずブロッキングが生じないという意外な効果を奏する。かかる耐ブロッキング性の効果が得られる理由は定かではないが次のように推定することができる。すなわち、たとえば前記のような塗料組成物を用いることにより、硬化助剤や顔料が水酸基含有ポリマーおよびイソシアネート系硬化剤と何らかの特異的な架橋状態(たとえば、表面を選択的に架橋させている等)を生成し、従来の架橋形態とは異なる硬化塗膜が生じていると考えられる。後述の実施例と比較例のデータから明らかなように、それらの架橋度が同じであることから、本発明が単に硬化を促進させて架橋度を上げることによって耐ブロッキング性の効果を奏しているのではないことは明らかである。
 養生工程について説明する。養生工程は、巻き取られた積層体の硬化塗膜を完全に硬化させる工程である。該工程において、硬化塗膜を完全に硬化させる方法としては、たとえば40℃の炉で48時間以上養生させる方法があげられる。
 つぎに本発明の太陽電池モジュールの耐侯性シート用塗料組成物について説明する。
 本発明の太陽電池モジュールの耐侯性シート用塗料組成物は、水酸基含有フッ素ポリマーとイソシアネート系硬化剤と有機金属系硬化助剤とを含み、該有機金属系硬化助剤を、該イソシアネート系硬化剤の-NCO基1モルに対して0.001~10ミリモル含むことを特徴とする。有機金属系硬化助剤は、前記イソシアネート系硬化剤の-NCO基1モルに対して0.001~10ミリモル、好ましくは、0.01~1.0ミリモル、より好ましくは、0.02~0.1ミリモル含まれる。0.001ミリモルよりも少ない場合、耐ブロッキング性に劣るという問題があり、10ミリモルを超える場合、塗料組成物のポットライフが短くなったり、塗膜が着色したりする場合がある。
 また、本発明の太陽電池モジュールの耐侯性シート用塗料組成物は、水酸基含有フッ素ポリマーとイソシアネート系硬化剤と顔料とを含み、該顔料は、前記水酸基含有フッ素ポリマー1質量部に対して0.80~3質量部含むことが好ましい。0.80質量部よりも小さい場合、UV透過が大きくなり、また、難燃性に劣るという問題があり、一方、3質量部よりも大きい場合、分散性、接着性に劣るという問題がある。好ましい下限は、0.84質量部であり、さらには1.1質量部、特に1.5質量部が好ましい。また、好ましい上限は2質量部である。
 耐ブロッキング性を向上させ、かつ表面硬度をさらに高める点から、顔料と硬化助剤を併用することが望ましい。併用する場合、顔料と硬化助剤の配合量は前述の範囲(顔料が水酸基含有フッ素ポリマー1質量部に対して0.80~3質量部、有機金属系硬化助剤がイソシアネート系硬化剤の-NCO基1モルに対して0.001~10ミリモル)が採用できる。具体的には、有機金属系硬化助剤は、前記イソシアネート系硬化剤の-NCO基1モルに対して0.02~0.1ミリモル、顔料は、前記水酸基含有フッ素ポリマー1質量部に対して0.80質量部以上、2質量部以下含ませることができる。
 水酸基含有フッ素ポリマー、イソシアネート系硬化剤、有機金属系硬化助剤および顔料としては、前述の太陽電池モジュール用耐侯性シートの製造方法で述べたものを使用することができる。
 つぎに本発明の太陽電池モジュール用耐侯性シートについて説明する。
 本発明の太陽電池モジュール用耐侯性シートは、水酸基含有フッ素ポリマーを含む塗料組成物の架橋物からなる硬化塗膜層が水不透過性シートに形成されてなる太陽電池モジュール用耐侯性シートであって、該硬化塗膜層の架橋度が80~99%の時点で測定したJIS K5600-3-5に準拠した耐圧着性試験において、架橋度が80~99%の硬化塗膜層と硬化塗膜層が形成されていない水不透過性シートとを重ね合わせた状態で、荷重0.08MPaを24時間印加した後に密着していないことを特徴とする。
 また、本発明の太陽電池モジュール用耐侯性シートは、水酸基含有フッ素ポリマーを含む塗料組成物の架橋物からなる硬化塗膜層が水不透過性シートに形成されてなる太陽電池モジュール用耐侯性シートであって、架橋度が80~99%時点で測定した硬化塗膜層表面の鉛筆硬度がB以上である。
 水酸基含有フッ素ポリマーおよび水不透過性シートとしては、前述の太陽電池モジュール用耐侯性シートの製造方法で述べたものを使用することができる。
  本発明の太陽電池モジュールの耐侯性シート用塗料組成物は、水酸基含有フッ素ポリマーとイソシアネート系硬化剤と有機金属系硬化助剤とを含み、該有機金属系硬化助剤を、該イソシアネート系硬化剤の-NCO基1モルに対して0.001~10ミリモル含むことを特徴とする。有機金属系硬化助剤は、前記イソシアネート系硬化剤の-NCO基1モルに対して0.001~10ミリモル、好ましくは、0.01~1.0ミリモル、より好ましくは、0.02~0.1ミリモル含まれる。0.001ミリモルよりも少ない場合、耐ブロッキング性に劣るという問題があり、10ミリモルを超える場合、塗料組成物のポットライフが短くなったり、塗膜が着色したりする場合がある。
 また、本発明の太陽電池モジュールの耐侯性シート用塗料組成物は、水酸基含有フッ素ポリマーとイソシアネート系硬化剤と顔料とを含み、該顔料は、前記水酸基含有フッ素ポリマー1質量部に対して0.80~3質量部含むことが好ましい。0.80質量部よりも小さい場合、UV透過が大きくなり、また、難燃性に劣るという問題があり、一方、3質量部よりも大きい場合、分散性、接着性に劣るという問題がある。好ましい下限は、0.84質量部であり、さらには1.1質量部、特に1.5質量部が好ましい。また、好ましい上限は2質量部である。
 耐ブロッキング性を向上させ、かつ表面硬度をさらに高める点から、顔料と硬化助剤を併用することが望ましい。併用する場合、顔料と硬化助剤の配合量は前述の範囲(顔料が水酸基含有フッ素ポリマー1質量部に対して0.80~3質量部、有機金属系硬化助剤がイソシアネート系硬化剤の-NCO基1モルに対して0.001~10ミリモル)が採用できる。具体的には、有機金属系硬化助剤は、前記イソシアネート系硬化剤の-NCO基1モルに対して0.02~0.1ミリモル、顔料は、前記水酸基含有フッ素ポリマー1質量部に対して0.80質量部以上、2質量部以下含ませることができる。
 イソシアネート系硬化剤、有機金属系硬化助剤および顔料としては、前述の太陽電池モジュール用耐侯性シートの製造方法で述べたものを使用することができる。
 本発明の太陽電池モジュール用耐候性シートは、太陽電池モジュールの表面層に適用することもできるし、裏面に適用することもできる。
 つぎに本発明の太陽電池モジュールについて説明する。
 本発明の太陽電池モジュールは、太陽電池セルを内部に封止しているエチレン/酢酸ビニル共重合体を含む封止剤層と前記耐侯性シートとが積層されている太陽電池モジュールであって、該封止剤層と該耐候性シートの水不透過性シートとの間に硬化塗膜層が介在する積層体構造を含む太陽電池モジュールである。
 また、本発明の太陽電池モジュールは、太陽電池セルを内部に封止しているエチレン/酢酸ビニル共重合体を含む封止剤層と前記耐侯性シートとが積層されている太陽電池モジュールであって、該封止剤層と該耐候性シートの硬化塗膜層との間に水不透過性シートが介在する積層体構造を含む太陽電池モジュールである。
 本発明の太陽電池モジュールの好ましい実施形態を示した図1に従って説明する。また、本発明の別の好ましい実施形態の概略断面図を図2~5に示す。
 図1において、1は太陽電池セルであり、EVAに代表される封止剤層2に封止されており、表面層3と耐侯性シート4で挟まれている。耐侯性シート4はさらに水不透過性シート5と水酸基含有フッ素ポリマー塗料の硬化塗膜層6とから構成されている。この第1の実施形態では硬化塗膜層6は封止剤(EVA)層2側に設けられている。
 この実施形態では、硬化塗膜層6がEVAと接するので、特にEVAとの共架橋により界面接着性が向上する。
 図2は第2の実施形態であり、硬化塗膜層6は封止剤(EVA)層2と反対側に設けられている。この実施形態の場合、硬化塗膜層6を設けることにより耐候性の点で優れたものになる。また、水不透過性シート5の封止剤(EVA)層2側を表面処理しておくことが密着性の改善の点から好ましい。また、必要に応じて、ポリエステル系接着剤、アクリル系接着剤、ウレタン系接着剤、エポキシ系接着剤などを使用してもよい。
 本発明の耐侯性シートは、上記の水不透過性シート5の片面のみに硬化塗膜層6が形成されている2層構造(図1、図2)でもよいし、以下に説明する3層構造であってもよい。
 3層構造の耐侯性シートの実施形態(第3の実施形態)を図3に示す。この第3の実施形態は、水不透過性シート5の両面に水酸基含有フッ素ポリマー塗料の硬化塗膜層6が形成されてなる3層構造のものである。
 この第3の実施形態は、耐侯性シートの膜厚の観点からは多少後退するが、上記の第1の実施形態および第2の実施形態の利点を併せもつものである。
