WO2011083591A1 - 難燃性試験装置 - Google Patents

難燃性試験装置 Download PDF

Info

Publication number
WO2011083591A1
WO2011083591A1 PCT/JP2010/061323 JP2010061323W WO2011083591A1 WO 2011083591 A1 WO2011083591 A1 WO 2011083591A1 JP 2010061323 W JP2010061323 W JP 2010061323W WO 2011083591 A1 WO2011083591 A1 WO 2011083591A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
temperature
cold air
test tank
tank
Prior art date
Application number
PCT/JP2010/061323
Other languages
English (en)
French (fr)
Inventor
宗一郎 塚本
敏秀 小林
Original Assignee
住友電装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電装株式会社 filed Critical 住友電装株式会社
Publication of WO2011083591A1 publication Critical patent/WO2011083591A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/002Thermal testing

Definitions

  • the present invention relates to a flame retardant test apparatus including a test tank in which a test object for a flame retardant test is burned.
  • Electrical components such as electric wires, especially automotive electrical components, are desirably highly flame retardant in order to avoid ignition of fuel when an accident occurs.
  • the flame retardancy of an object such as an electrical component is evaluated not only by the difficulty of ignition, but also by the short time from ignition until the flame disappears.
  • standardization of the flame retardant test conditions is underway.
  • the ISO-6722 standard specifies test conditions such as the holding angle of the DUT (wire) to be subjected to the flame retardancy test, the temperature range of the test environment, and the test environment being in a windless state.
  • test conditions such as the holding angle of the DUT (wire) to be subjected to the flame retardancy test, the temperature range of the test environment, and the test environment being in a windless state.
  • time until the flame disappears after the object is ignited is used as an evaluation index for flame retardancy.
  • Such a flame retardancy test is performed in a predetermined test tank kept in a windless state.
  • the temperature in the test chamber in which the DUT and the ignition device are accommodated is adjusted to be a temperature within a predetermined allowable range.
  • the test object is ignited by the ignition device.
  • a timer such as a stopwatch from the time when the test object is lit
  • the status of the flame of the test object is monitored, and when the flame of the test object is extinguished, the timer Finish the timing by.
  • a thermostatic bath as shown in Patent Document 1 can be considered as a container whose internal temperature can be adjusted for use in the flame retardancy test.
  • the constant temperature bath has a function of automatically adjusting the internal temperature by a heater, a refrigerator, and a blower fan.
  • the thermostat as shown in Patent Document 1 has a problem that it is not suitable as a container used for a flame retardancy test because it mainly circulates cold air or warm air internally. This is because in the internal circulation type thermostatic chamber, gas generated by the past flame retardancy test stays in the thermostat bath, and the gas may affect the next flame retardancy test. In addition, there is a problem that the thermostatic chamber that can adjust the internal temperature with a slight error with respect to the set temperature is too expensive for the flame retardancy test.
  • a flame retardant test apparatus equipped with a test tank in which the DUT is burned and a device for ventilating the inside of the test tank are used for the flame retardant test.
  • the internal temperature of the test tank is adjusted only by ventilation
  • the external temperature of the test tank is relatively high, it takes a long time to adjust the internal temperature of the test tank, and the efficiency of the test is reduced.
  • the problem is particularly noticeable because the external temperature of the test tank is high. For example, when the flame retardancy test is performed 100 times a day, the test time per day is increased by 100 minutes only by increasing the temperature adjustment time per test by 1 minute.
  • the present invention provides a flame retardant test apparatus including a test tank in which a test object for a flame retardant test is burned, and the temperature inside the test tank can be quickly adjusted to a predetermined allowable temperature with a very simple configuration. With the goal.
  • the flame retardancy test apparatus includes the following components.
  • the first component is a test tank in which a test object for a flame retardance test is burned.
  • the second component is a temperature detector that detects the temperature in the test chamber.
  • the third component is a ventilator that attracts and discharges the gas in the test chamber.
  • a 4th component is an exit damper which opens and closes the flow path of the gas discharged
  • the fifth component is a cold air generation unit that generates cold air outside the test chamber.
  • the sixth component is a cold air supply switching unit that switches whether or not the cold air generated by the cold air generation unit is supplied into the test chamber.
  • the seventh component is a control unit.
  • the control unit When a predetermined start event is detected, the control unit maintains the outlet damper in an open state until the temperature detected by the temperature detection unit falls to a preset allowable temperature, and the cold air supply switching unit Is held in a state where the cold air is supplied into the test chamber, and the ventilator is held in an operating state. Thereafter, the control unit closes the outlet damper when the temperature detected by the temperature detection unit falls to the allowable temperature, and switches the cold air supply switching unit to a state where the cold air is not supplied into the test chamber. The ventilator is stopped.
  • the cold air supply switching section selectively switches the flow path of the cold air generated by the cold air generation section between an inflow path communicating with the inside of the test tank and a discharge path communicating with the outside of the test tank. It may be a switching unit.
  • the flame retardancy test apparatus may include a display unit that distinguishes and displays whether or not the temperature detected by the temperature detection unit is higher than a preset temperature. Further, it is conceivable that the cold air generating unit is a spot air conditioner.
  • the temperature in the test chamber is quickly adjusted to a predetermined allowable temperature by the action of the control unit. Moreover, whenever temperature control is performed, the gas in the said test tank containing gas is discharged
  • the cold air supply switching unit switches whether or not to supply the cold air generated by the cold air generation unit into the test chamber.
  • the cold air generation unit can be kept in a state of stably discharging cool air having a sufficiently low temperature until the next temperature adjustment.
  • the flame retardancy test apparatus according to the present invention is realized with a very simple configuration.
  • the test tank having a sufficient capacity is adopted, and the control unit sets the temperature in the test tank to an upper limit temperature in a temperature range allowed in the flame retardancy test. If the temperature is adjusted to the allowable temperature, the temperature in the test chamber will not exceed the allowable temperature range during the test. Further, since the temperature in the test tank tends to increase due to combustion of the test object, a heater for raising the temperature in the test tank to an allowable temperature is usually unnecessary.
  • FIG. 1 is a schematic configuration diagram of a flame retardancy test apparatus 1 according to an embodiment of the present invention. It is a schematic block diagram of the flame retardance test apparatus 1 during internal temperature control.
  • the flame retardancy test apparatus 1 is an apparatus used for a flame retardance test.
  • the test object such as an electric wire is held at a predetermined angle, and the time from when the test object ignites until the flame disappears It is a test to measure.
  • the flame retardant test apparatus 1 includes a test tank 10, a ventilator 2, a cold air generator 4, a temperature sensor 5, a control unit 6, a start button 7, and an indicator lamp 50.
  • the inside of the test tank 10 communicates with the ventilator 2 through an outlet duct 20 and communicates with the cold air generating device 4 through an inlet duct 31 and a main duct 30.
  • the test tank 10 is a container in which a test object is stored, and the test object is burned therein.
  • the test tank 10 is provided with a window 11 made of a translucent member such as glass that is supported so that a part of the test tank 10 can be opened and closed. The state of the DUT in the test tank 10 can be confirmed through the window 11. Further, the window 11 is opened when the DUT is installed in the test tank 10.
  • the temperature sensor 5 is a sensor that detects the ambient temperature in the test chamber 10, and is, for example, a thermistor or a thermocouple.
  • the ventilator 2 is a fan that attracts and discharges the gas in the test tank 10.
  • the outlet duct 20 forms a flow path through which the gas in the test tank 10 flows to the ventilator 2.
  • the ventilator 2 When the ventilator 2 is activated, the gas in the test chamber 10 is discharged out of the test chamber 10 through the outlet duct 20.
  • the gas in the test chamber 10 includes air and gas generated by the combustion of the device under test.
  • the cold air generation device 4 is a device that generates cold air to be supplied into the test chamber 10 outside the test chamber 10.
  • the cold air generating device 4 includes a compressor, a condenser, a capillary tube, and an evaporator constituting a refrigeration cycle, and generates cold air with a power corresponding to a preset cooling intensity.
  • the cold air generation device 4 does not have a function of adjusting the cooling intensity according to the temperature detected by the temperature sensor 5.
  • the cold air generating device 4 is, for example, a spot air conditioner.
  • the main duct 30 is connected to both the inlet duct 31 and the discharge duct 32 connected to the outside of the test tank 10 at the opening opposite to the side connected to the cold air generating device 4. Yes. That is, the flow path of the cold air discharged from the cold air generating device 4 is the inlet duct 31 that is a flow path toward the inside of the test tank 10 and the discharge duct 32 that is a flow path that is directed to the outside of the test tank 10. And branched into two flow paths.
  • an inlet damper 41 that opens and closes a flow path of the cold air flowing from the cold air generating device 4 into the test chamber 10.
  • a discharge damper 42 is provided inside the discharge duct 32 to open and close the flow path of the cool air flowing from the cool air generating device 4 to the outside of the test tank 10.
  • the inlet damper 41 and the discharge damper 42 are an example of a cold air supply switching unit that switches whether or not the cold air generated by the cold air generation device 4 is supplied into the test chamber.
  • the inlet damper 41 and the discharge damper 42 operate so that the open and closed states are opposite to each other. Accordingly, the inlet damper 41 and the discharge damper 42 are configured such that the inlet duct 31 that is an inflow path that communicates the flow path of the cold air generated by the cold air generating device 4 to the inside of the test tank 10, and the test tank 10. Is selectively switched to the discharge duct 32 which is a discharge path communicating with the outside.
  • the inlet damper 41 and the discharge damper 42 are an example of the flow path switching unit.
  • the state of each of the dampers 3, 41, and 42 shown in FIG. 1 is a state in which the inflow of cold air into the test tank 10 is blocked, and the outflow of gas from the test tank 10 is also blocked. The test is in progress.
  • the state of each of the dampers 3, 41, and 42 shown in FIG. 2 is a state in which cold air flows into the test tank 10 and gas flows out from the test tank 10, and before the start of the flame retardant test. In addition, the temperature in the test chamber 10 is adjusted.
  • the indicator lamp 50 is a display section that distinguishes whether or not the temperature detected by the temperature sensor 5 is higher than a preset initial upper limit temperature.
  • the indicator lamp 50 includes a red warning lamp 51 that is turned on when the temperature detected by the temperature sensor 5 is higher than the initial upper limit temperature, and a case where the temperature detected by the temperature sensor 5 is equal to or lower than the initial upper limit temperature. And a green confirmation lamp 52 to be lit.
  • the start button 7 is an operation button for generating an event for starting control for adjusting the temperature in the test tank 10 in the flame retardant test apparatus 1.
  • the control unit 6 inputs the detected temperature of the temperature sensor 5 and the ON / OFF state of the start button 7, and the ventilator 2, the outlet damper 3, the inlet damper 41, the discharge damper 42, and the display This is a circuit for controlling the lamp 50.
  • the control unit 6 performs a temperature adjustment process in the test tank 10 by controlling the ventilator 2 and the dampers 3, 41, and 42.
  • the control unit 6 can be realized by a circuit including an arithmetic element such as a computer, or a very simple logic circuit. Hereinafter, specific control contents of the control unit 6 will be described.
  • the control unit 6 always determines whether or not the temperature detected by the temperature sensor 5 is higher than the preset initial upper limit temperature T1.
  • the initial upper limit temperature T1 is a temperature having a margin with respect to the upper limit temperature in the temperature range allowed in the flame retardancy test. For example, in the flame retardancy test, the allowable temperature range as the environmental temperature during the test is 18 degrees Celsius to 28 degrees Celsius, and the maximum temperature rise in the test tank 10 by one flame retardance test is When it is about 2 degrees, the initial upper limit temperature T1 is set to about 24 degrees Celsius.
  • the controller 6 determines that the temperature detected by the temperature sensor 5 is higher than the initial upper limit temperature T1
  • the controller 6 turns on the warning lamp 51.
  • the control unit 6 outputs a warning sound to a warning sound output device (not shown).
  • the lighting of the warning lamp 51 means that a temperature adjustment process in the test chamber 10 is necessary before the start of the next flame retardant test.
  • the control unit 6 turns on the confirmation lamp 52.
  • the lighting of the confirmation lamp 52 means that it is not necessary to perform a temperature adjustment process in the test tank 10 before the start of the next flame retardant test. If the warning lamp 51 is lit before starting the flame retardant test, the tester presses the start button 7 to cause the control unit 6 to start the temperature adjustment process.
  • each of the dampers 3 and 41 until the temperature detected by the temperature sensor 5 falls to a preset target temperature T2. , 42 and the state of the ventilator 2 are maintained in the temperature control state shown in FIG.
  • the outlet damper 3 is held in an open state
  • the inlet damper 41 and the discharge damper 42 are held in a state in which cold air is supplied into the test chamber 10, and the ventilator 2. Is kept in an operating state.
  • the cold air generating device 4 is always kept in an operating state during a period in which a series of multiple flame retardancy tests are performed. That is, the control unit 6 may or may not be able to control the operation and stop of the cold air generation device 4.
  • the target temperature T2 is set within a temperature range allowed as an environmental temperature for the flame retardancy test, and is usually set to be lower than the initial upper limit temperature T1.
  • the allowable temperature range as the environmental temperature during the test is 18 degrees Celsius to 28 degrees Celsius, and the maximum temperature rise in the test tank 10 by one flame retardance test is
  • the initial upper limit temperature T1 is set to about 24 degrees Celsius
  • the target temperature T2 is set to about 23 degrees Celsius. It is also conceivable that the target temperature T2 is set to the same temperature as the initial upper limit temperature T1.
  • the controller 6 monitors the detected temperature of the temperature sensor 5 after holding the dampers 3, 41, 42 and the ventilator 2 in the temperature adjustment state, and the detected temperature of the temperature sensor 5 is When the temperature falls to the target temperature T2, the state of each of the dampers 3, 41, 42 and the ventilator 2 is maintained in the test state shown in FIG.
  • the outlet damper 3 is held in a closed state, and the inlet damper 41 and the discharge damper 42 are held in a state in which cold air is discharged out of the test tank 10, and the ventilator 2 is stopped. Accordingly, in the test state, all the inlets and outlets of the test tank 10 are closed, so that the inside of the test tank 10 is maintained in a windless state.
  • the cold air generating device 4 is maintained in the operating state even in the test state.
  • the temperature in the test tank 10 is quickly adjusted to the target temperature T2.
  • the temperature inside the test tank 10 is changed from 28 degrees Celsius to 23 degrees Celsius depending on whether the cold air generating apparatus 4 is operated or not operated using the actual flame retardant test apparatus 1.
  • the time required to lower it when the cold air generating device 4 which is a commercially available spot air conditioner is not operated, the inlet duct 31 and the discharge duct 32 are communicated with each other. In this case, when the cold air generating device 4 is not operated, the time required for temperature adjustment is 10 minutes. By operating the cold air generating device 4, the time required for temperature adjustment is reduced to 1 minute. Was shortened to.
  • the gas in the test tank 10 containing gas is discharged out of the test tank 10 by the ventilator 2 and fresh cold air is filled in the test tank 10. . Therefore, it is possible to prevent the gas generated by the past flame retardant test from staying in the test tank 10 and affecting the next flame retardant test.
  • the inlet damper 41 and the release damper 42 switch whether or not the cold air generated by the cold air generator 4 is supplied into the test tank 10. Thereby, whenever the temperature adjustment is completed, the cold air generating device 4 can be kept in a state of stably discharging cool air having a sufficiently low temperature until the next temperature adjustment. As a result, it is possible to shorten the time for temperature adjustment that is repeatedly performed, compared to the case where the cold air generating device 4 is started up every time. Moreover, the flame retardancy test apparatus 1 is realized with a very simple configuration.
  • the test tank 10 having a sufficient capacity is adopted, and the target temperature T2 is set to a temperature with a margin with respect to the upper limit temperature in the temperature range allowed in the flame retardancy test.
  • the temperature in the test chamber 10 does not exceed the allowable temperature range during the test.
  • a heater for raising the temperature in the test chamber 10 to an allowable temperature is usually unnecessary.
  • the two dampers 41 and 42 are employed as the flow path switching unit that switches the cool air flow path.
  • other flow path switching mechanisms such as a three-way valve may be employed.
  • a predetermined start signal input from an external device through a network or a control signal line may be employed as an event for the control unit 6 to start temperature adjustment.
  • the control unit 6 determines the control pattern in the temperature adjustment state from two patterns of the first pattern and the second pattern in accordance with a predetermined selection operation on the operation unit such as a selection switch. It is conceivable to be configured to be selectable.
  • the first pattern is a control pattern for allowing the inlet damper 41 and the discharge damper 42 to communicate with the inside of the test tank 10 and the cold air generating device 4 (the main duct 30).
  • the second pattern is a control pattern for communicating the inside of the test tank 10 with the discharge duct 32 (cold air discharge path).
  • the discharge duct 32 has an opening on the open end side thereof, that is, an opening on the opposite side to the side communicating with the cold air generation device 4. It is still more preferable if it arrange

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

 難燃性試験の被試験物が内部で燃やされる試験槽を備える難燃性試験装置において、ごく簡易な構成により、前記試験槽内の温度を速やかに所定の許容温度に調節できることを目的とする。制御部(6)は、開始イベントの検知に応じて、温度センサ5の検出温度が目標温度に下がるまで、出口ダンパ3を開いた状態に保持し、冷気供給切替部(41,42)を冷気が試験槽(10)内に供給される状態に保持し、試験槽(10)内の気体を誘引する通風機(3)を作動状態に保持する。その後、制御部(6)は、温度センサ(5)の検出温度が目標温度まで下がったときに、出口ダンパ(3)を閉じ、冷気供給切替部(41,42)を冷気が試験槽(10)内に供給されない状態に切り替え、通風機(2)を停止させる。

Description

難燃性試験装置
 本発明は、難燃性試験の被試験物が内部で燃やされる試験槽を備える難燃性試験装置に関するものである。
 電線などの電装部品、特に、自動車用の電装部品は、事故発生時の燃料への引火を回避するため、高い難燃性を有することが望ましい。また、電装部品などの物体の難燃性は、着火のしにくさの他、着火してから炎が消えるまでの時間の短さによっても評価される。また、難燃性の評価基準を統一するため、難燃性試験の条件の標準化が進められている。
 例えば、ISO-6722規格においては、難燃性試験の対象となる被試験物(電線)の保持角度、試験環境の温度範囲及び試験環境が無風状態であることなどの試験条件が規定され、さらに、被検査物が着火してからその炎が消えるまでの時間が、難燃性の評価指標とされる旨が規定されている。このような難燃性試験は、無風状態に保たれた所定の試験槽内で行われる。
 以下、難燃性試験の手順の一例について説明する。まず、被試験物及び着火装置が収容された試験槽内の温度が、予め定められた許容範囲内の温度となるように調節される。次に、前記試験物が、前記着火装置によって着火される。前記被試験物に火が付いた時点からストップウォッチなどのタイマによる計時が開始された後、前記被試験物の炎の状況が監視され、前記被試験物の炎が消えた時点で、前記タイマによる計時を終える。
 一方、難燃性試験に用いるために内部温度を調節可能な容器としては、特許文献1に示されるような恒温槽が考えられる。恒温槽は、特許文献1に示されるように、ヒータ、冷凍機及び送風ファンによって内部温度を自動調節する機能を備えている。
特開2008-185285号公報
 しかしながら、特許文献1に示されるような恒温槽は、冷気又は暖気を主に内部循環させるため、難燃性試験に用いられる容器として適さないという問題点があった。内部循環型の恒温槽においては、過去の難燃性試験により発生したガスが恒温槽内に滞留し、そのガスが次回の難燃性試験に影響を及ぼす可能性があるからである。また、内部温度を設定された温度に対してごくわずかな誤差で調節可能な恒温槽は、難燃性試験用には高価過ぎるという問題点もある。
 また、被試験物が内部で燃やされる試験槽及びその試験槽内を換気する装置を備える難燃性試験装置が、難燃性試験に用いられることが考えられる。しかしながら、前記試験槽の内部温度が、換気のみによって調節される場合、前記試験槽の外部温度が比較的高い場合に、前記試験槽の内部温度の調節に長い時間を要し、試験の効率が悪化するという問題点があった。夏期の難燃性試験においては、前記試験槽の外部温度が高いため、その問題点が特に顕著となる。例えば、1日に100回の難燃性試験が行われる場合、1回の試験当たりの温度調節時間がわずか1分長くなるだけで、1日当たりの試験時間が100分も長くなる。
 本発明は、難燃性試験の被試験物が内部で燃やされる試験槽を備える難燃性試験装置において、ごく簡易な構成により、前記試験槽内の温度を速やかに所定の許容温度に調節できることを目的とする。
 本発明に係る難燃性試験装置は、以下に示す各構成要素を備える。第1の構成要素は、難燃性試験の被試験物が内部で燃やされる試験槽である。第2の構成要素は、前記試験槽内の温度を検出する温度検出部である。第3の構成要素は、前記試験槽内の気体を誘引して排出する通風機である。第4の構成要素は、前記通風機により前記試験槽外へ排出される気体の流路を開閉する出口ダンパである。第5の構成要素は、前記試験槽外で冷気を生成する冷気生成部である。第6の構成要素は、前記冷気生成部により生成される冷気を前記試験槽内に供給するか否かを切り替える冷気供給切替部である。第7の構成要素は制御部である。この制御部は、所定の開始イベントが検知された場合に、前記温度検出部の検出温度が予め設定された許容温度に下がるまで、前記出口ダンパを開いた状態に保持し、前記冷気供給切替部を前記冷気が前記試験槽内に供給される状態に保持し、前記通風機を作動状態に保持する。その後、前記制御部は、前記温度検出部の検出温度が前記許容温度まで下がったときに、前記出口ダンパを閉じ、前記冷気供給切替部を前記冷気が前記試験槽内に供給されない状態に切り替え、前記通風機を停止させる。
 また、前記冷気供給切替部は、前記冷気生成部により生成される冷気の流路を、前記試験槽内に連通する流入路と前記試験槽外へ連通する放出路とに選択的に切り替える流路切替部であることが考えられる。
 また、本発明に係る難燃性試験装置は、前記温度検出部の検出温度が予め設定された温度よりも高いか否かを区別して表示する表示部を備えることが考えられる。また、前記冷気生成部はスポットエアーコンディショナーであることが考えられる。
 本発明によれば、前記制御部の作用により、前記試験槽内の温度が速やかに所定の許容温度に調節される。また、温度調節が行われるごとに、ガスを含む前記試験槽内の気体は、前記通風機によって前記試験槽の外に排出され、フレッシュな空気が前記試験槽内に充填される。そのため、過去の難燃性試験により発生したガスが前記試験槽内に滞留し、そのガスが次回の難燃性試験に影響を及ぼすことを防止できる。
 また、本発明において、前記冷気供給切替部は、前記冷気生成部により生成される冷気を、前記試験槽内に供給するか否かを切り替える。これにより、温度調節の完了ごとに、次回の温度調節まで、前記冷気生成部を、十分に温度の低い冷気を安定的に吐出する状態に保持することができる。その結果、前記冷気生成部を毎回起動する場合に比べ、繰り返し行われる温度調節の時間を短縮することができる。しかも、本発明に係る難燃性試験装置は、ごく簡易な構成により実現される。
 なお、本発明に係る難燃性試験装置において、十分な容量の前記試験槽が採用され、前記制御部が、前記試験槽内の温度を、難燃性試験において許容される温度範囲における上限温度に対して余裕のある前記許容温度に調節すれば、前記試験槽内の温度が、試験中に前記許容される温度範囲を超えることはない。また、前記試験槽内の温度は、被試験物の燃焼によって上昇する傾向にあるので、前記試験槽内の温度を許容温度まで上げるためのヒータは通常は不要である。
本発明の実施形態に係る難燃性試験装置1の概略構成図である。 内部温度調節中の難燃性試験装置1の概略構成図である。
 以下、添付の図面を参照しながら、本発明の実施形態について説明する。以下の実施形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
 以下、図1及び図2を参照しつつ、本発明の実施形態に係る難燃性試験装置1の構成及び動作について説明する。難燃性試験装置1は、難燃性試験に用いられる装置である。難燃性試験は、例えば、予め定められた温度範囲で無風の試験環境において、電線などの被試験物が所定角度で保持され、その被検査物が着火してからその炎が消えるまでの時間を計測する試験である。
 図1に示されるように、前記難燃性試験装置1は、試験槽10、通風機2、冷気生成装置4、温度センサ5、制御部6、スタートボタン7及び表示灯50を備えている。前記試験槽10の内部は、出口ダクト20を介して前記通風機2に連通し、入口ダクト31及び基幹ダクト30を介して前記冷気生成装置4に連通する。
 前記試験槽10は、被試験物が収容される容器であり、その内部において前記被試験物が燃やされる。前記試験槽10には、前記試験槽10の一部を開閉可能に支持されたガラスなどの透光性部材からなる窓11が設けられている。前記試験槽10内での前記被試験物の様子は、前記窓11を通じて確認できる。また、前記試験槽10内への被試験物の設置の際に、前記窓11が開かれる。前記温度センサ5は、前記試験槽10内の雰囲気温度を検出するセンサであり、例えば、サーミスタ又は熱電対などである。
 前記通風機2は、前記試験槽10内の気体を誘引して排出するファンである。前記出口ダクト20は、前記試験槽10内の気体が前記通風機2へ流れる流路を形成する。前記通風機2が作動すると、前記試験槽10内の気体は、前記出口ダクト20を通じて前記試験槽10の外へ排出される。前記出口ダクト20の内部には、前記通風機2により前記試験槽10の外へ排出される気体の流路を開閉する出口ダンパ3が設けられている。なお、前記試験槽10内の気体には、空気及び前記被試験物の燃焼によって発生するガスが含まれる。
 前記冷気生成装置4は、前記試験槽10の外において、前記試験槽10内に供給するための冷気を生成する装置である。前記冷気生成装置4は、冷凍サイクルを構成するコンプレッサ、凝縮器、キャピラリチューブ及び蒸発器を備え、予め設定された冷却強度に応じたパワーで冷気を生成する。なお、前記冷気生成装置4は、前記温度センサ5の検出温度に応じて冷却強度を調節する機能は備えていない。前記冷気生成装置4は、例えば、スポットエアーコンディショナーである。
 また、前記基幹ダクト30は、前記冷気生成装置4に接続される側と反対側の開口部において、前記入口ダクト31と、前記試験槽10の外に繋がる放出ダクト32との両方に接続されている。即ち、前記冷気生成装置4から吐出される冷気の流路は、前記試験槽10内へ向かう流路である前記入口ダクト31と、前記試験槽10の外へ向かう流路である前記放出ダクト32との2つの流路に分岐している。
 前記入口ダクト31の内部には、前記冷気生成装置4から前記試験槽10内へ流れる冷気の流路を開閉する入口ダンパ41が設けられている。また、前記放出ダクト32の内部には、前記冷気生成装置4から前記試験槽10の外へ流れる冷気の流路を開閉する放出ダンパ42が設けられている。前記入口ダンパ41及び前記放出ダンパ42は、前記冷気生成装置4により生成される冷気を前記試験槽内に供給するか否かを切り替える冷気供給切替部の一例である。
 前記入口ダンパ41及び前記放出ダンパ42は、各々開及び閉の状態が相互に逆の状態となるように動作する。従って、前記入口ダンパ41及び前記放出ダンパ42は、前記冷気生成装置4により生成される冷気の流路を、前記試験槽10内に連通する流入路である前記入口ダクト31と、前記試験槽10の外へ連通する放出路である前記放出ダクト32とに選択的に切り替える。前記入口ダンパ41及び前記放出ダンパ42は、前記流路切替部の一例である。
 図1に示される各ダンパ3,41,42の状態は、前記試験槽10内への冷気の流入が遮断され、前記試験槽10からの気体の流出も遮断された状態であり、難燃性試験が行われている最中の状態である。一方、図2に示される各ダンパ3,41,42の状態は、前記試験槽10内へ冷気が流入し、前記試験槽10からの気体が流出する状態であり、難燃性試験の開始前に、前記試験槽10内の温度調節が行われるときの状態である。
 前記表示灯50は、前記温度センサ5の検出温度が、予め設定された初期上限温度よりも高いか否かを区別して表示する表示部である。前記表示灯50は、前記温度センサ5の検出温度が前記初期上限温度よりも高い場合に点灯される赤色の警告灯51と、前記温度センサ5の検出温度が前記初期上限温度以下である場合に点灯される緑色の確認灯52とを備えている。
 前記スタートボタン7は、当該難燃性試験装置1において、前記試験槽10内の温度を調節する制御を開始するイベントを発生する操作ボタンである。
 前記制御部6は、前記温度センサ5の検出温度及び前記スタートボタン7のON/OFFの状態を入し、前記通風機2、前記出口ダンパ3、前記入口ダンパ41、前記放出ダンパ42及び前記表示灯50を制御する回路である。前記制御部6は、前記通風機2及び各ダンパ3,41,42を制御することにより、前記試験槽10内の温度調節処理を行う。前記制御部6は、計算機のように演算素子を備えた回路、又はごく簡単なロジック回路によって実現可能である。以下、前記制御部6の具体的な制御の内容について説明する。
 前記制御部6は、常時、前記温度センサ5の検出温度が、予め設定された前記初期上限温度T1よりも高いか否かを判別する。前記初期上限温度T1は、難燃性試験において許容される温度範囲における上限温度に対して余裕のある温度である。例えば、難燃性試験において、試験中の環境温度として許容される温度範囲が摂氏18度から摂氏28度であり、1回の難燃性試験による前記試験槽10内の最大の温度上昇幅が2度程度である場合に、前記初期上限温度T1は摂氏24度程度に設定される。
 そして、前記制御部6は、前記温度センサ5の検出温度が前記初期上限温度T1よりも高いと判別すると、前記警告灯51を点灯させる。このとき、前記制御部6が、不図示の警報音出力装置に対して警報音を出力させることも考えられる。前記警告灯51の点灯は、次回の難燃性試験の開始前に、前記試験槽10内の温度調節処理が必要であることを意味する。一方、前記制御部6は、前記温度センサ5の検出温度が前記初期上限温度T1以下であると判別すると、前記確認灯52を点灯させる。前記確認灯52の点灯は、次回の難燃性試験の開始前に、前記試験槽10内の温度調節処理を行う必要がないことを意味する。試験員は、難燃性試験を開始する前に、前記警告灯51が点灯している場合、前記制御部6に前記温度調節処理を開始させるために前記スタートボタン7を押下する。
 前記制御部6は、前記温度調節処理の開始イベントである前記スタートボタン7のON操作を検知すると、前記温度センサ5の検出温度が予め設定された目標温度T2に下がるまで、各ダンパ3,41,42及び前記通風機2の状態を、図2に示される温度調節状態に保持する。前記温度調節状態においては、前記出口ダンパ3は開いた状態に保持され、前記入口ダンパ41及び前記放出ダンパ42は、冷気が前記試験槽10内に供給される状態に保持され、前記通風機2は作動状態に保持される。ここで、前記冷気生成装置4は、一連の複数回の難燃性試験が実施される期間、常に作動状態に保持される。即ち、前記制御部6は、前記冷気生成装置4の作動及び停止を制御できてもできなくてもよい。
 前記目標温度T2は、難燃性試験の環境温度として許容される温度範囲内で設定され、通常、前記初期上限温度T1未満に設定される。例えば、難燃性試験において、試験中の環境温度として許容される温度範囲が摂氏18度から摂氏28度であり、1回の難燃性試験による前記試験槽10内の最大の温度上昇幅が2度程度であり、前記初期上限温度T1が摂氏24度に設定された場合に、前記目標温度T2は、摂氏23度程度に設定される。前記目標温度T2が前記初期上限温度T1と同じ温度に設定されることも考えられる。
 そして、前記制御部6は、各ダンパ3,41,42及び前記通風機2を前記温度調節状態に保持した後、前記温度センサ5の検出温度を監視し、前記温度センサ5の検出温度が前記目標温度T2まで下がったときに、各ダンパ3,41,42及び前記通風機2の状態を、図1に示される試験中状態に保持する。前記試験中状態においては、前記出口ダンパ3は閉じた状態に保持され、前記入口ダンパ41及び前記放出ダンパ42は、冷気が前記試験槽10の外に放出される状態に保持され、前記通風機2は停止される。従って、前記試験中状態においては、前記試験槽10の入口及び出口が全て閉じられるので、前記試験槽10内は無風状態に維持される。前述したように、前記冷気生成装置4は、前記試験中状態においても作動状態に保持される。
 前記難燃性試験装置1においては、前記試験槽10内の温度が速やかに前記目標温度T2に調節される。例えば、夏期に、前記難燃性試験装置1の実物を用いて、前記冷気生成装置4を動作させる場合と動作させない場合とで、前記試験槽10内の温度を摂氏28度から摂氏23度まで下げるのに要する時間を比較してみた。但し、市販のスポットエアーコンディショナーである前記冷気生成装置4を動作させない場合、前記入口ダクト31と前記放出ダクト32とが連通するようにした。この場合、前記冷気生成装置4を動作させない場合には、温度調節に要する時間が10分であったのに対し、前記冷気生成装置4を動作させることにより、温度調節に要する時間が1分にまで短縮された。
 また、温度調節が行われるごとに、ガスを含む前記試験槽10内の気体は、前記通風機2によって前記試験槽10の外に排出され、フレッシュな冷気が前記試験槽10内に充填される。そのため、過去の難燃性試験により発生したガスが前記試験槽10内に滞留し、そのガスが次回の難燃性試験に影響を及ぼすことを防止できる。
 また、前記難燃性試験装置1において、前記入口ダンパ41及び前記放出ダンパ42は、前記冷気生成装置4により生成される冷気を、前記試験槽10内に供給するか否かを切り替える。これにより、温度調節の完了ごとに、次回の温度調節まで、前記冷気生成装置4を、十分に温度の低い冷気を安定的に吐出する状態に保持することができる。その結果、前記冷気生成装置4を毎回起動する場合に比べ、繰り返し行われる温度調節の時間を短縮することができる。しかも、前記難燃性試験装置1は、ごく簡易な構成により実現される。
 前記難燃性試験装置1において、十分な容量の前記試験槽10が採用され、前記目標温度T2が、難燃性試験において許容される温度範囲における上限温度に対して余裕のある温度に設定されれば、前記試験槽10内の温度は、試験中に前記許容される温度範囲を超えることはない。また、前記試験槽10内の温度は、被試験物の燃焼によって上昇する傾向にあるので、前記試験槽10内の温度を許容温度まで上げるためのヒータは通常は不要である。
 以上に示した実施形態では、2つのダンパ41,42が、冷気の流路を切り替える流路切替部として採用されたが、三方弁などの他の流路切り替え機構が採用されることも考えられる。また、前記制御部6が温度調節を開始するイベントとして、前記スタートボタン7に対する操作の他、外部装置からネットワーク又は制御信号線を通じて入力される所定のスタート信号などが採用されることも考えられる。
 また、例えば難燃性試験の時期が冬期である場合のように、前記試験槽10の設置環境の温度が十分に低い場合、前記冷気生成装置4を作動させる必要がないことが考えられる。そのような場合に対応するため、前記制御部6は、選択スイッチなどの操作部に対する所定の選択操作に応じて、前記温度調節状態における制御パターンを第1パターン及び第2パターンの2つのパターンから選択可能に構成されることが考えられる。前記第1パターンは、前記入口ダンパ41及び前記放出ダンパ42を、前記試験槽10内と前記冷気生成装置4(前記基幹ダクト30)とを連通させる制御パターンである。前記第2パターンは、前記試験槽10内と前記放出ダクト32(冷気の放出路)とを連通させる制御パターンである。
 また、前記難燃性試験装置1において、前記放出ダクト32は、その解放端側の開口、即ち、前記冷気生成装置4に連通する側と反対側の開口が、前記冷気生成装置4の吸気口に近接するよう配置されればなお好適である。これにより、前記入口ダンパ41及び前記放出ダンパ42によって冷気が前記試験槽10の外に放出されているときに、前記冷気生成装置4がより低温の状態となる。その結果、前記試験槽10内の温度調節が再開されたときに、より低温の冷気が前記試験槽10内に流入し、温度調節時間がより短縮される。
 1 難燃性試験装置
 2 通風機
 3 出口ダンパ
 4 冷気生成装置
 5 温度センサ
 6 制御部
 7 スタートボタン
 10 試験槽
 20 出口ダクト
 30 基幹ダクト
 31 入口ダクト
 32 放出ダクト
 41 入口ダンパ
 42 放出ダンパ
 50 表示灯
 51 警告灯
 52 確認灯
 

Claims (4)

  1.  難燃性試験の被試験物が内部で燃やされる試験槽(10)と該試験槽(10)内の温度を検出する温度検出部(5)とを備えた難燃性試験装置であって、
     前記試験槽(10)内の気体を誘引して排出する通風機(2)と、
     前記通風機(2)により前記試験槽(10)外へ排出される気体の流路を開閉する出口ダンパ(3)と、
     前記試験槽(10)外で冷気を生成する冷気生成部(4)と、
     前記冷気生成部(4)により生成される冷気を前記試験槽(10)内に供給するか否かを切り替える冷気供給切替部(41,42)と、
     所定の開始イベントが検知された場合に、前記温度検出部(5)の検出温度が予め設定された許容温度に下がるまで、前記出口ダンパ(3)を開いた状態に保持し、前記冷気供給切替部(41,42)を前記冷気が前記試験槽(10)内に供給される状態に保持し、前記通風機(2)を作動状態に保持し、その後、前記温度検出部(5)の検出温度が前記許容温度まで下がったときに、前記出口ダンパ(3)を閉じ、前記冷気供給切替部(41,42)を前記冷気が前記試験槽(10)内に供給されない状態に切り替え、前記通風機(2)を停止させる制御部(6)と、
     を備えた難燃性試験装置。
  2.  前記冷気供給切替部(41,42)は、前記冷気生成部(4)により生成される冷気の流路を、前記試験槽(10)内に連通する流入路(31)と前記試験槽(10)外へ連通する放出路(32)とに選択的に切り替える流路切替部である、請求項1に記載の難燃性試験装置。
  3.  前記温度検出部(5)の検出温度が予め設定された温度よりも高いか否かを区別して表示する表示部(50)を備える、請求項1に記載の難燃性試験装置。
  4.  前記冷気生成部(4)はスポットエアーコンディショナーである請求項1に記載の難燃性試験装置。 
PCT/JP2010/061323 2010-01-06 2010-07-02 難燃性試験装置 WO2011083591A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-000931 2010-01-06
JP2010000931A JP2011141147A (ja) 2010-01-06 2010-01-06 難燃性試験装置

Publications (1)

Publication Number Publication Date
WO2011083591A1 true WO2011083591A1 (ja) 2011-07-14

Family

ID=44305333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061323 WO2011083591A1 (ja) 2010-01-06 2010-07-02 難燃性試験装置

Country Status (2)

Country Link
JP (1) JP2011141147A (ja)
WO (1) WO2011083591A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136850A (zh) * 2015-08-17 2015-12-09 河南科技大学 用于定量测试高分子材料阻燃性能的仪器设备
CN107655924A (zh) * 2017-08-11 2018-02-02 合肥卓立雅工程材料科技有限公司 一种薄膜热老化试验装置
CN109459525A (zh) * 2018-12-27 2019-03-12 山东宏业纺织股份有限公司 一种提高阻燃纱线阻燃性能测试精确度的装置及测试方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104458792A (zh) * 2014-12-19 2015-03-25 苏州市东华试验仪器有限公司 一种沥青混合料冻融机
JP7044915B2 (ja) * 2021-02-09 2022-03-30 エスペック株式会社 環境試験装置及び環境試験方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459048A (en) * 1987-08-31 1989-03-06 Toshiba Corp Dew condensation monitoring device
JPH0539936A (ja) * 1991-08-02 1993-02-19 Daikin Ind Ltd 恒温恒湿槽の換気装置
JPH0678857U (ja) * 1993-04-14 1994-11-04 株式会社島津製作所 熱分析装置
JP2002318212A (ja) * 2001-04-20 2002-10-31 Rigaku Corp 試料冷却方法および試料冷却システム
JP2006308288A (ja) * 2005-04-26 2006-11-09 Tokyo System Vac:Kk コーンカロリメータを用いた燃焼熱量測定システム
JP2008185285A (ja) * 2007-01-31 2008-08-14 Orion Mach Co Ltd 恒温槽

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459048A (en) * 1987-08-31 1989-03-06 Toshiba Corp Dew condensation monitoring device
JPH0539936A (ja) * 1991-08-02 1993-02-19 Daikin Ind Ltd 恒温恒湿槽の換気装置
JPH0678857U (ja) * 1993-04-14 1994-11-04 株式会社島津製作所 熱分析装置
JP2002318212A (ja) * 2001-04-20 2002-10-31 Rigaku Corp 試料冷却方法および試料冷却システム
JP2006308288A (ja) * 2005-04-26 2006-11-09 Tokyo System Vac:Kk コーンカロリメータを用いた燃焼熱量測定システム
JP2008185285A (ja) * 2007-01-31 2008-08-14 Orion Mach Co Ltd 恒温槽

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136850A (zh) * 2015-08-17 2015-12-09 河南科技大学 用于定量测试高分子材料阻燃性能的仪器设备
CN107655924A (zh) * 2017-08-11 2018-02-02 合肥卓立雅工程材料科技有限公司 一种薄膜热老化试验装置
CN109459525A (zh) * 2018-12-27 2019-03-12 山东宏业纺织股份有限公司 一种提高阻燃纱线阻燃性能测试精确度的装置及测试方法
CN109459525B (zh) * 2018-12-27 2024-01-19 山东宏业纺织股份有限公司 一种提高阻燃纱线阻燃性能测试精确度的装置

Also Published As

Publication number Publication date
JP2011141147A (ja) 2011-07-21

Similar Documents

Publication Publication Date Title
US6464000B1 (en) Microprocessor controlled two stage furnace
WO2011083591A1 (ja) 難燃性試験装置
CN103940158A (zh) 空调室外机、空调系统和空调系统的操作方法
CN101865527A (zh) 空气加热装置及其防止过热的控制方法
US20040220777A1 (en) Integrated furnace control board and method
JP2016166680A (ja) 空気調和装置
JPH11173640A (ja) 空気調和機
JP2010014348A (ja) 湯沸器
KR101444855B1 (ko) 에너지 절감형 비상발전기실 온도 유지 시스템
JP2010159988A (ja) Ic低温テストの温度制御装置
JP6173161B2 (ja) 燃焼装置
JP2005009688A (ja) ガスファンヒータ及びその制御方法
JP5982939B2 (ja) 給湯システム
KR940007182B1 (ko) 공기조화기의 제어장치
KR100475947B1 (ko) 자동차용 공조장치
JP2023135624A (ja) 熱源システム
KR101844159B1 (ko) 냉각수 과열방지 경고장치
US20100107663A1 (en) Automatic control system for combustion unit of refrigerator
JPH08110044A (ja) 燃焼装置の未燃成分濃度検出装置
JPH08170826A (ja) ガス湯沸器
JP2021099185A (ja) 給湯装置
JP3638797B2 (ja) 温水加熱式空調装置
JP3926191B2 (ja) 熱供給システム
JP6204158B2 (ja) 温風暖房機
JPH11316029A (ja) 給湯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842106

Country of ref document: EP

Kind code of ref document: A1