WO2011080390A1 - Hoisting machine, elevator system, and method - Google Patents

Hoisting machine, elevator system, and method Download PDF

Info

Publication number
WO2011080390A1
WO2011080390A1 PCT/FI2010/051067 FI2010051067W WO2011080390A1 WO 2011080390 A1 WO2011080390 A1 WO 2011080390A1 FI 2010051067 W FI2010051067 W FI 2010051067W WO 2011080390 A1 WO2011080390 A1 WO 2011080390A1
Authority
WO
WIPO (PCT)
Prior art keywords
hoisting machine
rotor
stator
hoisting
traction sheave
Prior art date
Application number
PCT/FI2010/051067
Other languages
French (fr)
Inventor
Jussi Huppunen
Asmo Tenhunen
Petri Alkula
Original Assignee
Kone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kone Corporation filed Critical Kone Corporation
Publication of WO2011080390A1 publication Critical patent/WO2011080390A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/043Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation
    • B66B11/0438Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation with a gearless driving, e.g. integrated sheave, drum or winch in the stator or rotor of the cage motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B15/00Main component parts of mining-hoist winding devices
    • B66B15/02Rope or cable carriers
    • B66B15/04Friction sheaves; "Koepe" pulleys
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/1004Structural association with clutches, brakes, gears, pulleys or mechanical starters with pulleys
    • H02K7/1008Structural association with clutches, brakes, gears, pulleys or mechanical starters with pulleys structurally associated with the machine rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention relates to the structures of electric machines and more particularly to the structures of hoisting machines.
  • hoisting machines are designed to be as flat as possible in their dimensions in the direction of . the axis of rotation, in which case the hoisting machines fit better in connection with, for instance, the wall part of the elevator hoistway or into some other corresponding narrow space .
  • a flat hoisting machine can be implemented with both an axial flux motor and with a radial flux motor.
  • an axial flux motor is an ideal solution for a flat hoisting machine.
  • the winding overhangs do not require space in the direction of the axis of rotation in the same way as in a radial flux motor.
  • the torque output can also be increased without the same type of increase in length in the direction of the axis of rotation of the motor as in a radial flux motor.
  • the rigidity of the machine might form a problem.
  • rigidity is required of the hoisting machine of an elevator because the hoisting machine must support the elevator mechanics suspended in the elevator hoistway.
  • the noise level of the hoisting machine might increase to be disturbing when the length in the direction of the axis of rotation of the hoisting machine shortens.
  • the aim of the invention is to disclose an improved hoisting machine and also an elevator system in which such an improved hoisting machine is used.
  • An improved hoisting machine can be made flatter than a prior-art one without the rigidity of . the hoisting machine weakening and/or without the noise level increasing significantly.
  • the invention relates to a hoisting machine, which comprises a hoisting motor; which hoisting, motor comprises a ring-like stator; which stator is disposed in a stationary structure of the hoisting machine; and which hoisting motor comprises a rotor; which rotor is disposed in a rotating structure of the hoisting machine; and which rotating structure of the hoisting machine comprises a traction sheave; and which stator and rotor are fitted consecutively in the direction of the axis of rotation of the hoisting machine such that an air gap remains between the stator surface and the rotor surface that face each other, which air gap is essentially in the direction of the axis of rotation of the hoisting machine; and which aforementioned stator, rotor and also air gap remaining between the stator and the rotor form the magnetic circuit of the hoisting motor.
  • effective diameter z of the magnetic circuit and the diameter D of the traction sheave is smaller than 1.05 and larger than 0.95 when the diameter D of the traction sheave is smaller than 420 millimeters;
  • the stator and the rotor of the hoisting motor are disposed on opposite sides of the air gap essentially face-to-face. A force component in the direction of the air gap is therefore exerted on the rotor of the hoisting motor at the point at which the magnetic field transfers from the air gap to the rotor and from the rotor to the air gap.
  • the magnitude of the force component is proportional to the magnetic field, so that the harmonics of the magnetic field produce force fluctuations that try to excite vibration in the rotating structure of the hoisting machine.
  • the effective diameter z of the magnetic circuit is determined at the point of the magnetic circuit of the hoisting motor, at which point the resultant of the force component in ⁇ the direction of the air gap of the magnetic circuit acts on the rotor.
  • the diameter D of the traction sheave is determined at the point of exertion of the mechanical force on the rim part of the traction sheave, e.g. at the center point of the ropes or belt on the traction sheave.
  • the rim part of the traction sheave is thus disposed in the rotating structure of the hoisting machine in the direction of the axis of rotation of the hoisting machine at a point at which the resultant of the force component in the direction of the air gap of the magnetic circuit acts on the rotor, or the rim part of the traction sheave is disposed in the immediate proximity of said point.
  • This type of solution stiffens the rotating structure of the electric machine, effectively preventing vibration caused by fluctuations of the magnetic field.
  • the hoisting machine can be made flatter than a prior-art one in its dimension in the direction of the axis of rotation of the hoisting machine without the noise level of the hoisting machine increasing significantly.
  • the rotor is disposed on a first side of the rotating structure of the hoisting machine, and the traction sheave is disposed on the opposite side of the rotating structure of the hoisting machine.
  • the traction sheave is integrated into the same piece as the rotor.
  • the aforementioned piece comprising the traction sheave and the rotor, as well as the stationary structure of the hoisting machine are preferably discoidal in shape.
  • the hoisting machine can be made essentially flat in the direction of the axis of rotation of the hoisting machine.
  • the hoisting motor according to the invention is preferably a permanent-magnet motor, the rotor of which is formed in the rotating structure of the hoisting machine such that permanent magnets are fixed into a ring-like rim onto the surface of the rotating structure of the hoisting machine.
  • the magnetic axes of the permanent magnets are essentially in the direction of the air gap.
  • the rotating structure of the hoisting machine is preferably made from a magnetic material, at least in the immediate proximity of the permanent magnets, and the aforementioned part of the rotating structure of the hoisting machine, said part being disposed in the immediate proximity of the permanent . magnets and being made of magnetic material, forms together with the permanent magnets the magnetic circuit of the rotor of the hoisting motor.
  • the width of the permanent magnets in the direction of the air gap is essentially constant; the aforementioned width of the permanent magnets in the direction of the air gap can, however, also vary such that with the variation in width it is endeavored to achieve a density distribution of magnetic flux that is as sinusoidal as possible in the air gap of the magnetic circuit.
  • the aforementioned permanent magnets of the rotor are preferably fitted into a fixing matrix, which in order to reduce eddy currents is made from a material that does not conduct electricity, or conducts electricity poorly, such as from glass fiber composite, stainless steel or corresponding.
  • the permanent magnets can, however, also be fixed e.g. by embedding them into the rotating structure of the hoisting machine into recesses to be machined for this purpose.
  • the traction sheave is hollow.
  • the rim part of the hollow traction sheave is disposed in the rotating structure of the hoisting machine at the point at which the resultant of the force component in the direction of the air gap of the magnetic circuit of the hoisting motor acts on the rotor, or the rim part is disposed in the immediate proximity of said point.
  • the rotating structure of the hoisting machine can therefore be made to be extremely rigid, but the structure is simultaneously light and fits into a small space.
  • the machinery brake is disposed inside the hollow traction sheave.
  • the sensor that measures the movement of the rotating part of the hoisting machine is disposed inside the hollow traction sheave.
  • the braking surface of the machinery brake can also be formed on the inner surface of the rim part of the hollow traction sheave.
  • the rotating structure of the hoisting machine is supported on the stationary shaft of the hoisting machine via bearings.
  • the shaft can also be made hollow, in which case the hoisting machine lightens without essentially weakening the rigidity of the hoisting machine.
  • the hollow structure of the shaft and/or of the traction sheave also means that the amount of raw material needed for manufacturing the hoisting machine decreases.
  • the sensor that measures the movement of a rotating structure of the hoisting machine can also be disposed inside the hollow shaft.
  • a drum brake or a disc brake can be used as machinery brakes of the hoisting machine according to the invention.
  • the braking surface is preferably formed into a ring-like rim as an extension of the outermost rim of the rotating structure of the hoisting machine, e.g. into the brake disc of a disc brake or into the brake rim of a drum brake .
  • the aforementioned rim-like stator of the hoisting motor comprises teeth as well as slots between them.
  • the stator winding is fitted into the slots.
  • the stator winding is implemented as a concentrated winding, preferably as a concentrated fractional slot winding.
  • a concentrated winding preferably a concentrated fractional slot winding
  • the stator winding becomes more compact owing to, inter alia, the shorter winding overhangs.
  • the invention relates to an elevator system, which comprises any hoisting machine described above, for moving the elevator car in the elevator hoistway.
  • the aforementioned hoisting machine is preferably disposed in the elevator hoistway, e.g. in a narrow space between the elevator car and the wall of the elevator hoistway, into which space an essentially flat hoisting machine according to the invention will fit very well.
  • the invention relates to a method for manufacturing a hoisting machine.
  • a rotor and a traction sheave are fitted into a rotating structure of the hoisting machine, a ring-like stator is fitted into a stationary structure of the hoisting machine, the stator and the rotor are fitted consecutively in the direction of the axis of rotation of the hoisting machine, the stator and the rotor are fitted into the magnetic circuit of the motor such that an air gap remains between the stator surface and the rotor surface that face each other, which air gap is essentially in the direction of the axis of rotation of the hoisting machine, and the rim part of the traction sheave is disposed in a rotating structure of the hoisting machine in the direction of the axis of rotation of the hoisting machine at a point, at which the resultant of the force component in the direction of the air gap of the magnetic circuit acts on the rotor.
  • slots are made in the stator and a concentrated winding is fitted into the stator slots.
  • a concentrated fractional slot winding is fitted into the stator slots.
  • the band-like rim part of the traction sheave is fitted to continue outwards from the rotor in the direction of the axis of rotation of the hoisting machine.
  • Fig. 1 presents a part of one hoisting machine according to the invention, sectioned open upwards from the axis of rotation of the hoisting machine in the direction of the radius
  • Fig. 2 illustrates a stator according to the invention as viewed from the direction of the axis of rotation
  • Fig. 3 illustrates a rotor according to the invention as viewed from the direction of the axis of rotation
  • Fig. 4 presents as a block diagram an elevator system according to the invention
  • Fig. 1 only that part of the hoisting machine 1 that goes upwards from the axis of rotation 8 of the hoisting machine in the direction of the radius is shown.
  • the machinery brakes and parts of the frame part 5, inter alia, have been omitted from the drawing of the hoisting machine 1.
  • the hoisting machine 1 of Fig. 1 is, however, rotationally symmetrical in relation to the axis of rotation 8, so that e.g. the diameter D of the traction sheave 7 is double with respect to the radius 23 of the traction sheave measured from the axis of rotation 8 of the hoisting machine.
  • the diameter D of the traction sheave, as also the radius 23, is determined at the center point of the hoisting ropes disposed in the rope grooves 14 of the traction sheave .
  • the hoisting machine 1 of Fig. 1 comprises a hoisting motor, which comprises a ring-like stator 2, which is disposed in the stationary frame part 5 of the hoisting machine.
  • the hoisting motor also comprises a rotor 3, which is disposed in a rotating piece 6 of the hoisting machine, on the opposite side to the traction sheave 7, which is integrated into the rotating piece 6, of the hoisting machine.
  • the traction sheave 7 is hollow.
  • the rotating piece 6 is supported on the stationary hollow shaft 12 by means of bearings 11.
  • the rotor 3 is situated consecutively to the stator 2 in the direction of the axis of rotation 8, such that an air gap 4 remains between the stator surface and the rotor surface that are parallel and face each other.
  • the magnetic field passes over the air gap 4 between the stator 2 and the rotor 3 and circulates in the parts of the rotor and of the stator that conduct magnetic flux.
  • the part that conducts magnetic flux is made from a material with a relative permittivity that is greater than one. Usually a ferromagnetic material, such as iron or crystal-aligned dynamo plate, is used.
  • the rotor 3, the stator 2 as well as the air gap 4 between them, in which the magnetic flux flows form the magnetic circuit of the hoisting motor.
  • the stator 2 of Fig. 1 is illustrated in more detail in Fig. 2 as viewed from the direction of the axis of rotation 8 of the hoisting machine 1.
  • a three-phase stator winding 18 is fitted into the slots 17 between the stator teeth 16, which stator winding is here implemented as a concentrated fractional slot winding.
  • Fig. 2 presents only one of the three phases of the winding.
  • the alternating current to be supplied to the phases of the stator winding 18 produces magnetic flux circulating in the magnetic circuit 2, 3, 4 of the hoisting motor.
  • the density distribution of magnetic flux produced in the air gap 4 of the magnetic circuit of the motor by the current flowing in a concentrated fractional slot winding 18 deviates from sinusoidal.
  • the rotor 3 of Fig. 1 is illustrated in more detail in Fig. 3 as viewed from the direction of the axis of rotation 8 of the hoisting machine 1.
  • the rotor 3 is formed in the rotating piece 6 of the hoisting machine such that permanent magnets 9 are fixed consecutively into a ring-like rim onto the surface of the rotating piece 6 of the hoisting machine.
  • the permanent magnet 9 is shaped like a parallelogram, being formed from two parallelograms that are disposed side by side in the direction of the rim and are mirror images of each other.
  • the aim of the shaping of the permanent magnet 9 is to bring about an essentially sinusoidal density distribution of magnetic flux in the air gap 4 of the magnetic circuit of the hoisting motor.
  • a sinusoidal density distribution of magnetic flux can also be achieved by using many different shapes of the permanent magnets 9 that deviate from a parallelogram.
  • the magnetic poles of two consecutive permanent magnets 9 are always opposite to each other.
  • the permanent magnets are fitted into a fixing matrix 10, which is in turn fixed to the surface of a rotating piece 6 of the hoisting machine.
  • the thickness of the permanent magnets in the direction of the air gap 4 is essentially constant.
  • the rotating piece 6 is made from ferromagnetic material in the proximity of the permanent magnets 9, in which material the magnetic flux flowing in the magnetic circuit circulates.
  • the effective diameter z of the magnetic circuit is also marked in Fig. 3.
  • the magnetic flux circulating in the magnetic circuit 2, 3, 4 of the hoisting motor produces a force effect between the rotor and the stator.
  • the tangential force component causes rotation of the rotor, whereas the force component in the direction of the air gap 4 produces an attractive force between the rotor and the stator.
  • the effective diameter z of the magnetic circuit is determined at the point 21 of the magnetic circuit of the hoisting motor at which point the resultant of the force component in the direction of the air gap 4 of the magnetic circuit acts on the rotor 3.
  • the force component in the direction of the air gap 4 of the magnetic circuit varies owing to, inter alia, the harmonics in the circulating magnetic flux.
  • the variation of the aforementioned force component in the direction of the air gap 4 of the magnetic circuit tries to produce vibration in the rotating piece 6, which vibration might further cause e.g. noise problems, vibration of the hoisting machine
  • z sheave 7 at the given ranges of the ratio — is disposed in the moving piece of the hoisting machine at the point 21, at which the resultant of the force component in the direction of the air gap 4 of the magnetic circuit of the hoisting motor acts on the rotor 3, or the rim part 13 of the traction sheave is disposed in the immediate proximity of said point 21.
  • This type of structure stiffens the rotating piece 6 of the hoisting machine.
  • the rotating piece 6 can also be made flatter than a prior-art one in the direction of the axis of rotation 8 of the hoisting machine without the vibration of the hoisting machine increasing significantly.
  • the vibration can be forced oscillation or vibration that occurs at the resonance frequencies (in vibrational modes) of the rotating piece.
  • FIG. 4 presents as a block diagram an elevator system, in which the elevator car 19 and the counterweight 22 are suspended in the elevator hoistway 20 with elevator ropes passing via the traction sheave of the hoisting machine 1 of the elevator.
  • the elevator car is moved by exerting a force effect on the elevator car via the hoisting ropes by operating the hoisting machine 1 of the elevator.
  • the power supply to the hoisting machine 1 of the elevator occurs with a frequency converter (not shown in figure) connected between the electricity network and the hoisting machine 1 of . the elevator.
  • the frequency converter and the hoisting machine 1 of the elevator are disposed in the elevator hoistway, in connection with the wall of the elevator hoistway 20 outside the path of movement of the elevator car 19.
  • the hoisting machine 1 of the elevator is of the type presented in the embodiment of Fig. 1.
  • the hoisting machine 1 of the elevator is therefore made flatter in its dimension in the direction of the axis of rotation 8 than a prior-art one.
  • a flatter hoisting machine 1 of an elevator enables increasing the width of the elevator car 19 in the direction of the axis of rotation 8 of the hoisting machine 1 of the elevator, in which case a more spacious elevator car 19 than before can be fitted into the same elevator hoistway.
  • Increasing the volume of the elevator car 19 also increases the transport capacity of the elevator.
  • the hoisting machine 1 is suited for use in different lifting systems; in addition to a passenger elevator and freight elevator system, the hoisting machine can be used e.g. in mine elevators, drum drive elevators, and also in cranes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)

Abstract

The invention relates to a hoisting machine (1) and to an elevator system that comprises a hoisting machine (1) according to the invention. The hoisting machine (1) comprises a hoisting motor; which hoisting motor comprises a ring-like stator (2); which stator (2) is disposed in a stationary structure (5) of the hoisting machine; and which hoisting motor comprises a rotor (3); which rotor (3) is disposed in a rotating structure (6) of the hoisting machine; and which rotating structure (6) of the hoisting machine comprises a traction sheave (7); and which stator (2) and rotor (3) are fitted consecutively in the direction of the axis of rotation (8) of the hoisting machine such that an air gap (4) remains between the stator surface and the rotor surface that face each other, which air gap is essentially in the, direction of the axis of rotation (8) of the hoisting machine; and which aforementioned stator (2), rotor (3) and also air gap (4) remaining between the stator and the rotor form the magnetic circuit of the hoisting motor. The ratio of the effective diameter z of the magnetic circuit (2, 3, 4) of the hoisting motor to the diameter D of the traction sheave (7) of the hoisting machine is selected such that the ratio z/D of the effective diameter z of the magnetic circuit (2, 3, 4) and the diameter D of the traction sheave (7) is z of the magnetic circuit (2, 3, 4) and the diameter D of the traction sheave (7) is smaller than 1.05 and larger than 0.95 when the diameter D of the traction sheave (7) is smaller than 420 millimeters; and that the ratio z/D of the effective diameter z of the magnetic circuit (2, 3, 4) and the diameter D of the traction sheave (7) is smaller than 1.085 and larger than 0.93 when the diameter D of the traction sheave (7) is smaller than or equal to 600 millimeters and larger than or equal to 420 millimeters.

Description

HOISTING MACHINE , ELEVATOR SYSTEM, AND METHOD
Field of the invention
The invention relates to the structures of electric machines and more particularly to the structures of hoisting machines.
Background of the invention
It is a general aim to utilize built space as efficiently as possible. For example, owing to space requirements, one aim is to make the hoisting machines of elevators as compact as possible. In order to achieve this, hoisting machines are designed to be as flat as possible in their dimensions in the direction of . the axis of rotation, in which case the hoisting machines fit better in connection with, for instance, the wall part of the elevator hoistway or into some other corresponding narrow space .
A flat hoisting machine can be implemented with both an axial flux motor and with a radial flux motor. For many reasons an axial flux motor is an ideal solution for a flat hoisting machine. In an axial flux motor the winding overhangs do not require space in the direction of the axis of rotation in the same way as in a radial flux motor. In an axial flux motor the torque output can also be increased without the same type of increase in length in the direction of the axis of rotation of the motor as in a radial flux motor.
When minimizing the length in the direction of the axis of rotation of a hoisting machine implemented with an axial flux motor, the rigidity of the machine might form a problem. For example, rigidity is required of the hoisting machine of an elevator because the hoisting machine must support the elevator mechanics suspended in the elevator hoistway. Also the noise level of the hoisting machine might increase to be disturbing when the length in the direction of the axis of rotation of the hoisting machine shortens.
Summary of the invention
The aim of the invention is to disclose an improved hoisting machine and also an elevator system in which such an improved hoisting machine is used. An improved hoisting machine can be made flatter than a prior-art one without the rigidity of . the hoisting machine weakening and/or without the noise level increasing significantly.
In relation to the characteristic attributes of the invention, reference is made to the claims. Some inventive embodiments are also presented in the descriptive section and in the drawings of the present application.
The invention relates to a hoisting machine, which comprises a hoisting motor; which hoisting, motor comprises a ring-like stator; which stator is disposed in a stationary structure of the hoisting machine; and which hoisting motor comprises a rotor; which rotor is disposed in a rotating structure of the hoisting machine; and which rotating structure of the hoisting machine comprises a traction sheave; and which stator and rotor are fitted consecutively in the direction of the axis of rotation of the hoisting machine such that an air gap remains between the stator surface and the rotor surface that face each other, which air gap is essentially in the direction of the axis of rotation of the hoisting machine; and which aforementioned stator, rotor and also air gap remaining between the stator and the rotor form the magnetic circuit of the hoisting motor. The ratio of the effective diameter z of the magnetic circuit of the hoisting motor to the diameter D of the traction sheave of the hoisting z
machine is selected such that the ratio — of the
D
effective diameter z of the magnetic circuit and the diameter D of the traction sheave is smaller than 1.05 and larger than 0.95 when the diameter D of the traction sheave is smaller than 420 millimeters; and z
that the ratio — of the effective diameter z of the
D
magnetic circuit and the diameter D of the traction sheave is smaller than 1.085 and larger than 0.93 when the diameter D of the traction sheave is smaller than or equal to 600 millimeters and larger than or equal to 420 millimeters. The stator and the rotor of the hoisting motor are disposed on opposite sides of the air gap essentially face-to-face. A force component in the direction of the air gap is therefore exerted on the rotor of the hoisting motor at the point at which the magnetic field transfers from the air gap to the rotor and from the rotor to the air gap. The magnitude of the force component is proportional to the magnetic field, so that the harmonics of the magnetic field produce force fluctuations that try to excite vibration in the rotating structure of the hoisting machine. The effective diameter z of the magnetic circuit is determined at the point of the magnetic circuit of the hoisting motor, at which point the resultant of the force component in~ the direction of the air gap of the magnetic circuit acts on the rotor. The diameter D of the traction sheave, on the other hand, is determined at the point of exertion of the mechanical force on the rim part of the traction sheave, e.g. at the center point of the ropes or belt on the traction sheave. According to the basic concept of the invention, the rim part of the traction sheave is thus disposed in the rotating structure of the hoisting machine in the direction of the axis of rotation of the hoisting machine at a point at which the resultant of the force component in the direction of the air gap of the magnetic circuit acts on the rotor, or the rim part of the traction sheave is disposed in the immediate proximity of said point. This type of solution stiffens the rotating structure of the electric machine, effectively preventing vibration caused by fluctuations of the magnetic field. In this case the hoisting machine can be made flatter than a prior-art one in its dimension in the direction of the axis of rotation of the hoisting machine without the noise level of the hoisting machine increasing significantly.
In a preferred embodiment of the invention the rotor is disposed on a first side of the rotating structure of the hoisting machine, and the traction sheave is disposed on the opposite side of the rotating structure of the hoisting machine.
In a preferred embodiment of the invention the traction sheave is integrated into the same piece as the rotor.
The aforementioned piece comprising the traction sheave and the rotor, as well as the stationary structure of the hoisting machine are preferably discoidal in shape. When the aforementioned discoidal structures are in this case fitted consecutively in the direction of the axis of rotation of the hoisting machine, the hoisting machine can be made essentially flat in the direction of the axis of rotation of the hoisting machine.
The hoisting motor according to the invention is preferably a permanent-magnet motor, the rotor of which is formed in the rotating structure of the hoisting machine such that permanent magnets are fixed into a ring-like rim onto the surface of the rotating structure of the hoisting machine. In some preferred embodiments of the invention the magnetic axes of the permanent magnets are essentially in the direction of the air gap.
The rotating structure of the hoisting machine is preferably made from a magnetic material, at least in the immediate proximity of the permanent magnets, and the aforementioned part of the rotating structure of the hoisting machine, said part being disposed in the immediate proximity of the permanent . magnets and being made of magnetic material, forms together with the permanent magnets the magnetic circuit of the rotor of the hoisting motor. In a preferred embodiment of the invention the width of the permanent magnets in the direction of the air gap is essentially constant; the aforementioned width of the permanent magnets in the direction of the air gap can, however, also vary such that with the variation in width it is endeavored to achieve a density distribution of magnetic flux that is as sinusoidal as possible in the air gap of the magnetic circuit. The aforementioned permanent magnets of the rotor are preferably fitted into a fixing matrix, which in order to reduce eddy currents is made from a material that does not conduct electricity, or conducts electricity poorly, such as from glass fiber composite, stainless steel or corresponding. The permanent magnets can, however, also be fixed e.g. by embedding them into the rotating structure of the hoisting machine into recesses to be machined for this purpose.
In a preferred embodiment of the invention, the traction sheave is hollow. In this case the rim part of the hollow traction sheave is disposed in the rotating structure of the hoisting machine at the point at which the resultant of the force component in the direction of the air gap of the magnetic circuit of the hoisting motor acts on the rotor, or the rim part is disposed in the immediate proximity of said point. The rotating structure of the hoisting machine can therefore be made to be extremely rigid, but the structure is simultaneously light and fits into a small space. In some preferred embodiments of the invention, the machinery brake is disposed inside the hollow traction sheave. In some preferred embodiments of the invention, the sensor that measures the movement of the rotating part of the hoisting machine is disposed inside the hollow traction sheave. The braking surface of the machinery brake can also be formed on the inner surface of the rim part of the hollow traction sheave.
In some preferred embodiments of the invention, the rotating structure of the hoisting machine is supported on the stationary shaft of the hoisting machine via bearings. The shaft can also be made hollow, in which case the hoisting machine lightens without essentially weakening the rigidity of the hoisting machine. The hollow structure of the shaft and/or of the traction sheave also means that the amount of raw material needed for manufacturing the hoisting machine decreases. The sensor that measures the movement of a rotating structure of the hoisting machine can also be disposed inside the hollow shaft.
A drum brake or a disc brake, for example, can be used as machinery brakes of the hoisting machine according to the invention. The braking surface is preferably formed into a ring-like rim as an extension of the outermost rim of the rotating structure of the hoisting machine, e.g. into the brake disc of a disc brake or into the brake rim of a drum brake .
The aforementioned rim-like stator of the hoisting motor comprises teeth as well as slots between them. The stator winding is fitted into the slots. In preferred embodiments of the invention, the stator winding is implemented as a concentrated winding, preferably as a concentrated fractional slot winding. When using a concentrated winding, preferably a concentrated fractional slot winding, the stator winding becomes more compact owing to, inter alia, the shorter winding overhangs. By means of the solution according to the invention, the effect on vibration/noise of the harmonics produced in the circulating magnetic field in the air gap of the motor by a concentrated winding / concentrated fractional slot winding can also be reduced.
With regard to the second aspect, the invention relates to an elevator system, which comprises any hoisting machine described above, for moving the elevator car in the elevator hoistway. The aforementioned hoisting machine is preferably disposed in the elevator hoistway, e.g. in a narrow space between the elevator car and the wall of the elevator hoistway, into which space an essentially flat hoisting machine according to the invention will fit very well.
With regard to the third aspect, the invention relates to a method for manufacturing a hoisting machine. In the method a rotor and a traction sheave are fitted into a rotating structure of the hoisting machine, a ring-like stator is fitted into a stationary structure of the hoisting machine, the stator and the rotor are fitted consecutively in the direction of the axis of rotation of the hoisting machine, the stator and the rotor are fitted into the magnetic circuit of the motor such that an air gap remains between the stator surface and the rotor surface that face each other, which air gap is essentially in the direction of the axis of rotation of the hoisting machine, and the rim part of the traction sheave is disposed in a rotating structure of the hoisting machine in the direction of the axis of rotation of the hoisting machine at a point, at which the resultant of the force component in the direction of the air gap of the magnetic circuit acts on the rotor.
In one preferred embodiment of the invention slots are made in the stator and a concentrated winding is fitted into the stator slots. In one preferred embodiment of ' the invention a concentrated fractional slot winding is fitted into the stator slots.
In some preferred embodiments of the invention the band-like rim part of the traction sheave is fitted to continue outwards from the rotor in the direction of the axis of rotation of the hoisting machine.
The aforementioned summary, as well as the additional features and advantages of the invention presented below, will be better understood by the aid of the following description of some embodiments, said description not limiting the scope of application of the invention.
Brief explanation of the figures
Fig. 1 presents a part of one hoisting machine according to the invention, sectioned open upwards from the axis of rotation of the hoisting machine in the direction of the radius Fig. 2 illustrates a stator according to the invention as viewed from the direction of the axis of rotation
Fig. 3 illustrates a rotor according to the invention as viewed from the direction of the axis of rotation
Fig. 4 presents as a block diagram an elevator system according to the invention
More detailed description of preferred embodiments of the invention
In Fig. 1 only that part of the hoisting machine 1 that goes upwards from the axis of rotation 8 of the hoisting machine in the direction of the radius is shown. In Fig. 1, for the sake of clarity, the machinery brakes and parts of the frame part 5, inter alia, have been omitted from the drawing of the hoisting machine 1. The hoisting machine 1 of Fig. 1 is, however, rotationally symmetrical in relation to the axis of rotation 8, so that e.g. the diameter D of the traction sheave 7 is double with respect to the radius 23 of the traction sheave measured from the axis of rotation 8 of the hoisting machine. The diameter D of the traction sheave, as also the radius 23, is determined at the center point of the hoisting ropes disposed in the rope grooves 14 of the traction sheave .
The hoisting machine 1 of Fig. 1 comprises a hoisting motor, which comprises a ring-like stator 2, which is disposed in the stationary frame part 5 of the hoisting machine. The hoisting motor also comprises a rotor 3, which is disposed in a rotating piece 6 of the hoisting machine, on the opposite side to the traction sheave 7, which is integrated into the rotating piece 6, of the hoisting machine. The traction sheave 7 is hollow. The rotating piece 6 is supported on the stationary hollow shaft 12 by means of bearings 11. The rotor 3 is situated consecutively to the stator 2 in the direction of the axis of rotation 8, such that an air gap 4 remains between the stator surface and the rotor surface that are parallel and face each other. The magnetic field passes over the air gap 4 between the stator 2 and the rotor 3 and circulates in the parts of the rotor and of the stator that conduct magnetic flux. The part that conducts magnetic flux is made from a material with a relative permittivity that is greater than one. Usually a ferromagnetic material, such as iron or crystal-aligned dynamo plate, is used. In the hoisting motor of Fig. 1, the rotor 3, the stator 2 as well as the air gap 4 between them, in which the magnetic flux flows, form the magnetic circuit of the hoisting motor. The stator 2 of Fig. 1 is illustrated in more detail in Fig. 2 as viewed from the direction of the axis of rotation 8 of the hoisting machine 1. A three-phase stator winding 18 is fitted into the slots 17 between the stator teeth 16, which stator winding is here implemented as a concentrated fractional slot winding. Fig. 2 presents only one of the three phases of the winding. The alternating current to be supplied to the phases of the stator winding 18 produces magnetic flux circulating in the magnetic circuit 2, 3, 4 of the hoisting motor. The density distribution of magnetic flux produced in the air gap 4 of the magnetic circuit of the motor by the current flowing in a concentrated fractional slot winding 18 deviates from sinusoidal.
The rotor 3 of Fig. 1 is illustrated in more detail in Fig. 3 as viewed from the direction of the axis of rotation 8 of the hoisting machine 1. The rotor 3 is formed in the rotating piece 6 of the hoisting machine such that permanent magnets 9 are fixed consecutively into a ring-like rim onto the surface of the rotating piece 6 of the hoisting machine. The permanent magnet 9 is shaped like a parallelogram, being formed from two parallelograms that are disposed side by side in the direction of the rim and are mirror images of each other. The aim of the shaping of the permanent magnet 9 is to bring about an essentially sinusoidal density distribution of magnetic flux in the air gap 4 of the magnetic circuit of the hoisting motor. A sinusoidal density distribution of magnetic flux can also be achieved by using many different shapes of the permanent magnets 9 that deviate from a parallelogram. The magnetic poles of two consecutive permanent magnets 9 are always opposite to each other. The permanent magnets are fitted into a fixing matrix 10, which is in turn fixed to the surface of a rotating piece 6 of the hoisting machine. The thickness of the permanent magnets in the direction of the air gap 4 is essentially constant. The rotating piece 6 is made from ferromagnetic material in the proximity of the permanent magnets 9, in which material the magnetic flux flowing in the magnetic circuit circulates. The effective diameter z of the magnetic circuit is also marked in Fig. 3.
The magnetic flux circulating in the magnetic circuit 2, 3, 4 of the hoisting motor produces a force effect between the rotor and the stator. The tangential force component causes rotation of the rotor, whereas the force component in the direction of the air gap 4 produces an attractive force between the rotor and the stator. The effective diameter z of the magnetic circuit is determined at the point 21 of the magnetic circuit of the hoisting motor at which point the resultant of the force component in the direction of the air gap 4 of the magnetic circuit acts on the rotor 3. The force component in the direction of the air gap 4 of the magnetic circuit varies owing to, inter alia, the harmonics in the circulating magnetic flux. The variation of the aforementioned force component in the direction of the air gap 4 of the magnetic circuit tries to produce vibration in the rotating piece 6, which vibration might further cause e.g. noise problems, vibration of the hoisting machine
1 and/or wearing of the bearings 11. To damp vibration and thereby to stiffen the rotating piece 6, the z
ratio— of the effective diameter z of the magnetic D
circuit 2, 3, 4 of the hoisting motor to the diameter D, of the traction sheave 7 of the hoisting machine is selected according to table 1:
Figure imgf000014_0001
Table 1.
In table 1 the rim part 13 of the hollow traction
z sheave 7 at the given ranges of the ratio — is disposed in the moving piece of the hoisting machine at the point 21, at which the resultant of the force component in the direction of the air gap 4 of the magnetic circuit of the hoisting motor acts on the rotor 3, or the rim part 13 of the traction sheave is disposed in the immediate proximity of said point 21. This type of structure stiffens the rotating piece 6 of the hoisting machine. In this case the rotating piece 6 can also be made flatter than a prior-art one in the direction of the axis of rotation 8 of the hoisting machine without the vibration of the hoisting machine increasing significantly. The vibration can be forced oscillation or vibration that occurs at the resonance frequencies (in vibrational modes) of the rotating piece. Fig. 4 presents as a block diagram an elevator system, in which the elevator car 19 and the counterweight 22 are suspended in the elevator hoistway 20 with elevator ropes passing via the traction sheave of the hoisting machine 1 of the elevator. The elevator car is moved by exerting a force effect on the elevator car via the hoisting ropes by operating the hoisting machine 1 of the elevator. The power supply to the hoisting machine 1 of the elevator occurs with a frequency converter (not shown in figure) connected between the electricity network and the hoisting machine 1 of . the elevator. The frequency converter and the hoisting machine 1 of the elevator are disposed in the elevator hoistway, in connection with the wall of the elevator hoistway 20 outside the path of movement of the elevator car 19. The hoisting machine 1 of the elevator is of the type presented in the embodiment of Fig. 1. The hoisting machine 1 of the elevator is therefore made flatter in its dimension in the direction of the axis of rotation 8 than a prior-art one. As can be observed from Fig. 4, a flatter hoisting machine 1 of an elevator enables increasing the width of the elevator car 19 in the direction of the axis of rotation 8 of the hoisting machine 1 of the elevator, in which case a more spacious elevator car 19 than before can be fitted into the same elevator hoistway. Increasing the volume of the elevator car 19 also increases the transport capacity of the elevator.
The hoisting machine 1 according to the invention is suited for use in different lifting systems; in addition to a passenger elevator and freight elevator system, the hoisting machine can be used e.g. in mine elevators, drum drive elevators, and also in cranes.
The invention is not only limited to be applied to the embodiments described above, but instead many variations are possible within the scope of the inventive concept defined by the claims below.

Claims

1. A hoisting machine (1), which comprises a hoisting motor;
which hoisting motor comprises a ring-like stator (2) ; which stator (2) is disposed in a stationary structure
(5) of the hoisting machine;
and which hoisting motor comprises a rotor (3) ;
which rotor (3) is disposed in a rotating structure
(6) of the hoisting machine;
and which rotating structure (6) of the hoisting machine comprises a traction sheave (7) ;
and which stator (2) and rotor (3) are fitted consecutively in the direction of the axis of rotation (8) of the hoisting machine such that an air gap (4) remains between the stator surface and the rotor surface that face each other, which air gap is essentially in the direction of the axis of rotation (8) of the hoisting machine;
and which aforementioned stator (2) , rotor (3) and also air gap (4) remaining between the stator and the rotor form the magnetic circuit of the hoisting motor; characterized in that the ratio of the effective diameter z of the magnetic circuit (2, 3, 4) of the hoisting motor to the diameter D of the traction sheave (7) of the hoisting machine is selected such that
z
the ratio — of the effective diameter z of the
D
magnetic circuit (2, 3, 4) and the diameter D of the traction sheave (7) is smaller than 1.05 and larger than 0.95 when the diameter D of the traction sheave
(7) is smaller than 420 millimeters; and in that the ratio — of the effective diameter z
D
of the magnetic circuit (2, 3, 4) and the diameter D of the traction sheave (7) is smaller than 1.085 and larger than 0.93 when the diameter D of the traction sheave (7) is smaller than or equal to 600 millimeters and larger than or equal to 420 millimeters.
2. Hoisting machine according to claim 1, characterized in that the hoisting machine (1) is essentially flat in the direction of the axis of rotation (8) .
3. Hoisting machine according to claim 1 or 2, characterized in that the aforementioned stator (2) , rotor (3) and traction sheave (7) are disposed concentrically in relation to the axis of rotation (8) of the hoisting machine.
4. Hoisting machine according to any of the preceding claims, characterized in that the rotor (3) is disposed on a first side of the rotating structure (6) of the hoisting machine, and in that the traction sheave (7) is disposed on the opposite side of the rotating structure (6) of the hoisting machine.
5. Hoisting machine according to any of the preceding claims, characterized in that the traction sheave (7) is integrated into the same piece (6) as the rotor (3);
6. Hoisting machine according to claim 5, characterized in that the piece (6) comprising the traction sheave (7) and the rotor (3) is essentially discoidal.
7. Hoisting machine according to any of the preceding claims, characterized in that the traction sheave (7) is hollow.
8. Hoisting machine according to any of the preceding claims, characterized in that the rotor (3) is formed in the rotating structure (6) of the hoisting machine such that permanent magnets (9) are fixed into a ringlike rim onto the surface of the rotating structure (6) of the hoisting ' machine .
9. Hoisting machine according to claim 8, characterized in that the permanent magnets (9) are fitted into a fixing matrix (10) .
10. Hoisting machine according to any of the preceding claims, characterized in that the stationary structure (5) of the hoisting machine . is essentially discoidal.
11. Hoisting machine according to any of the preceding claims, characterized in that the rotating structure (6) of the hoisting machine is supported on the stationary structure (5) of the hoisting machine via bearings (11) .
12. Hoisting machine according to any of the preceding claims, characterized in that the hoisting machine comprises a hollow shaft (12) .
13. Hoisting machine according to any of claims 1 - 12, characterized in that the brake ring of the drum brake is formed as an extension of the outermost rim (15) of the rotating structure (6) of the hoisting machine .
14. Hoisting machine according to any of the preceding claims, characterized in that the stator (2) comprises teeth (16) and also slots (17) between them.
15. Hoisting machine according to claim 14, characterized in that a concentrated winding (18) is fitted into the stator slots (17) .
16. Hoisting machine according to claim 15, characterized in that a concentrated fractional slot winding (18) is fitted into the stator slots (17) .
17. Elevator system, characterized in that the elevator system comprises a hoisting machine (1) according to any of claims 1 - 21, for moving an elevator car (19) in an elevator hoistway (20) .
18. Method for manufacturing a hoisting machine (1) , in which method:
- the rotor (3) and the traction sheave (7) are fitted into a rotating structure (6) of the hoisting machine
- the ring-like stator (2) is fitted into a stationary structure (5) of the hoisting machine - the stator (2) and the rotor (3) are fitted consecutively in the direction of the axis of rotation (8) of the hoisting machine
- the stator (2) and the rotor (3) are fitted into the magnetic circuit of the motor such that an air gap (4) remains between the stator surface and the rotor surface that face each other, which air gap is essentially in the direction of the axis of rotation (8) of the hoisting machine, characterized in that
- the rim part (13) of the traction sheave is disposed in the rotating structure (6) of the hoisting machine at the point at which the resultant of the force component in the direction of the air gap (4) of the magnetic circuit acts on the rotor (3)
19. Method according to claim 18, characterized in that :
- slots (17) are made in the stator (2)
- a concentrated winding (18) is fitted into the stator slots (17)
20. Method according to claim 19, characterized in that : - a concentrated fractional slot winding (18) is fitted into the stator slots (17)
PCT/FI2010/051067 2009-12-31 2010-12-21 Hoisting machine, elevator system, and method WO2011080390A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20096419A FI20096419A (en) 2009-12-31 2009-12-31 Lifting equipment and lift system
FI20096419 2009-12-31

Publications (1)

Publication Number Publication Date
WO2011080390A1 true WO2011080390A1 (en) 2011-07-07

Family

ID=41462875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI2010/051067 WO2011080390A1 (en) 2009-12-31 2010-12-21 Hoisting machine, elevator system, and method

Country Status (2)

Country Link
FI (1) FI20096419A (en)
WO (1) WO2011080390A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104627796A (en) * 2013-11-13 2015-05-20 通力股份公司 Hoisting machine, an elevator assembly, and improvement in vibration damping of a hoisting machine and in an elevator assembly
WO2015075507A1 (en) * 2013-11-22 2015-05-28 Kone Corporation Bearing block cover, axial flux motor, elevator and method of compensating manufacturing tolerances in an axial flux motor
US10214387B2 (en) 2016-05-13 2019-02-26 Otis Elevator Company Magnetic elevator drive member and method of manufacture
US10587180B2 (en) 2016-05-13 2020-03-10 Otis Elevator Company Magnetic elevator drive member and method of manufacture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111348534A (en) * 2018-12-20 2020-06-30 洛阳威卡矿山机械设备有限公司 Head sheave structure of mine hoist

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5018603A (en) * 1988-08-26 1991-05-28 Mitsubishi Denki Kabushiki Kaisha Elevator hoist apparatus
WO1995000432A1 (en) * 1993-06-28 1995-01-05 Kone Oy Elevator machinery
KR20010056690A (en) * 1999-12-16 2001-07-04 장병우 Traction machine for elevator
FI111242B (en) * 2000-07-20 2003-06-30 Kone Corp A structural element for lifting the sound of a lift machine and an arrangement for reducing the sound of a lift machine
EP1394096A1 (en) * 1999-04-05 2004-03-03 Mitsubishi Denki Kabushiki Kaisha Elevator traction machine
US20090251024A1 (en) * 2006-12-21 2009-10-08 Jussi Huppunen Electric motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5018603A (en) * 1988-08-26 1991-05-28 Mitsubishi Denki Kabushiki Kaisha Elevator hoist apparatus
WO1995000432A1 (en) * 1993-06-28 1995-01-05 Kone Oy Elevator machinery
EP1394096A1 (en) * 1999-04-05 2004-03-03 Mitsubishi Denki Kabushiki Kaisha Elevator traction machine
KR20010056690A (en) * 1999-12-16 2001-07-04 장병우 Traction machine for elevator
FI111242B (en) * 2000-07-20 2003-06-30 Kone Corp A structural element for lifting the sound of a lift machine and an arrangement for reducing the sound of a lift machine
US20090251024A1 (en) * 2006-12-21 2009-10-08 Jussi Huppunen Electric motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104627796A (en) * 2013-11-13 2015-05-20 通力股份公司 Hoisting machine, an elevator assembly, and improvement in vibration damping of a hoisting machine and in an elevator assembly
EP2873637A1 (en) * 2013-11-13 2015-05-20 Kone Corporation A hoisting machine, an elevator assembly, and improvement in vibration damping of a hoisting machine and in an elevator assembly
US10071883B2 (en) 2013-11-13 2018-09-11 Kone Corporation Hoisting machine with vibrating damping and an elevator assembly
WO2015075507A1 (en) * 2013-11-22 2015-05-28 Kone Corporation Bearing block cover, axial flux motor, elevator and method of compensating manufacturing tolerances in an axial flux motor
US10243423B2 (en) 2013-11-22 2019-03-26 Kone Corporation Bearing block cover, axial flux motor, elevator and method of compensating manufacturing tolerances in an axial flux motor
US10214387B2 (en) 2016-05-13 2019-02-26 Otis Elevator Company Magnetic elevator drive member and method of manufacture
US10587180B2 (en) 2016-05-13 2020-03-10 Otis Elevator Company Magnetic elevator drive member and method of manufacture

Also Published As

Publication number Publication date
FI20096419A0 (en) 2009-12-31
FI20096419A (en) 2011-07-01

Similar Documents

Publication Publication Date Title
US9209657B2 (en) Electric motor, hoisting machine and elevator system
JP4153044B2 (en) Elevator hoisting machine
US4960186A (en) Elevator hoist apparatus with an outer rotor motor
FI95687C (en) Counterweight elevator machine / elevator motor
WO2011080390A1 (en) Hoisting machine, elevator system, and method
KR20120029481A (en) Elevator machine with external rotor and motor within traction sheave
EP3210925B1 (en) Elevator assembly
CN102838011B (en) Winch for elevator device
JPH1179626A (en) Hoisting machine for elevator
JPH10304641A (en) Elevator device
JP5048802B2 (en) Thin hoisting machine for elevator and elevator device
JP2010143661A (en) Hoisting machine for elevator, and driving motor therefor
JPH1017245A (en) Hoist for elevator
JP2016182015A (en) Embedded magnet motor, and traction machine for elevator using embedded magnet motor, and elevator using traction machine for elevator, and in-wheel motor device using embedded magnet motor
JP2005247514A (en) Hoisting machine for elevator
KR100343982B1 (en) Traction machine for elevator
WO2024049388A1 (en) Rail-mounted integrated elevator traction system
JP2002154773A (en) Elevator device and winder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840638

Country of ref document: EP

Kind code of ref document: A1