CN111697115A - 一种基于非晶衬底的氮化物薄膜结构及其制备方法 - Google Patents

一种基于非晶衬底的氮化物薄膜结构及其制备方法 Download PDF

Info

Publication number
CN111697115A
CN111697115A CN201910201508.0A CN201910201508A CN111697115A CN 111697115 A CN111697115 A CN 111697115A CN 201910201508 A CN201910201508 A CN 201910201508A CN 111697115 A CN111697115 A CN 111697115A
Authority
CN
China
Prior art keywords
nitride
amorphous substrate
thin film
substrate
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910201508.0A
Other languages
English (en)
Inventor
伊晓燕
王蕴玉
刘志强
梁萌
王兵
任芳
尹越
王军喜
李晋闽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201910201508.0A priority Critical patent/CN111697115A/zh
Publication of CN111697115A publication Critical patent/CN111697115A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02444Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

一种非晶衬底的氮化物薄膜结构及其制备方法,该氮化物薄膜结构包括:一非晶衬底;一石墨烯缓冲层;一纳米结构支撑层;一氮化物薄膜。该非晶衬底的氮化物薄膜结构的制备方法包括:提供一非晶衬底;将石墨烯转移到非晶衬底上;利用化学气相沉积技术在石墨烯上进行氮化物纳米结构生长,通过改变压强、温度、反应物浓度等参数获得分布均匀、取向一致的纳米结构材料;在氮化物纳米结构的基础上进行薄膜生长,通过改变压强、温度、反应物浓度等参数使得反应物横向合并生长,形成连续的氮化物薄膜;进行器件结构设计及工艺制备。本发明提出的非晶衬底的氮化物结构及其制备方法,能够在非晶衬底上制备出氮化物光电子器件,降低生产成本,拓展其应用范围。

Description

一种基于非晶衬底的氮化物薄膜结构及其制备方法
技术领域
本申请涉及照明、激光器、功率器件、微波器件等技术领域,特别涉及一种基于非晶衬底的氮化物薄膜结构及其制备方法。
背景技术
目前应用于氮化物材料生长的主要有蓝宝石、SiC、Si等衬底。虽然采用低温成核层可以降低位错密度,但是外延得到的晶体质量还有待加强。并且,这些衬底的尺寸受到限制,较大尺寸价格十分昂贵。因此,为了降低生产成本,提高性价比,利用廉价、大尺寸衬底具有重要意义。非晶玻璃价格低廉,尺寸不受限制,是氮化物薄膜外延的潜在衬底材料。而且实现非晶玻璃上氮化物的外延,也会推动晶体生长技术的进步。但是作为非晶衬底,在其上外延单晶材料有很大的难度。因此,寻找到新型的缓冲层用于氮化物外延是一个亟待解决的问题。
石墨烯是一种二维层状材料,层与层之间通过范德华力连接,很容易分开;且面内分子之间碳原子通过sp2杂化组成六边形结构,性能稳定,与纤锌矿氮化物的(0001)面相似;表面悬挂键的缺失也能避免衬底晶格失配带来的不利影响。但是由于成核点的缺失,在石墨烯表面很难直接生长出连续的薄膜。本发明通过控制生长条件,先在石墨烯缓冲层表面生长一层取向一致的氮化物纳米结构材料,然后在纳米结构的基础上进行横向合并,形成连续的氮化物薄膜。本发明所采用的方法均在金属有机物化学气相沉积设备中进行,与原有生长工艺兼容,成本降低,有利于实现大尺寸光电子器件制备。
发明内容
(一)要解决的技术问题
本发明的目的在于,提供一种基于非晶衬底的氮化物薄膜结构及其制备方法,以实现在非晶衬底上制备出氮化物光电子器件,降低生产成本,拓展其应用范围。
(二)技术方案
本发明提供了一种基于非晶衬底的氮化物薄膜结构,其包括:
一非晶衬底;
一石墨烯缓冲层,形成在所述非晶衬底上;
一纳米结构支撑层,形成在所述石墨烯缓冲层上;以及
一氮化物薄膜,形成在所述纳米结构支撑层上。
其中,所述非晶衬底为石英衬底、玻璃衬底或SiO2衬底,厚度为0.5mm-1.0mm;所述石墨烯缓冲层是一层或多层,厚度为0.4nm-3.0nm;所述纳米结构支撑层是纳米线、纳米柱、纳米锥或纳米微盘结构,其厚度为100nm-500nm;所述氮化物薄膜厚度为1μm-5μm。
本发明还提供了一种制备所述基于非晶衬底的氮化物薄膜结构的方法,具体包括:
提供一非晶衬底;
将一石墨烯缓冲层转移到所述非晶衬底上;
在所述石墨烯缓冲层上形成一氮化物纳米结构支撑层;以及
在所述氮化物纳米结构支撑层上形成一氮化物薄膜。
其中,所述将石墨烯缓冲层转移到所述非晶衬底上的步骤中,首先把生长在金属上的石墨烯固定于基板上,腐蚀掉金属后使用所述非晶衬底捞取漂浮的所述石墨烯,自然晾干后完成所述石墨烯缓冲层到所述非晶衬底的转移;
其中,所述在石墨烯缓冲层上进行氮化物纳米结构支撑层生长步骤中,采用金属有机物化学气相沉积技术在石墨烯缓冲层上生长所述氮化物纳米结构支撑层;
其中,所述在纳米结构支撑层上形成氮化物薄膜步骤中,采用金属有机物化学气相沉积技术在纳米结构支撑层上生长所述氮化物薄膜;
其中,该方法在形成氮化物薄膜之后还包括:在所述氮化物薄膜上进行器件结构设计及工艺制备。
(三)有益效果
从上述技术方案可以看出,本发明提出的一种基于非晶衬底的氮化物薄膜结构及其制备方法,具有以下有益效果:
(1)本发明提供的基于非晶衬底的氮化物薄膜结构及其制备方法,采用价格更低、尺寸更大的非晶材料作为衬底进行氮化物外延,降低生产成本,拓宽应用范围,为氮化物光电子器件制备开辟了新的道路;
(2)本发明提供的基于非晶衬底的氮化物薄膜结构及其制备方法,采用工业上可以量化生产的金属有机物化学气相沉积设备进行氮化物纳米结构及薄膜生长,克服了在非晶衬底上进行单晶材料外延的技术难题,且只采用一台设备,降低了技术难度与生产成本。
附图说明
图1是依照本发明实施例的基于非晶衬底的氮化物薄膜结构的示意图。
图2是依照本发明实施例的制备氮化物薄膜结构的方法流程图。
【符号说明】
1:非晶衬底
2:石墨烯缓冲层
3:氮化物纳米结构支撑层
4:氮化物薄膜
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明提供了一种基于非晶衬底的氮化物薄膜结构,其包括:
一非晶衬底;
一石墨烯缓冲层,形成在所述非晶衬底上;
一纳米结构支撑层,形成在所述石墨烯缓冲层上;以及
一氮化物薄膜,形成在所述纳米结构支撑层上。
其中,所述非晶衬底为石英衬底、玻璃衬底或SiO2衬底,厚度为0.5mm-1.0mm;所述石墨烯缓冲层是一层或多层,厚度为0.4nm-3.0nm;所述纳米结构支撑层是纳米线、纳米柱、纳米锥或纳米微盘结构,其厚度为100nm-500nm;所述氮化物薄膜厚度为1μm-5μm。
本发明还提供了一种制备所述基于非晶衬底的氮化物薄膜结构的方法,具体包括:
提供一非晶衬底;
将一石墨烯缓冲层转移到所述非晶衬底上;
在所述石墨烯缓冲层上形成一氮化物纳米结构支撑层;以及
在所述氮化物纳米结构支撑层上形成一氮化物薄膜。
其中,所述将石墨烯缓冲层转移到所述非晶衬底上的步骤中,首先把生长在金属上的石墨烯固定于基板上,腐蚀掉金属后使用所述非晶衬底捞取漂浮的所述石墨烯,自然晾干后完成所述石墨烯缓冲层到所述非晶衬底的转移;
其中,所述在石墨烯缓冲层上进行氮化物纳米结构支撑层生长步骤中,采用金属有机物化学气相沉积技术在石墨烯缓冲层上生长所述氮化物纳米结构支撑层;
其中,所述在纳米结构支撑层上形成氮化物薄膜步骤中,采用金属有机物化学气相沉积技术在纳米结构支撑层上生长所述氮化物薄膜;
其中,该方法在形成氮化物薄膜之后还包括:在所述氮化物薄膜上进行器件结构设计及工艺制备。
由于本发明提供的一种基于非晶衬底的氮化物薄膜结构及其制备方法中采用价格更低、尺寸更大的非晶材料作为衬底进行氮化物外延,降低了生产成本,拓宽应用范围,为氮化物光电子器件制备开辟了新的道路;此外,采用工业上可以量化生产的金属有机物化学气相沉积设备进行氮化物纳米结构及薄膜生长,克服了在非晶衬底上进行单晶材料外延的技术难题,且只采用一台设备,降低了技术难度与生产成本。
为进一步说明本发明的内容,特举实施例,结合附图,对本发明进行详细的说明。
图1是依照本发明实施例的基于非晶衬底的氮化物薄膜结构的示意图,该氮化物薄膜结构包括非晶衬底1、石墨烯缓冲层2、纳米结构支撑层3和氮化物薄膜4。结合图1所示,从下至上各层的功能具体如下:
非晶衬底1:包括但不限于石英衬底、玻璃衬底、SiO2衬底等,其厚度为0.5mm-1.0mm。
石墨烯缓冲层2:可以是单层石墨烯,也可以是多层石墨烯,厚度为0.4nm-3.0nm,在金属衬底上生长后转移到非晶衬底表面。石墨烯层与非晶衬底通过范德瓦尔斯相互作用连接,两者间没有化学键存在。
氮化物纳米结构支撑层3:氮化物纳米结构材料,包括但不限于纳米线、纳米柱、纳米锥、纳米微盘等,其厚度为100nm-500nm,用于支撑后续薄膜材料的生长。
氮化物薄膜4:氮化物薄膜材料是氮化物光电子器件的主体部分,厚度为1μm-5μm。
基于非晶衬底的氮化物薄膜结构,本实施例还提供了一种制备该结构的方法,图2是依照本发明实施例的制备氮化物薄膜结构的方法流程图,该方法包括:
步骤S201:提供一非晶衬底;该非晶衬底可以是石英衬底、玻璃衬底、SiO2衬底等,其厚度为0.5mm-1.0mm。
步骤S202:将Cu、Ni等金属上生长的石墨烯固定于基板上,旋涂聚甲基丙烯酸甲酯(Poly Methyl Methacrylate,PMMA)等转移层并在100℃-150℃的环境下固化10分钟-30分钟,在FeCl3等溶液中将Cu、Ni等金属腐蚀掉,使用非晶衬底捞取漂浮的石墨烯,自然晾干后去掉PMMA等转移层,实现将石墨烯转移到非晶衬底上。
步骤S203:采用金属有机物化学气相沉积设备进行氮化物纳米结构生长,三甲基镓、三甲基铝、氨气等作为反应源,生长出的纳米结构取向一致,高度大约为300nm。
