WO2011085517A1 - 全自励源电子式电流互感器 - Google Patents

全自励源电子式电流互感器 Download PDF

Info

Publication number
WO2011085517A1
WO2011085517A1 PCT/CN2010/000061 CN2010000061W WO2011085517A1 WO 2011085517 A1 WO2011085517 A1 WO 2011085517A1 CN 2010000061 W CN2010000061 W CN 2010000061W WO 2011085517 A1 WO2011085517 A1 WO 2011085517A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
energy
circuit
output
resistor
Prior art date
Application number
PCT/CN2010/000061
Other languages
English (en)
French (fr)
Inventor
刘忠战
仵勋
宋延庭
Original Assignee
西安华伟光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安华伟光电技术有限公司 filed Critical 西安华伟光电技术有限公司
Priority to EP10842801A priority Critical patent/EP2525472A1/en
Priority to JP2012529087A priority patent/JP5529278B2/ja
Priority to US13/391,822 priority patent/US8587971B2/en
Priority to PCT/CN2010/000061 priority patent/WO2011085517A1/zh
Priority to CA2770372A priority patent/CA2770372C/en
Publication of WO2011085517A1 publication Critical patent/WO2011085517A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers

Definitions

  • the invention belongs to the field of electric power measurement, and particularly relates to an electronic current transformer. ⁇ Background technique ⁇
  • the disadvantages are: 1 The life cycle of the laser source is short, only 8000-10000 hours; 2 expensive, about 12,000 ⁇ , accounting for more than half of the cost of the 1 1 Okv transformer; 3 laser requires high environmental conditions, so on-site operation and maintenance High difficulty. For this reason, the developer hopes to obtain energy directly from the high-voltage busbar magnetic field to be tested by means of electromagnetic induction, as a high-voltage side power source.
  • the object of the present invention is to overcome the shortcomings of the existing self-excited source technology, and to provide a fully self-excited electronic current transformer that does not require an external power source at any time, and can replace laser or other types of external energy transmission methods.
  • the product is to overcome the shortcomings of the existing self-excited source technology, and to provide a fully self-excited electronic current transformer that does not require an external power source at any time, and can replace laser or other types of external energy transmission methods.
  • a self-excited source electronic current transformer comprising a power-carrying winding, a fast voltage-stabilizing circuit and an A/D conversion circuit, the output of the energy-carrying winding is connected to an input of a voltage-stabilizing circuit, and the output of the voltage-stabilizing circuit is used as an A/D conversion
  • the working power supply is characterized in that: the energy-carrying winding is composed of two energy-taking branches, wherein the output wave of one energy-receiving branch is 60-90° ahead of the output wave of one energy-receiving branch.
  • the output waves of the two energy-receiving branches are combined and input to the voltage stabilizing circuit, and the second-order nonlinear filtering technology is adopted.
  • the filtering and energy storage can be quickly obtained, and the regulated output can be quickly obtained.
  • the full self-excited source electronic current transformer provided by the invention uses two branches to take energy, respectively, directly obtains energy from the magnetic field of the busbar to be tested, and synthesizes two output waveforms to fill the valleys and reduce DC ripple.
  • the valley voltage of the composite wave is higher than the required DC voltage regulation value, and directly meets the input requirement of the voltage regulator module in the voltage regulator circuit.
  • the nonlinear filter energy storage circuit overcomes the shortcoming of the general linear filter voltage rise, so that it can be quickly started.
  • FIG. 1 is a circuit schematic diagram of a fully self-excited source electronic current transformer according to an embodiment
  • FIG. 2 is an output waveform of the energizing coil Q1 and an output waveform diagram of the split phase rectification
  • 3 is an output waveform of the energizing coil Q2 and a rectified output waveform thereof
  • FIG. 4 is a waveform diagram of the output waveforms of the first and second energizing branches.
  • the fully self-excited source electronic current transformer provided in this embodiment includes: a power take-off winding 1, a voltage stabilizing circuit 2 and an A/D conversion circuit 3, and an output connection voltage stabilizing circuit 2 of the power take-off winding 1
  • the input of the voltage stabilizing circuit 2 is connected to the control terminal of the A/D converter circuit 3.
  • the energy-carrying winding 1 includes a first energy-receiving branch and a second energy-receiving branch, and the first energy-receiving branch includes a power-carrying line ⁇ Q1, a choke coil L1, a diode D1, a diode D2, a capacitor Cl, and a bridge rectifier circuit. D3- 6;
  • the energizing coil Q1 obtains energy from the alternating magnetic field of the power line, and the bridge rectifier circuit D3-6 rectifies the energy obtained by the energizing coil Q1 from the alternating magnetic field of the power line, and the capacitor C1 is connected in series with the energizing line ⁇ Q1.
  • the diodes D1 and D2 are opposite to each other and are connected in parallel with the capacitor C1.
  • the choke line 1L1 is connected in series to the output end of the energizing coil Q1 and before the bridge rectifier circuit D3-6.
  • the second energy-receiving branch includes an energy-carrying line ⁇ Q2, a turbulent line ⁇ L2, and a bridge rectifier circuit D7-10; the energy-carrying coil Q2 obtains energy from the alternating magnetic field of the power line, and the bridge rectifier circuit D7-10 takes the energy-carrying coil Q2 is the energy rectified output drawn from the alternating magnetic field of the power line, and the choke coil L2 is connected in series to the output end of the energizing coil Q2 and before the bridge rectifier circuit D7-10.
  • the energizing wires ⁇ Ql and Q2 are all made of iron-based microcrystalline core ring. Specifically, the inner diameter of 60mm, the outer diameter of 80mm, the thickness of 20mm, and the ⁇ 0,5mm enameled wire are evenly wound around the magnetic core ring. When the coil is energized, the power line passes through the center of the ring during installation. If more than one turns back and forth, the energy-receiving effect is proportional to the number of passes.
  • the choke coils L1 and L2 are made of ordinary cold-rolled silicon steel sheets with a ring around the ring as the core.
  • Capacitor C1 uses a 20uf/50V capacitor.