 3層構造の耐侯性シートとしては、また、水不透過性シートの一方の面に水酸基含有フッ素ポリマー塗料の硬化塗膜層が形成され、他方の面に、硬化性官能基を有しない含フッ素ポリマー塗料の硬化塗膜層、含フッ素ポリマーシート、ポリエステルシートまたはポリエステル塗料の塗膜(他のシートまたは塗膜)が形成されてなる3層構造(図4、図5)でもよい。
 第4の実施形態(図4)は、第1の実施形態の封止剤(EVA)層2と反対側に他の塗膜7が形成されている構造であり、第5の実施形態(図5)は、第2の実施形態の封止剤(EVA)層2側に他の塗膜7が形成されている構造である。
 第4および第5のいずれの実施形態においても、塗膜7を構成する材料は、硬化性官能基を有しない含フッ素ポリマー塗料の硬化塗膜層でも、含フッ素ポリマーシートでも、ポリエステルシートでも、ポリエステル塗料の塗膜でもよい。
 硬化性官能基を有しない含フッ素ポリマー塗料の硬化塗膜層としては、たとえば特許文献2に記載されているPVdFにテトラアルコキシシランまたはその部分加水分解物を配合した塗料の硬化塗膜層、VdF/TFE/CTFE共重合体とアルコキシシラン単位含有アクリル樹脂との混合塗料の硬化塗膜層、VdF/TFE/HFP共重合体と水酸基含有アクリル樹脂との混合塗料の硬化塗膜層、VdF/HFP共重合体にアミノシランカップリング剤を配合した塗料の硬化塗膜層などがあげられる。膜厚は、通常、5~300μm、さらには10~100μm、特に10~50μmとすることが、隠蔽性、耐候性、耐薬品性、耐湿性のバランスが良好な点から好ましい。この場合も、プライマー層などを介してもよい。
 含フッ素ポリマーシートとしては、PVdFシートやPVFシート、PCTFEシート、TFE/HFP/エチレン共重合体シート、TFE/HFP共重合体(FEP)シート、TFE/PAVE共重合体(PFA)シート、エチレン/TFE共重合体(ETFE)シート、エチレン/CTFE共重合体(ECTFE)シートなど、通常の耐侯性シートに使用されている含フッ素ポリマーシートがあげられる。膜厚は、通常、5~300μm、さらには10~100μm、特に10~50μmとすることが、耐候性が良好な点から好ましい。
 ポリエステルシートとしては、従来の耐侯性シートで使用されているものがそのまま使用でき、その水不透過性シート5への接着はアクリル系接着剤、ウレタン系接着剤、エポキシ系接着剤、ポリエステル系接着剤などによって行うことができる。膜厚は、通常5~300μm、さらには10~100μm、特に10~50μmとすることが、耐候性、コスト、透明性が良好な点から好ましい。
 ポリエステル塗料としては、多価カルボン酸と多価アルコールなどを用いた飽和ポリエステル樹脂を用いたもの、無水マレイン酸、フマル酸などのグリコール類を用いた不飽和ポリエステル樹脂を用いたものなどがあげられ、ロールコート、カーテンコート、スプレーコート、ダイコートなどの塗装方法により塗膜を形成できる。膜厚は、5~300μm、さらには10~100μm、特に10~50μmとすることが隠蔽性、耐候性、耐薬品性、耐湿性が良好な点から好ましい。この場合も、プライマー層などを介してもよい。
 つぎに本発明の太陽電池パネルについて説明する。
 本発明の太陽電池パネルは、前記太陽電池モジュールを備えている。太陽電池パネルには、太陽電池モジュールが縦方向、横方向または放射状にマトリクス状に並べられた構成をとる他、その他公知の形態をとることができ、特に制限されるものではない。
 つぎに本発明を調製例および実施例に基づいて説明するが、本発明はかかる調製例および実施例のみに限定されるものではない。
調製例1
 水酸基含有TFE系共重合体組成物(ゼッフルGK570。水酸基含有TFE系共重合体65質量%)202.0g、白色顔料として酸化チタン(堺化学(株)製のD918)263.0g、酢酸ブチル167.0gを攪拌下に予備混合した後、直径1.2mmのガラスビーズを820g入れ、顔料分散機にて1500rpmで1時間分散させた。その後、#80メッシュのフルイでガラスビーズをろ過し、その溶液に水酸基含有TFE系共重合体組成物(ゼッフルGK570)を283.0g、酢酸ブチルを85.0g加えて白色塗料を調製した。
 この白色塗料100質量部にイソシアネート系硬化剤(住化バイエル(株)製のスミジュールN3300)6.5質量部、硬化助剤として有機金属性硬化助剤((株)マツモト交商のオルガチックスTC-750)0.004質量部を配合して、硬化性塗料1を調製した。顔料は、水酸基含有TFE系共重合体(水酸基含有フッ素ポリマー)1質量部に対して0.83質量部であった。また、有機金属系硬化助剤は、イソシアネート系硬化剤の-NCO基1モルに対して0.04ミリモルであった。
