WO2011078457A2 - 다이온성 복합체 마이셀을 형성하는 피에이치 민감성 블록공중합체 및 이를 이용한 약물 또는 단백질 전달체 - Google Patents
다이온성 복합체 마이셀을 형성하는 피에이치 민감성 블록공중합체 및 이를 이용한 약물 또는 단백질 전달체 Download PDFInfo
- Publication number
- WO2011078457A2 WO2011078457A2 PCT/KR2010/004819 KR2010004819W WO2011078457A2 WO 2011078457 A2 WO2011078457 A2 WO 2011078457A2 KR 2010004819 W KR2010004819 W KR 2010004819W WO 2011078457 A2 WO2011078457 A2 WO 2011078457A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino
- block copolymer
- methyl
- dimethyl
- cancer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/062—Polyethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
- A61K9/1075—Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
- C08F299/02—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
- C08F299/022—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
- C08F299/024—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/12—Copolymers
- C08G2261/126—Copolymers block
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/06—Biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/02—Applications for biomedical use
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/05—Polymer mixtures characterised by other features containing polymer components which can react with one another
Definitions
- the present invention relates to a pH-sensitive block copolymer forming a diionic complex micelle and a drug or protein carrier using the same, and more particularly, to a blood vessel in the human body by forming a nano-sized polyionic complex micelle (PIC).
- PIC polyionic complex micelle
- a pH-sensitive block copolymer and a polymer micelle-type drug or protein containing the block copolymer stably supporting the drug or protein upon administration to form a diionic complex micelle that releases the drug or protein due to a pH change at the disease site. It relates to a carrier.
- Micelles generally refer to thermodynamically stable and uniform spherical structures formed by low molecular weight materials having both amphiphilic, for example, hydrophilic and hydrophobic groups.
- the drug is present in the micelle, and the micelle may be targeted-oriented drug release in response to a temperature or pH change in the body, and thus drug delivery. It can be said that the possibility of application as a carrier is very high.
- how to stably carry the drug until reaching and releasing a specific diseased area such as cancer in the blood vessels is the key.
- Republic of Korea Patent No. 0773078 describes the production of micelles using polyethylene glycol and biodegradable polymers. All of these materials have the advantage of being biocompatible because they are biodegradable, but they are difficult to deliver drugs at desired sites because they are not sensitive to specific changes such as changes in the body, such as pH.
- US Patent No. 6,103,865 discloses a polymer using a sulfonamide, which is a material exhibiting pH sensitivity, wherein the sulfonamide is insoluble at a pH of 7.4 or less and exhibits an acid ionized at a pH of 7.4 or more.
- a compound having basicity is required for the target for cancer cells.
- the pH environment in the body generally shows pH 7.2 to 7.4, but the surrounding environment of abnormal cells such as cancer cells is known to exhibit weak acidity at pH 6.0 to 7.2.
- the patent does not disclose that the ability to form a complex with the drug to carry the drug and then efficiently deliver the drug by changing the pH of the disease site.
- U.S. Patent No. 7,427,394 B2 discusses the production and application of biodegradable poly ( ⁇ -amino ester), which has an ester group related to biodegradability in the main chain and is designed to have a tertiary amine group structure to be ionized according to pH. Therefore, there is an advantage in that the ionization property of the solubility in water is changed depending on pH. However, the patent did not use this effectively for drug delivery.
- an object of the present invention is to provide a copolymer capable of efficiently delivering a drug or protein at the disease site while stably supporting the drug or protein when administered to blood vessels in the human body.
- Another object of the present invention is to provide a drug or protein carrier that can stably carry a drug or protein when administered to blood vessels in the human body and can efficiently deliver the drug or protein by a change in the disease site.
- the present invention to achieve the above object is (a) polyethylene glycol-based compound; (b) poly (amino acid) compounds; And (c) a heterocyclic alkylamine-based compound having ionic complex inducing ability to form a diionic complex micelle formed by copolymerization.
- the present invention provides a pH-sensitive block copolymer to form a diionic complex micelle, characterized in that the polyethylene glycol-based compound has a single functional group of acrylate or methacrylate at the end.
- the present invention provides a pH-sensitive block copolymer to form a diionic complex micelle, characterized in that the polyethylene glycol-based compound has a number average molecular weight (Mn) of 500 to 5,000 g / mol.
- the present invention is characterized in that the poly (amino acid) compound is a poly ( ⁇ -amino ester) (PAE), poly (amido amine) (PAA) or a mixed copolymer (PAEA) thereof, diionic composite micelle It provides a pH sensitive block copolymer to form.
- PAE poly ( ⁇ -amino ester)
- PAA poly (amido amine)
- PAEA mixed copolymer
- the present invention is pH-sensitive to form a diionic complex micelle characterized in that the poly (amino acid) compound polymerizes an amine-based compound containing a primary or secondary amine group to a bisacrylate or a bisacrylamide-based compound A block copolymer is provided.
- the present invention is the bis acrylate compound is ethylene glycol diacrylate, 1,4-butane diol diacrylate, 1,3-butane diol diacrylate, 1,6-hexane diol diacrylate, 1 , 5-pentane diol diacrylate, 2,5-pentane diol diacrylate, 1,6-hexane diol ethoxylate diacrylate, 1,6-hexane diol propoxylate diacrylate, 3 -Hydroxy-2,2-dimethylpropyl3-hydroxy-2,2-dimethylpropionate diacrylate, 1,7-heptane diol diacrylate, 1,8-octane diol diacrylate , 1,9-nona diol diacrylate, 1,10-decane diol diacrylate, at least one selected from the group consisting of, the bisacrylamide compound is N, N'- methylene bisacrylamide (MDA) or N, N'-ethylene
- the primary amine compound in the amine compound is 1-methylamine (1-methylamine), 1-ethylamine (ethylamine), 1-propylamine (1-propylamine), 1-butylamine (1-butylamine ), 1-pentylamine, 1-hexaneamine, 1-heptaneamine, 1-octanamine, 1-nonnaamine, 1-decanamine, 1-isopropylamine, triethyleneamine, 3-methoxypropylamine, 3-ethoxypropylamine propylamine), 3-isopropoxy-1-propanamine, 3-propyl-1-propanamine, 3- (butoxy-1-propanamine) (3-butoxy-1-propanamine), 1,4-dioxa-1ethoxyamine, 4,4-dimethoxybutylamine, 4 4,4-diethoxy-1-butanamine, 2-methoxyethanamine, 3-ethoxyethanamine namine), 3-isopropyl-1-ethoxyethanamine, 4,4-dimethoxy
- the present invention is the heterocyclic alkylamine-based compound having the ionic complex inducing ability is 1- (3-aminopropyl) imidazole (1- (3-aminopropyl) imidazole, API), 1- (2-aminoethyl Pyrrolidine (1- (2-aminoethyl) pyrrolidine), 2- (2-aminoethyl) -1-methylpyrrolidine (2- (2-aminoethyl) -1-methylpyrrolidine), 1- (2-amino Ethyl) piperidine (1- (2-aminoethyl) piperidine), N- (3-aminopropyl) -2-pipecoline (N- (3-aminopropyl) -2-pipecoline), N- (N-methyl-N -Benzene) -1-propylamine (N- (N-methyl-N-benzene) -1-propylamine), N- (3-aminopropyl) 2-pyrrolidin
- the present invention provides a pH-sensitive block copolymer to form a diionic complex micelle, characterized in that the molecular weight of the pH-sensitive block copolymer is 1,000 to 20,000 g / mol.
- the present invention is a hydrophilic block derived from a polyethylene-based compound and a hydrophobic block derived from a poly (amino acid) compound in the pH-sensitive block copolymer formed, but is ionized at pH 6.0 ⁇ 7.0 between the blocks
- micelles are formed by reversible self-assembly in the pH range of 7.0 to 7.4, and a diionic complex derived from the micelles and heterocyclic alkylamine compounds is formed to stabilize drugs or proteins in human blood vessels.
- the present invention provides a drug or protein carrier using a pH-sensitive block copolymer which forms a diionic complex micelle capable of circulating and releasing drug or protein at a disease site.
- the present invention is the drug or protein human serum albumin (HSA), paclitaxel (paclitaxel), doxorubicin (doxorubicin), retinoic acid (cis-platin), camptothecin (camptothecin) ), 5-FU (fluorouracil), docetaxel (docetaxel), tamoxifen (tamoxifen), anasterozole, carboplatin, topotecan, beotecan, belotecan, irinotecan , Anti-cancer agent selected from the group consisting of gleevec and vincristine, aspirin and salicylates, ibuprofen, naproxen, phenoprofen ), Indomethacin, phenylbutazone, mesotrexate, cyclophosphamide, mechlorethamine, dexamethasone, prednisolone, prednisolone, selecock Celecoxib, Anti
- the present invention is characterized in that the cancer disease is breast cancer, lung cancer, uterine cancer, cervical cancer, prostate cancer, head and neck cancer, pancreatic cancer, brain tumor, liver cancer, skin cancer, esophageal cancer, testicular cancer, kidney cancer, colon cancer, thyroid cancer, tongue cancer or rectal cancer
- the cancer disease is breast cancer, lung cancer, uterine cancer, cervical cancer, prostate cancer, head and neck cancer, pancreatic cancer, brain tumor, liver cancer, skin cancer, esophageal cancer, testicular cancer, kidney cancer, colon cancer, thyroid cancer, tongue cancer or rectal cancer
- a pH-sensitive block copolymer is characterized in that the cancer disease is breast cancer, lung cancer, uterine cancer, cervical cancer, prostate cancer, head and neck cancer, pancreatic cancer, brain tumor, liver cancer, skin cancer, esophageal cancer, testicular cancer, kidney cancer, colon cancer, thyroid cancer, tongue cancer or rectal cancer
- the present invention also provides a drug or protein carrier using a pH-sensitive block copolymer, characterized in that the inflammatory disease is rheumatoid arthritis, osteoarthritis or arteriosclerosis.
- the drug or protein carrier using the diionic complex micelle according to the present invention can reliably support the drug or protein when administered to blood vessels in the human body and circulate stably while releasing the drug or protein due to the pH change at the disease site. It works.
- Figure 3 is a graph showing the acid-base titration profile according to the change in the content of aminopropylimidazole (API) in the pH-sensitive block copolymer prepared in Examples 1 to 3.
- API10 PEG-PAE-API10
- API30 PEG-PAE-API30
- API50 PEG-PAE-API50
- FIG. 4 is a graph measured by electrophoresis at pH 7.4 of pH sensitive block copolymers prepared in Examples 1 to 3 and Example 11 and pure human serum albumin (HSA) protein.
- FIG. 4 is a graph measured by electrophoresis at pH 7.4 of pH sensitive block copolymers prepared in Examples 1 to 3 and Example 11 and pure human serum albumin (HSA) protein.
- Lane 1 molecular weight marker
- Lane 2 pure HSA
- Lane 3 API10 + HSA
- Lane 4 API30 + HSA
- Lane 5 API 50 + HSA. (5 wt.% HSA of polymer and 200 ng / mL HSA for each sample in water).
- FIG. 5 is a graph showing changes in zeta potential at various pH of micelles carrying protein and pure HSA protein in the block copolymers prepared in Examples 1 and 2.
- FIG. 5 is a graph showing changes in zeta potential at various pH of micelles carrying protein and pure HSA protein in the block copolymers prepared in Examples 1 and 2.
- FIG. 6 is a graph showing the micelle particle size (a) and the scattering intensity (b) measured by dynamic light scattering (DLS) according to the salt of the block copolymer prepared in Examples 1 to 3.
- Figure 7 is a graph showing the change in size of the block copolymer prepared in Example 3 and Example 11 and micelles carrying pure HSA protein with DLS over time.
- Figure 8 is a graph measuring the change of protein released from micelles and micelles carrying block copolymers prepared in Examples 3 and 11 and pure HSA protein by CD. ( ⁇ ) HSA, ( ⁇ ) complexed HSA and ( ⁇ ) released HSA.
- Figure 9 is prepared by the PIC micelles of pure protein (HSA) labeled FITC in the block copolymer prepared in Example 3 and then cultured in MDA-MB-435 cells to observe the intracellular penetration effect (confocal microscopy ( Image measured with a confocal microscope.
- HSA-FITC green color distribution in cytoplasm.
- FIG. 10 is a graph showing the in vitro cytotoxicity of the block copolymers prepared in Examples 3 and 11 and micelles carrying pure HSA protein in MDA-MB-435 cells by MTT assay.
- the present invention can form hydrophilic polyethyleneglycol-based compounds and strong ionic complexes with pH-sensitive poly (amino acid) compounds such as poly ( ⁇ -amino ester), poly (amido amine) or copolymers thereof
- pH-sensitive poly (amino acid) compounds such as poly ( ⁇ -amino ester), poly (amido amine) or copolymers thereof
- the pH-sensitive block copolymer self-assembles to take a core-shell structure having a nano size and Diionic complex micelles are formed and supported stably.
- the micelles are characterized in that a method for preparing a diionic complex micelle that releases a drug or protein by charge repulsion between a block copolymer and a drug or a protein at a pH below the isoelectric point (pl) and providing a target-oriented drug or protein carrier.
- the micelle formed stably carries a drug or protein at a specific pH, for example, pH 7.0 to 7.4, which is the pH range of normal cells in the body, and is less than the pH range 7.0 indicated by abnormal cells such as cancer cells.
- a specific pH for example, pH 7.0 to 7.4 which is the pH range of normal cells in the body, and is less than the pH range 7.0 indicated by abnormal cells such as cancer cells.
- the micelle structure is disrupted, so that the micelle structure can be used as a target-oriented drug or protein release carrier.
- PAE poly ( ⁇ -amino ester)
- PAA poly (amido amine)
- PAEA poly (amino acid) Due to the increased degree of ionization of the amine, the entire PAE (or PAA, PAEA) becomes water soluble and cannot form micelles. Further, at pH 7.0 to 7.4, the degree of ionization of PAE (or PAA, PAEA) is lowered to show hydrophobic characteristics, thereby forming micelles by self-assembly.
- block copolymer capable of forming the pH-sensitive micelles may be used for diagnostic imaging such as gene transfer and drug delivery for the treatment of diseases, as well as for the delivery of substances for diagnosis of diseases to abnormal cells. Can be applied.
- micelles were formed in the range of pH 7.0 to 7.4, which is the same as normal body conditions, and micelle-targeted micelles in which micelles collapsed at pH 7.0, which is an abnormal condition such as cancer cells, were applied.
- pH 7.0 pH 7.0
- micelle-targeted micelles in which micelles collapsed at pH 7.0, which is an abnormal condition such as cancer cells, were applied.
- the pH-sensitive block copolymer micelles may be prepared by variously controlling the formation conditions of the pH-sensitive block copolymers, such as the constituents of the above-described block copolymers, their molar ratios, molecular weights and / or functional groups in the block.
- the rate of biodegradation in vivo can be easily controlled, thereby allowing targeted drug delivery to appropriate body locations where drug delivery should occur.
- One of the constituents of the block copolymer forming the diionic complex micelle according to the present invention can be used without limitation as long as it is a biodegradable compound having conventional hydrophilicity known in the art, and a polyethylene glycol-based compound represented by Chemical Formula 1 is particularly preferable. Do. More preferably, it has a single functional group (monofunctional) such as acrylate or methacrylate at the terminal of the polyethylene glycol-based compound, and examples thereof include a compound represented by the following Chemical Formula 2 in which the molecular terminal portion is replaced with an acrylate.
- R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
- x is a natural number in the range of 1 to 200.
- the alkyl group means a linear or branched lower saturated aliphatic hydrocarbon, for example, methyl, ethyl, n -propyl, isopropyl, n -butyl, s -butyl, isobutyl, t -butyl and n -pen And a tilt group.
- R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, where x is a natural number in the range of 1 to 200.
- the alkyl group refers to a linear or branched lower saturated aliphatic hydrocarbon, for example, methyl, ethyl, n -propyl, isopropyl, n -butyl, s -butyl, isobutyl, t -butyl and n -pentyl groups Etc.
- the number average molecular weight (Mn) of the polyethylene glycol-based compound is not particularly limited, but is preferably in the range of 500 g / mol to 5,000 g / mol.
- the number average molecular weight of the polyethylene glycol compound is less than 500 g / mol
- the length of the hydrophilic block is too short at a specific pH
- the number average molecular weight of the polyethyleneglycol-based compound exceeds 5,000 g / mol, the block length becomes too large compared to the molecular weight of the hydrophobic poly (amino acid) to break the balance of hydrophilicity / hydrophobicity, and micelles cannot be formed at a specific pH. Can be precipitated.
- Another component of the block copolymer forming the pH sensitive micelle according to the present invention is a poly (amino acid) compound having both hydrophobicity and pH sensitivity, and non-limiting examples thereof include poly ( ⁇ -amino ester) [poly ( ⁇ -amino ester), PAE], poly (amido amine) [poly (amido amine), PAA] or a mixed copolymer thereof [poly ( ⁇ -amino ester)-(amido amine ), PAEA].
- the PAE, PAA, and PAEA which is a kind of poly (amino acid), have ionization characteristics such that the solubility in water varies depending on pH due to the tertiary amine groups present in the poly (amino acid). May form or collapse the micelle structure.
- the compounds may be prepared according to methods commonly known in the art, for example, by polymerizing an amine-based compound to a bisacrylate compound or bisacrylamide compound having a double bond through a Mitchell reaction. (Amino acid) compounds can be obtained.
- the bisacrylate compound used herein may be represented by the following Chemical Formula 3, and non-limiting examples thereof include ethylene glycol diacrylate, 1,4-butane diol diacrylate, and 1,3-butane diol diacryl. Rate, 1,6-hexane diol diacrylate, 1,5-pentane diol diacrylate, 2,5-pentane diol diacrylate, 1,6-hexane diol ethoxylate diacrylate, 1 , 6-hexane diol propoxylate diacrylate, 3-hydroxy-2,2-dimethylpropyl3-hydroxy-2,2-dimethylpropionate diacrylate, 1,7-heptane di All diacrylate, 1,8-octane diol diacrylate, 1,9-nona diol diacrylate, 1,10-decane diol diacrylate or mixtures thereof.
- R 3 is an alkyl group having 1 to 10 carbon atoms.
- bisacrylamide-based compound may be represented by the following formula (4).
- Non-limiting examples thereof include N, N'-methylene bisacrylamide (MDA), N, N'-ethylene bisacrylamide or mixtures thereof.
- R is an alkyl group having 1 to 10 carbon atoms.
- the amine-based compound may be used without limitation as long as it has an amine group, and in particular, a primary amine represented by the following formula (5), a secondary amine-containing diamine compound represented by the formula (6), or a mixture thereof is preferable.
- R 1 is an alkyl group having 1 to 10 carbon atoms.
- Non-limiting examples of the primary amine compound is 1-methylamine (1-met hylamine), 1-ethylamine (ethylamine), 1-propylamine (1-propylamine), 1-butylamine (1-butylamine), 1-pentylamine, 1-hexaneamine, 1-heptaneamine, 1-octanamine, 1-nonnaamine, 1 1-decanamine, 1-isopropylamine, trie thyleneamine, 3-methoxypropylamine, 3-ethoxypropylamine ), 3-isopropoxy-1-propanamine, 3-propyl-1-propanamine, 3- (butoxy-1-propanamine) ( 3-butoxy-1-propanamine), 1,4-dioxa-1-ethoxyamine, 4,4-dimethoxybutylamine, 4, 4-diethoxy-1-butanamine, 2-methoxyethanamine, 3-ethoxyethanamine, 3-isopropyl 3-isopropoxy-1-ethoxyethanamine, 4,4-dime
- R 2 is an alkyl group having 1 to 10 carbon atoms.
- Non-limiting examples of the secondary amine compound are 4,4'-trimethylenepiperidine, 4,4'-trimethylenepiperidine, N, N'-dimethylethylenediamine, piperazine (piperazine), 2-methylpiperazine, 3-methyl-4- (3-methylphenyl) piperazine (3-methyl-4- (3-methylphenyl) piperazine), 3-methylpiperazine (3-methylpiperazine), 4- (phenylmethyl) piperazine (4- (phenylmethyl) piperazine), 4- (1-phenylethyl) piperazine (4- (1-phenylethyl) piperazine), 4- (1,1 '-Dimethoxycarbonyl) piperazine (4- (1,1'-dimethoxycarb onyl) piperazine), 4- (2- (bis- (2-propenyl) amino) ethyl) piperazine (4- (2- (bis- (2-prophenyl) amino) ethyl) pi perazine), 1- (2-aminoethyl) pipe
- the heterocyclic alkylamine-based compound used to easily induce the formation of a multi-ionic complex with the drug can be used without limitation as long as it has a tertiary amine group in the amine group and the aromatic ring.
- the heterocyclic alkylamine compound used to derive the chemical formula represented by the following Formula 7 is preferably a heterocyclic alkylamine compound having a tertiary amine group and a primary amine group in an aromatic ring.
- R 1 is an alkyl group having 1 to 6 carbon atoms.
- the alkyl group refers to a linear or branched lower saturated aliphatic hydrocarbon, for example, methyl, ethyl, n -propyl, isopropyl, n -butyl, s -butyl, isobutyl, t -butyl and n -pentyl groups Etc.
- Representative heterocyclic alkylamine-based compounds include 1- (3-aminopropyl) imidazole (API), and 1- (2-amino in addition to aminoalkylimidazole-based compounds.
- Ethyl) pyrrolidine (1- (2-aminoethyl) pyrrolidine), 2- (2-aminoethyl) -1-methylpyrrolidine (2- (2-aminoethyl) -1-methylpyrrolidine), 1- (2- Aminoethyl) piperidine (1- (2-aminoethyl) piperidine), N- (3-aminopropyl) -2-pipecoline (N- (3-aminopropyl) -2-pipecoline), N- (N-methyl -N-benzene) -1-propylamine (N- (N-methyl-N -benzene) -1-propylamine), N- (3-aminopropyl) 2-pyrrolidinone (N- (3-aminopropyl)- 2-pyrrolidinone), 2- (2-pyridyl) ethylamine (2- (2-pyridyl) ethylamine), 4- (2-aminoethyl)
- the reaction molar ratio of the bisacrylate compound or bisacrylamide compound and the amine series compound is preferably in the range of 1: 0.5 to 2.0.
- the molar ratio of the amine compound is less than 0.5 or more than 2.0, the molecular weight of the polymer to be polymerized becomes 1000 or less, making it difficult to form micelles.
- the pH sensitive block copolymer of the present invention formed through copolymerization of the aforementioned hydrophilic polyethyleneglycol-based compound with a poly (amino acid) and a heterocyclic alkylamine-based compound may be represented by the following Chemical Formulas 8 to 10.
- R is a hydrogen atom or an alkyl group of 1 to 6 carbon atoms, where x is a natural number in the range of 1 to 200, R 1 , R 3 , R 4 is an alkyl group of 1 to 10 carbon atoms, y and z is a natural number ranging from 1 to 100.
- the block copolymer represented by Formula 8 may form or decay micelles according to the pH change due to the aforementioned amphipathy and pH sensitivity.
- the pH ranges from 7.0 to 7.4 micelles are formed, and when the pH ranges from 6.5 to 7.0, the micelles collapse.
- the block copolymer of the present invention has the advantage of exhibiting excellent sensitivity within the pH range of 0.2, satisfactory results are obtained in applications requiring sensitivity to pH changes in the body, such as drug release carriers or diagnostic applications. I can do it.
- the copolymerization with heterocyclic alkylamine-based compounds that induce the stable support of drugs or proteins in the generated micelles circulates stably supporting the drugs or proteins during intravascular injection into the human body. It provides a targeted drug or protein carrier that can release a drug or protein at a pH change.
- Block copolymers of the invention are conventional in the art, in addition to the hydrophilic polyethyleneglycol-based compounds, heterocyclicalkyl amine-based compounds, and poly (amino acid) compounds described above, as long as they maintain pH sensitivity and maintain physical properties that form micelles. It may further comprise a unit, which also belongs to the scope of the present invention.
- the molecular weight range of the block copolymer is not particularly limited, but is preferably in the range of 1,000 g / mol to 20,000 g / mol. If the molecular weight is less than 1,000 g / mol, not only is it difficult to form block copolymer micelles at a specific pH, but also forms easily dissolves and disintegrates in water. In addition, when the molecular weight exceeds 20,000 g / mol, the balance of hydrophilicity / hydrophobicity may be broken and micelles may not be formed at a specific pH and may precipitate.
- the content of the polyethylene glycol-based block in the pH-sensitive block copolymer according to the present invention is not particularly limited, but 5 to 95 parts by weight is appropriate, and preferably 10 to 40 parts by weight.
- the block copolymer may precipitate without forming micelles.
- the blocks forming the micelles are too small to form micelles. Will exist.
- the block copolymer may also be prepared by controlling the reaction molar ratio of a polyethylene glycol-based compound and a poly (amino acid) such as PAE, PAA, or PAEA.
- a poly (amino acid) such as PAE, PAA, or PAEA.
- the pH sensitive block copolymers according to the invention can be prepared according to conventional methods known in the art and can be synthesized, for example, by the route of Schemes 1, 2, 3 or 4 below.
- a PEG to which an acrylate group is introduced using a PEG-based compound may be exemplified by Scheme 1 below.
- a PEG-based compound is reacted with acroyl chloride to prepare acrylate polyethylene glycol (A-PEG) having a double bond at the sock end.
- A-PEG acrylate polyethylene glycol
- polyethylene glycol (AP EG) having a acrylate end group, a primary amine, and bisacrylate and aminoalkylimidazole are commonly used in the art. Copolymerizes by known reaction. At this time, the primary amine and bisacrylate form a poly ( ⁇ -amino ester) by an addition reaction called micelle reaction, and the poly ( ⁇ -amino ester) formed is a polyethylene glycol-based terminal having an acrylate functional group.
- a block copolymer represented by Scheme 2 is prepared by copolymerizing a compound with a heterocyclic alkylamine series compound.
- toluene, chloroform, tetrahydrofuran, dimethyl sulfoxide, dimethyl formamide, methylene chloride, and the like may be used as the organic solvent used in the preparation of the block copolymer.
- R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, where x is a natural number ranging from 1 to 200
- R 1 , R 3 and R 4 are alkyl groups having 1 to 10 carbon atoms
- y and z are natural numbers ranging from 1 to 100.
- A-PEG polyethylene glycol
- secondary amine having a acrylate end group
- a secondary amine and a bisacrylate and a heterocyclic alkylamine-based compound Copolymerization by reactions commonly known in the art.
- the secondary amine and the bisacrylate form a poly ( ⁇ -amino ester) by an addition reaction called a micelle reaction
- the poly ( ⁇ -amino ester) formed is a polyethylene having an acrylate functional group at its end.
- a block copolymer represented by the following Scheme 3 is prepared by copolymerization with a glycol-based compound and a heterocyclic alkylamine-based compound.
- toluene, chloroform, tetrahydrofuran, dimethyl sulfoxide, dimethyl formamide, methylene chloride, and the like may be used as the organic solvent used in the preparation of the block copolymer.
- R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, where x is a natural number ranging from 1 to 200
- R 1 , R 2 , R 3 and R 4 are alkyl groups having 1 to 10 carbon atoms
- y and z are natural numbers ranging from 1 to 100.
- a polyethylene glycol (A-PEG) having an acrylate end group, a primary or secondary amine, and bisacrylamide are commonly known in the art. Copolymerize. At this time, the primary or secondary amine and bisacrylamide form a poly (amino acid) called poly (amido amine) by an addition reaction called micellar reaction. Copolymerization with a polyethylene glycol series compound and a heterocyclic alkylamine series compound having an acrylate functional group to prepare a pH-sensitive block copolymer represented by the following Scheme 4.
- toluene, chloroform, tetrahydrofuran, dimethyl sulfoxide, dimethyl formamide, methylene chloride, and the like may be used as the organic solvent used in the preparation of the block copolymer.
- R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, where x is a natural number ranging from 1 to 200
- R 1 , R 2 , R 4 and R 5 are alkyl groups having 1 to 10 carbon atoms
- y and z are natural numbers ranging from 1 to 100.
- a heterocyclic alkylamine-based compound is added at the time of copolymerization.
- nuclear magnetic resonance ( 1 H-NMR) measurement and gel permeation chromatogr aphy (GPC) measurement of the synthesized block copolymer were performed, and pH was measured.
- Fluorescence spectrometer and dynamic light scattering (DLS) were used to measure the concentration change and micelle size of micelles.
- the third potential value was measured at various pHs to predict the degree of ionic complexation.
- the change in the size of the micelle particle with time by DLS was measured and the electrophoresis test was performed to compare the ionic complex formation ability. .
- the present invention also provides a polymer micelle-type drug composition
- a polymer micelle-type drug composition comprising (a) the aforementioned block copolymer which forms micelles according to pH change, and (b) a bioactive drug or protein that can be enclosed in the block copolymer.
- the polymer micelle-type drug composition forms micelles when injected into the body and stably supports bioactive drugs and proteins by forming a strong ionic complex between micelles and drugs or proteins without initial release, and then topically, such as cancer cells. As a result, when the pH reaches a low point, the micelle is decayed, thereby releasing a drug that is stably supported, thereby enabling targeted drug delivery.
- Bioactive drugs or proteins that can be encapsulated in the block copolymer of the diionic complex micelle form of the present invention can be used without particular limitation, and non-limiting examples thereof include human serum albumin (HSA) as an anticancer agent.
- HSA human serum albumin
- Paclitaxel, doxorubicin, retinoic acid family, cis-platin, camptothecin, 5-FU (fluorouracil), docetaxel,inaxel, tamoxifen Selected from the group consisting of anasterozole, carboplatin, topotecan, topotecan, belotecan, irinotecan, gleevec and vincristine.
- Anticancer agents and aspirin and salicylates ibuprofen, naproxen, naproxen, fenoprofen, indomethacin, phenylbutazone, mesotrec Meth otrexate, cyclophosphamide, mechlorethamine, dexamethasone, prednisolone, predecisolone, celecoxib, valdecoxib, nimesulide, cortisone
- anti-inflammatory agents selected from the group consisting of (cortisone) and corticosteroids (anti-inflammatory, anesthetic, anti-emetic or antihistamine).
- the pH-sensitive protein or drug carrier encapsulated in the drug maintains nano-sized particles in the normal pH range of pH 7.0 to pH 7.4, and does not release the drug and stably supports the drug, such as cancer and inflammatory disease tissue.
- the molecules are designed to disintegrate and release the drug.
- the molecules are designed to be absorbed intracellularly and to disintegrate the particles in the endosomes pH 6.0 or less due to endocytosis (endocytosis) to release the drug.
- the present invention can be applied to other applications such as cancer and inflammatory diseases by appropriately changing the components of the block copolymer, their molar ratio, molecular weight and functional groups in the block, folic acid (folic acid), RGD-based protein, or By designing a target-oriented micelles by labeling aptamers and the like can be usefully applied.
- the cancer disease can be applied to lung cancer, uterine cancer, cervical cancer, prostate cancer, head and neck cancer, pancreatic cancer, brain tumor, liver cancer, skin cancer, esophageal cancer, testicular cancer, kidney cancer, colon cancer, thyroid cancer, tongue cancer or rectal cancer, in addition to breast cancer.
- the disease is applicable to rheumatoid arthritis, osteoarthritis or arteriosclerosis.
- Method for producing a diionic composite micelle according to the present invention can be used alone or in combination with a method such as a solvent evaporation method using agitation, heating, ultrasonic scanning, emulsification method, matrix formation or dialysis method using an organic solvent.
- the diameter of the prepared diionic composite micelle is not particularly limited, but is preferably in the range of 10 to 200 nm.
- the polymer micelle drug composition may be formulated in the form of oral or parenteral preparations, and may be prepared by intravenous, intramuscular or subcutaneous injection.
- the present invention also provides a method of using the pH sensitive block copolymer as a carrier for drug or protein carriers and disease diagnosis.
- the material contained in the block copolymer is not particularly limited as long as it is a substance for the treatment, prevention or diagnosis of a disease.
- the present invention provides a compound comprising (a) a compound comprising an ester group, a tertiary amine group and a heterocyclic alkylamine series compound, and a compound containing an amide group, a tertiary amine group and a heterocyclic alkylamine series compound.
- a method for preparing a pH-sensitive block copolymer capable of forming micelles by copolymerizing one or more compounds selected from the group consisting of, or copolymers of the compounds and (b) hydrophilic or amphiphilic compounds.
- TAA triethylamine
- the unreacted triethylamine salt was removed through a filter process, extracted with dilute aqueous hydrochloric acid solution, and precipitated in ethyl ether to prepare polyethylene glycol (A-PEG) in which the terminal group was substituted with an acrylate group.
- Example 2 The same method as in Example 1 was performed except that 0.8 mole instead of 1 mole of 4,4'-trimethylene dipiperidine and 0.3 mole instead of 0.1 mole of aminopropyl were used as diamine components.
- Example 2 The same method as in Example 1 was carried out except that 0.6 mole instead of 1 mole of 4,4'-trimethylene dipiperidine and 0.5 mole instead of 0.1 mole of aminopropylimidazole (API) were used as the diamine component.
- a PEG-PAE-API block copolymer having a horizontal homogeneous molecular weight (Mn) of 11,000 was prepared in the same manner as in Example 1, except that polyethylene glycol methyl ether (MPEG) was used instead of 5,000 in molecular weight of 5,000. Yield 95%.
- MPEG polyethylene glycol methyl ether
- a PEG-PAE-API block copolymer having a number average molecular weight (Mn) of 10,000 was prepared in the same manner as in Example 1, except that polyethylene glycol methyl ether (MPEG) was used in place of a molecular weight of 5,000. Yield 95%.
- a number average molecular weight (Mn) of 12,500 was performed in the same manner as in Example 1, except that 1 mol of 1,4-butane diol diacrylate was used instead of 1 mol of 1,6-hexane diol diacrylate.
- PEG-PAE-API block copolymers were prepared with a yield of 93%.
- Example 2 The same method as in Example 1 was carried out except that 0.5 mol of 4,4'-trimethylene dipiperidine and 0.5 mol of N, N-methylene bisacrylamide were used to control the biodegradation rate of the block copolymer.
- the number average molecular weight (Mn) was 13,700 in the same manner as in Example 1 except that 1 mole of N, N'-methylene bisacrylamide was used instead of 1 mole of 1,6-hexane diol diacrylate.
- Phosphorus PEG-PAA-API block copolymer was prepared and the yield was 95%.
- HSA human serum albumin
- a PEG-PAE-API block copolymer having a number average molecular weight (Mn) of 9,800 was prepared in the same manner as in Example 1, except that 10 mol of A-PEG prepared using MPEG 400 instead of MPEG 5000 was used. It was prepared and the yield was 95%.
- the block copolymer did not form micelles.
- the hydrophilic block is too short at a specific pH, so that the self-combination by hydrophilicity / hydrophobicity does not occur, which is not only difficult to form micelles, but also dissolves in water and collapses even if formed. .
- a PEG-PAE-API block copolymer having a number average molecular weight (Mn) of 21,000 was prepared in the same manner as in Example 1, except that 10 mol of A-PEG prepared using MPEG 12000 instead of MPEG 5000 was used. Prepared.
- PEG-PAE-API, PEG-PAEA-API, and PEG-PAA-API block copolymers prepared in Examples 1 to 10 were used, and GPC analysis was performed to investigate their molecular weight control possibilities.
- Block copolymers having various API contents prepared in Examples 1 to 3 were used. As shown in FIG. 4, as the API content was increased, the pK value was slightly increased as the acid-base inflection point changed rapidly.
- Example 1 The block copolymer prepared in Example 1 and pure HSA were used. As shown in FIG. 6, pure HSA was charged with an anion at a pH of 5.5 or higher and a cation at a pH of less than 5.5. A sample carrying HSA in the micelle was charged with a cation at a pH of less than 6.6, and above pH 6.6. It can be seen that the value of the neutral.
- copolymers prepared in Examples 1 and 11 and micelles carrying HSA were used. As shown in FIG. 7, since the particle size of the micelle containing HSA was not changed for 24 hours, it was found that a strong ion complex was formed in the micelle and HSA protein.
- copolymers prepared in Examples 3 and 11 and mycells carrying HSA were used. As shown in FIG. 8, the release behavior of micelles carrying HSA and the release of pure HSA were consistent, indicating that all micelles containing HSA were released.
- the pH-sensitive block copolymer of the present invention can be confirmed that the polymer micelle (micelle) can be formed and collapsed through the reversible self-assembly according to the amphipathic and pH changes present in the copolymer. It was found that micelles and H SA proteins formed strong ionic complexes, which were stably supported in micelles, and then released in large quantities according to pH change.
- the block copolymers of the present invention have a solubility in water according to pH but are not applicable to poly (amino acid) compounds such as poly ( ⁇ -amino ester) or poly (amido amine) compounds, which do not form micelles due to self-assembly.
- Diionic composite micelles were prepared using a hydrophilic polyethylene glycol series compound and a heterocyclic alkylamine series compound. In order to give the ability to form a strong ionic complex between the micelles and the drug or protein, a heterocyclic alkylamine-based compound was added and copolymerized to form a pH-sensitive block copolymer.
- the polymer micelles could be reversibly formed by self-assembly as well as retaining the pH sensitivity, and the drug or protein was stably supported in the body, and then the drug or protein supported by the pH change of the diseased part was released. can do. That is, above the iso electric point (pl) of the protein and below pH 7.4, the pH-sensitive block copolymers self-assembly to take a core-shell structure with nano-sized drug or protein.
- pl isoelectric point
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Polymers & Plastics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nanotechnology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Dispersion Chemistry (AREA)
- Biotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Medical Informatics (AREA)
- General Engineering & Computer Science (AREA)
- Rheumatology (AREA)
- Vascular Medicine (AREA)
- Physical Education & Sports Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Immunology (AREA)
- Pain & Pain Management (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Urology & Nephrology (AREA)
- Medicinal Preparation (AREA)
Abstract
본 발명은 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체 및 이를 이용한 약물 또는 단백질 전달체에 관한 것으로 보다 상세하게는 (a) 폴리에틸렌글리콜 계열 화합물; (b) 폴리(아미노 에시드) 화합물; 및 (c) 이온성 복합체 유도 성능을 지닌 헤테로싸이클릭알킬아민 계열 화합물이 공중합시켜 형성된 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체 및 이를 이용한 약물 또는 단백질 전달체에 관한 것이다.
Description
본 발명은 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체 및 이를 이용한 약물 또는 단백질 전달체에 관한 것으로서, 보다 상세하게는 나노 크기의 다이온성 복합체 마이셀(polyionic complex micelle, PIC) 형성으로 인체 내 혈관에 투여시 약물 또는 단백질을 안정적으로 담지했다가 질환부위에서 pH 변화에 의하여 약물 또는 단백질을 방출하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체 및 상기 블록 공중합체를 포함하는 고분자 마이셀형 약물 또는 단백질 전달체에 관한 것이다.
마이셀은 일반적으로 양친성(兩親性), 예컨대 친수성기와 소수성기를 동시에 갖는 저분자량의 물질들이 이루는 열역학적으로 안정하고 균일한 구형의 구조를 지칭하는 것이다. 상기 마이셀 구조를 갖는 화합물에 비수용성(소수성) 약물을 녹여 투입하는 경우 약물은 마이셀 내부에 존재하게 되며, 이러한 마이셀은 체내에서 온도나 pH 변화에 반응하여 표적 지향적 약물방출을 할 수 있으므로, 약물전달용 캐리어로서의 응용 가능성이 대단히 높다고 볼 수 있다. 다만, 인체내 혈관투여시 혈관내에서 암과 같은 특정의 질환부위에 도달하여 방출하기전까지 어떻게 하면 안정적으로 약물을 담지하느냐 하는 것이 관건이다.
대한민국 등록특허 제0773078호에서는 폴리에틸렌글리콜과 생분해성 고분자를 이용한 마이셀의 제조에 관하여 기재하고 있다. 이들 물질은 모두 생분해성을 갖고 있기 때문에 생체친화성을 갖고 있다는 장점은 있으나, 체내 변화, 예컨대 pH와 같은 특정 변화에 민감한 것이 아니기 때문에 원하는 부위에서의 약물 전달이 어렵다는 단점이 있다.
미국 등록특허 제6,103,865호에서는 pH 민감성을 나타내는 물질인 썰폰아마이드를 이용한 고분자에 관하여 개시하고 있는데, 상기 썰폰아마이드는 pH 7.4이하에서 불용성이 되고, pH 7.4이상에서 이온화되는 산성을 나타낸다. 이러한 경우 암세포에 대한 표적과는 반대의 특성을 나타내게 되므로, 결과적으로 암세포에 대한 표적을 위해서는 염기성을 갖는 화합물이 필요하다고 할 수 있다. 즉, 체내의 pH 환경은 일반적으로 pH 7.2 내지 7.4를 나타내나, 암세포와 같은 비정상 세포의 주변 환경은 pH 6.0 내지 7.2로 약산성을 나타내는 것으로 알려져 있다. 최근에는 암세포에 특정적으로 약물을 전달하기 위해서 pH 7.2 미만에서 약물을 방출하도록 하는 연구가 이루어지고 있다. 그러나, 상기 특허는 약물과의 복합체 형성능력이 떨어져 약물을 담지하고 있다가 질환 부위의 pH 변화에 의하여 약물을 효율성 있게 전달할 수 있는 내용이 개시되어 있지 않다.
미국 등록특허 제 7,427,394 B2호에서 생분해성 폴리(β-아미노 에스터)의 제조 및 응용에 관하여 논하고 있는데, 주쇄에 생분해성에 관련된 에스테르기를 갖게하고 pH에 따라서 이온화가 되도록 3차 아민기 구조를 갖도록 설계하여, pH에 따라서 물에 대한 용해도가 바뀌는 이온화 특성을 나타내는 장점이 있다. 그러나, 상기 특허는 이를 이용하여 약물 전달체 등의 효율적인 활용은 없었다.
따라서, 인체 내 혈관 등에 투여시 약물 또는 단백질을 안정적으로 담지하고 있다가 질환 부위에서 약물 또는 단백질을 효율성 있게 전달할 수 있는 공중합체 및 이를 이용한 약물 또는 단백질 전달체의 개발이 소망되었다.
상기와 같은 문제점을 해결하기 위하여 본 발명의 목적은 인체 내 혈관 등에 투여시 약물 또는 단백질을 안정적으로 담지하고 있다가 질환 부위에서 약물 또는 단백질을 효율성 있게 전달할 수 있는 공중합체를 제공하는 데 있다.
본 발명의 다른 목적은 인체 내 혈관 등에 투여시 약물 또는 단백질을 안정적으로 담지하고 있다가 질환 부위의 변화에 의해 약물 또는 단백질을 효율성 있게 전달할 수 있는 약물 또는 단백질 전달체를 제공하는 데 있다.
상기 목적을 달성하기 위해 본 발명은 (a) 폴리에틸렌글리콜 계열 화합물; (b) 폴리(아미노 에시드) 화합물; 및 (c) 이온성 복합체 유도 성능을 지닌 헤테로싸이클릭알킬아민 계열 화합물이 공중합시켜 형성된 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체를 제공한다.
또한 본 발명은 상기 폴리에틸렌글리콜 계열 화합물이 말단에 아크릴레이트 또는 메타크릴레이트의 단일 관능기를 갖는 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체를 제공한다.
또한 본 발명은 상기 폴리에틸렌글리콜 계열 화합물이 수평균분자량(Mn)이 500 내지 5,000 g/mol인 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체를 제공한다.
또한 본 발명은 상기 폴리(아미노 에시드) 화합물이 폴리(β-아미노 에스터)(PAE), 폴리(아미도 아민)(PAA) 또는 이들의 혼합 공중합물(PAEA)인 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체를 제공한다.
또한 본 발명은 상기 폴리(아미노 에시드) 화합물이 비스아크릴레이트 또는 비스아크릴아미드 계열 화합물에 1차 또는 2차 아민기를 포함하는 아민 계열 화합물을 중합시키는 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체를 제공한다.
또한 본 발명은 상기 비스아크릴레이트 화합물이 에틸렌 글리콜 다이아크릴레이트, 1,4-부탄 다이올 다이아크릴레이트, 1,3-부탄 다이올 다이아크릴레이트, 1,6-헥산 다이올 다이아크릴레이트, 1,5-펜탄 다이올 다이아크릴레이트, 2,5-펜탄 다이올 다이아크릴레이트, 1,6-헥산 다이올 에톡실레이트 다이아크릴레이트, 1,6-헥산 다이올 프로폭실레이트 다이아크릴레이트, 3-하이드록시-2,2-다이메틸프로필3-하이드록시-2,2-다이 메틸프로피오네이트 다이아크릴레이트, 1,7-헵탄 다이올 다이아크릴레이트, 1,8-옥탄 다이올 다이아크릴레이트, 1,9-노나 다이올 다이아크릴레이트, 1,10-데칸 다이올 다이아크릴레이트로 이루어진 군에서 1 이상 선택되고, 상기 비스아크릴아마이드 화합물은 N,N'-메틸렌 비스아크릴아마이드(MDA) 또는 N,N'-에틸렌 비스아크릴아마이드인 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체를 제공한다.
또한 본 발명은 상기 아민 계열 화합물에서 1차 아민 화합물이 1-메틸아민(1-methylamine), 1-에틸아민(ethylamine), 1-프로필아민(1-propylamine), 1-부틸아민(1-butylamine), 1-펜틸아민(1-pentylamine),1-헥산아민(1-hexaneamine), 1-헵탄아민(1-heptaneamine), 1-옥탄아민(1-octanamine), 1-노나아민(nonaamine), 1-데칸아민(1-decanamine), 1-이소프로필아민(1-isopropylamine), 트리에틸렌아민(triethyleneamine), 3-메톡시프로필아민(3-methoxypropylamine), 3-에톡시프로필아민(3-ethoxy propylamine), 3-이소프로폭시-1-프로판아민(isopropoxy-1-propanamine), 3-프로필-1-프로판아민(3-propyl-1-propanamine), 3-(브톡시-1-프로판아민)(3-butoxy-1-propanamine), 1,4-디옥사-1에톡시아민(1,4-dioxa-1-ethoxyamine), 4,4-디메톡시부틸아민(4,4-dimethoxybutylamine), 4,4-디에톡시-1-부타민(4,4-diethoxy-1-butanamine), 2-메톡시에탄아민(2-methoxyethanamine), 3-에톡시에탄아민(3-ethoxyethanamine), 3-이소프로필-1-에톡시에탄아민(3-isopropoxy-1-ethoxyethanamine), 4,4-디메톡시에틸아민(4,4-dimethoxyethylamine), 4,4-디에톡시-1-에틸아민(4,4-diethoxy-1-ethylamine), 테트라하이드로-2-퓨라닐메틸아민(tetrahydro-2-furanylmethylamine), 2-페녹시에탄아민(2-phenoxyethanamine), 2-(3,4-디메톡시페닐)에탄아민 (2-(3,4-dimethoxyphenyl)ethanamine), 2-(2,5-디메톡시페닐)에틸아민 (2-(2,5-dimethoxyphenyl)ethylamine), 1,2,2-트리메틸-1-1프로판아민(1,2,2,-trimethyl-1-propanamine), 2-메틸-1-부탄아민(2-methyl-1-butanamine), 3-메틸-1-부탄아민(3-methyl-1-butanamine), 1,3-디메틸-1-부탄아민(1,3-dimethyl-1-butanamine), 4-메틸-1-펜탄아민(4-methyl-1-pentanamine), 3,3-디메틸-1-부탄아민(3,3-dimethyl-1-butanamine), 1,4-디메틸-1-펜탄아민(1,4-dimethyl-1-pentanamine), 1-메틸-1-헥산아민(1-methyl-1-hexanamine), 1-메틸-1-헵탄아민(1-methyl-1-heptanamine), 2-에틸-1-헥산아민(2-ethyl-1-hexanamine), 2-아미노에탄올(2-aminoethanol), 3-아미노-1-프로판올(3-amino-1-propanol), (2R)-1아미노-2-프로판올((2R)-1-amino-2-propanol), (2S)-1-아미노-2-프로판올((2S)-1-amino-2-propanol), 2-아미노-1-프로판올(2-amino-1-propanol), (2S)-1-아미노-2-프로판올((2S)-1-amino-2-propanol), 2-아미노-1,3-프로판디올(2-amino-1,3-propanediol), 2-아미노-2-메틸-1,3-프로판디올(2-amino-2-methyl-1,3-propanediol), 2-아미노-2-메틸-1-프로판올(2-amino-2-methyl-1-propanol), 4-아미노-1-부탄올(4-amino-1-butanol), 2-아미노-1-프로판올(2-amino-1- propanol), 2-에틸아미노-1-부탄올(2-ethylamino-1-butanol), 2-(2-아미노에톡시)에탄올 (2-(2-aminoethoxy)ethanol), 5-아미노-1-페탄올(5-amino-1-pentanol), 3-아미노-2,2-1-프로판올(3-amino-2,2-dimethyl-1-propanol), 2-아미노-2-에틸-1,3-프로판디올(2-amino-2-ethyl-1,3-propanediol), 2-아미노-3-메틸-1-부탄올(2-amino-3-methyl-1-butanol), 6-아미노-1-헥산올(6-amino-1-hexanol), 1-아미노싸이클로펜틸)메탄올(1-aminocyclopentyl)methanol), 4-아미노싸이클로헥산올(4-aminocyclohexanol), 2-아미노싸이클로헥산올(2-aminocyclohexanol), 2-메틸-1-프로판아민(2-methyl-1-propanamine), 싸이클로부탄아민(cyclobutanamine), 싸이클로프로필메틸아민(cyclopropylmethylamine), 싸이클로펜탄아민(cyclopentanamine), 싸이클로헥산아민(cyclohexanamine), 싸이클로헥산메틸아민(cyclohexanmethylamine), 아다만탄-메틸아민(adamantane-methylamine), 실란-메틸-데에톡시-프로필아민(Si-methyl-diethoxy-propylamine), 실란-트리톡시-프로필아민(Si-trithoxy-propylamine), N,N'-디에틸-1,2-에탄디아민(N,N'-diethyl-1,2-ethane diamine), N,N'-디이소프로필-1,2-에탄디아민(N,N'-diisopropyl-1,2-ethane diamine), N,N'-디메틸-1,2-프로판디아민(N,N'-dimethyl-1,2-propanediamine), N,N'-디메틸-1,3-프로판디아민(N,N'-dimethyl-1,3-propanediamine), N,N'-디에틸-1,3-프로판디아민(N,N'-diethyl-1,3-propanediamine), N,N'-디에틸-1,4-펜탄디아민(N,N-diethyl-1,4-pentanediamine), N,N'-비스(2-하이드록시에틸)에틸렌디아민 (N,N-Bis(2-hydroxyethyl)ethylenediamine), N'N'-비스(2-하이드록시)프로필렌디아민 (N,N'-Bis(2-hydroxyethyl)propylenediamine)로 이루어진 군에서 1이상 선택되고, 2차 아민화합물이 4,4'-트리메틸렌디피퍼리딘(4,4'-trimethylenepiperidine), N,N'-디메틸에틸렌디아민(N,N'-dimethylethylenediamine), 피페라진(piperazine), 2-메틸피페라진(2-methylpiperazine), 3-메틸-4-(3-메틸페닐)피페라진(3-methyl-4-(3-methylphenyl)piperazine), 3-메틸피페라진(3-methylpiperazine), 4-(phenylmethyl)piperazine (4-(페닐메틸)피페라진), 4-(1-페닐에틸)피페라진(4-(1-phenylethyl)piperazine), 4-(1,1'-디메톡시카르보닐)피페라진 (4-(1,1'-dimethoxycarbonyl)piperazine), 4-(2-(비스-(2-프로페닐)아미노)에틸)피페라진 (4-(2-(bis-(2-prophenyl)amino)ethyl)piperazine), 1-(2-아미노에틸)피페라진 (1-(2-aminoethyl)piperazine), 4-(아미노메틸)피페라진 (4-(aminomethyl)piperazine), N,N'-디메틸-1,2-에탄디아민 (N,N'-dimethyl-1,2-ethanediamine), N,N'-디에틸-1,2-에탄디아민(N,N'-diethyl-1,2-ethanediamine), N,N'-디이소프로필-1,2-에탄디아민 (N,N'-diisopropyl-1,2-ethanediamine), N,N'-디메틸-1,2-프로필아민 (N,N'-dimethyl-1,2-propyldiamine), N,N'-디에틸-1,2-프로필디아민 (N,N'-diethyl-1,2-propyldiamine), N,N'-디이소프로필-1,2-프로필아민 (N,N'-diisopropyl-1,2-propyldiamine), N,N'-디메틸-1,2-헥산디아민(N,N'-dimethyl-1,2-hexanediamine), N,N'-디메틸-N-(3-(메틸아미노)프로필]-1,3-프로판디아민 (N,N-dimethyl-N-[3-(methylamino)propyl]-1,3-propanediamine), N-[2-메틸아미노)에톡시에틸]-N,N'-디메틸아민 (N-[2-methylamino)ethoxy ethyl]-N,N'-dimethylamine), N-[2-메틸아미노)디옥시에틸]-N,N'-디메틸아민, N-[2-메틸아미노)디옥시에틸]-N,N'-디메틸아민 (N-[2-methylamino)dioxy ethyl]-N,N'-dimethylamine), 1,4-디아제판(1,4-diazepane)로 이루어진 군에서 1이상 선택되는 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체를 제공한다.
또한 본 발명은 상기 이온성 복합체 유도 성능을 지닌 헤테로싸이클릭알킬아민 계열 화합물이 1-(3-아미노프로필)이미다졸 (1-(3-aminopropyl)imidazole, API), 1-(2-아미노에틸)피롤리딘 (1-(2-aminoethyl)pyrrolidine), 2-(2-아미노에틸)-1-메틸피롤리딘 (2-(2-aminoethyl)-1-methylpyrrolidine), 1-(2-아미노에틸)피퍼리딘 (1-(2-aminoethyl)piperidine), N-(3-아미노프로필)-2-피페콜린 (N-(3-aminopropyl)-2-pipecoline), N-(N-메틸-N-벤젠)-1-프로필아민 (N-(N-methyl-N-benzene)-1-propylamine), N-(3-아미노프로필)2-피롤리디논 (N-(3-aminopropyl)-2-pyrrolidinone), 2-(2-피리딜)에틸아민 (2-(2-pyridyl)ethylamine), 4-(2-아미노에틸)모폴린 (4-(2-aminoethyl)morpholine), 3-모폴리노프로필아민(3-morpholinopropylamine), 히스티딘(histidine)으로 이루어진 군에서 1이상 선택되는 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체를 제공한다.
또한 본 발명은 상기 pH 민감성 블록공중합체의 분자량이 1,000 내지 20,000 g/mol인 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체를 제공한다.
또한 본 발명은 상기 형성된 pH 민감성 블록공중합체에서, 폴리에틸렌 계열 화합물에서 유래된 친수성 블록 및 폴리(아미노 에시드) 화합물에서 유래된 소수성 블록을 이루되, 상기 블록 사이의 pH 6.0~7.0에서 이온화되는 3차 아민기를 포함함으로써, pH 7.0~7.4 범위에서 가역적인 자기조립에 의해 마이셀을 형성하고, 상기 마이셀과 헤테로싸이클릭알킬아민 계열 화합물에서 유래된 다이온성 복합체를 형성하여 인체 혈관 내에서 약물 또는 단백질을 안정적으로 담지하여 순환하다가 질환부위에서 약물 또는 단백질을 방출할 수 있는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체를 이용한 약물 또는 단백질 전달체를 제공한다.
또한 본 발명은 상기 약물 또는 단백질로 인간 혈청 알부민(human serum albumin, HSA), 파클리탁셀 (paclitaxel), 독소루비신 (doxorubicin), 레티노익 산 (retinoic acid)계열, 시스플라틴 (cis-platin), 캄토세신 (camptothecin), 5-FU(fluorouracil), 도세탁셀 (docetaxel), 타목시펜(tamoxifen), 아나스테로졸(anasterozole), 카보플라틴(carboplatin), 토포테칸(topotecan), 베로테칸(belotecan), 이리노테칸(irinotecan), 글리벡(gleevec) 및 빈크리스틴(vincristine)으로 구성된 군에서 선택되는 항암제와, 아스피린 (aspirin) 및 살리실레이트 (salicylates), 이부프로펜(ibuprofen), 나프로센(naproxen), 페노프로펜(fenoprofen), 인도메타신(indomethacin), 페닐부타존(phenyltazone), 메소트렉세이트(methotrexate), 시클로포스파미드(cyclophosphamide), 메클로에타민(mechlorethamine), 덱사메타손(dexamethasone), 프레드니솔론(prednisolone), 셀레콕시브(celecoxib), 발데콕시브(valdecoxib), 니메슐리드(nimesulide), 코르티손(cortisone) 및 코르티코스테로이드(corticosteroid)으로 구성된 군에서 선택되는 항염증제, 암 또는 염증성 질환 부위에서 pH7.0 미만일 때 국부적으로 입자가 붕괴되어 약물 또는 단백질이 방출되는 pH 민감성 블록공중합체를 이용한 약물 또는 단백질 전달체를 제공한다.
또한 본 발명은 상기 암질환이 유방암, 폐암, 자궁암, 자궁경부암, 전립선암, 두경부암, 췌장암, 뇌종양, 간암, 피부암, 식도암, 고환암, 신장암, 대장암, 갑상선암, 설암 또는 직장암인 것을 특징으로 하는 pH 민감성 블록공중합체를 이용한 약물 또는 단백질 전달체를 제공한다.
또한 본 발명은 상기 염증성 질환이 류마티스 관절염, 골관절염 또는 동맥경화인 것을 특징으로 하는 pH 민감성 블록공중합체를 이용한 약물 또는 단백질 전달체를 제공한다.
본 발명에 따른 다이온성 복합체 마이셀을 이용한 약물 또는 단백질 전달체는 인체내 혈관 등에 투여한 경우 약물 또는 단백질을 안정적으로 담지하여 순환하다가 질환부위에서의 pH변화에 의하여 우수하게 약물 또는 단백질을 방출할 수 있는 효과가 있다.
도 1은 폴리에틸렌글리콜과 폴리(β-아미노 에스터) 블록공중합체와 단백질의 등전점(isoelectric point, pl)이상 및 pH 7.4 이하에서 자기회합 및 다이온성 복합체 마이셀 형성하여 단백질을 안정적으로 담지하고 있다가 등전점(pl) 미만의 pH에서 블록공중합체와 단백질과의 전하반발에 의하여 단백질을 방출하는 개략도를 나타내는 그래프.
도 2는 폴리에틸렌글리콜과 폴리(β-아미노 에스터)를 사용하여 제조된 실시예 1 내지 실시예 3의 pH 민감성 블록공중합체의 1H-NMR로 측정한 그래프.
도 3은 실시예 1 내지 실시예 3에서 제조된 pH 민감성 블록 공중합체에서 아미노프로필이미다졸(aminopropylimidazole, API)의 함량 변화에 따른 산-염기 적정(acid-base titration) 프로필을 나타내는 그래프. (■) API10 (PEG-PAE-API10), (●) API30 (PEG-PAE-API30), (▲) API50 (PEG-PAE-API50).
도 4는 실시예 1 내지 실시예 3과 실시예 11에서 제조된 pH 민감성 블록공중합체 및 순수한 human serum albumin(HSA) 단백질의 pH 7.4에서 전기영동(electrophoresis)에 의하여 측정한 그래프.
Lane 1: 분자량마커, Lane 2: 순수한 HSA; Lane 3: API10+HSA; Lane 4: API30+HSA; Lane 5: API50+HSA. (5 wt.% HSA of polymer and 200ng/mL HSA for each sample in water).
도 5는 실시예 1 및 실시예 2에서 제조된 블록공중합체에 단백질을 담지한 마이셀과 순수 HSA 단백질의 다양한 pH에서의 제타전위(zeta potential) 변화를 나타내는 그래프.
도 6은 실시예 1 내지 실시예 3에서 제조된 블록 공중합체의 염의 여부에 따른 동적광산란(dynamic light scattering, DLS)에 의하여 측정된 마이셀 입자크기(a) 및 산란강도(b)를 나타내는 그래프.
도 7은 실시예 3 및 실시예 11에서 제조된 블록 공중합체 및 순수 HSA 단백질을 담지한 마이셀의 DLS에 의한 시간에 따른 크기 변화를 나타내는 그래프.
도 8은 실시예 3 및 실시예 11에서 제조된 블록공중합체 및 순수 HSA 단백질을 담지한 마이셀 및 마이셀로부터 방출된 단백질의 변화를 CD에 의하여 측정한 그래프. (■) HSA, (●) complexed HSA 및 (△) released HSA.
도 9는 실시예 3에서 제조된 블록 공중합체에 FITC를 레이블시킨 순수 단백질(HSA)을 PIC 마이셀로 제조한 후 MDA-MB-435 셀에 배양하여 세포내 침투 효과를 관찰하기 위해 공초점 현미경(confocal microscope)으로 측정한 이미지. (a) FITC-labeled PIC micelles 및 (b) HSA-FITC (green color) distribution in cytoplasm.
도 10은 실시예 3 및 실시예 11에서 제조된 블록 공중합체 및 블록공중합체에 순수 HSA 단백질을 담지시킨 마이셀을 MDA-MB-435 셀에 배양하여 MTT assay하여 본 in vitro cytotoxicity를 나타내는 그래프.
이하 본 발명에 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다. 우선, 도면들 중, 동일한 구성요소 또는 부품들은 가능한 한 동일한 참조부호를 나타내고 있음에 유의하여야 한다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.
본 명세서에서 사용되는 정도의 용어 약, 실질적으로 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본 발명은 pH에 민감한 폴리 (아미노 에시드) 화합물, 예컨대 폴리(β-아미노 에스터), 폴리(아미도 아민) 또는 이들의 공중합체와 친수성을 갖는 폴리에틸렌글리콜 계열 화합물 및 강한 이온성 복합체를 형성할 수 있는 헤테로싸이클릭알킬아민 계열 화합물을 공중합시킴으로써, 체내 pH 변화에 민감할 뿐만 아니라 특정 pH 영역에서 마이셀(micelle) 구조 형성이 가능하다. 또한, 형성된 마이셀과 담지된 약물 또는 단백질을 안정적으로 보유하다가 질환부위의 pH변화에 의해 약물 또는 단백질을 효율적으로 방출할 수 있다. 즉, 단백질의 등전점(isoelectric point, pl)이상과 pH 7.4이하에서 pH 민감성 블록공중합체는 자기회합(self-assembly)하여 나노 크기를 갖는 코어-쉘(core-shell)구조를 취하고 약물 또는 단백질과 다이온성 복합체 마이셀 형성하여 안정적으로 담지한다. 상기 마이셀은 등전점(pl)미만의 pH에서 블록공중합체와 약물 또는 단백질과의 전하반발에 의하여 약물 또는 단백질을 방출하는 다이온성 복합체 마이셀의 제조방법 및 표적지향성 약물 또는 단백질전달체 제공을 특징으로 한다.
본 발명의 다이온성 복합체 마이셀은 특정 pH, 예컨대 체내 정상 세포의 pH 범위인 pH 7.0 ~ 7.4에서는 형성된 마이셀이 약물 또는 단백질을 안정적으로 담지하고 있다가, 암 세포와 같은 비정상 세포가 나타내는 pH 범위 7.0 미만인 경우, 상기 마이셀 구조가 붕괴됨으로써, 암 세포 등에 표적 지향적인 약물 또는 단백질방출용 전달체로서 사용될 수 있다.
즉, 낮은 pH(pH 7.0미만)에서는 폴리(아미노 에시드)인 폴리(β-아미노 에스터)(PAE), 폴리(아미도 아민)(PAA) 또는 이들의 혼합 공중합물(PAEA)에 존재하는 3차 아민의 이온화도 증가로 인해 PAE(또는 PAA, PAEA) 전체가 수용성으로 변하게 되어 마이셀을 형성할 수 없게 된다. 또한, pH 7.0 ~ 7.4에서는 PAE(또는 PAA, PAEA)의 이온화도가 저하되어 소수성 특징을 나타냄으로써 자기 조립에 의한 마이셀을 형성하는 것이다. 여기에 주쇄에 있는 헤테로싸이클릭알킬아민 계열 화합물의 3차아민과 약물 또는 단백질과의 강한 다이온성 복합체를 형성하여 약물 또는 단백질의 방출없이 안정적으로 담지하고 있으면서 인체내 혈관을 따라 안정적으로 순환하고 있다가 암세포조직과 같은 질환부위의 pH변화로 약물 또는 단백질을 방출하는 표적지향성 약물 또는 단백질 전달체이다.
또한, 상기 pH 민감성 마이셀을 형성할 수 있는 블록 공중합체는 질환의 치료를 위한 유전자 전달 및 약물 전달 분야 뿐만 아니라 병의 진단을 위한 물질을 비정상 세포에 전달함으로써 진단 이미징(diagnostic imaging) 등의 용도에 응용될 수 있다.
추가적으로, 본 발명에서는 정상 체내 조건과 동일한 pH 7.0 ~ 7.4 범위에서는 마이셀을 형성하고 암세포와 같은 비정상 조건인 pH 7.0 미만에서는 마이셀이 붕괴되는 암세포 표적 지향적인 마이셀을 디자인하여 적용하였으나, 상기 블록 공중합체의 구성성분, 이들의 몰비, 분자량 및/또는 블록 내 관능기를 적절히 변경함으로써 암세포 뿐만 아니라 유전자 변이 또는 다른 응용 분야에 표적지향적인 마이셀을 디자인하여 이를 유용하게 응용할 수 있다.
나아가, 본 발명에서는 상기 pH 민감성 블록 공중합체의 형성 조건, 예컨대 전술한 블록 공중합체의 구성 성분, 이들의 몰비, 분자량 및/또는 블록 내 관능기 등을 다양하게 조절함으로써, pH 민감성 블록 공중합체 마이셀의 생체 내 생분해 속도를 용이하게 조절할 수 있으며, 이를 통해 약물 전달이 이루어져야 하는 적절한 체내 위치에 표적 지향적으로 약물을 전달할 수 있다.
본 발명에 따라 다이온성 복합체 마이셀을 형성하는 블록 공중합체의 구성 성분 중 하나는 당 업계에 알려진 통상적인 친수성을 갖는 생분해성 화합물이라면 제한 없이 사용 가능하며, 특히 화학식 1로 표기된 폴리에틸렌글리콜 계열 화합물이 바람직하다. 더욱 바람직하게는 폴리에틸렌글리콜 계열 화합물 말단에 아크릴레이트 또는 메타크릴레이트 등의 단일 관능기(monofunctional)를 갖는 것이며, 이러한 예로는 분자 말단 부분이 아크릴레이트로 치환된 하기 화학식 2의 화합물이 있다.
상기 식에서, R은 수소 원자 또는 탄소수 1 내지 6의 알킬기이며, x는 1 내지 200 범위의 자연수이다.
상기 알킬기는 선형 또는 가지형 저급 포화지방족 탄화수소를 의미하는 것으로서, 예를 들면, 메틸, 에틸, n-프로필, 이 소프로필, n-부틸, s-부틸, 이소부틸, t-부틸 및 n-펜틸기 등이 있다.
상기 식에서, R은 수소 원자 또는 탄소 원자수 1 내지 6의 알킬기이며, 이때 x는 1 내지 200 범위의 자연수이다.
상기 알킬기는 선형 또는 가지형 저급 포화지방족 탄화수소를 의미하는 것으로서, 예를 들면, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, s-부틸, 이소부틸, t-부틸 및 n-펜틸기 등이 있다.
상기 폴리에틸렌글리콜 계열 화합물의 수평균분자량(Mn)은 특별한 제한이 없으나, 500 g/mol 내지 5,000 g/mol 범위가 바람직하다. 폴리에틸렌글리콜 계열 화합물의 수평균분자량(Mn)이 상기 범위를 벗 어나는 경우, 예컨대 폴리에틸렌글리콜 계열 화합물의 수평균분자량이 500 g/mol 미만인 경우 및 5,000 g/m ol을 초과하는 경우 최종 블록 공중합체의 분자량 조절이 어려울 뿐만 아니라 상기 블록 공중합체를 이용하여 마이셀을 형성하는 것이 용이하지 않다. 즉, 폴리에틸렌글리콜 계열 화합물의 수평균분자량이 500 g/mol 미만인 경우 특정 pH에서 친수성 블록의 길이가 너무 짧아 친수성/소수성 균형(hydrophilic/hydrophobic balance)에 의한 자기조합이 일어나지 못하여 마이셀 형성이 어려우며, 마이셀이 형성되더라도 물에 용해되어 붕괴되기 쉽다. 또한, 폴리에틸렌글리콜 계열 화합물의 수평균분자량이 5,000 g/mol을 초과하는 경우 소수성 인 폴리(아미노 에시드)의 분자량에 비해 블록 길이가 너무 커져서 친수성/소수성의 밸런스가 깨져 특정 pH 에서 마이셀이 형성하지 못하고 침전될 수 있다.
본 발명에 따라 pH 민감성 마이셀을 형성하는 블록 공 중합체의 구성 성분 중 다른 하나는 소수성과 pH 민감성을 동시에 갖는 폴리(아미노 에시드) [poly(amino acid)] 화합물로서, 이의 비제한적인 예로는 폴리(β-아미노 에스터) [poly(β-amino ester), PAE], 폴리(아미도 아민)[poly(amido amine), PAA] 또는 이들의 혼합 공중합물 [poly(β-amino ester)-(amido amine), PAEA ] 등이 있다.
폴리(아미노 에시드)의 일 종류인 상기 PAE, PAA, 및 PAEA는 자체 내 존재하는 3차 아민기로 인해 pH에 따라 물에 대한 용해도가 달라지는 이온화 특성을 가짐으로써, 전술한 바와 같이 체내 pH 변화에 따라 마이셀 구조를 형성하거나 또는 붕괴할 수 있다. 상기 화합물들은 당 업계에서 통상적으로 알려진 방법에 따라 제조될 수 있으며, 이의 일실시예를 들면, 미첼반응을 통하여 이중결합이 있는 비스아크릴레이 트 화합물 또는 비스아크릴아마이드 화합물에 아민 계열 화합물을 중합시켜서 폴리(아미노 에시드) 화합물을 얻을 수 있다.
여기서 사용된 비스아크릴레이트 화합물은 하기 화학식 3과 같이 표기될 수 있으며, 이의 비제한적인 예로는 에틸렌 글리콜 다이아크릴레이트, 1,4-부탄 다이올 다이아크릴레이트, 1,3-부탄 다이올 다이아크릴레이트, 1,6-헥산 다이올 다이아크릴레이트, 1,5-펜탄 다이올 다이아크릴레이트, 2,5-펜탄 다이올 다이아크릴레이트, 1,6-헥산 다이올 에톡실레이트 다이아크릴레이트, 1,6-헥산 다이올 프로폭실레이트 다이 아크릴레이트, 3-하이드록시-2,2-다이메틸프로필3-하이드록시-2,2-다이 메틸프로피오네이트 다이아크릴레이 트, 1,7-헵탄 다이올 다이아크릴레이트, 1,8-옥탄 다이올 다이아크릴레이트, 1,9-노나 다이올 다이아크릴레 이트, 1,10-데칸 다이올 다이아크릴레이트 또는 이들의 혼합물 등이 있다.
상기 식에서, R3는 탄소 원자수 1 내지 10의 알킬기 이다.
한편, 비스아크릴아마이드 계열 화합물은 하기 화학식 4로 표기될 수 있다. 이의 비제한적인 예로 는 N,N'-메틸렌 비스아크릴아마이드(MDA), N,N'-에틸렌 비스아크릴아마이드 또는 이들의 혼합물 등이 있다.
상기 화학 식 3에서, R은 탄소 원자수 1 내지 10 의 알킬기이다.
또한, 아민 계열 화합물은 아민기를 갖기만 하면 제한없이 사용 가능하며, 특히 하기 화학식 5로 표기되는 1차 아민, 화학식 6로 표기되는 2차 아민 함유 디 아민 화합물 또는 이들의 혼합물 등이 바람직하다.
상기 식에서, R1 은 탄소 원자수 1 내지 10의 알킬기이다.
상기 1차 아민 화합물의 비제한적인 예로는 1-메틸아민(1-met hylamine), 1-에틸아민(ethylamine), 1-프로필아민(1-propylamine), 1-부틸아민(1-butylamine), 1-펜틸아민 (1-pentylamine),1-헥산아민(1-hexaneamine), 1-헵탄아민(1-heptaneamine), 1-옥탄아민(1-octanamine), 1-노 나아민(nonaamine), 1-데칸아민(1-decanamine), 1-이소프로필아민(1-isopropylamine), 트리에틸렌아민(trie thyleneamine), 3-메톡시프로필아민(3-methoxypropylamine), 3-에톡시프로필아민(3-ethoxypropylamine), 3-이소프로폭시-1-프로판아민(isopropoxy-1-propanamine), 3-프로필-1-프로판아민(3-propyl-1-propanamine), 3-(브톡시-1-프로판아민)(3-butoxy-1-propanamine), 1,4-디옥사-1에톡시아민(1,4-dioxa-1-ethoxyamine), 4,4-디메톡시부틸아민(4,4-dimethoxybutylamine), 4,4-디에톡시-1-부타민(4,4-diethoxy-1-butanamine), 2-메 톡시에탄아민(2-methoxyethanamine), 3-에톡시에탄아민(3-ethoxyethanamine), 3-이소프로필-1-에톡시에탄아민(3-isopropoxy-1-ethoxyethanamine), 4,4-디메톡시에틸아민(4,4-dimethoxyethylamine), 4,4-디에톡시-1-에틸아민(4,4-diethoxy-1-ethylamine), 테트라하이드로-2-퓨라닐메틸아민(tetrahydro-2-furanylmethylamine), 2-페녹시에탄아민(2-phenoxyethanamine), 2-(3,4-디메톡시페닐)에탄아민 (2-(3,4-dimethoxyphenyl)ethanamine), 2-(2,5-디메톡시페닐)에틸아민 (2-(2,5-dimethoxyphenyl)ethylamine), 1,2,2-트리메틸-1-1프로판아민(1,2,2,-trimethyl-1-propanamine), 2-메틸-1-부탄아민(2-methyl-1-butanamine), 3-메틸-1-부탄아민(3-methyl-1-butanamine), 1,3-디메틸-1-부탄아민(1,3-dimethyl-1-butanamine), 4-메틸-1-펜탄아민(4-methyl-1-pentanamine), 3,3-디메틸-1-부탄아민(3,3-dimethyl-1-butanamine), 1,4-디메틸-1-펜탄아민(1,4-dimethyl-1-pentanamine), 1-메틸-1-헥산아민(1-methyl-1-hexanamine), 1-메틸-1-헵탄아민(1-methyl-1-heptanamine), 2-에 틸-1-헥산아민(2-ethyl-1-hexanamine), 2-아미노에탄올(2-aminoethanol), 3-아미노-1-프로판올(3-amino-1-p ropanol), (2R)-1아미노-2-프로판올((2R)-1-amino-2-propanol), (2S)-1-아미노-2-프로판올((2S)-1-amino-2- propanol), 2-아미노-1-프로판올(2-amino-1-propanol), (2S)-1-아미노-2-프로판올((2S)-1-amino-2-propanol), 2-아미노-1,3-프로판디올(2-amino-1,3-propanediol), 2-아미노-2-메틸-1,3-프로판디올(2-amino-2-methyl-1,3-propanediol), 2-아미노-2-메틸-1-프로판올(2-amino-2-methyl-1-propanol), 4-아미노-1-부탄올(4-amin o-1-butanol), 2-아미노-1-프로판올(2-amino-1- ropanol), 2-에틸아미노-1-부탄올 (2-ethylamino-1-butanol ), 2-(2-아미노에톡시)에탄올 (2-(2-aminoethoxy)ethanol), 5-아미노-1-페탄올(5-amino-1-pentanol), 3-아미노-2,2-1-프로판올(3-amino-2,2-dimethyl-1-propanol), 2-아미노-2-에틸-1,3-프로판디올(2-amino-2-ethyl-1 ,3-propanediol), 2-아미노-3-메틸-1-부탄올(2-amino-3-methyl-1-butanol), 6-아미노-1-헥산올(6-amino-1-hexanol), 1-아미노싸이클로펜틸)메탄올(1-aminocyclopentyl)methanol), 4-아미노싸이클로헥산올(4-aminocyc lohexanol), 2-아미노싸이클로헥산올(2-aminocyclohexanol), 2-메틸-1-프로판아민(2-methyl-1-propanamine) , 싸이클로부탄아민(cyclobutanamine), 싸이클로프로필메틸아민(cyclopropylmethylamine), 싸이클로펜탄아 민(cyclopentanamine), 싸이클로헥산아민(cyclohexanamine), 싸이클로헥산메틸아민(cyclohexanmethylamine), 아다만탄-메틸아민(adamantane-methylamine), 실란-메틸-데에톡시-프로필아민(Si-methyl-diethoxy-propylamine), 실란-트리톡시-프로필아민(Si-trithoxy-propylamine), N,N'-디에틸-1,2-에탄디아민(N,N'-diethyl-1,2-ethanediamine), N,N'-디이소프로필-1,2-에탄디아민(N,N'-diisopropyl-1,2-ethanediamine), N,N'-디메틸-1,2-프로판디아민(N,N'-dimethyl-1,2-propanediamine), N,N'-디메틸-1,3 -프로판디아민(N,N'-dimethyl-1,3-propanediamine), N,N'-디에틸-1,3-프로판디아민(N,N'-diethyl-1,3-propa nediamine), N,N'-디에틸-1,4-펜탄디아민(N,N-diethyl-1,4-pentanediamine), N,N'-비스(2-하이드록시에틸)에 틸렌디아민 (N,N-Bis(2-hydroxyethyl)ethylenediamine), N'N'-비스(2-하이드록시)프로필렌디아민 (N,N'-Bis (2-hydroxyethyl)propylenediamine) 또는 이들의 혼합물 등이 있다.
상기 식에서, R2는 탄소 원자수 1 내지 10의 알킬기이다.
상기 2차 아민 화합물의 비제한 적인 예로는 4,4'-트리메틸렌디피퍼리딘(4,4'-trimethylenepiperidine), N,N'-디메틸에틸렌디아민(N,N'-di methylethylenediamine), 피페라진(piperazine), 2-메틸피페라진(2-methylpiperazine), 3-메틸-4-(3-메틸페 닐)피페라진 (3-methyl-4-(3-methylphenyl)piperazine), 3-메틸피페라진(3-methylpiperazine), 4-(phenylmethyl)piperazine (4-(페닐메틸)피페라진), 4-(1-페닐 에틸)피페라진(4-(1-phenylethyl)piperazine), 4-(1,1'-디메톡시카르보닐)피페라진 (4-(1,1'-dimethoxycarb onyl)piperazine), 4-(2-(비스-(2-프로페닐)아미노)에틸)피페라진 (4-(2-(bis-(2-prophenyl)amino)ethyl)pi perazine), 1-(2-아미노에틸)피페라진 (1-(2-aminoethyl)piperazine), 4-(아미노메틸)피페라진 (4-(amino methyl)piperazine), N,N'-디메틸-1,2-에탄디아민 (N,N'-dimethyl-1,2-ethanediamine), N,N'-디에틸-1,2-에 탄디아민(N,N'-diethyl-1,2-ethanediamine), N,N'-디이소프로필-1,2-에탄디아민 (N,N'-diisopropyl-1,2-eth anediamine), N,N'-디메틸-1,2-프로필아민 (N,N'-dimethyl-1,2-propyldiamine), N,N'-디에틸-1,2-프로필디아민 (N,N'-diethyl-1,2-propyldiamine), N,N'-디이소프로필-1,2-프로필아민 (N,N'-diisopropyl-1,2-propyldiamine), N,N'-디메틸-1,2-헥산디아민(N,N'-dimethyl-1,2-hexanediamine), N,N'-디메틸-N-(3-(메틸아미노)프 로필]-1,3-프로판디아민 (N,N-dimethyl-N-[3-(methylamino)propyl]-1,3-propanediamine), N-[2-메틸아미노) 에톡시에틸]-N,N'-디메틸아민 (N-[2-methylamino)ethoxyethyl]-N,N'-dimethylamine), N-[2-메틸아미노)디옥시에틸]-N,N'-디메틸아민, N-[2-메틸아미노)디옥시에틸]-N,N'-디메틸아민 (N-[2-methylamino)dioxyethyl]-N,N'-dimethylamine), 1,4-디아제판(1,4-diazepane) 또는 이들의 혼합물 등이 있다.
한편, 약물과의 다 이온성 복합체 형성을 용이하게 유도하기 위하여 사용된 헤테로싸이클릭알킬아민 계열 화합물은 아민기와 방 향족고리환에 3차아민기를 갖기만 하면 제한 없이 사용 가능하다. 특히 하기 화학식 7로 표기되는 화학식을 유도하기 위하여 사용된 헤테로싸이클릭알킬아민 계열 화합물은 방향족고리환에 3차아민기와 1차 아민기를 가진 헤테로싸이클릭알킬아민 계열 화합물 등이 바람직하다.
상기 식에서, R1 은 탄소 원자수 1 내지 6의 알킬기이다.
상기 알킬기는 선형 또는 가지형 저급 포화지방족 탄화수소를 의미하는 것으로서, 예를 들면, 메틸, 에틸, n-프로필, 이소프로필, n-부틸, s-부틸, 이소부틸, t-부틸 및 n-펜틸기 등이 있다. 대표적인 헤테로싸이클릭알킬아민 계열 화합물로서 , 1-(3-아미노프로필)이미다졸(1-(3-aminopropyl) imidazole, API)이 있으며, 아미노알킬이미다졸 계열 화합 물 외에 1-(2-아미노에틸)피롤리딘 (1-(2-aminoethyl)pyrrolidine), 2-(2-아미노에틸)-1-메틸피롤리딘 (2-( 2-aminoethyl)-1-methylpyrrolidine), 1-(2-아미노에틸)피퍼리딘 (1-(2-aminoethyl)piperidine), N-(3-아미 노프로필)-2-피페콜린 (N-(3-aminopropyl)-2-pipecoline), N-(N-메틸-N-벤젠)-1-프로필아민 (N-(N-methyl-N -benzene)-1-propylamine), N-(3-아미노프로필)2-피롤리디논 (N-(3-aminopropyl)-2-pyrrolidinone), 2-(2-피 리딜)에틸아민 (2-(2-pyridyl)ethylamine), 4-(2-아미노에틸)모폴린 (4-(2-aminoethyl)morpholine), 3-모폴 리노프로필아민(3-morpholinopropylamine), 히스티딘(histidine) 등도 약물 또는 단백질과의 강한 이온성 복합체 유도할 수 있는 화합물로 사용될 수 있다.
pH 민감성을 나타내는 폴리(아미노 에시드), 예컨대 PAE, PAA, 및 PAEA 제조시, 상기 비스아크릴레이트 화합물 또는 비스아크릴아마이드 화합물과 아민 계열 화 합물의 반응 몰비는 1 : 0.5 ~ 2.0 범위가 바람직하다. 상기 아민 계열 화합물의 몰비가 0.5 미만 또는 2.0 를 초과하는 경우 중합되는 고분자의 분자량이 1000 이하가 되므로 마이셀을 형성하기가 어렵게 된다.
전술한 친수성 폴리에틸렌글리콜 계열 화합물과 폴리(아미노 에시드) 및 헤테로싸이클릭알킬아민 계열 화합 물과의 공중합을 통해 형성되는 본 발명의 pH 민감성 블록 공중합체는 하기 화학식 8 내지 화학식 10으로 표 기될 수 있다.
상기 식에서, R은 수소 원자 또는 탄소 원자수 1 내지 6의 알킬기이며, 이때 x는 1 내지 200 범위의 자연수이고, R1, R3, R 4는 탄소 원자수 1 내지 10의 알킬기이고, y 및 z는 1 내지 100 범위의 자연수이다.
상기 화학식 8로 표기되는 블록 공중합체는 전술한 양친성과 pH 민감성으로 인해 pH 변화에 따라 마이셀을 형성하거나 붕괴할 수 있다. 바람직하게는 pH가 7.0 내지 7.4 범위인 경우 마이셀을 형성하고, pH가 6.5 내지 7.0 범위인 경우 마이셀이 붕괴하게 된다. 특히, 본 발명의 블록 공중합체는 pH 0.2 범위 이내의 우수한 민감성을 나타낸다는 장점을 가지므로, 체내 pH 변화에 따른 민감성이 요구되는 용도, 예컨대 약물방출용 캐리어 또는 진 단 용도 등에서 만족스런 결과를 도출해낼 수 있다. 특히, 생성된 마이셀에 약물 또는 단백질을 안정적으로 담지할 수 있도록 유도해주는 헤테로싸이클릭알킬아민 계열 화합물과의 공중합의 통해 인체내 혈관내 주입시 약물 또는 단백질을 안정적으로 담지한 채 순환하다가 질환부위의 pH 변화로 약물 또는 단백질을 방출할 수 있는 표적지향적 약물 또는 단백질 전달체를 제공해준다.
발명의 블록 공중합체는 pH 민감성 유지 및 마이셀을 형성하는 물성을 유지하는 한, 전술한 친수성 폴리에틸렌글리콜 계열 화합물과 헤테로싸이클릭알킬 아민 계열 화합물 및 폴리(아미노 에시드) 화합물 이외에, 다른 당 업계의 통상적인 단위체를 더 포함할 수 있으며, 이 또한 본 발명의 범주에 속한다.
상기 블록 공중합체의 분자량 범위는 특별한 제한은 없으나, 1,000 g/mol 내지 20,000 g/mol 범위가 바람직하다. 분자량이 1,000 g/mol 미만인 경우 특정 pH에서 블록 공중합체 마이셀이 형성되기 어려울 뿐만 아니라 형성되더라도 물에 용해되어 붕괴되기 쉽다. 또한, 분자량 이 20,000 g/mol 을 초과하는 경우 친수성/소수성의 밸런스가 깨져 특정 pH에서 마이셀이 형성하지 못하고 침전될 수 있다.
본 발명에 따른 pH 민감성 블록 공중합체 중 폴리에틸렌글리콜 계열 블록의 함량은 특 별한 제한이 없으나, 5 내지 95중량부가 적절하며, 바람직하게는 10 내지 40 중량부이다. 폴리에틸렌글리콜 계열블록의 함량이 5 중량부 미만인 경우 상기 블록 공중합체가 마이셀을 형성하지 못하고 침전될 수 있으며, 95 중량부를 초과하는 경우 마이셀 내부를 이루는 블록이 너무 적어서 마이셀을 형성하지 못하고 용해되어 있는 상태로 존재하게 된다. 또한 상기 블록공중합체는 폴리에틸렌글리콜 계열 화합물과 폴리(아미노 에시드), 예컨대 PAE, PAA, 또는 PAEA의 반응 몰비를 조절함으로써 AB형의 이중 블록 공중합체 ABA 또는 BAB 형의 삼중 블록공중합체 또는 그 이상의 다양한 블록 형태를 형성할 수 있다.
본 발명에 따른 pH 민감성 블록 공중합체는 당 기술분야에서 알려진 통상적인 방법에 따라 제조될 수 있으며, 예를 들면 하기 반응식 1, 2, 3 또는 반응식 4의 경로에 의해 합성될 수 있다. 우선, PEG 계열 화합물을 이용하여 아크릴레이트기가 도입 된 PEG를 제조하였는데 이의 반응은 하기 반응식 1로 예시될 수 있다.
[반응식 1]
먼저, 반응식 1과 같이 PEG 계열 화합물을 아크로일크롤라 이드와 반응시켜 양말단에 이중결합을 갖는 아크릴레이트 폴리에틸렌글리콜 (A-PEG)을 제조한다.
하기 반응식 2로 도식되는 제조 방법의 일 실시예를 들면, 아크릴레이트 말단기를 갖는 폴리에틸렌글리콜(A-P EG)과 1차 아민, 그리고 비스아크릴레이트 및 아미노알킬이미다졸을 이용하여 당 업계에 통상적으로 알려진 반응으로 공중합한다. 이때 1차 아민과 비스아크릴레이트는 미셀 반응이라는 부가반응에 의해 폴리(β-아미 노 에스터)를 형성하게 되며, 형성된 폴리(β-아미노 에스터)는 말단이 아크릴레이트 관능기를 갖는 폴리에 틸렌글리콜 계열 화합물과 헤테로싸이클릭알킬아민 계열 화합물과 공중합하여 하기 반응식 2로 표기되는 블 록 공중합체를 제조된다. 이때 블록공중합체의 제조에 사용되는 유기용매로는 톨루엔, 클로로포름, 테트라하 이드로퓨란, 다이메틸 설폭사이드, 다이메틸 포름아마이드, 메틸렌 클로라이드 등이 사용될 수 있다.
[반응식 2]
상기 식에서,
R은 수소 원자 또는 탄소 원자수 1 내지 6의 알킬기이며, 이때 x는 1 내지 200 범위의 자연수이고
R1, R 3, R4는 탄소 원자수 1 내지 10의 알킬기이고
y 및 z는 1 내지 100 범위의 자연수이다.
하기 반응식 3으로 도식되는 제조 방법의 일 실시예를 들면, 아크릴레이트 말단기를 갖는 폴 리에틸렌글리콜(A-PEG)과 2차 아민, 그리고 비스아크릴레이트 및 헤테로싸이클릭알킬아민 계열 화합물을 이 용하여 당 업계에 통상적으로 알려진 반응으로 공중합한다. 이때 2차 아민과 비스아크릴레이트는 미셀 반응 (Michael reaction)이라는 부가반응에 의해 폴리(β-아미노 에스터)를 형성하게 되며, 형성된 폴리(β-아미 노 에스터)는 말단이 아크릴레이트 관능기를 갖는 폴리에틸렌글리콜 계열 화합물과 헤테로싸이클릭알킬아민 계열 화합물과 공중합하여 하기 반응식 3로 표기되는 블록 공중합체를 제조한다. 이때 블록공중합제의 제조 에 있어서 사용되는 유기용매로는 톨루엔, 클로로포름, 테트라하이드로퓨란, 다이메틸 설폭사이드, 다이메틸 포름아마이드, 메틸렌 클로라이드 등이 사용될 수 있다.
[반응식 3]
상기 식에서,
R은 수소 원자 또는 탄소 원자수 1 내지 6의 알 킬기이며, 이때 x는 1 내지 200 범위의 자연수이고
R1, R2, R3 , R4는 탄소 원자수 1 내지 10의 알킬기이고
y 및 z는 1 내지 100 범위의 자연수이다.
하기 반응식 4로 도식되는 제조방법의 일 실시예를 들면, 아크릴레이트 말단기를 갖는 폴리에틸렌글리콜(A- PEG)과 1차 또는 2차 아민, 그리고 비스아크릴아마이드를 이용하여 당 업계에 통상적으로 알려진 반응으로 공중합한다. 이때 1차 또는 2차 아민과 비스아크릴아마이드는 미셀 반응(Michael reaction)이라는 부가반응 에 의해 폴리(아미도 아민)이라는 폴리(아미노 에시드)를 형성하게 되며, 형성된 폴리(아미도 아민)은 말단 이 아크릴레이트 관능기를 갖는 폴리에틸렌글리콜 계열 화합물 및 헤테로싸이클릭알킬아민 계열 화합물과 공 중합하여 하기 반응식 4로 표기되는 pH 민감성 블록 공중합체를 제조한다. 이때 블록공중합제의 제조에 있어 서 사용되는 유기용매로는 톨루엔, 클로로포름, 테트라하이드로퓨란, 다이메틸 설폭사이드, 다이메틸 포름아 마이드, 메틸렌 클로라이드 등이 사용될 수 있다.
[반응식 4]
상기 식에서 ,
R은 수소 원자 또는 탄소 원자수 1 내지 6의 알킬기이며, 이때 x는 1 내지 200 범위의 자연수이고
R1 , R2, R4, R5는 탄소 원자수 1 내지 10의 알킬기 이고
y 및 z는 1 내지 100 범위의 자연수이다.
한편, 본 발명에서는 마이셀과 약물 또는 단백질 사이에 이온성 복합체 형성 정도를 유도하기 위하여 헤테로싸이클릭알킬아민 계열 화합물을 공중합시에 첨가 하한다. 상기 헤테로싸이클릭알킬아민 계열 화합물이 공중합체 내에 효율성 있게 잘 들어가 있는지 확인을 위해서 합성된 블록 공중합체의 핵자기공명(1H-NMR) 측정과 GPC(gel permeation chromatogr aphy) 측정을 수행하였고, pH 변화에 따른 마이셀의 농도 변화 및 마이셀 크기의 변화를 측정하고자 형광 분광기(fluorescence spectrometer)와 동적광산란기(dynamic light scattering, DLS)를 이용하였다. 또한 형성 된 마이셀과 약물 또는 단백질 사이의 이온성 복합체 정도를 비교분석하기위하여 다양한 pH에서의 이들의 제 타전위 값을 측정하여 이온성 복합체 정도를 예측하였다. 한편, 형성된 마이셀 내부에 담지된 약물 또는 단 백질의 안정성을 측정하고자 DLS 에 의한 시간에 따른 마이셀 입자크기의 변화를 측정하였고 전기영동(elec trophoresis)실험을 수행하여 이온성 복합체 형성 능력을 비교분석하였다.
또한, 전술한 분석들을 통해 약물 또는 단백질 전달체로서의 적용 가능성을 확인하고자 모델약물인 human serum albumin(HSA)를 이용하여 실시예 3에서 제조된 HSA를 담지한 마이셀을 이용하여 다양한 pH에서의 HSA의 방출거동을 원편광 이색성 분 광기(circular dichroism, CD)을 이용하여 측정하였다. 실제로 형광표지제인 FITC가 표지된 마이셀과 여기에 HSA가 담지된 마이셀에 배양한 유방암 세포주인 MDA-MB-435 세포의 형광표지성능 및 HSA의 방출정도를 보기 위하여 공초점현미경(confocal microscopy) 관찰을 행하였다. 마지막으로 HSA가 담지된 마이셀의 세포독성을 측정하고자 MDA-MB-435 세포의 성장을 알아보는 MTT assay를 수행하였다.
또한, 본 발명은 (a) pH 변화 에 따라 마이셀을 형성하는 전술한 블록공중합체 및 (b) 상기 블록공중합체에 봉입될 수 있는 생리활성 약물 또는 단백질을 포함하는 고분자 마이셀형 약물 조성물을 제공한다.
상기 고분자 마이셀형 약물 조성물은 체내에 주입되었을 때 마이셀을 형성하고 생리활성 약물 및 단백질을 초기 방출없이 마이셀과 약물 또는 단 백질과의 강한 이온성 복합체 형성으로 안정적으로 담지하고 있다가 암세포와 같이 국소적으로 pH가 낮은 곳 에 도달하게 되면 마이셀이 붕괴됨으로써, 안정적으로 담지하고 있던 약물을 방출함으로써 표적지향적 약물 전달이 이루어질 수 있다.
본 발명의 다이온성 복합체 마이셀 형태의 블록 공중합체에 봉입될 수 있는 생리 활성 약물 또는 단백질은 특별한 제한 없이 사용할 수 있으며, 이의 비제한적인 예로서 항암제로는 인 간세럼알부민(human serum albumin, HSA), 파클리탁셀 (paclitaxel), 독소루비신 (doxorubicin), 레티노익산 (retinoic acid)계열, 시스플라틴 (cis-platin), 캄토세신 (camptothecin), 5-FU(fluorouracil), 도세탁 셀 (docetaxel), 타목시펜(tamoxifen), 아나스테로졸(anasterozole), 카보플라틴(carboplatin), 토포테칸(topotecan), 베로테칸(belotecan), 이리노테칸(irinotecan), 글리벡(gleevec) 및 빈크리스틴(vincristine)으 로 구성된 군에서 선택되는 항암제와 아스피린 (aspirin) 및 살리실레이트 (salicylates), 이부프로펜(ibuprofen), 나프로센(naproxen), 페노프로펜(fenoprofen), 인도메타신(indomethacin), 페닐부타존(phenyltazone), 메소트렉세이트(methotrexate), 시클로포스파미드(cyclophosphamide), 메클로에타민(mechlorethamine), 덱사메타손(dexamethasone), 프레드니솔론(prednisolone), 셀레콕시브(celecoxib), 발데콕시브(valdecoxib) , 니메슐리드(nimesulide), 코르티손(cortisone) 및 코르티코스테로이드(corticosteroid)으로 구성된 군에서 선택되는 항염증제와 이외에도 항바이러스제, 마취제, 항구토제 또는 항히스타민제 등이다.
상기의 약물 이 봉입된 pH 민감성 단백질 또는 약물 전달체는 정상체내 조건인 pH 7.0 - pH 7.4 범위에서는 나노크기의 입자를 유지하며 약물이 방출되지 않고 안정적으로 담지하고 있다가, 암 및 염증성 질환 조직과 같은 비정상 조건인 pH 7.0 미만에서는 입자가 붕괴되어 약물을 방출할 수 있도록 분자설계 되었다. 또한, 세포내포 흡수 되어 엔도사이토시스(endocytosis)에 의해 엔도좀의 pH 6.0 이하에서 입자가 붕괴되어 약물을 방출 할 수 있 도록 분자설계 되어 있다.
본 발명은 상기 블록공중합체의 구성 성분, 이들의 몰비, 분자량 및 블록 내 관능기를 적절히 변경함으로써 암 및 염증성 질환 등의 다른 응용 분야에 적용 될 수 있으며, 엽산 (folic acid), RGD 계열 단백질, 또는 압타머(aptamer) 등을 표지하여 표적 지향적인 마이셀을 디자인하여 이를 유용하게 응용할 수 있다.
또한, 전술한 성분 이외에 당 업계에 알려진 통상적인 첨가제, 예컨대 부형제, 안정화제, pH 조정제, 항산화제, 보존제, 결합제 또는 붕해제 등을 포함할 수 있다. 상기 암질환은 유방암 외에 폐암, 자궁암, 자궁경부암, 전립선암, 두경부암, 췌장암, 뇌종양, 간암, 피부암, 식도암, 고환암, 신장 암, 대장암, 갑상선암, 설암 또는 직장암 등에 적용이 가능하며, 상기 염증성 질환은 류마티스 관절염, 골관 절염 또는 동맥경화 등에 적용이 가능하다.
본 발명에 따른 다이온성 복합체 마이셀의 제조방법은 교반, 가열, 초음파 주사, 유화법을 이용한 용매증발법, 매트릭스 형성 또는 유기용매를 이용한 투석법 등의 방 법을 단독 또는 병행하여 사용할 수 있다.
제조된 다이온성 복합체 마이셀의 직경은 특별한 제한이 없으나, 10 내지 200nm 범위가 바람직하다. 또한, 상기 고분자 마이셀 약물 조성물은 경구제 또는 비경구제의 형 태로 제제화하여 사용할 수 있으며, 정맥, 근육 또는 피하 주사제로 제조할 수 있다.
또한, 본 발명은 상기 pH 민감성 블록 공중합체를 약물 또는 단백질 전달체 및 질병 진단용 캐리어(carrier)로 사용하는 방법 을 제공한다. 이때 블록 공중합체 내 함유되는 물질은 질병의 치료, 방지 또는 진단을 위한 물질이라면 특별 한 제한이 없다.
추가적으로, 본 발명은 (a) 에스테르기, 3차 아민기 그리고 헤테로싸이클릭알킬아민 계 열 화합물을 포함하는 화합물 및 아마이드기, 3차 아민기 그리고 헤테로싸이클릭알킬아민 계열 화합물을 포 함하는 화합물로 구성된 군으로부터 선택된 1종 이상의 화합물 또는 상기 화합물의 공중합체 및 (b) 친수성 또는 양친성을 갖는 화합물을 공중합시켜 마이셀을 형성할 수 있는 pH 민감성 블록 공중합체의 제조방법을 제공한다.
이하, 본 발명을 하기 실시예 및 실험예에 의하여 더욱 상세하게 설명하고자 한다. 단 하 기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정하는 것은 아니다.
[실시예 1 ~ 10. pH 민감성 블록 공중합체 합성]
실시예 1. 폴리에틸렌글리콜-폴리(β-아미노 에 스터)-아미노프로필이미다졸 블록 공중합체(PEG-PAE-API) 제조.
폴리에틸렌글리콜 메틸 이써(MPEG50 00, Mn = 5,000)를 온도 90℃에서 2시간 진공오븐에서 탈수시킨 후에 아크릴로일 클로라이드를 트리에틸아민 (TEA)이 첨가된 톨루엔하에서 45℃에서 15시간 반응시켰다. 미반응 트리에틸아민염은 필터공정을 통하여 제 거한 후에, 묽은 염산 수용액으로 추출하고 에틸에테르에 침전시켜 말단기가 아크릴레이트기로 치환된 폴리 에틸렌 글리콜(A-PEG)를 제조하였다. A-PEG 0.1몰과 디아민 성분으로 4,4'-트리메틸렌 다이피퍼리딘 1몰 및 1,6-헥산 다이올 다이아크릴레이트 1몰, 아미노프로필이미다졸 0.1몰을 2구 둥근 플라스크에 넣고, 감압 후 질소를 충전하였다. 이때, 반응 용매는 클로로포름을 사용하였으며, 50℃에서 3일간 동안 반응시켜 헥산과 에틸에테르가 1:1로 혼합된 공용매에 침전시킨후에 건조시켜 수평균분자량(Mn)이 13,800인 폴리에틸렌 글리 콜-폴리(β-아미노 에스터)-아미노프로필이미다졸 블록 공중합체(PEG-PAE-API)를 제조하였고 수율은 90%였다 .
실시예 2
디아민 성분으로 4,4'-트리메틸렌 다이피퍼리딘 1몰 대신 0.8몰과 아미노프로필이 미다졸(API) 0.1몰 대신 0.3몰을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 수평균 분자량(Mn)이 10,000인 PEG-PAE-API 블록 공중합체를 제조하였고, 수율은 91%였다.
실시예 3
디아민 성분으로 4,4'-트리메틸렌 다이피퍼리딘 1몰 대신 0.6몰과 아미노프로필이미다졸(API) 0.1몰 대신 0.5몰을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 수평균분자량(Mn)이 9,400인 PEG- PAE-API 블록 공중합체를 제조하였고, 수율은 90%였다.
실시예 4
폴리에틸렌 글리콜 메틸 이써 (MPEG)를 분자량 5,000대신 2,000을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 수평 균분자량(Mn)이 11,000인 PEG-PAE-API 블록 공중합체를 제조하였고, 수율은 95%였다.
실시예 5
폴리에틸렌 글리콜 메틸 이써(MPEG)를 분자량 5,000대신 1,000을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 수평균분자량(Mn)이 10,000인 PEG-PAE-API 블록 공중합체를 제조하였고, 수율은 95 %였다.
실시예 6
디아민성분인 4,4'-트리메틸렌 다이피퍼리딘 대신 피페라진을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 수평균분자량(Mn)이 13,000인 PEG-PAE-API 블록 공중합 체를 제조하였고 수율은 90%였다.
실시예 7
1,6-헥산 다이올 다이아크릴레이트 1몰 대신 1,4 -부탄 다이올 다이아크릴레이트 1몰 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 수 평균분자량(Mn)이 12,500인 PEG-PAE-API 블록 공중합체를 제조하였고 수율은 93%였다.
실시예 8
블록공중합체의 생분해 속도를 조절하기 위하여 4,4'-트리메틸렌 다이피퍼리딘 0.5몰과 N,N-메틸렌 비스아크릴 아마이드를 0.5몰 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 수평균분자량(Mn)이 13, 500인 PEG-PAEA-API 블록 공중합체를 제조하였고 수율은 91%였다.
실시예 9
블록공중합체의 생 분해 속도를 조절하기 위하여 피페라진 0.5몰과 N,N-메틸렌 비스아크릴아마이드를 0.5몰 사용한 것을 제외하고는 , 상기 실시예 1과 동일한 방법을 수행하여 수평균분자량(Mn)이 13,500인 PEG-PAEA-API 블록 공중합체를 제 조하였고 수율은 91%였다.
실시예 10
1,6-헥산 다이올 다이아크릴레이트 1몰 대신에 N,N'-메 틸렌 비스아크릴아마이드를 1몰을 사용한 것을 제외하고는 실시예 1과 동일하게 수행하여 수평균분자량이( Mn)이 13,700인 PEG-PAA-API 블록공중합체를 제조하였고 수율은 95%였다.
실시예 11
마이셀과 단백질과의 이온 복합체 형성 능력을 알아보기위하여 실시예 1 내지 실시예 3에서 제조한 PEG-PAE-API 블록 공중합체 성분에 대하여 인간 혈청 알부민(human serum albumin,HSA) 단백질을 5% 담지시켜 다양한 pH에 있 어서 제타전위 측정을 하여, 순수한 HSA의 제타전위값과 비교하였다.
실시예 12
마이셀과 단백 질과의 이온 복합체 형성에 따른 HSA의 방출 능력을 알아보기위하여 실시예 1에서 제조한 PEG-PAE-API 블록 공중합체 성분에 대하여 HSA 단백질을 1몰을 담지시켜 HSA가 담지된 블록공중합체 마이셀(API10이라 칭함)을 제조하여 다양한 pH에 있어서 방출거동을 비교하였다.
실시예 13
마이셀과 단백질과의 이온 복 합체 형성에 따른 HSA의 방출 능력을 알아보기위하여 실시예 2에서 제조한 PEG-PAE-API 블록공중합체 성분에 대하여 HSA 단백질을 3몰을 담지시켜 HSA가 담지된 블록공중합체 마이셀(API30이라 칭함)을 제조하여 다양한 pH에 있어서 방출거동을 비교하였다.
실시예 14
마이셀과 단백질과의 이온 복합체 형성에 따른 HSA의 방출 능력을 알아보기위하여 실시예 1에서 제조한 PEG-PAE-API 블록공중합체 성분에 대하여 HSA 단백 질을 5몰을 담지시켜 HSA가 담지된 블록공중합체 마이셀(API50이라 칭함)을 제조하여 다양한 pH에 있어서 방 출거동을 비교하였다.
[비교예 1 ~ 2]
비교예 1
MPEG 5000 대신 MPEG 400을 사용 하여 제조된 A-PEG 10몰을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 수평균분자량 (Mn)이 9,800인 PEG-PAE-API 블록 공중합체를 제조하였고 수율은 95%였다.
제조된 PEG-PAE-API 블록 공 중합체를 이용하여 pH 변화에 따른 거동을 관찰한 결과, 상기 블록 공중합체는 마이셀을 형성하지 못한다는 것을 확인하였다. 이와 전술한 바와 같이, 특정 pH에서 친수성 블록의 길이가 너무 짧아 친수성/소수성에 의 한 자기조합이 일어나지 못하여 마이셀이 형성되기 어려울 뿐만 아니라, 형성되더라도 물에 용해되어 붕괴되 기 쉽다는 것을 반증하는 것이다.
비교예 2
MPEG 5000 대신 MPEG 12000을 사용하여 제조된 A- PEG 10몰을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 수평균분자량(Mn)이 21,000인 PEG-PAE-API 블록 공중합체를 제조하였다.
상기 PEG-PAE-API 블록 공중합체를 이용하여 pH 변화에 따른 거동을 관찰한 결과, 비교예 2의 블록 공중합체는 상기 비교예 1과 마찬가지로 마이셀을 형성하지 못한다는 것을 확인하였다. 이는 소수성인 폴리(아미노 에시드)의 분자량에 비해 블록 길이가 너무 커져서 친수성/소수성의 밸런스가 깨져 특정 pH에서 마이셀이 형성하지 못하고 침전되는 것을 의미하는 것이다.
실험예 1. pH 민감성 블록 공중합체의 분자량 측정
본 발명에 따라 제조된 pH 민감성 블록 공중합체의 분자량을 측정하기 위하여, 하기와 같은 분석을 실시하였다.
실시예 1 내지 10에서 제조된 PEG-PAE-API, PEG-PAEA-API, PEG-PAA-API 블록 공중합체를 사용하였으며, 이들의 분자량 조절 가능성을 타진하고자 GPC 분석을 실시하였다.
실험예 2. 산염기 적정에 의한 블록 공중합체의 pK 값 측정
본 발명에 따 라 제조된 pH 민감성 블록 공중합체의 pK 값을 측정하기 위하여, 하기와 같은 실험을 실시하였다.
실시 예 1 내지 실시예 3에서 제조된 다양한 API 함량을 가진 블록 공중합체를 사용하였다. 도 4에서 보는 바와 같이 API 함량이 증가할수록 산염기 변곡점이 급격하게 변하면서 pK 값이 다소 증가하는 것을 볼 수 있었다 .
실험예 3. pH 변화에 따른 마이셀-HSA 단백질간의 제타전위 측정
본 발명에 따라 제조된 pH 민감성 블록 공중합체 마이셀과 여기에 HSA 단백질을 담지한 마이셀의 다양한 pH에서의 제타전위를 측정하기 위하여, 하기와 같은 실험을 실시하였다.
실시예 1에서 제조된 블록공중합체와 순수한 HSA를 사용하였다. 도 6에서 볼 수 있듯이 순수한 HSA는 pH 5.5 이상에서는 음이온을 pH 5.5 미만에서는 양이온으로 전하되는 것을 알 수 있었고, 상기 마이셀에 HSA를 담지한 시료는 pH 6.6 미만에서는 양이온으로 전하되고, pH 6.6 이 상에서는 중성의 값을 보여주는 것을 알 수 있었다.
실험예 4. pH에 따른 마이셀-HSA 단백질의 입자안 정성 측정
본 발명에 따라 제조된 pH 민감성 블록 공중합체 마이셀과 HSA 단백질의 입자안정성을 보 기위하여 시간에 따른 입자크기의 변화를 관찰하기 위하여, 하기와 같은 실험을 실시하였다.
실시예 1 및 실시예 11에서 제조된 공중합체와 HSA가 담지된 마이셀을 사용하였다. 도 7에서 보는 바와 같이 HSA가 담 지된 마이셀의 입자크기가 24시간 동안 변화가 없는 것으로 보아 마이셀과 HSA단백질에는 강한 이온 복합체 가 형성되었음을 알 수 있었다.
실험예 5. pH에 따른 마이셀-HSA 단백질의 방출거동 측정
본 발명에 따라 제조된 pH 민감성 블록 공중합체 마이셀에 HSA 담지하여 pH에 따른 HSA 방출량을 측정하기위하 여, 하기와 같은 실험을 실시하였다.
실시예 3 및 실시예 11에서 제조된 공중합체와 HSA가 담지된 마이 셀을 사용하였다. 도 8에서 보는 바와 같이 HSA를 담지한 마이셀의 방출거동과 순수한 HSA의 방출거동이 일 치하는 것으로 보아, 마이셀가 안정적으로 담지된 HSA가 전량 방출되었음을 알 수 있었다.
이로서, 본 발명의 pH 민감성 블록 공중합체는 공중합체 내 존재하는 양친성(兩親性)과 pH 변화에 따른 가역적인 자기 조립 현상을 통해 고분자 마이셀(micelle)을 형성 및 붕괴할 수 있다는 것을 확인할 수 있었고, 마이셀과 H SA단백질이 강한 이온 복합체를 형성하여 마이셀내에서 안정적으로 담지하고 있다가 pH 변화에 따라 전량 방 출되는 것을 알 수 있었다.
본 발명의 블록 공중합체는 pH에 따라 물에 대한 용해도 특성을 갖지만 자기 조립 현상에 의하여 마이셀을 형성하지 못하는 폴리(아미노 에시드), 예컨대 폴리(β-아미노 에스터) 또는 폴리(아미도 아민) 화합물에 친수성 폴리에틸렌글리콜 계열 화합물 및 헤테로싸이클릭알킬아민 계열 화합물 을 이용하여 다이온성 복합체 마이셀을 제조하였다. 상기 마이셀과 약물 또는 단백질과의 강한 이온 복합체 를 형성할 수 있는 성능을 부여하기 위하여 헤테로싸이클릭알킬아민 계열 화합물을 첨가하여 공중합시켜 pH 민감성 블록공중합체를 형성하였다.
이렇게 함으로써, pH 민감성을 보유할 뿐만 아니라 자기조립 현상에 의하여 가역적으로 고분자 마이셀을 형성할 수 있었으며 체내에서 안정적으로 약물 또는 단백질을 담지하고 있다가 질환부위의 pH 변화에 의하여 담지한 약물 또는 단백질을 방출할 수 있다. 즉, 단백질의 등전점(iso electric point, pl)이상과 pH 7.4이하에서 pH 민감성 블록공중합체는 자기회합(self-assembly)하여 나노 크 기를 갖는 코어-쉘(core-shell)구조를 취하고 약물 또는 단백질과 다이온성 복합체 마이셀 형성하여 단백질 을 안정적으로 담지하고 있다가 등전점(pl) 미만의 pH에서 블록공중합체와 단백질과의 전하반발에 의하여 단 백질을 방출하는 표적 지향적인 약물 또는 단백질 전달체 및 진단 용도로 사용할 수 있다는 것을 알 수 있었다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것 이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.
Claims (13)
- (a) 폴리에틸렌글리콜 계열 화합물;(b) 폴리(아미노 에시드) 화합물; 및(c) 이온성 복합체 유도 성능을 지닌 헤테로싸이클릭알킬아민 계열 화합물이 공중합시켜 형성된 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체.
- 제1항에 있어서,상기 폴리에틸렌글리콜 계열 화합물은 말단에 아크릴레이트 또는 메타크릴레이트의 단일 관능기를 갖는 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체.
- 제1항에 있어서,상기 폴리에틸렌글리콜 계열 화합물은 수평균분자량(Mn)이 500 내지 5,000 g/mol 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체.
- 제1항에 있어서,상기 폴리(아미노 에시드) 화합물은 폴리(β-아미노 에스터)(PAE), 폴리(아미도 아민)(PAA) 또는 이들의 혼합 공중합물(PAEA)인 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체.
- 제1항에 있어서,상기 폴리(아미노 에시드) 화합물은 비스아크릴레이트 또는 비스아크릴아미드 계열 화합물에 1차 또는 2차 아민기를 포함하는 아민 계열 화합물을 중합시키는 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체.
- 제5항에 있어서,상기 비스아크릴레이트 화합물은 에틸렌 글리콜 다이아크릴레이트, 1,4-부탄 다이올 다이아크릴레이트, 1,3-부탄 다이올 다이아크릴레이트, 1,6-헥산 다이올 다이아크릴레이트, 1,5-펜탄 다이올 다이아크릴레이트, 2,5-펜탄 다이올 다이아크릴레이트, 1,6-헥산 다이올 에톡실레이트 다이아크릴레이트, 1,6-헥산 다이올 프로폭실레이트 다이아크릴레이트, 3-하이드록시-2,2-다이메틸프로필3-하이드록시-2,2-다이 메틸프로피오네이트 다이아크릴레이트, 1,7-헵탄 다이올 다이아크릴레이트, 1,8-옥탄 다이올 다이아크릴레이트, 1,9-노나 다이올 다이아크릴레이트, 1,10-데칸 다이올 다이아크릴레이트로 이루어진 군에서 1 이상 선택되고,상기 비스아크릴아마이드 화합물은 N,N'-메틸렌 비스아크릴아마이드(MDA) 또는 N,N'-에틸렌 비스아크릴아마이드인 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체.
- 제5항에 있어서,상기 아민 계열 화합물에서 1차 아민 화합물은 1-메틸아민(1-methylamine), 1-에틸아민(ethylamine), 1-프로필아민(1-propylamine), 1-부틸아민(1-butylamine), 1-펜틸아민(1-pentylamine),1-헥산아민(1-hexaneamine), 1-헵탄아민(1-heptaneamine), 1-옥탄아민(1-octanamine), 1-노나아민(nonaamine), 1-데칸아민(1-decanamine), 1-이소프로필아민(1-isopropylamine), 트리에틸렌아민(triethyleneamine), 3-메톡시프로필아민(3-methoxypropylamine), 3-에톡시프로필아민(3-ethoxy propylamine), 3-이소프로폭시-1-프로판아민(isopropoxy-1-propanamine), 3-프로필-1-프로판아민(3-propyl-1-propanamine), 3-(브톡시-1-프로판아민)(3-butoxy-1-propanamine), 1,4-디옥사-1에톡시아민(1,4-dioxa-1-ethoxyamine), 4,4-디메톡시부틸아민(4,4-dimethoxybutylamine), 4,4-디에톡시-1-부타민(4,4-diethoxy-1-butanamine), 2-메톡시에탄아민(2-methoxyethanamine), 3-에톡시에탄아민(3-ethoxyethanamine), 3-이소프로필-1-에톡시에탄아민(3-isopropoxy-1-ethoxyethanamine), 4,4-디메톡시에틸아민(4,4-dimethoxyethylamine), 4,4-디에톡시-1-에틸아민(4,4-diethoxy-1-ethylamine), 테트라하이드로-2-퓨라닐메틸아민(tetrahydro-2-furanylmethylamine), 2-페녹시에탄아민(2-phenoxyethanamine), 2-(3,4-디메톡시페닐)에탄아민 (2-(3,4-dimethoxyphenyl)ethanamine), 2-(2,5-디메톡시페닐)에틸아민 (2-(2,5-dimethoxyphenyl)ethylamine), 1,2,2-트리메틸-1-1프로판아민(1,2,2,-trimethyl-1-propanamine), 2-메틸-1-부탄아민(2-methyl-1-butanamine), 3-메틸-1-부탄아민(3-methyl-1-butanamine), 1,3-디메틸-1-부탄아민(1,3-dimethyl-1-butanamine), 4-메틸-1-펜탄아민(4-methyl-1-pentanamine), 3,3-디메틸-1-부탄아민(3,3-dimethyl-1-butanamine), 1,4-디메틸-1-펜탄아민(1,4-dimethyl-1-pentanamine), 1-메틸-1-헥산아민(1-methyl-1-hexanamine), 1-메틸-1-헵탄아민(1-methyl-1-heptanamine), 2-에틸-1-헥산아민(2-ethyl-1-hexanamine), 2-아미노에탄올(2-aminoethanol), 3-아미노-1-프로판올(3-amino-1-propanol), (2R)-1아미노-2-프로판올((2R)-1-amino-2-propanol), (2S)-1-아미노-2-프로판올((2S)-1-amino-2-propanol), 2-아미노-1-프로판올(2-amino-1-propanol), (2S)-1-아미노-2-프로판올((2S)-1-amino-2-propanol), 2-아미노-1,3-프로판디올(2-amino-1,3-propanediol), 2-아미노-2-메틸-1,3-프로판디올(2-amino-2-methyl-1,3-propanediol), 2-아미노-2-메틸-1-프로판올(2-amino-2-methyl-1-propanol), 4-아미노-1-부탄올(4-amino-1-butanol), 2-아미노-1-프로판올(2-amino-1- propanol), 2-에틸아미노-1-부탄올(2-ethylamino-1-butanol), 2-(2-아미노에톡시)에탄올 (2-(2-aminoethoxy)ethanol), 5-아미노-1-페탄올(5-amino-1-pentanol), 3-아미노-2,2-1-프로판올(3-amino-2,2-dimethyl-1-propanol), 2-아미노-2-에틸-1,3-프로판디올(2-amino-2-ethyl-1,3-propanediol), 2-아미노-3-메틸-1-부탄올(2-amino-3-methyl-1-butanol), 6-아미노-1-헥산올(6-amino-1-hexanol), 1-아미노싸이클로펜틸)메탄올(1-aminocyclopentyl)methanol), 4-아미노싸이클로헥산올(4-aminocyclohexanol), 2-아미노싸이클로헥산올(2-aminocyclohexanol), 2-메틸-1-프로판아민(2-methyl-1-propanamine), 싸이클로부탄아민(cyclobutanamine), 싸이클로프로필메틸아민(cyclopropylmethylamine), 싸이클로펜탄아민(cyclopentanamine), 싸이클로헥산아민(cyclohexanamine), 싸이클로헥산메틸아민(cyclohexanmethylamine), 아다만탄-메틸아민(adamantane-methylamine), 실란-메틸-데에톡시-프로필아민(Si-methyl-diethoxy-propylamine), 실란-트리톡시-프로필아민(Si-trithoxy-propylamine), N,N'-디에틸-1,2-에탄디아민(N,N'-diethyl-1,2-ethane diamine), N,N'-디이소프로필-1,2-에탄디아민(N,N'-diisopropyl-1,2-ethane diamine), N,N'-디메틸-1,2-프로판디아민(N,N'-dimethyl-1,2-propanediamine), N,N'-디메틸-1,3-프로판디아민(N,N'-dimethyl-1,3-propanediamine), N,N'-디에틸-1,3-프로판디아민(N,N'-diethyl-1,3-propanediamine), N,N'-디에틸-1,4-펜탄디아민(N,N-diethyl-1,4-pentanediamine), N,N'-비스(2-하이드록시에틸)에틸렌디아민 (N,N-Bis(2-hydroxyethyl)ethylenediamine), N'N'-비스(2-하이드록시)프로필렌디아민 (N,N'-Bis(2-hydroxyethyl)propylenediamine)로 이루어진 군에서 1이상 선택되고,2차 아민화합물은 4,4'-트리메틸렌디피퍼리딘(4,4'-trimethylenepiperidine), N,N'-디메틸에틸렌디아민(N,N'-dimethylethylenediamine), 피페라진(piperazine), 2-메틸피페라진(2-methylpiperazine), 3-메틸-4-(3-메틸페닐)피페라진(3-methyl-4-(3-methylphenyl)piperazine), 3-메틸피페라진(3-methylpiperazine), 4-(phenylmethyl)piperazine (4-(페닐메틸)피페라진), 4-(1-페닐에틸)피페라진(4-(1-phenylethyl)piperazine), 4-(1,1'-디메톡시카르보닐)피페라진 (4-(1,1'-dimethoxycarbonyl)piperazine), 4-(2-(비스-(2-프로페닐)아미노)에틸)피페라진 (4-(2-(bis-(2-prophenyl)amino)ethyl)piperazine), 1-(2-아미노에틸)피페라진 (1-(2-aminoethyl)piperazine), 4-(아미노메틸)피페라진 (4-(aminomethyl)piperazine), N,N'-디메틸-1,2-에탄디아민 (N,N'-dimethyl-1,2-ethanediamine), N,N'-디에틸-1,2-에탄디아민(N,N'-diethyl-1,2-ethanediamine), N,N'-디이소프로필-1,2-에탄디아민 (N,N'-diisopropyl-1,2-ethanediamine), N,N'-디메틸-1,2-프로필아민 (N,N'-dimethyl-1,2-propyldiamine), N,N'-디에틸-1,2-프로필디아민 (N,N'-diethyl-1,2-propyldiamine), N,N'-디이소프로필-1,2-프로필아민 (N,N'-diisopropyl-1,2-propyldiamine), N,N'-디메틸-1,2-헥산디아민(N,N'-dimethyl-1,2-hexanediamine), N,N'-디메틸-N-(3-(메틸아미노)프로필]-1,3-프로판디아민 (N,N-dimethyl-N-[3-(methylamino)propyl]-1,3-propanediamine), N-[2-메틸아미노)에톡시에틸]-N,N'-디메틸아민 (N-[2-methylamino)ethoxy ethyl]-N,N'-dimethylamine), N-[2-메틸아미노)디옥시에틸]-N,N'-디메틸아민, N-[2-메틸아미노)디옥시에틸]-N,N'-디메틸아민 (N-[2-methylamino)dioxy ethyl]-N,N'-dimethylamine), 1,4-디아제판(1,4-diazepane)로 이루어진 군에서 1이상 선택되는 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체.
- 제1항에 있어서,상기 이온성 복합체 유도 성능을 지닌 헤테로싸이클릭알킬아민 계열 화합물은 1-(3-아미노프로필)이미다졸 (1-(3-aminopropyl)imidazole, API), 1-(2-아미노에틸)피롤리딘 (1-(2-aminoethyl)pyrrolidine), 2-(2-아미노에틸)-1-메틸피롤리딘 (2-(2-aminoethyl)-1-methylpyrrolidine), 1-(2-아미노에틸)피퍼리딘 (1-(2-aminoethyl)piperidine), N-(3-아미노프로필)-2-피페콜린 (N-(3-aminopropyl)-2-pipecoline), N-(N-메틸-N-벤젠)-1-프로필아민 (N-(N-methyl-N-benzene)-1-propylamine), N-(3-아미노프로필)2-피롤리디논 (N-(3-aminopropyl)-2-pyrrolidinone), 2-(2-피리딜)에틸아민 (2-(2-pyridyl)ethylamine), 4-(2-아미노에틸)모폴린 (4-(2-aminoethyl)morpholine), 3-모폴리노프로필아민(3-morpholinopropylamine), 히스티딘(histidine)으로 이루어진 군에서 1이상 선택되는 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체.
- 제1항에 있어서,상기 pH 민감성 블록공중합체의 분자량은 1,000 내지 20,000 g/mol인 것을 특징으로 하는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체.
- 제1항 내지 제9항 중 어느 한 항에 의해 형성된 pH 민감성 블록공중합체에서, 폴리에틸렌 계열 화합물에서 유래된 친수성 블록 및 폴리(아미노 에시드) 화합물에서 유래된 소수성 블록을 이루되, 상기 블록 사이의 pH 6.0~7.0에서 이온화되는 3차 아민기를 포함함으로써, pH 7.0~7.4 범위에서 가역적인 자기조립에 의해 마이셀을 형성하고, 상기 마이셀과 헤테로싸이클릭알킬아민 계열 화합물에서 유래된 다이온성 복합체를 형성하여 인체 혈관 내에서 약물 또는 단백질을 안정적으로 담지하여 순환하다가 질환부위에서 약물 또는 단백질을 방출할 수 있는 다이온성 복합체 마이셀을 형성하는 pH 민감성 블록공중합체를 이용한 약물 또는 단백질 전달체.
- 제10항에 있어서,상기 약물 또는 단백질로는 인간 혈청 알부민(human serum albumin, HSA), 파클리탁셀 (paclitaxel), 독소루비신 (doxorubicin), 레티노익 산 (retinoic acid)계열, 시스플라틴 (cis-platin), 캄토세신 (camptothecin), 5-FU(fluorouracil), 도세탁셀 (docetaxel), 타목시펜(tamoxifen), 아나스테로졸(anasterozole), 카보플라틴(carboplatin), 토포테칸(topotecan), 베로테칸(belotecan), 이리노테칸(irinotecan), 글리벡(gleevec) 및 빈크리스틴(vincristine)으로 구성된 군에서 선택되는 항암제와, 아스피린 (aspirin) 및 살리실레이트 (salicylates), 이부프로펜(ibuprofen), 나프로센(naproxen), 페노프로펜(fenoprofen), 인도메타신(indomethacin), 페닐부타존(phenyltazone), 메소트렉세이트(methotrexate), 시클로포스파미드(cyclophosphamide), 메클로에타민(mechlorethamine), 덱사메타손(dexamethasone), 프레드니솔론(prednisolone), 셀레콕시브(celecoxib), 발데콕시브(valdecoxib), 니메슐리드(nimesulide), 코르티손(cortisone) 및 코르티코스테로이드(corticosteroid)으로 구성된 군에서 선택되는 항염증제, 암 또는 염증성 질환 부위에서 pH7.0 미만일 때 국부적으로 입자가 붕괴되어 약물 또는 단백질이 방출되는 pH 민감성 블록공중합체를 이용한 약물 또는 단백질 전달체.
- 제10항에 있어서,상기 암질환은 유방암, 폐암, 자궁암, 자궁경부암, 전립선암, 두경부암, 췌장암, 뇌종양, 간암, 피부암, 식도암, 고환암, 신장암, 대장암, 갑상선암, 설암 또는 직장암인 것을 특징으로 하는 pH 민감성 블록공중합체를 이용한 약물 또는 단백질 전달체.
- 제10항에 있어서,상기 염증성 질환은 류마티스 관절염, 골관절염 또는 동맥경화인 것을 특징으로 하는 pH 민감성 블록공중합체를 이용한 약물 또는 단백질 전달체.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2009-0129102 | 2009-12-22 | ||
KR20090129102 | 2009-12-22 | ||
KR10-2010-0049623 | 2010-05-27 | ||
KR1020100049623A KR101207401B1 (ko) | 2009-12-22 | 2010-05-27 | 다이온성 복합체 마이셀을 형성하는 피에이치 민감성 블록공중합체 및 이를 이용한 약물 또는 단백질 전달체 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011078457A2 true WO2011078457A2 (ko) | 2011-06-30 |
WO2011078457A3 WO2011078457A3 (ko) | 2011-08-25 |
Family
ID=43639940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2010/004819 WO2011078457A2 (ko) | 2009-12-22 | 2010-07-22 | 다이온성 복합체 마이셀을 형성하는 피에이치 민감성 블록공중합체 및 이를 이용한 약물 또는 단백질 전달체 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8911775B2 (ko) |
EP (1) | EP2340811B1 (ko) |
WO (1) | WO2011078457A2 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104530438A (zh) * | 2014-12-11 | 2015-04-22 | 华南理工大学 | 基于胆固醇修饰的pH响应多肽聚合物及制备方法和应用 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102440961B (zh) * | 2011-12-08 | 2013-10-09 | 中山大学 | 一种具有酸敏亚表层的靶向聚合物胶束及其制备方法 |
WO2013104067A1 (en) * | 2012-01-15 | 2013-07-18 | University Of Manitoba | Reducible self-assembled micelle drug delivery systems |
US9962452B2 (en) * | 2013-02-04 | 2018-05-08 | Zhuhai Beihai Biotech Co., Ltd. | Soluble complexes of drug analogs and albumin |
CN104027813B (zh) * | 2014-06-16 | 2016-04-27 | 西安交通大学 | 一种pH/还原双重敏感的亲水性共聚物药物载体及其合成方法和应用 |
US9937259B2 (en) | 2014-06-27 | 2018-04-10 | Zhuhai Beihai Biotech Co., Ltd. | Abiraterone derivatives and non-covalent complexes with albumin |
CN104292469B (zh) * | 2014-10-24 | 2017-07-14 | 华东理工大学 | pH敏感的Bola型嵌段物及含该嵌段物的脂质体控释药物载体 |
WO2016065139A1 (en) | 2014-10-24 | 2016-04-28 | Fl Therapeutics Llc | 3-substituted piperidine-2, 6-diones and non-covalent complexes with albumin |
CN105997879B (zh) * | 2016-07-12 | 2019-02-05 | 中山大学 | 一种pH与温度双重敏感性的纳米囊泡及其制备方法和应用 |
WO2018200462A1 (en) * | 2017-04-24 | 2018-11-01 | Friedman Simon H | Drug conjugates with photocleavable solubility modulators |
CN108078924B (zh) * | 2017-12-07 | 2020-06-02 | 同济大学 | 一种聚乙二醇修饰的具有pH响应性的高载药量纳米胶束或囊泡的制备方法 |
US20210393523A1 (en) * | 2018-10-03 | 2021-12-23 | Avldea Technologies, Inc. | Aromatic ring substituted amphiphilic polymers as drug delivery systems |
CN111840573A (zh) * | 2020-08-19 | 2020-10-30 | 江南大学 | 一种还原敏感性纳米胶束及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6103865A (en) * | 1998-08-03 | 2000-08-15 | Kwangju Institute Of Science And Technology | PH-sensitive polymer containing sulfonamide and its synthesis method |
US6630351B1 (en) * | 1999-06-07 | 2003-10-07 | Mirus Corporation | Compositions and methods for drug delivery using pH sensitive molecules |
KR100773078B1 (ko) * | 2001-06-21 | 2007-11-02 | 주식회사 삼양사 | 결정성이 높은 난용성 약물을 함유하는 고분자 미셀형약물 조성물 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7169411B1 (en) * | 1997-06-13 | 2007-01-30 | The University of Nebraska Board of Regents | Composition for delivery of biological agents and methods for the preparation thereof |
US6852334B1 (en) * | 1999-04-20 | 2005-02-08 | The University Of British Columbia | Cationic peg-lipids and methods of use |
WO2001037803A2 (en) * | 1999-11-15 | 2001-05-31 | Biocure, Inc. | Responsive polymeric hollow particles |
US7427394B2 (en) | 2000-10-10 | 2008-09-23 | Massachusetts Institute Of Technology | Biodegradable poly(β-amino esters) and uses thereof |
AU2003232536A1 (en) * | 2002-05-07 | 2003-11-11 | Mcmaster University | Microcapsules containing biomedical materials |
US7659314B2 (en) * | 2002-05-19 | 2010-02-09 | University Of Utah Research Foundation | PH-sensitive polymeric micelles for drug delivery |
US20050129769A1 (en) * | 2002-06-03 | 2005-06-16 | Barry Stephen E. | Polymeric articles for carrying therapeutic agents |
US7371781B2 (en) * | 2003-09-22 | 2008-05-13 | University Of Utah Research Foundation | Tumor environment-induced ligand-expressing nanocarrier system |
KR100732013B1 (ko) * | 2005-03-18 | 2007-06-25 | 성균관대학교산학협력단 | pH 민감성 블록 공중합체 및 이를 이용한 고분자 마이셀 |
KR100665672B1 (ko) * | 2005-04-13 | 2007-01-09 | 성균관대학교산학협력단 | 새로운 온도 및 pH 민감성 블록 공중합체 및 이를 이용한고분자 하이드로겔 |
WO2008004978A1 (en) * | 2006-07-05 | 2008-01-10 | Agency For Science, Technology And Research | Micelles for drug delivery |
KR100941774B1 (ko) * | 2007-09-06 | 2010-02-11 | 성균관대학교산학협력단 | 인체안전성이 우수한 온도 및 피에치 민감성 블록공중합체및 이의 제조방법과 이를 이용한 약물전달체 |
WO2009084801A1 (en) * | 2007-12-31 | 2009-07-09 | Samyang Corporation | Amphiphilic block copolymer micelle composition containing taxane and manufacturing process of the same |
US20110052679A1 (en) * | 2009-08-25 | 2011-03-03 | Pharmaceutics International, Inc. | Solid naproxen concentrates and related dosage forms |
-
2010
- 2010-07-22 WO PCT/KR2010/004819 patent/WO2011078457A2/ko active Application Filing
- 2010-07-23 US US12/842,388 patent/US8911775B2/en active Active
- 2010-07-23 EP EP10170584.6A patent/EP2340811B1/en not_active Not-in-force
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6103865A (en) * | 1998-08-03 | 2000-08-15 | Kwangju Institute Of Science And Technology | PH-sensitive polymer containing sulfonamide and its synthesis method |
US6630351B1 (en) * | 1999-06-07 | 2003-10-07 | Mirus Corporation | Compositions and methods for drug delivery using pH sensitive molecules |
KR100773078B1 (ko) * | 2001-06-21 | 2007-11-02 | 주식회사 삼양사 | 결정성이 높은 난용성 약물을 함유하는 고분자 미셀형약물 조성물 |
Non-Patent Citations (2)
Title |
---|
DINESH SHENOY ET AL.: 'Poly(ethylene oxide)-Modified Poly(beta-amino ester) Nanoparticles as a pH-Sensitive System for Tumor-Targeted Delivery of Hydrophobic Drugs. 1. In Vitro Evaluations' MOLECULAR PHARMACEUTICALS. vol. 2, no. 5, 2005, pages 357 - 366 * |
KAZUNORI KATAOKA ET AL. ADVANCED DRUG DELIVERY REVIEWS. vol. 47, 2001, pages 113 - 131, XP002273030 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104530438A (zh) * | 2014-12-11 | 2015-04-22 | 华南理工大学 | 基于胆固醇修饰的pH响应多肽聚合物及制备方法和应用 |
CN104530438B (zh) * | 2014-12-11 | 2017-06-06 | 华南理工大学 | 基于胆固醇修饰的pH响应多肽聚合物及制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
US8911775B2 (en) | 2014-12-16 |
US20110150978A1 (en) | 2011-06-23 |
EP2340811A1 (en) | 2011-07-06 |
EP2340811B1 (en) | 2014-10-15 |
WO2011078457A3 (ko) | 2011-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011078457A2 (ko) | 다이온성 복합체 마이셀을 형성하는 피에이치 민감성 블록공중합체 및 이를 이용한 약물 또는 단백질 전달체 | |
Lee et al. | Poly (l-histidine)–PEG block copolymer micelles and pH-induced destabilization | |
Teo et al. | Hydrophobic modification of low molecular weight polyethylenimine for improved gene transfection | |
US7229973B2 (en) | pH-sensitive polymeric micelles for drug delivery | |
KR100732013B1 (ko) | pH 민감성 블록 공중합체 및 이를 이용한 고분자 마이셀 | |
Nam et al. | Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity | |
KR101607422B1 (ko) | 안정된 미셀을 위한 블록 공중합체 | |
Bikram et al. | Biodegradable Poly (ethylene glycol)-c o-poly (l-lysine)-g-histidine Multiblock Copolymers for Nonviral Gene Delivery | |
CN1646174B (zh) | 可控降解的聚合生物分子或药物载体及其合成方法 | |
Wang et al. | Bicomponent polymeric micelles for pH-controlled delivery of doxorubicin | |
EP2284210B1 (en) | Charge conversional ternary polyplex | |
KR101797149B1 (ko) | 신남알데하이드 유도체 함유 pH 민감성 블록 공중합체 및 이의 제조방법 | |
Lancelot et al. | Nanostructures based on ammonium-terminated amphiphilic Janus dendrimers as camptothecin carriers with antiviral activity | |
WO2010117248A2 (ko) | 피에이치 민감성 그라프트 공중합체, 이의 제조방법 및 이를 이용한 고분자 마이셀 | |
John et al. | Biomimetic pH/redox dual stimuli‐responsive zwitterionic polymer block poly (L‐histidine) micelles for intracellular delivery of doxorubicin into tumor cells | |
Wang et al. | A charge-conversional intracellular-activated polymeric prodrug for tumor therapy | |
Lin et al. | PEGylated bioreducible poly (amido amine) s for non-viral gene delivery | |
Zeng et al. | A novel dendrimer based on poly (L-glutamic acid) derivatives as an efficient and biocompatible gene delivery vector | |
KR101207401B1 (ko) | 다이온성 복합체 마이셀을 형성하는 피에이치 민감성 블록공중합체 및 이를 이용한 약물 또는 단백질 전달체 | |
KR100802080B1 (ko) | pH 민감성 블록 공중합체 및 이를 이용한 고분자 마이셀 | |
US10968176B2 (en) | Pyrrolidone derivatives, oligomers and polymers | |
Liu et al. | Synthesis and characterization of poly (ethylene glycol)-b-poly (l-histidine)-b-poly (l-lactide) with pH-sensitivity | |
Yao et al. | PEGylated polylysine derived copolymers with reduction‐responsive side chains for anticancer drug delivery | |
Zhu et al. | Synthesis and characterization of biodegradable amphiphilic triblock copolymers methoxy-poly (ethylene glycol)-b-poly (L-lysine)-b-poly (L-lactic acid) | |
d'Ayala et al. | Cationic copolymers nanoparticles for nonviral gene vectors: Synthesis, characterization, and application in gene delivery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10839654 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10839654 Country of ref document: EP Kind code of ref document: A2 |