  • the energizing coils Q1 and Q2 are respectively used to obtain energy from the alternating magnetic field of the power line; the bridge rectifier circuit D3-6 and the bridge rectifier circuit D3-6 respectively alternate the energizing coils Q1 and Q2 from the power line.
  • the energy obtained by the magnetic field is rectified, and then the output is combined; the diodes D1 and D2 connected in parallel with the capacitor C1 are used for bypassing overvoltage; the capacitor C1 provided in the first energy-receiving branch is used for the forward phase shift, thereby making the first energy-capacity branch
  • the path forms a split-phase rectified output, while the second energy-receiving branch uses a positive-phase rectified output.
  • the output waveform of the first energy-receiving branch is advanced by 90 compared with the phase of the output waveform of the second energy-receiving branch.
  • the voltage stabilizing circuit 2 includes a nonlinear filter energy storage unit a (barrel unit a), a nonlinear filter energy storage unit b (abbreviated as unit b), a voltage stabilizing module M1, a capacitor C4, and a capacitor C5.
  • the unit a & includes a resistor R1, a Zener diode W1, a resistor R2, a transistor T1, a transistor ⁇ 2, a diode D11 and a capacitor C2.
  • the resistor R1 is connected to the input end of the voltage stabilizing circuit 2, and the other end is connected to the negative terminal of the Zener diode W1.
  • the Zener diode W1 is connected to the resistor R2, the other end of the resistor R2 is grounded, the transistor T1 and the transistor 2 constitute the Darlington switch, the base of the transistor T1 is connected to the node of the Zener diode W1 and the resistor R2, and the collector of the transistor T1 and the transistor 2 is connected.
  • the other end of the capacitor C2 is connected to the input end of the voltage stabilizing circuit 2, the positive pole of the diode D11 is connected to the emitter of the triode ⁇ 2, and the cathode of the negative pole is connected to the collector of the triode ⁇ 2.
  • the unit b includes a resistor R3, a Zener diode W2, a resistor R4, a transistor T3, a transistor 4, a diode D12 and a capacitor C3.
  • the resistor R3 is connected to the input terminal of the voltage regulator circuit 2, and the other end is connected to the cathode of the Zener diode W2.
  • the positive electrode of the voltage diode W2 is connected to the resistor R4, the other end of the resistor R4 is grounded, the triode ⁇ 3 and the triode ⁇ 4 form a Darlington switch, the triode ⁇ 3 base is connected to the node of the Zener diode W2 and the resistor R4, and the collector capacitor of the triode ⁇ 3 and the triode ⁇ 4 C3-end, the other end of the capacitor C3 is connected to the input end of the voltage stabilizing circuit 2, the positive pole of the diode D12 is connected to the emitter of the triode ⁇ 4, and the cathode of the negative pole is connected to the collector of the triode ⁇ 4.
  • the input terminal of the voltage regulator module M1 is connected to the input end of the voltage stabilizing circuit 2, and the output end is connected to the control end of the A/D conversion circuit 3.
  • the output end of the voltage stabilizing module M1 is grounded through a capacitor C4 and a capacitor C5, respectively.
  • the Zener diode W1 selects a 3.8V Zener diode
  • the Zener diode W2 selects a 5.2V Zener diode
  • the voltage regulator module Ml selects the low dropout voltage regulator module, for example, the input voltage is 5-40 V, and the output voltage is 5V.
  • C2 takes 47uF
  • C3 takes 0.47F
  • C4 takes 10uf
  • C5 takes 0.1uf.
  • Transistors Tl, T2 and T3, T4 use C8050 triode.
  • the A/D conversion circuit 3 includes a current sensor M2 and an A/D conversion module M3, which is responsible for continuously converting the current value on the primary conductor into a digital signal, and its control terminal is connected to the output terminal of the voltage regulation module M1.
  • the current sensor M2 can be selected from Rogowski coil or LPCT (low power core coil current sensor), S l, S2 output 0 2.5Vac voltage value,
  • a / D conversion module M3 uses 16-bit A / D chip and microprocessor chip , A/D conversion and communication programming according to the protocol specified in the IEC60044-8-2002 standard.
  • the starting and working process of the whole self-excited electronic current transformer is: After one closing, the magnetic field energy of the primary current is obtained by the energizing winding 1; the voltage is stabilized by the voltage stabilizing circuit 2 and the stable voltage is output; The A/D conversion circuit 3 is powered on immediately after receiving the power supply, continuously performs A/D conversion of the current value under the control of the microprocessor, and directly outputs the digital signal through the Do port, or outputs the optical fiber number through the E/0 conversion. signal.
  • the full self-excited source electronic current transformer provided by the above embodiment adopts double coil energizing, which can compensate for the delay drawback of the single coil energizing.
  • the single coil Since the single coil is rectified and outputted as a pulsating waveform whose trough voltage is lower than the minimum regulated value required by the working circuit (see Figures 2 and 3), it must generally be obtained by capacitive filtering. Regulated output, capacitor filtering will produce a large output waveform delay, which will lead to extended wake-up time of the transformer.
  • the application of this measure can shorten the wake-up time of the transformer from 50-100mS to 2-5mS, which meets the grid relay protection. Claim.
  • the main idea of the present invention is to superimpose the output waves by mutually forming the two energy-receiving branches of the phase difference to reduce the DC pulsation, so that the valley voltage of the composite wave is higher than the required DC.
  • the regulation value directly meets the input requirements of the voltage regulator module in the voltage regulator circuit, so that the A/D conversion circuit can be quickly started. Therefore, the phase difference is not limited to the first energy-receiving branch leading the second energy-receiving branch by 90°, and within a certain range, it can be verified, 60-90.
  • the phase difference has a significant effect.
  • the nonlinear filter energy storage unit a and the nonlinear filter energy storage unit b can implement other structures under the premise of realizing the same function, and the thresholds K1 and ⁇ 2 can be used therein. It varies depending on the occasion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Rectifiers (AREA)