調製例2
 水酸基含有TFE系共重合体組成物(ゼッフルGK570)202.0g、白色顔料として酸化チタン(堺化学(株)製のD918)263.0g、酢酸ブチル167.0gを攪拌下に予備混合した後、直径1.2mmのガラスビーズを820g入れ、顔料分散機にて1500rpmで1時間分散させた。その後、#80メッシュのフルイでガラスビーズをろ過し、白色塗料を調製した。
 この白色塗料100質量部にイソシアネート系硬化剤(住化バイエル(株)製のスミジュールN3300)4.4質量部を配合して、硬化性塗料2を調製した。顔料は、水酸基含有TFE系共重合体(水酸基含有フッ素ポリマー)1質量部に対して2.0質量部であった。
調製例3
 水酸基含有TFE系共重合体組成物(ゼッフルGK570)202.0g、白色顔料として酸化チタン(堺化学(株)製のD918)263.0g、酢酸ブチル167.0gを攪拌下に予備混合した後、直径1.2mmのガラスビーズを820g入れ、顔料分散機にて1500rpmで1時間分散させた。その後、#80メッシュのフルイでガラスビーズをろ過し、その溶液に水酸基含有TFE系共重合体組成物(ゼッフルGK570)を67.7g、酢酸ブチルを30.8g加えて白色塗料を調製した。
 この白色塗料100質量部にイソシアネート系硬化剤(住化バイエル(株)製のスミジュールN3300)6.5質量部を配合して、硬化性塗料3を調製した。顔料は、水酸基含有TFE系共重合体(水酸基含有フッ素ポリマー)1質量部に対して1.5質量部であった。
調製例4
 水酸基含有TFE系共重合体組成物(ゼッフルGK570)202.0g、白色顔料として酸化チタン(堺化学(株)製のD918)393.9g、酢酸ブチル279.4gを攪拌下に予備混合した後、直径1.2mmのガラスビーズを820g入れ、顔料分散機にて1500rpmで1時間分散させた。その後、#80メッシュのフルイでガラスビーズをろ過し、白色塗料を調製した。
 この白色塗料100質量部にイソシアネート系硬化剤(住化バイエル(株)製のスミジュールN3300)6.5質量部を配合して、硬化性塗料4を調製した。顔料は、水酸基含有TFE系共重合体(水酸基含有フッ素ポリマー)1質量部に対して3.0質量部であった。
調製例5
 水酸基含有TFE系共重合体組成物(ゼッフルGK570)202.0g、白色顔料として酸化チタン(堺化学(株)製のD918)263.0g、酢酸ブチル167.0gを攪拌下に予備混合した後、直径1.2mmのガラスビーズを820g入れ、顔料分散機にて1500rpmで1時間分散させた。その後、#80メッシュのフルイでガラスビーズをろ過し、白色塗料を調製した。
 この白色塗料100質量部にイソシアネート系硬化剤(住化バイエル(株)製のスミジュールN3300)6.5質量部、硬化助剤として有機金属性硬化助剤((株)マツモト交商のオルガチックスTC-750)0.004質量部を配合して、硬化性塗料5を調製した。顔料は、水酸基含有TFE系共重合体(水酸基含有フッ素ポリマー)1質量部に対して2.0質量部であった。また、有機金属系硬化助剤は、イソシアネート系硬化剤の-NCO基1モルに対して0.04ミリモルであった。
調製例6
 水酸基含有TFE系共重合体組成物(ゼッフルGK570)202.0g、白色顔料として酸化チタン(堺化学(株)製のD918)263.0g、酢酸ブチル167.0gを攪拌下に予備混合した後、直径1.2mmのガラスビーズを820g入れ、顔料分散機にて1500rpmで1時間分散させた。その後、#80メッシュのフルイでガラスビーズをろ過し、その溶液に水酸基含有TFE系共重合体組成物(ゼッフルGK570)を283.0g、酢酸ブチルを85.0g加えて白色塗料を調製した。
 この白色塗料100質量部にイソシアネート系硬化剤(住化バイエル(株)製のスミジュールN3300)6.5質量部を配合して、硬化性塗料6を調製した。
調製例7
 水酸基含有TFE系共重合体組成物(ゼッフルGK570)202.0g、白色顔料として酸化チタン(堺化学(株)製のD918)263.0g、酢酸ブチル167.0gを攪拌下に予備混合した後、直径1.2mmのガラスビーズを820g入れ、顔料分散機にて1500rpmで1時間分散させた。その後、#80メッシュのフルイでガラスビーズをろ過し、その溶液に水酸基含有TFE系共重合体組成物(ゼッフルGK570)を283.0g、酢酸ブチルを85.0g加えて白色塗料を調製した。