步骤S204:采用金属有机物化学气相沉积设备进行氮化物薄膜生长,以三甲基镓、三甲基铝、氨气等作为反应源,通过改变温度、压强、反应物浓度等促进反应物横向合并生长,形成连续薄膜。以纳米线基底为例,生长纳米线结构时需要采用极小的氨气流量、较低的压强来促进其纵向生长(三甲基镓流量为35sccm,氨气流量15sccm,压强133mbar),在横向合并阶段,需要采用更大的反应物浓度来实现薄膜生长(三甲基镓流量为310sccm,氨气流量30000sccm,压强300mbar),两者之间可以加入适当的流量过渡层进一步提高晶体质量。
步骤S205:在氮化物薄膜的基础上,根据实际器件需求,进行器件结构设计及工艺制备。以氮化物蓝光LED结构为例,在生长出氮化物薄膜之后(此时生长的是非掺杂GaN),引入硅烷继续生长n型GaN薄膜,随后生长InGaN/GaN量子阱结构用于蓝光激发,引入二茂镁生长p型GaN用于提供空穴,继续生长欧姆接触层等完成器件结构。然后通过光刻、刻蚀等工艺暴露出n型区域及p型区域,通过金属蒸镀等工艺在两区域分别制备金属电极,通过沉积SiO2工艺对各部分进行钝化处理,通过磨抛、划裂等工艺将器件结构制备成小芯片,通过封装等工艺制备功能型芯片进行商用。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于非晶衬底的氮化物薄膜结构,包括:
一非晶衬底;
一石墨烯缓冲层,形成在所述非晶衬底上;
一纳米结构支撑层,形成在所述石墨烯缓冲层上;以及
一氮化物薄膜,形成在所述纳米结构支撑层上。
2.根据权利要求1所述的基于非晶衬底的氮化物薄膜结构,其特征在于,所述非晶衬底为石英衬底、玻璃衬底或SiO2衬底,厚度为0.5mm-1.0mm。
3.根据权利要求1所述的基于非晶衬底的氮化物薄膜结构,其特征在于,所述石墨烯缓冲层是一层或多层,厚度为0.4nm-3.0nm。
4.根据权利要求1所述的基于非晶衬底的氮化物薄膜结构,其特征在于,所述纳米结构支撑层是纳米线、纳米柱、纳米锥或纳米微盘结构,其厚度为100nm-500nm。
5.根据权利要求1所述的基于非晶衬底的氮化物薄膜结构,其特征在于,所述氮化物薄膜厚度为1μm-5μm。
6.一种制备权利要求1至5中任一项所述的基于非晶衬底的氮化物薄膜结构的方法,包括:
提供一非晶衬底;
将一石墨烯缓冲层转移到所述非晶衬底上;
在所述石墨烯缓冲层上形成一氮化物纳米结构支撑层;以及
在所述氮化物纳米结构支撑层上形成一氮化物薄膜。
7.根据权利要求6所述的制备基于非晶衬底的氮化物薄膜结构的方法,其特征在于,所述将石墨烯缓冲层转移到所述非晶衬底上的步骤中,首先把生长在金属上的石墨烯固定于基板上,腐蚀掉金属后使用所述非晶衬底捞取漂浮的所述石墨烯,自然晾干后完成所述石墨烯缓冲层到所述非晶衬底的转移。
8.根据权利要求6所述的制备基于非晶衬底的氮化物薄膜结构的方法,其特征在于,所述在石墨烯缓冲层上进行氮化物纳米结构支撑层生长步骤中,采用金属有机物化学气相沉积技术在石墨烯缓冲层上生长所述氮化物纳米结构支撑层。
9.根据权利要求6所述的制备基于非晶衬底的氮化物薄膜结构的方法,其特征在于,所述在纳米结构支撑层上形成氮化物薄膜步骤中,采用金属有机物化学气相沉积技术在纳米结构支撑层上生长所述氮化物薄膜。
10.根据权利要求6所述的制备基于非晶衬底的氮化物薄膜结构的方法,其特征在于,该方法在形成氮化物薄膜之后还包括:
在所述氮化物薄膜上进行器件结构设计及工艺制备。
CN201910201508.0A 2019-03-15 2019-03-15 一种基于非晶衬底的氮化物薄膜结构及其制备方法 Pending CN111697115A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910201508.0A CN111697115A (zh) 2019-03-15 2019-03-15 一种基于非晶衬底的氮化物薄膜结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910201508.0A CN111697115A (zh) 2019-03-15 2019-03-15 一种基于非晶衬底的氮化物薄膜结构及其制备方法