Description

全自励源电子式电流互感器
【技术领域】
• 本发明属于电力测量领域, 具体涉及电子式电流互感器。 【背景技术】
近几年来, 高压、 特高压电子式电流互感器釆用光隔离技术代替了油、 气 绝缘系统, 使得新型互感器的绝缘技术获得了质的飞跃, 实现这一技术飞跃的 关键是: 高低压两侧光纤通信, 要求在高压侧必须有供数字电路工作的电源, 以便作电流量的数字化, 这是这种电子式互感器制造中最大技术难题, 目前, 国内外研发者普遍采用由低压侧通过光缆向高压侧输送激光能量的方法。 其缺 点是: ①激光源寿命周期短, 仅 8000-10000小时; ②价格昂贵, 约 12,000 ¥ , 占 1 1 Okv互感器整机造价的一半多; ③激光器要求环境条件高, 所以现场运行 和维护难度大。 为此研发者寄希望于依靠电磁感应直接从待测高压母线磁场获 取能量, 作为高压侧电源。 国内已有依靠 "自励源" 供能方面的技术专利和文 献, 如: 《高压电器》 2006年 1期论文《电子式电流互感器高压侧自励源供能 方法研究》 , 以及专利: 《从电力线磁场获取能量的自励电源装置 ( ZL2005100430602 )》 , 当时的技术措施巳使唤醒电流降低到 800mA以下, 但仍未彻底解决互感器的唤醒时间问题, 当一次合闸后由于取能绕组输出的电 压需要整流、 滤波、 所以会延后启动时间 50mS 以上, 为了克服这一缺陷, 互 感器仍然需要在启动时(一次合闸时)借助于外部激光电源以缩短启动时间, 这给互感器的使用仍然带来缺憾。
【发明内容】 本发明的目的是克服现有自励源技术的缺陷 , 提供在任何时候都不需要外 部电源的全自励源电子式电流互感器, 能够取代激光或者其它类型的外部送能 方式的产品。 为实现上述目的, 采用如下技术方案: 一种全自励源电子式电流互感器, 包括取能绕组、 快速稳压电路及 A/D转 换电路, 取能绕组的输出连接稳压电路的输入, 稳压电路的输出作为 A/D转换 的工作电源; 其特征在于: 所述取能绕组由两个取能支路构成, 其中一个取能 支路的输出波较另夕 1、一个取能支路的输出波相位超前 60-90° , 两个取能支路 的输出波合成后输入给所述稳压电路, 采用二阶非线性滤波技术, 在输入电压 高于稳压值以上滤波和储能, 可快速获得稳压输出。 本发明提供的全自励源电子式电流互感器釆用了两个支路取能 , 分别由待 测母线磁场直接获取能量, 将两路输出波形合成, 以相互填补波谷, 减小直流 脉动, 使得合成波的波谷电压已高于要求的直流稳压值, 直接满足稳压电路中 稳压模块的输入要求, 非线性滤波储能电路克服了一般线性滤波电压上升慢的 缺点, 从而能快速启动 A/D转换电路。 本发明解决了采用单线圈取能和普通线 性滤波的延时缺陷, 具有唤醒电流小、 启动速度快, 适应范围宽的特点, 可以 免去外部附加的激光送能装置, 简化了有源电子式电流互感器的体系结构, 增 加了运行的可靠性和使用寿命, 降低了造价。 .【附图说明】 图 1是实施例提供的全自励源电子式电流互感器的电路原理图; 图 2是取能线圈 Q1的输出波形以及其裂相整流后的输出波形图; . 图 3是取能线圈 Q2的输出波形以及其整流后的输出波形图; 图 4是第一、 第二取能支路的输出波形合成后的波形图。
【具体实施方式】 以下结合附图及最佳实施例详细说明本发明。 如图 1所示, 本实施例提供的全自励源电子式电流互感器包括: 取能绕组 1、 稳压电路 2及 A/D转换电路 3 , 取能绕组 1 的输出连接稳压电路 2的输 入, 稳压电路 2的输出连接 A/D转换电路 3的控制端。 