WO2011078412A1 - 高強度冷延鋼板およびその製造方法 - Google Patents
高強度冷延鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2011078412A1 WO2011078412A1 PCT/JP2010/073877 JP2010073877W WO2011078412A1 WO 2011078412 A1 WO2011078412 A1 WO 2011078412A1 JP 2010073877 W JP2010073877 W JP 2010073877W WO 2011078412 A1 WO2011078412 A1 WO 2011078412A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- rolled steel
- strength cold
- less
- strength
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/52—Methods of heating with flames
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0457—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/561—Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/78—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
- C23C8/12—Oxidising using elemental oxygen or ozone
- C23C8/14—Oxidising of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
- C23G1/081—Iron or steel solutions containing H2SO4
Definitions
- the present invention relates to a high-strength cold-rolled steel sheet for automobiles that is used after being subjected to chemical conversion treatment such as phosphate treatment and a method for producing the same, and in particular, a tensile strength of 590 MPa or more utilizing the strengthening ability of Si.
- the present invention relates to a high-strength cold-rolled steel sheet excellent in chemical conversion treatment and a method for producing the same.
- cold-rolled steel sheets having a high tensile strength of 590 MPa or more are used after being coated, and as a pretreatment for the coating, chemical conversion treatment such as phosphate treatment is performed.
- the chemical conversion treatment of the cold-rolled steel sheet is one of important treatments for ensuring the corrosion resistance after painting.
- Patent Document 1 discloses that an oxide film is formed on the steel sheet surface by bringing the steel sheet temperature to 350 to 650 ° C. in an oxidizing atmosphere. And then heated and cooled to the recrystallization temperature in a reducing atmosphere.
- Patent Document 2 discloses a cold-rolled steel sheet containing, by mass%, Si of 0.1% or more and / or Mn of 1.0% or more in an iron oxidizing atmosphere at a steel plate temperature of 400 ° C. or more. A method is described in which an oxide film is formed on the surface of the steel sheet, and then the oxide film on the surface of the steel sheet is reduced in an iron reducing atmosphere.
- Patent Document 3 discloses an oxidation effective for improving chemical conversion treatment properties, etc. in the crystal grain boundaries and / or crystal grains of the surface layer of a high strength cold-rolled steel sheet containing 0.1 wt% or more and 3.0 wt% or less of Si.
- a high-strength cold-rolled steel sheet characterized by having an article is described.
- Patent Document 4 when a cross section in a direction orthogonal to the steel plate surface is observed with an electron microscope at a magnification of 50000 times or more, the ratio of the Si-containing oxide in the steel plate surface length of 10 ⁇ m is arbitrarily selected.
- a steel sheet excellent in phosphatability is described so as to be 80% or less on the average of the places.
- Patent Document 5 includes mass%, C: more than 0.1%, Si: 0.4% or more, and Si content (mass%) / Mn content (mass%) is 0.4 or more.
- the surface coverage of the Si-based oxide containing Si as a main component on the steel sheet surface is 20 area% or less, and the Si-based oxide is covered within the region.
- a high-strength cold-rolled steel sheet excellent in chemical conversion treatment with a maximum circle diameter of 5 ⁇ m or less in contact is described.
- Patent Document 6 in mass%, C: 0.01 to 0.3%, Si: 0.2 to 3.0%, Mn: 0.1 to 3.0%, Al: 0.01 to 2
- a high-tensile steel plate containing 0.0% and a tensile strength of 500 MPa or more an observation region having an average grain size of 0.5 ⁇ m or less on the surface of the steel plate and a width of 10 ⁇ m or more on the surface of the steel plate
- one or two kinds of silicon oxide and manganese silicate are 70% by mass or more in total of these.
- the oxide species contained is 30% or less with respect to the grain boundary region surface as seen from the cross section, and the particle size of the oxide species present within the range of 0.1 to 1.0 ⁇ m at a depth from the steel plate surface. Is excellent in chemical conversion treatment, characterized by being 0.1 ⁇ m or less Tensile steel sheets are described.
- Patent Document 1 there is a difference in the thickness of the oxide film formed on the surface of the steel sheet due to the oxidation method, and sufficient oxidation does not occur, or the oxide film becomes too thick, and the subsequent reducing atmosphere. During the annealing, the oxide film may remain or peel off, and the surface properties may deteriorate.
- a technique for oxidizing in the air is described. However, in the oxidation in the air, a thick oxide is formed and subsequent reduction is difficult, or a reducing atmosphere with a high hydrogen concentration is required. There is a problem.
- Patent Document 2 is an N 2 + H 2 gas atmosphere in which Fe on the steel sheet surface is oxidized using a direct fire burner having an air ratio of 0.93 or more and 1.10 or less at 400 ° C. or higher, and then Fe oxide is reduced. Is a method of suppressing oxidation at the outermost surface of SiO 2 that lowers the chemical conversion processability by annealing and forming a reduced layer of Fe on the outermost surface.
- Patent Document 2 does not specifically describe the heating temperature in an open flame burner, but when it contains a large amount of Si (0.6% or more), the amount of oxidation of Si that is easier to oxidize than Fe is large. Therefore, oxidation of Fe is suppressed, or oxidation of Fe itself is too little. As a result, formation of the surface Fe reduction layer after reduction was insufficient, and SiO 2 was present on the steel plate surface after reduction, and there was a case where the conversion film was scaled.
- the steel sheet of Patent Document 3 is a steel sheet that improves chemical conversion properties by forming Si oxide inside the steel sheet and eliminating Si oxide on the surface.
- the manufacturing method involves winding at a high temperature (in the embodiment, good at 620 ° C. or higher) at the time of hot rolling before the cold rolling of the steel sheet, and using that heat to form Si oxide inside the steel sheet.
- the wound coil has a fast cooling rate on the outside and a slow cooling rate on the inside, so there is a large variation in temperature in the longitudinal direction of the steel sheet, and it is difficult to obtain a uniform surface quality over the entire length of the coil. It was.
- Patent Documents 4, 5, and 6 are steel sheets that define the upper limit of the amount of Si oxide covering the surface, although the way of defining is different.
- a dew point (or (water vapor partial pressure / hydrogen partial pressure) ratio of N 2 + H 2 gas atmosphere which is reducing during temperature rise or soaking of continuous annealing, hereinafter also referred to as a steam hydrogen hydrogen partial pressure ratio. ) Is controlled within a certain range, and Si is oxidized inside the steel sheet.
- the dew point range is described in Patent Document 4 as -25 ° C or higher, and in Patent Document 5 as -20 ° C to 0 ° C.
- Patent Document 6 adopts a method of regulating the range of the steam hydrogen partial pressure ratio in each step of preheating, temperature elevation, and recrystallization.
- it is generally necessary to control the N 2 + H 2 gas atmosphere with a dew point of ⁇ 25 ° C. or lower by introducing water vapor or air, but this is from the viewpoint of operational controllability.
- There was a problem and as a result, good chemical conversion treatment was not stably obtained.
- increasing the dew point increases the oxidization of the atmosphere, so it accelerates the deterioration of the furnace walls and rolls in the furnace, and generates scale soot called pick-up soot on the steel sheet surface. There was a case of letting.
- the present invention has good chemical conversion properties even if it contains 0.6% or more of Si without controlling the dew point of the reducing atmosphere of the soaking furnace or the steam hydrogen partial pressure ratio.
- An object is to provide a high-strength cold-rolled steel sheet having a tensile strength of 590 MPa or more and a method for producing the same.
- the chemical conversion treatment performance is improved for high-strength cold-rolled steel sheets containing 0.6% or more of Si can do.
- the chemical treatment property is improved by controlling the oxygen concentration of the atmosphere during the oxidation treatment, and the tensile strength (hereinafter sometimes referred to as TS) is 590 MPa or more, and the strength and elongation.
- TS ⁇ El tensile strength
- the present invention has been made based on the above findings, and the gist thereof is as follows.
- C 0.05 to 0.3%
- Si 0.6 to 3.0%
- Mn 1.0 to 3.0%
- P 0.1% or less
- S 0.05% or less
- Al 0.01 to 1%
- N 0.01% or less
- the balance being a component composition consisting of Fe and inevitable impurities, and reduced iron coverage of 40% or more
- the steel comprising the composition according to any one of [1] to [4] is hot-rolled, pickled, cold-rolled, then oxidized, and annealed.
- the steel sheet is heated for the first time in an atmosphere having an oxygen concentration of 1000 ppm or higher until the steel plate temperature is 630 ° C. or higher, and then the steel sheet is heated to 700 ° C. or higher in an atmosphere having an oxygen concentration of less than 1000 ppm.
- the high-temperature cold rolling is characterized in that the annealing is performed in a furnace having a dew point of ⁇ 25 ° C. or less, 1 to 10% by volume H 2 + the balance N 2 gas atmosphere, A method of manufacturing a steel sheet.
- a high-strength cold-rolled steel sheet having a tensile strength of 590 MPa or more and excellent chemical conversion properties can be obtained. Furthermore, the high-strength cold-rolled steel sheet of the present invention is excellent in workability with TS ⁇ El of 18000 MPa ⁇ % or more.
- a high-strength cold-rolled steel sheet excellent in chemical conversion treatment having a tensile strength of 590 MPa or more can be obtained without particularly controlling the dew point to be high, which is advantageous in terms of operation controllability, and furnace Problems such as accelerating the deterioration of the rolls in the walls and the furnace and generating scale flaws called pickups on the steel sheet surface can also be improved.
- C 0.05 to 0.3%
- C controls the metal structure to ferrite-martensite, ferrite-bainite-residual austenite, etc., and has a solid solution strengthening ability and martensite forming ability to obtain a desired material.
- it is necessary to contain 0.05% or more of C.
- it contains 0.10% or more.
- C is added excessively, the workability of the steel sheet is remarkably lowered, so the upper limit is made 0.3%.
- Si 0.6 to 3.0%
- Si is an element that increases the strength without reducing the workability of the steel sheet. In order to obtain such an effect, Si needs to be contained by 0.6% or more. If it is less than 0.6%, workability, that is, TS ⁇ E1 deteriorates. Preferably it is over 1.10%. However, if the content exceeds 3.0%, the steel sheet becomes extremely brittle, the workability deteriorates, and the chemical conversion property deteriorates, so the upper limit is made 3.0%.
- Mn 1.0 to 3.0% Mn controls the metal structure to ferrite-martensite, ferrite-bainite-residual austenite, and the like, and has a solid solution strengthening ability and martensite forming ability to obtain a desired material.
- P 0.1% or less P is an element effective for strengthening steel, but if added in excess of 0.1%, it causes embrittlement due to segregation at the grain boundaries, which deteriorates impact resistance and corrosion resistance. Deteriorate. Therefore, it is made 0.1% or less. Preferably it is 0.015% or less. S: 0.05% or less S becomes an inclusion such as MnS, which causes deterioration of impact resistance and cracking along the metal flow of the welded portion, and deteriorates corrosion resistance.
- Al 0.01 to 1% Al is added as a deoxidizing material. If it is less than 0.01%, the effect as a deoxidizer is insufficient. On the other hand, if it exceeds 1%, the effect is saturated and uneconomical. Therefore, Al is made 0.01% or more and 1% or less.
- N 0.01% or less N is an element that most deteriorates the aging resistance of steel. It is preferable to reduce it as much as possible, and it is 0.01% or less. The balance is Fe and inevitable impurities.
- Cr 0.01 to 1%
- Mo 0.01 to 1%
- Ni 0.01 to 1%
- Cu 0.01 to 1 in order to improve the balance between strength and ductility % 1 type or 2 types or more.
- Ti 0.001 to 0.1%
- Nb 0.001 to 0.1%
- V 0.001 to 0.1%
- B can be contained in an amount of 0.0003 to 0.005% in order to increase the strength of the material and the strength after baking.
- the iron oxide formed by the oxidation treatment is reduced in the annealing step, and the cold-rolled steel sheet is covered as reduced iron.
- the reduced iron in this application refers to what was formed in this way.
- the reduced iron formed in this way has a low content of elements that inhibit chemical conversion properties such as Si.
- Si has a lower Si concentration contained in reduced iron than the Si concentration in the steel sheet. Therefore, coating the steel sheet surface with the reduced iron is very effective as a means for improving the chemical conversion processability.
- the reduced iron formed after the annealing is present on the surface of the cold-rolled steel sheet with a coverage of 40% or more, good chemical conversion property can be obtained.
- the coverage of reduced iron can be measured by observing a reflected electron image using a scanning electron microscope (SEM). Since the reflected electron image has a feature that an element with a larger atomic number can be observed with white contrast, a portion covered with reduced iron is observed with white contrast. Moreover, about the part which is not covered with reduced iron, in the high intensity
- SEM scanning electron microscope
- the oxidation amount of the oxide on the surface of the cold-rolled steel sheet formed after the oxidation treatment is important.
- the oxide is formed on the surface of the steel sheet in an amount of 0.1 g / m 2 or more as an oxidation amount, whereby the coverage of reduced iron can be 40% or more.
- the oxidation amount is less than 0.1 g / m 2 , reduced iron cannot be formed in an amount of 40% or more, and the chemical conversion property is inferior.
- the oxidation amount is the amount of oxygen on the steel sheet surface after the oxidation treatment.
- the oxidation amount can be measured by, for example, fluorescent X-ray elemental analysis using a standard substance.
- the type of iron oxide formed is not particularly limited, but wustite (FeO), magnetite (Fe 3 O 4 ), and hematite (Fe 2 O 3 ) are mainly formed.
- an oxide containing Si is formed simultaneously with the iron oxide.
- the oxide containing Si is mainly SiO 2 and / or (Fe, Mn) 2 SiO 4 .
- the method for determining the presence state of these oxides is not particularly limited, but infrared spectroscopy (IR) is effective. By confirming peaks appearing in the vicinity of 1230 cm ⁇ 1 , which is a characteristic of SiO 2 , and in the vicinity of 1000 cm ⁇ 1, which is a characteristic of (Fe, Mn) 2 SiO 4 , the presence state of the oxide can be determined.
- IR infrared spectroscopy
- the manufacturing method of the high-strength cold-rolled steel sheet of this invention is demonstrated.
- the steel having the above component composition is hot-rolled, subsequently pickled, then cold-rolled, subjected to an oxidation treatment, and then annealed.
- the manufacturing method of the cold-rolled steel sheet before the oxidation treatment is not particularly limited, and a known method can be used.
- the steel sheet is first heated in an atmosphere having an oxygen concentration of 1000 ppm or more until the steel sheet temperature reaches 630 ° C. or higher, and then the steel sheet is heated to 700 ° C. in an atmosphere having an oxygen concentration of less than 1000 ppm.
- the second heating is performed until the above is reached, and the annealing is performed by soaking in a furnace having a dew point of ⁇ 25 ° C. or lower, 1 to 10% by volume H 2 + the balance N 2 gas atmosphere.
- Hot rolling can be performed in a range where it is normally performed.
- the winding after hot rolling is preferably performed at a temperature of 520 ° C. or higher. More preferably, it is 580 degreeC or more.
- (Fe, Mn) 2 SiO 4 is important as an oxide formed on the steel sheet surface after the oxidation treatment in order to improve the chemical conversion treatment. Therefore, when the coiling temperature and the state of formation of (Fe, Mn) 2 SiO 4 after the oxidation treatment were investigated, when the coiling temperature was 520 ° C. or higher and cold rolling was performed, during the oxidation treatment (Fe, It has been found that the formation of (Mn) 2 SiO 4 is likely to occur and the chemical conversion property is improved.
- an oxidation treatment is performed.
- This oxidation treatment is an important requirement in the present invention, and the oxidation amount of the oxide after the oxidation treatment and the coverage of the reduced iron formed on the surface are controlled by performing the oxidation treatment under the following conditions.
- the chemical conversion processability can be improved for a high-strength cold-rolled steel sheet containing 0.6% or more of Si.
- the steel sheet is heated for the first time until the steel plate temperature reaches 630 ° C. or higher in an atmosphere having an oxygen concentration of 1000 ppm or higher, and then the steel plate temperature reaches 700 ° C. or higher in an atmosphere where the oxygen concentration is less than 1000 ppm. Until the second heating.
- the first heating in the heating furnace having an oxygen concentration of 1000 ppm or more has an effect of promoting the oxidation reaction and forming SiO 2 in a high oxygen concentration atmosphere, and desirably 650 ° C. until the steel plate temperature reaches 630 ° C. or more. It is effective to heat up to the above. If the oxygen concentration at this time is less than 10,000 ppm, it is difficult to secure an oxidation amount of 0.1 g / m 2 or more.
- the second heating in the heating furnace having an oxygen concentration of less than 1000 ppm has an effect of promoting the generation of (Fe, Mn) 2 SiO 4 by changing to SiO 2 in a high temperature, low oxygen concentration atmosphere. If the oxygen concentration at this time is 1000 ppm or more, the formation of (Fe, Mn) 2 SiO 4 does not occur, and as a result, the reduced iron coverage is reduced. Further, even when the steel sheet temperature is low, (Fe, Mn) 2 SiO 4 is not generated. Furthermore, when the steel plate temperature is low, there is a problem from the viewpoint of securing the oxidation amount. As described above, the second heating is performed until the steel plate temperature reaches 700 ° C.
- the oxidation treatment is preferably performed at a steel plate temperature of 800 ° C. or lower.
- the heating furnace used for the oxidation treatment is not particularly limited, but it is preferable to use a heating furnace equipped with a direct fire burner.
- a direct fire burner heats a steel sheet by directly applying a burner flame, which is burned by mixing fuel such as coke oven gas (COG), which is a by-product gas of an ironworks, and air, to the surface of the steel sheet.
- COG coke oven gas
- the direct fire burner has an advantage that the furnace length of the heating furnace can be shortened and the line speed can be increased because the heating rate of the steel sheet is faster than that of the radiation type heating. Further, when the direct fire burner has an air ratio of 0.95 or higher and the ratio of air to fuel is increased, unburned oxygen remains in the flame, and the oxygen can promote oxidation of the steel sheet.
- the oxygen concentration in the atmosphere can be controlled by adjusting the air ratio.
- COG liquefied natural gas
- LNG liquefied natural gas
- a furnace such as an infrared heating furnace can be used for the oxidation treatment.
- Annealing is an important requirement in the present invention, similar to the oxidation treatment described above, and by performing annealing under the following conditions, the coverage of reduced iron finally formed on the surface will be controlled, and Si Chemical conversion property can be improved about the high intensity
- Annealing is dew point: ⁇ 25 ° C. or less, 1 to 10 volume% H 2 + balance N 2 atmosphere gas introduced into an annealing furnace soaking annealed in a furnace of 1 to 10 volume% H 2 + balance N 2 Gas.
- H 2 % of the atmospheric gas is limited to 1 to 10% by volume is that if it is less than 1% by volume, H 2 is insufficient to reduce the Fe oxide on the surface of the steel sheet. Since the reduction of saturates, excess H 2 is wasted.
- a dew point shall be -25 degrees C or less. When the dew point exceeds -25 ° C., the oxidation of H 2 O in the furnace by oxygen becomes remarkable, and the internal oxidation of Si occurs excessively.
- the inside of the annealing furnace becomes a reducing atmosphere of Fe, and reduction of the Fe oxide generated by the oxidation treatment occurs. In this case, oxygen is separated from the Fe by reduction diffuses inside part steel by reacting with the Si, internal oxidation of SiO 2 occurs.
- annealing is performed within the range of 750 degreeC to 900 degreeC from the viewpoint of material adjustment.
- the soaking time is preferably 20 seconds to 180 seconds.
- the process after annealing varies depending on the type and is appropriately performed.
- the step after annealing is not particularly limited. For example, after annealing, it is cooled with gas, air / water (referred to as mist-like water mixed with air), water, etc., and tempered at 150 ° C. to 400 ° C.
- the furnace used for soaking is not particularly limited, and a radiant tube type heating furnace or an infrared heating furnace can be used.
- a steel slab having the chemical components shown in Table 1 was heated to 1100 to 1200 ° C. and then hot-rolled and wound at 530 ° C. Next, pickling and cold rolling were performed by a known method to produce a steel plate having a thickness of 1.5 mm.
- This steel plate was subjected to an oxidation treatment under the conditions shown in Table 2 using a heating furnace equipped with a direct fire burner.
- the direct flame burner used COG as the fuel, and adjusted the oxygen concentration in the atmosphere by changing the air ratio in various ways. Further, the amount of oxidation formed at this time was measured using a fluorescent X-ray analysis method. Moreover, the oxide containing Si formed with the iron oxide was analyzed by infrared spectroscopy.
- the pickling conditions are as follows. Acid pickling: acid concentration 1 ⁇ 20%, liquid temperature 30 ⁇ 90 °C, pickling time 5 ⁇ 30sec Acid pickling: acid concentration 1 ⁇ 20%, liquid temperature 30 ⁇ 90 °C, pickling time 5 ⁇ 30sec
- JIS No. 5 test piece JISZ2201 was taken from the direction perpendicular to the rolling direction and tested according to JISZ2241.
- TS BH tensile strength in re-tension
- TS 0 initial tensile strength
- Workability was evaluated with a value of TS ⁇ El.
- the reduced iron coverage was measured by observing the reflected electron image using a scanning electron microscope (SEM).
- the acceleration voltage at this time was 5 kV, and arbitrary five visual fields were observed at 300 times.
- the observed image was binarized by image processing, and the area ratio of the white portion was defined as the reduced iron coverage.
- the evaluation method of chemical conversion property is described below.
- a chemical conversion treatment liquid (Palbond L3080 (registered trademark)) manufactured by Nippon Parkerizing Co., Ltd. was used, and chemical conversion treatment was performed by the following method. After degreasing with a degreasing liquid Fine Cleaner (registered trademark) manufactured by Nihon Parkerizing Co., Ltd., washing with water, and then adjusting the surface for 30 seconds with surface conditioning solution Preparen Z (registered trademark) manufactured by Nihon Parkerizing Co., Ltd., a 43 ° C chemical conversion treatment solution After being immersed in (Palbond L3080) for 120 seconds, it was washed with water and dried with warm air.
- a degreasing liquid Fine Cleaner registered trademark
- surface conditioning solution Preparen Z (registered trademark) manufactured by Nihon Parkerizing Co., Ltd.
- a 43 ° C chemical conversion treatment solution After being immersed in (Palbond L3080) for 120 seconds, it was washed with water and dried
- the chemical conversion film was observed with a scanning electron microscope (SEM) at 5 magnifications at random, and the ske area ratio (hereinafter referred to as “ske area ratio”) of the chemical conversion film was measured by image processing.
- SEM scanning electron microscope
- ske area ratio the ske area ratio of the chemical conversion film was measured by image processing.
- the following evaluation was made according to the scale area ratio. ⁇ and ⁇ are acceptable levels.
- X Exceeding 10%
- Table 2 The results obtained above are shown in Table 2 together with the production conditions.
- the tensile strength (TS) is 590 MPa or more
- the balance between strength and elongation (TS ⁇ El) is 18000 MPa ⁇ % or more
- high strength, good workability, and good chemical conversion It can be seen that processability is obtained.
- the chemical conversion processability is inferior in the comparative example.
- a steel slab having the chemical components shown in Table 1 was heated to 1100 to 1200 ° C. and then hot-rolled and wound at 530 ° C. Next, pickling and cold rolling were performed by a known method to produce a steel plate having a thickness of 1.5 mm.
- This steel plate was subjected to oxidation treatment under the conditions shown in Table 3 using an infrared heating furnace. The amount of oxidation and the oxide formed at this time were analyzed in the same manner as in Example 1. Then, it heat-annealed using the infrared heating furnace, and obtained the high intensity
- the tensile strength (TS) is 590 MPa or more
- TS ⁇ El is 18000 MPa ⁇ % or more and high strength, and good workability and good chemical conversion property are obtained. I understand.
- the comparative example is inferior in either strength or chemical conversion treatment.
- Steel having chemical components shown in Table 1 was hot-rolled by a known method and wound at a winding temperature shown in Table 4. Thereafter, pickling and cold rolling were performed to produce a steel sheet having a thickness of 1.5 mm.
- the steel sheet was heated and annealed through a continuous annealing line equipped with a preheating furnace, a heating furnace equipped with a direct-fired burner, a radiant tube type soaking furnace, and a cooling furnace to obtain a high-strength cold-rolled steel sheet.
- a heating furnace equipped with an open flame burner is divided into four zones, and each zone has the same length.
- the direct flame burner used COG as the fuel, and adjusted the oxygen concentration in the atmosphere by changing the air ratio between the front stage (3 zones) and the rear stage (1 zone) of the heating furnace.
- cooling after annealing was performed with water, air or gas. At that time, in the case of water cooling, after cooling to the water temperature, it was reheated to the holding temperature shown in Table 4 and held. Moreover, in the case of air-water and gas cooling, it cooled to the holding temperature shown in Table 4, and hold
- the tensile strength (TS) is 590 MPa or more
- TS ⁇ El is 18000 MPa ⁇ % or more, which is high strength, and good workability and good chemical conversion property are obtained. I understand.
- the chemical conversion processability is inferior in the comparative example.
- the high-strength cold-rolled steel sheet of the present invention has high strength and excellent chemical conversion properties, it can be used as a cold-rolled steel sheet for reducing the weight and strength of the automobile body itself.
- the present invention can be applied in a wide range of fields such as home appliances and building materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Description
酸化処理後の酸化物の酸化量および最終的に表面に形成される還元鉄の被覆率を制御することで、Siを0.6%以上含有する高強度冷延鋼板について、化成処理性を改善することができる。
また、上記を制御するために、酸化処理時の雰囲気の酸素濃度を制御することで化成処理性を改善するとともに、引張強度(以下、TSと称することがある。)590MPa以上、強度と伸びのバランス(以下、TS×Elと称することがある。)が18000MPa・%以上の化成処理性に優れた高強度冷延鋼板を製造することが出来る。
[2]前記[1]において、さらに、質量%で、Cr:0.01~1%、Mo:0.01~1%、Ni:0.01~1%、Cu:0.01~1%の1種または2種以上を含有することを特徴とする高強度冷延鋼板。
[3]前記[1]または[2]において、さらに、質量%で、Ti:0.001~0.1%、Nb:0.001~0.1%、V:0.001~0.1%の1種又は2種以上を含有することを特徴とする高強度冷延鋼板。
[4]前記[1]~[3]のいずれかにおいて、さらに、質量%で、B:0.0003~0.005%を含有することを特徴とする高強度冷延鋼板。
[5]前記[1]~[4]のいずれかの一項に記載の成分組成からなる鋼を熱間圧延し、酸洗した後、冷間圧延し、次いで、酸化処理し、焼鈍するに際し、前記酸化処理は、酸素濃度が1000ppm以上の雰囲気で鋼板を鋼板温度が630℃以上になるまで1回目の加熱を行い、次いで、酸素濃度が1000ppm未満の雰囲気で鋼板を鋼板温度が700℃以上になるまで2回目の加熱を行い、前記焼鈍は、露点:−25℃以下、1~10体積%H2+残部N2ガス雰囲気の炉で均熱焼鈍することを特徴とする高強度冷延鋼板の製造方法。
[6]前記[5]において、前記酸化処理における前記2回目の加熱は、鋼板温度が800℃以下で行うことを特徴とする高強度冷延鋼板の製造方法。
[7]前記[5]または[6]において、前記熱間圧延後、520℃以上の巻取り温度で巻取ることを特徴とする高強度冷延鋼板の製造方法。
[8]前記[5]または[6]において、前記熱間圧延後、580℃以上の巻取り温度で巻取ることを特徴とする高強度冷延鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。また、本発明において、「高強度冷延鋼板」とは、引張強度TSが590MPa以上である冷延鋼板である。
また、本発明では、特に露点を高く制御することなしに、引張強度が590MPa以上の化成処理性に優れた高強度冷延鋼板が得られるので、操業制御性の点で有利であり、また炉壁や炉内のロールの劣化を早めたり、ピックアップと呼ばれるスケール疵を鋼板表面に発生させたりする問題も改善することができる。
まず、本発明が対象とする鋼板の化学成分の限定理由を説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味する。
C:0.05~0.3%
Cは、金属組織をフェライト−マルテンサイト、フェライト−ベイナイト−残留オーステナイトなどに制御し、所望する材質を得るための固溶強化能およびマルテンサイト生成能を有する。このような効果を得るためにはCは0.05%以上含有する必要がある。好ましくは0.10%以上を含有する。一方、Cを過度に添加すると、鋼板の加工性が著しく低下することから、上限は0.3%とする。
Si:0.6~3.0%
Siは鋼板の加工性を低下させずに強度を上げる元素である。このような効果を得るためにはSiは0.6%以上含有する必要がある。0.6%未満では、加工性すなわち、TS×Elが劣化する。好ましくは1.10%超である。ただし、3.0%を超えると鋼板の脆化が著しく、加工性が劣化し、また化成処理性が劣化するため、上限は3.0%とする。
Mn:1.0~3.0%
Mnは、金属組織をフェライト−マルテンサイト、フェライト−ベイナイト−残留オーステナイトなどに制御し、所望する材質を得るための固溶強化能およびマルテンサイト生成能を有する。このような効果を得るためにはMnは1.0%以上含有する必要がある。一方、Mnを過度に添加すると、鋼板の加工性が著しく低下することから、上限は3.0%以下とする。
P:0.1%以下
Pは、鋼の強化に有効な元素であるが、0.1%を超えて過剰に添加すると、粒界偏析により脆化を引き起こし、耐衝撃性を劣化させると共に耐食性を劣化させる。よって、0.1%以下とする。好ましくは0.015%以下である。
S:0.05%以下
Sは、MnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となると共に耐食性を劣化させる。できるだけ低減することが好ましく、0.05%以下とする。好ましくは0.003%以下である。
Al:0.01~1%
Alは脱酸材として添加される。0.01%未満では、脱酸材としての効果が不十分である。一方、1%を超えると、その効果が飽和し、不経済となる。したがって、Alは0.01%以上1%以下とする。
N:0.01%以下
Nは、鋼の耐時効性を最も大きく劣化させる元素である。できるだけ低減することが好ましく、0.01%以下とする。
残部はFeおよび不可避的不純物である。
また、鋼板の強度を上げるため、Ti:0.001~0.1%、Nb:0.001~0.1%、V:0.001~0.1%の1種又は2種以上を含有することができる。
さらに、素材の強度および塗装焼付け後の強度を上げるため、Bを0.0003~0.005%含有することができる。
還元鉄の被覆率は、走査型電子顕微鏡(SEM)を用い、反射電子像を観察することで測定することが可能である。反射電子像は、原子番号の大きい元素ほど白いコントラストで観察できる特徴があるので、還元鉄に覆われている部分は白いコントラストで観察される。また、還元鉄で覆われていない部分については、Siを0.6%以上含有する高強度冷延鋼板では、Siなどが表面に酸化物として形成されるために、黒いコントラストとして観察される。よって、白いコントラスト部分の面積率を画像処理によって求めることで、還元鉄の被覆率を求めることが可能である。
また、形成される鉄の酸化物の種類については、特に限定しないが、ウスタイト(FeO)、マグネタイト(Fe3O4)や、ヘマタイト(Fe2O3)が主に形成される。
更に、Siを0.6%以上含有する本発明の高強度冷延鋼板の場合では、Siを含んだ酸化物が上記鉄の酸化物と同時に形成される。このSiを含んだ酸化物は主にSiO2および/または(Fe、Mn)2SiO4である。
メカニズムは明確になっていないが、酸化処理後に、0.1g/m2以上の酸化量が得られ、かつ(Fe、Mn)2SiO4が生成された場合に、還元鉄が40%以上の被覆率で鋼板表面に形成されることが分かった。Siを含んだ酸化物としてSiO2しか形成していない場合には、還元鉄の被覆率は低くなり、40%以上の被覆率を得ることができない。しかし、Siを含んだ酸化物として(Fe、Mn)2SiO4の形で生成していれば、同時にある程度のSiO2が存在していても還元鉄の被覆率は高くなり、40%以上の被覆率を得ることが可能である。
これらの酸化物の存在状態を判断する方法は特に限定しないが、赤外分光法(IR)が有効である。SiO2の特徴である1230cm−1付近、および(Fe、Mn)2SiO4の特徴である1000cm−1付近に現れるピークを確認することで酸化物の存在状態を判断することができる。
上記成分組成の鋼を熱間圧延し、引き続き酸洗した後、冷間圧延を施し、酸化処理を施した後に焼鈍する。酸化処理前までの冷延鋼板の製造方法は、特に限定されず、公知の方法を用いることが出来る。また、前記酸化処理は、酸素濃度が1000ppm以上の雰囲気で鋼板を鋼板温度が630℃以上になるまで1回目の加熱を行い、次いで、酸素濃度が1000ppm未満の雰囲気で鋼板を鋼板温度が700℃以上になるまで2回目の加熱を行い、前記焼鈍は、露点:−25℃以下、1~10体積%H2+残部N2ガス雰囲気の炉で均熱焼鈍することとする。
熱間圧延は通常行われる範囲にて行うことができる。
熱間圧延後の巻取りは、520℃以上の温度で行うことが好ましい。より好ましくは580℃以上である。
本発明では、酸化処理後に鋼板表面に形成する酸化物として(Fe、Mn)2SiO4が化成処理性を改善させるうえで重要である。そこで、巻取り温度と酸化処理後の(Fe、Mn)2SiO4の生成状況を調査したところ、巻取り温度を520℃以上として巻取り、冷間圧延した場合では、酸化処理時に(Fe、Mn)2SiO4の生成が起こりやすくなり、化成処理性が改善されることが分かった。このメカニズムは明確ではないが、巻取り温度を高くすることによって、鋼板表面の酸化が促進され、特に易酸化性元素であるSiの酸化が促進される。冷間圧延前にはそれらの酸化物は除去されるので、結果として鋼板表面の固溶Si濃度が低下して、酸化処理時にSiO2よりも(Fe、Mn)2SiO4の生成が起こりやすくなると考えられる。巻取り後に酸化が促進されるという点では、より好ましくは580℃以上である。
酸化処理では、酸素濃度が1000ppm以上の雰囲気で鋼板を鋼板温度が630℃以上になるまで1回目の加熱を行い、次いで、酸素濃度が1000ppm未満の雰囲気で鋼板を鋼板温度が700℃以上になるまで2回目の加熱を行う。これにより、鋼板表面には酸化量として0.1g/m2以上の酸化物が形成され、更に鉄酸化物と共に(Fe、Mn)2SiO4を生成させることが出来る。
酸素濃度が1000ppm以上の雰囲気の加熱炉での1回目の加熱は高酸素濃度雰囲気で酸化反応を促進しSiO2を形成させる効果があり、鋼板温度が630℃以上になるまで、望ましくは650℃以上まで加熱することが有効である。
この時の酸素濃度が10000ppm未満では、酸化量を0.1g/m2以上確保することが困難である。
また、酸素濃度が1000ppm未満の雰囲気の加熱炉での2回目の加熱は、高温、低酸素濃度雰囲気でSiO2に変わり(Fe、Mn)2SiO4の生成を促進させる効果がある。この時の酸素濃度が1000ppm以上では、(Fe、Mn)2SiO4の生成が起こらずに、結果として還元鉄の被覆率が低下してしまうことになる。また、鋼板温度が低い場合にも(Fe、Mn)2SiO4の生成が起こらない。さらに、鋼板温度が低い場合は、酸化量を確保する点からも問題がある。以上より、酸素濃度が1000ppm未満の雰囲気で鋼板を鋼板温度が700℃以上になるまで2回目の加熱は行う。
しかし、過度に酸化させると、次の焼鈍工程での還元性雰囲気炉でFe酸化物が剥離し、ピックアップの原因となるので、上記酸化処理は鋼板温度が800℃以下で行うことが好ましい。
焼鈍は、露点:−25℃以下、1~10体積%H2+残部N2ガス雰囲気の炉で均熱焼鈍する焼鈍炉に導入する雰囲気ガスは、1~10体積%H2+残部N2ガスである。雰囲気ガスのH2%を1~10体積%に限定したのは、1体積%未満では鋼板表面のFe酸化物を還元するのにH2が不足し、10体積%を超えてもFe酸化物の還元は飽和するため、過分のH2が無駄になる。
露点は−25℃以下とする。露点が−25℃超になると炉内のH2Oの酸素による酸化が著しくなりSiの内部酸化が過度に起こる。
以上により、焼鈍炉内は、Feの還元性雰囲気となり、酸化処理で生成したFe酸化物の還元が起こる。このとき、還元によりFeと分離された酸素が、一部鋼板内部に拡散し、Siと反応することにより、SiO2の内部酸化が起こる。しかし、Siが鋼板内部で酸化すると、化成処理反応が起こる鋼板最表面のSi酸化物が減少するため、鋼板最表面の化成処理性は良好となる。
さらに、焼鈍は、材質調整の観点から、鋼板温度が750℃から900℃の範囲内で行われることが好ましい。均熱時間は20秒から180秒が好ましい。
焼鈍後の工程は、品種によって様々であり、適宜行われる。本発明では焼鈍後の工程は特に限定しない。例えば、焼鈍後、ガス、気水(空気と混合されたミスト状の水をいう。)、水等により冷却され、必要に応じ、150℃から400℃の焼き戻しを施す。冷却後、あるいは焼き戻し後に、表面性状を調整するために、塩酸や硫酸などを用いた酸洗を行ってもよい。更に均熱焼鈍に用いる炉も特に限定されずに、ラジアントチューブ型の加熱炉や赤外加熱炉などを使用することが可能である。
塩酸酸洗:酸濃度1~20%、液温度30~90℃、酸洗時間5~30sec
硫酸酸洗:酸濃度1~20%、液温度30~90℃、酸洗時間5~30sec
化成処理液は、日本パーカライジング社製の化成処理液(パルボンドL3080(登録商標))を用い、下記方法で化成処理を施した。
日本パーカライジング社製の脱脂液ファインクリーナ(登録商標)で脱脂したのち、水洗し、次に日本パーカライジング社製の表面調整液プレパレンZ(登録商標)で30秒間表面調整行い、43℃の化成処理液(パルボンドL3080)に120秒間浸漬した後、水洗し、温風で乾燥した。
化成皮膜を走査型電子顕微鏡(SEM)で、倍率500倍で無作為に5視野を観察し、化成皮膜のスケ面積率(以下、「スケ面積率」と記す。)を画像処理により測定し、スケ面積率によって以下の評価をした。◎、○が合格レベルである。
◎:5%以下
○:5%超10%以下
×:10%超え
以上により得られた結果を、製造条件と併せて、表2に示す。
一方、比較例は強度、化成処理性のいずれかが劣っている。
得られた結果を製造条件と併せて表4に示す。
一方、比較例は、化成処理性が劣っている。
Claims (8)
- 質量%で、C:0.05~0.3%、Si:0.6~3.0%、Mn:1.0~3.0%、P:0.1%以下、S:0.05%以下、Al:0.01~1%、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、還元鉄が40%以上の被覆率で鋼板表面に存在することを特徴とする高強度冷延鋼板。
- さらに、質量%で、Cr:0.01~1%、Mo:0.01~1%、Ni:0.01~1%、Cu:0.01~1%の1種または2種以上を含有することを特徴とする請求項1に記載の高強度冷延鋼板。
- さらに、質量%で、Ti:0.001~0.1%、Nb:0.001~0.1%、V:0.001~0.1%の1種又は2種以上を含有することを特徴とする請求項1または2に記載の高強度冷延鋼板。
- さらに、質量%で、B:0.0003~0.005%を含有することを特徴とする請求項1~3のいずれかの一項に記載の高強度冷延鋼板。
- 請求項1~4のいずれかの一項に記載の成分組成からなる鋼を熱間圧延し、酸洗した後、冷間圧延し、次いで、酸化処理し、焼鈍するに際し、前記酸化処理は、酸素濃度が1000ppm以上の雰囲気で鋼板を鋼板温度が630℃以上になるまで1回目の加熱を行い、次いで、酸素濃度が1000ppm未満の雰囲気で鋼板を鋼板温度が700℃以上になるまで2回目の加熱を行い、前記焼鈍は、露点:−25℃以下、1~10体積%H2+残部N2ガス雰囲気の炉で均熱焼鈍することを特徴とする高強度冷延鋼板の製造方法。
- 前記酸化処理における前記2回目の加熱は、鋼板温度が800℃以下で行うことを特徴とする請求項5に記載の高強度冷延鋼板の製造方法。
- 前記熱間圧延後、520℃以上の巻取り温度で巻取ることを特徴とする請求項5または6に記載の高強度冷延鋼板の製造方法。
- 前記熱間圧延後、580℃以上の巻取り温度で巻取ることを特徴とする請求項5または6に記載の高強度冷延鋼板の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10839628.4A EP2518181B1 (en) | 2009-12-25 | 2010-12-24 | High-strength cold rolled steel sheet and method for producing same |
CN201080059090.1A CN102666923B (zh) | 2009-12-25 | 2010-12-24 | 高强度冷轧钢板及其制造方法 |
US13/517,417 US9090952B2 (en) | 2009-12-25 | 2010-12-24 | High-strength cold-rolled steel sheet and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-293919 | 2009-12-25 | ||
JP2009293919A JP5614035B2 (ja) | 2009-12-25 | 2009-12-25 | 高強度冷延鋼板の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011078412A1 true WO2011078412A1 (ja) | 2011-06-30 |
Family
ID=44195922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/073877 WO2011078412A1 (ja) | 2009-12-25 | 2010-12-24 | 高強度冷延鋼板およびその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9090952B2 (ja) |
EP (1) | EP2518181B1 (ja) |
JP (1) | JP5614035B2 (ja) |
KR (1) | KR20120092704A (ja) |
CN (1) | CN102666923B (ja) |
TW (1) | TWI426139B (ja) |
WO (1) | WO2011078412A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104136644A (zh) * | 2012-02-28 | 2014-11-05 | 杰富意钢铁株式会社 | 含Si高强度冷轧钢板及其制造方法以及汽车构件 |
CN114472557A (zh) * | 2022-01-27 | 2022-05-13 | 本钢板材股份有限公司 | 一种预防热轧酸洗板铁皮缺陷的加热方法 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5779847B2 (ja) * | 2009-07-29 | 2015-09-16 | Jfeスチール株式会社 | 化成処理性に優れた高強度冷延鋼板の製造方法 |
JP5614035B2 (ja) * | 2009-12-25 | 2014-10-29 | Jfeスチール株式会社 | 高強度冷延鋼板の製造方法 |
JP5609494B2 (ja) | 2010-09-29 | 2014-10-22 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
KR20130049821A (ko) | 2010-09-30 | 2013-05-14 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판 및 그 제조 방법 |
JP5966528B2 (ja) * | 2011-06-07 | 2016-08-10 | Jfeスチール株式会社 | めっき密着性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5990892B2 (ja) * | 2011-11-10 | 2016-09-14 | Jfeスチール株式会社 | 化成処理性に優れた高Si冷延鋼板の製造方法 |
JP2013256713A (ja) * | 2012-05-14 | 2013-12-26 | Jfe Steel Corp | 化成処理性に優れた高強度冷延鋼板及びその製造方法 |
JP6139943B2 (ja) * | 2013-03-29 | 2017-05-31 | 株式会社神戸製鋼所 | 酸洗い性に優れた軟磁性部品用鋼材、および耐食性と磁気特性に優れた軟磁性部品とその製造方法 |
WO2015001367A1 (en) * | 2013-07-04 | 2015-01-08 | Arcelormittal Investigación Y Desarrollo Sl | Cold rolled steel sheet, method of manufacturing and vehicle |
JP6043256B2 (ja) * | 2013-09-03 | 2016-12-14 | 株式会社神戸製鋼所 | 化成処理性に優れた冷間圧延鋼板の製造方法 |
KR101910875B1 (ko) * | 2013-11-07 | 2018-10-23 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판의 마찰 교반 접합 방법 |
JP2015200013A (ja) | 2014-03-31 | 2015-11-12 | 株式会社神戸製鋼所 | 延性、伸びフランジ性、および溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板 |
JP2015200012A (ja) | 2014-03-31 | 2015-11-12 | 株式会社神戸製鋼所 | 延性、伸びフランジ性、および溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板 |
JP6528851B2 (ja) * | 2015-09-25 | 2019-06-12 | 日本製鉄株式会社 | 鋼板 |
CN113122772A (zh) * | 2016-03-31 | 2021-07-16 | 杰富意钢铁株式会社 | 薄钢板和镀覆钢板、以及薄钢板和镀覆钢板的制造方法 |
KR101830527B1 (ko) | 2016-09-26 | 2018-02-21 | 주식회사 포스코 | 내식성 및 점용접성이 우수한 열간성형용 냉연강판, 열간성형부재 및 그들의 제조방법 |
US11898230B2 (en) | 2018-08-22 | 2024-02-13 | Jfe Steel Corporation | High-strength steel sheet and method for manufacturing same |
US20210395895A1 (en) * | 2018-11-09 | 2021-12-23 | Jfe Steel Corporation | Cold rolled steel sheet for zirconium-based chemical conversion treatment, method for producing same, zirconium-based chemical conversion-treated steel sheet, and method for producing same |
CN111974797B (zh) * | 2020-07-24 | 2022-06-17 | 柳州钢铁股份有限公司 | 表面氧化铁皮厚度达12μm以上的盘条钢筋 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55145122A (en) | 1979-04-28 | 1980-11-12 | Sumitomo Metal Ind Ltd | Manufacture of high-tension cold rolled steel sheet excellent in chemical treatment property |
JP3386657B2 (ja) | 1996-05-20 | 2003-03-17 | 川崎製鉄株式会社 | 高強度冷延鋼板 |
JP2004323969A (ja) | 2003-04-10 | 2004-11-18 | Kobe Steel Ltd | 化成処理性に優れる高強度冷延鋼板 |
JP2006045615A (ja) | 2004-08-04 | 2006-02-16 | Jfe Steel Kk | 冷延鋼板の製造方法 |
JP2006265586A (ja) * | 2005-03-22 | 2006-10-05 | Nippon Steel Corp | 塗装後の耐食性及び美観に優れた熱延鋼材 |
JP3840392B2 (ja) | 2001-10-09 | 2006-11-01 | 株式会社神戸製鋼所 | りん酸塩処理性に優れた鋼板 |
JP2007084868A (ja) * | 2005-09-21 | 2007-04-05 | Jfe Steel Kk | 冷延鋼板およびその製造方法 |
JP2008069445A (ja) | 2006-08-18 | 2008-03-27 | Nippon Steel Corp | 化成処理性に優れた高張力鋼板 |
JP2008266778A (ja) * | 2007-03-22 | 2008-11-06 | Jfe Steel Kk | 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1137394A (en) * | 1979-12-05 | 1982-12-14 | Hajime Nitto | Process for continuously annealing a cold-rolled low carbon steel strip |
DE102006005063A1 (de) * | 2006-02-03 | 2007-08-09 | Linde Ag | Verfahren zur Wärmebehandlung von Stahlbändern |
JP4926517B2 (ja) * | 2006-03-28 | 2012-05-09 | 新日本製鐵株式会社 | 塗装後耐食性に優れた高強度冷延鋼板の製造方法 |
EP2009127A1 (en) * | 2007-06-29 | 2008-12-31 | ArcelorMittal France | Process for manufacturing a galvanized or a galvannealed steel sheet by DFF regulation |
JP5614035B2 (ja) * | 2009-12-25 | 2014-10-29 | Jfeスチール株式会社 | 高強度冷延鋼板の製造方法 |
-
2009
- 2009-12-25 JP JP2009293919A patent/JP5614035B2/ja active Active
-
2010
- 2010-12-23 TW TW099145549A patent/TWI426139B/zh not_active IP Right Cessation
- 2010-12-24 EP EP10839628.4A patent/EP2518181B1/en active Active
- 2010-12-24 US US13/517,417 patent/US9090952B2/en active Active
- 2010-12-24 KR KR1020127018163A patent/KR20120092704A/ko not_active Application Discontinuation
- 2010-12-24 WO PCT/JP2010/073877 patent/WO2011078412A1/ja active Application Filing
- 2010-12-24 CN CN201080059090.1A patent/CN102666923B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55145122A (en) | 1979-04-28 | 1980-11-12 | Sumitomo Metal Ind Ltd | Manufacture of high-tension cold rolled steel sheet excellent in chemical treatment property |
JP3386657B2 (ja) | 1996-05-20 | 2003-03-17 | 川崎製鉄株式会社 | 高強度冷延鋼板 |
JP3840392B2 (ja) | 2001-10-09 | 2006-11-01 | 株式会社神戸製鋼所 | りん酸塩処理性に優れた鋼板 |
JP2004323969A (ja) | 2003-04-10 | 2004-11-18 | Kobe Steel Ltd | 化成処理性に優れる高強度冷延鋼板 |
JP2006045615A (ja) | 2004-08-04 | 2006-02-16 | Jfe Steel Kk | 冷延鋼板の製造方法 |
JP2006265586A (ja) * | 2005-03-22 | 2006-10-05 | Nippon Steel Corp | 塗装後の耐食性及び美観に優れた熱延鋼材 |
JP2007084868A (ja) * | 2005-09-21 | 2007-04-05 | Jfe Steel Kk | 冷延鋼板およびその製造方法 |
JP2008069445A (ja) | 2006-08-18 | 2008-03-27 | Nippon Steel Corp | 化成処理性に優れた高張力鋼板 |
JP2008266778A (ja) * | 2007-03-22 | 2008-11-06 | Jfe Steel Kk | 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104136644A (zh) * | 2012-02-28 | 2014-11-05 | 杰富意钢铁株式会社 | 含Si高强度冷轧钢板及其制造方法以及汽车构件 |
CN114472557A (zh) * | 2022-01-27 | 2022-05-13 | 本钢板材股份有限公司 | 一种预防热轧酸洗板铁皮缺陷的加热方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2518181B1 (en) | 2019-10-02 |
TW201134955A (en) | 2011-10-16 |
EP2518181A4 (en) | 2017-07-26 |
EP2518181A1 (en) | 2012-10-31 |
KR20120092704A (ko) | 2012-08-21 |
JP5614035B2 (ja) | 2014-10-29 |
US9090952B2 (en) | 2015-07-28 |
US20120325376A1 (en) | 2012-12-27 |
CN102666923B (zh) | 2015-03-11 |
JP2011132576A (ja) | 2011-07-07 |
CN102666923A (zh) | 2012-09-12 |
TWI426139B (zh) | 2014-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5614035B2 (ja) | 高強度冷延鋼板の製造方法 | |
JP5664716B2 (ja) | 化成処理性に優れた高Si冷延鋼板の製造方法 | |
JP5779847B2 (ja) | 化成処理性に優れた高強度冷延鋼板の製造方法 | |
JP5083354B2 (ja) | 化成処理性に優れた高Si冷延鋼板の製造方法 | |
JP5552863B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
WO2012169653A1 (ja) | めっき密着性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
WO2017145322A1 (ja) | 鋼板の製造方法及び鋼板の連続焼鈍装置 | |
JP5552859B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP5552864B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP5593771B2 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法 | |
JP5593770B2 (ja) | 高強度溶融亜鉛めっき鋼板の製造方法 | |
JP5990892B2 (ja) | 化成処理性に優れた高Si冷延鋼板の製造方法 | |
JP5672746B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP5552861B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP6043256B2 (ja) | 化成処理性に優れた冷間圧延鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080059090.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10839628 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1470/KOLNP/2012 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010839628 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127018163 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13517417 Country of ref document: US |