Publications (1)

Publication Number Publication Date
CN111697115A true CN111697115A (zh) 2020-09-22

Family

ID=72475535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910201508.0A Pending CN111697115A (zh) 2019-03-15 2019-03-15 一种基于非晶衬底的氮化物薄膜结构及其制备方法

Country Status (1)

Country Link
CN (1) CN111697115A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115050864A (zh) * 2022-08-16 2022-09-13 北京大学 一种基于非单晶衬底的单晶氮化物Micro-LED阵列的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093867A (zh) * 2006-06-19 2007-12-26 财团法人工业技术研究院 三族氮化物垂直柱阵列衬底
US20120314726A1 (en) * 2009-12-23 2012-12-13 Dongguk University Industry-Academic Cooperation Foundation Laser diode using zinc oxide nanorods and manufacturing method thereof
CN103258926A (zh) * 2013-04-28 2013-08-21 西安交通大学 一种led垂直芯片结构及制作方法
CN104947071A (zh) * 2015-05-14 2015-09-30 天津理工大学 一种石墨烯衬底上分级GaN纳米阵列及其制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093867A (zh) * 2006-06-19 2007-12-26 财团法人工业技术研究院 三族氮化物垂直柱阵列衬底
US20120314726A1 (en) * 2009-12-23 2012-12-13 Dongguk University Industry-Academic Cooperation Foundation Laser diode using zinc oxide nanorods and manufacturing method thereof
CN103258926A (zh) * 2013-04-28 2013-08-21 西安交通大学 一种led垂直芯片结构及制作方法
CN104947071A (zh) * 2015-05-14 2015-09-30 天津理工大学 一种石墨烯衬底上分级GaN纳米阵列及其制备方法及应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115050864A (zh) * 2022-08-16 2022-09-13 北京大学 一种基于非单晶衬底的单晶氮化物Micro-LED阵列的制备方法
CN115050864B (zh) * 2022-08-16 2022-11-25 北京大学 一种基于非单晶衬底的单晶氮化物Micro-LED阵列的制备方法
WO2024036680A1 (zh) * 2022-08-16 2024-02-22 北京大学 一种基于非单晶衬底的单晶氮化物Micro-LED阵列的制备方法

Similar Documents

Publication Publication Date Title
Yu et al. Van der Waals epitaxy of iii‐nitride semiconductors based on 2D materials for flexible applications
Geng et al. Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides
CN103378238B (zh) 发光二极管
CN103378234B (zh) 发光二极管
Lv et al. Two-dimensional heterostructures based on graphene and transition metal dichalcogenides: synthesis, transfer and applications
AU2015213350B2 (en) Nanowire epitaxy on a graphitic substrate
Liang et al. Quasi van der Waals epitaxy nitride materials and devices on two dimension materials
Tomioka et al. Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core–shell nanowires on Si (111) substrate
TWI517434B (zh) 外延結構的製備方法
AU2019204449A1 (en) Process for growing nanowires or nanopyramids on graphitic substrates
JP5795527B2 (ja) ナノワイヤの作製方法
TWI459589B (zh) 外延結構體的製備方法
CN109585270B (zh) 基于非晶衬底生长氮化物的方法及结构
KR20140043460A (ko) 질화물 반도체 구조 및 그 제작방법
JP2015503852A (ja) グラフェンのトップ及びボトム電極を備えたナノワイヤーデバイス及びそのようなデバイスの製造方法
Xu et al. Growth model of van der Waals epitaxy of films: A case of AlN films on multilayer graphene/SiC
TWI504017B (zh) 外延結構
TW201344946A (zh) 外延結構體
CN103378235B (zh) 发光二极管
Zhao et al. Novel III-V semiconductor epitaxy for optoelectronic devices through two-dimensional materials
Wei et al. Monolayer MoS 2 epitaxy
Han et al. Remote epitaxy and exfoliation of GaN via graphene
Wu et al. Recent progress in III-nitride nanosheets: properties, materials and applications
Singh et al. van der Waals integration of GaN light-emitting diode arrays on foreign graphene films using semiconductor/graphene heterostructures
Song et al. Recent Advances in Mechanically Transferable III‐Nitride Based on 2D Buffer Strategy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200922