具体如下: 取能绕组 1 包括第一取能支路和第二取能支路, 第一取能支路包括取能线 圏 Ql、 扼流线圈 Ll、 二极管 Dl、 二极管 D2、 电容 Cl、 桥式整流电路 D3- 6; 取能线圈 Q1从电力线交变磁场获取能量, 桥式整流电路 D3-6将取能线圈 Q1从电力线交变磁场获取的能量整流输出, 电容 C1 串接于取能线圏 Q1的二 次回路上, 二极管 Dl、 D2彼此反向设置, 并均与电容 C1并接, 扼流线圏 L1 串接于取能线圈 Q1的输出端、 桥式整流电路 D3-6之前。 第二取能支路包括取 能线圏 Q2、 扼流线圏 L2、 桥式整流电路 D7-10; 取能线圈 Q2从电力线交变 磁场获取能量, 桥式整流电路 D7-10将取能线圈 Q2从电力线交变磁场荻取的 能量整流输出, 扼流线圈 L2串接于取能线圈 Q2的输出端、 桥式整流电路 D7- 10之前。
• 其中, 取能线圏 Ql、 Q2均采用铁基微晶磁芯环, 具体可取内径 60mm、 外径 80mm、 厚 20mm、 用 Φ 0,5mm漆包线在磁芯环上匀绕 70匝制成的取能线 圈, 安装时电力线从环心穿过, 若多匝往复穿过, 则取能效果与穿心匝数成正 比。 扼流线圈 Ll、 L2 采用普通冷轧硅钢片带绕环作铁心, 具体可取内径 32mm、 外径 55mm、 厚 20mm、 用 Φ0.5ΙΉΠΙ漆包线在磁芯环上绕 100匝制成。 电容 C1选用 20uf/50V的电容。 取能绕组 1中, 取能线圈 Ql、 Q2分别用于从电力线交变磁场获取能量; 桥式整流电路 D3-6、 桥式整流电路 D3-6分别将取能线圈 Ql、 Q2从电力线交 变磁场获取的能量整流, 之后合并输出; 与电容 C1 并接的二极管 Dl、 D2用 于旁路过压; 第一取能支路中设置的电容 C1 用于前移相, 从而使第一取能支 路形成裂相整流输出, 而第二取能支路釆用了正相整流输出。 如图 2及图 3所 示, 第一取能支路输出波形较第二取能支路输出波形的相位超前了 90。 , 这 样, 将第一取能支路、 第二取能支路的输出波合成, 两路直流输出相互填补波 谷, 便可以减小直流脉动 (参见图 4 ) , 波谷电压已高于要求的直流稳压值 Us, 直接满足稳压模块 Ml的输入要求, 避免了大电容滤波造成的延时 (具体 下述) 。 稳压电路 2包括并联设置的非线性滤波储能单元 a (筒称单元 a) 、 非线 性滤波储能单元 b (简称单元 b ) 、 稳压模块 Ml、 电容 C4及电容 C5。 单元 a &括电阻 Rl、 稳压二极管 Wl、 电阻 R2、 三极管 Tl、 三极管 Τ2、 二极管 D11及电容 C2, 电阻 R1 —端接稳压电路 2的输入端, 另一端接稳压二极管 W1的负极, 稳压二极管 W1正极接电阻 R2, 电阻 R2另一端接地, 三极管 T1 和三极管 Τ2构成达林顿开关, 三极管 T1基极接稳压二极管 W1和电阻 R2的 节点, 三极管 T1和三极管 Τ2的集电极接电容 C2—端, 电容 C2另一端接稳 压电路 2的输入端, 二极管 D11正极接三极管 Τ2发射极、 负极接三极管 Τ2 集电极。 单元 b包括电阻 R3、 稳压二极管 W2、 电阻 R4、 三极管 T3、 三极管 Τ4、 二极管 D12及电容 C3 , 电阻 R3 —端接稳压电路 2的输入端, 另一端接 稳压二极管 W2的负极, 稳压二极管 W2正极接电阻 R4, 电阻 R4另一端接 地, 三极管 Τ3和三极管 Τ4构成达林顿开关, 三极管 Τ3基极接稳压二极管 W2和电阻 R4的节点, 三极管 Τ3和三极管 Τ4的集电极接电容 C3—端, 电容 C3另一端接稳压电路 2的输入端, 二极管 D12正极接三极管 Τ4发射极、 负极 接三极管 Τ4集电极。 稳压模块 Ml输入端接稳压电路 2的输入端, 输出端接 A/D转换电路 3的控制端, 稳压模块 Ml的输出端分别通过电容 C4及电容 C5 接地。
本实施例中, 稳压二极管 W1选用 3.8V稳压二极管, 稳压二极管 W2选用 5.2V稳压二极管。 稳压模块 Ml选用低压差稳压模块, 例如输入电压在 5— 40 V, 输出电压 5V。 C2取 47uF, C3取 0.47F, C4取 10uf, C5取 0.1uf。 三极 管 Tl、 T2和 T3、 T4釆用 C8050三极管。 电阻 Rl=R3=10k、 R2=R4=5k。
. 单元 a、 单元 b形成了台阶式滤波储能电路(单元 a为一阶、 单元 b为二 阶) , 稳压电路 2的工作原理如下: 当 Vin<Kl (本实施例中阈值 K1=5.2V ) 时: 单元 a和单元 b中的达林顿开关均截止, C2、 C3均不充电, Vin仅供稳压 模块 Ml稳压输出, Vo=5V; 当 Vin〉5.2V时: 单元 a的三极管 Tl、 Τ2导通, C2开始充电, 并参与小幅度滤波。 当 Vin> Κ2 (本实施例中阈值 K2-6.6V ) 时: 单元 b的三极管 T3、 Τ4导通, C3开始充电, 进行储能。 由于 Dl l、 D12 已构成放电回路, 所以 C2、 C3的放电过程不受限制。 可知, 单元 a、 单元 b 均不在 5.2V以下吸取能量, 所以可确保稳压模块 Ml在 Vin<5.2V时优先获得 电源输入。 单元 b的作用是在取能绕组输出电压相对较高时, 可以大容量储 能, 用于一次断电后, 互感器依靠储能延时工作 30秒以上。 电容 C4、 C5仅 作输出的小幅滤波。
继续参见图 1 , A/D转换电路 3 包括电流传感器 M2和 A/D转换模块 M3 , 负责将一次导线上的电流量值连续转换为数字信号, 其控制端接稳压模 块 Ml的输出端。 电流传感器 M2可选用 Rogowski线圈或 LPCT (低功率磁芯线圈式电流传 感器) , S l、 S2输出 0 2.5Vac电压值, A/D转换模块 M3采用 16位 A/D芯片 以及微处理器芯片組成, 按《IEC60044-8-2002》标准规定的协议进行 A/D转 换和通信编程。
• 整个全自 -励源电子式电流互感器的启动和工作过程是: 在一次合闸后, 由 取能绕组 1获取一次电流的磁场能量; 由稳压电路 2快速稳压并输出稳定电 压; A/D转换电路 3得到电源后立即加电启动, 在微处理器控制下连续进行电 流值的 A/D转换, 并通过 Do端口直接输出数字信号, 或再通过 E/0转换, 输 出光纤数字信号。 上述实施例提供的全自励源电子式电流互感器采用了双线圈取能, 可以弥 补釆用单线圈取能的延时弊端。 具体地讲: 由于单线圈经整流后输出的是一个 脉动波形, 其波谷电压低于工作电路要求的最小稳压值(参见附图 2、 3 ) , 一般地必须经电容滤波的方法才能荻得稳压输出, 电容滤波会产生较大的输出 波形延时, 因而会导致互感器唤醒时间延长。 而上述实施例中, 取能线圏 Q1 串接电容 C1 以使输出相位前移 (即产生裂相) , 这样, 取能线圈 Q1和取能 线圈 Q2两路直流输出相互填补波谷, Vin的脉动减小 (见附图 4 ) , 波谷电压 已高于要求的直流稳压值 Us, 经稳压电路 2中的稳压模块 Ml稳压, 可快速输 出稳定电压: Us=5V, 以使 A/D转换电路 3快速加电启动, 这一措施的应用, 可使互感器的唤醒时间由 50- lOOmS缩短到 2-5mS, 满足电网继电保护的要 求。
. 以上实施例仅为充分公开而非限制本发明。 值得说明的是, 本发明主旨思 想在于, 通过形成相位差的两个取能支路, 将其输出波叠加以相互填补波谷, 減小直流脉动, 使得合成波的波谷电压已高于要求的直流稳压值, 直接满足稳 压电路中稳压模块的输入要求, 从而能快速启动 A/D转换电路。 所以, 相位差 差不限于第一取能支路超前第二取能支路 90° , 在一定范围内即可, 通过验 证, 60-90。 的相位差都有明显效果。 此外, 对于本领域技术人员来讲, 非线 性滤波储能单元 a和非线性滤波储能单元 b在实现同样功能的前提下, 完全可 以釆用其它的结构实现, 且其中的阈值 Kl、 Κ2可因不同使用场合而不同。

Claims

权利要求书
1、 一种全自励源电子式电流互感器, 包括取能绕组、 快速稳压电路及 A/D转 换电路, 取能绕组的输出连接稳压电路的输入, 稳压电路的输出作为 A/D转换 电路的工作电源; 其特征在于: 所述取能绕组由两个取能支路构成, 其中一个 取能支路的输出波较另夕 I、一个取能支路的输出波相位超前 60-90° , 两个取能 夂路的输出波合成后输入给所述稳压电路。
2、 根据权利要求 1所述的全自励源电子式电流互感器, 其特征在于: 第一取 能支路包括取能线圈 Ql、 二极管 Dl、 D2、 电容 Cl、 桥式整流电路 D3-6; 取 能线圈 Q1从电力线交变磁场获取能量, 桥式整流电路 D3-6将取能线圈 Q1从 电力线交变磁场获取的能量整流输出, 电容 C1串接于取能线圈 Q1的二次回路 上, 二极管 Dl、 D2彼此反向设置, 并均与电容 C1并接。
3、 根据权利要求 2所述的全自励源电子式电流互感器, 其特征在于: 所述第 一取能支路还包括扼流线圈 L1 , 串接于取能线圏 Q1的输出端、 桥式整流电路 D3-6之前。
4、 根据权利要求 2所述的全自励源电子式电流互感器, 其特征在于: 第二取 能支路包括取能线圏 Q2、 桥式整流电路 D7-10; 取能线圈 Q2从电力线交变磁 场获取能量, 桥式整流电路 D7-10将取能线圈 Q2从电力线交变磁场获取的能 量整流输出
5、 根据权利要求 4所述的全自励源电子式电流互感器, 其特征在于: 所述第 二取能支路还包括扼流线圈 L2, 串接于取能线圏 Q2的输出端、 桥式整流电路 D7-10之前。
6、 根据权利要求 1 所述的全自励源电子式电流互感器, 其特征在于: 所述稳 压电路包括并联设置的稳压模块 Ml、 一阶非线性滤波储能单元及二阶非线性 滤波储能单元; 当稳压电路的输入电压小于阁值 K1 时, 一阶非线性滤波储能 单元和二阶非线性滤波储能单元均不充电, 稳压电路的输入仅供稳压模块 Ml 稳压输出; 当稳压电路的输入 ¾压大于阈值 K1 时, 一阶非线性滤波储能单元 开始充电, 并参与小幅度滤波; 当'稳压电路的输入电压大于阈值 Κ2·时, K2 > K1 , 二阶非线性滤波储能单元开始充电。
7、 根据权利要求 6所述的全自励源电子式电流互感器, 其特征在于: 所述一 阶非线性滤波储能单元包括电阻 Rl、 稳压二极管 Wl、 电阻 R2、 三极管 Tl、 三极管 Τ2、 二极管 D11及电容 C2, 电阻 R1—端接稳压电路的输入端, 另一 端接稳压二极管 W1的负极, 稳压二极管 W1正极接电阻 R2, 电阻 R2另一端 接地, 三极管 T1和三极管 Τ2构成达林顿开关, 三极管 T1基极接稳压二极管W1和电阻 R2的节点, 三极管 T1和三极管 Τ2的集电极接电容 C2—端, 电容 C2另一端接稳压电路的输入端, 二极管 Dl 1正极接三极管 Τ2发射极、 负极接 三极管 Τ2集电极。
8、 根据权利要求 6所述的全自励源电子式电流互感器, 其特征在于: 所述二 阶非线性滤波储能单元包括电阻 R3、 稳压二极管 W2、 电阻 R4、 三极管 T3、 三极管 Τ4、 二极管 D12及电容 C3 , 电阻 R3—端接稳压电路 的输入端, 另 一端接稳压二极管 W2的负极, 稳压二极管 W2正极接电阻 R4, 电阻 R4另一 端接地, 三极管 Τ3和三极管 Τ4构成达林顿开关, 三极管 Τ3基极接稳压二极 管 W2和电阻 R4的节点, 三极管 Τ3和三极管 Τ4的集电极接电容 C3—端, 电 容 C3另一端接稳压电路 2的输入端, 二极管 D12正极接三极管 Τ4发射极、 负 极接三极管 Τ4集电极。
9、 根据权利要求 6所述的全自励源电子式电流互感器, 其特征在于: 所述稳 压模块 Ml输入端接稳压电路的输入端, 输出端接 A/D转换电路 3的控制端,
¾压模块 Ml的输出端分别通过电容 C4及电容 C5接地。
PCT/CN2010/000061 2010-01-13 2010-01-13 全自励源电子式电流互感器 WO2011085517A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10842801A EP2525472A1 (en) 2010-01-13 2010-01-13 Electronic current transformer based on complete self-excitation power supply
JP2012529087A JP5529278B2 (ja) 2010-01-13 2010-01-13 全自励式電源の電子式変流器
US13/391,822 US8587971B2 (en) 2010-01-13 2010-01-13 Electronic current transformer based on complete self-excitation power supply
PCT/CN2010/000061 WO2011085517A1 (zh) 2010-01-13 2010-01-13 全自励源电子式电流互感器
CA2770372A CA2770372C (en) 2010-01-13 2010-01-13 An electronic current transformer based on complete self-excitation power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000061 WO2011085517A1 (zh) 2010-01-13 2010-01-13 全自励源电子式电流互感器