 この白色塗料100質量部にイソシアネート系硬化剤(日本ポリウレタン(株)製のコロネートHX)6.3質量部を配合して、硬化性塗料7を調製した。
実施例1
 水不透過性シートとして、PETシート(東レ(株)製のルミラーS10、厚さ125μm。シートA)を使用し、このシートAの片面に調製例1で調製した硬化性塗料1を乾燥塗膜厚が5μmとなるように塗装し、120℃で2分間乾燥して2層構造の耐侯性シートA1を作製した。
 この耐侯性シートA1について、耐ブロッキング性(塗膜とシートの間)、架橋度(塗膜)、および鉛筆硬度(塗膜)を調べた。また、PCTFEシート(ダイキン工業(株)製のDF0025C1、厚さ25μm。シートB)を使用し、このシートBの片面に調製例1で調製した硬化性塗料1を乾燥塗膜厚が5μmとなるように塗装し、60℃で20分間乾燥して2層構造のシートB1を作製した。この耐侯性シートB1について、UV透過率を調べた。結果を表1に示す。
実施例2~5および比較例1~2
 水不透過性シートとして、PETシート(東レ(株)製のルミラーS10、厚さ125μm。シートA)を使用し、このシートAの片面に調製例2~7でそれぞれ調製した硬化性塗料2~7を乾燥塗膜厚が5μmとなるように塗装し、120℃で2分間乾燥して2層構造の耐侯性シートA2~A7を作製した。
 この耐侯性シートA2~A7について、耐ブロッキング性(塗膜とシートの間)、架橋度(塗膜)、および鉛筆硬度(塗膜)を調べた。また、PCTFEシート(ダイキン工業(株)製のDF0025C1、厚さ25μm。シートB)を使用し、このシートBの片面に調製例2~7でそれぞれ調製した硬化性塗料2~7を乾燥塗膜厚が5μmとなるように塗装し、60℃で20分間乾燥して2層構造のシートB2~B7を作製した。この耐侯性シートB2~B7について、UV透過率を調べた。結果を表1に示す。
 試験方法および測定方法はつぎのとおりである。
(塗膜厚)
 JIS C-2151に準じて、マイクロメーター膜厚計で測定した。
(耐ブロッキング性)
 JIS K5600-3-5に準じて行なった。50mm×100mmのPETフィルムに調整した塗料を塗装し、120℃,2分間乾燥機(エスペック製 SPHH-400)内で加熱乾燥した。その後、試験片を取り出して室温まで放冷した。そして、試験片の塗装面と未塗装面が50mm×50mmの面積で重なるように、フィルム同士をガラスで挟み込んだ。そこへ20kgのおもりを乗せ、フィルム同士の接触面に0.08MPaの圧力が掛かるようにしたまま、60℃、24時間保持した。2枚のフィルムを室温まで放冷し、2枚のフィルムを左右に引っ張って、その時の様子で耐ブロッキング性を評価した。評価基準としては、自然と離れる、あるいはごくわずかな力で2枚が離れるものを◎、力を加えると剥がれ、塗膜の表面がわずかに乱れるものを○、力を加えると剥がれ、塗膜の表面が乱れるものを△、力を加えても剥がすことができないものを×と評価した。
(架橋度)
 ポリプロピレン(以下、PP)板に調製した塗料を塗装し、120℃,2分間乾燥機(エスペック製 SPHH-400)内で加熱乾燥した。その後、PP板を取り出して室温まで放冷下後、塗膜をPP板から引き剥がした。引き剥がした塗膜を50ccのポリ瓶にいれ、アセトンを50cc加える。ミックスローターで24時間攪拌し、400メッシュの金網で残留物を濾取した。濾取した残留物をアセトンで十分に洗浄した後、金網と共に減圧乾燥を行った。数値の算出(%):100×(減圧乾燥後の残留物重さ)/(PP板から引き剥がした塗膜の重さ)
(鉛筆硬度)
 JIS K5400に準じて行なった。
(UV透過率)
 JIS K7105に準じて行なった。180nm~500nmの透過率を(株)日立製作所製分光光度計U-4100で測定し、400nmの透過率をUV透過率とした。
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例2~4からは顔料を配合することにより同等の架橋度であるにもかかわらず、鉛筆硬度および塗膜とシート間の耐ブロッキング性が比較例1~2に比してさらに向上していることが分かる。また、硬化助剤を使用している実施例1および実施例5では、さらに鉛筆硬度および塗膜とシート間の耐ブロッキング性向上していることが分かる。
 1 太陽電池セル
 2 封止剤層
 3 表面層
 4 耐侯性シート
 5 水不透過性シート
 6 硬化塗膜層
 7 シートまたは塗膜
 8、9 樹脂シート

Claims (14)

  1. 水酸基含有フッ素ポリマーを含む塗料組成物の架橋物からなる硬化塗膜層が水不透過性シートに形成されてなる太陽電池モジュール用耐侯性シートであって、
    該硬化塗膜層の架橋度が80~99%の時点で測定したJIS K5600-3-5に準拠した耐圧着性試験において、架橋度が80~99%の硬化塗膜層と硬化塗膜層が形成されていない水不透過性シートとを重ね合わせた状態で、荷重0.08MPaを24時間印加した後に密着していないこと
    を特徴とする太陽電池モジュール用耐侯性シート。
  2. 水酸基含有フッ素ポリマーを含む塗料組成物の架橋物からなる硬化塗膜層が水不透過性シートに形成されてなる太陽電池モジュール用耐侯性シートであって、
    架橋度が80~99%時点で測定した硬化塗膜層表面の鉛筆硬度がB以上である太陽電池モジュール用耐侯性シート。
  3. 前記塗料組成物が、水酸基含有フッ素ポリマーとイソシアネート系硬化剤と有機金属系硬化助剤とを含むことを特徴とする請求項1または2記載の太陽電池モジュール用耐侯性シート。
  4. 前記イソシアネート系硬化剤の-NCO基1モルに対して、前記有機金属系硬化助剤を0.001~10ミリモル含む請求項3記載の太陽電池モジュール用耐侯性シート。
  5. 前記塗料組成物が、水酸基含有フッ素ポリマーとイソシアネート系硬化剤と顔料とを含むことを特徴とする請求項1または2記載の太陽電池モジュール用耐侯性シート。
  6. 前記水酸基含有フッ素ポリマー1質量部に対して、前記顔料を0.84~3質量部含むことを特徴とする請求項5記載の太陽電池モジュール用耐侯性シート。
  7. 太陽電池セルを内部に封止しているエチレン/酢酸ビニル共重合体を含む封止剤層と請求項1~6のいずれかに記載の耐侯性シートとが積層されている太陽電池モジュールであって、該封止剤層と該耐候性シートの水不透過性シートとの間に硬化塗膜層が介在する積層体構造を含む太陽電池モジュール。
  8. 太陽電池セルを内部に封止しているエチレン/酢酸ビニル共重合体を含む封止剤層と請求項1~6のいずれかに記載の耐侯性シートとが積層されている太陽電池モジュールであって、該封止剤層と該耐候性シートの硬化塗膜層との間に水不透過性シートが介在する積層体構造を含む太陽電池モジュール。
  9. 請求項7または8記載の太陽電池モジュールを備えた太陽電池パネル。
  10. 水酸基含有フッ素ポリマーとイソシアネート系硬化剤と有機金属系硬化助剤とを含み、
    該有機金属系硬化助剤を、該イソシアネート系硬化剤の-NCO基1モルに対して0.001~10ミリモル含む太陽電池モジュールの耐候性シート用塗料組成物。
  11. 水酸基含有フッ素ポリマーとイソシアネート系硬化剤と顔料とを含み、
    該顔料を、該水酸基含有フッ素ポリマー1質量部に対して0.84~3質量部含む太陽電池モジュールの耐候性シート用塗料組成物。
  12. 水酸基含有フッ素ポリマーを含む塗料組成物を水不透過性シートの表面に塗布して未硬化塗膜層を形成する塗布工程、
    該未硬化塗膜層を架橋度が80~99%の範囲となるように硬化させて水不透過性シートと硬化塗膜とからなる積層体を得る硬化積層工程、
    該積層体を巻き取る巻取工程、および
    該巻き取られた積層体の硬化塗膜を完全に硬化させる養生工程
    を含む太陽電池モジュール用耐侯性シートの製造方法において、
    該巻取工程において巻き取られた際に接する水不透過性シート裏面と架橋度が80~99%の硬化塗膜の自由表面とが、JIS K5600-3-5に準拠した耐圧着性試験において、荷重0.08MPaを24時間印加した後に密着していないことを特徴とする太陽電池モジュール用耐侯性シートの製造方法。
  13. 前記塗料組成物が、水酸基含有フッ素ポリマーとイソシアネート系硬化剤と有機金属系硬化助剤とを含み、
    該有機金属系硬化助剤を、該イソシアネート系硬化剤の-NCO基1モルに対して0.001~10ミリモル含むことを特徴とする請求項12記載の太陽電池モジュール用耐侯性シートの製造方法。
  14. 前記塗料組成物が、水酸基含有フッ素ポリマーとイソシアネート系硬化剤と顔料とを含み、
    該顔料を、該水酸基含有フッ素ポリマー1質量部に対して0.84~3質量部含むことを特徴とする請求項12記載の太陽電池モジュール用耐侯性シートの製造方法。
PCT/JP2011/050422 2010-01-14 2011-01-13 太陽電池モジュール用耐侯性シートおよび該シートを用いた製品ならびに該太陽電池モジュール用耐侯性シートの製造方法 WO2011087046A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147031895A KR20140139627A (ko) 2010-01-14 2011-01-13 태양 전지 모듈용 내후성 시트 및 상기 시트를 사용한 제품 및 상기 태양 전지 모듈용 내후성 시트의 제조 방법
JP2011549998A JPWO2011087046A1 (ja) 2010-01-14 2011-01-13 太陽電池モジュール用耐侯性シートおよび該シートを用いた製品ならびに該太陽電池モジュール用耐侯性シートの製造方法
US13/522,098 US10000616B2 (en) 2010-01-14 2011-01-13 Weatherable sheet for solar cell module, product obtained using the sheet, and process for producing the weatherable sheet for solar cell module
CN201180006083.XA CN102712184B (zh) 2010-01-14 2011-01-13 太阳能电池组件用耐候性片材和使用该片材的制品以及该太阳能电池组件用耐候性片材的制造方法
EP11732916.9A EP2524802B1 (en) 2010-01-14 2011-01-13 Weatherable sheet for solar cell module, product obtained using the sheet, and process for producing the weatherable sheet for solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010006254 2010-01-14
JP2010-006254 2010-01-14

Publications (1)

Publication Number Publication Date
WO2011087046A1 true WO2011087046A1 (ja) 2011-07-21

Family

ID=44304319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050422 WO2011087046A1 (ja) 2010-01-14 2011-01-13 太陽電池モジュール用耐侯性シートおよび該シートを用いた製品ならびに該太陽電池モジュール用耐侯性シートの製造方法

Country Status (6)

Country Link
US (1) US10000616B2 (ja)
EP (1) EP2524802B1 (ja)
JP (1) JPWO2011087046A1 (ja)
KR (2) KR20140139627A (ja)
CN (1) CN102712184B (ja)
WO (1) WO2011087046A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210835A (ja) * 2010-03-29 2011-10-20 Dainippon Printing Co Ltd 遮光シート、並びにそれを使用した太陽電池モジュール用バックシート及び太陽電池モジュール
WO2013065852A1 (ja) * 2011-11-04 2013-05-10 ダイキン工業株式会社 太陽電池モジュールのバックシート、及び、太陽電池モジュール
WO2013065854A1 (ja) * 2011-11-04 2013-05-10 ダイキン工業株式会社 太陽電池モジュールのバックシート、積層体、及び、太陽電池モジュール
WO2013088943A1 (ja) * 2011-12-15 2013-06-20 ダイキン工業株式会社 太陽電池のバックシート、太陽電池モジュール、及び、太陽電池パネル

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746322B1 (en) * 2012-12-21 2018-03-07 Agfa-Gevaert A back sheet for photovoltaic modules
DE102013204395A1 (de) 2013-03-13 2014-09-18 Evonik Industries Ag Oberflächenvergütung auf Basis von vernetzbaren Fluorpolymeren
CN105683305B (zh) 2013-06-26 2018-11-13 3M创新有限公司 耐污染性微球体制品
US20150034148A1 (en) * 2013-08-02 2015-02-05 E I Du Pont De Nemours And Company Liquid fluoropolymer coating composition, fluoropolymer coated film, and process for forming the same
US20150132582A1 (en) * 2013-11-12 2015-05-14 E I Du Pont De Nemours And Company Liquid fluoropolymer coating composition, fluoropolymer coated film, and process for forming the same
GB201412153D0 (en) * 2014-07-08 2014-08-20 Dupont Teijin Films Us Ltd Polyester film
JP6270767B2 (ja) * 2015-03-30 2018-01-31 ニチハ株式会社 建材
CN108022988B (zh) 2016-10-31 2020-06-30 上迈(镇江)新能源科技有限公司 一种光伏组件的层压结构及其制备方法、光伏组件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176775A (ja) 1993-12-17 1995-07-14 Canon Inc 太陽電池モジュール
JP2004214342A (ja) 2002-12-27 2004-07-29 Nisshin Steel Co Ltd 接着性に優れた太陽電池基材
WO2007010706A1 (ja) * 2005-07-22 2007-01-25 Daikin Industries, Ltd. 太陽電池のバックシート

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69132550T2 (de) * 1990-12-17 2001-06-21 Dainichiseika Color Chem Beschichtungszusammensetzungen
KR100322942B1 (ko) * 1995-02-20 2002-09-04 다이낑 고오교 가부시키가이샤 오염부착방지제및상기방지제를함유하는비수성도료용조성물
JP2006152013A (ja) * 2004-11-25 2006-06-15 Teijin Dupont Films Japan Ltd 太陽電池裏面保護膜用易接着性ポリエステルフィルムおよびそれを用いた太陽電池裏面保護膜
JP5094081B2 (ja) * 2005-11-17 2012-12-12 富士フイルム株式会社 親水性部材及びその製造方法
CN101317274A (zh) * 2005-11-30 2008-12-03 大金工业株式会社 太阳能电池的保护罩用涂料组合物
US20080264484A1 (en) * 2007-02-16 2008-10-30 Marina Temchenko Backing sheet for photovoltaic modules and method for repairing same
JP5392252B2 (ja) 2008-05-22 2014-01-22 ダイキン工業株式会社 ポリクロロトリフルオロエチレンフィルム及び太陽電池用裏面保護シート
CN101290950B (zh) * 2008-05-23 2011-02-02 浙江工业大学 一种太阳能电池板背膜及其生产工艺
US20120048352A1 (en) * 2009-04-27 2012-03-01 Daikin Industries, Ltd. Solar cell module and back sheet thereof
EP2584613A1 (en) * 2010-06-16 2013-04-24 Daikin Industries, Ltd. Weatherable backsheet for solar cell module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176775A (ja) 1993-12-17 1995-07-14 Canon Inc 太陽電池モジュール
JP2004214342A (ja) 2002-12-27 2004-07-29 Nisshin Steel Co Ltd 接着性に優れた太陽電池基材
WO2007010706A1 (ja) * 2005-07-22 2007-01-25 Daikin Industries, Ltd. 太陽電池のバックシート
JP2007035694A (ja) 2005-07-22 2007-02-08 Daikin Ind Ltd 太陽電池のバックシート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2524802A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210835A (ja) * 2010-03-29 2011-10-20 Dainippon Printing Co Ltd 遮光シート、並びにそれを使用した太陽電池モジュール用バックシート及び太陽電池モジュール
WO2013065852A1 (ja) * 2011-11-04 2013-05-10 ダイキン工業株式会社 太陽電池モジュールのバックシート、及び、太陽電池モジュール
WO2013065854A1 (ja) * 2011-11-04 2013-05-10 ダイキン工業株式会社 太陽電池モジュールのバックシート、積層体、及び、太陽電池モジュール
JP2013201416A (ja) * 2011-11-04 2013-10-03 Daikin Ind Ltd 太陽電池モジュールのバックシート、及び、太陽電池モジュール
JP2014007371A (ja) * 2011-11-04 2014-01-16 Daikin Ind Ltd 太陽電池モジュールのバックシート、積層体、及び、太陽電池モジュール
WO2013088943A1 (ja) * 2011-12-15 2013-06-20 ダイキン工業株式会社 太陽電池のバックシート、太陽電池モジュール、及び、太陽電池パネル
JP2013144779A (ja) * 2011-12-15 2013-07-25 Daikin Industries Ltd 太陽電池のバックシート、太陽電池モジュール、及び、太陽電池パネル
CN103958196A (zh) * 2011-12-15 2014-07-30 大金工业株式会社 太阳能电池背板、太阳能电池组件以及太阳能电池面板
CN103958196B (zh) * 2011-12-15 2016-04-20 大金工业株式会社 太阳能电池背板、太阳能电池组件以及太阳能电池面板
TWI611590B (zh) * 2011-12-15 2018-01-11 大金工業股份有限公司 太陽能電池之背板、太陽能電池模組及太陽能電池板

Also Published As

Publication number Publication date
CN102712184B (zh) 2015-04-22
EP2524802A4 (en) 2014-03-12
US20120298196A1 (en) 2012-11-29
EP2524802B1 (en) 2015-10-28
JPWO2011087046A1 (ja) 2013-05-20
KR20140139627A (ko) 2014-12-05
CN102712184A (zh) 2012-10-03
US10000616B2 (en) 2018-06-19
KR20120116481A (ko) 2012-10-22
EP2524802A1 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
WO2011087046A1 (ja) 太陽電池モジュール用耐侯性シートおよび該シートを用いた製品ならびに該太陽電池モジュール用耐侯性シートの製造方法
JP5500169B2 (ja) 太陽電池モジュールおよびそのバックシート
JP5516730B2 (ja) 太陽電池モジュール用耐侯性バックシート
JP5127123B2 (ja) 太陽電池のバックシート
KR101271382B1 (ko) 광기전 모듈용 백킹 시트
EP2774964B1 (en) Coating material, coating film, backsheet for solar cell module, and solar cell module
WO2013065854A1 (ja) 太陽電池モジュールのバックシート、積層体、及び、太陽電池モジュール
JP5900532B2 (ja) 太陽電池のバックシート、太陽電池モジュール、及び、太陽電池パネル
WO2013080918A1 (ja) 塗料、塗膜、太陽電池モジュールのバックシート、及び、太陽電池モジュール
JP5464258B2 (ja) 塗料、塗膜、太陽電池モジュールのバックシート、及び、太陽電池モジュール
WO2013065852A1 (ja) 太陽電池モジュールのバックシート、及び、太陽電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006083.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011549998

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13522098

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011732916

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127021169

Country of ref document: KR

Kind code of ref document: A