WO2011078412A1 - 高強度冷延鋼板およびその製造方法 - Google Patents

高強度冷延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2011078412A1
WO2011078412A1 PCT/JP2010/073877 JP2010073877W WO2011078412A1 WO 2011078412 A1 WO2011078412 A1 WO 2011078412A1 JP 2010073877 W JP2010073877 W JP 2010073877W WO 2011078412 A1 WO2011078412 A1 WO 2011078412A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolled steel
strength cold
less
strength
Prior art date
Application number
PCT/JP2010/073877
Other languages
English (en)
French (fr)
Inventor
牧水洋一
鈴木善継
宮田麻衣
吉見直人
平澤淳一郎
大塚真司
永野英樹
長谷川浩平
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP10839628.4A priority Critical patent/EP2518181B1/en
Priority to CN201080059090.1A priority patent/CN102666923B/zh
Priority to US13/517,417 priority patent/US9090952B2/en
Publication of WO2011078412A1 publication Critical patent/WO2011078412A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/52Methods of heating with flames
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0457Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/081Iron or steel solutions containing H2SO4

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet for automobiles that is used after being subjected to chemical conversion treatment such as phosphate treatment and a method for producing the same, and in particular, a tensile strength of 590 MPa or more utilizing the strengthening ability of Si.
  • the present invention relates to a high-strength cold-rolled steel sheet excellent in chemical conversion treatment and a method for producing the same.
  • cold-rolled steel sheets having a high tensile strength of 590 MPa or more are used after being coated, and as a pretreatment for the coating, chemical conversion treatment such as phosphate treatment is performed.
  • the chemical conversion treatment of the cold-rolled steel sheet is one of important treatments for ensuring the corrosion resistance after painting.
  • Patent Document 1 discloses that an oxide film is formed on the steel sheet surface by bringing the steel sheet temperature to 350 to 650 ° C. in an oxidizing atmosphere. And then heated and cooled to the recrystallization temperature in a reducing atmosphere.
  • Patent Document 2 discloses a cold-rolled steel sheet containing, by mass%, Si of 0.1% or more and / or Mn of 1.0% or more in an iron oxidizing atmosphere at a steel plate temperature of 400 ° C. or more. A method is described in which an oxide film is formed on the surface of the steel sheet, and then the oxide film on the surface of the steel sheet is reduced in an iron reducing atmosphere.
  • Patent Document 3 discloses an oxidation effective for improving chemical conversion treatment properties, etc. in the crystal grain boundaries and / or crystal grains of the surface layer of a high strength cold-rolled steel sheet containing 0.1 wt% or more and 3.0 wt% or less of Si.
  • a high-strength cold-rolled steel sheet characterized by having an article is described.
  • Patent Document 4 when a cross section in a direction orthogonal to the steel plate surface is observed with an electron microscope at a magnification of 50000 times or more, the ratio of the Si-containing oxide in the steel plate surface length of 10 ⁇ m is arbitrarily selected.
  • a steel sheet excellent in phosphatability is described so as to be 80% or less on the average of the places.
  • Patent Document 5 includes mass%, C: more than 0.1%, Si: 0.4% or more, and Si content (mass%) / Mn content (mass%) is 0.4 or more.
  • the surface coverage of the Si-based oxide containing Si as a main component on the steel sheet surface is 20 area% or less, and the Si-based oxide is covered within the region.
  • a high-strength cold-rolled steel sheet excellent in chemical conversion treatment with a maximum circle diameter of 5 ⁇ m or less in contact is described.
  • Patent Document 6 in mass%, C: 0.01 to 0.3%, Si: 0.2 to 3.0%, Mn: 0.1 to 3.0%, Al: 0.01 to 2
  • a high-tensile steel plate containing 0.0% and a tensile strength of 500 MPa or more an observation region having an average grain size of 0.5 ⁇ m or less on the surface of the steel plate and a width of 10 ⁇ m or more on the surface of the steel plate
  • one or two kinds of silicon oxide and manganese silicate are 70% by mass or more in total of these.
  • the oxide species contained is 30% or less with respect to the grain boundary region surface as seen from the cross section, and the particle size of the oxide species present within the range of 0.1 to 1.0 ⁇ m at a depth from the steel plate surface. Is excellent in chemical conversion treatment, characterized by being 0.1 ⁇ m or less Tensile steel sheets are described.
  • Patent Document 1 there is a difference in the thickness of the oxide film formed on the surface of the steel sheet due to the oxidation method, and sufficient oxidation does not occur, or the oxide film becomes too thick, and the subsequent reducing atmosphere. During the annealing, the oxide film may remain or peel off, and the surface properties may deteriorate.
  • a technique for oxidizing in the air is described. However, in the oxidation in the air, a thick oxide is formed and subsequent reduction is difficult, or a reducing atmosphere with a high hydrogen concentration is required. There is a problem.
  • Patent Document 2 is an N 2 + H 2 gas atmosphere in which Fe on the steel sheet surface is oxidized using a direct fire burner having an air ratio of 0.93 or more and 1.10 or less at 400 ° C. or higher, and then Fe oxide is reduced. Is a method of suppressing oxidation at the outermost surface of SiO 2 that lowers the chemical conversion processability by annealing and forming a reduced layer of Fe on the outermost surface.
  • Patent Document 2 does not specifically describe the heating temperature in an open flame burner, but when it contains a large amount of Si (0.6% or more), the amount of oxidation of Si that is easier to oxidize than Fe is large. Therefore, oxidation of Fe is suppressed, or oxidation of Fe itself is too little. As a result, formation of the surface Fe reduction layer after reduction was insufficient, and SiO 2 was present on the steel plate surface after reduction, and there was a case where the conversion film was scaled.
  • the steel sheet of Patent Document 3 is a steel sheet that improves chemical conversion properties by forming Si oxide inside the steel sheet and eliminating Si oxide on the surface.
  • the manufacturing method involves winding at a high temperature (in the embodiment, good at 620 ° C. or higher) at the time of hot rolling before the cold rolling of the steel sheet, and using that heat to form Si oxide inside the steel sheet.
  • the wound coil has a fast cooling rate on the outside and a slow cooling rate on the inside, so there is a large variation in temperature in the longitudinal direction of the steel sheet, and it is difficult to obtain a uniform surface quality over the entire length of the coil. It was.
  • Patent Documents 4, 5, and 6 are steel sheets that define the upper limit of the amount of Si oxide covering the surface, although the way of defining is different.
  • a dew point (or (water vapor partial pressure / hydrogen partial pressure) ratio of N 2 + H 2 gas atmosphere which is reducing during temperature rise or soaking of continuous annealing, hereinafter also referred to as a steam hydrogen hydrogen partial pressure ratio. ) Is controlled within a certain range, and Si is oxidized inside the steel sheet.
  • the dew point range is described in Patent Document 4 as -25 ° C or higher, and in Patent Document 5 as -20 ° C to 0 ° C.
  • Patent Document 6 adopts a method of regulating the range of the steam hydrogen partial pressure ratio in each step of preheating, temperature elevation, and recrystallization.
  • it is generally necessary to control the N 2 + H 2 gas atmosphere with a dew point of ⁇ 25 ° C. or lower by introducing water vapor or air, but this is from the viewpoint of operational controllability.
  • There was a problem and as a result, good chemical conversion treatment was not stably obtained.
  • increasing the dew point increases the oxidization of the atmosphere, so it accelerates the deterioration of the furnace walls and rolls in the furnace, and generates scale soot called pick-up soot on the steel sheet surface. There was a case of letting.
  • the present invention has good chemical conversion properties even if it contains 0.6% or more of Si without controlling the dew point of the reducing atmosphere of the soaking furnace or the steam hydrogen partial pressure ratio.
  • An object is to provide a high-strength cold-rolled steel sheet having a tensile strength of 590 MPa or more and a method for producing the same.
  • the chemical conversion treatment performance is improved for high-strength cold-rolled steel sheets containing 0.6% or more of Si can do.
  • the chemical treatment property is improved by controlling the oxygen concentration of the atmosphere during the oxidation treatment, and the tensile strength (hereinafter sometimes referred to as TS) is 590 MPa or more, and the strength and elongation.
  • TS ⁇ El tensile strength
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • C 0.05 to 0.3%
  • Si 0.6 to 3.0%
  • Mn 1.0 to 3.0%
  • P 0.1% or less
  • S 0.05% or less
  • Al 0.01 to 1%
  • N 0.01% or less
  • the balance being a component composition consisting of Fe and inevitable impurities, and reduced iron coverage of 40% or more
  • the steel comprising the composition according to any one of [1] to [4] is hot-rolled, pickled, cold-rolled, then oxidized, and annealed.
  • the steel sheet is heated for the first time in an atmosphere having an oxygen concentration of 1000 ppm or higher until the steel plate temperature is 630 ° C. or higher, and then the steel sheet is heated to 700 ° C. or higher in an atmosphere having an oxygen concentration of less than 1000 ppm.
  • the high-temperature cold rolling is characterized in that the annealing is performed in a furnace having a dew point of ⁇ 25 ° C. or less, 1 to 10% by volume H 2 + the balance N 2 gas atmosphere, A method of manufacturing a steel sheet.
  • a high-strength cold-rolled steel sheet having a tensile strength of 590 MPa or more and excellent chemical conversion properties can be obtained. Furthermore, the high-strength cold-rolled steel sheet of the present invention is excellent in workability with TS ⁇ El of 18000 MPa ⁇ % or more.
  • a high-strength cold-rolled steel sheet excellent in chemical conversion treatment having a tensile strength of 590 MPa or more can be obtained without particularly controlling the dew point to be high, which is advantageous in terms of operation controllability, and furnace Problems such as accelerating the deterioration of the rolls in the walls and the furnace and generating scale flaws called pickups on the steel sheet surface can also be improved.
  • C 0.05 to 0.3%
  • C controls the metal structure to ferrite-martensite, ferrite-bainite-residual austenite, etc., and has a solid solution strengthening ability and martensite forming ability to obtain a desired material.
  • it is necessary to contain 0.05% or more of C.
  • it contains 0.10% or more.
  • C is added excessively, the workability of the steel sheet is remarkably lowered, so the upper limit is made 0.3%.
  • Si 0.6 to 3.0%
  • Si is an element that increases the strength without reducing the workability of the steel sheet. In order to obtain such an effect, Si needs to be contained by 0.6% or more. If it is less than 0.6%, workability, that is, TS ⁇ E1 deteriorates. Preferably it is over 1.10%. However, if the content exceeds 3.0%, the steel sheet becomes extremely brittle, the workability deteriorates, and the chemical conversion property deteriorates, so the upper limit is made 3.0%.
  • Mn 1.0 to 3.0% Mn controls the metal structure to ferrite-martensite, ferrite-bainite-residual austenite, and the like, and has a solid solution strengthening ability and martensite forming ability to obtain a desired material.
  • P 0.1% or less P is an element effective for strengthening steel, but if added in excess of 0.1%, it causes embrittlement due to segregation at the grain boundaries, which deteriorates impact resistance and corrosion resistance. Deteriorate. Therefore, it is made 0.1% or less. Preferably it is 0.015% or less. S: 0.05% or less S becomes an inclusion such as MnS, which causes deterioration of impact resistance and cracking along the metal flow of the welded portion, and deteriorates corrosion resistance.
  • Al 0.01 to 1% Al is added as a deoxidizing material. If it is less than 0.01%, the effect as a deoxidizer is insufficient. On the other hand, if it exceeds 1%, the effect is saturated and uneconomical. Therefore, Al is made 0.01% or more and 1% or less.
  • N 0.01% or less N is an element that most deteriorates the aging resistance of steel. It is preferable to reduce it as much as possible, and it is 0.01% or less. The balance is Fe and inevitable impurities.
  • Cr 0.01 to 1%
  • Mo 0.01 to 1%
  • Ni 0.01 to 1%
  • Cu 0.01 to 1 in order to improve the balance between strength and ductility % 1 type or 2 types or more.
  • Ti 0.001 to 0.1%
  • Nb 0.001 to 0.1%
  • V 0.001 to 0.1%
  • B can be contained in an amount of 0.0003 to 0.005% in order to increase the strength of the material and the strength after baking.
  • the iron oxide formed by the oxidation treatment is reduced in the annealing step, and the cold-rolled steel sheet is covered as reduced iron.
  • the reduced iron in this application refers to what was formed in this way.
  • the reduced iron formed in this way has a low content of elements that inhibit chemical conversion properties such as Si.
  • Si has a lower Si concentration contained in reduced iron than the Si concentration in the steel sheet. Therefore, coating the steel sheet surface with the reduced iron is very effective as a means for improving the chemical conversion processability.
  • the reduced iron formed after the annealing is present on the surface of the cold-rolled steel sheet with a coverage of 40% or more, good chemical conversion property can be obtained.
  • the coverage of reduced iron can be measured by observing a reflected electron image using a scanning electron microscope (SEM). Since the reflected electron image has a feature that an element with a larger atomic number can be observed with white contrast, a portion covered with reduced iron is observed with white contrast. Moreover, about the part which is not covered with reduced iron, in the high intensity
  • SEM scanning electron microscope
  • the oxidation amount of the oxide on the surface of the cold-rolled steel sheet formed after the oxidation treatment is important.
  • the oxide is formed on the surface of the steel sheet in an amount of 0.1 g / m 2 or more as an oxidation amount, whereby the coverage of reduced iron can be 40% or more.
  • the oxidation amount is less than 0.1 g / m 2 , reduced iron cannot be formed in an amount of 40% or more, and the chemical conversion property is inferior.
  • the oxidation amount is the amount of oxygen on the steel sheet surface after the oxidation treatment.
  • the oxidation amount can be measured by, for example, fluorescent X-ray elemental analysis using a standard substance.
  • the type of iron oxide formed is not particularly limited, but wustite (FeO), magnetite (Fe 3 O 4 ), and hematite (Fe 2 O 3 ) are mainly formed.
  • an oxide containing Si is formed simultaneously with the iron oxide.
  • the oxide containing Si is mainly SiO 2 and / or (Fe, Mn) 2 SiO 4 .
  • the method for determining the presence state of these oxides is not particularly limited, but infrared spectroscopy (IR) is effective. By confirming peaks appearing in the vicinity of 1230 cm ⁇ 1 , which is a characteristic of SiO 2 , and in the vicinity of 1000 cm ⁇ 1, which is a characteristic of (Fe, Mn) 2 SiO 4 , the presence state of the oxide can be determined.
  • IR infrared spectroscopy
  • the manufacturing method of the high-strength cold-rolled steel sheet of this invention is demonstrated.
  • the steel having the above component composition is hot-rolled, subsequently pickled, then cold-rolled, subjected to an oxidation treatment, and then annealed.
  • the manufacturing method of the cold-rolled steel sheet before the oxidation treatment is not particularly limited, and a known method can be used.
  • the steel sheet is first heated in an atmosphere having an oxygen concentration of 1000 ppm or more until the steel sheet temperature reaches 630 ° C. or higher, and then the steel sheet is heated to 700 ° C. in an atmosphere having an oxygen concentration of less than 1000 ppm.
  • the second heating is performed until the above is reached, and the annealing is performed by soaking in a furnace having a dew point of ⁇ 25 ° C. or lower, 1 to 10% by volume H 2 + the balance N 2 gas atmosphere.
  • Hot rolling can be performed in a range where it is normally performed.
  • the winding after hot rolling is preferably performed at a temperature of 520 ° C. or higher. More preferably, it is 580 degreeC or more.
  • (Fe, Mn) 2 SiO 4 is important as an oxide formed on the steel sheet surface after the oxidation treatment in order to improve the chemical conversion treatment. Therefore, when the coiling temperature and the state of formation of (Fe, Mn) 2 SiO 4 after the oxidation treatment were investigated, when the coiling temperature was 520 ° C. or higher and cold rolling was performed, during the oxidation treatment (Fe, It has been found that the formation of (Mn) 2 SiO 4 is likely to occur and the chemical conversion property is improved.
  • an oxidation treatment is performed.
  • This oxidation treatment is an important requirement in the present invention, and the oxidation amount of the oxide after the oxidation treatment and the coverage of the reduced iron formed on the surface are controlled by performing the oxidation treatment under the following conditions.
  • the chemical conversion processability can be improved for a high-strength cold-rolled steel sheet containing 0.6% or more of Si.
  • the steel sheet is heated for the first time until the steel plate temperature reaches 630 ° C. or higher in an atmosphere having an oxygen concentration of 1000 ppm or higher, and then the steel plate temperature reaches 700 ° C. or higher in an atmosphere where the oxygen concentration is less than 1000 ppm. Until the second heating.
  • the first heating in the heating furnace having an oxygen concentration of 1000 ppm or more has an effect of promoting the oxidation reaction and forming SiO 2 in a high oxygen concentration atmosphere, and desirably 650 ° C. until the steel plate temperature reaches 630 ° C. or more. It is effective to heat up to the above. If the oxygen concentration at this time is less than 10,000 ppm, it is difficult to secure an oxidation amount of 0.1 g / m 2 or more.
  • the second heating in the heating furnace having an oxygen concentration of less than 1000 ppm has an effect of promoting the generation of (Fe, Mn) 2 SiO 4 by changing to SiO 2 in a high temperature, low oxygen concentration atmosphere. If the oxygen concentration at this time is 1000 ppm or more, the formation of (Fe, Mn) 2 SiO 4 does not occur, and as a result, the reduced iron coverage is reduced. Further, even when the steel sheet temperature is low, (Fe, Mn) 2 SiO 4 is not generated. Furthermore, when the steel plate temperature is low, there is a problem from the viewpoint of securing the oxidation amount. As described above, the second heating is performed until the steel plate temperature reaches 700 ° C.
  • the oxidation treatment is preferably performed at a steel plate temperature of 800 ° C. or lower.
  • the heating furnace used for the oxidation treatment is not particularly limited, but it is preferable to use a heating furnace equipped with a direct fire burner.
  • a direct fire burner heats a steel sheet by directly applying a burner flame, which is burned by mixing fuel such as coke oven gas (COG), which is a by-product gas of an ironworks, and air, to the surface of the steel sheet.
  • COG coke oven gas
  • the direct fire burner has an advantage that the furnace length of the heating furnace can be shortened and the line speed can be increased because the heating rate of the steel sheet is faster than that of the radiation type heating. Further, when the direct fire burner has an air ratio of 0.95 or higher and the ratio of air to fuel is increased, unburned oxygen remains in the flame, and the oxygen can promote oxidation of the steel sheet.
  • the oxygen concentration in the atmosphere can be controlled by adjusting the air ratio.
  • COG liquefied natural gas
  • LNG liquefied natural gas
  • a furnace such as an infrared heating furnace can be used for the oxidation treatment.
  • Annealing is an important requirement in the present invention, similar to the oxidation treatment described above, and by performing annealing under the following conditions, the coverage of reduced iron finally formed on the surface will be controlled, and Si Chemical conversion property can be improved about the high intensity
  • Annealing is dew point: ⁇ 25 ° C. or less, 1 to 10 volume% H 2 + balance N 2 atmosphere gas introduced into an annealing furnace soaking annealed in a furnace of 1 to 10 volume% H 2 + balance N 2 Gas.
  • H 2 % of the atmospheric gas is limited to 1 to 10% by volume is that if it is less than 1% by volume, H 2 is insufficient to reduce the Fe oxide on the surface of the steel sheet. Since the reduction of saturates, excess H 2 is wasted.
  • a dew point shall be -25 degrees C or less. When the dew point exceeds -25 ° C., the oxidation of H 2 O in the furnace by oxygen becomes remarkable, and the internal oxidation of Si occurs excessively.
  • the inside of the annealing furnace becomes a reducing atmosphere of Fe, and reduction of the Fe oxide generated by the oxidation treatment occurs. In this case, oxygen is separated from the Fe by reduction diffuses inside part steel by reacting with the Si, internal oxidation of SiO 2 occurs.
  • annealing is performed within the range of 750 degreeC to 900 degreeC from the viewpoint of material adjustment.
  • the soaking time is preferably 20 seconds to 180 seconds.
  • the process after annealing varies depending on the type and is appropriately performed.
  • the step after annealing is not particularly limited. For example, after annealing, it is cooled with gas, air / water (referred to as mist-like water mixed with air), water, etc., and tempered at 150 ° C. to 400 ° C.
  • the furnace used for soaking is not particularly limited, and a radiant tube type heating furnace or an infrared heating furnace can be used.
  • a steel slab having the chemical components shown in Table 1 was heated to 1100 to 1200 ° C. and then hot-rolled and wound at 530 ° C. Next, pickling and cold rolling were performed by a known method to produce a steel plate having a thickness of 1.5 mm.
  • This steel plate was subjected to an oxidation treatment under the conditions shown in Table 2 using a heating furnace equipped with a direct fire burner.
  • the direct flame burner used COG as the fuel, and adjusted the oxygen concentration in the atmosphere by changing the air ratio in various ways. Further, the amount of oxidation formed at this time was measured using a fluorescent X-ray analysis method. Moreover, the oxide containing Si formed with the iron oxide was analyzed by infrared spectroscopy.
  • the pickling conditions are as follows. Acid pickling: acid concentration 1 ⁇ 20%, liquid temperature 30 ⁇ 90 °C, pickling time 5 ⁇ 30sec Acid pickling: acid concentration 1 ⁇ 20%, liquid temperature 30 ⁇ 90 °C, pickling time 5 ⁇ 30sec
  • JIS No. 5 test piece JISZ2201 was taken from the direction perpendicular to the rolling direction and tested according to JISZ2241.
  • TS BH tensile strength in re-tension
  • TS 0 initial tensile strength
  • Workability was evaluated with a value of TS ⁇ El.
  • the reduced iron coverage was measured by observing the reflected electron image using a scanning electron microscope (SEM).
  • the acceleration voltage at this time was 5 kV, and arbitrary five visual fields were observed at 300 times.
  • the observed image was binarized by image processing, and the area ratio of the white portion was defined as the reduced iron coverage.
  • the evaluation method of chemical conversion property is described below.
  • a chemical conversion treatment liquid (Palbond L3080 (registered trademark)) manufactured by Nippon Parkerizing Co., Ltd. was used, and chemical conversion treatment was performed by the following method. After degreasing with a degreasing liquid Fine Cleaner (registered trademark) manufactured by Nihon Parkerizing Co., Ltd., washing with water, and then adjusting the surface for 30 seconds with surface conditioning solution Preparen Z (registered trademark) manufactured by Nihon Parkerizing Co., Ltd., a 43 ° C chemical conversion treatment solution After being immersed in (Palbond L3080) for 120 seconds, it was washed with water and dried with warm air.
  • a degreasing liquid Fine Cleaner registered trademark
  • surface conditioning solution Preparen Z (registered trademark) manufactured by Nihon Parkerizing Co., Ltd.
  • a 43 ° C chemical conversion treatment solution After being immersed in (Palbond L3080) for 120 seconds, it was washed with water and dried
  • the chemical conversion film was observed with a scanning electron microscope (SEM) at 5 magnifications at random, and the ske area ratio (hereinafter referred to as “ske area ratio”) of the chemical conversion film was measured by image processing.
  • SEM scanning electron microscope
  • ske area ratio the ske area ratio of the chemical conversion film was measured by image processing.
  • the following evaluation was made according to the scale area ratio. ⁇ and ⁇ are acceptable levels.
  • X Exceeding 10%
  • Table 2 The results obtained above are shown in Table 2 together with the production conditions.
  • the tensile strength (TS) is 590 MPa or more
  • the balance between strength and elongation (TS ⁇ El) is 18000 MPa ⁇ % or more
  • high strength, good workability, and good chemical conversion It can be seen that processability is obtained.
  • the chemical conversion processability is inferior in the comparative example.
  • a steel slab having the chemical components shown in Table 1 was heated to 1100 to 1200 ° C. and then hot-rolled and wound at 530 ° C. Next, pickling and cold rolling were performed by a known method to produce a steel plate having a thickness of 1.5 mm.
  • This steel plate was subjected to oxidation treatment under the conditions shown in Table 3 using an infrared heating furnace. The amount of oxidation and the oxide formed at this time were analyzed in the same manner as in Example 1. Then, it heat-annealed using the infrared heating furnace, and obtained the high intensity
  • the tensile strength (TS) is 590 MPa or more
  • TS ⁇ El is 18000 MPa ⁇ % or more and high strength, and good workability and good chemical conversion property are obtained. I understand.
  • the comparative example is inferior in either strength or chemical conversion treatment.
  • Steel having chemical components shown in Table 1 was hot-rolled by a known method and wound at a winding temperature shown in Table 4. Thereafter, pickling and cold rolling were performed to produce a steel sheet having a thickness of 1.5 mm.
  • the steel sheet was heated and annealed through a continuous annealing line equipped with a preheating furnace, a heating furnace equipped with a direct-fired burner, a radiant tube type soaking furnace, and a cooling furnace to obtain a high-strength cold-rolled steel sheet.
  • a heating furnace equipped with an open flame burner is divided into four zones, and each zone has the same length.
  • the direct flame burner used COG as the fuel, and adjusted the oxygen concentration in the atmosphere by changing the air ratio between the front stage (3 zones) and the rear stage (1 zone) of the heating furnace.
  • cooling after annealing was performed with water, air or gas. At that time, in the case of water cooling, after cooling to the water temperature, it was reheated to the holding temperature shown in Table 4 and held. Moreover, in the case of air-water and gas cooling, it cooled to the holding temperature shown in Table 4, and hold
  • the tensile strength (TS) is 590 MPa or more
  • TS ⁇ El is 18000 MPa ⁇ % or more, which is high strength, and good workability and good chemical conversion property are obtained. I understand.
  • the chemical conversion processability is inferior in the comparative example.
  • the high-strength cold-rolled steel sheet of the present invention has high strength and excellent chemical conversion properties, it can be used as a cold-rolled steel sheet for reducing the weight and strength of the automobile body itself.
  • the present invention can be applied in a wide range of fields such as home appliances and building materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

良好な化成処理性を有する引張強度590MPa以上の高強度冷延鋼板およびその製造方法を提供する。質量%で、C:0.05~0.3%、Si:0.6~3.0%、Mn:1.0~3.0%、P:0.1%以下、S:0.05%以下、Al:0.01~1%、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる。還元鉄が40%以上の被覆率で鋼板表面に存在する。製造するにあたっては、冷間圧延後に酸化処理を酸素濃度が1000ppm以上の雰囲気で鋼板を鋼板温度が630℃以上になるまで1回目の加熱を行い、次いで、酸素濃度が1000ppm未満の雰囲気で鋼板を鋼板温度が700℃以上になるまで2回目の加熱を行う。次いで、焼鈍は、露点:-25℃以下、1~10体積%H+残部Nガス雰囲気の炉で行う。

Description

高強度冷延鋼板およびその製造方法
 本発明は、リン酸塩処理等の化成処理を施したのち塗装して使用される自動車用高強度冷延鋼板およびその製造方法に関するもので、特に、Siの強化能を利用した引張強度590MPa以上で化成処理性に優れた高強度冷延鋼板およびその製造方法に関するものである。
 近年、自動車の軽量化の観点から、引張強度590MPa以上の高い強度を有する冷延鋼板の需要が高まっている。また、自動車用冷延鋼板は塗装をして使用されており、その塗装の前処理として、リン酸塩処理等の化成処理が施される。この冷延鋼板の化成処理は塗装後の耐食性を確保するための重要な処理のひとつである。
 冷延鋼板の強度を高めるためには、Siの添加が有効である。しかし、Siを添加した鋼板(高強度冷延鋼板)では、連続焼鈍の際に、Feの酸化が起こらない(即ち、Fe酸化物を還元する)還元性のN+Hガス雰囲気でも、Siは酸化し、鋼板最表面にSi酸化物(SiO)の薄膜を形成する。このSi酸化物(SiO)の薄膜は化成処理中の化成皮膜の生成反応を阻害するため、化成皮膜が生成されないミクロな領域(以下、「スケ」とも記す。)ができ、化成処理性が低下する。
 上記に対して、高強度冷延鋼板の化成処理性を改善する従来技術として、特許文献1には、酸化性雰囲気中で鋼板温度を350~650℃に到達せしめて鋼板表面に酸化膜を形成させ、しかる後に還元性雰囲気中で再結晶温度まで加熱し冷却する方法が記載されている。
 また、特許文献2には、質量%で、Siを0.1%以上、及び/又は、Mnを1.0%以上含有する冷延鋼板について、鋼板温度400℃以上で鉄の酸化雰囲気下で鋼板表面に酸化膜を形成させ、その後、鉄の還元雰囲気下で前記鋼板表面の酸化膜を還元する方法が記載されている。
 さらに、特許文献3には、Siを0.1wt%以上3.0wt%以下含有する高強度冷延鋼板表層の結晶粒界及び/又は結晶粒内に、化成処理性等の改良に有効な酸化物を有することを特徴とする高強度冷延鋼板が記載されている。特許文献4には、鋼板表面と直交する方向の断面を電子顕微鏡にて倍率50000倍以上で観察したときに、鋼板表面長さ10μmに占めるSi含有酸化物の割合が、任意に選択される5箇所の平均で80%以下となるようにするリン酸塩処理性に優れた鋼板が記載されている。特許文献5には、mass%で、C:0.1%超、Si:0.4%以上を含み、Si含有量(mass%)/Mn含有量(mass%)が0.4以上であり、引張強さが700MPa以上であって、鋼板表面におけるSiを主成分とするSi基酸化物の表面被覆率が20面積%以下で、かつ前記Si基酸化物の被覆領域において当該領域内に内接される最大円の直径が5μm以下とされた化成処理性に優れる高強度冷延鋼板が記載されている。特許文献6には、質量%で、C:0.01~0.3%、Si:0.2~3.0%、Mn:0.1~3.0%、Al:0.01~2.0%を含有し、引張強度が500MPa以上の高張力鋼板において、該鋼板表面の結晶粒の平均粒径が0.5μm以下であり、かつ該鋼板表面の幅10μm以上の観察領域を断面TEM観察用に薄片加工し、該薄片試料を10nm以下の酸化物が観察できる条件でTEM観察により測定した際に、酸化シリコンおよびマンガンシリケートの1種または2種をこれらの合計量で70質量%以上含有する酸化物種が、上記断面からみた粒界領域表面に対して30%以下存在し、該鋼板表面からの深さで0.1~1.0μmの範囲内に存在する上記酸化物種の粒径が0.1μm以下であることを特徴とする化成処理性に優れた高張力鋼板が記載されている。
特開昭55−145122号公報 特開2006−45615号公報 特許第3386657号公報 特許第3840392号公報 特開2004−323969号公報 特開2008−69445号公報
 しかしながら、特許文献1の製造方法では、酸化する方法により鋼板表面に形成される酸化膜の厚みに差があり、十分に酸化が起こらなかったり、酸化膜が厚くなりすぎて、あとの還元性雰囲気中での焼鈍において酸化膜の残留また剥離を生じ、表面性状が悪化する場合があった。実施例では、大気中で酸化する技術が記載されているが、大気中での酸化は酸化物が厚く生成してその後の還元が困難である、あるいは高水素濃度の還元雰囲気が必要である等の問題がある。
 特許文献2の製造方法は、400℃以上で空気比0.93以上1.10以下の直火バーナを用いて鋼板表面のFeを酸化したのち、Fe酸化物を還元するN+Hガス雰囲気で焼鈍することにより、化成処理性を低下させるSiOの最表面での酸化を抑制し、最表面にFeの還元層を形成させる方法である。特許文献2には、直火バーナでの加熱温度が具体的に記されていないが、Siを多く(0.6%以上)含有する場合には、Feより酸化しやすいSiの酸化量が多くなってFeの酸化が抑制されたり、Feの酸化そのものが少なすぎたりする。その結果、還元後の表面Fe還元層の形成が不十分であり、還元後の鋼板表面にSiOが存在し、化成皮膜のスケが発生する場合があった。
 特許文献3の鋼板は、Si酸化物を鋼板の内部に形成させ、表面のSi酸化物を無くすことにより、化成処理性を改善する鋼板である。製造方法は、鋼板を冷間圧延する前段階の熱間圧延時に、高温(実施例では620℃以上が良好)で巻取り、その熱を利用しSi酸化物を鋼板の内部に形成させるものであるが、巻き取られたコイルは外側の冷却速度は速く、内側の冷却速度は遅いため、鋼板長手方向の温度のばらつきが大きく、コイル全長で均一な表面品質を得るのが難しいという問題があった。
 特許文献4、5および6は、規定の仕方は異なるが、表面を覆うSi酸化物量の上限を規定した鋼板である。製造方法としては、連続焼鈍の昇温中または均熱中に還元性であるN+Hガス雰囲気の露点(あるいは(水蒸気分圧/水素分圧)の比。以下、水蒸気水素分圧比とも称する。)をある範囲に制御し、Siを鋼板内部に酸化させるものである。その露点範囲は特許文献4では−25℃以上、特許文献5では−20℃から0℃と記載されている。特許文献6では予熱、昇温、再結晶化のそれぞれの工程で水蒸気水素分圧比の範囲を規制する方法を採っている。これらの方法では、一般的には露点が−25℃以下になるN+Hガス雰囲気を、水蒸気や空気を導入する等により高めに制御する必要があるがこれは、操業制御性の観点から問題があり、その結果、良好な化成処理性が安定して得られなかった。また、露点を高く(あるいは水蒸気水素分圧比を高く)することは、雰囲気の酸化性を高めるため、炉壁や炉内のロールの劣化を速めたり、ピックアップ疵と呼ばれるスケール疵を鋼板表面に発生させる場合があった。
 本発明は、かかる事情に鑑み、均熱炉の還元性雰囲気の露点あるいは水蒸気水素分圧比を制御することなく、かつ、Siを0.6%以上含有しても、良好な化成処理性を有する引張強度590MPa以上の高強度冷延鋼板およびその製造方法を提供することを目的とする。
 本発明者らが課題解決のため鋭意検討した結果、以下の知見を得た。
 酸化処理後の酸化物の酸化量および最終的に表面に形成される還元鉄の被覆率を制御することで、Siを0.6%以上含有する高強度冷延鋼板について、化成処理性を改善することができる。
 また、上記を制御するために、酸化処理時の雰囲気の酸素濃度を制御することで化成処理性を改善するとともに、引張強度(以下、TSと称することがある。)590MPa以上、強度と伸びのバランス(以下、TS×Elと称することがある。)が18000MPa・%以上の化成処理性に優れた高強度冷延鋼板を製造することが出来る。
 本発明は、以上の知見に基づきなされたものであり、その要旨は以下のとおりである。[1]質量%で、C:0.05~0.3%、Si:0.6~3.0%、Mn:1.0~3.0%、P:0.1%以下、S:0.05%以下、Al:0.01~1%、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、還元鉄が40%以上の被覆率で鋼板表面に存在することを特徴とする高強度冷延鋼板。
[2]前記[1]において、さらに、質量%で、Cr:0.01~1%、Mo:0.01~1%、Ni:0.01~1%、Cu:0.01~1%の1種または2種以上を含有することを特徴とする高強度冷延鋼板。
[3]前記[1]または[2]において、さらに、質量%で、Ti:0.001~0.1%、Nb:0.001~0.1%、V:0.001~0.1%の1種又は2種以上を含有することを特徴とする高強度冷延鋼板。
[4]前記[1]~[3]のいずれかにおいて、さらに、質量%で、B:0.0003~0.005%を含有することを特徴とする高強度冷延鋼板。
[5]前記[1]~[4]のいずれかの一項に記載の成分組成からなる鋼を熱間圧延し、酸洗した後、冷間圧延し、次いで、酸化処理し、焼鈍するに際し、前記酸化処理は、酸素濃度が1000ppm以上の雰囲気で鋼板を鋼板温度が630℃以上になるまで1回目の加熱を行い、次いで、酸素濃度が1000ppm未満の雰囲気で鋼板を鋼板温度が700℃以上になるまで2回目の加熱を行い、前記焼鈍は、露点:−25℃以下、1~10体積%H+残部Nガス雰囲気の炉で均熱焼鈍することを特徴とする高強度冷延鋼板の製造方法。
[6]前記[5]において、前記酸化処理における前記2回目の加熱は、鋼板温度が800℃以下で行うことを特徴とする高強度冷延鋼板の製造方法。
[7]前記[5]または[6]において、前記熱間圧延後、520℃以上の巻取り温度で巻取ることを特徴とする高強度冷延鋼板の製造方法。
[8]前記[5]または[6]において、前記熱間圧延後、580℃以上の巻取り温度で巻取ることを特徴とする高強度冷延鋼板の製造方法。
 なお、本明細書において、鋼の成分を示す%は、すべて質量%である。また、本発明において、「高強度冷延鋼板」とは、引張強度TSが590MPa以上である冷延鋼板である。
 本発明によれば、引張強度が590MPa以上で、化成処理性に優れた高強度冷延鋼板が得られる。さらには、本発明の高強度冷延鋼板は、TS×Elが18000MPa・%以上と加工性にも優れている。
 また、本発明では、特に露点を高く制御することなしに、引張強度が590MPa以上の化成処理性に優れた高強度冷延鋼板が得られるので、操業制御性の点で有利であり、また炉壁や炉内のロールの劣化を早めたり、ピックアップと呼ばれるスケール疵を鋼板表面に発生させたりする問題も改善することができる。
 以下、本発明を詳細に説明する。
 まず、本発明が対象とする鋼板の化学成分の限定理由を説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味する。
 C:0.05~0.3%
 Cは、金属組織をフェライト−マルテンサイト、フェライト−ベイナイト−残留オーステナイトなどに制御し、所望する材質を得るための固溶強化能およびマルテンサイト生成能を有する。このような効果を得るためにはCは0.05%以上含有する必要がある。好ましくは0.10%以上を含有する。一方、Cを過度に添加すると、鋼板の加工性が著しく低下することから、上限は0.3%とする。
 Si:0.6~3.0%
 Siは鋼板の加工性を低下させずに強度を上げる元素である。このような効果を得るためにはSiは0.6%以上含有する必要がある。0.6%未満では、加工性すなわち、TS×Elが劣化する。好ましくは1.10%超である。ただし、3.0%を超えると鋼板の脆化が著しく、加工性が劣化し、また化成処理性が劣化するため、上限は3.0%とする。
 Mn:1.0~3.0%
 Mnは、金属組織をフェライト−マルテンサイト、フェライト−ベイナイト−残留オーステナイトなどに制御し、所望する材質を得るための固溶強化能およびマルテンサイト生成能を有する。このような効果を得るためにはMnは1.0%以上含有する必要がある。一方、Mnを過度に添加すると、鋼板の加工性が著しく低下することから、上限は3.0%以下とする。
 P:0.1%以下
 Pは、鋼の強化に有効な元素であるが、0.1%を超えて過剰に添加すると、粒界偏析により脆化を引き起こし、耐衝撃性を劣化させると共に耐食性を劣化させる。よって、0.1%以下とする。好ましくは0.015%以下である。
 S:0.05%以下
 Sは、MnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となると共に耐食性を劣化させる。できるだけ低減することが好ましく、0.05%以下とする。好ましくは0.003%以下である。
 Al:0.01~1%
 Alは脱酸材として添加される。0.01%未満では、脱酸材としての効果が不十分である。一方、1%を超えると、その効果が飽和し、不経済となる。したがって、Alは0.01%以上1%以下とする。
 N:0.01%以下
 Nは、鋼の耐時効性を最も大きく劣化させる元素である。できるだけ低減することが好ましく、0.01%以下とする。
 残部はFeおよび不可避的不純物である。
 上記成分組成に加え、強度と延性のバランスを向上させるためにCr:0.01~1%、Mo:0.01~1%、Ni:0.01~1%、Cu:0.01~1%の1種または2種以上を含有することができる。
 また、鋼板の強度を上げるため、Ti:0.001~0.1%、Nb:0.001~0.1%、V:0.001~0.1%の1種又は2種以上を含有することができる。
 さらに、素材の強度および塗装焼付け後の強度を上げるため、Bを0.0003~0.005%含有することができる。
 次に酸化処理後の酸化物およびその酸化量、焼鈍後に最終的に鋼板表面に形成される還元鉄の被覆率について説明する。
 酸化処理を行った後に、焼鈍を行った場合、酸化処理によって形成された鉄酸化物が焼鈍工程にて還元され、還元鉄として冷延鋼板を被覆する。本願における還元鉄とは、このように形成されたものを称する。このように形成される還元鉄は、Siなどの化成処理性を阻害する元素の含有率が低い。例えば、Siは鋼板中のSi濃度よりも還元鉄に含有されるSi濃度の方が小さい。そのため、前記還元鉄で鋼板表面を被覆することは化成処理性を向上させる手段として非常に有効となる。この焼鈍後に形成される還元鉄が40%以上の被覆率で冷延鋼板の表面に存在する場合に、良好な化成処理性を得ることができる。
 還元鉄の被覆率は、走査型電子顕微鏡(SEM)を用い、反射電子像を観察することで測定することが可能である。反射電子像は、原子番号の大きい元素ほど白いコントラストで観察できる特徴があるので、還元鉄に覆われている部分は白いコントラストで観察される。また、還元鉄で覆われていない部分については、Siを0.6%以上含有する高強度冷延鋼板では、Siなどが表面に酸化物として形成されるために、黒いコントラストとして観察される。よって、白いコントラスト部分の面積率を画像処理によって求めることで、還元鉄の被覆率を求めることが可能である。
 また、還元鉄を冷延鋼板表面に40%以上の被覆率で形成するためには、酸化処理後に形成される冷延鋼板表面の酸化物の酸化量が重要である。酸化物が鋼板表面に酸化量として0.1g/m以上形成されることで、還元鉄の被覆率を40%以上とすることができる。0.1g/m未満の酸化量では、還元鉄を40%以上形成させることができず、化成処理性が劣ることになる。なお、上記酸化量とは、酸化処理後の鋼板表面の酸素量である。
 なお、酸化量は、例えば、標準物質を用いた蛍光X線元素分析法などで測定することができる。
 また、形成される鉄の酸化物の種類については、特に限定しないが、ウスタイト(FeO)、マグネタイト(Fe)や、ヘマタイト(Fe)が主に形成される。
 更に、Siを0.6%以上含有する本発明の高強度冷延鋼板の場合では、Siを含んだ酸化物が上記鉄の酸化物と同時に形成される。このSiを含んだ酸化物は主にSiOおよび/または(Fe、Mn)SiOである。
 メカニズムは明確になっていないが、酸化処理後に、0.1g/m以上の酸化量が得られ、かつ(Fe、Mn)SiOが生成された場合に、還元鉄が40%以上の被覆率で鋼板表面に形成されることが分かった。Siを含んだ酸化物としてSiOしか形成していない場合には、還元鉄の被覆率は低くなり、40%以上の被覆率を得ることができない。しかし、Siを含んだ酸化物として(Fe、Mn)SiOの形で生成していれば、同時にある程度のSiOが存在していても還元鉄の被覆率は高くなり、40%以上の被覆率を得ることが可能である。
 これらの酸化物の存在状態を判断する方法は特に限定しないが、赤外分光法(IR)が有効である。SiOの特徴である1230cm−1付近、および(Fe、Mn)SiOの特徴である1000cm−1付近に現れるピークを確認することで酸化物の存在状態を判断することができる。
 次に本発明の高強度冷延鋼板の製造方法について説明する。
 上記成分組成の鋼を熱間圧延し、引き続き酸洗した後、冷間圧延を施し、酸化処理を施した後に焼鈍する。酸化処理前までの冷延鋼板の製造方法は、特に限定されず、公知の方法を用いることが出来る。また、前記酸化処理は、酸素濃度が1000ppm以上の雰囲気で鋼板を鋼板温度が630℃以上になるまで1回目の加熱を行い、次いで、酸素濃度が1000ppm未満の雰囲気で鋼板を鋼板温度が700℃以上になるまで2回目の加熱を行い、前記焼鈍は、露点:−25℃以下、1~10体積%H+残部Nガス雰囲気の炉で均熱焼鈍することとする。
 以下、詳細に説明する。
 熱間圧延は通常行われる範囲にて行うことができる。
 熱間圧延後の巻取りは、520℃以上の温度で行うことが好ましい。より好ましくは580℃以上である。
 本発明では、酸化処理後に鋼板表面に形成する酸化物として(Fe、Mn)SiOが化成処理性を改善させるうえで重要である。そこで、巻取り温度と酸化処理後の(Fe、Mn)SiOの生成状況を調査したところ、巻取り温度を520℃以上として巻取り、冷間圧延した場合では、酸化処理時に(Fe、Mn)SiOの生成が起こりやすくなり、化成処理性が改善されることが分かった。このメカニズムは明確ではないが、巻取り温度を高くすることによって、鋼板表面の酸化が促進され、特に易酸化性元素であるSiの酸化が促進される。冷間圧延前にはそれらの酸化物は除去されるので、結果として鋼板表面の固溶Si濃度が低下して、酸化処理時にSiOよりも(Fe、Mn)SiOの生成が起こりやすくなると考えられる。巻取り後に酸化が促進されるという点では、より好ましくは580℃以上である。
 次いで、酸洗、冷間圧延を施す。
 次いで、酸化処理を行う。この酸化処理は本発明において重要な要件であり、下記条件で酸化処理を行うことで、酸化処理後の酸化物の酸化量および最終的に表面に形成される還元鉄の被覆率を制御することになり、Siを0.6%以上含有する高強度冷延鋼板について、化成処理性を改善することができる。
 酸化処理では、酸素濃度が1000ppm以上の雰囲気で鋼板を鋼板温度が630℃以上になるまで1回目の加熱を行い、次いで、酸素濃度が1000ppm未満の雰囲気で鋼板を鋼板温度が700℃以上になるまで2回目の加熱を行う。これにより、鋼板表面には酸化量として0.1g/m以上の酸化物が形成され、更に鉄酸化物と共に(Fe、Mn)SiOを生成させることが出来る。
 酸素濃度が1000ppm以上の雰囲気の加熱炉での1回目の加熱は高酸素濃度雰囲気で酸化反応を促進しSiOを形成させる効果があり、鋼板温度が630℃以上になるまで、望ましくは650℃以上まで加熱することが有効である。
 この時の酸素濃度が10000ppm未満では、酸化量を0.1g/m以上確保することが困難である。
 また、酸素濃度が1000ppm未満の雰囲気の加熱炉での2回目の加熱は、高温、低酸素濃度雰囲気でSiOに変わり(Fe、Mn)SiOの生成を促進させる効果がある。この時の酸素濃度が1000ppm以上では、(Fe、Mn)SiOの生成が起こらずに、結果として還元鉄の被覆率が低下してしまうことになる。また、鋼板温度が低い場合にも(Fe、Mn)SiOの生成が起こらない。さらに、鋼板温度が低い場合は、酸化量を確保する点からも問題がある。以上より、酸素濃度が1000ppm未満の雰囲気で鋼板を鋼板温度が700℃以上になるまで2回目の加熱は行う。
 しかし、過度に酸化させると、次の焼鈍工程での還元性雰囲気炉でFe酸化物が剥離し、ピックアップの原因となるので、上記酸化処理は鋼板温度が800℃以下で行うことが好ましい。
 酸化処理に用いる加熱炉は特に限定されないが、直火バーナーを備えた加熱炉を使用することが好ましい。直火バーナとは、製鉄所の副生ガスであるコークス炉ガス(COG)等の燃料と空気を混ぜて燃焼させたバーナ火炎を直接鋼板表面に当てて鋼板を加熱するものである。直火バーナは、輻射方式の加熱よりも鋼板の昇温速度が速いため、加熱炉の炉長を短くしたり、ラインスピードを速く出来る利点がある。さらに、直火バーナは空気比を0.95以上とし、燃料に対する空気の割合を多くすると、未燃の酸素が火炎中に残存し、その酸素で鋼板の酸化を促進することが可能となる。そのため、空気比を調整すれば、雰囲気の酸素濃度を制御することが可能である。また、直火バーナの燃料は、COG、液化天然ガス(LNG)等を使用できる。その他にも酸化処理には赤外線加熱炉などの炉を使用することも可能である。
 鋼板に上記のような酸化処理を施した後、焼鈍する。この焼鈍は上記酸化処理と同様に、本発明において重要な要件であり、下記条件で焼鈍を行うことで、最終的に表面に形成される還元鉄の被覆率を制御することになり、Siを0.6%以上含有する高強度冷延鋼板について、化成処理性を改善することができる。
 焼鈍は、露点:−25℃以下、1~10体積%H+残部Nガス雰囲気の炉で均熱焼鈍する焼鈍炉に導入する雰囲気ガスは、1~10体積%H+残部Nガスである。雰囲気ガスのH%を1~10体積%に限定したのは、1体積%未満では鋼板表面のFe酸化物を還元するのにHが不足し、10体積%を超えてもFe酸化物の還元は飽和するため、過分のHが無駄になる。
 露点は−25℃以下とする。露点が−25℃超になると炉内のHOの酸素による酸化が著しくなりSiの内部酸化が過度に起こる。
 以上により、焼鈍炉内は、Feの還元性雰囲気となり、酸化処理で生成したFe酸化物の還元が起こる。このとき、還元によりFeと分離された酸素が、一部鋼板内部に拡散し、Siと反応することにより、SiOの内部酸化が起こる。しかし、Siが鋼板内部で酸化すると、化成処理反応が起こる鋼板最表面のSi酸化物が減少するため、鋼板最表面の化成処理性は良好となる。
 さらに、焼鈍は、材質調整の観点から、鋼板温度が750℃から900℃の範囲内で行われることが好ましい。均熱時間は20秒から180秒が好ましい。
 焼鈍後の工程は、品種によって様々であり、適宜行われる。本発明では焼鈍後の工程は特に限定しない。例えば、焼鈍後、ガス、気水(空気と混合されたミスト状の水をいう。)、水等により冷却され、必要に応じ、150℃から400℃の焼き戻しを施す。冷却後、あるいは焼き戻し後に、表面性状を調整するために、塩酸や硫酸などを用いた酸洗を行ってもよい。更に均熱焼鈍に用いる炉も特に限定されずに、ラジアントチューブ型の加熱炉や赤外加熱炉などを使用することが可能である。
 表1に示す化学成分を有する鋼のスラブを1100~1200℃に加熱した後に熱間圧延を施し、530℃で巻き取った。次いで、公知の方法により酸洗、冷間圧延して厚さ1.5mmの鋼板を製造した。この鋼板を、直火バーナを備える加熱炉を用いて表2に示す条件で酸化処理を行った。直火バーナは燃料にCOGを使用し、空気比を種々変更することで雰囲気の酸素濃度を調整した。また、このときに形成された酸化量を、蛍光X線分析法を用いて測定した。また、赤外分光法によって、鉄酸化物とともに形成されたSiを含む酸化物の分析を行った。(Fe、Mn)SiOの特徴である1000cm−1付近にピークの有無によって(Fe、Mn)SiOの存在を判断した。その後、赤外加熱炉を用いて表2に示す条件で加熱焼鈍して高強度冷延鋼板を得た。焼鈍後の冷却は表2に示すとおり、水、気水またはガスで冷却した。その際、水冷却の場合は水温まで冷却後、表2に示す保持温度まで再加熱し、保持した。また、気水、ガス冷却の場合は、表2に示す保持温度まで冷却し、そのまま保持した。さらに、表2に示す酸で酸洗した。
 酸洗条件は下記である。
塩酸酸洗:酸濃度1~20%、液温度30~90℃、酸洗時間5~30sec
硫酸酸洗:酸濃度1~20%、液温度30~90℃、酸洗時間5~30sec
Figure JPOXMLDOC01-appb-T000001
 以上により得られた高強度冷延鋼板に対して、機械的特性、還元鉄の被覆率および化成処理性を下記の方法により評価した。
 機械的特性は、JIS5号試験片(JISZ2201)を圧延方向と直角方向から採取し、JISZ2241に準拠して試験した。塗装焼付け処理後の強度として、5%予歪後、170℃で20分間保持した後、再引張における引張強さ(TSBH)を調査し、初期引張強さ(TS)と比較し、その差をΔTS(TSBH−TS)と定義した。加工性はTS×Elの値で評価した。
 還元鉄の被覆率は、走査型電子顕微鏡(SEM)を用いて、反射電子像の観察によって行った。このときの加速電圧は5kVで、300倍で任意の5視野を観察した。観察された画像を画像処理によって2値化して、白色の部分の面積率を還元鉄の被覆率とした。
 化成処理性の評価方法を以下に記載する。
 化成処理液は、日本パーカライジング社製の化成処理液(パルボンドL3080(登録商標))を用い、下記方法で化成処理を施した。
 日本パーカライジング社製の脱脂液ファインクリーナ(登録商標)で脱脂したのち、水洗し、次に日本パーカライジング社製の表面調整液プレパレンZ(登録商標)で30秒間表面調整行い、43℃の化成処理液(パルボンドL3080)に120秒間浸漬した後、水洗し、温風で乾燥した。
 化成皮膜を走査型電子顕微鏡(SEM)で、倍率500倍で無作為に5視野を観察し、化成皮膜のスケ面積率(以下、「スケ面積率」と記す。)を画像処理により測定し、スケ面積率によって以下の評価をした。◎、○が合格レベルである。
 ◎:5%以下
 ○:5%超10%以下
 ×:10%超え
 以上により得られた結果を、製造条件と併せて、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、本発明例では、引張強さ(TS)が590MPa以上、強度と伸びのバランス(TS×El)が18000MPa・%以上と、高強度であり、良好な加工性と、良好な化成処理性が得られているのがわかる。一方、比較例は化成処理性が劣っている。
 表1に示す化学成分を有する鋼のスラブを1100~1200℃に加熱した後に熱間圧延を施し、530℃で巻き取った。次いで、公知の方法により酸洗、冷間圧延を行い厚さ1.5mmの鋼板を製造した。この鋼板を、赤外加熱炉を用いて表3に示す条件で酸化処理を行った。このときに形成された酸化量と酸化物の分析を実施例1と同様の方法で行った。その後、赤外加熱炉を用いて加熱焼鈍して高強度冷延鋼板を得た。焼鈍後の冷却は表3に示すとおり、水、気水またはガスで冷却した。その際、水冷却の場合は水温まで冷却後、表3に示す保持温度まで再加熱し、保持した。また、気水、ガス冷却の場合は、表3に示す保持温度まで冷却し、そのまま保持した。さらに、表3に示す酸液で酸洗処理を行った。
 以上により得られた高強度冷延鋼板に対して、機械的特性、還元鉄の被覆率および化成処理性を実施例1と同様の方法にて評価した。
 得られた結果を製造条件と併せて表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、本発明例では、引張強さ(TS)が590MPa以上、TS×Elが18000MPa・%以上と、高強度であり、良好な加工性と、良好な化成処理性が得られているのがわかる。
 一方、比較例は強度、化成処理性のいずれかが劣っている。
 表1に示す化学成分を有する鋼を公知の方法により熱間圧延し、表4に示す巻取り温度で巻取った。その後、酸洗、冷間圧延を施し厚さ1.5mmの鋼板を製造した。この鋼板を、予熱炉、直火バーナを備える加熱炉、ラジアントチューブタイプの均熱炉、冷却炉を備える連続焼鈍ラインに通して加熱焼鈍して高強度冷延鋼板を得た。直火バーナを備える加熱炉は4ゾーンに分かれ、各ゾーン長は同じである。直火バーナは燃料にCOGを使用し、加熱炉の前段(3ゾーン)と後段(1ゾーン)の空気比を種々変更することで雰囲気の酸素濃度を調整した。焼鈍後の冷却は表4に示すとおり、水、気水またはガスで冷却した。その際、水冷却の場合は水温まで冷却後、表4に示す保持温度まで再加熱し、保持した。また、気水、ガス冷却の場合は、表4に示す保持温度まで冷却し、そのまま保持した。さらに、表4に示す酸液で酸洗した。
 以上により得られた高強度冷延鋼板に対して、機械的特性、還元鉄の被覆率および化成処理性を実施例1と同様の方法にて評価した。
 得られた結果を製造条件と併せて表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4より、本発明例では、引張強さ(TS)が590MPa以上、TS×Elが18000MPa・%以上と、高強度であり、良好な加工性と、良好な化成処理性が得られているのがわかる。
 一方、比較例は、化成処理性が劣っている。
 本発明の高強度冷延鋼板は、高強度であり、化成処理性に優れるため、自動車の車体そのものを軽量化かつ高強度化するための冷延鋼板として利用することができる。また、自動車以外にも、家電、建材の分野等、広範な分野で適用できる。

Claims (8)

  1.  質量%で、C:0.05~0.3%、Si:0.6~3.0%、Mn:1.0~3.0%、P:0.1%以下、S:0.05%以下、Al:0.01~1%、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、還元鉄が40%以上の被覆率で鋼板表面に存在することを特徴とする高強度冷延鋼板。
  2.  さらに、質量%で、Cr:0.01~1%、Mo:0.01~1%、Ni:0.01~1%、Cu:0.01~1%の1種または2種以上を含有することを特徴とする請求項1に記載の高強度冷延鋼板。
  3.  さらに、質量%で、Ti:0.001~0.1%、Nb:0.001~0.1%、V:0.001~0.1%の1種又は2種以上を含有することを特徴とする請求項1または2に記載の高強度冷延鋼板。
  4.  さらに、質量%で、B:0.0003~0.005%を含有することを特徴とする請求項1~3のいずれかの一項に記載の高強度冷延鋼板。
  5.  請求項1~4のいずれかの一項に記載の成分組成からなる鋼を熱間圧延し、酸洗した後、冷間圧延し、次いで、酸化処理し、焼鈍するに際し、前記酸化処理は、酸素濃度が1000ppm以上の雰囲気で鋼板を鋼板温度が630℃以上になるまで1回目の加熱を行い、次いで、酸素濃度が1000ppm未満の雰囲気で鋼板を鋼板温度が700℃以上になるまで2回目の加熱を行い、前記焼鈍は、露点:−25℃以下、1~10体積%H+残部Nガス雰囲気の炉で均熱焼鈍することを特徴とする高強度冷延鋼板の製造方法。
  6.  前記酸化処理における前記2回目の加熱は、鋼板温度が800℃以下で行うことを特徴とする請求項5に記載の高強度冷延鋼板の製造方法。
  7.  前記熱間圧延後、520℃以上の巻取り温度で巻取ることを特徴とする請求項5または6に記載の高強度冷延鋼板の製造方法。
  8.  前記熱間圧延後、580℃以上の巻取り温度で巻取ることを特徴とする請求項5または6に記載の高強度冷延鋼板の製造方法。
PCT/JP2010/073877 2009-12-25 2010-12-24 高強度冷延鋼板およびその製造方法 WO2011078412A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10839628.4A EP2518181B1 (en) 2009-12-25 2010-12-24 High-strength cold rolled steel sheet and method for producing same
CN201080059090.1A CN102666923B (zh) 2009-12-25 2010-12-24 高强度冷轧钢板及其制造方法
US13/517,417 US9090952B2 (en) 2009-12-25 2010-12-24 High-strength cold-rolled steel sheet and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-293919 2009-12-25
JP2009293919A JP5614035B2 (ja) 2009-12-25 2009-12-25 高強度冷延鋼板の製造方法

Publications (1)

Publication Number Publication Date
WO2011078412A1 true WO2011078412A1 (ja) 2011-06-30

Family

ID=44195922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073877 WO2011078412A1 (ja) 2009-12-25 2010-12-24 高強度冷延鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US9090952B2 (ja)
EP (1) EP2518181B1 (ja)
JP (1) JP5614035B2 (ja)
KR (1) KR20120092704A (ja)
CN (1) CN102666923B (ja)
TW (1) TWI426139B (ja)
WO (1) WO2011078412A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104136644A (zh) * 2012-02-28 2014-11-05 杰富意钢铁株式会社 含Si高强度冷轧钢板及其制造方法以及汽车构件
CN114472557A (zh) * 2022-01-27 2022-05-13 本钢板材股份有限公司 一种预防热轧酸洗板铁皮缺陷的加热方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5779847B2 (ja) * 2009-07-29 2015-09-16 Jfeスチール株式会社 化成処理性に優れた高強度冷延鋼板の製造方法
JP5614035B2 (ja) * 2009-12-25 2014-10-29 Jfeスチール株式会社 高強度冷延鋼板の製造方法
JP5609494B2 (ja) 2010-09-29 2014-10-22 Jfeスチール株式会社 高強度鋼板およびその製造方法
KR20130049821A (ko) 2010-09-30 2013-05-14 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
JP5966528B2 (ja) * 2011-06-07 2016-08-10 Jfeスチール株式会社 めっき密着性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5990892B2 (ja) * 2011-11-10 2016-09-14 Jfeスチール株式会社 化成処理性に優れた高Si冷延鋼板の製造方法
JP2013256713A (ja) * 2012-05-14 2013-12-26 Jfe Steel Corp 化成処理性に優れた高強度冷延鋼板及びその製造方法
JP6139943B2 (ja) * 2013-03-29 2017-05-31 株式会社神戸製鋼所 酸洗い性に優れた軟磁性部品用鋼材、および耐食性と磁気特性に優れた軟磁性部品とその製造方法
WO2015001367A1 (en) * 2013-07-04 2015-01-08 Arcelormittal Investigación Y Desarrollo Sl Cold rolled steel sheet, method of manufacturing and vehicle
JP6043256B2 (ja) * 2013-09-03 2016-12-14 株式会社神戸製鋼所 化成処理性に優れた冷間圧延鋼板の製造方法
KR101910875B1 (ko) * 2013-11-07 2018-10-23 제이에프이 스틸 가부시키가이샤 고강도 강판의 마찰 교반 접합 방법
JP2015200013A (ja) 2014-03-31 2015-11-12 株式会社神戸製鋼所 延性、伸びフランジ性、および溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板
JP2015200012A (ja) 2014-03-31 2015-11-12 株式会社神戸製鋼所 延性、伸びフランジ性、および溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板
JP6528851B2 (ja) * 2015-09-25 2019-06-12 日本製鉄株式会社 鋼板
CN113122772A (zh) * 2016-03-31 2021-07-16 杰富意钢铁株式会社 薄钢板和镀覆钢板、以及薄钢板和镀覆钢板的制造方法
KR101830527B1 (ko) 2016-09-26 2018-02-21 주식회사 포스코 내식성 및 점용접성이 우수한 열간성형용 냉연강판, 열간성형부재 및 그들의 제조방법
US11898230B2 (en) 2018-08-22 2024-02-13 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
US20210395895A1 (en) * 2018-11-09 2021-12-23 Jfe Steel Corporation Cold rolled steel sheet for zirconium-based chemical conversion treatment, method for producing same, zirconium-based chemical conversion-treated steel sheet, and method for producing same
CN111974797B (zh) * 2020-07-24 2022-06-17 柳州钢铁股份有限公司 表面氧化铁皮厚度达12μm以上的盘条钢筋

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145122A (en) 1979-04-28 1980-11-12 Sumitomo Metal Ind Ltd Manufacture of high-tension cold rolled steel sheet excellent in chemical treatment property
JP3386657B2 (ja) 1996-05-20 2003-03-17 川崎製鉄株式会社 高強度冷延鋼板
JP2004323969A (ja) 2003-04-10 2004-11-18 Kobe Steel Ltd 化成処理性に優れる高強度冷延鋼板
JP2006045615A (ja) 2004-08-04 2006-02-16 Jfe Steel Kk 冷延鋼板の製造方法
JP2006265586A (ja) * 2005-03-22 2006-10-05 Nippon Steel Corp 塗装後の耐食性及び美観に優れた熱延鋼材
JP3840392B2 (ja) 2001-10-09 2006-11-01 株式会社神戸製鋼所 りん酸塩処理性に優れた鋼板
JP2007084868A (ja) * 2005-09-21 2007-04-05 Jfe Steel Kk 冷延鋼板およびその製造方法
JP2008069445A (ja) 2006-08-18 2008-03-27 Nippon Steel Corp 化成処理性に優れた高張力鋼板
JP2008266778A (ja) * 2007-03-22 2008-11-06 Jfe Steel Kk 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1137394A (en) * 1979-12-05 1982-12-14 Hajime Nitto Process for continuously annealing a cold-rolled low carbon steel strip
DE102006005063A1 (de) * 2006-02-03 2007-08-09 Linde Ag Verfahren zur Wärmebehandlung von Stahlbändern
JP4926517B2 (ja) * 2006-03-28 2012-05-09 新日本製鐵株式会社 塗装後耐食性に優れた高強度冷延鋼板の製造方法
EP2009127A1 (en) * 2007-06-29 2008-12-31 ArcelorMittal France Process for manufacturing a galvanized or a galvannealed steel sheet by DFF regulation
JP5614035B2 (ja) * 2009-12-25 2014-10-29 Jfeスチール株式会社 高強度冷延鋼板の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145122A (en) 1979-04-28 1980-11-12 Sumitomo Metal Ind Ltd Manufacture of high-tension cold rolled steel sheet excellent in chemical treatment property
JP3386657B2 (ja) 1996-05-20 2003-03-17 川崎製鉄株式会社 高強度冷延鋼板
JP3840392B2 (ja) 2001-10-09 2006-11-01 株式会社神戸製鋼所 りん酸塩処理性に優れた鋼板
JP2004323969A (ja) 2003-04-10 2004-11-18 Kobe Steel Ltd 化成処理性に優れる高強度冷延鋼板
JP2006045615A (ja) 2004-08-04 2006-02-16 Jfe Steel Kk 冷延鋼板の製造方法
JP2006265586A (ja) * 2005-03-22 2006-10-05 Nippon Steel Corp 塗装後の耐食性及び美観に優れた熱延鋼材
JP2007084868A (ja) * 2005-09-21 2007-04-05 Jfe Steel Kk 冷延鋼板およびその製造方法
JP2008069445A (ja) 2006-08-18 2008-03-27 Nippon Steel Corp 化成処理性に優れた高張力鋼板
JP2008266778A (ja) * 2007-03-22 2008-11-06 Jfe Steel Kk 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104136644A (zh) * 2012-02-28 2014-11-05 杰富意钢铁株式会社 含Si高强度冷轧钢板及其制造方法以及汽车构件
CN114472557A (zh) * 2022-01-27 2022-05-13 本钢板材股份有限公司 一种预防热轧酸洗板铁皮缺陷的加热方法

Also Published As

Publication number Publication date
EP2518181B1 (en) 2019-10-02
TW201134955A (en) 2011-10-16
EP2518181A4 (en) 2017-07-26
EP2518181A1 (en) 2012-10-31
KR20120092704A (ko) 2012-08-21
JP5614035B2 (ja) 2014-10-29
US9090952B2 (en) 2015-07-28
US20120325376A1 (en) 2012-12-27
CN102666923B (zh) 2015-03-11
JP2011132576A (ja) 2011-07-07
CN102666923A (zh) 2012-09-12
TWI426139B (zh) 2014-02-11

Similar Documents

Publication Publication Date Title
JP5614035B2 (ja) 高強度冷延鋼板の製造方法
JP5664716B2 (ja) 化成処理性に優れた高Si冷延鋼板の製造方法
JP5779847B2 (ja) 化成処理性に優れた高強度冷延鋼板の製造方法
JP5083354B2 (ja) 化成処理性に優れた高Si冷延鋼板の製造方法
JP5552863B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2012169653A1 (ja) めっき密着性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2017145322A1 (ja) 鋼板の製造方法及び鋼板の連続焼鈍装置
JP5552859B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5552864B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5593771B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP5593770B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP5990892B2 (ja) 化成処理性に優れた高Si冷延鋼板の製造方法
JP5672746B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5552861B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6043256B2 (ja) 化成処理性に優れた冷間圧延鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059090.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1470/KOLNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010839628

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127018163

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13517417

Country of ref document: US