Publications (1)

Publication Number Publication Date
WO2011085517A1 true WO2011085517A1 (zh) 2011-07-21

Family

ID=44303784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000061 WO2011085517A1 (zh) 2010-01-13 2010-01-13 全自励源电子式电流互感器

Country Status (5)

Country Link
US (1) US8587971B2 (zh)
EP (1) EP2525472A1 (zh)
JP (1) JP5529278B2 (zh)
CA (1) CA2770372C (zh)
WO (1) WO2011085517A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106530916A (zh) * 2016-11-16 2017-03-22 商洛学院 一种磁电转换装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237687B (zh) * 2014-09-12 2016-10-05 华中科技大学 有源电子式互感器的供能激光器老化寿命在线监测方法
CN106707008A (zh) * 2016-12-27 2017-05-24 成都信息工程大学 一种电子式电流互感器及其工作方法
US10732206B2 (en) * 2018-04-02 2020-08-04 Abb Schweiz Ag Current sensor and method of assembly
CN109302071B (zh) * 2018-10-18 2021-01-12 南京航空航天大学 一种全波有源整流型llc谐振变换器及其控制策略
CN110212594B (zh) * 2019-06-19 2024-05-03 国网安徽省电力有限公司芜湖供电公司 一种线路ct能量采集和储能电源
CN111884188A (zh) * 2020-08-28 2020-11-03 北京同时开关技术有限公司 开关驱动电路和开关设备
CN114189164B (zh) * 2021-12-08 2023-10-27 浙江华章科技有限公司 一种流浆箱阀门清洗控制系统
CN116027144A (zh) * 2022-11-15 2023-04-28 云南电网有限责任公司电力科学研究院 一种自取能电力监测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156176A (en) * 1977-06-30 1979-05-22 Electric Power Research Institute, Inc. Voltage regulator utilizing a static var generator
JPS55128157A (en) * 1979-03-27 1980-10-03 Tohoku Electric Power Co Inc Portable current-voltage transformer
CN2450672Y (zh) * 2000-10-12 2001-09-26 大连现代高技术发展有限公司 测功率装置
CN2612042Y (zh) * 2003-03-11 2004-04-14 广州市伟钰光电科技有限公司 有源光电电流互感器
CN100362727C (zh) * 2005-08-05 2008-01-16 西安华伟光电技术有限公司 从电力线磁场获取能量的自励电源装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921069A (en) * 1974-11-06 1975-11-18 Gen Electric Variable gain electronic current transformer
JPS58182476A (ja) * 1982-04-15 1983-10-25 Matsushita Electric Works Ltd 整流装置
US4879661A (en) * 1987-10-02 1989-11-07 International Business Machines Corporation Bi-directional circuit to interface between a low current device and high current tester
JP3594049B2 (ja) * 1995-11-13 2004-11-24 株式会社安川電機 整流回路
JP4258119B2 (ja) * 2000-10-27 2009-04-30 富士電機システムズ株式会社 電流計測装置
KR20030081476A (ko) * 2001-03-05 2003-10-17 소니 가부시끼 가이샤 스위칭 소자에 의해 구동주파수를 가변제어한 스위칭전원회로
JP3627708B2 (ja) * 2002-01-25 2005-03-09 株式会社村田製作所 スイッチング電源装置
JP3733440B2 (ja) * 2003-03-25 2006-01-11 オリオン電機株式会社 スイッチング電源
JP4238871B2 (ja) * 2004-01-30 2009-03-18 株式会社村田製作所 スイッチング電源装置
TW200820829A (en) * 2006-10-16 2008-05-01 Delta Electronics Inc Self-excitation system
JP2008172985A (ja) * 2007-01-06 2008-07-24 Suezo Kudo 低リップル整流回路
US7499294B2 (en) * 2007-02-12 2009-03-03 Spi Electronic Co., Ltd. Self-excitation synchronous rectification driver
