WO2011078173A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2011078173A1
WO2011078173A1 PCT/JP2010/073015 JP2010073015W WO2011078173A1 WO 2011078173 A1 WO2011078173 A1 WO 2011078173A1 JP 2010073015 W JP2010073015 W JP 2010073015W WO 2011078173 A1 WO2011078173 A1 WO 2011078173A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
liquid crystal
edge
display device
substrate
Prior art date
Application number
PCT/JP2010/073015
Other languages
English (en)
French (fr)
Inventor
智 堀内
山田 崇晴
祐子 久田
了基 伊藤
吉田 昌弘
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/518,220 priority Critical patent/US8582064B2/en
Publication of WO2011078173A1 publication Critical patent/WO2011078173A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • G02F1/134354Subdivided pixels, e.g. for grey scale or redundancy the sub-pixels being capacitively coupled
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/13606Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit having means for reducing parasitic capacitance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/40Arrangements for improving the aperture ratio

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to an MVA liquid crystal display device.
  • An MVA (Multidomain Vertical Alignment) type liquid crystal display device has a wider viewing angle characteristic than a TN type liquid crystal display device, and is therefore widely used in liquid crystal display devices for TV applications (see, for example, Patent Documents 1 and 2). ).
  • the entire disclosures of Patent Documents 1 and 2 are incorporated herein by reference.
  • a director-alignment direction (tilt direction) is provided by providing a domain-regulating structure (also referred to as an alignment-regulating structure) on the liquid crystal layer side of a pair of substrates facing each other with a vertical alignment-type liquid crystal layer interposed therebetween. Form a plurality of liquid crystal domains.
  • a domain regulating structure also referred to as an alignment-regulating structure
  • a linear domain regulation structure extending in two directions orthogonal to each other is disposed on each of a pair of substrates, and when viewed from a direction perpendicular to the substrate, the domain regulation structure formed on one substrate
  • the domain restriction structures formed on the other substrate are arranged in parallel and alternately.
  • the azimuth angle of the director of the liquid crystal domain forms 45 ° with respect to the polarization axes (transmission axes) of the pair of polarizing plates arranged in crossed Nicols. If the azimuth angle of 0 ° is the direction of the polarization axis of one polarizing plate (for example, the horizontal direction of the display surface (3 o'clock direction of the clock face)) and the counterclockwise direction is the positive direction, the four liquid crystal domains
  • the azimuth angle of the director is 45 °, 135 °, 225 °, and 315 °.
  • the definition of the azimuth is based on this definition unless otherwise specified.
  • the “pixel” in this specification refers to a minimum unit for displaying by a liquid crystal display device, and in the case of a color display device, a minimum unit for displaying individual primary colors (typically R, G, or B). Good, sometimes called “dot”.
  • the pixels are arranged in a matrix having rows and columns.
  • the row direction refers to the horizontal direction of the display surface (azimuth angle is 0 ° or 180 °)
  • the column direction refers to the vertical direction of the display surface (azimuth angle is 90 ° or 270 °).
  • the pixel includes a pixel electrode, a liquid crystal layer, and a counter electrode (common electrode) facing the pixel electrode through the liquid crystal layer.
  • the pixel electrode has an edge (side) extending in the row direction and an edge extending in the column direction.
  • the linear domain restriction structure of the MVA type liquid crystal display device extending in two directions orthogonal to each other, for example, has an azimuth angle of 45 ° (225 °) and 135 ° (315 °). ). That is, the linear domain restriction structure (or its extension line) provided on the counter electrode side and extending in two directions orthogonal to each other intersects the edge extending in the row direction or the column direction of the pixel electrode. Become.
  • an oblique electric field (fringe field) is formed in the vicinity of the edge of the pixel electrode.
  • the oblique electric field formed along the edge of the pixel electrode acts to tilt liquid crystal molecules in a direction perpendicular to the edge of the pixel electrode. Accordingly, an oblique electric field formed in the vicinity of the edge of the pixel electrode in the vicinity where the domain restriction structure (or an extension thereof) provided on the counter electrode side intersects with the edge extending in the row direction or the column direction of the pixel electrode.
  • it acts to disturb the alignment of the liquid crystal molecules regulated by the domain regulation structure. When the alignment of the liquid crystal molecules is disturbed, the display quality is naturally lowered.
  • Patent Document 1 suppresses alignment disorder of liquid crystal molecules in the vicinity where a domain restriction structure (or an extension thereof) provided on the counter electrode side intersects with an edge extending in the row direction or column direction of the pixel electrode.
  • a configuration is disclosed in which a linear auxiliary structure extending in parallel to the edge portion is provided at a position facing the edge portion of the pixel electrode where the alignment disturbance occurs.
  • the auxiliary structure may be provided inside the pixel or may be provided outside the pixel.
  • the auxiliary structure is, for example, a slit formed in the counter electrode or a dielectric protrusion formed on the liquid crystal layer side of the counter electrode, and the same structure as the domain regulating structure provided on the counter electrode side is used.
  • the slit is also used as the auxiliary structure
  • the auxiliary structure is used.
  • a dielectric protrusion is also employed as the structure.
  • the portion where the auxiliary structure slit or dielectric protrusion
  • the auxiliary structure does not contribute to the display
  • if at least a part of the auxiliary structure exists in the pixel there is a problem that the transmittance is lowered.
  • the alignment disorder of the liquid crystal molecules near the edge of the pixel electrode is suppressed by the auxiliary structure, the alignment direction of the liquid crystal molecules near the edge is different from the direction of the director of the domain defined by the domain regulation structure. Rate loss is inevitable.
  • Patent Document 3 that the ⁇ characteristic is divided by dividing one pixel into a plurality of sub-pixels having different brightness.
  • a liquid crystal display device and a driving method capable of improving the viewing angle dependency are disclosed.
  • display or driving may be referred to as area gradation display, area gradation driving, multi-pixel display, or multi-pixel driving.
  • the entire disclosure of Patent Document 3 is incorporated herein by reference.
  • an auxiliary capacitor is provided for each of a plurality of subpixels in one pixel, and an auxiliary capacitor counter electrode (connected to the CS bus line) constituting the auxiliary capacitor is electrically independent for each subpixel.
  • a liquid crystal display device that varies the effective voltage applied to the liquid crystal layers of a plurality of subpixels by changing the voltage supplied to the auxiliary capacitor counter electrode (referred to as an auxiliary capacitor counter voltage). Is disclosed.
  • MVA liquid crystal display devices perform multi-pixel display by various methods.
  • Patent Document 4 discloses an MVA liquid crystal display device having another multi-pixel structure.
  • a CS bus line is provided in parallel with a source bus line extending in the column direction, and two sub-pixel electrodes provided in one pixel (in Patent Document 4, the first sub-pixel electrode) , Referred to as a second pixel electrode) and the area where the CS bus line overlaps is made different. Due to the difference in the overlapping area between the CS bus line and the subpixel electrode, the auxiliary capacitors of the two subpixels are different from each other, and a multi-pixel structure is obtained.
  • the substantially rectangular pixels are arranged with their long sides parallel to the row direction. In the present specification, a pixel arranged so that the long side is parallel to the row direction is called “horizontal pixel”, and a pixel arranged so that the long side is parallel to the column direction is called “vertically long pixel”.
  • the pixel electrode is divided into a plurality of subpixel electrodes corresponding to the plurality of subpixels. That is, one pixel electrode is composed of a plurality of subpixel electrodes.
  • a plurality of subpixel electrodes may be provided for each pixel.
  • the pixel electrode may be composed of a plurality of subpixel electrodes in order to easily repair a short circuit defect between the pixel electrode and the counter electrode, or to make the short circuit defect inconspicuous. In this case, the same voltage is supplied to the plurality of subpixel electrodes included in each pixel.
  • the above auxiliary structure is formed in order to suppress the alignment disorder of the liquid crystal molecules near the edge of the pixel electrode or the subpixel electrode (not limited to the multi-pixel structure), for example, transmission There is a problem of loss of rate.
  • the present invention has been made to solve the above-described problem, and an object of the present invention is to reduce the ratio of the parasitic capacitance Csd to the pixel capacitance Cpix and / or the edge of the pixel electrode without providing the auxiliary structure described above. It is an object to provide an MVA type liquid crystal display device capable of suppressing a reduction in display quality due to disorder of alignment of liquid crystal molecules in the vicinity of the liquid crystal display.
  • the liquid crystal display device of the present invention includes a plurality of pixels arranged in a matrix having rows and columns, and each of the plurality of pixels includes a first substrate, a second substrate, the first substrate, and the A vertically aligned liquid crystal layer provided between the second substrate, at least one first electrode formed on the first substrate, and facing the at least one first electrode through the liquid crystal layer.
  • a slit formed in one electrode, and the second domain regulating structure is a slit formed in the second electrode or a dielectric protrusion formed on the liquid crystal layer side of the second electrode,
  • the domain regulatory structure is the first A first linear component extending in a first direction when viewed from a direction perpendicular to the plate, and a second linear component extending in a second direction that is substantially 90 ° different from the first direction;
  • Has a third linear component extending in the first direction and a fourth linear component extending in the second direction, and at least one of the first and second linear components or the third and fourth linear components is A plurality of the first linear components and the third linear components are alternately arranged when viewed from a direction perpendicular to the first substrate, and the second linear component and the fourth straight line are arranged.
  • the components are alternately arranged, and when a voltage is applied to the liquid crystal layer of any of the plurality of pixels, the first linear component and the third linear component and the first linear component There is an orientation in which the liquid crystal molecules fall between the two linear components and the fourth linear component.
  • An MVA type liquid crystal display device that forms four domains different from each other by about 90 °, wherein each of the plurality of pixels is a horizontally long pixel having a length in a row direction longer than a length in a column direction.
  • Each of the first electrodes includes two first electrodes arranged on the left and right along the row direction. The two first electrodes included in each pixel are typically disposed between adjacent source bus lines in the row direction.
  • the first electrode is basically defined by the outer edge of the conductive layer constituting the electrode, and has no relation to the potential (the first electrode has a slit (elongated strip-like shape) continuous from the outer edge. If a notch is formed, the slit is considered to be included in the first electrode).
  • the first electrode when viewed from the liquid crystal layer side, when the outer edges of two conductive layers (for example, ITO layer) are independent from each other, substantially the same voltage is supplied to the two conductive layers through the drain of one TFT. Even in such a case, the two conductive layers constitute two first electrodes.
  • the number of TFTs connected to the conductive layer is independent of the number of first electrodes.
  • the first electrode is a pixel electrode, and each subpixel electrode corresponds to the first electrode when each pixel has a plurality of subpixel electrodes, such as a liquid crystal display device having a multi-pixel structure.
  • At least one of the two first electrodes has a first corner including a first edge parallel to the row direction and a second edge parallel to the column direction
  • the first One substrate further includes an electrode layer that overlaps a part of at least one of the first edge and the second edge of the first corner.
  • the electrode layer may be disposed so as to overlap a part of the first edge and a part of the second edge of the first corner.
  • the liquid crystal display device has two auxiliary capacitors corresponding to each of the plurality of pixels, and each of the two auxiliary capacitors is electrically connected to one of the two first electrodes. And the auxiliary capacitance electrode facing the auxiliary capacitance electrode via an insulating layer, and the auxiliary capacitance electrodes of the two auxiliary capacitances are separated from each other and are connected to each other through different branch lines. A predetermined voltage is supplied.
  • the liquid crystal display device further includes an auxiliary capacitor corresponding to each of the plurality of pixels, and the auxiliary capacitor includes an auxiliary capacitor electrode electrically connected to the at least one first electrode;
  • a storage capacitor counter electrode is provided opposite to the storage capacitor electrode via an insulating layer, and the electrode layer is the storage capacitor counter electrode or storage capacitor electrode.
  • the liquid crystal display device has two auxiliary capacitors corresponding to each of the plurality of pixels, and each of the two auxiliary capacitors is electrically connected to one of the two first electrodes.
  • an auxiliary capacitance counter electrode facing the auxiliary capacitance electrode via an insulating layer, the electrode layer being the auxiliary capacitance counter electrode or the auxiliary capacitance electrode, wherein the two first electrodes
  • the right edge of the left first electrode has a first protrusion protruding rightward, and the left edge of the right first electrode of the two first electrodes protrudes leftward. It has a convex portion, and the right end edge of the first convex portion and the left end edge of the second convex portion overlap the auxiliary capacitance electrode or the auxiliary capacitance counter electrode.
  • the electrode layer overlaps a part of the first domain restriction structure or the second domain restriction structure.
  • the at least one first electrode has an edge parallel to the slit of the at least one first electrode.
  • an edge parallel to the slit of the at least one first electrode intersects an edge parallel to the column direction and an edge parallel to the row direction of the at least one first electrode.
  • Another liquid crystal display device of the present invention includes a plurality of pixels arranged in a matrix having rows and columns, and each of the plurality of pixels includes a first substrate, a second substrate, and the first substrate. And the second substrate, a vertically aligned liquid crystal layer, at least one first electrode formed on the first substrate, and the at least one first electrode through the liquid crystal layer A second domain electrode; a first domain regulating structure formed on the second substrate; and a second domain regulating structure formed on the second substrate.
  • a slit formed in one of the first electrodes, and the second domain regulating structure is a slit formed in the second electrode or a dielectric protrusion formed on the liquid crystal layer side of the second electrode
  • the first domain regulatory structure is A first linear component extending in a first direction when viewed from a direction perpendicular to one substrate, and a second linear component extending in a second direction that is substantially 90 ° different from the first direction, the second domain restriction
  • the structure includes a third linear component extending in the first direction and a fourth linear component extending in the second direction, and at least one of the first and second linear components or the third and fourth linear components.
  • the first linear component and the third linear component are alternately arranged when viewed from a direction perpendicular to the first substrate, and the second linear component and the fourth linear component are arranged.
  • the linear components are alternately arranged, and when a voltage is applied to the liquid crystal layer of an arbitrary pixel of the plurality of pixels, between the first linear component and the third linear component and the The liquid crystal molecules fall between the second linear component and the fourth linear component
  • An MVA type liquid crystal display device forming four domains whose positions are different from each other by about 90 °, wherein each of the plurality of pixels is a horizontally long pixel whose length in the row direction is longer than the length in the column direction,
  • the first direction and the second direction are directions intersecting the row direction and the column direction, and the at least one first electrode is the at least one when viewed from a direction perpendicular to the first substrate.
  • a first portion which is a portion where an edge of one first electrode and the slit intersect, or a portion where an edge of the at least one first electrode and an extension line of the slit closest to the edge intersect, A portion adjacent to the first portion of at least one first electrode and intersecting an edge of the at least one first electrode and the second domain regulating structure, or the at least one first
  • the portion where the extension line of the second domain regulating structure which is closest to the pole and its edge is sandwiched between the second portion is a portion that intersects has an extending portion projecting in the column direction.
  • the at least one first electrode includes two first electrodes arranged on the left and right along the row direction.
  • the second substrate further includes a black matrix, and when viewed from a direction perpendicular to the first substrate, the leading end in the column direction of the extending portion overlaps the black matrix.
  • the extended portion of the at least one first electrode includes the slit intersecting the edge of the first portion or the slit intersecting the edge of the first portion. It has an edge parallel to the extending direction.
  • the edge of the extended portion of the at least one first electrode is continuous with the edge of the slit.
  • the extending portion has an edge parallel to the row direction or the column direction.
  • the extending portion is in the vicinity of a corner portion of the at least one first electrode.
  • the at least one first electrode has a notch at an edge facing the extending portion of the at least one pixel electrode of a pixel adjacent in the row direction.
  • the notch has an edge parallel to the first direction or the second direction.
  • the ratio of the parasitic capacitance Csd to the pixel capacitance Cpix is suppressed, and / or the deterioration of display quality due to the alignment disorder of the liquid crystal molecules in the vicinity of the edge of the pixel electrode is suppressed without providing the auxiliary structure described above.
  • An MVA type liquid crystal display device capable of performing the above is provided.
  • the first substrate has the TFT and the first electrode (subpixel electrode), and the second substrate has the second electrode (counter electrode).
  • the first domain regulating structure formed on the first substrate is a slit formed on the first electrode
  • the second domain regulating structure formed on the second substrate is formed on the liquid crystal layer side of the second electrode. Dielectric protrusion.
  • a slit formed in the second electrode may be used.
  • FIG. 1 is a plan view schematically showing a basic configuration example of the LCD 100A, and one pixel (m rows and n columns) of a plurality of pixels arranged in a matrix form in the LCD 100A and adjacent pixels. Some of them are shown.
  • the LCD 100A includes first electrodes (subpixel electrodes) 21a and 21b formed on a first substrate, and a second electrode (opposite electrode, not shown) formed on a second substrate facing the first electrodes 21a and 21b. And a plurality of pixels having a vertical alignment type liquid crystal layer (not shown) provided between the first electrodes 21a and 21b and the second electrode.
  • the second electrode is provided in common for a plurality of pixels, and is formed on the entire surface in FIG.
  • the vertical alignment type liquid crystal layer allows liquid crystal molecules having negative dielectric anisotropy to be substantially perpendicular to the surfaces of the first electrodes 21a and 21b and the second electrode (for example, 87 ° or more and 90 ° or less) when no voltage is applied. Oriented. Typically, it is obtained by providing a vertical alignment film (not shown) on the surface of each of the first electrodes 21a and 21b and the second electrode (and the dielectric protrusion) on the liquid crystal layer side.
  • the LCD 100A has horizontally long pixels arranged so that the long sides of the substantially rectangular pixels are parallel to the row direction. As a result, as will be described later, the ratio of the parasitic capacitance Csd between the first electrodes 21a and 21b and the source bus line to the pixel capacitance Cpix is smaller than that of a conventional LCD having vertically long pixels.
  • the two first electrodes 21a and 21b provided in each pixel of the LCD 100A are connected to the source bus line 13 through one TFT 14 (m, n).
  • the TFT 14 is ON / OFF controlled by a gate signal supplied from the gate bus line 12 to the gate.
  • the first electrodes 21a and 21b are connected to the auxiliary capacitance electrode 16c, which is an extended portion of the drain of the TFT 14, and the drain lead-out wiring 16, in the contact holes 17a and 17b, respectively.
  • the TFT 14 When the TFT 14 is turned on, the source signal voltage supplied from the source bus line 13 is supplied to the first electrodes 21a and 21b.
  • the pixel structure of the LCD 100A is not a multi-pixel structure.
  • the pixel electrode has a first electrode 21a and a first electrode 21b arranged on the left and right in the row direction. Between the first electrode 21a and the first electrode 21b, an auxiliary capacitance electrode 16c and an auxiliary capacitance counter electrode (formed integrally) which is an extended portion of the CS bus line 15 are formed. Since the auxiliary capacitance counter electrode has substantially the same shape as the auxiliary capacitance electrode 16c, illustration thereof is omitted here.
  • the auxiliary capacitance counter electrode forms an auxiliary capacitance (CS) with the auxiliary capacitance electrode 16c opposed via the insulating layer (gate insulating layer).
  • the contact holes 17a and 17b are formed on the auxiliary capacitor.
  • the auxiliary capacitance counter electrode and the auxiliary capacitance electrode 16c are formed so as to overlap with the lower right corner of the first electrode 21a including an edge parallel to the row direction and an edge parallel to the column direction. That is, the storage capacitor counter electrode overlaps at least a part of the edge parallel to the row direction of the corner and at least a part of the edge parallel to the column direction of the corner (here, overlaps both edges). ing). Further, the auxiliary capacitance counter electrode and the auxiliary capacitance electrode 16c are formed so as to overlap with the gap between the first electrode 21a and the first electrode 21b.
  • the portion that overlaps the black matrix 52 is shielded by the black matrix 52, so that the auxiliary capacitance counter electrode and the auxiliary capacitance electrode 16c are provided. Not.
  • auxiliary capacitor counter electrode formed of the gate metal layer and the auxiliary capacitor electrode 16c formed of the source metal layer are generally formed of a light-shielding film (metal film), these electrode layers are used as the light-shielding layer. Can be used as In addition, although the example which used the auxiliary capacity counter electrode and the auxiliary capacity electrode 16c for the light shielding layer was shown here, any one may be used and another electrode layer may be used. When electrode layers formed on the TFT substrate such as the auxiliary capacitor counter electrode and the auxiliary capacitor electrode 16c are used, it is not necessary to separately form a light shielding layer, and an area that cannot be used for display is actively used as a light shielding layer.
  • the gate metal layer refers to a layer including components formed using a metal film (including a laminated film) for forming a gate bus line and a gate electrode.
  • a source metal layer is a source metal layer. A layer including a component formed using a metal film (including a laminated film) for forming a source bus line and a source electrode.
  • the right edge of the first electrode 21a has a first protrusion protruding rightward
  • the left edge of the first electrode 21b has a second protrusion protruding leftward.
  • the right end edge of the first convex portion of the first electrode 21a overlaps the auxiliary capacitance electrode 16c and the auxiliary capacitance counter electrode
  • the left end edge of the second convex portion of the first electrode 21b is the auxiliary capacitance electrode 16c and the auxiliary capacitance electrode. It overlaps the capacitive counter electrode.
  • a contact hole 17a is formed in a region where the first convex portion of the first electrode 21a overlaps the storage capacitor counter electrode, and the first electrode 21a is connected to the storage capacitor electrode 16c in the contact hole 17a.
  • a contact hole 17b is formed in a region where the second convex portion of the first electrode 21b overlaps the auxiliary capacitance counter electrode, and the first electrode 21b is connected to the auxiliary capacitance electrode 16c in the contact hole 17b.
  • the contact holes 17a and 17b are formed in an interlayer insulating film (for example, a transparent resin layer) provided between the auxiliary capacitance electrode 16c (source metal layer) and the first electrodes 21a and 21b.
  • the auxiliary capacitance electrode 16c and the auxiliary capacitance counter electrode shield light. Since the area (particularly the width in the row direction) of the region to be formed can be reduced, the effective aperture ratio can be increased. That is, the LCD 100A has a smaller area shielded by the auxiliary capacitance electrode 16c and the auxiliary capacitance counter electrode than the LCD 100D shown in FIG.
  • the slits 22 are formed as first domain restricting structures on the first electrodes 21a and 21b, and the dielectric protrusions 44 are formed as second domain restricting structures on the liquid crystal layer side of the second electrodes.
  • the dielectric protrusions 44 and the columnar spacers are formed on the second electrode (counter electrode) of the second substrate using, for example, a photosensitive resin.
  • the slits 22 of the first electrodes 21a and 21b which are the first domain restricting structure, have a first linear component 22a extending in the first direction when viewed from a direction perpendicular to the first substrate, and approximately 90 in the first direction. And a second linear component 22b extending in different second directions.
  • the first electrode 21a has only the first linear component 22a, and the first electrode 21b has only the second linear component 22b.
  • the first electrode 21a has edges 21ea1 and 21ea2 parallel to the slit 22a, and the first electrode 21b has edges 21eb1 and 21eb2 parallel to the slit 22b.
  • the first direction and the second direction are directions that intersect the row direction and the column direction.
  • the azimuth angle in the first direction is 135 ° (or 315 °)
  • the azimuth angle in the second direction is 225 ° (or 45 °).
  • the polarization axes of the two polarizing plates arranged in crossed Nicols via the liquid crystal layer are arranged in the row direction (horizontal direction) and the column direction (vertical direction).
  • the dielectric protrusion 44 formed on the liquid crystal layer side of the second electrode (not shown), which is the second domain regulating structure, has third linear components 44a1 and 44a2 (44a) extending in the first direction and in the second direction. It has the 4th linear component 44b1 and 44b2 (44b) which extend.
  • the first linear component 22a and the two third linear components 44a1 and 44a2 are alternately arranged, and the second linear component 22b and the two fourth straight lines are arranged.
  • Components 44b1 and 44b2 are arranged alternately. Therefore, when a voltage is applied to the liquid crystal layer of the pixel, between the first linear component 22a and the third linear components 44a1 and 44a2, and between the second linear component 22b and the fourth linear components 44b1 and 44b2.
  • Four domains in which the directions in which the liquid crystal molecules are tilted differ from each other by about 90 ° are formed.
  • the linear first and second domain regulating structures exhibit an orientation regulating force so that the liquid crystal molecules are tilted in a direction perpendicular to the extending direction of the respective linear components, and are thus arranged in parallel with a certain interval.
  • the liquid crystal molecules between the linear components fall almost uniformly in the same direction.
  • the edges 21ea1 and 21ea2 of the first electrode 21a and the edges 21eb1 and 21eb2 of the first electrode 21b operate in the same manner as in the first domain restriction structure.
  • the dielectric protrusion 44a2 and the dielectric protrusion 44b2 are connected, but the dielectric protrusion 44a2 and the dielectric protrusion 44b2 may be separated on the storage capacitor counter electrode.
  • the liquid crystal material when the liquid crystal material is injected, the liquid crystal material can flow and expand in the gap between the dielectric protrusion 44a2 and the dielectric protrusion 44b2, so that the liquid crystal material can be stably injected. I can do it.
  • the alignment film can be easily applied uniformly.
  • the dielectric protrusions 44a2 and the dielectric protrusions 44b2 are arranged so that the edges parallel to the column direction face each other, and the gap between these edges is preferably less than 8 ⁇ m. When the gap between the edges of the dielectric protrusion 44a2 and the dielectric protrusion 44b2 is 8 ⁇ m or more, a region where the alignment of liquid crystal molecules is disturbed becomes unnecessarily large.
  • the domain restriction structure included in the liquid crystal display device according to the embodiment illustrated here is basically the same as the domain restriction structure included in the LCD 100A, and may be omitted in the following description.
  • the domain restriction structure included in the liquid crystal display device according to the embodiment of the present invention is not limited to this.
  • the second domain regulation structure may be a slit.
  • the case where there is one first and second linear component and two third and fourth linear components is illustrated, but the first and second linear components or the third and fourth linear components are illustrated.
  • a plurality of at least one of the first linear component and the third linear component are alternately arranged when viewed from a direction perpendicular to the first substrate, and the second linear component and the fourth linear component May be arranged alternately.
  • the slits are configured as a plurality of slits arranged in a line (in other words, a portion where a conductive layer exists is provided between the slits), the effect of stabilizing the alignment of liquid crystal molecules in the slits can be obtained. It can.
  • the slit forms an oblique electric field along its edge, but does not exert an alignment regulating force on the liquid crystal molecules located immediately above the slit, or the alignment regulating force is weak. Therefore, for example, if the slit is long, the alignment of the liquid crystal molecules located immediately above the slit may become unstable, and problems such as a slow response speed may occur.
  • the alignment of the liquid crystal molecules can be stabilized.
  • the gap between the slits arranged in a line is preferably less than 8 ⁇ m. When the gap is 8 ⁇ m or more, the influence of the orientation of the liquid crystal molecules on the portion where the conductive layer constituting the gap between the slits is exerted on the display becomes too large, and the display luminance may be lowered.
  • the plurality of slits arranged in a row preferably have two or more portions where the conductive layer exists on a line along the row of slits. This is because the first electrode 21a or 21b reduces the risk of being cut at the portion where the slit is formed. For example, as in the LCD 100A shown in FIG. 1, when one (elongated) slit 22a continuous with the edge of the first electrode 21a is formed, there is only one conductive layer on the line along the slit 22a. Therefore, when a disconnection occurs at the location, about half of the first electrode 21a does not function as an electrode.
  • the ratio of the parasitic capacitance Csd between the first electrodes 21a and 21b of the LCD 100A and the source bus line 13 to the pixel capacitance Cpix is smaller than that of a conventional LCD having vertically long pixels.
  • the parasitic capacitance Csd of the first electrodes 21a and 21b increases as the first electrodes 21a and 21b and the source bus line 13 come close to each other via a dielectric. This corresponds to a decrease in the thickness of the dielectric layer forming the capacitor. Further, the parasitic capacitance Csd of the first electrodes 21a and 21b increases as the portion where the first electrodes 21a and 21b and the source bus line 13 are close to each other becomes longer. This corresponds to an increase in the area of the pair of electrodes forming the capacitor.
  • the distance between the first electrodes 21a and 21b and the source bus line 13 is preferably small in order to increase the effective aperture ratio. That is, even if the distance between the first electrodes 21a and 21b and the source bus line 13 is not increased or the distance between the first electrodes 21a and 21b and the source bus line 13 is reduced, the first electrodes 21a and 21b It is preferable to sufficiently reduce the parasitic capacitance Csd.
  • the pixel of the LCD 100A is a horizontally long pixel, the length of the portion where the first electrodes 21a and 21b are close to the source bus line 13 is small, so the parasitic capacitance Csd between the first electrodes 21a and 21b and the source bus line 13 is small.
  • the ratio of the pixel capacitance to the pixel capacitance Cpix is smaller than that in the case of a vertically long pixel.
  • the edge 21ea1 of the first electrode 21a intersects with the edge parallel to the column direction of the first electrode 21a and the edge parallel to the row direction, that is, formed so as to cut off the corner of the first electrode 21a. Therefore, the length D1a of the edge 21aas (the portion close to the source bus line 13 (n)) extending in the column direction of the first electrode 21a is shortened by the length L2.
  • the edge 21eb1 of the first electrode 21b is formed to intersect the edge parallel to the column direction of the first electrode 21b and the edge parallel to the row direction, that is, to cut out the corner of the first electrode 21b. Therefore, the length D1b of the edge (the portion close to the source bus line 13 (n + 1)) 21ebs extending in the column direction of the first electrode 21b is shortened by the length L2.
  • the edge 21ea1 of the first electrode 21a intersects the edge parallel to the row direction of the first electrode 21a, the edge parallel to the row direction of the first electrode 21a (close to the gate bus line 12 (m))
  • the length D2a is shorter by L2 (here, the notched portion is a right-angled isosceles triangle having a base angle of 45 degrees).
  • the edge 21eb1 of the first electrode 21b intersects the edge parallel to the row direction of the first electrode 21b, the edge parallel to the row direction of the first electrode 21b (the gate bus line 12 (m
  • the length D2b of the portion adjacent to) is also shortened by L2.
  • the first electrodes 21a and 21b of pixels (m + 1 row) adjacent in the column direction are arranged so as to overlap the gate bus line 12 (m) (in FIG. 1, m + 1 on the gate bus line 12 (m)).
  • the first electrodes 21a and 21b of the pixels in the row overlap), whereby the potential of the gate bus line 12 (m) affects the Cgd of the first electrodes 21a and 21b of the pixels in the m row (referred to as the own stage). That is restrained.
  • the first electrodes 21a and 21b are stacked over the first electrode 21a and the first electrode 21b.
  • a shield electrode may be provided.
  • the potential of the shield electrode is, for example, equal to the potential of the first electrodes 21a and 21b of the pixel at its own stage, and is connected to the drain lead wiring 16, for example.
  • the dimensions of the pixel of the LCD 100A are, for example, the size of the rectangular area when the pixel pitch in the row direction is 190.5 ⁇ m, the column direction pitch is 63.5 ⁇ m, and the first electrodes 21a and 21b are integrated and not cut out.
  • the width of the gate bus line and the source bus line is 5 ⁇ m
  • the length L1 22 ⁇ m
  • the length L2 30.25 ⁇ m
  • the width L3 11 ⁇ m
  • the width L4 9 ⁇ m.
  • the length of the edge 21ea2 of the first electrode 21a and the edge 21eb2 of the first electrode 21b is 44.5 ⁇ m.
  • a drain lead wiring 16 is branched and has branch lines 16a and 16b.
  • the branch line 16a is connected to the auxiliary capacitance electrode 16ca
  • the branch line 16b is connected to the auxiliary capacitance electrode 16cb.
  • the auxiliary capacitance electrode 16ca and the auxiliary capacitance electrode 16cb are separated from each other, and the corresponding auxiliary capacitance counter electrodes (extended portion of the CS bus line, not shown) are similarly separated from each other.
  • Other structures are the same as those of the LCD 100A.
  • the LCD 100B when a short circuit occurs between the first electrode 21a or 21b and the counter electrode, only one of the first electrode 21a and the first electrode 21b is removed from the drain lead wiring 16 by cutting the branch line 16a or 16b. It can be electrically separated. That is, only the first electrode 21a or 21b in which the short circuit has occurred can be separated, and the first electrode 21a or 21b in which the short circuit has not occurred can be operated normally.
  • the LCD 100C is different from the LCD 100A shown in FIG. 1 in that the first electrodes 21a and 21b have extended portions 21aE1, 21aE2 (C), and 21bE1 protruding in the column direction.
  • the black matrix 52 is different from the LCD 100A in that the black matrix 52 has a portion 52a extending corresponding to the extending portion 21aE1 and a portion 52b extending corresponding to the extending portion 21bE1. .
  • These extended portions 21aE1, 21aE2 (C), 21bE1 are portions where the edges of the first electrodes 21a, 21b intersect with the slits 22 when viewed from the direction perpendicular to the first substrate, or the first electrodes 21a, A first portion that is an intersection of an edge of 21b and an extension line of the slit 22 closest to the edge; an edge of the first electrodes 21a and 21b adjacent to the first portion of the first electrodes 21a and 21b; Provided at a portion where the dielectric protrusion 44 intersects, or a portion sandwiched between the first electrode 21a, 21b and the second portion where the extension line of the dielectric protrusion 44 closest to the edge intersects. Yes.
  • the first electrode 21a is a first portion where the upper edge of the first electrode 21a intersects with the extension line of the slit 22a, and a portion where the left edge of the first electrode 21a intersects the dielectric protrusion 44a1.
  • a portion sandwiched between the two portions has an extending portion 21aE1 protruding in the column direction (upper side in FIG. 3).
  • the first electrode 21a includes a first portion where the lower edge of the first electrode 21a and the slit 22a intersect, a right (or lower) edge of the first electrode 21a, and an extension line of the dielectric protrusion 44a2.
  • the portion sandwiched between the intersecting second portions has the extending portion 21aE2 (C) protruding in the column direction (right side in FIG. 3).
  • the first electrode 21b is a portion where the upper edge of the first electrode 21b and the extension line of the slit 22b intersect, and the portion where the right edge of the first electrode 21b and the dielectric protrusion 44b1 intersect.
  • the portion sandwiched between the second portions has an extending portion 21bE1 protruding in the column direction (upper side in FIG. 3).
  • the extending portion 21aE1 has an edge parallel to the extending direction (first direction) of the slit 22a where the extension line intersects the edge of the first portion.
  • the extending portion 21aE1 also has an edge parallel to the column direction.
  • the extending portion 21bE1 has an edge parallel to the extending direction (second direction) of the slit 22b where the extension line intersects the edge of the first portion.
  • the extending portion 21bE1 also has an edge parallel to the column direction.
  • the extending portion 21aE2 (C) has an edge parallel to the extending direction (first direction) of the slit 22a intersecting the edge of the first portion, and the edge is continuous with the edge of the slit 22a. Yes.
  • the extending portion 21aE2 (C) also has an edge parallel to the row direction.
  • the extending portions 21aE1, 21aE2 (C), and 21bE1 each have an edge parallel to the extending direction of the corresponding slit 22a or 22b, and such an edge has the same orientation restriction as the corresponding slit. Demonstrate power.
  • the extending portions 21aE1, 21aE2 (C), and 21bE1 also have edges parallel to the row direction or the column direction. Accordingly, in the extending portions 21aE1, 21aE2 (C), and 21bE1, the alignment of the liquid crystal molecules is disturbed at the tip portion in the row direction where these edges intersect.
  • the ends of the extending portions 21aE1, 21aE2 (C), and 21bE1 in the row direction are arranged so as to overlap the black matrix 52. Therefore, even if the orientation of the liquid crystal molecules is disturbed at the leading ends in the row direction of the extending portions 21aE1, 21aE2 (C), and 21bE1, the portions are shielded from light by the black matrix 52, so that the display is not adversely affected.
  • the black matrix 52 is generally formed on the surface of the second substrate on the liquid crystal layer side using a metal layer or a black resin layer.
  • the first electrode is provided with an extending portion that protrudes in the column direction, and the end of the extending portion in the column direction is disposed so as to overlap the black matrix.
  • the LCD 100C has three extending portions 21aE1, 21aE2 (C), and 21bE1 in each pixel.
  • the extending portions 21aE1 and 21bE1 are provided in the vicinity of the corners of the pixels. Here, both are provided at the upper corner of the pixel.
  • the extending portion 21aE2 (C) is provided near the center in the row direction on the lower side of the pixel, and is provided near the corner of the first electrode 21a.
  • the edges 21ea2 and 21eb2 at the upper edges of the first electrodes 21a and 21b are extended portions provided at the lower edges of the first electrodes 21a and 21b of the pixels adjacent to the upper side of the pixels.
  • the notch part which opposes 21aE2 (C) is formed.
  • the distal end portion of the extending portion 21aE2 (C) of the first electrode 21a included in the pixel adjacent to the upper side is disposed so as to be close to or partially included in the notch portion.
  • the protrusion amount to the row direction of an extending part can be enlarged.
  • Cgd increases, so that it is appropriately set in consideration of the balance with the display quality.
  • LCD 100D differs from LCD 100A shown in FIG. 1 in the shape of first electrodes 21a and 21b and the arrangement of auxiliary capacitors.
  • the first electrodes 21a and 21b of the LCD 100D are arranged so as to face each other with a straight side at the center in the row direction of the pixels. In other words, unlike the first electrodes 21a and 21b of the LCD 100A, the first and second convex portions are not provided.
  • the first electrodes 21a and 21b of the LCD 100D have extended portions 21aE2 (D) and 21bE2 (D) near the center in the row direction on the lower side of the pixels.
  • the extension portions 21aE2 (D) and 21bE2 (D) are provided in the vicinity of the corners of the first electrodes 21a and 21b, similarly to the extension portion 21aE2 (C) of the LCD 100C shown in FIG.
  • Alignment of the liquid crystal molecules in the vicinity of the edges of the first electrodes 21a and 21b is performed by pressing a region in which the alignment of the liquid crystal molecules formed in the vicinity of the corners of the first electrodes 21a and 21b is disturbed into a region shielded from light by the black matrix. Reduces display quality degradation due to disturbance.
  • All of the liquid crystal display devices 100A to 100D exemplified above have the two first electrodes 21a and 21b in the pixel, but are not limited thereto.
  • the number of first electrodes on which one pixel is formed may be three or more, or one.
  • a multi-pixel structure may be employed.
  • the multi-pixel structure for example, the configuration described in Patent Document 3 can be employed.
  • the ratio of the parasitic capacitance Csd to the pixel capacitance Cpix is suppressed, and the display quality is deteriorated due to the alignment disorder of the liquid crystal molecules in the vicinity of the edge of the pixel electrode without providing the auxiliary structure described above.
  • An MVA liquid crystal display device capable of suppressing the above is provided.
  • an electrode layer that shields at least a part of the corners of the first electrode (LCDs 100A and 100B) and the first electrode are extended.
  • LCD100D a region where alignment is disturbed by pushing a portion where the alignment is disturbed into a region shielded by a black matrix
  • LCD100C a region where alignment is disturbed by pushing a portion where the alignment is disturbed into a region shielded by a black matrix
  • the present invention is widely applied to MVA type liquid crystal display devices.

Abstract

 本発明のMVA型液晶表示装置(LCD100A)は、液晶分子が倒れる方位が互いに約90°異なる4つのドメインを形成するMVA型の液晶表示装置であって、行および列を有するマトリクス状に配列された複数の画素を有し、行方向の長さが列方向の長さよりも長い横長画素を有し、各画素は、行方向に沿って左右に配列された2つの第1電極(21a、21b)を含む。2つの第1電極(21a、21b)の少なくとも一方は、行方向に平行な第1のエッジと、列方向に平行な第2のエッジとを含む第1の角部を有し、第1基板は、第1の角部の第1のエッジおよび第2のエッジの少なくとも何れか一方の一部と重なる電極層(16c)を更に有することが好ましい。本発明によると、画素電極のエッジの近傍における液晶分子の配向乱れに起因する表示品位の低下を抑制することができる。

Description

液晶表示装置
 本発明は液晶表示装置に関し、特に、MVA型液晶表示装置に関する。
 MVA(Multidomain Vertical Alignment)型液晶表示装置は、TN型液晶表示装置に比べて広い視野角特性を有するので、TV用途等の液晶表示装置に広く利用されている(例えば、特許文献1および2参照)。特許文献1および2の開示内容の全てを参考のために本明細書に援用する。
 MVA型液晶表示装置では、垂直配向型液晶層を挟んで対向する一対の基板の液晶層側に、ドメイン規制構造(配向規制構造ともいわれる。)を設けることによって、ディレクタの配向方向(チルト方向)が異なる複数の液晶ドメインを形成する。ドメイン規制構造としては、電極に設けたスリット(開口部)あるいは電極の液晶層側に形成された誘電体突起(リブ)が用いられている。
 典型的には、一対の基板のそれぞれに、互いに直交する2つの方向に延びる直線状のドメイン規制構造が配置され、基板に垂直な方向からみたとき、一方の基板に形成されたドメイン規制構造と他方の基板に形成されたドメイン規制構造は、平行かつ交互に配置される。その結果、任意の画素の液晶層に電圧が印加されたときに、直線状のドメイン規制構造の間に、液晶分子が倒れる方位(液晶ドメインのディレクタの方位ともいう。)が互いに約90°異なる4つのドメインを形成する。典型的には、クロスニコルに配置された一対の偏光板の偏光軸(透過軸)に対して、液晶ドメインのディレクタの方位角が45°をなす4つの液晶ドメインが形成される。方位角の0°を一方の偏光板の偏光軸の方向(例えば表示面の水平方向(時計の文字盤の3時方向))とし、反時計回りを正の方位とすると、4つの液晶ドメインのディレクタの方位角は、45°、135°、225°、315°となる。以下、方位角の定義は、特に断らない限り、この定義による。
 なお、本明細書における「画素」は、液晶表示装置が表示を行う最小単位を指し、カラー表示装置の場合は、個々の原色(典型的にはR、GまたはB)を表示する最小単位をいい、「ドット」と呼ばれることがある。
 一般に、画素は、行および列を有するマトリクス状に配列されている。ここで、行方向は表示面の水平方向(方位角が0°または180°)をいい、列方向は表示面の垂直方向(方位角が90°または270°)をいう。画素は、画素電極と、液晶層と、液晶層を介して画素電極に対向する対向電極(共通電極)とを有する。画素電極は、行方向に延びるエッジ(辺)と列方向に延びるエッジとを有している。MVA型液晶表示装置が有する互いに直交する2つの方向に延びる直線状のドメイン規制構造は、上記の4つの液晶ドメインを形成するために、例えば方位角45°(225°)と135°(315°)に延びるように設けられる。すなわち、対向電極側に設けられた互いに直交する2つの方向に延びる直線状のドメイン規制構造(またはその延長線)は、画素電極の行方向に延びるエッジまたは列方向に延びるエッジと交差することになる。
 画素電極と対向電極との間に電位差が形成されると、画素電極のエッジの近傍には、斜め電界(フリンジフィールド)が形成される。画素電極のエッジに沿って形成される斜め電界は、液晶分子を画素電極のエッジに直交する方向に倒すように作用する。従って、対向電極側に設けられたドメイン規制構造(またはその延長線)と、画素電極の行方向または列方向に延びるエッジとが交差する付近では、画素電極のエッジの近傍に形成される斜め電界が、ドメイン規制構造によって規制される液晶分子の配向を乱すように作用することになる。液晶分子の配向が乱れると、当然のことながら、表示品位が低下する。
 そこで、特許文献1には、対向電極側に設けられたドメイン規制構造(またはその延長線)と、画素電極の行方向または列方向に延びるエッジとが交差する付近における液晶分子の配向乱れを抑制するために、上記配向乱れが発生する、画素電極のエッジ部分に対向する位置に、当該エッジ部分に平行に延びる直線状の補助構造を設けた構成が開示されている。補助構造は、画素内に設けられることもあれば、画素外に設けられることもある。補助構造は、例えば、対向電極に形成されたスリットまたは対向電極の液晶層側に形成された誘電体突起であり、対向電極側に設けられるドメイン規制構造と同じものが用いられる。すなわち、ドメイン規制構造が対向電極に形成されたスリットの場合には、補助構造としてもスリットが採用され、ドメイン規制構造が対向電極の液晶層側に形成された誘電体突起の場合には、補助構造としても誘電体突起が採用される。
 しかしながら、補助構造(スリットまたは誘電体突起)が形成された部分は表示に寄与しないので、補助構造の少なくとも一部が画素内に存在すると、透過率が低下するという問題がある。また、補助構造によって画素電極のエッジ付近の液晶分子の配向乱れは抑制されるものの、エッジ付近の液晶分子の配向方向は、ドメイン規制構造によって規定されるドメインのディレクタの方向とは異なるので、透過率のロスは避けられない。
 最近、MVA型液晶表示装置のγ特性の視角依存性を改善するために、本出願人は、特許文献3に、1つの画素を明るさの異なる複数の副画素に分割することによりγ特性の視角依存性を改善することができる液晶表示装置および駆動方法を開示している。特に、低階調の表示輝度が所定の輝度よりも高くなる(白っぽくなる)というγ特性の視角依存性を改善することができる。本明細書においてこのような表示あるいは駆動を、面積階調表示、面積階調駆動、マルチ画素表示またはマルチ画素駆動などと呼ぶことがある。特許文献3の開示内容の全てを参考のために本明細書に援用する。
 特許文献3には、1つの画素内の複数の副画素ごとに補助容量を設け、補助容量を構成する補助容量対向電極(CSバスラインに接続されている)を副画素ごとに電気的に独立とし、補助容量対向電極に供給する電圧(補助容量対向電圧という。)を変化させることによって、容量分割を利用して、複数の副画素の液晶層に印加される実効電圧を異ならせる液晶表示装置が開示されている。なお、現在、TV用をはじめ広視野角特性が要求される用途では、MVA型液晶表示装置は、種々の方式でマルチ画素表示が行われている。
 また、特許文献4には、他のマルチ画素構造を有するMVA型液晶表示装置が開示されている。特許文献4の液晶表示装置においては、列方向に延びるソースバスラインと平行にCSバスラインが設けられており、1つの画素内に設けられた2つの副画素電極(特許文献4では、第1、第2画素電極と称されている)と、CSバスラインとが重なる面積を互いに異ならせている。このCSバスラインと副画素電極との重畳面積の違いによって、2つの副画素の補助容量が互いに異なり、マルチ画素構造が得られる。略長方形の画素は長辺を行方向に平行に配置されている。本明細書において、長辺が行方向に平行となるように配置された画素を「横長画素」といい、長辺が列方向に平行となるように配置された画素を「縦長画素」という。
 なお、上述のマルチ画素構造を有する液晶表示装置においては、画素電極は、複数の副画素に対応して複数の副画素電極に分割されている。すなわち、複数の副画素電極によって1つの画素電極が構成されている。このマルチ画素構造とは別の目的で、各画素に、複数の副画素電極が設けられる場合がある。例えば、画素電極と対向電極との短絡不良を修復しやすくする、あるいは、短絡不良を目立ち難くするために、画素電極を複数の副画素電極で構成することがある。この場合、各画素に含まれる複数の副画素電極には同じ電圧が供給される。
特開平11-242225号公報(米国特許第6724452号明細書) 特開2000-155317号公報(米国特許第6879364号明細書) 特開2004-62146号公報(米国特許第6958791号明細書) 特開2008-65334号公報
 上述したように、MVA型液晶表示装置において、画素電極または副画素電極(マルチ画素構造に限らない)のエッジ付近の液晶分子の配向乱れを抑制するために上述の補助構造を形成すると、例えば透過率をロスするという問題がある。
 また、近年、液晶表示装置の高精細化が進み、画素電極または副画素電極(以下、画素電極で代表する)が小さくなるに連れて、画素電極とソースバスラインとの間の寄生容量Csdの、画素容量(液晶容量Clcと補助容量CSとの和)Cpixに対する割合が大きくなっている。画素容量に対する寄生容量の割合が大きくなると、シャドーイングなどが発生し、表示品位が低下するという問題がある。
 本発明は、上記の問題を解決するためになされたものであり、その目的は、寄生容量Csdの画素容量Cpixに対する割合を抑える、および/または、上述の補助構造を設けなくとも画素電極のエッジの近傍における液晶分子の配向乱れに起因する表示品位の低下を抑制することが可能な、MVA型液晶表示装置を提供することにある。
 本発明の液晶表示装置は、行および列を有するマトリクス状に配列された複数の画素を有し、前記複数の画素のそれぞれは、第1基板と、第2基板と、前記第1基板と前記第2基板との間に設けられた垂直配向型の液晶層と、前記第1基板に形成された少なくとも1つの第1電極と、前記少なくとも1つの第1電極に前記液晶層を介して対向する第2電極と、前記第1基板に形成された第1ドメイン規制構造と、前記第2基板に形成された第2ドメイン規制構造とを有し、前記第1ドメイン規制構造は前記少なくとも1つの第1電極に形成されたスリットであり、前記第2ドメイン規制構造は前記第2電極に形成されたスリットまたは前記第2電極の前記液晶層側に形成された誘電体突起であって、前記第1ドメイン規制構造は、前記第1基板に垂直な方向から見たときに第1方向に延びる第1直線成分と、前記第1方向と略90°異なる第2方向に延びる第2直線成分とを有し、前記第2ドメイン規制構造は、前記第1方向に延びる第3直線成分と、前記第2方向に延びる第4直線成分とを有し、前記第1および第2直線成分または前記第3および第4直線成分の少なくとも一方は複数存在し、前記第1基板に垂直な方向から見たときに、前記第1直線成分と前記第3直線成分とは交互に配置されており、且つ、前記第2直線成分と前記第4直線成分とは交互に配置されており、前記複数の画素の内の任意の画素の前記液晶層に電圧が印加されたときに、前記第1直線成分と前記第3直線成分との間および前記第2直線成分と前記第4直線成分との間に、液晶分子が倒れる方位が互いに約90°異なる4つのドメインを形成するMVA型の液晶表示装置であって、前記複数の画素のそれぞれは、行方向の長さが列方向の長さよりも長い横長画素であり、前記少なくとも1つの第1電極は、行方向に沿って左右に配列された2つの第1電極を含む。各画素に含まれる2つの第1電極は、典型的には、行方向に隣接するソースバスラインの間に配置される。
 ここで、第1電極は、基本的にはその電極を構成する導電層の外縁で規定されるものとし、電位とは関係がない(第1電極に、外縁から連続したスリット(細長い短冊状の切欠き)が形成されている場合には、スリットは第1電極内に含まれると考える。)。例えば、液晶層側から見たときに、2つの導電層(例えばITO層)の外縁が互いに独立であるとき、これら2つの導電層が1つのTFTのドレインを介して実質的に同じ電圧が供給される場合であっても、2つの導電層は2つの第1電極を構成する。もちろん、導電層に接続されるTFTの数は、第1電極の数とは無関係である。例えば、第1電極は、画素電極であり、マルチ画素構造を有する液晶表示装置など、各画素が複数の副画素電極を有する場合には、各副画素電極が第1電極に対応する。
 ある実施形態において、前記2つの第1電極の少なくとも一方は、行方向に平行な第1のエッジと、列方向に平行な第2のエッジとを含む第1の角部を有し、前記第1基板は、前記第1の角部の前記第1のエッジおよび前記第2のエッジの少なくとも何れか一方の一部と重なる電極層を更に有する。もちろん、前記第1の角部の前記第1のエッジの一部および前記第2のエッジの一部と重なるように、前記電極層を配置してもよい。
 ある実施形態において、前記液晶表示装置は前記複数の画素のそれぞれに対応する2つの補助容量を有し、前記2つの補助容量はそれぞれ、前記2つの第1電極の1つに電気的に接続された補助容量電極と、絶縁層を介して前記補助容量電極に対向する補助容量対向電極を有し、前記2つの補助容量が有する補助容量電極は、互いに分離されており、互いに異なる支線を介して所定の電圧が供給される。
 ある実施形態において、前記液晶表示装置は前記複数の画素のそれぞれに対応する補助容量を更に有し、前記補助容量は、前記少なくとも1つの第1電極に電気的に接続された補助容量電極と、絶縁層を介して前記補助容量電極に対向する補助容量対向電極を有し、前記電極層は、前記補助容量対向電極または補助容量電極である。
 ある実施形態において、前記液晶表示装置は前記複数の画素のそれぞれに対応する2つの補助容量を有し、前記2つの補助容量はそれぞれ、前記2つの第1電極の1つに電気的に接続された補助容量電極と、絶縁層を介して前記補助容量電極に対向する補助容量対向電極を有し、前記電極層は、前記補助容量対向電極または補助容量電極であって、前記2つの第1電極の内の左側の第1電極の右端のエッジは右側に突き出た第1凸部を有し、前記2つの第1電極の内の右側の第1電極の左端のエッジは左側に突き出た第2凸部を有し、前記第1凸部の右端のエッジおよび前記第2凸部の左端のエッジは、前記補助容量電極または前記補助容量対向電極と重なっている。
 ある実施形態において、前記電極層は、前記第1ドメイン規制構造または前記第2ドメイン規制構造の一部と重なっている。
 ある実施形態において、前記少なくとも1つの第1電極は、前記少なくとも1つの第1電極が有する前記スリットに平行なエッジを有する。
 ある実施形態において、前記少なくとも1つの第1電極が有する前記スリットに平行なエッジは、前記少なくとも1つの第1電極の列方向に平行なエッジと行方向に平行なエッジと交差する。
 本発明の他の液晶表示装置は、行および列を有するマトリクス状に配列された複数の画素を有し、前記複数の画素のそれぞれは、第1基板と、第2基板と、前記第1基板と前記第2基板との間に設けられた垂直配向型の液晶層と、前記第1基板に形成された少なくとも1つの第1電極と、前記少なくとも1つの第1電極に前記液晶層を介して対向する第2電極と、前記第1基板に形成された第1ドメイン規制構造と、前記第2基板に形成された第2ドメイン規制構造とを有し、前記第1ドメイン規制構造は前記少なくとも1つの第1電極に形成されたスリットであり、前記第2ドメイン規制構造は前記第2電極に形成されたスリットまたは前記第2電極の前記液晶層側に形成された誘電体突起であって、前記第1ドメイン規制構造は、前記第1基板に垂直な方向から見たときに第1方向に延びる第1直線成分と、前記第1方向と略90°異なる第2方向に延びる第2直線成分とを有し、前記第2ドメイン規制構造は、前記第1方向に延びる第3直線成分と、前記第2方向に延びる第4直線成分とを有し、前記第1および第2直線成分または前記第3および第4直線成分の少なくとも一方は複数存在し、前記第1基板に垂直な方向から見たときに、前記第1直線成分と前記第3直線成分とは交互に配置されており、且つ、前記第2直線成分と前記第4直線成分とは交互に配置されており、前記複数の画素の内の任意の画素の前記液晶層に電圧が印加されたときに、前記第1直線成分と前記第3直線成分との間および前記第2直線成分と前記第4直線成分との間に、液晶分子が倒れる方位が互いに約90°異なる4つのドメインを形成するMVA型の液晶表示装置であって、前記複数の画素のそれぞれは、行方向の長さが列方向の長さよりも長い横長画素であって、前記第1方向および前記第2方向は、前記行方向および前記列方向と交差する方向であり、前記少なくとも1つの第1電極は、前記第1基板に垂直な方向から見たとき、前記少なくとも1つの第1電極のエッジと前記スリットとが交差する部分、または前記少なくとも1つの第1電極のエッジとそのエッジに最も近接する前記スリットの延長線とが交差する部分である第1部分と、前記少なくとも1つの第1電極の前記第1部分に隣接し、前記少なくとも1つの第1電極のエッジと前記第2ドメイン規制構造とが交差する部分、または前記少なくとも1つの第1電極とそのエッジに最も近接する前記第2ドメイン規制構造の延長線とが交差する部分である第2部分とによって挟まれる部分が、列方向に突き出た延設部を有する。
 ある実施形態において、前記少なくとも1つの第1電極は、行方向に沿って左右に配列された2つの第1電極を含む。
 ある実施形態において、前記第2基板はブラックマトリクスを更に有し、前記第1基板に垂直な方向から見たとき、前記延設部の列方向の先端は、前記ブラックマトリクスと重なっている。
 ある実施形態において、前記少なくとも1つの第1電極が有する前記延設部は、前記第1部分の前記エッジに交差する前記スリットまたは前記第1部分の前記エッジに前記延長線が交差する前記スリットの延びる方向に平行なエッジを有している。
 ある実施形態において、前記少なくとも1つの第1電極が有する前記延設部の前記エッジは、前記スリットのエッジと連続している。
 ある実施形態において、前記延設部は、行方向または列方向に平行なエッジを有する。
 ある実施形態において、前記延設部は、前記少なくとも1つの第1電極の角部の近傍にある。
 ある実施形態において、前記少なくとも1つの第1電極は、行方向に隣接する画素の前記少なくとも1つの画素電極の前記延設部に対向するエッジに切欠き部を有する。
 ある実施形態において、前記切欠き部は、前記第1方向または第2方向に平行なエッジを有する。
 本発明によると、寄生容量Csdの画素容量Cpixに対する割合を抑える、および/または、上述の補助構造を設けなくとも画素電極のエッジの近傍における液晶分子の配向乱れに起因する表示品位の低下を抑制することが可能な、MVA型液晶表示装置が提供される。
本発明による実施形態のLCD100Aの構成を示す平面図である。 本発明による他の実施形態のLCD100Bの構成を示す平面図である。 本発明によるさらに他の実施形態のLCD100Cの構成を示す平面図である。 本発明によるさらに他の実施形態のLCD100Dの構成を示す平面図である。
 以下、図面を参照して、本発明による実施形態のMVA型液晶表示装置(以下、LCDと略す。)の構成を説明する。なお、本発明は、例示する実施形態に限定されるものではない。
 以下に例示する実施形態のMVA型LCDは、第1基板がTFTおよび第1電極(副画素電極)を有し、第2基板が第2電極(対向電極)を有する。また、第1基板に形成された第1ドメイン規制構造は、第1電極に形成されたスリットであり、第2基板に形成された第2ドメイン規制構造は第2電極の液晶層側に形成された誘電体突起である。第2ドメイン規制構造としては、第2電極に形成されたスリットを用いてもよい。
 まず、図1を参照して、本発明による実施形態のMVA型LCD100Aの構成を説明する。図1は、LCD100Aの基本的な構成例を模式的に示す平面図であり、LCD100Aが有するマトリスク状に配列された複数の画素の内の1つの画素(m行n列)と、隣接する画素の一部を示している。
 LCD100Aは、第1基板に形成された第1電極(副画素電極)21aおよび21bと、第1電極21aおよび21bに対向する、第2基板に形成された第2電極(対向電極、不図示)と、第1電極21aおよび21bと第2電極との間に設けられた垂直配向型液晶層(不図示)とを有する複数の画素を備える。第2電極は、複数の画素に共通に設けられており、図1中の全面に形成されている。
 ここで、垂直配向型液晶層は、電圧無印加時に、誘電異方性が負の液晶分子を第1電極21a、21bおよび第2電極の面に略垂直(例えば87°以上90°以下)に配向させたものである。典型的には、第1電極21a、21bおよび第2電極(および誘電体突起)のそれぞれの液晶層側の表面に垂直配向膜(不図示)を設けることによって得られる。
 LCD100Aは、略長方形の画素の長辺が行方向に平行となるように配置された横長画素を有している。その結果、後述するように、第1電極21a、21bとソースバスラインとの間の寄生容量Csdの画素容量Cpixに対する割合が、縦長画素を有する従来のLCDよりも小さい。
 LCD100Aの各画素に設けられている2つの第1電極21aおよび21bは、1つのTFT14(m、n)を介してソースバスライン13に接続されている。TFT14は、ゲートバスライン12からゲートに供給されるゲート信号によって、ON/OFF制御される。第1電極21aおよび21bは、TFT14のドレインとドレイン引出し配線16の延設部である補助容量電極16cとコンタクトホール17aおよび17b内でそれぞれ接続されている。TFT14がON状態にされると、ソースバスライン13から供給されるソース信号電圧が、第1電極21aおよび21bに供給される。LCD100Aの画素構造は、マルチ画素構造ではない。
 各画素において、画素電極は、行方向に沿って左右に配置されている第1電極21aと第1電極21bとを有している。第1電極21aと第1電極21bとの間には、補助容量電極16cとCSバスライン15の延設部である補助容量対向電極(一体に形成されている)とが形成されている。補助容量対向電極は、補助容量電極16cと概ね同じ形状を有しているので、ここでは図示を省略する。補助容量対向電極は、絶縁層(ゲート絶縁層)を介して対向する補助容量電極16cと、補助容量(CS)を形成している。コンタクトホール17aおよび17bは、補助容量の上に形成されている。
 補助容量対向電極および補助容量電極16cは、行方向に平行なエッジと列方向に平行なエッジとを含む、第1電極21aの右下の角部と重なるように形成されている。すなわち、補助容量対向電極が、上記角部の行方向に平行なエッジの少なくとも一部と、上記角部の列方向に平行なエッジの少なくとも一部と重なっている(ここでは両方のエッジと重なっている)。また、補助容量対向電極および補助容量電極16cは、第1電極21aと第1電極21bとの間隙にも重なるように形成されている。なお、第1電極21aおよび第1電極21bの行方向に平行なエッジの内で、ブラックマトリクス52と重なる部分は、ブラックマトリクス52によって遮光されるので、補助容量対向電極および補助容量電極16cを設けていない。
 ゲートメタル層で形成される補助容量対向電極や、ソースメタル層で形成される補助容量電極16cは、一般に遮光性を有する膜(金属膜)から形成されているので、これらの電極層を遮光層として利用することができる。なお、ここでは、補助容量対向電極および補助容量電極16cを遮光層に用いた例を示したが、いずれか一方を用いてもよいし、他の電極層を用いてもよい。補助容量対向電極や補助容量電極16cなど、TFT基板に形成される電極層を用いると、別途遮光層を形成する必要がなく、且つ、本来、表示に利用できない領域を遮光層として積極的に利用できるので、画素の有効開口率(表示領域の面積の内で実際に表示に用いられる光が透過する面積の割合)の低下を抑制することが出来る。ここで、ゲートメタル層とは、ゲートバスラインおよびゲート電極を形成するためのメタル膜(積層膜を含む)を用いて形成される構成要素を含む層を指し、同様に、ソースメタル層とはソースバスラインおよびソース電極を形成するためのメタル膜(積層膜を含む)を用いて形成される構成要素を含む層を指す。
 第1電極21aの右端のエッジは右側に突き出た第1凸部を有し、第1電極21bの左端のエッジは左側に突き出た第2凸部を有している。第1電極21aの第1凸部の右端のエッジは、補助容量電極16cおよび補助容量対向電極と重なっており、第1電極21bの第2凸部の左端のエッジは、補助容量電極16cおよび補助容量対向電極と重なっている。第1電極21aの第1凸部が補助容量対向電極と重なる領域にコンタクトホール17aが形成されており、コンタクトホール17a内で、第1電極21aが補助容量電極16cに接続されている。また、第1電極21bの第2凸部が補助容量対向電極と重なる領域にコンタクトホール17bが形成されており、コンタクトホール17b内で、第1電極21bが補助容量電極16cに接続されている。コンタクトホール17a、17bは、補助容量電極16c(ソースメタル層)と第1電極21a、21bとの間に設けられている層間絶縁膜(例えば、透明樹脂層)に形成されている。
 図1に示すように、第1電極21aの第1凸部と、第1電極21bの第2凸部とが、行方向において噛み合うように配置すると、補助容量電極16cおよび補助容量対向電極によって遮光される領域の面積(特に行方向の幅)を小さくできるので、有効開口率を増大させることができる。すなわち、LCD100Aは、例えば図4に示すLCD100Dよりも、補助容量電極16cおよび補助容量対向電極によって遮光される領域が小さい。
 次に、LCD100Aのドメイン規制構造の構成を説明する。
 第1電極21a、21bには第1ドメイン規制構造としてスリット22が形成されており、第2電極の液晶層側には第2ドメイン規制構造として、誘電体突起44が形成されている。誘電体突起44および不図示の柱状スペーサは、例えば、感光性樹脂を用いて第2基板の第2電極(対向電極)上に形成される。
 第1ドメイン規制構造である、第1電極21a、21bが有するスリット22は、第1基板に垂直な方向から見たときに第1方向に延びる第1直線成分22aと、第1方向と略90°異なる第2方向に延びる第2直線成分22bとを有している。第1電極21aは第1直線成分22aだけを有し、第1電極21bは第2直線成分22bだけを有している。また、第1電極21aは、スリット22aに平行なエッジ21ea1、21ea2を有しており、第1電極21bはスリット22bに平行なエッジ21eb1、21eb2を有している。第1方向および第2方向は、行方向および列方向と交差する方向である。ここで、第1方向の方位角は135°(または315°)であり、第2方向の方位角は225°(または45°)である。液晶層を介してクロスニコルに配置される2つの偏光板の偏光軸は、行方向(水平方向)と列方向(垂直方向)に配置される。
 第2ドメイン規制構造である、第2電極(不図示)の液晶層側に形成された誘電体突起44は、第1方向に延びる第3直線成分44a1および44a2(44a)と、第2方向に延びる第4直線成分44b1および44b2(44b)とを有している。
 第1基板に垂直な方向から見たときに、第1直線成分22aと2つの第3直線成分44a1および44a2とは交互に配置されており、且つ、第2直線成分22bと2つの第4直線成分44b1および44b2とは交互に配置されている。従って、画素の液晶層に電圧が印加されたときに、第1直線成分22aと第3直線成分44a1および44a2との間、および第2直線成分22bと第4直線成分44b1および44b2との間に、液晶分子が倒れる方位が互いに約90°異なる4つのドメインが形成される。さらに、第1電極21aのエッジ21ea1と第3直線成分44a1との間、第1電極21aのエッジ21ea2と第3直線成分44a2との間、第1電極21bのエッジ21eb1と第4直線成分44b1との間、第1電極21bのエッジ21eb2と第4直線成分44b2との間にも、液晶分子が倒れる方位が互いに約90°異なる4つのドメインが形成される。
 直線状の第1および第2ドメイン規制構造は、それぞれの直線成分の延設方向に直交する方向に液晶分子が倒れるように配向規制力を発現するので、一定の間隔を空けて平行に配置された直線成分の間の液晶分子は、ほぼ一様に同じ方向に倒れる。また、第1電極21aのエッジ21ea1、21ea2および第1電極21bのエッジ21eb1、21eb2は、第1ドメイン規制構造と同様に作用する。
 スリット22aの端部、誘電体突起44a2および44b2の端部は、補助容量対向電極および補助容量電極16cと重なっている。したがって、これらドメイン規制構造の端部において液晶分子の配向が乱れても、補助容量対向電極および補助容量電極16cによって遮光されるので、表示品位に影響しない。LCD100Aにおいては、誘電体突起44a2と誘電体突起44b2とは連結されているが、誘電体突起44a2と誘電体突起44b2とを補助容量対向電極上で分離してもよい。このような構成を採用すると、液晶材料を注入する際に、誘電体突起44a2と誘電体突起44b2との間隙を液晶材料が流れて拡がることができるので、液晶材料の注入を安定に行うことが出来る。また、配向膜の塗布を均一に行い易いという利点も得られる。ここで、誘電体突起44a2および誘電体突起44b2は、それぞれ列方向に平行なエッジを互いに対向させて配置させることが好ましく、これらのエッジの間隙は8μm未満であることが好ましい。誘電体突起44a2および誘電体突起44b2の上記エッジ間の間隙が8μm以上となると、液晶分子の配向が乱れる領域が不必要に大きくなる。
 ここで例示する本発明による実施形態の液晶表示装置が有するドメイン規制構造は、LCD100Aが有するドメイン規制構造と基本的に同じであり、以下の説明において省略することがある。但し、本発明による実施形態の液晶表示装置が有するドメイン規制構造はこれに限られない。例えば、第2ドメイン規制構造はスリットであってもよい。また、ここでは、第1および第2直線成分が1つで、第3および第4直線成分が2つの場合を例示しているが、第1および第2直線成分または第3および第4直線成分の少なくとも一方が複数存在し、第1基板に垂直な方向から見たときに、第1直線成分と第3直線成分とが交互に配置されており、且つ、第2直線成分と第4直線成分とが交互に配置されていればよい。
 また、スリットを一列に配列された複数のスリットとして構成する(言い換えると、スリットの間に導電層が存在する部分を設ける)と、スリット内の液晶分子の配向を安定化させる効果を得ることができる。スリットはそのエッジに沿って斜め電界を形成するが、スリットの直上に位置する液晶分子には配向規制力を及ぼさない、あるいは配向規制力が弱い。従って、例えばスリットが長いと、スリットの直上に位置する液晶分子の配向が不安定になり、例えば、応答速度が遅いなどの問題が発生することがある。スリットを分断する、すなわち、複数のスリットを一列に配列することによって、液晶分子の配向を安定にすることができる。一列に配列されたスリットとスリットとの間隙は8μm未満であることが好ましい。間隙が8μm以上になると、スリットとスリットとの間隙を構成する導電層が存在する部分における液晶分子の配向が表示に与える影響が大きくなり過ぎる結果、表示輝度が低下することがある。
 なお、一列に配列された複数のスリットは、一列のスリットに沿った線上において、導電層が存在する部分を2箇所以上設けることが好ましい。第1電極21aまたは21bが、スリットが形成されている部分で、切断される危険を低減するためである。例えば、図1に示したLCD100Aのように、第1電極21aのエッジと連続する1つの(細長い)スリット22aを形成すると、スリット22aに沿った線上には1箇所しか導電層が存在しない。従って、当該箇所で断線が生じると、第1電極21aの約半分は電極として機能しなくなる。
 次に、LCD100Aの第1電極21a、21bとソースバスライン13との間の寄生容量Csdの画素容量Cpixに対する割合が、縦長画素を有する従来のLCDよりも小さいことを説明する。
 第1電極21a、21bの寄生容量Csdは、第1電極21a、21bとソースバスライン13とが誘電体を介して互いに近接すると大きくなる。これは、容量を形成する誘電体層の厚さが小さくなることに対応する。また、第1電極21a、21bの寄生容量Csdは、第1電極21a、21bとソースバスライン13とが近接する部分が長くなると大きくなる。これは、容量を形成する一対の電極の面積が大きくなることに対応する。
 一方、第1電極21a、21bとソースバスライン13との距離は、有効開口率を増大させるためには小さいことが好ましい。すなわち、第1電極21a、21bとソースバスライン13との距離を増大させることなく、あるいは、第1電極21a、21bとソースバスライン13との距離を小さくしても、第1電極21a、21bの寄生容量Csdを十分に小さくすることが好ましい。
 LCD100Aの画素は横長画素であるので、第1電極21a、21bがソースバスライン13と近接する部分の長さが小さいので、第1電極21a、21bとソースバスライン13との間の寄生容量Csdの画素容量Cpixに対する割合が、縦長画素である場合よりも小さくなる。
 さらに、第1電極21aのエッジ21ea1は、第1電極21aの列方向に平行なエッジと行方向に平行なエッジと交差する、すなわち、第1電極21aの角部を切り欠く様に形成されているので、第1電極21aの列方向に延びるエッジ(ソースバスライン13(n)に近接する部分)21easの長さD1aは、長さL2分短くなっている。同様に、第1電極21bのエッジ21eb1は、第1電極21bの列方向に平行なエッジと行方向に平行なエッジと交差する、すなわち、第1電極21bの角部を切り欠く様に形成されているので、第1電極21bの列方向に延びるエッジ(ソースバスライン13(n+1)に近接する部分)21ebsの長さD1bは、長さL2分短くなっている。
 また、第1電極21aのエッジ21ea1は、第1電極21aの行方向に平行なエッジと交差しているので、第1電極21aの行方向に平行なエッジ(ゲートバスライン12(m)に近接する部分)の長さD2aもL2(ここでは、切り欠かれた部分は底角が45度の直角二等辺三角形である)だけ短くなっている。同様に、また、第1電極21bのエッジ21eb1は、第1電極21bの行方向に平行なエッジと交差しているので、第1電極21bの行方向に平行なエッジ(ゲートバスライン12(m)に近接する部分)の長さD2bもL2だけ短くなっている。このように、第1電極21a、21bの角部に切欠きを設けることによって、ゲートバスライン12(m)と第1画素電極21a、21bとの間の寄生容量Cgdを低減させることができる。
 なお、第1電極21a、21bのCgdは、Csdとは逆に、横長画素の方が縦長画素よりも大きくなる傾向にある。そこで、LCD100Aでは、列方向に隣接する画素(m+1行)の第1電極21a、21bをゲートバスライン12(m)に重なるように配置する(図1では、ゲートバスライン12(m)にm+1行の画素の第1電極21a、21bが重なっている)ことによって、ゲートバスライン12(m)の電位が、m行の画素(自段という)の第1電極21a、21bのCgdに影響することを抑制している。すなわち、隣接する行(m+1行)の画素の第1電極21a、21bによって、自段(m行)のゲートバスライン12(m)の電位をシールドすることによって、Cgdの値(現実に蓄積される電荷の量は、容量と電位差の積で与えられ、ここでは電位差を小さくしている)を小さくしている。ゲートバスライン12(m)と隣接する行(m+1行)の画素の第1電極21a、21bとの重なりが大きい程、シールド効果は大きくなるので、ゲートバスライン12(m)の幅の全体に亘って第1電極21a、21bを重ねることが好ましいが、適宜変更し得る。また、第1電極21a、21bとは別に、シールド電極を設けてもよい。シールド電極の電位は、例えば、自段の画素の第1電極21a、21bの電位と等しく、例えばドレイン引き出し配線16に接続される。
 寄生容量Csd、Cgdに関する上述の構成およびその効果はシミュレーションによって確認した。この点につき、特願2009-031789号の開示内容の全てを参考のために本明細書に援用する。LCD100Aの画素のディメンジョンは、例えば、画素の行方向のピッチは190.5μm、列方向のピッチは63.5μm、第1電極21a、21bが一体で切欠きがないときの矩形の領域の大きさが173.5μm×58.5μm、ゲートバスラインおよびソースバスラインの幅は5μm、長さL1=22μm、長さL2=30.25μm、幅L3=11μm、幅L4=9μmである。また、第1電極21aのエッジ21ea2、および第1電極21bのエッジ21eb2の長さは44.5μmである。
 次に、図2を参照して、本発明による他の実施形態のMVA型LCD100Bの構成を説明する。以下の説明において、図1に示したLCD100Aと同様の構成要素は同じ参照符号で示し、説明を省略することがある。
 図2に示すLCD100Bは、補助容量の構成において、LCD100Aと異なる。LCD100Bは、ドレイン引出し配線16が分岐されており、支線16aおよび16bを有している。支線16aは補助容量電極16caに接続されており、支線16bは補助容量電極16cbに接続されている。補助容量電極16caと補助容量電極16cbとは互いに分離されており、それぞれに対応する補助容量対向電極(CSバスラインの延設部、不図示)も同様に互いに分離されている。その他の構造は、LCD100Aと同じである。
 LCD100Bにおいて、第1電極21aまたは21bと対向電極との間でショートが発生した場合、支線16aまたは16bを切断することによって、第1電極21aおよび第1電極21bの一方だけをドレイン引き出し配線16から電気的に分離できる。すなわち、ショートが発生した第1電極21aまたは21bだけを分離し、ショートが発生していない方の第1電極21aまたは21bを正常に動作させることができる。
 このような構成を採用することによって、第1電極21a、21bと対向電極との間のショート不良を修復できるので、液晶表示装置の歩留まりを向上させることができる。なお、この構成は、後述する他の実施形態の液晶表示装置にも適用できる。
 次に、図3を参照して、本発明による他の実施形態のMVA型LCD100Cの構成を説明する。LCD100Cは、第1電極21a、21bが、列方向の突き出た延設部21aE1、21aE2(C)、21bE1を有している点において、図1に示したLCD100Aと異なっている。また、ブラックマトリクス52が、延設部21aE1に対応して延設された部分52a、および延設部21bE1に対応して延設された部分52bを有している点において、LCD100Aと異なっている。
 これらの延設部21aE1、21aE2(C)、21bE1は、第1基板に垂直な方向から見たとき、第1電極21a、21bのエッジとスリット22とが交差する部分、または第1電極21a、21bのエッジとそのエッジに最も近接するスリット22の延長線とが交差する部分である第1部分と、第1電極21a、21bの第1部分に隣接し、第1電極21a、21bのエッジと誘電体突起44とが交差する部分、または第1電極21a、21bとそのエッジに最も近接する誘電体突起44の延長線とが交差する部分である第2部分とによって挟まれる部分に設けられている。
 例えば、第1電極21aは、第1電極21aの上側エッジとスリット22aの延長線とが交差する第1部分と、第1電極21aの左側エッジと誘電体突起44a1とが交差する部分である第2部分とで挟まれる部分が、列方向(図3中上側)に突き出た延設部21aE1を有している。
 また、第1電極21aは、第1電極21aの下側エッジとスリット22aとが交差する第1部分と、第1電極21aの右側(または下側)エッジと誘電体突起44a2の延長線とが交差する部分である第2部分とで挟まれる部分が、列方向(図3中右側)に突き出た延設部21aE2(C)を有している。
 同様に、第1電極21bは、第1電極21bの上側エッジとスリット22bの延長線とが交差する第1部分と、第1電極21bの右側エッジと誘電体突起44b1とが交差する部分である第2部分とで挟まれる部分が、列方向(図3中上側)に突き出た延設部21bE1を有している。
 延設部21aE1は、第1部分のエッジに延長線が交差するスリット22aの延びる方向(第1方向)に平行なエッジを有している。延設部21aE1はまた列方向に平行なエッジを有している。
 同様に、延設部21bE1は、第1部分のエッジに延長線が交差するスリット22bの延びる方向(第2方向)に平行なエッジを有している。延設部21bE1はまた列方向に平行なエッジを有している。
 また、延設部21aE2(C)は、第1部分のエッジに交差するスリット22aの延びる方向(第1方向)に平行なエッジを有しており、そのエッジはスリット22aのエッジと連続している。延設部21aE2(C)はまた行方向に平行なエッジを有している。
 このように、延設部21aE1、21aE2(C)、および21bE1はそれぞれ対応するスリット22aまたは22bの延びる方向と平行なエッジを有しており、そのようなエッジは対応するスリットと同様の配向規制力を発揮する。一方、延設部21aE1、21aE2(C)、および21bE1は行方向または列方向に平行なエッジも有している。従って、延設部21aE1、21aE2(C)、および21bE1においてこれらのエッジが交差する行方向の先端部分では、液晶分子の配向の乱れが生じる。
 そこで、第1基板に垂直な方向から見たとき、延設部21aE1、21aE2(C)、および21bE1の行方向の先端は、ブラックマトリクス52と重なるように配置されている。従って、延設部21aE1、21aE2(C)、および21bE1の行方向の先端部において液晶分子の配向が乱れても、その部分はブラックマトリクス52によって遮光されるので、表示に悪影響を及ぼさない。なお、ブラックマトリクス52は、一般に、第2基板の液晶層側の表面に、金属層または黒色樹脂層を用いて形成されている。
 すなわち、本実施形態の液晶表示装置においては、第1電極に列方向に突き出た延設部を形成し、且つ、延設部の列方向の先端をブラックマトリクスと重ねるように配置し、第1電極のエッジ付近に形成される液晶分子の配向が乱れる領域をブラックマトリクスで遮光される領域に押し込めることによって、第1電極のエッジの近傍における液晶分子の配向乱れに起因する表示品位の低下を抑制している。
 上述したように、LCD100Cは、各画素に、3つの延設部21aE1、21aE2(C)、および21bE1を有している。この内、延設部21aE1および21bE1は、画素の角部の近傍に設けられている。ここでは、いずれも画素の上側の角部に設けられている。
 延設部21aE2(C)は、画素の下側の行方向の中央付近に設けられており、第1電極21aの角部の近傍に設けられている。ここで、第1電極21a、21bの上側のエッジにあるエッジ21ea2および21eb2は、当該画素の上側に隣接する画素が有する第1電極21a、21bの下側のエッジに設けられている延設部21aE2(C)に対向する切欠き部を形成している。上側に隣接する画素が有する第1電極21aの延設部21aE2(C)の先端部分は、この切欠き部に近接して、あるいは、部分的に含まれるよう配置されている。このように、切欠き部を設けることによって、延設部の列方向への突き出し量を大きくすることができる。但し、延設部の列方向への突き出し量を大きくすると、Cgdが増大するので、表示品位とのバランスを考慮して適宜設定される。
 次に、図4を参照して、本発明による他の実施形態のMVA型LCD100Dの構成を説明する。
 LCD100Dは、第1電極21a、21bの形状および補助容量の配置において図1に示したLCD100Aと異なる。
 LCD100Dの第1電極21a、21bは、画素の行方向の中央で直線的な辺で互いに対向するように配置されている。すなわち、LCD100Aの第1電極21a、21bのように第1凸部、第2凸部を有していない。一方、LCD100Dの第1電極21a、21bは、画素の下側の行方向の中央付近に、延設部21aE2(D)、21bE2(D)を有している。この延設部21aE2(D)、21bE2(D)は、図3に示したLCD100Cの延設部21aE2(C)と同様に、第1電極21a、21bの角部の近傍に設けられており、第1電極21a、21bの角部の近傍に形成される液晶分子の配向が乱れる領域をブラックマトリクスで遮光される領域に押し込めることによって、第1電極21a、21bのエッジの近傍における液晶分子の配向乱れに起因する表示品位の低下を抑制する。
 上記で例示した液晶表示装置100A~100Dは何れも画素に2つの第1電極21aおよび21bを有していたが、それに限られない。1つの画素の形成される第1電極の数は3以上でもよいし、1つでもよい。また、1つの画素に複数の第1電極を設ける場合、マルチ画素構造としてもよい。マルチ画素構造として、例えば特許文献3に記載の構成を採用することが出来る。
 上述したように、本発明によると、寄生容量Csdの画素容量Cpixに対する割合を抑えつつ、上述の補助構造を設けなくとも画素電極のエッジの近傍における液晶分子の配向乱れに起因する表示品位の低下を抑制することが可能な、MVA型液晶表示装置が提供される。なお、液晶分子の配向乱れに起因する表示品位の低下を抑制するには、第1電極の角部の少なくとも一部を遮光する電極層を設ける構成(LCD100A、100B)と、第1電極に延設部を設けて配向が乱れる領域をブラックマトリクスで遮光される領域に押し込める構成(LCD100D)とがあり、これらは、組み合わせてもよいし(LCD100C)、それぞれ別々に用いても良い。また、画素電極の形状や大きさに応じて適宜改変され得る。
 本発明は、MVA型液晶表示装置に広く適用される。
 12 ゲートバスライン
 13 ソースバスライン
 14 TFT
 15 CSバスライン
 16 ドレイン引き出し配線
 16c 補助容量電極
 17a、17b コンタクトホール
 21 第1電極(画素電極)
 21a、21b 第1電極(副画素電極)
 22 スリット(開口部)第1ドメイン規制構造
 22a 第1直線成分(スリット)
 22b 第2直線成分(スリット)
 44  誘電体突起(リブ)第2ドメイン規制構造
 44a、44a1、44a2 第3直線成分(誘電体突起)
 44b、44b1、44b2 第4直線成分(誘電体突起)

Claims (17)

  1.  行および列を有するマトリクス状に配列された複数の画素を有し、
     前記複数の画素のそれぞれは、第1基板と、第2基板と、前記第1基板と前記第2基板との間に設けられた垂直配向型の液晶層と、前記第1基板に形成された少なくとも1つの第1電極と、前記少なくとも1つの第1電極に前記液晶層を介して対向する第2電極と、前記第1基板に形成された第1ドメイン規制構造と、前記第2基板に形成された第2ドメイン規制構造とを有し、前記第1ドメイン規制構造は前記少なくとも1つの第1電極に形成されたスリットであり、前記第2ドメイン規制構造は前記第2電極に形成されたスリットまたは前記第2電極の前記液晶層側に形成された誘電体突起であって、
     前記第1ドメイン規制構造は、前記第1基板に垂直な方向から見たときに第1方向に延びる第1直線成分と、前記第1方向と略90°異なる第2方向に延びる第2直線成分とを有し、前記第2ドメイン規制構造は、前記第1方向に延びる第3直線成分と、前記第2方向に延びる第4直線成分とを有し、前記第1および第2直線成分または前記第3および第4直線成分の少なくとも一方は複数存在し、前記第1基板に垂直な方向から見たときに、前記第1直線成分と前記第3直線成分とは交互に配置されており、且つ、前記第2直線成分と前記第4直線成分とは交互に配置されており、
     前記複数の画素の内の任意の画素の前記液晶層に電圧が印加されたときに、前記第1直線成分と前記第3直線成分との間および前記第2直線成分と前記第4直線成分との間に、液晶分子が倒れる方位が互いに約90°異なる4つのドメインを形成するMVA型の液晶表示装置であって、
     前記複数の画素のそれぞれは、行方向の長さが列方向の長さよりも長い横長画素であり、
     前記少なくとも1つの第1電極は、行方向に沿って左右に配列された2つの第1電極を含む、液晶表示装置。
  2.  前記2つの第1電極の少なくとも一方は、行方向に平行な第1のエッジと、列方向に平行な第2のエッジとを含む第1の角部を有し、
     前記第1基板は、前記第1の角部の前記第1のエッジおよび前記第2のエッジの少なくとも何れか一方の一部と重なる電極層を更に有する、請求項1に記載の液晶表示装置。
  3.  前記複数の画素のそれぞれに対応する2つの補助容量を有し、前記2つの補助容量はそれぞれ、前記2つの第1電極の1つに電気的に接続された補助容量電極と、絶縁層を介して前記補助容量電極に対向する補助容量対向電極を有し、
     前記2つの補助容量が有する補助容量電極は、互いに分離されており、互いに異なる支線を介して所定の電圧が供給される、請求項1または2に記載の液晶表示装置。
  4.  前記複数の画素のそれぞれに対応する補助容量を更に有し、前記補助容量は、前記少なくとも1つの第1電極に電気的に接続された補助容量電極と、絶縁層を介して前記補助容量電極に対向する補助容量対向電極を有し、前記電極層は、前記補助容量対向電極または補助容量電極である、請求項2に記載の液晶表示装置。
  5.  前記複数の画素のそれぞれに対応する2つの補助容量を有し、前記2つの補助容量はそれぞれ、前記2つの第1電極の1つに電気的に接続された補助容量電極と、絶縁層を介して前記補助容量電極に対向する補助容量対向電極を有し、
     前記電極層は、前記補助容量対向電極または補助容量電極であって、
     前記2つの第1電極の内の左側の第1電極の右端のエッジは右側に突き出た第1凸部を有し、前記2つの第1電極の内の右側の第1電極の左端のエッジは左側に突き出た第2凸部を有し、前記第1凸部の右端のエッジおよび前記第2凸部の左端のエッジは、前記補助容量電極または前記補助容量対向電極と重なっている、請求項2または4に記載の液晶表示装置。
  6.  前記電極層は、前記第1ドメイン規制構造または前記第2ドメイン規制構造の一部と重なっている、請求項2、4または5のいずれかに記載の液晶表示装置。
  7.  前記少なくとも1つの第1電極は、前記少なくとも1つの第1電極が有する前記スリットに平行なエッジを有する、請求項1から6のいずれかに記載の液晶表示装置。
  8.  前記少なくとも1つの第1電極が有する前記スリットに平行なエッジは、前記少なくとも1つの第1電極の列方向に平行なエッジと行方向に平行なエッジと交差する、請求項7に記載の液晶表示装置。
  9.  行および列を有するマトリクス状に配列された複数の画素を有し、
     前記複数の画素のそれぞれは、第1基板と、第2基板と、前記第1基板と前記第2基板との間に設けられた垂直配向型の液晶層と、前記第1基板に形成された少なくとも1つの第1電極と、前記少なくとも1つの第1電極に前記液晶層を介して対向する第2電極と、前記第1基板に形成された第1ドメイン規制構造と、前記第2基板に形成された第2ドメイン規制構造とを有し、前記第1ドメイン規制構造は前記少なくとも1つの第1電極に形成されたスリットであり、前記第2ドメイン規制構造は前記第2電極に形成されたスリットまたは前記第2電極の前記液晶層側に形成された誘電体突起であって、
     前記第1ドメイン規制構造は、前記第1基板に垂直な方向から見たときに第1方向に延びる第1直線成分と、前記第1方向と略90°異なる第2方向に延びる第2直線成分とを有し、前記第2ドメイン規制構造は、前記第1方向に延びる第3直線成分と、前記第2方向に延びる第4直線成分とを有し、前記第1および第2直線成分または前記第3および第4直線成分の少なくとも一方は複数存在し、前記第1基板に垂直な方向から見たときに、前記第1直線成分と前記第3直線成分とは交互に配置されており、且つ、前記第2直線成分と前記第4直線成分とは交互に配置されており、
     前記複数の画素の内の任意の画素の前記液晶層に電圧が印加されたときに、前記第1直線成分と前記第3直線成分との間および前記第2直線成分と前記第4直線成分との間に、液晶分子が倒れる方位が互いに約90°異なる4つのドメインを形成するMVA型の液晶表示装置であって、
     前記複数の画素のそれぞれは、行方向の長さが列方向の長さよりも長い横長画素であって、
     前記第1方向および前記第2方向は、前記行方向および前記列方向と交差する方向であり、
     前記少なくとも1つの第1電極は、前記第1基板に垂直な方向から見たとき、
      前記少なくとも1つの第1電極のエッジと前記スリットとが交差する部分、または前記少なくとも1つの第1電極のエッジとそのエッジに最も近接する前記スリットの延長線とが交差する部分である第1部分と、
      前記少なくとも1つの第1電極の前記第1部分に隣接し、前記少なくとも1つの第1電極のエッジと前記第2ドメイン規制構造とが交差する部分、または前記少なくとも1つの第1電極とそのエッジに最も近接する前記第2ドメイン規制構造の延長線とが交差する部分である第2部分とによって挟まれる部分が、列方向に突き出た延設部を有する、液晶表示装置。
  10.  前記少なくとも1つの第1電極は、行方向に沿って左右に配列された2つの第1電極を含む、請求項9に記載の液晶表示装置。
  11.  前記第2基板はブラックマトリクスを更に有し、
     前記第1基板に垂直な方向から見たとき、前記延設部の列方向の先端は、前記ブラックマトリクスと重なっている、請求項9または10に記載の液晶表示装置。
  12.  前記少なくとも1つの第1電極が有する前記延設部は、前記第1部分の前記エッジに交差する前記スリットまたは前記第1部分の前記エッジに前記延長線が交差する前記スリットの延びる方向に平行なエッジを有している、請求項9から11のいずれかに記載の液晶表示装置。
  13.  前記少なくとも1つの第1電極が有する前記延設部の前記エッジは、前記スリットのエッジと連続している、請求項12に記載の液晶表示装置。
  14.  前記延設部は、行方向または列方向に平行なエッジを有する、請求項9から13のいずれかに記載の液晶表示装置。
  15.  前記延設部は、前記少なくとも1つの第1電極の角部の近傍にある、請求項9から14のいずれかに記載の液晶表示装置。
  16.  前記少なくとも1つの第1電極は、行方向に隣接する画素の前記少なくとも1つの画素電極の前記延設部に対向するエッジに切欠き部を有する、請求項9から15のいずれかに記載の液晶表示装置。
  17.  前記切欠き部は、前記第1方向または第2方向に平行なエッジを有する、請求項16に記載の液晶表示装置。
PCT/JP2010/073015 2009-12-25 2010-12-21 液晶表示装置 WO2011078173A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/518,220 US8582064B2 (en) 2009-12-25 2010-12-21 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-296003 2009-12-25
JP2009296003 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011078173A1 true WO2011078173A1 (ja) 2011-06-30

Family

ID=44195700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073015 WO2011078173A1 (ja) 2009-12-25 2010-12-21 液晶表示装置

Country Status (2)

Country Link
US (1) US8582064B2 (ja)
WO (1) WO2011078173A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109188813A (zh) * 2018-10-09 2019-01-11 京东方科技集团股份有限公司 像素结构、阵列基板、显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001051298A (ja) * 1999-08-09 2001-02-23 Fujitsu Ltd 液晶表示装置及びその製造方法
JP2002122886A (ja) * 2000-08-11 2002-04-26 Sharp Corp 液晶表示装置およびその欠陥修正方法
JP2007128094A (ja) * 2005-11-03 2007-05-24 Samsung Electronics Co Ltd 表示基板、これを具備する液晶表示パネル及び表示装置
JP2008033323A (ja) * 2006-07-25 2008-02-14 Samsung Electronics Co Ltd 液晶表示装置
WO2009130819A1 (ja) * 2008-04-22 2009-10-29 シャープ株式会社 液晶表示装置
WO2009154031A1 (ja) * 2008-06-20 2009-12-23 シャープ株式会社 液晶表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI272557B (en) 1997-06-12 2007-02-01 Sharp Kk Liquid crystal display device
JP3957430B2 (ja) 1998-09-18 2007-08-15 シャープ株式会社 液晶表示装置
JP4342200B2 (ja) 2002-06-06 2009-10-14 シャープ株式会社 液晶表示装置
KR101349092B1 (ko) 2006-09-07 2014-01-09 삼성디스플레이 주식회사 어레이 기판 및 이를 갖는 표시장치
RU2475791C1 (ru) 2009-02-13 2013-02-20 Шарп Кабусики Кайся Подложка матрицы, жидкокристаллическое устройство отображения, электронное устройство

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001051298A (ja) * 1999-08-09 2001-02-23 Fujitsu Ltd 液晶表示装置及びその製造方法
JP2002122886A (ja) * 2000-08-11 2002-04-26 Sharp Corp 液晶表示装置およびその欠陥修正方法
JP2007128094A (ja) * 2005-11-03 2007-05-24 Samsung Electronics Co Ltd 表示基板、これを具備する液晶表示パネル及び表示装置
JP2008033323A (ja) * 2006-07-25 2008-02-14 Samsung Electronics Co Ltd 液晶表示装置
WO2009130819A1 (ja) * 2008-04-22 2009-10-29 シャープ株式会社 液晶表示装置
WO2009154031A1 (ja) * 2008-06-20 2009-12-23 シャープ株式会社 液晶表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109188813A (zh) * 2018-10-09 2019-01-11 京东方科技集团股份有限公司 像素结构、阵列基板、显示面板
CN109188813B (zh) * 2018-10-09 2021-11-12 京东方科技集团股份有限公司 像素结构、阵列基板、显示面板

Also Published As

Publication number Publication date
US8582064B2 (en) 2013-11-12
US20120262640A1 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5802319B2 (ja) 液晶表示装置
JP6240432B2 (ja) 液晶表示装置
JP5116879B2 (ja) 液晶表示装置
JP5791593B2 (ja) 液晶表示パネルおよび液晶表示装置
US8411239B2 (en) Array substrate, liquid crystal display device, electronic device
JP5173025B2 (ja) 液晶表示装置
JP5173026B2 (ja) 液晶表示装置
JP5443619B2 (ja) アクティブマトリクス基板および表示装置
WO2011078173A1 (ja) 液晶表示装置
JP5378511B2 (ja) 液晶表示装置
JP5307230B2 (ja) 液晶表示装置
JP5154597B2 (ja) 液晶表示装置
WO2013150876A1 (ja) 液晶表示装置
WO2012124501A1 (ja) 液晶表示パネル及び液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839403

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13518220

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP