WO2011078257A1 - バイオセンサ - Google Patents

バイオセンサ Download PDF

Info

Publication number
WO2011078257A1
WO2011078257A1 PCT/JP2010/073196 JP2010073196W WO2011078257A1 WO 2011078257 A1 WO2011078257 A1 WO 2011078257A1 JP 2010073196 W JP2010073196 W JP 2010073196W WO 2011078257 A1 WO2011078257 A1 WO 2011078257A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
electrode
biosensor
surfactant
soluble polymer
Prior art date
Application number
PCT/JP2010/073196
Other languages
English (en)
French (fr)
Inventor
満洋 森田
勝也 白崎
勇記 赤坂
Original Assignee
ニプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニプロ株式会社 filed Critical ニプロ株式会社
Publication of WO2011078257A1 publication Critical patent/WO2011078257A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels

Definitions

  • the present invention relates to a biosensor in which each component of a reagent including an enzyme, a mediator, a water-soluble polymer, a hemolytic agent, a surfactant and a buffer solution is applied to the first electrode or the second electrode.
  • Insulin is known as a drug that controls blood glucose levels and is administered to diabetic patients as a therapeutic agent for diabetes.
  • the need to administer insulin is determined based on the blood glucose level of the diabetic patient. For this reason, it is important for a diabetic patient to grasp a blood glucose level.
  • the blood glucose level is the glucose concentration in the blood.
  • a simple blood glucose measuring device has been developed for the purpose of allowing a diabetic patient to easily measure his blood glucose level.
  • the biosensor has an electrode on which an enzyme that reacts with blood sugar is fixed.
  • Glucose oxidase hereinafter sometimes abbreviated as “GOD”
  • GDH glucose dehydrogenase
  • a biosensor an electrode on which an enzyme is immobilized is called a working electrode, and an electrode that supplies electrons into a sample is called a counter electrode.
  • the working electrode When blood, which is a sample, is introduced into the biosensor and the working electrode GOD reacts with glucose in the blood, glucose is decomposed into gluconic acid and hydrogen peroxide, and the hydrogen peroxide is decomposed into water and electrons. The electrons generated in this way are transmitted to the working electrode. On the other hand, electrons are supplied from the counter electrode into the blood. In this way, a current flows between the working electrode and the counter electrode due to the reaction between GOD and glucose. Then, based on the flowing current value, the glucose concentration in the blood, that is, the blood glucose level is calculated. In addition, a substance that transmits electrons may be fixed to the working electrode. This material is referred to as an electron mediator. Examples of the electron mediator include organic compounds such as potassium ferricyanide, hexaammineruthenium and quinone derivatives, or organic-metal complexes.
  • the electron mediator include organic compounds such as potassium ferricyanide, hexaammineruthenium and quinone derivatives, or
  • an enzyme such as GOD or GDH is fixed by being applied to an electrode in an aqueous solution.
  • a dipping method, a screen printing method, an offset printing method, an ink jet printing method, and the like are known (Patent Documents 6 to 8).
  • a cationic surfactant fatty acid
  • an aqueous solution such as an enzyme applied to an electrode
  • a cationic surfactant red blood cells (hematocrit value) in the blood sample are hemolyzed, and even in a blood sample with relatively high viscosity, the error is reduced and the blood glucose level is rapidly increased. There is an advantage that it is measured.
  • the space formed by the spacer is the sample space.
  • the sample space is opened outside the biosensor.
  • blood is guided to the sample space by capillary action. Therefore, the time from when the opening is exposed to blood until the sample space is filled with blood depends on capillary action. This time is desirably as early as possible from the viewpoint of realizing quick measurement.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to quickly move a sample to a sample space in a biosensor in which a sample space is formed by a first surface and a second surface arranged to face each other. It is to provide means to be satisfied.
  • the present invention is a biosensor including a first electrode, a second electrode, a sample space into which a specimen is introduced, and a reagent.
  • the sample space is formed between a first surface including at least a part of the first electrode and a second surface disposed to face the first surface.
  • the reagent includes an enzyme, a mediator, a water-soluble polymer, a hemolytic agent, a surfactant, and a buffer solution. Each component of the reagent is applied in the following mode (A) or (B).
  • any one component selected from the group consisting of a water-soluble polymer, a hemolytic agent, and a surfactant is applied to one of the first surface and the second surface, and the other Is applied to the other of the first surface and the second surface.
  • a water-soluble polymer, a hemolytic agent, and a surfactant are applied to the first surface and the second surface.
  • the biosensor is for electrochemically detecting a substance to be detected in a specimen.
  • the specimen include mainly liquids such as blood, saliva, and urine.
  • the substance to be detected include blood glucose, cortisol, cholesterol, neutral fat, hemoglobin, bilirubin, and trace metals such as copper, zinc, and iron.
  • the enzyme contained in the reagent is not particularly limited as long as it reacts with the test substance or the reaction product for the electrical detection of the aforementioned target substance.
  • the target substance is glucose in blood. If so, glucose is decomposed to generate electrons.
  • Specific examples of the enzyme include glucose oxidase, glucose dehydrogenase, glucose dehydrogenase using flavin adenine dinucleotide as a coenzyme, and glucose dehydrogenase using pyrroloquinoline quinone as a coenzyme.
  • the mediator contained in the reagent transmits electrons generated by the decomposition of glucose by the enzyme described above to the first electrode or the second electrode.
  • the mediator potassium ferricyanide, potassium ferrocyanide, etc. Dimethylferrocene, ferricinium, hexaammineruthenium compound, osmium compound, hydroquinone and the like.
  • the water-soluble polymer contained in the reagent forms a film on the first surface or the second surface. Thereby, the other components contained in the reagent are easily fixed to the first surface or the second surface, and the enzyme activity is stabilized.
  • Specific examples of the water-soluble polymer include polyvinyl pyrrolidone, carboxymethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyfluorosulfonate, cellulose acetate, and dextran.
  • the hemolytic agent contained in the reagent is for hemolyzing the blood sample. Thereby, the measurement of the test substance by the enzyme reaction is rapidly performed without depending on the viscosity of the blood as the specimen.
  • Specific examples of the hemolytic agent include ammonium chloride, sodium cholate, sodium deoxycholate, tetradecyltrimethylammonium bromide, dodecyltrimethylammonium bromide, cetyltrimethylammonium bromide, octadecyltrimethylammonium bromide and the like.
  • the surfactant contained in the reagent is for smoothly mixing each component of the reagent. Specifically, Triton (trademark), Tween (trademark), Brij (trademark), etc. are mentioned as surfactant.
  • the buffer solution contained in the reagent adjusts the pH of the reagent in order to achieve stable measurement conditions.
  • examples of the buffer include MES buffer, PBS buffer, TRIS buffer, PIPES buffer, MOPS buffer, HEPES buffer, and CAPS buffer.
  • the reagent including an enzyme, a mediator, a water-soluble polymer, a hemolyzing agent, a surfactant, and a buffer
  • it is selected from the group consisting of a water-soluble polymer, a hemolytic agent, and a surfactant.
  • Either one of the components is applied to one of the first surface or the second surface and the other component is applied to the other of the first surface or the second surface, or among the components of the reagent, Since the water-soluble polymer, hemolytic agent, and surfactant are applied to the first surface and the second surface, the sample is quickly filled into the sample space. Thereby, rapid measurement of the test substance is realized.
  • FIG. 1 is a perspective view showing an appearance of a blood glucose measurement device 10 according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the biosensor 11.
  • the blood glucose measurement device 10 includes a biosensor 11 and a device body 12.
  • the biosensor 11 and the apparatus main body 12 are electrically connected by inserting the biosensor 11 into the connection portion 13 of the apparatus main body 12.
  • the biosensor 11 is replaced for each blood glucose measurement.
  • This biosensor 11 corresponds to the biosensor in the present invention.
  • the apparatus main body 12 is an electronic apparatus in which an electronic component is accommodated in a housing 50.
  • a liquid crystal display 51 and operation keys 52, 53, and 54 are disposed on the front side of the housing 50.
  • the operation keys 52, 53, and 54 are for generating corresponding commands based on user operations.
  • the liquid crystal display 51 displays the state of the apparatus main body 12, measurement results, error display, and the like.
  • the biosensor 11 As shown in FIG. 1, the biosensor 11 has an elongated sheet shape.
  • the biosensor 11 is attached to the apparatus main body 12 by inserting one end of the biosensor 11 in the longitudinal direction 101 into the connection portion 13 of the apparatus main body 12. Further, when the biosensor 11 is pulled out in the longitudinal direction 101, the biosensor 11 is removed from the apparatus main body 10.
  • the front and back of the biosensor 11 are relative, any of them may be front or back.
  • the side that appears in FIG. 1 is referred to as the front, and the side that does not appear in FIG. 1 is referred to as the back. That is, the biosensor 11 has a sheet shape in which the front surface 21 and the back surface 22 form front and back surfaces.
  • the biosensor 11 mainly includes a first substrate 23, a first electrode 24, a spacer 25, a second electrode 26, a third electrode 27, and a second substrate 28. 2, the first substrate 23, the spacer 25, the first electrode 24, the second electrode 26, the third electrode 27, and the second substrate 28 are sequentially stacked in this order, and the sheet-shaped biosensor 11 is formed. It is configured.
  • the first substrate 23 is a sheet that is substantially the same shape as the biosensor 11 in plan view and is slightly shorter than the second substrate 24 in the longitudinal direction 101.
  • the first substrate 23 is made of an electrically insulating material.
  • the electrically insulating material include polyesters such as polyethylene terephthalate (PET) and polymethyl methacrylate (PMMA), fluororesin, polycarbonate, and glass.
  • One surface of the first substrate 23 constitutes the surface 21.
  • a pair of colored portions 30 and 31 are formed at both ends in the direction 102.
  • the colored portions 30 and 31 are color-coded with the surface 21.
  • the coloring portions 30 and 31 are for facilitating visual recognition of the position of a sample introduction port 41 to be described later. Therefore, the coloring portions 30 and 31 are arranged immediately above the sample introduction port 41.
  • each component of the reagent is fixed in a region 42 corresponding to the space 40. Details of each component of the reagent will be described later.
  • the region 42 to which the reagent is applied corresponds to the second surface in the present invention.
  • the second substrate 28 is a sheet having substantially the same shape as the biosensor 11 in plan view.
  • the second substrate 28 is made of an electrically insulating material.
  • the electrically insulating material include polyesters such as polyethylene terephthalate (PET) and polymethyl methacrylate (PMMA), fluororesin, polycarbonate, and glass.
  • One surface of the second substrate 28 constitutes the back surface 22.
  • a first electrode 24, a second electrode 26, and a third electrode 27 are provided on the surface 34 opposite to the back surface 22.
  • one end side in the longitudinal direction 101 inserted into the connection portion 13 of the apparatus main body 12 is not opposed to the first substrate 23.
  • the colored portion similar to the colored portions 30 and 31 is formed on the back surface 22 of the second substrate 28.
  • the first electrode 24 is provided on the surface 34 of the second substrate 28 opposite to the back surface 22.
  • the first electrode 24 extends in the longitudinal direction 101 on the surface 34 of the second substrate 28, and has a width of about 1/3 of the second substrate 28 in the direction 102.
  • the first electrode 24 is disposed in an electrically unconnected manner with a second electrode 26 and a third electrode 27 described later.
  • Examples of the material for the first electrode 24 include silver / silver chloride, gold, palladium, and platinum.
  • the first electrode 24 is laminated on the surface 34 with respect to the first substrate 23 by a method such as a screen printing method, an ink jet method, sputtering, vacuum deposition, sol-gel method, cluster beam deposition, or PLD.
  • the end corresponding to the connection portion 13 side of the apparatus main body 12 is exposed without facing the first substrate 23. This end is a connection terminal 33 that is electrically connected to the apparatus main body 12.
  • the second electrode 26 is provided on the surface 34 opposite to the back surface 22 of the second substrate 28.
  • the second electrode 26 extends in the longitudinal direction 101 on the surface 34 of the second substrate 28, and has a width of about 1/3 of the second substrate 28 in the direction 102.
  • the second electrode 26 is disposed in an electrically unconnected manner with the first electrode 24 and a third electrode 27 described later.
  • An example of the material of the second electrode 26 is carbon. Since carbon is used for the second electrode 26, the resistance value of the first electrode 23 employing silver / silver chloride, gold, palladium, platinum or the like is lower than the resistance value of the second electrode 26 made of carbon. Electrons are easily supplied to the blood in the space 40.
  • the second electrode 26 may be made of a material such as silver / silver chloride, gold, palladium, platinum or the like, like the first electrode 24.
  • an end corresponding to the connection portion 13 side of the apparatus main body 12 is exposed without facing the first substrate 23. This end is a connection terminal 37 that is electrically connected to the apparatus main body 12.
  • the third electrode 27 is provided on the surface 34 of the second substrate 28 opposite to the back surface 22.
  • the third electrode 27 extends in the longitudinal direction 101 on the surface 34 of the second substrate 28, and has a width of about 1/3 of the second substrate 28 in the direction 102.
  • the third electrode 27 is disposed in an electrically unconnected manner with the first electrode 24 and the second electrode 26.
  • Examples of the material of the third electrode 27 include silver / silver chloride, gold, palladium, platinum, and the like.
  • the third electrode 27 is an electrode for detecting whether blood is introduced into the space 40.
  • the end corresponding to the connection portion 13 side of the apparatus main body 12 is exposed without facing the first substrate 23. This end is a connection terminal 39 that is electrically connected to the apparatus main body 12.
  • the spacer 25 is a sheet having substantially the same shape as the biosensor 11 in plan view.
  • a double-sided tape having electrical insulation is preferably used.
  • the spacer 25 has a space 40 extending in the direction 102 at a position corresponding to the coloring portions 30 and 31. That is, the spacer 25 is composed of two sheets separated by the space 40 with respect to the longitudinal direction 101.
  • the space 40 forms a sample space corresponding to the thickness of the spacer 25 between the region 38 and the region 42. That is, the space 40 becomes the sample space.
  • a part of the first electrode 24, a part of the second electrode 26, and a part of the third electrode 27 are exposed.
  • each component of the reagent is fixed in a region 38 corresponding to the space 40. Details of each component of the reagent will be described later.
  • the region 38 to which the reagent is applied out of the surface facing the spacer 25 corresponds to the first surface in the present invention.
  • the space 40 is opened at the end of the biosensor 11, and this opening serves as the sample introduction port 41.
  • the space 40 is also opened at a position facing the sample introduction port 41.
  • This reagent includes glucose oxidase, mediator, water-soluble polymer, hemolytic agent, surfactant and buffer.
  • the reagent may further contain other components.
  • the reagent is prepared by dividing it into a first reagent applied to the region 38 and a second reagent applied to the region 42.
  • the first reagent includes any one component of a water-soluble polymer, a hemolytic agent, and a surfactant that are components of the reagent.
  • the second reagent includes the remaining components of the water-soluble polymer, hemolytic agent, and surfactant that are components of the reagent.
  • the combinations of the composition of the water-soluble polymer, hemolyzing agent, and surfactant that are the components of the reagent are the following six patterns.
  • First Reagent Hemolytic Agent, Surfactant Second Reagent: Water-soluble Polymer
  • First Reagent Water-soluble Polymer
  • Surfactant Second Reagent hemolytic agent
  • glucose oxidase, mediator, and buffer may be included in either the first reagent or the second reagent, but as in the present embodiment, the first electrode 24 functions as a working electrode, and the region 38 If one reagent is applied, the enzyme and mediator are preferably included in the first reagent.
  • a well-known method is employ
  • the reagent including an enzyme, a mediator, a water-soluble polymer, a hemolyzing agent, a surfactant, and a buffer
  • it is selected from the group consisting of a water-soluble polymer, a hemolytic agent, and a surfactant. Since one of the components is applied to one of the regions 38 and 42 and the other component is applied to the other of the regions 38 and 42, the blood is quickly filled into the space 40 from the sample introduction port 41.
  • the glucose oxidase fixed to the region 38 of the first electrode 24 and the glucose in the blood react quickly, and a rapid blood sugar level measurement is realized.
  • the enzyme contained in the reagent is glucose oxidase, but it goes without saying that the enzyme contained in the reagent of the present invention is not limited to glucose oxidase.
  • glucose dehydrogenase may be included in the reagent as an enzyme instead of glucose oxidase.
  • the biosensor according to the present invention is not limited to the portable blood glucose measurement device like the blood glucose measurement device 10. Therefore, when a biosensor is used for measuring other components in blood, it can also be used in an embodiment in which a reagent containing an enzyme necessary for the measurement is fixed to the electrode.
  • the sample is not limited to blood, and may be a sample such as urine or saliva, or may be an aqueous solution containing a substance to be detected.
  • the first reagent includes any one component of a water-soluble polymer, a hemolytic agent, and a surfactant that are components of the reagent
  • the second reagent is a water-soluble component that is a component of the reagent.
  • the remaining components of the soluble polymer, hemolytic agent, and surfactant are included, but both the first reagent and the second reagent include the water-soluble polymer, hemolytic agent, and surfactant that are components of the reagent. May be.
  • the glucose oxidase, the mediator, and the buffer may be included in either the first reagent or the second reagent.
  • the first electrode 24 functions as a working electrode, If the first reagent is applied to the region 38 of the one electrode 24, the enzyme and the mediator are preferably included in the first reagent.
  • the composition of the first reagent and the second reagent is as follows.
  • First reagent glucose oxidase, mediator, water-soluble polymer, hemolytic agent, surfactant
  • Second reagent water-soluble polymer, hemolytic agent, surfactant, buffer
  • blood is rapidly filled from the sample introduction port 41 into the space 40, and the glucose oxidase fixed to the region 38 of the first electrode 24 in the biosensor 11. And glucose in blood reacts quickly, and rapid blood glucose level measurement is realized.
  • Biosensor As the biosensor, the biosensor 11 having the same configuration as that of the above-described embodiment was used. Carbon was used as a material for the first electrode 24, the second electrode 26 and the third electrode 27. The reagent was applied to the regions 38 and 42 using a dispenser according to Examples 1 to 7, Comparative Examples 1 and 2, and Table 1 described later.
  • Example 1 The composition of the first reagent applied to the area 38 of the biosensor 11 and the composition of the second reagent applied to the area 42 were as follows, and the compositions and application amounts shown in Table 1 were applied to the areas 38 and 42, respectively. .
  • First reagent enzyme (glucose dehydrogenase: FAD-GDH with flavin adenine dinucleotide as a coenzyme)
  • Mediator potassium ferricyanide
  • Water-soluble polymer polyvinylpyrrolidone; PVP
  • Hemolytic agent tetradecyltrimethylammonium bromide; MTAB
  • Buffer solution MES buffer solution
  • Second reagent surfactant (trade name: Triton X-100)
  • Example 2 The composition of the first reagent applied to the area 38 of the biosensor 11 and the composition of the second reagent applied to the area 42 were as follows, and the compositions and application amounts shown in Table 1 were applied to the areas 38 and 42, respectively.
  • First reagent Enzyme (FAD-GDH) Mediator (potassium ferricyanide) Water-soluble polymer (polyvinylpyrrolidone; PVP) Surfactant (trade name: Triton X-100) Buffer solution (MES buffer solution)
  • Second reagent hemolytic agent (tetradecyltrimethylammonium bromide; MTAB)
  • Example 3 The composition of the first reagent applied to the area 38 of the biosensor 11 and the composition of the second reagent applied to the area 42 were as follows, and the compositions and application amounts shown in Table 1 were applied to the areas 38 and 42, respectively.
  • First reagent Enzyme (FAD-GDH) Mediator (potassium ferricyanide) Hemolytic agent (tetradecyltrimethylammonium bromide; MTAB) Surfactant (trade name: Triton X-100) Buffer solution (MES buffer solution)
  • Second reagent water-soluble polymer (polyvinylpyrrolidone; PVP)
  • Example 4 The composition of the first reagent applied to the area 38 of the biosensor 11 and the composition of the second reagent applied to the area 42 were as follows, and the compositions and application amounts shown in Table 1 were applied to the areas 38 and 42, respectively.
  • First reagent Enzyme (FAD-GDH) Mediator (potassium ferricyanide) Water-soluble polymer (polyvinylpyrrolidone; PVP) Buffer solution (MES buffer solution)
  • Second reagent hemolytic agent (tetradecyltrimethylammonium bromide; MTAB) Surfactant (trade name: Triton X-100)
  • Example 5 The composition of the first reagent applied to the area 38 of the biosensor 11 and the composition of the second reagent applied to the area 42 were as follows, and the compositions and application amounts shown in Table 1 were applied to the areas 38 and 42, respectively.
  • First reagent Enzyme (FAD-GDH) Mediator (potassium ferricyanide) Hemolytic agent (tetradecyltrimethylammonium bromide; MTAB) Buffer solution (MES buffer solution)
  • Second reagent water-soluble polymer (polyvinylpyrrolidone; PVP) Surfactant (trade name: Triton X-100)
  • Example 6 The composition of the first reagent applied to the area 38 of the biosensor 11 and the composition of the second reagent applied to the area 42 were as follows, and the compositions and application amounts shown in Table 1 were applied to the areas 38 and 42, respectively.
  • First reagent Enzyme (FAD-GDH) Mediator (potassium ferricyanide) Surfactant (trade name: Triton X-100) Buffer solution (MES buffer solution)
  • Example 7 The composition of the first reagent applied to the area 38 of the biosensor 11 and the composition of the second reagent applied to the area 42 were as follows, and the compositions and application amounts shown in Table 1 were applied to the areas 38 and 42, respectively. .
  • First reagent Enzyme (FAD-GDH) Mediator (potassium ferricyanide) Water-soluble polymer (polyvinylpyrrolidone; PVP) Hemolytic agent (tetradecyltrimethylammonium bromide; MTAB) Surfactant (trade name: Triton X-100) Buffer solution (MES buffer solution) Second reagent: water-soluble polymer (polyvinylpyrrolidone; PVP) Hemolytic agent (tetradecyltrimethylammonium bromide; MTAB) Surfactant (trade name: Triton X-100)
  • FIG. 1 The following 2nd reagent was apply
  • composition of the first reagent applied to the area 38 of the biosensor 11 and the composition of the second reagent applied to the area 42 were as follows, and the compositions and application amounts shown in Table 1 were applied to the areas 38 and 42, respectively.
  • First reagent Enzyme (FAD-GDH) Mediator (potassium ferricyanide) Buffer solution (MES buffer solution)
  • Second reagent water-soluble polymer (polyvinylpyrrolidone; PVP) Hemolytic agent (tetradecyltrimethylammonium bromide; MTAB) Surfactant (trade name: Triton X-100)
  • evaluation test was performed by measuring the suction time with a potentiostat. A blood sample is sucked from the sample introduction port 41 on the first electrode 24 side of the space 40, and the time when the current is generated between the first electrode 24 and the second electrode 26 is set as a start time. The time when current was generated between the electrode 27 and the electrode 27 was defined as the end time. The time required from the start time to the end time was taken as the suction time. The results are shown in Table 1.

Abstract

【課題】第1電極と第2電極とが試料空間を介して対向配置されるバイオセンサにおいて、試料空間へ試料が迅速に満たされる手段を提供する。 【解決手段】酵素、メディエータ、水溶性高分子、溶血剤、界面活性剤及び緩衝液を含む試薬の各成分のうち、水溶性高分子、溶血剤及び界面活性剤からなる群より選択されるいずれか一の成分が領域38,42の一方に塗布され、他の成分が領域38,42の他方に塗布されている。これにより、空間40へ試料が迅速に満たされる。 

Description

バイオセンサ
 本発明は、第1電極又は第2電極に、酵素、メディエータ、水溶性高分子、溶血剤、界面活性剤及び緩衝液を含む試薬の各成分が塗布されたバイオセンサに関する。
 近年、糖尿病の患者が各国において増加している。糖尿病の治療としては、例えば、インスリン療法がある。インスリンは血糖値をコントロールする薬物として知られており、糖尿病の治療薬として糖尿病患者に投与されている。インスリンを投与する必要性は、糖尿病患者の血糖値に基づいて判断される。このため、糖尿病患者にとって、血糖値の把握が重要である。血糖値とは、血液中のグルコース濃度である。糖尿病患者自らが自分の血糖値を簡易に測定できることを目的として、簡易な血糖測定装置が開発されている。
 前述された血糖測定装置として、バイオセンサが用いられるものが知られている(特許文献1~4)。バイオセンサは、血糖と反応する酵素が固定された電極を有する。血糖値の測定に用いられる酵素として、グルコースオキシターゼ(以下、「GOD」と略されることがある。)やグルコースデヒドロゲナーゼ(以下、「GDH」と略されることがある。)が知られている。バイオセンサにおいて、酵素が固定された電極が作用極と称され、試料中に電子を供給する電極が対極と称される。
 試料である血液がバイオセンサに導入され、その血液中のグルコースに作用極のGODが反応すると、グルコースがグルコン酸及び過酸化水素に分解され、その過酸化水素が水及び電子に分解される。このようにして発生した電子が作用極に伝達される。一方、対極からは血液中に電子が供給される。このようにして、GODとグルコースとの反応によって、作用極と対極との間に電流が流れる。そして、流れた電流値に基づいて、血液中のグルコース濃度、つまり血糖値が算出される。また、作用極には、電子を伝達する物質が固定されることがある。この物質は、電子メディエータと称される。電子メディエータとして、例えば、フェリシアン化カリウム、ヘキサアンミンルテニウムやキノン誘導体類等の有機化合物、又は有機-金属錯体などが挙げられる。
 前述されたバイオセンサにおいて、GODやGDHなどの酵素は、水溶液にされて電極に塗布されることによって固定される。具体的には、ディッピング法やスクリーン印刷法、オフセット印刷法、インクジェット印刷法などが公知である(特許文献6~8)。
 また、前述されたバイオセンサにおいて、電極に塗布される酵素などの水溶液にカチオン性の界面活性剤(脂肪酸)が含有されることが公知である(特許文献9)。カチオン性の界面活性剤が含有されることによって、血液試料中の赤血球(ヘマトクリット値)が溶血されて、比較的粘度が高い血液試料であっても、誤差を少なくして、迅速に血糖値が測定されるという利点がある。
特開2009-97877号公報 特開2005-43280号公報 特開2005-37335号公報 特開2002-107325号公報 特開平9-159642号公報 特開2006-125904号公報 特表2009-533674号公報 特開平6-3317号公報 特許第4018082号公報
 前述されたバイオセンサにおいて、スペーサによって形成された空間が試料空間とされる構成が公知である。試料空間は、バイオセンサの外側に開口されており、その開口が血液に曝されると、毛細管現象によって血液が試料空間へ導かれる。したがって、開口が血液に曝されてから試料空間が血液で満たされるまでの時間は、毛細管現象に依存することとなる。この時間は、迅速な測定を実現する観点からは、できる限り早いことが望ましい。
 本発明は、前述された事情に鑑みてなされたものであり、その目的は、対向配置された第1面と第2面とにより試料空間が形成されたバイオセンサにおいて、試料空間へ試料が迅速に満たされる手段を提供することにある。
 本発明は、第1電極と、第2電極と、検体が導入される試料空間と、試薬とを備えたバイオセンサである。上記試料空間は、少なくとも上記第1電極の一部を含む第1面と、当該第1面と対向して配置された第2面との間に形成されている。上記試薬は、酵素、メディエータ、水溶性高分子、溶血剤、界面活性剤及び緩衝液を含む。上記試薬の各成分は、下記(A)又は(B)の態様で塗布されている。
 (A)上記試薬の成分のうち、水溶性高分子、溶血剤及び界面活性剤からなる群より選択されるいずれか一の成分が上記第1面又は上記第2面の一方に塗布され、他の成分が上記第1面又は上記第2面の他方に塗布されている。
 (B)上記試薬の成分のうち、水溶性高分子、溶血剤及び界面活性剤が上記第1面及び上記第2面に塗布されている。
 バイオセンサは、検体中の被検出物質を電気化学的に検出するためのものである。検体としては、血液や唾液、尿などの主として液体が挙げられる。例えば、検体が血液であれば、被検出物質として、血糖やコルチゾール、コレステロール、中性脂肪、ヘモグロビン、ビリルビン並びに銅、亜鉛及び鉄等の微量金属などが挙げられる。検体がバイオセンサの電極と接触されることにより、検体と酵素とが混合されて、被検出物質が酵素反応を起こす。その酵素反応の過程において生成される電荷が電極に流れることによって、被検出物質が電気的に検出可能となる。
 試薬に含まれる酵素は、前述された被検出物質の電気的な検出のために被検物質又は反応生成物と反応するものであれば特に限定されないが、例えば、被検出物質が血液中のグルコースであれば、グルコースを分解して電子を発生させるものである。具体的には、酵素として、グルコースオキシダーゼ、グルコースデヒドロゲナーゼ、フラビンアデニンジヌクレオチドを補酵素としたグルコースデヒドロゲナーゼ、ピロロキノリンキノンを補酵素としたグルコースデヒドロゲナーゼが挙げられる。
 試薬に含まれるメディエータは、例えば、前述された酵素によってグルコースが分解されて発生した電子を第1電極又は第2電極へ伝達するものであり、具体的には、メディエータとして、フェリシアン化カリウム、フェロシアン化カリウム、ジメチルフェロセン、フェリシニウム、ヘキサアンミンルテニウム化合物、オスミウム化合物、ヒドロキノンなどが挙げられる。
 試薬に含まれる水溶性高分子は、第1面又は第2面に皮膜を形成するものである。これにより、試薬に含まれる他の成分が第1面又は第2面に固定されやすくなり、また、酵素活性が安定する。具体的には、水溶性高分子として、ポリビニルピロリドン、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリフルオロスルホナート、酢酸セルロース、デキストランなどが挙げられる。
 試薬に含まれる溶血剤は、検体である血液を溶血させるものである。これにより、検体である血液の粘度に依存することなく、酵素反応による被検物質の測定が迅速に行われる。具体的には、溶血剤として、塩化アンモニウム、コール酸ナトリウム、デオキシコール酸ナトリウム、テトラデシルトリメチルアンモニウムブロマイド、ドデシルトリメチルアンモニウムブロミド、セチルトリメチルアンモニウムブロミド、オクタデシルトリメチルアンモニウムブロミドなどが挙げられる。
 試薬に含まれる界面活性剤は、試薬の各成分の混合を円滑に行うためのものである。具体的には、界面活性剤として、Triton(商標)、Tween(商標)、Brij(商標)などが挙げられる。
 試薬に含まれる緩衝液は、安定な測定条件とするために試薬のpHを調整するものである。具体的には、緩衝液として、MES緩衝液、PBS緩衝液、TRIS緩衝液、PIPES緩衝液、MOPS緩衝液、HEPES緩衝液、CAPS緩衝液などが挙げられる。
 本発明によれば、酵素、メディエータ、水溶性高分子、溶血剤、界面活性剤及び緩衝液を含む試薬の成分のうち、水溶性高分子、溶血剤及び界面活性剤からなる群より選択されるいずれか一の成分が上記第1面又は上記第2面の一方に塗布され、他の成分が上記第1面又は上記第2面の他方に塗布されているか、或いは、試薬の成分のうち、水溶性高分子、溶血剤及び界面活性剤が上記第1面及び上記第2面に塗布されているので、試料空間へ試料が迅速に満たされる。これにより、迅速な被検物質の測定が実現される。
図1は、本発明の実施形態に係る血糖測定装置10の外観を示す斜視図である。 図2は、バイオセンサ11の分解斜視図である。
 以下に、適宜図面が参照されて、本発明の好ましい実施形態が説明される。なお、以下に説明される各実施形態は本発明の一例にすぎず、本発明の要旨を変更しない範囲で、本発明の実施形態が適宜変更できることは言うまでもない。
[血糖測定装置10]
 図1に示されるように、血糖測定装置10は、バイオセンサ11と装置本体12とを有する。バイオセンサ11が装置本体12の接続部13に差し込まれることによって、バイオセンサ11と装置本体12とが電気的に接続される。バイオセンサ11は、1回の血糖測定毎に取り替えられるものである。このバイオセンサ11が、本発明におけるバイオセンサに相当する。
[装置本体12]
 図1に示されるように、装置本体12は、筐体50に電子部品が収容された電子装置である。筐体50の表側には、液晶ディスプレイ51及び操作キー52,53,54が配置されている。操作キー52,53,54は、ユーザの操作に基づいて対応するコマンドを発生させるためのものである。液晶ディスプレイ51は、装置本体12の状態や測定結果、エラー表示などを行う。
[バイオセンサ11]
 図1に示されるように、バイオセンサ11は、細長なシート形状である。バイオセンサ11の長手方向101の一端が、装置本体12の接続部13に差し込まれることによって、バイオセンサ11が装置本体12に装着される。また、バイオセンサ11が長手方向101に引き抜かれることによって、バイオセンサ11が装置本体10から取り外される。
 バイオセンサ11の表裏は相対的な関係なので、いずれが表であっても裏であってもよい。本実施形態においては、図1に現れる側が表と称され、図1に現れない側が裏と称される。つまり、バイオセンサ11は、表面21及び裏面22が表裏面をなすシート形状である。
 図2に示されるように、バイオセンサ11は、主として、第1基板23、第1電極24、スペーサ25、第2電極26、第3電極27及び第2基板28を有する。図2における上側、つまり表側から順に、第1基板23、スペーサ25、第1電極24、第2電極26及び第3電極27、第2基板28の順に積層されて、シート形状のバイオセンサ11が構成されている。
[第1基板23]
 図2に示されるように、第1基板23は、平面視がバイオセンサ11と概ね同じ形状であって、長手方向101において第2基板24より若干短いシートである。第1基板23は、電気絶縁性の材料からなる。この電気絶縁性の材料として、例えばポリエチレンテレフタレート(PET)、ポリメタクリル酸メチル(PMMA)等のポリエステルや、フッ素樹脂及びポリカーボネイト、ガラスなどが挙げられる。
 第1基板23の一方の面は、表面21を構成する。第1基板23の表面21には、方向102の両端に一対の着色部30,31が形成されている。着色部30,31は、表面21と色分けされたものである。着色部30,31は、後述される試料導入口41の位置の視認を容易にするためのものである。したがって、着色部30,31は、試料導入口41の直上に配置されている。
 後述されるように、第1基板23において、空間40に対応する領域42には、試薬の各成分が固定されている。試薬の各成分の詳細については、後述される。第1基板23において、スペーサ25側を向く面のうち、試薬が塗布される領域42が本発明における第2面に相当する。
[第2基板28]
 図2に示されるように、第2基板28は、平面視がバイオセンサ11と概ね同じ形状のシートである。第2基板28は、電気絶縁性の材料からなる。この電気絶縁性の材料として、例えばポリエチレンテレフタレート(PET)、ポリメタクリル酸メチル(PMMA)等のポリエステルや、フッ素樹脂及びポリカーボネイト、ガラスなどが挙げられる。
 第2基板28の一方の面は、裏面22を構成する。後述されるように、裏面22と反対側の面34には第1電極24,第2電極26及び第3電極27が設けられている。第2基板28において、装置本体12の接続部13に差し込まれる長手方向101の一端側は、第1基板23とは対向されていない。
 各図には現れていないが、第2基板28の裏面22には、着色部30,31と同様の着色部が形成されている。
[第1電極24]
 図2に示されるように、第1電極24は、第2基板28における裏面22と反対側の面34に設けられている。第1電極24は、第2基板28の面34において、長手方向101へ延出されており、方向102において第2基板28の1/3程度の幅を有する。面24において、第1電極24は、後述される第2電極26及び第3電極27と電気的に非接続に配置されている。第1電極24の素材としては、例えば、銀/塩化銀、金、パラジウム、白金などが挙げられる。第1電極24は、第1基板23に対して、スクリーン印刷法、インクジェット法、スパッタリング、真空蒸着、ゾルゲル法、クラスタビーム蒸着又はPLDなどの手法によって面34に積層されている。第1電極24において、装置本体12の接続部13側に対応する端部は、第1基板23と対向せずに露出されている。この端部が装置本体12と電気的に接続される接続端子33である。
[第2電極26]
 図2に示されるように、第2電極26は、第2基板28における裏面22と反対側の面34に設けられている。第2電極26は、第2基板28の面34において、長手方向101へ延出されており、方向102において第2基板28の1/3程度の幅を有する。面24において、第2電極26は、第1電極24及び後述される第3電極27と電気的に非接続に配置されている。第2電極26の素材としては、例えば、カーボンが挙げられる。第2電極26にカーボンが用いられることによって、銀/塩化銀、金、パラジウム、白金などが採用される第1電極23の抵抗値が、カーボン製の第2電極26の抵抗値より低くなるので、空間40の血液に電子が供給されやすくなる。もちろん、第2電極26が、第1電極24と同様に、銀/塩化銀、金、パラジウム、白金などの素材で構成されてもよい。第2電極26において、装置本体12の接続部13側に対応する端部は、第1基板23と対向せずに露出されている。この端部が装置本体12と電気的に接続される接続端子37である。
[第3電極27]
 図2に示されるように、第3電極27は、第2基板28における裏面22と反対側の面34に設けられている。第3電極27は、第2基板28の面34において、長手方向101へ延出されており、方向102において第2基板28の1/3程度の幅を有する。面24において、第3電極27は、第1電極24及び第2電極26と電気的に非接続に配置されている。第3電極27の素材としては、例えば、銀/塩化銀、金、パラジウム、白金などが挙げられる。第3電極27は、空間40へ血液が導入されたか否かを検出するための電極である。第3電極27において、装置本体12の接続部13側に対応する端部は、第1基板23と対向せずに露出されている。この端部が装置本体12と電気的に接続される接続端子39である。
[スペーサ25]
 図2に示されるように、スペーサ25は、平面視がバイオセンサ11と概ね同じ形状のシートである。スペーサ25としては、電気絶縁性を有する両面テープが好適に用いられる。スペーサ25は、着色部30,31に対応する位置に、方向102へ延びる空間40を有する。つまり、スペーサ25は、長手方向101に対して空間40によって分断された2枚のシートから構成されている。空間40によって、領域38と領域42との間に、スペーサ25の厚み分の試料空間が形成される。つまり、空間40が試料空間となる。空間40には、第1電極24の一部、第2電極26の一部及び第3電極27の一部がそれぞれ露出されている。
 第1電極24において、空間40に対応する領域38には、試薬の各成分が固定されている。試薬の各成分の詳細については、後述される。第1電極24において、スペーサ25側を向く面のうち試薬が塗布される領域38が本発明における第1面に相当する。
 図1に示されるように、空間40は、バイオセンサ11の端に開口されており、この開口が試料導入口41となる。なお、図1には現れていないが、試料導入口41と対向する位置においても空間40が開口されている。試料導入口41が血液に曝されると、毛細管作用によって血液が空間40に流れ込む。
[領域38,42へ固定される試薬の成分]
 以下、領域38,42に固定される試薬の成分が詳述される。この試薬は、グルコースオキシダーゼ、メディエータ、水溶性高分子、溶血剤、界面活性剤及び緩衝液を含む。なお、試薬は、更に他の成分を含んでもよい。
 試薬は、領域38に塗布される第1試薬と、領域42に塗布される第2試薬に分けて調製される。第1試薬は、試薬の成分である水溶性高分子、溶血剤及び界面活性剤のうちいずれか一の成分を含む。第2試薬は、試薬の成分である水溶性高分子、溶血剤及び界面活性剤のうち残りの成分を含む。
 したがって、第1試薬及び第2試薬において、試薬の成分である水溶性高分子、溶血剤及び界面活性剤の組成の組み合わせは、次の6パターンとなる。
(1)第1試薬:界面活性剤
   第2試薬:水溶性高分子、溶血剤
(2)第1試薬:溶血剤
   第2試薬:水溶性高分子、界面活性剤
(3)第1試薬:水溶性高分子
   第2試薬:溶血剤、溶血剤
(4)第1試薬:溶血剤、界面活性剤
   第2試薬:水溶性高分子
(5)第1試薬:水溶性高分子、界面活性剤
   第2試薬:溶血剤
(6)第1試薬:水溶性高分子、溶血剤
   第2試薬:界面活性剤
 なお、グルコースオキシダーゼ、メディエータ及び緩衝液は、第1試薬又は第2試薬のいずれに含まれてもよいが、本実施形態のように、第1電極24が作用極として機能し、領域38に第1試薬が塗布されるのであれば、酵素及びメディエータは第1試薬に含まれることが好ましい。また、第1試薬及び第2試薬が、領域38,42にそれぞれ塗布される手法は、公知の手法が採用される。このような公知の手法として、例えば、ディッピング法やスクリーン印刷法、オフセット印刷法、インクジェット印刷法などが挙げられる。
[本実施形態の作用効果]
 本実施形態によれば、酵素、メディエータ、水溶性高分子、溶血剤、界面活性剤及び緩衝液を含む試薬の成分のうち、水溶性高分子、溶血剤及び界面活性剤からなる群より選択されるいずれか一の成分が領域38,42の一方に塗布され、他の成分が領域38,42の他方に塗布されているので、試料導入口41から空間40へ血液が迅速に満たされる。これにより、バイオセンサ11において、第1電極24の領域38に固定されたグルコースオキシダーゼと血液中のグルコースが迅速に反応して、迅速な血糖値の測定が実現される。
 なお、本実施形態では、試薬に含まれる酵素がグルコースオキシダーゼであるが、本発明の試薬に含まれる酵素がグルコースオキシダーゼに限定されないことは言うまでもない。例えば、血糖測定に用いられるバイオセンサであれば、グルコースオキシダーゼに代えてグルコースデヒドロゲナーゼが酵素として試薬に含まれてもよい。
 また、本発明に係るバイオセンサは、血糖測定装置10のように携帯型の血糖測定装置に限定されるものではない。したがって、血液中の他の成分の測定にバイオセンサが用いられる場合に、その測定に必要な酵素が含まれる試薬が電極に固定される態様においても利用可能である。また、試料も血液に限定されず、尿や唾液などの検体であってもよいし、被検出物質が含まれる水溶液であってもよい。
[変形例]
 前述された実施形態においては、第1試薬は、試薬の成分である水溶性高分子、溶血剤及び界面活性剤のうちいずれか一の成分を含み、第2試薬は、試薬の成分である水溶性高分子、溶血剤及び界面活性剤のうち残りの成分を含むが、第1試薬及び第2試薬のいずれもに、試薬の成分である水溶性高分子、溶血剤及び界面活性剤が含まれてもよい。変形例においても、グルコースオキシダーゼ、メディエータ及び緩衝液は、第1試薬又は第2試薬のいずれに含まれてもよいが、本実施形態のように、第1電極24が作用極として機能し、第1電極24の領域38に第1試薬が塗布されるのであれば、酵素及びメディエータは第1試薬に含まれることが好ましい。
 したがって、変形例において、第1試薬及び第2試薬の組成は次のようになる。
第1試薬:グルコースオキシダーゼ、メディエータ、水溶性高分子、溶血剤、界面活性剤
第2試薬:水溶性高分子、溶血剤、界面活性剤、緩衝液
 このような変形例によっても、前述された実施形態と同様に、試料導入口41から空間40へ血液が迅速に満たされ、バイオセンサ11において、第1電極24の領域38に固定されたグルコースオキシダーゼと血液中のグルコースが迅速に反応して、迅速な血糖値の測定が実現される。
 以下、本発明の実施例が説明される。
[バイオセンサ]
 バイオセンサとしては、前述された実施形態と同様の構成のバイオセンサ11を用いた。第1電極24、第2電極26及び第3電極27の素材としてはカーボンを用いた。領域38,42への試薬の塗布は、後述される実施例1~7、比較例1,2、表1に従って、ディスペンサーを用いて行った。
[実施例1]
 バイオセンサ11の領域38に塗布される第1試薬、及び領域42に塗布される第2試薬の組成を以下の通りとして、表1に示される組成及び塗布量で領域38,42にそれぞれ塗布した。
第1試薬:酵素(フラビンアデニンジヌクレオチドを補酵素としたグルコースデヒドロゲ
     ナーゼ:FAD-GDH)
     メディエータ(フェリシアン化カリウム)
     水溶性高分子(ポリビニルピロリドン;PVP)
     溶血剤(テトラデシルトリメチルアンモニウムブロマイド;MTAB)
     緩衝液(MES緩衝液)
第2試薬:界面活性剤(商品名:TritonX-100)
[実施例2]
 バイオセンサ11の領域38に塗布される第1試薬、及び領域42に塗布される第2試薬の組成を以下の通りとして、表1に示される組成及び塗布量で領域38,42にそれぞれ塗布した。
第1試薬:酵素(FAD-GDH)
     メディエータ(フェリシアン化カリウム)
     水溶性高分子(ポリビニルピロリドン;PVP)
     界面活性剤(商品名:TritonX-100)
     緩衝液(MES緩衝液)
第2試薬:溶血剤(テトラデシルトリメチルアンモニウムブロマイド;MTAB)
[実施例3]
 バイオセンサ11の領域38に塗布される第1試薬、及び領域42に塗布される第2試薬の組成を以下の通りとして、表1に示される組成及び塗布量で領域38,42にそれぞれ塗布した。
第1試薬:酵素(FAD-GDH)
     メディエータ(フェリシアン化カリウム)
     溶血剤(テトラデシルトリメチルアンモニウムブロマイド;MTAB)
     界面活性剤(商品名:TritonX-100)
     緩衝液(MES緩衝液)
第2試薬:水溶性高分子(ポリビニルピロリドン;PVP)
[実施例4]
 バイオセンサ11の領域38に塗布される第1試薬、及び領域42に塗布される第2試薬の組成を以下の通りとして、表1に示される組成及び塗布量で領域38,42にそれぞれ塗布した。
第1試薬:酵素(FAD-GDH)
     メディエータ(フェリシアン化カリウム)
     水溶性高分子(ポリビニルピロリドン;PVP)
     緩衝液(MES緩衝液)
第2試薬:溶血剤(テトラデシルトリメチルアンモニウムブロマイド;MTAB)
     界面活性剤(商品名:TritonX-100)
[実施例5]
 バイオセンサ11の領域38に塗布される第1試薬、及び領域42に塗布される第2試薬の組成を以下の通りとして、表1に示される組成及び塗布量で領域38,42にそれぞれ塗布した。
第1試薬:酵素(FAD-GDH)
     メディエータ(フェリシアン化カリウム)
     溶血剤(テトラデシルトリメチルアンモニウムブロマイド;MTAB)
     緩衝液(MES緩衝液)
第2試薬:水溶性高分子(ポリビニルピロリドン;PVP)
     界面活性剤(商品名:TritonX-100)
[実施例6]
 バイオセンサ11の領域38に塗布される第1試薬、及び領域42に塗布される第2試薬の組成を以下の通りとして、表1に示される組成及び塗布量で領域38,42にそれぞれ塗布した。
第1試薬:酵素(FAD-GDH)
     メディエータ(フェリシアン化カリウム)
     界面活性剤(商品名:TritonX-100)
     緩衝液(MES緩衝液)
第2試薬:水溶性高分子(ポリビニルピロリドン;PVP)
     溶血剤(テトラデシルトリメチルアンモニウムブロマイド;MTAB)
[実施例7]
 バイオセンサ11の領域38に塗布される第1試薬、及び領域42に塗布される第2試薬の組成を以下の通りとして、表1に示される組成及び塗布量で領域38,42にそれぞれ塗布した。
第1試薬:酵素(FAD-GDH)
     メディエータ(フェリシアン化カリウム)
     水溶性高分子(ポリビニルピロリドン;PVP)
     溶血剤(テトラデシルトリメチルアンモニウムブロマイド;MTAB)
     界面活性剤(商品名:TritonX-100)
     緩衝液(MES緩衝液)
第2試薬:水溶性高分子(ポリビニルピロリドン;PVP)
     溶血剤(テトラデシルトリメチルアンモニウムブロマイド;MTAB)
     界面活性剤(商品名:TritonX-100)
[比較例1]
 バイオセンサの領域38に以下の第2試薬を、表1に示される組成及び塗布量で塗布し、領域42には何も塗布しなかった。
第1試薬:酵素(FAD-GDH)
     メディエータ(フェリシアン化カリウム)
     水溶性高分子(ポリビニルピロリドン;PVP)
     溶血剤(テトラデシルトリメチルアンモニウムブロマイド;MTAB)
     界面活性剤(商品名:TritonX-100)
     緩衝液(MES緩衝液)
第2試薬:なし
[比較例2]
 バイオセンサ11の領域38に塗布される第1試薬、及び領域42に塗布される第2試薬の組成を以下の通りとして、表1に示される組成及び塗布量で領域38,42にそれぞれ塗布した。
第1試薬:酵素(FAD-GDH)
     メディエータ(フェリシアン化カリウム)
     緩衝液(MES緩衝液)
第2試薬:水溶性高分子(ポリビニルピロリドン;PVP)
     溶血剤(テトラデシルトリメチルアンモニウムブロマイド;MTAB)
     界面活性剤(商品名:TritonX-100)
[評価試験]
 評価試験は、ポテンシオスタットによる吸引時間の測定により行った。血液試料を空間40の第1電極24側の試料導入口41から吸引させ、第1電極24と第2電極26との間に電流が発生した時間を開始時間とし、第1電極24と第3電極27との間に電流が発生した時間を終了時間とした。そして、開始時間から終了時間までに要した時間を吸引時間とした。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示されるように、各実施例1~7では、平均値が1.02未満であるのに対して、比較例1,2は、最も遅い実施例7よりも大幅に遅かった。これにより、各実施例1~7により、毛細管現象による空間40への血液の導入速度が速まることが確認された。
11・・・バイオセンサ
24・・・第1電極
26・・・第2電極
40・・・空間(試料空間)
 

Claims (3)

  1.  第1電極と、第2電極と、検体が導入される試料空間と、試薬とを備え、
     上記試料空間は、少なくとも上記第1電極の一部を含む第1面と、当該第1面と対向して配置された第2面との間に形成されており、
     上記試薬は、酵素、メディエータ、水溶性高分子、溶血剤、界面活性剤及び緩衝液を含み、
     上記試薬の各成分が、下記(A)又は(B)の態様で塗布されたバイオセンサ。
     (A)上記試薬の成分のうち、水溶性高分子、溶血剤及び界面活性剤からなる群より選択されるいずれか一の成分が上記第1面又は上記第2面の一方に塗布され、他の成分が上記第1面又は上記第2面の他方に塗布されている。
     (B)上記試薬の成分のうち、水溶性高分子、溶血剤及び界面活性剤が上記第1面及び上記第2面に塗布されている。
  2.  第1電極と、第2電極と、検体が導入される試料空間と、試薬とを備え、
     上記試料空間は、少なくとも上記第1電極の一部を含む第1面と、当該第1面と対向して配置された第2面との間に形成されており、
     上記試薬は、酵素、メディエータ、水溶性高分子、溶血剤、界面活性剤及び緩衝液を含み、
     上記試薬の成分のうち、水溶性高分子、溶血剤及び界面活性剤からなる群より選択されるいずれか一の成分が上記第1面又は上記第2面の一方に塗布され、他の成分が上記第1面又は上記第2面の他方に塗布されたバイオセンサ。
  3.  第1電極と、第2電極と、検体が導入される試料空間と、試薬とを備え、
     上記試料空間は、少なくとも上記第1電極の一部を含む第1面と、当該第1面と対向して配置された第2面との間に形成されており、
     上記試薬は、酵素、メディエータ、水溶性高分子、溶血剤、界面活性剤及び緩衝液を含み、
     上記試薬の成分のうち、水溶性高分子、溶血剤及び界面活性剤が上記第1面及び上記第2面に塗布されたバイオセンサ。
     
     
     
     
PCT/JP2010/073196 2009-12-24 2010-12-22 バイオセンサ WO2011078257A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009291813A JP5251859B2 (ja) 2009-12-24 2009-12-24 バイオセンサ
JP2009-291813 2009-12-24

Publications (1)

Publication Number Publication Date
WO2011078257A1 true WO2011078257A1 (ja) 2011-06-30

Family

ID=44195784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073196 WO2011078257A1 (ja) 2009-12-24 2010-12-22 バイオセンサ

Country Status (2)

Country Link
JP (1) JP5251859B2 (ja)
WO (1) WO2011078257A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3779425A4 (en) * 2018-03-26 2021-12-22 PHC Holdings Corporation SENSOR FOR THE DETECTION OF BIOLOGICAL SUBSTANCES

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101355127B1 (ko) * 2011-09-30 2014-01-29 주식회사 아이센스 전기화학적 바이오센서용 산화환원반응 시약조성물 및 이를 포함하는 바이오센서
JP6036212B2 (ja) * 2012-11-20 2016-11-30 ニプロ株式会社 ヘモグロビン測定装置およびヘモグロビン測定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344461A (ja) * 1998-05-29 1999-12-14 Matsushita Electric Ind Co Ltd バイオセンサ
JP2000221157A (ja) * 1999-01-29 2000-08-11 Kdk Corp バイオセンサおよびその製造方法
JP2005114359A (ja) * 2003-10-02 2005-04-28 Matsushita Electric Ind Co Ltd 血液中のグルコースの測定方法およびそれに用いるセンサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344461A (ja) * 1998-05-29 1999-12-14 Matsushita Electric Ind Co Ltd バイオセンサ
JP2000221157A (ja) * 1999-01-29 2000-08-11 Kdk Corp バイオセンサおよびその製造方法
JP2005114359A (ja) * 2003-10-02 2005-04-28 Matsushita Electric Ind Co Ltd 血液中のグルコースの測定方法およびそれに用いるセンサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3779425A4 (en) * 2018-03-26 2021-12-22 PHC Holdings Corporation SENSOR FOR THE DETECTION OF BIOLOGICAL SUBSTANCES

Also Published As

Publication number Publication date
JP2011133294A (ja) 2011-07-07
JP5251859B2 (ja) 2013-07-31

Similar Documents

Publication Publication Date Title
EP2084292B1 (en) A reagent formulation using ruthenium hexamine as a mediator for electrochemical test strips
JP4463266B2 (ja) グルコースバイオセンサ及び方法
ES2800977T3 (es) Método para análisis electroquímico rápido
EP2080023B1 (en) Method for determining hematocrit corrected analyte concentrations
JP4418435B2 (ja) 電気化学的バイオセンサー
JP5203620B2 (ja) 干渉物質の存在下でサンプルを分析する方法及び装置
TWI559001B (zh) 生物感測器用之製劑組成物及具有該製劑組成物之生物感測器
US20130098775A1 (en) Glucose biosensor with improved shelf life
KR102372113B1 (ko) 다중 분석물 진단 테스트 엘리먼트들을 위한 검출 시약들 및 전극 배열들, 그리고 그것을 사용하는 방법들
JP2005003679A (ja) 電気化学バイオセンサ
CN104736717A (zh) 试剂材料和有关的试验元件
JP5111388B2 (ja) セルロースポリマーを有する試験センサ試薬
JP5251859B2 (ja) バイオセンサ
US10088444B2 (en) Disposable test sensor with improved sampling entrance
JP5509969B2 (ja) 測定装置及び測定方法
WO2011081211A1 (ja) バイオセンサを有する測定装置
US9046480B2 (en) Method for determining hematocrit corrected analyte concentrations
WO2010134621A1 (ja) 立体型血液成分測定用センサ
JP2011089781A (ja) 生体試料検出装置
JP2009097877A (ja) バイオセンサチップ
JP2011099693A (ja) バイオセンサの製造方法
JP5381936B2 (ja) バイオセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839487

Country of ref document: EP

Kind code of ref document: A1