JP4492651B2 (ja) * 2007-07-26 2010-06-30 ブラザー工業株式会社 フィードバック制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156176A (en) * 1977-06-30 1979-05-22 Electric Power Research Institute, Inc. Voltage regulator utilizing a static var generator
JPS55128157A (en) * 1979-03-27 1980-10-03 Tohoku Electric Power Co Inc Portable current-voltage transformer
CN2450672Y (zh) * 2000-10-12 2001-09-26 大连现代高技术发展有限公司 测功率装置
CN2612042Y (zh) * 2003-03-11 2004-04-14 广州市伟钰光电科技有限公司 有源光电电流互感器
CN100362727C (zh) * 2005-08-05 2008-01-16 西安华伟光电技术有限公司 从电力线磁场获取能量的自励电源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, ZHONGZHAN ET AL.: "The key technology ofECT with self-excitation power supply", AUTOMATION OF ELECTRIC POWER SYSTEMS, vol. 33, no. 6, 25 March 2009 (2009-03-25), pages 67 - 69, XP008150574 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106530916A (zh) * 2016-11-16 2017-03-22 商洛学院 一种磁电转换装置
CN106530916B (zh) * 2016-11-16 2023-10-20 商洛学院 一种磁电转换装置

Also Published As

Publication number Publication date
JP5529278B2 (ja) 2014-06-25
US8587971B2 (en) 2013-11-19
JP2013505689A (ja) 2013-02-14
EP2525472A1 (en) 2012-11-21
CA2770372A1 (en) 2011-07-21
US20120153931A1 (en) 2012-06-21
CA2770372C (en) 2015-02-24

Similar Documents

Publication Publication Date Title
WO2011085517A1 (zh) 全自励源电子式电流互感器
CN105680694B (zh) 用于开关模式电源的系统和方法
CN102904449B (zh) 提供功率转换器缆线补偿的调整电路
CN103477233B (zh) 一种电流检测电路及其控制电路和电源转换电路
CN203562832U (zh) 多供电模块无缝切换的电源
CN104578790A (zh) 一种应用于原边反馈反激变换器的数字信号采样电路及其控制方法
CN103840670A (zh) 一种节能型高频开关电源
CN102957324A (zh) 电源检测电路
US7522437B2 (en) Inverter circuit and control circuit thereof
CN106451793A (zh) 基于数字电压信号的智能变电站断路器选相控制方法
CN205319941U (zh) 双路电压转换控制芯片、双路电压转换器和电子式电能表
CN102122891A (zh) 变压器漏感能量的吸收回馈电路
CN102386780A (zh) 一种dc/dc部分的推挽电路
CN204008785U (zh) 计量回路故障监测系统
CN104601015A (zh) 反激式ac-dc转换器
CN202931197U (zh) 一种基于变压器变换的反激式变换器
CN209046532U (zh) 一种单脉宽调制器多路隔离输出电路
US10367408B2 (en) Electromagnetic compatibility filter with an integrated power line communication interface
CN102231573B (zh) 一种适应于小电流在线取电供能电源
CN202018474U (zh) 一种电流采样电路及具有该电路的电源
KR20090102948A (ko) 다중출력 직류/직류 컨버터
CN204481696U (zh) 一种电力采集系统的供电电路
CN209375470U (zh) 一种平衡调制开关稳压电源
CN105301351A (zh) 一种用电信息采集系统模组化终端的电源交采模块
CN207720021U (zh) 一种基于uc3842的开关电源保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 240/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010842801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2770372

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13391822

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012529087

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE