WO2011078467A2 - 산화아연 나노로드를 이용한 레이저 다이오드 및 그 제조 방법 - Google Patents
산화아연 나노로드를 이용한 레이저 다이오드 및 그 제조 방법 Download PDFInfo
- Publication number
- WO2011078467A2 WO2011078467A2 PCT/KR2010/006172 KR2010006172W WO2011078467A2 WO 2011078467 A2 WO2011078467 A2 WO 2011078467A2 KR 2010006172 W KR2010006172 W KR 2010006172W WO 2011078467 A2 WO2011078467 A2 WO 2011078467A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zinc oxide
- layer
- single crystal
- oxide nanorods
- crystal semiconductor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/327—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIBVI compounds, e.g. ZnCdSe-laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
- H01S5/021—Silicon based substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0425—Electrodes, e.g. characterised by the structure
- H01S5/04252—Electrodes, e.g. characterised by the structure characterised by the material
- H01S5/04253—Electrodes, e.g. characterised by the structure characterised by the material having specific optical properties, e.g. transparent electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/341—Structures having reduced dimensionality, e.g. quantum wires
Definitions
- the present invention relates to a laser diode that emits ultraviolet light, and more particularly, to a laser diode using a zinc oxide nanorod and a method of manufacturing the same.
- Carbon nanotubes CNT
- CoSi cobalt silicides
- Carbon nanotube powder is already commercialized as a transparent electrode, a cathode component for field emission.
- the nanorods are not easy to use because they are too small in size and weak in strength to be used for a functional device other than a transparent electrode.
- Efforts have been made to develop field effect transistors (FETs) by bonding metals to individual semiconductor nanorods and heat-treating them. (E.g. growth of GaN single crystal thin film on single crystalline sapphire substrate, CuInSe2 thin film growth on amorphous glass)
- FETs field effect transistors
- problems such as the length uniformity of the nanorods are lowered and the light emitting surface is restricted.
- Devices containing nanorods need to be associated with a smooth subsequent process, such as electrode formation.
- Zinc oxide (ZnO) is a hexagonal crystal structure of a urgite crystal structure, which is a direct transition semiconductor having high transmittance of visible light, relatively high refractive index and dielectric constant, and a wide band gap of 3.37 eV.
- the free exciton binding energy of zinc oxide reaches 60 meV at room temperature, the light extraction rate due to photoexcitation is predicted to be higher than that of conventional gallium nitride, and many studies have been conducted.
- the shape of the zinc oxide nanorods itself acts as a cavity for laser oscillation, room temperature laser oscillation may be predicted in the nanorods.
- the first technical problem to be achieved by the present invention is to solve the problem of p-type doping of the zinc oxide nanorod layer, and to solve the defect problem between the interface generated during the heterogeneous growth of the semiconductor nanorod easily at room temperature UV laser To provide a laser diode using zinc oxide nanorods, which is easy to oscillate and the subsequent process is easy.
- the second technical problem to be achieved by the present invention is to provide a method of manufacturing a laser diode using a zinc oxide nanorods for manufacturing a room temperature UV laser light emitting device by electrical pumping using a zinc oxide semiconductor nanorod layer.
- Laser diode using a zinc oxide nanorod is a substrate; An electrode layer formed on the substrate; a nanorod layer comprising a plurality of zinc oxide nanorods doped with n-type and grown on the electrode layer; And a single crystal semiconductor layer doped in p-type and in physical contact with the ends of the zinc oxide nanorods.
- the laser diode manufacturing method using a zinc oxide nanorod comprises the steps of forming an electrode layer on the substrate; Growing a plurality of n-type doped zinc oxide nanorods on the electrode layer to form a nanorod layer; Contacting the p-type doped single crystal semiconductor layer on the nanorod layer; And applying a predetermined pressure to an upper surface of the single crystal semiconductor layer to fix the single crystal semiconductor layer to the nanorod layer.
- the manufacturing process of a laser diode can be made simpler.
- FIG. 1 illustrates a structure of a laser diode using zinc oxide nanorods according to an embodiment of the present invention.
- Figure 2 shows the form of the zinc oxide nanorods for explaining the crystal orientation.
- 3 to 5b illustrate a process of manufacturing the laser diode of FIG.
- FIG. 6 illustrates an example in which the structure of FIG. 1 is fixed with epoxy.
- FIG. 7 illustrates a structure in which a wiring electrode and a heat radiation layer are added to the structure of FIG. 1.
- FIG. 8 illustrates an emission spectrum of an ultraviolet region of a laser diode manufactured according to the structure of FIG. 1.
- FIG. 1 illustrates a structure of a laser diode using zinc oxide nanorods according to an embodiment of the present invention.
- Laser diode uses a zinc oxide material, the first UV to be oscillated by electrical pumping (not optical pumping) to inject a charge (carrier injection) to any structure such as a thin film or nanorod ( Laser diodes, not visible light.
- the substrate 10 is composed of any one of a metal substrate, a silicon substrate, a glass substrate, and graphite.
- the electrode layer 20 is formed on the substrate 10.
- the electrode layer 20 is made of metal or graphene and does not transmit light. When the substrate 10 is graphite, the electrode layer 20 may be omitted.
- the base on which the zinc oxide nanorods grow is the electrode layer 20, not the semiconductor substrate.
- the nanorod layer 30 includes a plurality of zinc oxide nanorods grown on the electrode layer 20.
- the plurality of zinc oxide nanorods are doped n-type.
- Zinc oxide nanorods have a doped impurity concentration of 1 ⁇ 10 16 to 9 ⁇ 10 20 / cm 3 .
- Zinc oxide nanorods may be vertically oriented with respect to the substrate 10 or may be grown at an angle other than vertical.
- the zinc oxide nanorods have a height of 0.3 ⁇ m to 300 ⁇ m and a diameter of 10 nm to 1,000 nm or less.
- the zinc oxide nanorods are spaced apart from each other to perform laser oscillation using the light confinement effect at the interface with air.
- the single crystal semiconductor layer 40 is doped with p-type, and is in physical contact with the ends of the zinc oxide nanorods.
- the single crystal semiconductor layer 40 may be, for example, one of p-type doped single crystal silicon (Si), gallium arsenide (GaAs), and gallium nitride (GaN) substrates.
- the single crystal semiconductor layer 40 may be a p-type doped single crystal semiconductor thin film is grown on a heterogeneous substrate.
- the single crystal semiconductor layer 40 has an impurity concentration of 1 ⁇ 10 17 to 9 ⁇ 10 20 / cm 3 .
- the second polarly doped single crystal semiconductor layer 40 located on the zinc oxide nanorods has a structure in place of the p-n type junction.
- a semiconductor device is composed of a junction of a p-type and an n-type semiconductor.
- the p-n junction may be formed by a diffusion method by melting a semiconductor material or ion implantation of impurities, or by growing impurities by implanting impurities when forming a semiconductor thin film or bulk layer.
- the single crystal semiconductor layer 40 is only in contact with the upper portion of the nanorod layer 30, and any one of the constituent elements of the two materials is melted and joined by heat treatment or any manipulation. (Junction) or characterized in that the constituent materials do not diffuse each other.
- each nanorod acts as a cavity having a spacing of 0.3 ⁇ m to 300 ⁇ m in the major axis direction and a cavity having a diameter of 100 to 1000 nm in the minor axis direction, so that the light inside the fabric is Fabri-Faro ( Fabry-Ferot) interference occurs, and more metastable emission levels are formed inside the nanorods.
- Fabri-Faro Fabry-Ferot
- the wavelength of the emitted light depends on the length and diameter of the n-type zinc oxide nanorods, thereby forming a multi-mode of interference. Therefore, light of several wavelengths may be emitted.
- FIG. 2 a zinc oxide nanorod having a hexagonal structure is illustrated.
- the (0001) plane direction is a direction in which the nanorods grow long, and three pairs of parallel planes constituting the hexagonal pole surface of the nanorods form a cavity having a spacing of 100-1000 nm.
- Figure 2 Face of direction and An example is shown in which the planes in the directions form parallel cavities.
- the electrode layer 20 on the substrate 10 a plurality of zinc oxide nanorods doped n-type on the electrode layer 20 Forming a nanorod layer 30 by contacting them, contacting the p-type doped single crystal semiconductor layer 40 on the nanorod layer 30, and forming a nanorod layer 30 on an upper surface of the single crystal semiconductor layer 40. And applying the pressure to fix the single crystal semiconductor layer 40 to the nanorod layer 30.
- a process of manufacturing the above-described laser diode with reference to FIGS. 3 to 5b will be described in detail.
- FIG. 3 illustrates an electrode layer 20 formed on a substrate 10.
- the base on which the zinc oxide nanorods grow is the electrode layer 20, not the semiconductor substrate.
- the nanorod layer 30 may be formed by a vapor phase transport process, a metal-organic source chemical vapor deposition method, a sputter method, or a chemical electrolysis deposition method. Deposition), the screen printing method may be a step of growing the zinc oxide nanorods.
- zinc oxide nanorods may be directly grown on the electrode layer 20.
- a material having a higher refractive index than air and having a lower refractive index than zinc oxide may be filled in the void space between the zinc oxide nanorods.
- FIG. 5A illustrates a process of fixing the single crystal semiconductor layer 40 to the nanorod layer 30.
- a pressure of 0.05 to 8 N / cm 2 may be applied to the upper surface of the single crystal semiconductor layer 40.
- FIG. 5B illustrates an example in which the single crystal semiconductor layer 40 is fixed by the method of FIG. 5A.
- Figure 5b shows the shape of the end portion is gradually narrowed and the end of the end of the zinc oxide nanorod having a length of 35 ⁇ m bent.
- the length of the zinc oxide nanorod is advantageously several ⁇ m, laser oscillation by internal scattering is possible even in a curved structure as shown in FIG. 5B.
- FIG. 6 illustrates an example in which the structure of FIG. It is shown.
- Epoxy 800 may be used to fix the single crystal semiconductor layer 40. More specifically, an epoxy that connects the side surface of the single crystal semiconductor layer 40, the metal electrode layer 20, and the side surface of the substrate 10 may be attached to the upper surface of the single crystal semiconductor layer 40. Since the epoxy can withstand at 300 ° C., the use of epoxy allows for the preparation of metal processing processes to be subsequently linked.
- FIG. 7 illustrates a structure in which the wiring electrode 600 and the heat dissipation layer 700 are added to the structure of FIG. 1.
- a metal layer may be formed on the bottom surface of the substrate 10 and the top surface of the single crystal semiconductor layer 40, and then heat treated on the metal layer to form an ohmic junction.
- a heat dissipation layer (eg, metal) may be attached to at least one of the top surface of the single crystal semiconductor layer 40 or the bottom surface of the substrate 10, which may help to cool this heat. have.
- FIG. 8 illustrates an emission spectrum of an ultraviolet region at room temperature of a laser diode manufactured according to the structure of FIG. 1.
- the actual contact area of the zinc oxide nanorod layer 30 and the p-type single crystal semiconductor layer 40 is smaller than the area of the p-type single crystal semiconductor layer 40.
- the mode has a wavelength of 383, 384, 385, 386, 393 nm at a current density of 1 A / cm 2 , and the half width is 1 to 2 nm. It can be seen that the UV laser is oscillated.
- One embodiment of the present invention focuses on the fact that p-type doping of zinc oxide is difficult, and has a structure in which the other end of the p-type material and the zinc oxide nanorods are in physical contact. Therefore, in addition to the p-type doped single crystal semiconductor layer 40 used in the embodiment of the present invention, a wider variety of types and types of p-type materials may be used.
- the n-type zinc oxide nano In another embodiment of a laser diode using zinc oxide nanorods, after growing the substrate 10, the electrode layer 20 on the substrate, and the n-type zinc oxide nanorod 30 on the electrode layer, the n-type zinc oxide nano
- the p-type doped gallium nitride single crystal semiconductor can be contacted at the rod end. Since the gallium nitride single crystal semiconductor has an energy band gap of 3.4 eV and is wider than that of silicon, ultraviolet light or blue light emission is more advantageous in p-n contact with the zinc oxide nanorods.
- fabricating a p-type doped single crystal gallium nitride substrate may be difficult with current technology, and according to another embodiment of the present invention, a p-type doped single crystal gallium nitride semiconductor layer is formed on the n-type zinc oxide nano
- the laser diode can be constructed in contact with the end of the rod 30.
- the electrode layer 20 on the substrate, the n-type zinc oxide nanorod 30 on the electrode layer, the n-type zinc oxide It may be in contact with an indium tin oxide (ITO) layer doped with p-type at the nanorod end.
- ITO indium tin oxide
- ITO is a wide energy gap material that can be adjusted to n-type or p-type, but is not a single crystal material but is widely used as a transparent electrode.
- the higher the concentration of the holes the more advantageous. Therefore, when the p-type doped ITO thin film layer grown on the glass substrate is in pn contact with the zinc oxide nanorods, the luminous efficiency of the zinc oxide nanorods is increased. You can expect
- a laser diode using zinc oxide nanorods is characterized by growing the substrate 10, the electrode layer 20 on the substrate, and the n-type zinc oxide nanorod 30 on the electrode layer, followed by the n-type oxidation.
- a laser diode may be constructed by contacting a p-type doped polyfluorene (PFO) layer at a zinc nanorod end.
- PFO polyfluorene
- the material that is in contact with the n-type zinc oxide nanorods (30) end is doped with p-type to inject holes, to form a p-type doped polymer layer for easy processing on the glass substrate end of the zinc oxide nanorods Available for pn contact.
- polymers are advantageous in large area processes and inexpensive.
- PFO materials have an energy band gap of about 3 eV, which is advantageous for ultraviolet and blue light emission.
- the embodiments of the present invention overcome the problem of doping zinc-type p-type semiconductors while making the most of the advantages of nanostructures, and easily perform room temperature UV laser oscillation even in an electrical pumping method and simplify the manufacturing process. It can be applied to optical communication or other fields requiring ultraviolet laser.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Semiconductor Lasers (AREA)
- Physical Vapour Deposition (AREA)
- Recrystallisation Techniques (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Led Devices (AREA)
Abstract
Description
Claims (24)
- 기판;상기 기판 위에 형성된 전극층;n형으로 도핑되어 상기 전극층 위에 성장된 복수의 산화아연 나노로드들을 포함하는 나노로드층; 및p형으로 도핑되고, 상기 산화아연 나노로드들의 말단에 물리적으로 접촉하는 형태의 단결정 반도체층을 포함하는, 산화아연 나노로드를 이용한 레이저 다이오드.
- 제 1 항에 있어서,상기 산화아연 나노로드들은 상기 기판에 대해 수직 배향되는 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드.
- 제 1 항에 있어서,상기 산화아연 나노로드들은 상기 기판에 대해 수직이 아닌 각도로 성장된 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드.
- 제 1 항에 있어서,상기 산화아연 나노로드들은 육각기둥 형태로 서로 이격되어 있으며, 상기 육각기둥 형태의 나노로드 내에서 장축 방향으로 간격이 0.3 μm 내지 300 μm 인 공동(Cavity)을 이루고, 단축 방향으로 기둥면을 이루는 평행한 면들 사이의 간격이 100 내지 1000 nm인 공동(Cavity)이 형성되어 상기 나노로드 내에서 빛의 패브리-패로(Febry-Perot) 간섭을 이용한 레이저 발진을 하는 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드.
- 제 1 항에 있어서,상기 산화아연 나노로드들 사이의 공간에 채워지고 공기보다 굴절률이 높으면서 산화아연 보다 굴절률이 낮은 물질을 더 포함하는 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드.
- 제 1 항에 있어서,상기 산화아연 나노로드들은 도핑된 불순물 농도가 1×1016 내지 9×1020 /cm3 이고,상기 단결정 반도체층은 불순물 농도가 1×1017 내지 9×1020 /cm3 인 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드.
- 제 1 항에 있어서,상기 기판은금속 기판, 실리콘 기판, 유리 기판, 또는 그래파이트(Graphite) 기판 중 어느 하나인 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드.
- 제 1 항에 있어서,상기 전극층은금속층 또는 그래핀(Graphene)층 중 어느 하나인 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드
- 제 1 항에 있어서,상기 산화아연 나노로드들은 높이가 0.3 μm 내지 300 μm 이고, 직경이 10 nm 내지 1,000 nm 이하인 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드.
- 제 1 항에 있어서,상기 단결정 반도체층은p형으로 도핑된 단결정 실리콘(Si), 비소갈륨(GaAs), 또는 질화갈륨 (GaN) 기판 중 하나인 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드.
- 제 1 항에 있어서,상기 단결정 반도체층은이종 기판 위에 p형으로 도핑된 단결정 반도체 박막이 성장된 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드.
- 그래파이트 기판;n형으로 도핑되어 상기 그래파이트 기판 위에 성장된 복수의 산화아연 나노로드들을 포함하는 나노로드층; 및p형으로 도핑되고, 상기 산화아연 나노로드들의 말단에 물리적으로 접촉하는 형태의 단결정 반도체층을 포함하는, 산화아연 나노로드를 이용한 레이져 다이오드.
- 기판 위에 전극층을 형성하는 단계;상기 전극층 위에 n형으로 도핑된 복수의 산화아연 나노로드들을 성장하여 나노로드층을 형성하는 단계;상기 나노로드층 위에 p형으로 도핑된 단결정 반도체층을 접촉하는 단계; 및상기 단결정 반도체층의 상면에 소정의 압력을 가하여 상기 단결정 반도체층을 상기 나노로드층에 고정하는 단계를 포함하는, 산화아연 나노로드를 이용한 레이저 다이오드 제조 방법.
- 제 13 항에 있어서,상기 단결정 반도체층을 상기 나노로드층에 고정한 후에, 상기 기판의 하면과 상기 단결정 반도체층의 상면에 각각 금속층을 형성하는 단계; 및상기 금속층에 열처리하여 오믹접합을 형성하는 단계를 더 포함하는 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드 제조 방법.
- 제 13 항에 있어서,상기 나노로드층을 형성하는 단계는상기 금속 전극층 위에 상기 산화아연 나노로드들을 직접 성장하는 단계인 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드 제조 방법.
- 제 13 항에 있어서,상기 나노로드층을 형성하는 단계는버퍼층을 형성한 후 상기 산화아연 나노로드들을 성장하는 단계인 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드 제조 방법.
- 제 13 항에 있어서,상기 나노로드층을 형성하는 단계는기상 수송 증착법(Vapor Phase Transport process), 유기금속 화학 기상 증착법(Metal-Organic source Chemical Vapor Deposition), 스퍼터법(Sputter), 화학 전기분해 증착법 (Chemical Electrolysis Deposition), 또는 스크린 프린팅법 중 어느 하나의 방법으로 상기 산화아연 나노로드들을 성장하는 단계인 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드 제조 방법.
- 제 13 항에 있어서,상기 나노로드층을 형성하는 단계는상기 산화아연 나노로드들 사이의 빈 공간에 공기 보다 굴절률이 높으면서 산화아연 보다 굴절률이 낮은 물질을 채우는 단계를 포함하는 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드 제조 방법.
- 제 13 항에 있어서,상기 단결정 반도체층은단결정 실리콘 기판, 단결정 비소갈륨(GaAs) 기판, 또는 단결정 질화갈륨(GaN)기판 중 하나인 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드 제조 방법.
- 제 13 항에 있어서,상기 단결정 반도체층은p형으로 도핑되며 이종기판 상에 단결정 실리콘, 비소갈륨, 질화갈륨, ITO(Indium Tin Oxide) 또는 폴리머층 중 어느 하나가 성장된 형태인 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드 제조 방법
- 제 13 항에 있어서,상기 단결정 반도체층을 상기 나노로드층에 고정하는 단계는상기 단결정 반도체층의 상면에 0.05 내지 8 N/cm2 의 압력을 가하는 단계인 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드 제조 방법.
- 제 13 항에 있어서,상기 단결정 반도체층을 상기 나노로드층에 고정하는 단계는상기 단결정 반도체층의 상면에 압력을 가한 상태에서 상기 단결정 반도체층의 측면, 상기 금속 전극층 및 상기 기판의 측면을 이어주는 에폭시를 부착하는 단계를 더 포함하는 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드 제조 방법.
- 제 13 항에 있어서,상기 단결정 반도체층의 상면 또는 상기 기판의 하면 중 적어도 하나에 방열층을 부착하는 단계를 더 포함하는 것을 특징으로 하는, 산화아연 나노로드를 이용한 레이저 다이오드 제조 방법.
- 그래파이트 기판 위에 n형으로 도핑된 복수의 산화아연 나노로드들을 성장하여 나노로드층을 형성하는 단계;상기 나노로드층 위에 p형으로 도핑된 단결정 반도체층을 접촉하는 단계; 및상기 단결정 반도체층의 상면에 소정의 압력을 가하여 상기 단결정 반도체층을 상기 나노로드층에 고정하는 단계를 포함하는, 산화아연 나노로드를 이용한 레이저 다이오드 제조 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/518,440 US8787416B2 (en) | 2009-12-23 | 2010-09-10 | Laser diode using zinc oxide nanorods and manufacturing method thereof |
KR1020127019245A KR101416663B1 (ko) | 2009-12-23 | 2010-09-10 | 산화아연 나노로드를 이용한 레이저 다이오드 및 그 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20090130085 | 2009-12-23 | ||
KR10-2009-0130085 | 2009-12-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011078467A2 true WO2011078467A2 (ko) | 2011-06-30 |
WO2011078467A3 WO2011078467A3 (ko) | 2011-09-01 |
Family
ID=44196229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2010/006172 WO2011078467A2 (ko) | 2009-12-23 | 2010-09-10 | 산화아연 나노로드를 이용한 레이저 다이오드 및 그 제조 방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8787416B2 (ko) |
KR (1) | KR101416663B1 (ko) |
WO (1) | WO2011078467A2 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102801101A (zh) * | 2012-07-26 | 2012-11-28 | 华为技术有限公司 | 一种石墨烯发光器、使用所述石墨烯发光器的散热装置以及光传输网络节点 |
CN103311803A (zh) * | 2013-06-13 | 2013-09-18 | 东南大学 | 石墨烯增强氧化锌紫外激光微腔及其制备方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140058969A (ko) * | 2012-11-07 | 2014-05-15 | 한국전자통신연구원 | 발광 다이오드 및 그 제조 방법 |
US9324628B2 (en) | 2014-02-25 | 2016-04-26 | International Business Machines Corporation | Integrated circuit heat dissipation using nanostructures |
CN104319613A (zh) * | 2014-10-29 | 2015-01-28 | 中国科学院半导体研究所 | 以石墨烯为饱和吸收体的键合的锁模激光器 |
KR101830801B1 (ko) * | 2015-08-13 | 2018-02-22 | 인제대학교 산학협력단 | ZnO 나노로드의 재성장을 위한 증기가둠 대면 어닐링 방법 |
CN105322439B (zh) * | 2015-11-24 | 2018-06-19 | 电子科技大学 | 一种基于图形化生长的光束可控纳米线激光器 |
CN106591949A (zh) * | 2016-11-23 | 2017-04-26 | 濮阳市质量技术监督检验测试中心 | 气相沉积制单晶Ag掺杂氧化锌六方微米管的方法及装置 |
KR102003157B1 (ko) * | 2018-02-08 | 2019-07-23 | 인제대학교 산학협력단 | 압전효과로 성능이 향상된 ipzc구동기 |
CN111697115A (zh) * | 2019-03-15 | 2020-09-22 | 中国科学院半导体研究所 | 一种基于非晶衬底的氮化物薄膜结构及其制备方法 |
KR102344931B1 (ko) * | 2020-08-14 | 2021-12-31 | 주식회사 레신저스 | 방출광을 대칭형 광으로 쉐이핑하는 폴리머 로드 |
US11749487B2 (en) * | 2021-03-22 | 2023-09-05 | Purdue Research Foundation | Silicon-based vacuum transistors and integrated circuits |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050001582A (ko) * | 2003-06-26 | 2005-01-07 | 학교법인 포항공과대학교 | p-타입 반도체 박막과 n-타입 산화아연(ZnO)계나노막대의 이종접합 구조체, 이의 제법 및 이를 이용한소자 |
KR20060024197A (ko) * | 2004-09-13 | 2006-03-16 | 삼성전자주식회사 | 나노와이어 발광소자 및 그 제조방법 |
KR20060121432A (ko) * | 2005-05-24 | 2006-11-29 | 엘지전자 주식회사 | 로드형 발광 구조물 및 그를 형성하는 방법 |
KR20060121413A (ko) * | 2005-05-24 | 2006-11-29 | 엘지전자 주식회사 | 나노 로드를 갖는 발광 소자 및 그의 제조 방법 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3497685B2 (ja) * | 1996-02-16 | 2004-02-16 | 株式会社東芝 | 半導体bcn化合物を用いた半導体デバイス |
WO2008140611A2 (en) * | 2006-12-18 | 2008-11-20 | The Regents Of The University Of California | Nanowire array-based light emitting diodes and lasers |
-
2010
- 2010-09-10 US US13/518,440 patent/US8787416B2/en active Active
- 2010-09-10 KR KR1020127019245A patent/KR101416663B1/ko active IP Right Grant
- 2010-09-10 WO PCT/KR2010/006172 patent/WO2011078467A2/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050001582A (ko) * | 2003-06-26 | 2005-01-07 | 학교법인 포항공과대학교 | p-타입 반도체 박막과 n-타입 산화아연(ZnO)계나노막대의 이종접합 구조체, 이의 제법 및 이를 이용한소자 |
KR20060024197A (ko) * | 2004-09-13 | 2006-03-16 | 삼성전자주식회사 | 나노와이어 발광소자 및 그 제조방법 |
KR20060121432A (ko) * | 2005-05-24 | 2006-11-29 | 엘지전자 주식회사 | 로드형 발광 구조물 및 그를 형성하는 방법 |
KR20060121413A (ko) * | 2005-05-24 | 2006-11-29 | 엘지전자 주식회사 | 나노 로드를 갖는 발광 소자 및 그의 제조 방법 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102801101A (zh) * | 2012-07-26 | 2012-11-28 | 华为技术有限公司 | 一种石墨烯发光器、使用所述石墨烯发光器的散热装置以及光传输网络节点 |
WO2014015834A1 (zh) * | 2012-07-26 | 2014-01-30 | 华为技术有限公司 | 一种石墨烯发光器、使用所述石墨烯发光器的散热装置以及光传输网络节点 |
US9466940B2 (en) | 2012-07-26 | 2016-10-11 | Huawei Technologies Co., Ltd | Graphene illuminator, and heat dissipating apparatus and optical transmission network node using the graphene illuminator |
CN103311803A (zh) * | 2013-06-13 | 2013-09-18 | 东南大学 | 石墨烯增强氧化锌紫外激光微腔及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20120314726A1 (en) | 2012-12-13 |
KR20120105037A (ko) | 2012-09-24 |
WO2011078467A3 (ko) | 2011-09-01 |
US8787416B2 (en) | 2014-07-22 |
KR101416663B1 (ko) | 2014-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011078467A2 (ko) | 산화아연 나노로드를 이용한 레이저 다이오드 및 그 제조 방법 | |
Jiang et al. | Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays | |
CN100421271C (zh) | 纳米丝发光器件及其制造方法 | |
KR100313183B1 (ko) | 발광디바이스 | |
Hsieh et al. | Electroluminescence from ZnO/Si-nanotips light-emitting diodes | |
WO2012047068A2 (ko) | 발광소자 및 그 제조방법 | |
KR102212759B1 (ko) | 다중 헤테로접합 나노입자, 이의 제조 방법 및 이를 포함하는 물품 | |
US20060197436A1 (en) | ZnO nanotip electrode electroluminescence device on silicon substrate | |
CN1381907A (zh) | 发光设备和使用该发光设备的显示装置 | |
TW201214754A (en) | Light emitting element and production method for same, production method for light-emitting device, illumination device, backlight, display device, and diode | |
Yan et al. | A vertical structure photodetector based on all‐inorganic perovskite quantum dots | |
KR20140113587A (ko) | 다중 헤테로접합 나노입자, 이의 제조 방법 및 이를 포함하는 물품 | |
Eisenhawer et al. | Increasing the efficiency of polymer solar cells by silicon nanowires | |
Shervin et al. | Bendable III-N visible light-emitting diodes beyond mechanical flexibility: theoretical study on quantum efficiency improvement and color tunability by external strain | |
Mucur et al. | Triangular-shaped zinc oxide nanoparticles enhance the device performances of inverted OLEDs | |
Baeva et al. | ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection | |
CN1791987A (zh) | 可调发光半导体器件 | |
KR100974626B1 (ko) | 접촉 구조의 나노로드 반도체 소자 및 그 제조 방법 | |
CN102369605B (zh) | 发光二极管元件及其制造方法 | |
WO2011034273A1 (ko) | 반도체 발광소자 | |
US5908303A (en) | Manufacturing method of light-emitting diode | |
US12057524B2 (en) | Semiconductor stack, semiconductor device and method for manufacturing the same | |
CN113903872A (zh) | 一种蓝光光电二极管及其制备方法 | |
CN107887486B (zh) | 一种光电晶体管及其制作方法 | |
CN216902949U (zh) | 钙钛矿太阳能电池和氮化镓基led集成结构及半导体器件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10839664 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127019245 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13518440 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10839664 Country of ref document: EP Kind code of ref document: A2 |