WO2011076967A1 - Uso del compuesto n-fenil-n'-(3-metil-2-butenil)tiourea para la elaboración de medicamentos destinados al tratamiento de la encefalopatía hepática - Google Patents

Uso del compuesto n-fenil-n'-(3-metil-2-butenil)tiourea para la elaboración de medicamentos destinados al tratamiento de la encefalopatía hepática Download PDF

Info

Publication number
WO2011076967A1
WO2011076967A1 PCT/ES2010/070855 ES2010070855W WO2011076967A1 WO 2011076967 A1 WO2011076967 A1 WO 2011076967A1 ES 2010070855 W ES2010070855 W ES 2010070855W WO 2011076967 A1 WO2011076967 A1 WO 2011076967A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
thiourea
butenyl
methyl
phenyl
Prior art date
Application number
PCT/ES2010/070855
Other languages
English (en)
French (fr)
Inventor
Manuel ROMERO GÓMEZ
Juan Dionisio Bautista Palomas
José Manuel VEGA PÉREZ
Fernando Iglesias Guerra
Ignacio PERIÑÁN DOMÍNGUEZ
María del Mar DÍAZ HERRERO
María JOVER COBOS
Original Assignee
Fundación Pública Andaluza Para La Gestión De La Investigación En Salud De Sevilla
Universidad De Sevilla
Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas (Ciberehd)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Pública Andaluza Para La Gestión De La Investigación En Salud De Sevilla, Universidad De Sevilla, Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas (Ciberehd) filed Critical Fundación Pública Andaluza Para La Gestión De La Investigación En Salud De Sevilla
Publication of WO2011076967A1 publication Critical patent/WO2011076967A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/17Amides, e.g. hydroxamic acids having the group >N—C(O)—N< or >N—C(S)—N<, e.g. urea, thiourea, carmustine

Definitions

  • Hepatic encephalopathy falls within the field of molecular biology, medicine and pharmacology and refers to a pharmaceutical composition comprising the compound A / -phenyl- / V '- (3-methyl-2-butenyl) thiourea and the use of the compound A / -phenyl- / V '- (3-methyl-2-butenyl) thiourea and of said pharmaceutical composition in the preparation of medicaments intended for the treatment of diseases that occur with hyperammonaemia, for example, but not limited to , hepatic encephalopathy in general or hepatic encephalopathy caused by cirrhosis in particular.
  • Hepatic encephalopathy is a severe neurological complication of cirrhosis characterized by the presence of high concentrations of ammonia in the plasma or tissues of the patient (Bosoi, et al., 2009, Metabolic Brain Disease, 24: 95 -102).
  • ammonium is detoxified by means of the urea cycle, but in those patients who have damage to this detoxification capacity, such as liver patients in general and in HD in particular, ammonium is it concentrates in the blood causing brain damage (Hazell, et al., 1999, PSEBM, 222 (2): 99-1 12).
  • Ammonia is mainly generated in the intestine from various sources: nitrogen components of the diet, glutamine deamidation and urea rupture by urease present in the flora of the colon (Huizenga, et al., 1996, Annals of Clinical Biochemistry, 33: 23-30).
  • Glutaminase is the enzyme that metabolizes glutamine deamidation and has been described as an important enzyme in the pathogenesis of HD (Romero-Gómez, 2005, Metabolic Brain Disease, 20 (4): 319-325).
  • the activity of glutaminase has been associated with minimal EH, probably due to its role in the regulation of ammonium generation.
  • EHM minimal hepatic encephalopathy
  • Hyperammonaemia is very marked in patients with liver cirrhosis with poor liver function, but this marked increase in ammonium production after glutamine ingestion is normalized after liver transplantation and liver function normalization.
  • the specific activity of glutaminase in the enterocyte is a crucial point in the stability of nitrogen metabolism in patients with liver cirrhosis. It has been shown that glutaminase activity is increased in cirrhotic individuals versus controls and that this activity is related to the existence of encephalopathy and the degree of liver dysfunction (Romero-Gómez, et al., 2004, Journal of Hepatology, 41: 49 -54). Thus, the accumulation of glutamine in astrocytes is also responsible, in large part, for ammonium-induced toxicity (Albrech, et al., 2006, Hepatology; 44: 788-794).
  • K-GAP renal-type human glutaminase
  • M-GAP which is expressed only in cardiac and skeletal muscle
  • C-GAP which is expressed primarily in cardiac muscle and pancreas but not in brain or liver
  • K-GAP is the renal isoform and has 669 amino acids
  • C-GAP is a 598 amino acid protein and differs from K-GAP at the carboxylic end
  • M-GAP is a 169 amino acid protein, which is identical to C-GAP up to amino acid 161 and the remaining 8 are unique.
  • glutaminase inhibitors have been described as mersalyl, / V-ethyl maleimide, 5-oxo-6-Norleucine (DON).
  • DON has been used in the inhibition of glutaminase in astrocyte cell cultures demonstrating the importance of GAP activity in ammonium-induced cell damage.
  • neomycin inhibits intestinal glutaminase activity (Hawkins, et al., 1994, Advances in Experimental Medicine and Biology, 368: 125-34), although the mechanisms by which neomycin can inhibit glutaminase activity are not described.
  • Glutaminase activity is increased in patients with high levels of nitric oxide, glucagon or tumor necrosis factor.
  • the present invention provides a compound capable of partially inhibiting the enzymatic activity of phosphate-activated intestinal glutaminase (GAP), compound A / -phenyl- / V '- (3-methyl-2-butenyl) thiourea or its derivatives, causing a reduction in the production of ammonium. Therefore, this compound or its derivatives could be used in the preparation of medicines for the treatment of diseases that occur with hyperammonaemia, such as, but not limited to, hepatic encephalopathy in general (EH) or hepatic encephalopathy caused by cirrhosis in particular.
  • GAP phosphate-activated intestinal glutaminase
  • compound A / -phenyl- / V '- (3-methyl-2-butenyl) thiourea or its derivatives causing a reduction in the production of ammonium. Therefore, this compound or its derivatives could be used in the preparation of medicines for the treatment of diseases that occur with hyperammonaemia, such
  • a compound, A / -phenyl- / V '- (3-methyl-2-butenyl) thiourea capable of inhibiting glutaminase activity in rats with porto-cava derivation has been detected from the screening of a library of glutaminase inhibitor chemical compounds.
  • K-GAP inhibitors which have affinity for reagents or similar substrates, have similar structures to glutamine, however, this is not the case of the compound A / -phenyl- / V '- (3- methyl-2- butenyl) thiourea.
  • the compound A / -phenyl- / V '- (3-methyl-2-butenyl) thiourea produces a partial inhibition on GAP activity, it becomes an ideal candidate for use in the control of hyperaemia in, for example, but not limited to, EH patients, since the enzyme, although partially inhibited, is able to continue performing its physiological function to a lesser extent, which allows at the same time maintaining the functionality of the enterocytes and a reduction in toxicity caused by the accumulation of ammonium.
  • a first aspect of the invention relates to the use of the compound, A / -phenyl- / V '- (3-methyl-2-butenyl) thiourea hereafter "compound of the invention", for the preparation of a medicament, or alternatively, to the compound A / -phenyl- / V '- (3-methyl-2-butenyl) thiourea parasuuso as a medicament.
  • Another aspect of the invention relates to the use of the compound A / -phenyl- / V '- (3-methyl-2-butenyl) thiourea for the preparation of a medicament for use in the treatment of diseases that occur with hyperaemia.
  • the diseases that occur with hyperammonaemia are selected from the list comprising: congenital errors of the urea cycle metabolism, congenital errors of lysine metabolism, organic acidemias, transient hyperaemia of the newborn, hepatic insufficiency, encephalopathy liver or cirrhosis In a more preferred embodiment, the disease is cirrhosis. In an even more preferred embodiment, the disease is hepatic encephalopathy.
  • a / -phenyl- / V '- (3-methyl-2-butenyl) thiourea is defined as the compound of CAS-RN: 104741-27-7 described by lliceto, et al., 1960 , Gazzetta Italian Chimica, 90: 919-40, of formula:
  • the compound of the invention exerts its inhibitory action on the enzymatic activity of GAP at a concentration that is preferably in a range of between 1 ⁇ and 10mM. Therefore, in a preferred embodiment, the compound A / -phenyl- / V '- (3-methyl-2-butenyl) thiourea is in a concentration range between 1 ⁇ and 10mM. In a more preferred embodiment, the compound A / -phenyl- / V '- (3-methyl-2-butenyl) thiourea is in a concentration range between 5 ⁇ and 8mM.
  • the medicament comprises at least the compound of the invention.
  • the compound of the present invention, pharmaceutically acceptable derivatives or their prodrugs are formulated in an appropriate pharmaceutical composition, in the therapeutically effective amount, preferably together with one or more pharmaceutically acceptable carriers, adjuvants or excipients.
  • a pharmaceutically acceptable derivative is meant any pharmaceutically acceptable salt or any other compound which, after administration, is capable of providing (directly or indirectly) the compound of the invention or any of its salts, prodrugs, derivatives or the like.
  • derivative includes both pharmaceutically acceptable compounds, that is, derivatives of the compound of the invention that can be used in the manufacture of a medicament, as pharmaceutically unacceptable derivatives, since these may be useful. in the preparation of pharmaceutically acceptable derivatives.
  • prodrugs of the compound of the invention are prodrugs of the compound of the invention.
  • prodrug as used herein includes any compound derived from the compound of the invention, which when administered to an individual is capable of providing, directly or indirectly, said compound of the invention in said individual.
  • said derivative is a compound that increases the bioavailability of the compound of the invention when administered to an individual or that enhances the release of the compound of the invention in a biological compartment.
  • the nature of said derivative is not critical as long as it can be administered to an individual and provides the compound of the invention in a biological compartment of an individual.
  • the preparation of said prodrug can be carried out by conventional methods known to those skilled in the art.
  • treatment is to combat the effects caused as a result of diseases that occur with hyperammonaemia, preferably hepatic encephalopathy, to stabilize the condition of individuals or prevent further damage.
  • prevention is to avoid the appearance of damage whose cause is any disease that occurs with hyperammonaemia, preferably hepatic encephalopathy.
  • the milder forms are characterized by episodic intimal symptoms, with outbreaks of hyperammonaemia that begin in early childhood or late childhood and occur with vomiting and neurological disorders such as ataxia (lack of coordination of muscle movements ), mental confusion, agitation and combativeness, separated by periods of normalcy.
  • the episodes usually appear after taking a diet rich in protein, after an infection or during periods of stress. In some of the attacks there may be a hypermoniemic coma and death occurs. It is common for a mild to moderate mental retardation and gallstones to appear.
  • the measurement of the level of ammonium, and therefore, of the degree of hyperammonaemia in an individual, could be carried out by means of commercial tests available for this purpose, such as, but not limited to, the enzymatic method of glutamate dehydrogenase (ROCHE, Barcelona ).
  • Glutamate dehydrogenase (GLDH) catalyzes the reductive amination of 2-oxoglutarate in the presence of NH + and NADPH, to produce glutamate and NADP + .
  • the concentration of NADP + is directly proportional to the concentration of ammonium consumed. So the reaction can be continued by measuring the decrease in absorbance of NADPH at 340 nm.
  • the measurement of plasma ammonium level by this test consists of the collection of the individual's blood in a tube without anticoagulant, its centrifugation, the transfer of the supernatant and the measurement of the ammonium level as described.
  • these are homogenized, by example, but without limiting our, in liquid nitrogen in a mortar, trichloroacetic acid (TCA) is added and sonicated, centrifuged and the supernatant is neutralized, for example, but not limited to, with KHCO3 and the different amounts of ammonium are determined avoiding thawing of tissues in their manipulation.
  • TCA trichloroacetic acid
  • any disease that occurs with hyperammonaemia could be treated with the drugs or pharmaceutical compositions made with the compound of the invention or its salts, prodrugs, derivatives or analogs or any of its combinations, since these, by inhibiting the activity of GAP, are capable of reducing the levels of ammonium, which avoids the toxicity derived from the accumulation thereof, therefore, the compound of the invention is useful for the treatment of any disease in which the levels of ammonium are increased ( h iperamon iem ia).
  • hyperammonaemia Diseases that occur with hyperammonaemia are, for example, but not limited to, congenital errors of the urea cycle metabolism, congenital errors of lysine metabolism, organic acidemias, transient hyperaemiamia of the newborn, liver failure, hepatic encephalopathy or cirrhosis.
  • HHH syndrome hyperammonaemia-hyperornithinemia-homocitrulinemia
  • congenital errors of lysine metabolism are hyperlisinemia, hyperlisinuria or familial intolerance to dibasic aminoaciduria protein.
  • organic acidemias are the congenital errors of the amino acid metabolism of branched chain, hypervalinemia, isovaleric acidemia, propionic acidemia or methyl malon ica acidemia, ⁇ -ketothiolase deficiency, multiple carboxylase deficiency, medium chain fatty acid acyl deficiency, glutaral acidemia type II or aciduria 3 -hydroxy-3- methylglutaric.
  • Hepatic impairment may be due to infections or poisonings.
  • Hepatic encephalopathy is understood as the mental disorder syndrome that appears in patients with acute or chronic liver failure. In some rare cases it can occur in the absence of liver damage (hyperamoniemic syndromes). Acute hepatic encephalopathy occurs in cases of massive hepatic necrosis associated with viral, drug, toxic, or micronodular steatosis infections that usually occur with medications, such as tetracyclines, administered intravenously or in the fatty liver of pregnancy. The clinical manifestations are diverse and vary from subtle personality changes to deep coma. Hepatic encephalopathy is characterized, and therefore, can be detected, by the presence of hyperamiamia.
  • Cirrhosis or “liver cirrhosis” is understood as the disease that affects liver tissue as a final consequence of different chronic diseases. The symptoms are: bleeding hemorrhoids, confusion, impotence and loss of sexual interest, jaundice, nausea and vomiting, small, red and spider-shaped blood vessels under the skin, swelling of the legs, vomiting with blood, weakness and / or loss of weight.
  • cirrhosis is hepatic encephalopathy, which does not occur in all cirrhotic individuals.
  • hepatic encephalopathy is caused by hyperammonaemia and that cirrhosis can cause hepatic encephalopathy
  • composition of the invention which comprises the compound A / -phenyl- / V '- (3-methyl-2-butenyl) thiourea.
  • pharmaceutical composition of the invention further comprises another active ingredient.
  • pharmaceutical composition of the invention further comprises a pharmaceutically acceptable carrier.
  • active ingredient means any component that potentially provides a pharmacological activity or other different diagnostic effect, cure, mitigation, treatment, or prevention of a disease, or that affects the structure or function of the body of man or other animals.
  • the term includes those components that promote a chemical change in the preparation of the drug and are present therein in a modified form intended to provide the specific activity or effect.
  • Adjuvants and “pharmaceutically acceptable carriers” refer to those substances, or combination of substances, known in the pharmaceutical sector, used in the preparation of pharmaceutical forms of administration and include, but are not limited to, solids, liquids, solvents or surfactants
  • Pharmaceutically acceptable vehicles that can be used in the present invention are the vehicles known in the state of the art.
  • compositions and medicaments of the present invention can be used in a method of treatment in isolation or in conjunction with other pharmaceutical compounds intended for the treatment of diseases that occur with hyperammonaemia, preferably hepatic encephalopathy.
  • the pharmaceutical compositions of the present invention can be formulated for administration in a variety of ways known in the state of the art.
  • compositions and / or their formulations can be administered to an animal, including a mammal and, therefore, to man, in a variety of ways, including, but not limited to, parenteral, intraperitoneal, intravenous, intradermal, epidural, intraspinal, intrastromal. , intraarticular, intrasynovial, intrathecal, intralesional, intraarterial, intracardiac, intramuscular, intranasal, intracranial, subcutaneous, intraorbital, intracapsular, topical, using transdermal patches or rectal route, by administering a suppository, percutaneous, nasal spray, surgical implant, paint Internal surgery, infusion pump or catheter.
  • the dosage to obtain a therapeutically effective amount depends on a variety of factors, such as the age, weight, sex or tolerance of the individual.
  • the term "therapeutically effective amount” refers to the amount of the pharmaceutical composition of the invention that produces the desired effect and, in general, will be determined, among other causes, by the characteristics of said pharmaceutical composition and the therapeutic effect to be achieved.
  • Another aspect of the invention relates to the use of the pharmaceutical composition of the invention for the preparation of a medicament.
  • the medicament is for use in the treatment of diseases that occur with hyperammonaemia.
  • the diseases that occur with hyperammonaemia are selected from the list comprising: congenital errors of the urea cycle metabolism, congenital errors of lysine metabolism, organic acidemias, transient hyperaemia of the newborn, hepatic insufficiency, encephalopathy liver or cirrhosis.
  • the disease is cirrhosis.
  • the disease is hepatic encephalopathy.
  • Fig. 1 Represents the culture of intestinal epithelial cells on bicameral inserts. The cells expose their apical pole to the superior compartment and the basolateral pole to the inferior.
  • Fig. 2 Represents the activity (in mU / ml) of glutaminase in the presence of / V-phenyl- / V - (3-methyl-2-butenyl) thiourea and 6-diazo-5-oxo-norleucine (DON ) at concentrations of 0, 5, 20 and 100 ⁇ .
  • Fig. 3 Shows the kinetics study of the non-competitive inhibitor N-phenyl- / V '- (3-methyl-2-butenyl) thiourea.
  • the Km and Vmax of the GAP enzyme are practically modified by the same factor (parallel lines in the Linenweaver-Burk line).
  • the Vmax without the inhibitor is 1, 1 E3 ⁇ 0.78 U / L (A) and with 1 0 ⁇ of A / -phenyl-A / '- (3-methyl-2-butenyl) thiourea ( ⁇ ) is 4 , 73E3 ⁇ 1, 4 U / L.
  • the compound of the invention partially inhibits the enzymatic activity of GAP (56 ⁇ 14%).
  • Gln glutamine.
  • homogenization buffer pH 7.4 solution of 320 mM sucrose, Tris buffer 1 0 mM, 1 mM EDTA and 0.005 mM PMSF is added just before homogenization. They are centrifuged at 3,000 g for 15 min. The supernatant is aliquoted in 25 mL fractions that are lyophilized. The powder obtained is mixed until homogeneous and stored in a tightly closed container at -20 ° C until use.
  • This product constitutes the starting enzyme material (enriched in activity type K glutaminase) to perform all in vitro inhibition tests of glutaminase by different inhibitors.
  • Each GAP concentrate is reconstituted in solubilization buffer (20 mM Tris, 210 mM mannitol, 70 mM sucrose, 1 mM EGTA, pH 8) to constitute a homogeneous starting sample for carrying out the inhibition assay battery.
  • solubilization buffer (20 mM Tris, 210 mM mannitol, 70 mM sucrose, 1 mM EGTA, pH 8) to constitute a homogeneous starting sample for carrying out the inhibition assay battery.
  • solubilization buffer 20 mM Tris, 210 mM mannitol, 70 mM sucrose, 1 mM EGTA, pH 8
  • 0.8 grams of each glutaminase concentrate is dissolved in 100 ml of solubilization buffer. It aliquots and freezes quickly
  • the tests are carried out in triplicate, so that in each 96-well plate 8 products can be tested per plate. By issuing 5 plates per day, the approximately 5,500 products available could be tested in about 150 to 200 days, that is, in the first year. b) Characterization of the products with the greatest potential.
  • the data is processed, represented and analyzed using the EnzFitter software program from Biosoft Ltd (England), to obtain representation.
  • EXAMPLE 2 EX LIVE INHIBITION STUDIES. Ex vivo studies are carried out in cultures of intestinal epithelial cells and primary astrocytes, such as study targets for intestinal glutaminase and brain glutaminase, both type-K. These Studies allow us, not only to see the efficiency of inhibitors in conditions much more similar to those in vivo, but also, very important, allows us to rule out those that are toxic (viability tests and cell cytotoxicity). a) Cultivation of intestinal epithelial cells.
  • Cultures of intestinal epithelium cells are carried out using Caco-2 cells as a model of intestinal epithelium. These cells are derived from a colon cancer, have inhibition of contact proliferation followed by a differentiation process of 12 to 14 days in which they form a deadly cell, where that ion is narrow as well as realistic. apical / basolateral. They have a phenotype of fetal intestinal epithelium, expressing the glucose transporter (Glut-5), present in epithelium of small intestine and absent in large intestine cells, and do not express Glut-4, colon marker.
  • Glut-5 glucose transporter
  • Caco-2 cells are maintained in DMEM, plus 1% SBF (fetal bovine serum), 1 00,000 an international unit / l of penile ina / streptomycin, fungizone 25 mg / mL and nonessential amino acids. 5 x 10 5 cells per 25 mL bottle or 1.5 x 10 6 cells per 75 mL bottle are seeded. They are grown for 7 days with periodic changes of the medium at 37 ° C, 5% CO2 (Incubator CO2-Water Jacketed). During this period the cells reach the confluence, obtaining between 4 and 5 million cells per bottle of 25 ml_ and between 10 and 12 million cells per bottle of 75 ml_.
  • SBF fetal bovine serum
  • the cells are seeded in bicameral inserts of 6.5 or 24 mm in diameter (pore size: 0.4 ⁇ ) at a density of 2 x 10 5 or 10 x 10 6 cells / insert respectively and in the presence of a concentration of 150 niM glutamine and different concentrations of inhibitor (s): 0; 0.1 ⁇ , 1 ⁇ , 1 0 ⁇ , and 100 ⁇ and grown for 24 hours.
  • the cells will be separated and the ammonium levels measured in the supernatant and in the cell homogenate.
  • Caco-2 cells grown in double-chamber inserts, are lysed by incubating them for 15 min (with occasional agitation of 20 s) with 50 ⁇ of SM-Np40 buffer solution (0.05% Np40 in SM solution: 0.25 M sucrose; 10 mM MOPS pH 7.4; 3 mM MgCl 2 ; 5% glycerol; 1 mM DTT and pepstatin protease inhibitors At 0.7 mg / mL; 0.5 mg / mL aprotinin; 10 mg / mL leupeptin; 1 mM PMSF ) for every 10 6 cells.
  • SM-Np40 buffer solution 0.05% Np40 in SM solution: 0.25 M sucrose; 10 mM MOPS pH 7.4; 3 mM MgCl 2 ; 5% glycerol; 1 mM DTT and pepstatin protease inhibitors At 0.7 mg / mL; 0.5 mg / mL
  • colon carcinoma cells (Caco2) are seeded per well in a 12-well plate, using 1.2 ml of DMEM medium completed with 2mM L-Glutamine, 15% SBF, 1 X antibiotic / antifungal and 1 X non-essential amino acids (PAA Laboratories GmbH, Linz, Austria). The cells are incubate for the indicated times at 37 ° C, 5% CO2. In three parallel plates, A / -phenyl- / V '- (3-methyl-2-butenyl) thiourea, 6-diazo-5-oxo-norleucine (DON, Sigma, St.
  • DON 6-diazo-5-oxo-norleucine
  • Both DON and A / -phenyl- / V '- (3-methyl-2-butenyl) thiourea achieve an inhibition of glutaminase activity at 48 hours after an initial increase.
  • the administration of A / -phenyl- / V '- (3-methyl-2-butenyl) thiourea manages to reduce the glutaminase activity to 58%, while DON reduces the activity to 54% and the vehicle does not modify the glutaminase activity ( Figure 2).
  • a / -phenyl- / V '- (3-methyl-2-butenyl) thiourea is a partial adjunctive glutaminase inhibitor, which crosses the cell and mitochondrial membrane, which may be useful in the treatment of hepatic encephalopathy .
  • Astrocyte culture is a partial adjunctive glutaminase inhibitor, which crosses the cell and mitochondrial membrane, which may be useful in the treatment of hepatic encephalopathy.
  • astrocytes Primary cultures enriched in astrocytes are prepared from cerebellum of one-day-old rats according to the standard procedure of Agullo L., et al., 1995, Brain Res .; 686: 160-8. Animals are sacrificed in a CO2 chamber and once decapitated the brain is dissected by keeping it in a saline medium (137 mM NaCI; 5.5 mM KCI; 2.22 mM KH 2 PO 4 ; 0.17 mM Na 2 HPO4; 5 mM glucose and 58.5 mM sucrose) a pH 7.4. The disintegration of the tissue is carried out by successive steps through two wrong ones of nylon of 21 0 and 1 35 ⁇ ⁇ of pore in the middle salt.
  • a saline medium 137 mM NaCI; 5.5 mM KCI; 2.22 mM KH 2 PO 4 ; 0.17 mM Na 2 HPO4; 5 mM glucose and 58.5 mM sucrose
  • the obtained cell suspension is centrifuged at 500 xg for 5 minutes at 20 ° C and the cells are resuspended in culture medium (90% DMEM, 10% SFB, 20 units of penicillin ina and 20 g of streptomycin) at 37 ° C.
  • a cell count is performed using a hemocytometer, determining the viability by exclusion of the vital dye nigrosin (final concentration 0.25% w / v).
  • the cells are seeded at a concentration of 0.6 x 10 5 viable cells / mL in 35 mm, 60 mm or 100 mm diameter culture plates, or 12 or 24 well plates, and incubated at 37 ° C in 90% air atmosphere - 10% CO2 with a humidity of 90%.
  • cell proliferation is evaluated by cell count and determining the amount of protein (mg / mL) and DNA content (g / mL) by ultraviolet spectrophotometry.
  • GFAP positive astrocyte marker
  • the contamination by neurons and oligodendrocytes is scarce, and the presence of microglia cells can vary considerably from one preparation to another, being able to reach 30% of the total cells.
  • the cells are reseeded at a density of 10 x 10 6 cells / plate and in the presence of a concentration of 150 mM glutamine and different concentrations of inhibitor (s): 0; 0.1 ⁇ , 1 ⁇ , 1 0 ⁇ , and 1 00 ⁇ and are grown for 24 hours. Cells are separated and ammonium levels are measured in the supernatant and cell homogenate.
  • GFAP protein glial fibrillary acidic
  • Neuron Neuro-N
  • DAPI nuclear protein neuron 4 '-6' -diamidino-2-phenylindole
  • the homogenizations are carried out by 10 cycles (up-down) in a Potter-Elveheim. They are centrifuged at 14,000 x g 15 min at 4 ° C and the precipitate is collected (fraction enriched in mitochondria and therefore in GAP). This precipitate constitutes the material to measure GAP activity and is used immediately or stored at -80 ° C until use.
  • the animals are divided into two groups (see table 1). One group feeds if it is only with the diet and the other group will be introduced with the diet supplemented with data with centering of the selected identifier (s) in the previous phases.
  • the portocava shunt is performed in order to generate a model of hepatic encephalopathy, in which a decrease in intestinal and renal glutaminase activity is expected after exposure to inhibitors.
  • the animals Prior to the intervention, the animals undergo general anesthesia by inhalation with isofluoran, by exposing the animal to a mixture of oxygen, air and anesthetic gases (5%), at high flows.
  • the gas mixture is applied through a mask in which the entire head of the animal is introduced, achieving anesthesia in about 20-30 seconds.
  • the animal is left in spontaneous ventilation.
  • Anesthesia maintenance is achieved with portions of the gas between 2 and 3% (depending on the weight of the animal).
  • abdominal shaving and disinfection of the skin with povidone iodine is carried out.
  • the operation is carried out by middle laparotomy and evisceration of the intestinal package, dissection of the cava and hepatic liver above the renal veins and fat of the retroperitoneum and dissection of the hepatic hilum, especially the portal vein, paying special attention.
  • the learning test in rats with porto-cava bypass is performed waiting for an improvement in it after administration of GAP inhibitors.
  • This is a conditional discrimination test in a Y maze.
  • the Y maze has three equal arms.
  • the rats are initially placed in one of the arms (exit arm).
  • At the end of the other arms (arms of choice) two cups with food are placed.
  • a 4-day pre-workout is done so that the rats become familiar with the labyrinth.
  • the entire area of the arms of choice is covered with white or black inserts.
  • the color of the arms is modified in the different tests without a periodic guideline. Rats should learn that food is in one of the arms when the color is white and in the other arm when it is black.
  • Each rat is subjected to 10 tests per day, with an interval between trials of about 5 min. The tests are repeated until the rat reaches the learning criterion (10 hits of 10 trials in one day) or up to a total of 250 trials. The answer is considered to be correct when the rat is directly directed to the correct arm (who has the food). c) Preparation of intestine homogenates.
  • the homogenates of enterocytes are prepared from rat intestine, using mainly the duodenum and the ileum. To do this, after the sacrifice of the rats by decapitation, the intestine is quickly removed, the duodenum and the ileum are cut and washed in cold saline phosphate buffer (PBS: 0.1 M CINa, 3mM KCI, Na 2 HPO 4 0.01 M, KH 2 PO 4 0.002M, pH 7.4). Subsequently, they are cut with scissors into pieces of approximately 5 cm and washed again. Each piece is opened in half and with the help of a portal the intestinal villi are dragged, which are poured into a plastic tube and weighed.
  • PBS cold saline phosphate buffer
  • Mitochondria are obtained by the method of Haser et al. (Haser W.G., et al., 1985, Biochem J .; 229: 399-408).
  • the supernatant obtained in the homogenization of the tissues is centrifuged at 13,000 x g, 10 minutes.
  • the precipitate (enriched in mitochondria) is resuspended in homogenization buffer, and centrifuged for 5 minutes at 13,000 g. The process is repeated two more times.
  • the precipitate, thus obtained, is resuspended in incubation buffer (20 mM Tris, 210 mM mannitol, 70 mM sucrose, 1 mM EDTA, pH 8), and constitutes a highly enriched fraction in mitochondria.
  • Mitochondrial proteins are solubilized using incubation buffer containing 5 mM ⁇ -mercaptoethanol and 0.7% Triton X-100 for the determination of protein content and measurement of enzymatic activity. e) Preparation of brain homogenates.
  • the brain is dissected as quickly as possible and stored cold (on ice). Once separated, it is homogenized analogously to that described in the case of enterocytes. f) Obtaining synaptic and non-synaptic mitochondria.
  • the precipitate is resuspended again in the same volume of homogenization buffer and centrifuged again at 2,000 xg, for 3 min, 4 ° C, the supernatant being collected again.
  • the two supernatants are combined and centrifuged for 10 min at 13,000 xg, collecting the precipitate.
  • the mitochondria thus obtained are washed with homogenization buffer without EDTA and again centrifuged, 10 min, at 13,000 xg, at 4 ° C.
  • the separation of mitochondria from astrocytes is carried out in a Ficoll gradient. It is centrifuged 15 min at 1 000 xg, at 4 o C and washed with homogenization buffer without chelants, keeping the frozen mitochondria at -80 ° C.
  • a biopsy of the duodenal mucosa is performed.
  • the samples are homogenized in Tris-EDTA, pH 7.9 and taken to the ichotas, which are incubated at 37 ° C in the middle of incubation in phosphate buffer, pH 8.2, in the presence of 1 71 mM glutamine, as substrate ( nmol glutamate min-1 mg-1 protein or nmol / L).
  • Glutaminase activity is quantified by spectrophotometric measurement of ammonium derivatized with OPA, as a direct measure of product formation.
  • OPA ammonium derivatized with OPA
  • the amount of ammonium present in the sample is measured by the enzymatic method of glutamate dehydrogenase (ROCH E, Barcelona), in a COBAS I 700 integral hoist analyzer.
  • Glutamate dehydrogenase (GLDH) catalyzes the reductive amination of 2- oxoglutarate in the presence of NH + and NADPH, to produce glutamate and NADP + .
  • the concentration of NADP + is directly proportional to the concentration of ammonium consumed. So the reaction can be continued by measuring the decrease in absorbance of NADPH at 340 nm.
  • the jugular is punctured and quickly 50 ml of blood is collected in a tube without anticoagulant, centrifuged 5 min at 3,500 g. The supernatant obtained is transferred and the ammonium is measured as described above.
  • To measure ammonium in tissues proceed as follows: tissues frozen at -80 ° C quickly after obtaining, homogenize in liquid nitrogen in a mortar. Once homogenized, 2 volumes of 1.0% TCA are added, and sonicated (6 cycles of 30 seconds). It is then centrifuged at 13,000 x g, 15 min, at 4 ° C. The supernatant is neutralized with 2M KHCO3 and the different amounts of ammonium are determined avoiding thawing of the tissues in their manipulation.

Abstract

La presente invención se refiere a una composición farmacéutica que comprende el compuesto N-fenil-N'-(3-metil-2-butenil)tiourea y al uso del compuesto N-fenil-N'-(3-metil-2-butenil)tiourea y de dicha composición farmacéutica en la elaboración de medicamentos destinados al tratamiento de enfermedades que cursan con hiperamoniemia, como por ejemplo, pero sin limitarnos, la encefalopatía hepática en general o la encefalopatía hepática provocada por cirrosis en particular. Este compuesto es capaz de inhibir parcialmente la actividad enzimática de la glutaminasa intestinal activada por fosfato (GAP), provocando una reducción en la producción de amonio.

Description

Uso del compuesto /V-fenil-/V'-(3-metil-2-butenil)tiourea para la elaboración de medicamentos destinados al tratamiento de la
encefalopatía hepática La presente invención se encuadra en el campo de la biología molecular, la medicina y la farmacología y se refiere a una composición farmacéutica que comprende el compuesto A/-fenil-/V'-(3-metil-2-butenil)tiourea y a l uso del compuesto A/-fenil-/V'-(3-metil-2-butenil)tiourea y de dicha composición farmacéutica en la elaboración de medicamentos destinados al tratamiento de enfermedades que cursan con hiperamoniemia, como por ejemplo, pero sin limitarnos, la encefalopatía hepática en general o la encefalopatía hepática provocada por cirrosis en particular.
ESTADO DE LA TÉCNICA ANTERIOR
La encefalopatía hepática (EH) es una complicación neurológica severa de la cirrosis que se caracteriza por la presencia de altas concentraciones de amonio en el plasma o en los tejidos del paciente (Bosoi, et al., 2009, Metabolic Brain Disease, 24: 95-102). En los pacientes sanos, el amonio se detoxifica por medio del ciclo de la urea, pero en aquellos pacientes que presentan daños en esta capacidad de detoxificación, como es el caso de enfermos del hígado en general y en la EH en particular, el amonio se concentra en la sangre provocando un daño cerebral (Hazell, et al., 1999, P.S.E.B.M, 222(2): 99-1 12).
El amonio es principalmente generado en el intestino a partir de diversas fuentes: componentes nitrogenados de la dieta, deamidación de la glutamina y rotura de la urea por la ureasa presente en la flora del colon (Huizenga, et al., 1996, Annals of Clinical Biochemistry, 33:23-30). La glutaminasa es la enzima que metaboliza la deamidación de la glutamina y ha sido descrita como una enzima importante en la patogénesis de la EH (Romero-Gómez, 2005, Metabolic Brain Disease, 20(4): 319-325). En el intestino, la actividad de la glutaminasa se ha asociado con EH mínima, debido probablemente a su papel en la regulación de la generación de amonio.
La importancia de diagnosticar la presencia de encefalopatía hepática mínima (EHM) radica en que su presencia se relaciona con el desarrollo posterior de episodios de encefalopatía hepática, lo cual implica una menor supervivencia, así como una peor calidad de vida y un mayor riesgo de sufrir accidentes de tráfico o laborales. No obstante, a pesar de su importancia no existen tratamientos eficaces para esta entidad por lo que, aún en casos de pacientes con alto riesgo de desarrollar encefalopatía hepática clínica, no se indica tratamiento alguno. Hasta el momento se han planteado tímidos abordajes para el tratamiento de la EHM utilizando disacáridos no absorbibles, antibióticos y probióticos. Sin embargo, ninguno de estos fármacos ha demostrado de forma clara su utilidad. Una revisión sistemática reciente (Als-Nielsen, et al., 2004, Cochrane Datábase of Systematic Reviews, (2):CD003044) confirmó que los discáridos no absorbibles muestran una eficacia similar al placebo y que los antibióticos, tipo rifaximina, podrían añadir un ligero efecto beneficioso. Teniendo en cuenta que cada vez hay más datos que apuntan hacia un papel primordial del amonio en la fisiopatología de EHM (Shawcross, et al., 2005, Lancet, 365:431 -3), ya que la mayor parte del amonio sistémico es producido por la glutaminasa activada por fosfato (GAP) intestinal y renal, y que el amonio producido en los astrocitos es debido a la actividad glutaminasa cerebral, la inhibición de esta enzima constituye una de las principales dianas potenciales para el tratamiento de la EH.
Se han descrito dos tipos de glutaminasa mitocondrial, la glutaminasa hepática (L-GAP) y la glutaminasa tipo renal (K-GAP) o extrahepática (que se localiza también en otros órganos como el intestino). En humanos, la mayor actividad glutaminasa se localiza en el duodeno. Existen datos indirectos que sugieren que la actividad glutaminasa del enterocito está aumentada en pacientes cirróticos, como demuestra el hecho de que tras la administración de glutamina oral se produce un rápido aumento de la amoniemia en individuos cirróticos pero no en los controles sanos (Romero- Gómez, et al., 2002, Journal of Hepatology, 37:781 -787). La hiperamoniemia es muy marcada en pacientes con cirrosis hepática con mala función hepática, pero este marcado incremento en la producción de amonio tras la ingestión de glutamina se normaliza tras la realización del trasplante hepático y la normalización de la función hepática. La actividad específica de la glutaminasa en el enterocito es un punto crucial en la estabilidad del metabolismo nitrogenado en pacientes con cirrosis hepática. Se ha demostrado que la actividad glutaminasa está aumentada en individuos cirróticos frente a controles y que esta actividad se relaciona con la existencia de encefalopatía y el grado de disfunción hepática (Romero- Gómez, et al., 2004, Journal of Hepatology, 41 :49-54). Así, también la acumulación de glutamina en el astrocito es responsable, en gran parte, de la toxicidad inducida por amonio (Albrech, et al., 2006, Hepatology; 44:788- 794).
El cDNA de la glutaminasa humana tipo-renal (hK-GAP) fue clonado en 1998 y posteriormente fueron aislados los cDNAs que codificaban para tres isoformas de la hK-GAP, que se designaron como: K-GAP (que se expresa predominantemente en riñon, intestino y cerebro, pero no en hígado), M- GAP (que se expresa sólo en músculo cardíaco y esquelético), y C-GAP (que se expresa fundamentalmente en músculo cardíaco y páncreas pero no en cerebro ni en hígado). La K-GAP es la isoforma renal y tiene 669 aminoácidos, la C-GAP es una proteína de 598 aminoácidos y difiere de la K-GAP en el extremo carboxílico y la M-GAP es una proteína de 169 aminoácidos, que es idéntica a la C-GAP hasta el aminoácido 161 y los 8 restantes son únicos. Mediante la secuenciación del ADN genómico fue propuesto que las tres isoformas eran el producto de splicings alternativos del mismo gen. Empleando la técnica de Hibridación In Situ, se localizó el gen GLS en la región cromosómica 2q32-q34. La secuencia genómica de GLS se encuentra disponible a través del Gene Data Bank (GDB) con el número de acceso GDBID 1 19993. Este gen comprende unas 85,5 Kb del ADN genómico. Está constituido por 18 exones interrumpidos por 17 intrones. La transcripción de este gen da lugar a un mRNA de 4.606 nucleótidos de tamaño. Recientemente se han descrito dos haplotipos de este gen: TACG y CACG, que condicionan una menor actividad de la glutaminasa, lo que se traduce en una menor producción intestinal de amonio y una mejor función hepática y menor riesgo de desarrollar encefalopatía hepática (Romero-Gómez, et al., 2006, Hepatology, 44:685).
Por otro lado, se han descrito inhibidores de la glutaminasa como mersalyl, /V-etil maleimida, 5-oxo-6-Norleucina (DON). El DON se ha utilizado en la inhibición de glutaminasa en cultivos celulares de astrocitos demostrando la importancia de la actividad GAP en el daño celular inducido por el amonio. También, en ratas sometidas a derivación porto-cava, la neomicina inhibe la actividad glutaminasa intestinal (Hawkins, et al., 1994, Advances in Experimental Medicine and Biology, 368:125-34), aunque los mecanismos por los que la neomicina puede inhibir la actividad glutaminasa no están descritos. La actividad glutaminasa está aumentada en pacientes con altos niveles de óxido nítrico, de glucagón o de factor de necrosis tumoral.
Así pues, en base todo lo indicado, sería interesante inhibir la actividad glutaminasa como diana terapéutica en el manejo de la encefalopatía hepática. Para ello, es muy importante investigar nuevas moléculas que sirvan para tal fin que puedan ser empleadas en el tratamiento de la EHM, así como para disminuir la producción intestinal de amonio, ya que la concordancia de ambos factores determina un alto riesgo de encefalopatía y una menor supervivencia. Sin embargo, a la hora de desarrollar estas moléculas inhibidoras es necesario tener en cuenta que la inhibición completa de la actividad enzimática de la glutaminasa podría dañar severamente la función normal de los enterocitos, por lo que las moléculas inhibidoras de la actividad de la glutaminasa han de provocar una reducción en la producción de amonio, es decir, una inhibición parcial de la actividad enzimática, pero sin afectar significativamente la funcionalidad del enterocito.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención proporciona un compuesto capaz de inhibir parcialmente la actividad enzimática de la glutaminasa intestinal activada por fosfato (GAP), el compuesto A/-fenil-/V'-(3-metil-2-butenil)tiourea o sus derivados, provocando una reducción en la producción de amonio. Por ello, este compuesto o sus derivados podrían ser empleados en la elaboración de medicamentos destinados al tratamiento de enfermedades que cursan con hiperamoniemia, como por ejemplo, pero sin limitarnos, la encefalopatía hepática en general (EH) o la encefalopatía hepática provocada por cirrosis en particular.
Bajo la hipótesis de que la inhibición de la actividad glutaminasa se acompaña de una reducción de la hiperamoniemia, de una mejoría en el test de aprendizaje y de un descenso de la actividad glutaminasa intestinal y renal en ratas sometidas a derivación porto-cava (modelo experimental in vivo de encefalopatía hepática), en la presente invención se ha detectado un compuesto, A/-fenil-/V'-(3-metil-2-butenil)tiourea, capaz de inhibir la actividad glutaminasa en ratas con derivación porto-cava a partir del screening de una librería de compuestos químicos inhibidores de la glutaminasa. Otros inhibidores de la K-GAP, que presentan afinidad por reactivos de mareaje o sustratos análogos, poseen estructuras similares a la de la glutamina, sin embargo, este no es el caso del compuesto A/-fenil-/V'-(3-metil-2- butenil)tiourea.
Otros compuestos químicos cuya actividad inhibidora de la glutaminasa ha sido ensayada en la presente invención son: /V-geranil-A/'-metiltiourea, /V-etil- Λ/'-geranilurea, /V-etoxicarbonilmetil-A/'-geraniltiourea, A/-(3-metil-2-butenil)-/V- (4-nitrofenil)tiourea, A/-etil-/V'-(3-metil-2-butenil)urea, A/-farnesil-/V'-(4- nitrofenil)tiourea, 3-farnesil-2-tioxoinnidazolidin-4-ona, /V-etil-A/'-farnesilurea, /V-farnesil-A/'-fenilurea o /V-alil-A/'-farnesilurea. No obstante, todos estos compuestos mostraron una elevada inhibición de la enzima, conduciendo así a una elevada toxicidad.
Debido a que el compuesto A/-fenil-/V'-(3-metil-2-butenil)tiourea produce una inhibición parcial sobre la actividad de la GAP, se convierte de un candidato idóneo para su uso en el control de la hiperamoniemia en, por ejemplo, pero sin limitarnos, pacientes de EH, ya que la enzima, aunque parcialmente inhibida, es capaz de continuar realizando su función fisiológica en un menor grado, lo que permite al mismo tiempo el mantenimiento de la funcionalidad de los enterocitos y una reducción de la toxicidad provocada por la acumulación de amonio. Por ello, un primer aspecto de la invención se refiere al uso del compuesto, A/-fenil-/V'-(3-metil-2-butenil)tiourea de ahora en adelante "compuesto de la invención", para la elaboración de un medicamento, o alternativamente, al compuesto A/-fenil-/V'-(3-metil-2-butenil)tiourea p a r a s u u s o c o m o medicamento. Otro aspecto de la invención se refiere al uso del compuesto A/-fenil-/V'-(3-metil-2-butenil)tiourea para la elaboración de un medicamento para su uso en el tratamiento de enfermedades que cursan con hiperamoniemia. En una realización preferida, las enfermedades que cursan con hiperamoniemia se seleccionan de la lista que comprende: errores congénitos del metabolismo del ciclo de la urea, errores congénitos del metabolismo de la lisina, acidemias orgánicas, hiperamoniemia transitoria del recién nacido, insuficiencia hepática, encefalopatía hepática o cirrosis. En una realización más preferida, la enfermedad es la cirrosis. En una realización aún más preferida, la enfermedad es la encefalopatía hepática. El compuesto de la invención "A/-fenil-/V'-(3-metil-2-butenil)tiourea" se define como el compuesto de CAS-RN: 104741 -27-7 descrito por lliceto, et al., 1960, Gazzetta Chimica Italiana, 90:919-40, de fórmula:
Figure imgf000008_0001
Se incluyen dentro de esta definición cualquiera de sus sales, profármacos, derivados o análogos, o cualquiera de las combinaciones de los mismos.
El compuesto de la invención ejerce su acción inhibitoria de la actividad enzimática de GAP a una concentración que se encuentra, preferiblemente, en un rango de entre 1 μΜ y 10mM. Por ello, en una realización preferida, el compuesto A/-fenil-/V'-(3-metil-2-butenil)tiourea se encuentra en un rango de concentraciones de entre 1 μΜ y 10mM. En una realización más preferida, el compuesto A/-fenil-/V'-(3-metil-2-butenil)tiourea se encuentra en un rango de concentraciones de entre 5μΜ y 8mM.
El término "medicamento", tal y como se usa en esta descripción, hace referencia a cualquier sustancia usada para la prevención, el diagnóstico, el alivio, el tratamiento o la curación de enfermedades en el hombre y los animales. En el contexto de la presente invención se refiere a una preparación que comprenda, al menos, el inhibidor A/-fenil-/V'-(3-metil-2- butenil)tiourea o cua lq u iera d e sus sal es , profármacos, derivados o análogos, o sus combinaciones. El medicamento comprende, al menos, el compuesto de la invención. El compuesto de la presente invención, derivados farmacéuticamente aceptables o sus profármacos, se formulan en una composición farmacéutica apropiada, en la cantidad terapéuticamente efectiva, preferiblemente junto con uno o más vehículos, adyuvantes o excipientes farmacéuticamente aceptables. El medicamento es útil para el tratamiento de enfermedades que cursan con hiperamoniemia, preferiblemente, la encefalopatía hepática. Por un "derivado farmacéuticamente aceptable" se entiende cualquier sal, farmacéuticamente aceptable o cualquier otro compuesto que después de su administración, es capaz de proporcionar (directa o indirectamente) el compuesto de la invención o cualquiera de sus sales, profármacos, derivados o análogos.
Tal como aquí se utiliza, el término "derivado" incluye tanto a compuestos farmacéuticamente aceptables, es decir, derivados del compuesto de la invención que pueden ser utilizados en la elaboración de un medicamento, como derivados farmacéuticamente no aceptables, ya que éstos pueden ser útiles en la preparación de derivados farmacéuticamente aceptables.
Asimismo, dentro del alcance de esta invención se encuentran los profármacos del compuesto de la invención. El término "profármaco" tal como aquí se utiliza incluye a cualquier compuesto derivado del compuesto de la invención, que cuando se administra a un individuo es capaz de proporcionar, directa o indirectamente, dicho compuesto de la invención en dicho individuo. Ventajosamente, dicho derivado es un compuesto que aumenta la biodisponibilidad del compuesto de la invención cuando se administra a un individuo o que potencia la liberación del compuesto de la invención en un compartimento biológico. La naturaleza de dicho derivado no es crítica siempre y cuando pueda ser administrado a un individuo y proporcione el compuesto de la invención en un compartimento biológico de un individuo. La preparación de dicho profármaco puede llevarse a cabo mediante métodos convencionales conocidos por los expertos en la materia.
El término "tratamiento", tal como se entiende en la presente invención, supone combatir los efectos causados como consecuencia de enfermedades que cursan con hiperamoniemia, preferiblemente, encefalopatía hepática, para estabilizar el estado de los individuos o prevenir daños posteriores. El término "prevención", tal como se entiende en la presente invención, consiste en evitar la aparición de daños cuya causa sea cualquier enfermedad que curse con hiperamoniemia, preferiblemente, encefalopatía hepática.
Se entiende por "hiperamoniemia" el estado fisiológico caracterizado por la presencia de un nivel elevado y, por tanto tóxico, de amonio en el plasma o en los tejidos del individuo, entendiéndose por "nivel elevado de amonio" los niveles de amonio (NH4) en plasma superiores a 50 μηηοΙ/Ι_= > 90 pg/dL y en período neonatal superiores a 1 10 μηηοΙ/Ι_= > 190 g/dL. Se trata de una de las complicaciones más frecuentes del ciclo de la urea. Las formas más leves se ca racteriza n por los s íntom as ep isód icos , con brotes de hiperamoniemia que comienzan en la primera infancia o al final de la niñez y cursan con vómitos y alteraciones neurológicas como ataxia (carencia de la coordinación de movimientos musculares), confusión mental, agitación y combatividad, separados por periodos de normalidad. Los episodios suelen aparecer tras tomar una dieta rica en proteínas, tras una infección o en periodos de estrés. En alguno de los ataques puede haber un coma hiperamoniémico y producirse la muerte. Es frecuente que aparezca un retraso mental de ligero a moderado y cálculos biliares. La medida del nivel de amonio, y por tanto, del grado de hiperamoniemia en un individuo, podría realizarse mediante los tests comerciales disponibles para tal fin, como por ejemplo, pero sin limitarnos, el método enzimático de la glutamato-deshidrogenasa (ROCHE, Barcelona). La glutamato- deshidrogenasa (GLDH) cataliza la aminación reductora del 2-oxoglutarato en presencia de NH + y NADPH, para producir glutamato y NADP+. La concentración del NADP+ es directamente proporcional a la concentración del amonio consumido. Por lo que la reacción se puede seguir midiendo la disminución de la absorbancia del NADPH a 340 nm. La medida del nivel de amonio en plasma mediante este test consiste en la recolección de sangre del individuo en un tubo sin anticoagulante, su centrifugación, el trasvase del sobrenadante y la medida del nivel de amonio como se ha descrito. Para la medida del nivel de amonio en los tejidos, éstos se homogenizan, por ejemplo, pero sin limitarnos, en nitrógeno líquido en un mortero, se añade ácido tricloroacético (TCA) y se sonican, se centrifugan y el sobrenadante se neutraliza, por ejemplo, pero sin limitarnos, con KHCO3 y se determinan las distintas cantidades de amonio evitando la descongelación de los tejidos en su manipulación. Se define, por tanto, hiperamoniemia como los niveles de amonio (NH4) en plasma superiores a 50 μηηοΙ/Ι_= > 90 pg/dL y en período neonatal superiores a 1 10 μηηοΙ/Ι_= > 190 g/dL.
Cualquier enfermedad que curse con hiperamoniemia podría ser tratada con los medicamentos o composiciones farmacéuticas elaboradas con el compuesto de la invención o sus sales, profármacos, derivados o análogos o cualquiera de sus combinaciones, ya que estos, al inhibir la actividad de la GAP, son capaces de reducir los niveles de amonio, lo que evita la toxicidad derivada de la acumulación del mismo, por lo tanto, el compuesto de la invención es útil para el tratamiento de cualquier enfermedad en la que los n iveles de amon io se encuentren incrementados (h iperamon iem ia). Enfermedades que cursan con hiperamoniemia son, por ejemplo, pero sin limitarnos, los errores congénitos del metabolismo del ciclo de la urea, errores congénitos del metabolismo de la lisina, acidemias orgánicas, hiperamoniemia transitoria del recién nacido, insuficiencia hepática, encefalopatía hepática o cirrosis. Dentro de los errores congénitos del metabolismo del ciclo de la urea se pueden producir diversas enfermedades metabólicas distintas según el sitio del bloqueo, pero todas ellas con hiperamoniemia y sintomatología clínica similar, las cuales son: deficiencia de carbamil fosfato sintetasa, deficiencia de omitina transcarbamilasa, deficiencia en argininosuccinato sintetasa, deficiencia en argininosuccinato Nasa, deficiencia en arginasa, deficiencia en N-acetilglutamato sintetasa o síndrome de hiperamoniemia-hiperornitinemia-homocitrulinemia (síndrome HHH). Dentro de los errores congénitos del metabolismo de la lisina se encuentran la hiperlisinemia, hiperlisinuria o la intolerancia familiar a la proteína aminoaciduria dibásica. Dentro de las acidemias orgánicas se encuentran los errores congénitos del metabolismo de aminoácidos de cadena ramificada, la hipervalinemia, acidemia isovalérica, acidemia propiónica o la acidemia metil malón ica, déficit de β-cetotiolasa, déficit múltiple de carboxilasas, déficit de acil CoA deshidrogenasa de los ácidos grasos de cadena media, acidemia glutárica de tipo II o aciduria 3-hidroxi-3- metilglutárica. La insuficiencia hepática puede ser debida a infecciones o intoxicaciones.
Se entiende por "encefalopatía hepática" el síndrome de alteración mental que aparece en pacientes con insuficiencia hepática aguda o crónica. En algunos casos raros puede ocurrir en ausencia de daño hepático (síndromes hiperamoniémicos). La encefalopatía hepática aguda se presenta en casos de necrosis hepática masiva asociada con infecciones virales, fármacos, tóxicos, o con esteatosis micronodular que suele presentarse con medicamentos, como las tetraciclinas, administrados por vía intravenosa o en el hígado graso del embarazo. Las manifestaciones cl ínicas son diversas y varían desde cambios sutiles de la personalidad hasta el coma profundo. La encefalopatía hepática se caracteriza, y por tanto, se puede detectar, por la presencia de hiperamon iemia. Los n iveles elevados de amonio que se acumulan en el plasma o en los tej idos de los individuos afectados por hiperamoniemia causan un daño cerebral que en ocasiones deriva en encefalopatía hepática, por lo que el compuesto de la invención, o cualquiera de sus sales, profármacos, derivados o análogos, o cualquiera de sus combinaciones, al controlar la producción de amonio, puede ser útil en la elaboración de medicamentos para el tratamiento de la encefalopatía hepática, incluyéndose dentro de la misma tanto la mínima como la aguda.
Se entiende por "cirrosis" o "cirrosis hepática" la enfermedad que afecta al tejido hepático como consecuencia final de diferentes enfermedades crónicas. Los síntomas son: hemorroides sangrantes, confusión, impotencia y pérdida del interés sexual, ictericia, náuseas y vómitos, vasos sanguíneos pequeños, rojos y en forma de araña bajo la piel, hinchazón de las piernas, vómito con sangre, debilidad y/o pérdida de peso. Una de las complicaciones de la cirrosis es la encefalopatía hepática, la cual no se presenta en todos los individuos cirróticos. Por lo tanto, ya que la encefalopatía hepática esta producida por hiperamoniemia y que la cirrosis puede provocar encefalopatía hepática, podría ser viable el tratamiento de la encefalopatía hepática en la cirrosis mediante los medicamentos o composiciones farmacéuticas elaboradas a partir del compuesto de la invención o cualquiera de sus sales, profármacos, derivados o análogos, o cualquiera de sus combinaciones.
Otro aspecto de la invención se refiere a una composición farmacéutica, de ahora en adelante "composición farmacéutica de la invención", que comprende el compuesto A/-fenil-/V'-(3-metil-2-butenil)tiourea. En una realización preferida, la composición farmacéutica de la invención comprende, además, otro principio activo. En otra realización preferida, la composición farmacéutica de la invención comprende, además, un vehículo farmacéuticamente aceptable.
Como se emplea aquí, el término "principio activo", "sustancia activa", "sustancia farmacéuticamente activa", "ingrediente activo" ó "ingrediente farmacéuticamente activo" significa cualquier componente que potencialmente proporcione una actividad farmacológica u otro efecto diferente en el diagnóstico, cura, mitigación, tratamiento, o prevención de una enfermedad, o que afecta a la estructura o función del cuerpo del hombre u otros animales. El término incluye aquellos componentes que promueven un cambio químico en la elaboración del fármaco y están presentes en el mismo de una forma modificada prevista que proporciona la actividad específica o el efecto.
Los "adyuvantes" y "vehículos farmacéuticamente aceptables" se refieren a aquellas sustancias, o combinación de sustancias, conocidas en el sector farmacéutico, utilizadas en la elaboración de formas farmacéuticas de administración e incluyen, pero sin limitarse, sólidos, l íquidos, disolventes o tensioactivos. Los vehículos farmacéuticamente aceptables que pueden ser utilizados en la presente invención son los vehículos conocidos en el estado de la técnica.
Las composiciones farmacéuticas y medicamentos de la presente invención pueden utilizarse en un método de tratamiento de forma aislada o conjuntamente con otros compuestos farmacéuticos destinados al tratamiento de enfermedades que cursan con hiperamoniemia, preferiblemente, encefalopatía hepática. Las composiciones farmacéuticas de la presente invención pueden formularse para su administración en una variedad de formas conocidas en el estado de la técnica.
Tales composiciones y/o sus formulaciones pueden administrarse a un animal, incluyendo un mamífero y, por tanto, al hombre, en una variedad de formas, incluyendo, pero sin limitarse a, parenteral, intraperitoneal, intravenosa, intradérmica, epidural, intraespinal, intraestromal, intraarticular, intrasinovial, intratecal, intralesional, intraarterial, intracardíaca, intramuscular, intranasal, intracraneal, subcutánea, intraorbital, intracapsular, tópica, mediante parches transdérmicos o vía rectal, mediante la administración de un supositorio, percutánea, espray nasal, implante quirúrgico, pintura quirúrgica interna, bomba de infusión o vía catéter.
La dosificación para obtener una cantidad terapéuticamente efectiva depende de una variedad de factores, como por ejemplo, la edad, peso, sexo o tolerancia del individuo. En el sentido utilizado en esta descripción, la expresión "cantidad terapéuticamente efectiva" se refiere a la cantidad de la composición farmacéutica de la invención que produzcan el efecto deseado y, en general, vendrá determinada, entre otras causas, por las características propias de dicha composición farmacéutica y el efecto terapéutico a conseguir. Otro aspecto de la invención se refiere al uso de la composición farmacéutica de la invención para la elaboración de un medicamento. En una realización preferida, el medicamento es para su uso en el tratamiento de enfermedades que cursan con hiperamoniemia. En otra realización preferida, las enfermedades que cursan con hiperamoniemia se seleccionan de la lista que comprende: errores congénitos del metabolismo del ciclo de la urea, errores congénitos del metabolismo de la lisina, acidemias orgánicas, hiperamoniemia transitoria del recién nacido, insuficiencia hepática, encefalopatía hepática o cirrosis. En una realización más preferida, la enfermedad es la cirrosis. En una realización aún más preferida, la enfermedad es la encefalopatía hepática.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
DESCRIPCIÓN DE LAS FIGURAS
Fig. 1. Representa el cultivo de células del epitelio intestinal sobre insertos bicamerales. Las células exponen su polo apical al compartimento superior y el polo basolateral al inferior.
Fig. 2. Representa la actividad (en mU/ml) de la glutaminasa en presencia de /V-fenil-/V -(3-metil-2-butenil)tiourea y de 6-diazo-5-oxo- norleucina (DON) a concentraciones de 0, 5, 20 y 100 μΜ.
Fig. 3. Muestra el estudio de cinética del inhibidor no competitivo N- fenil-/V'-(3-metil-2-butenil)tiourea. La Km y la Vmáx de la enzima GAP están prácticamente modificadas por el mismo factor (l íneas paralelas en el trazo de Linenweaver-Burk). La Vmáx sin el inhibidor es 1 ,1 E3 ± 0,78 U/L ( A ) y con 1 0 μΜ de A/-fenil-A/'-(3-metil-2-butenil)tiourea (■) es 4,73E3 ± 1 ,4 U/L. A esta concentración, el compuesto de la invención inh ibe parcialmente la actividad enzimática de GAP (56±14%). Gln: glutamina.
EJEMPLOS
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que ponen de manifiesto la efectividad del compuesto N- fenil-/V'-(3-metil-2-butenil)tiourea en l a i n h i b ic ión d e l a activ id ad d e l a glutaminasa activada por fosfato o GAP. Estos ejemplos específicos que se proporcionan sirven para ilustrar la naturaleza de la presente invención y se i ncl uyen sol a mente con fi nes i l u strativos, por lo q u e no ha n d e ser interpretados como limitaciones a la invención que aquí se reivindica. Por tanto, los ejemplos descritos más adelante ilustran la invención sin limitar el campo de aplicación de la misma.
EJEMPLO 1. ESTUDIOS DE INHIBICIÓN IN VITRO.
1.1. Liofilización de la glutaminasa dependiente de fosfato renal, intestinal y cerebral de cerdo.
Para la preparación de homogenados de los diferentes tejidos de cerdo se procede como sigue: lavar con PBS cada tejido para eliminar la mayor parte de sangre, trocear y homogenizar en tampón de homogenización (solución a pH 7,4 de sacarosa 320 mM, tampón Tris 1 0 mM, EDTA 1 mM y se añade PMSF 0,005 mM justo antes de homogeneizar). Se centrifugan a 3.000 g durante 15 min. El sobrenadante se alicuotea en fracciones de 25 mL que se liofilizan. El polvo obtenido se mezcla hasta la homogeneidad y se guarda en un recipiente herméticamente cerrado a -20°C hasta su uso. Este producto constituye el material enzimático de partida (enriquecido en actividad glutaminasa tipo K) para realizar todos los ensayos de inhibición in vitro de la glutaminasa por diferentes inhibidores. Cada concentrado de GAP se reconstituye en tampón de solubilización (Tris 20 mM, manitol 210 mM, sacarosa 70 mM, EGTA 1 mM, pH 8) para constituir una muestra de partida homogénea para la realización de la batería de ensayos de inhibición. En un cálculo estimado de 100 ensayos de actividad GAP (controles y blancos), se disuelven 0,8 gramos de cada concentrado de glutaminasa en 100 ml_ de tampón de solubilización. Se alicuotea y se congela rápidamente a -80°C. Así se dispone de una solución de partida homogénea de diferentes tejidos como concentrado de glutaminasa de riñon, de intestino y de cerebro para los diferentes estudios de medida de actividad glutaminasa.
1.2. Estudios in vitro. Los estudios de inhibición in vitro de la GAP se llevan a cabo mediante el método de Heini semi-automatizado en microplacas de 96 pocilios. Este método se basa en la medida directa del amonio, por el método del OPA, formado al hidrolizarse la glutamina a glutamato más amonio. El estudio comprende dos etapas: a) Cribado del banco de productos disponibles.
De los 1 1 .000 productos disponibles obtenidos por química combinatoria se testan 5.000 , u n a se ri e p rod u ctos ba s es (e streptomicina, DON, flumazenilo,...) y una amplia gama de productos naturales entre los que cabe destacar distintos polifenoles purificados de la aceituna, girasol, soja, hongos comestibles, etc., que en pruebas preliminares mostraron cierta actividad anti-GAP en extractos crudos. Algunos de los compuestos químicos que forman parte de esta librería de compuestos empleados en el proceso de screening, son los que se muestran a continuación:
Figure imgf000018_0001
N-geranikV-metiltiourea
Figure imgf000018_0002
TV-etil-TV-geranilurea
Figure imgf000018_0003
V-etoxicarbonilmetil-V-geraniltiourea
Figure imgf000018_0004
V-(3-metil-2-butenil)-V'-(4-nitrofenil)tiourea
Figure imgf000018_0005
N-etil-V'-(3-metil-2-butenil)urea
Figure imgf000018_0006
V-farnesil-V-(4-nitrofenil)tiourea
Figure imgf000019_0001
3-farnesil-2-tioxoimidazolidin-4-ona
Figure imgf000019_0002
V-alikV -farnesilurea
La inhibición de cada producto se testa midiendo la actividad de la GAP a una concentración de glutamina, [Gln] = 150 mM y tres concentraciones diferentes de cada inhibidor potencial, [I] = 0, 1 Km, 1 km y 2 Km (Km para la Gln = 3,2 mM). Los ensayos se realizan por tripl icado, por lo que en cada placa de 96 pocilios se pueden testar 8 productos por placa. Testando 5 placas por día, los aproximadamente 5.500 productos disponibles podrían estar testados en unos 150 a 200 días, es decir, en el primer año. b) Caracterización de los productos con mayor potencial.
El screening anterior nos permite seleccionar los productos con mayor potencial de inhibición (aquellos que consigan una mayor inhibición a bajas concentraciones de inhibidor), que serán caracterizados más detalladamente.
Suponiendo que este grupo represente el 1 -2%, estaríamos hablando de un grupo de 50 a 100 productos. Brevemente, se estudia la velocidad de reacción a diferentes concentraciones de glutamina, [Gln] = 0,1 a 150 mM, en ausencia y en presencia de tres concentraciones diferentes de inhibidor, [I] = 0,1 mM, 1 mM y 10 mM. A partir de estos datos se obtienen el tipo de inhibición, la Ki para el inhibidor y la IC5o a concentraciones fisiológicas de Gln. El tipo de inhibición, Ki e IC5o se determinan mediante el análisis de los datos cinéticos en ausencia y presencia de inhibidor por el método de Linenweaver-Burk o de dobles inverso, Eisental-Cornis-Bowden y plot de Dixon.
Los datos son tratados, representados y analizados mediante el programa informático EnzFitter de Biosoft Ltd (Inglaterra), para obtener la representación.
En esta etapa estaremos en condiciones de poder elegir aquellos productos de menor Ki y/o IC5o- Suponiendo que este grupo represente del orden del 10-20% estaríamos hablando como mucho de 10 a 20 inhibidores potenciales. Este grupo sería el que pasaría a testarse a nivel de cultivo celular (en estudios ex vivo).
EJEMPLO 2. ESTUDIOS DE INHIBICIÓN EX VIVO. Los estudios ex vivo se llevan a cabo en cultivos de células de epitelio intestin al y de astrocitos primarios, como d ianas de estud io de la glutaminasa intestinal y la glutaminasa de cerebro, ambas de tipo-K. Estos estudios nos permiten, no solo ver la eficiencia de los inhibidores en condiciones mucho más parecidas a las de in vivo, sino que además, muy importante, nos permite descartar aquellos que sean tóxicos (ensayos de viabilidad y citotoxicidad celular). a) Cultivo de células de epitelio intestinal.
Los cultivos de células de epitelio intestinal se llevan a cabo utilizando células Caco-2 como modelo de epitelio intestinal . Estas células derivan de un cáncer de colon, presentan inhibición de la proliferación por contacto seguido por un proceso de diferenciación de 12 a 14 días en los que forman mo noca pas ce l u l a res , d esa rrol l a n u n ion es estrech a s y pol a rid ad apical/basolateral . Presentan un fenotipo de epitelio intestinal fetal, expresando el transportador de glucosa (Glut-5), presente en epitelio de intestino delgado y ausente en células de intestino grueso, y no expresan Glut-4, marcador de colon. Pueden cultivarse en insertos bicamerales, por lo que conforman un sistema que posee ventajas notables para el estudio del transporte transepitel ial respecto a los sistemas tradicionales, ya que no presentan interferencia de tejidos intersticiales ni musculares. Estas células pueden cultivarse tanto en botellas de plástico como en insertos bicamerales (Costar, Cambridge, MA). Al cultivarse en insertos (membranas microporosas embebidas en insertos microplatos), exponen su polo apical al compartimento superior y el polo basolateral al inferior, permitiendo el estudio de funciones celulares polarizadas y la secreción vectorial de proteínas (Figura 1 ).
Las células Caco-2 se mantienen en DMEM, más SBF (suero bovino fetal) al 1 0% , 1 00.000 u n idades internacionales/l de pen icil ina/estreptomicina, fungizona 25 mg/mL y aminoácidos no esenciales . Se siembran 5 x 105 células por botella de 25 mL ó 1 ,5 x 106 células por botella de 75 mL. Se crecen durante 7 días con cambios periódicos del medio a 37°C, 5% de CO2 (Incubador CO2-Water Jacketed). Durante este período las células alcanzan la confluencia, obteniéndose entre 4 y 5 millones de células por botella de 25 ml_ y entre 10 y 12 millones de células por botella de 75 ml_. Después de 2 pasajes (proliferación a aproximadamente 2 x 106 células/botella/pasaje), las células se siembran en insertos bicamerales de 6,5 ó 24 mm de diámetro (tamaño de poro: 0,4 μιτι) a una densidad de 2 x 105 ó 10 x 106 células/inserto respectivamente y en presencia de una concentración 150 niM de glutamina y diferentes concentraciones de inhibidor(es): 0; 0, 1 μΜ, 1 μΜ , 1 0 μΜ , y 100 μΜ y se crecen durante 24 horas. Se separaran las células y se miden los niveles de amonio en el sobrenadante y en el homogenado celular.
Obtención de homogenados celulares
La células Caco-2, cultivadas en insertos bicamerales, se lisan incubándolas durante 15 min (con agitaciones ocasionales de 20 s) con 50 μί de solución amortiguadora SM-Np40 (Np40 0,05% en solución SM: Sacarosa 0,25 M; MOPS 10 mM pH 7,4; MgCI2 3 mM; glicerol 5%; DTT 1 mM e inhibidores de proteasas pepstatina A 0,7 mg/mL; aprotinina 0,5 mg/mL; leupeptina 10 mg/mL; PMSF 1 mM) por cada 106 células. Posteriormente, se centrifugan a 1 .500 X g durante 5 min, obteniéndose así un sobrenadante que, una vez centrifugado a 1 4.000 x g , proporciona un precipitado enriquecido en mitocondrias y por tanto en GAP. Este precipitado constituye el material para medir la actividad GAP y se utiliza inmediatamente o se guarda a -80 °C hasta su uso.
Ensayos comparativos de inhibición de la actividad qlutaminasa por /V-fenil- A/'-(3-metil-2-butenil)tiourea v por DON
Se siembran 50.000 células de carcinoma de colon (Caco2) por pocilio en una placa de 12 pocilios, empleando 1 ,2 mi de medio DMEM completado con L-Glutamina 2mM, 15% SBF, antibiótico/antimicótico 1 X y aminoácidos no esenciales 1 X (PAA Laboratories GmbH, Linz, Austria). Las células se incuban durante los tiempos indicados a 37° C, 5% CO2. En tres placas paralelas se ensaya A/-fenil-/V'-(3-metil-2-butenil)tiourea, 6-diazo-5-oxo- norleucina (DON, Sigma, St. Louis, EE.UU .) y vehículo a concentraciones de 0, 5, 20 y 1 00μΜ, midiendo la actividad glutaminasa por el método de Heini (Heini et al., 1987, Eur. J. Biochem.; 162: 541 -546) a las 24h y 48h. Todos los ensayos se realizan por duplicado.
Tanto DON como A/-fenil-/V'-(3-metil-2-butenil)tiourea consiguen una inhibición de la actividad glutaminasa a las 48 horas tras un incremento inicial . La administración de A/-fenil-/V'-(3-metil-2-butenil)tiourea consigue reducir la actividad glutaminasa al 58%, mientras que DON reduce la actividad al 54% y el veh ículo no modifica la actividad glutaminasa (Figura 2). Por tanto, A/-fenil-/V'-(3-metil-2-butenil)tiourea es un inhibidor acompetitivo parcial de la glutaminasa, que atraviesa la membrana celular y mitocondrial , que puede ser útil en el tratamiento de la encefalopatía hepática. b) Cultivo de astrocitos.
Se utilizan ratas albinas de una semana de edad, de la cepa Wistar, criadas en el Animalario de Espartinas de la Universidad de Sevilla y mantenidas en el estabularlo de la Facultad de Farmacia de la Universidad de Sevilla. Los animales se mantienen con la madre hasta el momento de ser sacrificados, en condiciones constantes de luz (ciclo de 12 horas luz-oscuridad) y temperatura 23±2 °C, con acceso libre a comida y agua.
Los cultivos primarios enriquecidos en astrocitos se preparan a partir de cerebelo de ratas de un día de edad de acuerdo con el procedimiento estándar de Agullo L., et al., 1995, Brain Res.; 686:160-8. Los animales se sacrifican en una cámara de CO2 y una vez decapitados se disecciona el cerebro manteniéndolo en un medio salino (NaCI 137 mM; KCI 5,5 mM; KH2PO4 2,22 mM; Na2HPO4 0,17 mM; glucosa 5 mM y sacarosa 58,5 mM) a pH 7,4. La disgregación del tejido se realiza por pasos sucesivos a través de dos mal las de nylon de 21 0 y 1 35 μ ιτι de poro en el med io sal ino . La suspensión celular obtenida se centrifuga a 500 x g durante 5 minutos a 20 °C y las células se resuspenden en medio de cultivo (90% DMEM, 10% SFB, 20 un idades de pen icil ina y 20 g de estreptomicina) a 37 °C. En esta suspensión se realiza un recuento de células utilizando un hemocitómetro, determinándose la viabilidad por exclusión del colorante vital nigrosina (concentración final 0,25% p/v). Las células se siembran a una concentración de 0,6 x 105 células viables/mL en placas de cultivo de 35 mm, 60 mm ó 100 mm de diámetro, o placas de 12 ó 24 pocilios, y se incuban a 37 °C en atmósfera de 90% aire - 10% CO2 con una humedad del 90%.
Durante los cultivos, se evalúa la proliferación celular, mediante conteo de células y determinando la cantidad de proteína (mg/mL) y el contenido de DNA ( g/mL) por espectofotometría ultravioleta.
La mayoría de las células presentes en cultivos confluentes de 14 días son GFAP positivas (marcador de astrocitos). La contaminación por neuronas y oligodendrocitos es escasa, y la presencia de células de microgl ía puede variar considerablemente de una preparación a otra, pudiendo llegar a ser del 30% del total de células. Después de 2 pasajes las células se resiembran a una densidad de 10 x 106 células/placa y en presencia de una concentración de 150 mM de glutamina y diferentes concentraciones de inh ibidor(es): 0; 0, 1 μΜ , 1 μΜ , 1 0 μΜ , y 1 00 μΜ y se crecen durante 24 horas. Se separan las células y se miden los niveles de amonio en el sobrenadante y en el homogenado celular.
Determinación del porcentaje de astrocitos y de neuronas
Para calcular los porcentajes de células astrogliales y de neuronas a lo largo del desarrollo de los cultivos se utiliza un doble mareaje con un marcador celular específico: proteína acídica fibrilar glial, (GFAP), para astrocitos y proteína nuclear de neurona, (Neu-N), para neuronas, junto con el marcador nuclear 4'-6'-diamidino-2-fenilindol (DAPI). El proceso consta de las siguientes etapas: i) fijación, ii) permeabilización y bloqueo de uniones inespecíficas, iii) incubación con el primer anticuerpo, iv) incubación con el segundo anticuerpo y v) lavado y montaje. Una vez lavadas las células, sobre las monocapas se montan cubreobjetos con el medio de montaje glicergel, y las células se observan en un microscopio de fluorescencia Zeiss.
Preparación de homogenados de astrocitos
Para la obtención de homogenados se utilizan cultivos primarios de astrocitos de 14 d ías, tratados con diferentes concentraciones de inhibidor. Una vez aspirado el medio de cultivo y lavadas dos veces las monocapas con PBS a 4 °C, las células se despegan de las placas de cultivo con ayuda de una espátula y se homogenizan en un tampón: 50 mM Tris-HCI (pH 7,4 a 37°C); 1 mM EDTA; 0,2 mM leupeptina, 1 0 mg/l inhibidor de tripsina; 1 00 mg/l PMSF; 1 mg/l pepstatina y 0,2 mM benzamidina (1 ml_ por placa de 100 mm). Las homogenizaciones se realizan mediante 10 ciclos (subida-bajada) en un Potter-Elveheim. Se centrifugan a 14.000 x g 15 min a 4 °C y se recoge el precipitado (fracción enriquecida en mitocondrias y por tanto en GAP). Este precipitado constituye el material para medir la actividad GAP y se utiliza inmediatamente o se guarda a -80 °C hasta su uso.
EJEMPLO 3. ESTUDIOS DE INHIBICIÓN IN VIVO.
Los estudios in vivo se llevan a cabo en ratas Wistar sin operar (controles sanos), en ratas controles operadas o sham (controles de operación) y en ratas con derivación porto-cava (DPC). Los animales se mantienen en jaulas individuales, en el estabularlo de la Facultad de Farmacia (Universidad de Sevilla), a 23±2°C, con libre acceso a comida y agua y con un ciclo de luz- oscuridad de 12h/12h, durante un periodo de 24h.
Los animales se dividen en dos grupos (ver tabla 1 ). Un grupo se alimenta si m pl emente con l a d ieta y el otro g ru po se al im enta con la d ieta suplem entada con d isti ntas con centraciones del/los in h i b idor(es) seleccionados en las fases anteriores.
Figure imgf000026_0001
Los animales se sacrifican en una cámara de CO2. Una vez sacrificados se extirpan, lo más rápidamente posible, el cerebro y el intestino, y se utilizan inmediatamente o se congelan a -80°C hasta su uso (siempre antes de 3 meses). a) Operación: derivación porto-cava.
La derivación porto-cava se realiza con el fin de generar un modelo de encefalopatía hepática, en el que se espera un descenso en la actividad glutaminasa intestinal y renal tras la exposición a los inhibidores. Previamente a la intervención, los animales se someten a anestesia general por inhalación con isofluorano, mediante la exposición del animal a una mezcla de oxígeno, aire y gases anestésicos (5%), a flujos altos. Se aplica la mezcla gaseosa mediante una mascarilla en la que se introduce la cabeza completa del animal, consiguiéndose la anestesia en unos 20-30 segundos. El animal queda en ventilación espontánea. El mantenimiento de la anestesia se consigue con porciones del gas de entre el 2 y el 3% (según peso del animal). Una vez que se ha producido el clampaje de los grandes vasos, ya sea para la realización de la técnica de la anastomosis o para el grupo sham (ratas sometidas a las mismas condiciones de la intervención quirúrgica pero en las que no se realiza la anastomosis), la proporción del gas anestésico se reduce a un 0,5%-0,75%. Técnica quirúrgica
Una vez que el animal se encuentra anestesiado, se procede al rasurado abdominal y a la desinfección de la piel con povidona yodada. La operación se lleva a cabo por laparotomía media y evisceración del paquete intestinal, disección de la cava i nf ra hepática por encima de las venas renales y de la grasa del retroperitoneo y disección del hilio hepático, en especial de la vena porta, prestando especial atención a la liberación de la misma de la arteria hepática común que se encuentra íntimamente unida a la porta por su cara posterior. En esta fase es fundamental no lesionar ninguna de las dos, puesto que durante el clampaje de la porta, la arteria es la única que suministra flujo sanguíneo al hígado. A continuación, se hace pasar un primer hilo trenzado de 2-3 ceros por detrás de la cava y por detrás de la porta, justo por encima del confluente espleno-mesaraico y otro segundo hilo por debajo de dicho confluente. Al traccionar de ambas suturas en sentidos cefálico y caudal, respectivamente, ambos vasos sanguíneos quedan aproximados entre sí. Una vez dispuestos de este modo los vasos, son clampados con un clamp vascular de Satinsky, que mantiene ambos vasos en esa postura, permitiendo la realización de la técnica de anastomosis de Numata, 1983.
Para garantizar el éxito de la técnica así como la viabilidad del animal tras la intervención, es necesario que el tiempo de oclusión vascular no exceda de 20 minutos, minimizando así el efecto de los fenómenos trombóticos tanto en la porta como en la cava, que impiden la supervivencia del animal. Cuando la operación no es efectiva no existe descenso del peso del animal. En el grupo sham se mantiene dicho clampaje 25 minutos en todos los animales. b) Test de aprendizaje en ratas con derivación porto-cava.
El test de aprendizaje en ratas con derivación porto-cava se realiza esperando una mejoría en el mismo tras la administración de los inhibidores de la GAP. Se trata de un test de discriminación condicional en un laberinto en Y. El laberinto en Y tiene tres brazos iguales. Las ratas se colocan inicialmente en uno de los brazos (brazo de salida). Al final de los otros brazos (brazos de elección) se colocan dos copas con comida. Se realiza un pre-entrenamiento de 4 días para que las ratas se familiaricen con el laberinto. Toda el área de los brazos de elección se cubre con insertos de color blanco o negro. El color de los brazos se va modificando en los distintos ensayos sin una pauta periódica. Las ratas deben aprender que la comida está en uno de los brazos cuando el color es blanco y en el otro brazo cuando es negro. Cada rata se somete a 10 ensayos por día, con un intervalo entre ensayos de unos 5 min. Los ensayos se repiten hasta que la rata alcanza el criterio de aprendizaje (10 aciertos de 10 ensayos en un día) o hasta un total de 250 ensayos. Se considera que la respuesta es acertada cuando la rata se d irige d irectamente al brazo correcto (el q ue tiene la comida). c) Preparación de homogenados de intestino.
Los homogenizados de enterocitos se preparan a partir de intestino de rata, utilizando fundamentalmente el duodeno y el íleon. Para ello, tras el sacrificio de las ratas por decapitación, rápidamente se les extrae el intestino, se corta el duodeno y el íleon y se lavan en tampón fosfato salino frío (PBS: CINa 0,1 M, KCI 3mM, Na2HPO4 0,01 M, KH2PO4 0,002M, pH 7,4). Posteriormente, se cortan con unas tijeras en trozos de aproximadamente 5 cm y se lavan de nuevo. Cada trozo se abre por la mitad y con ayuda de un porta se arrastran las vellosidades intestinales, que se vierten en un tubo de plástico y se pesa. Unos 100 mg de las vellosidades intestinales se homogenizan en 1 ,5 mL de tampón de homogenización (Tris 10 mM, EDTA 1 mM, sacarosa 320 mM, pH 7,4, más PMSF 0,005 mM, justo antes de homogeneizar), en un homogenizador mecánico Potter-Elvehjem con pistilo de teflón, en posición 8 (1000 r.p.m.) dando 5 pasadas, manteniendo la muestra en hielo. Se centrifuga a 1000 g y el sobrenadante se utiliza para la obtención de mitocondrias. d) Obtención de homogenizados de mitocondrias.
Las mitocondrias se obtienen por el método de Haser y colaboradores (Haser W.G., et al., 1985, Biochem J.; 229: 399-408). El sobrenadante obtenido en la homogenización de los tejidos, se centrifuga a 13.000 x g, 10 minutos. El precipitado (enriquecido en mitocondrias) se resuspende en tampón de homogenización, y se centrifuga durante 5 minutos a 13.000 g. El proceso se repite dos veces más. El precipitado, así obtenido, se resuspende en tampón de incubación (Tris 20 mM, manitol 210 mM, sacarosa 70 mM, EDTA 1 mM, pH 8), y constituye una fracción altamente enriquecida en mitocondrias.
Las proteínas mitocondriales se solubilizan utilizando tampón de incubación que contiene 5 mM β-mercaptoetanol y 0,7% Tritón X-100 para la determinación del contenido en proteínas y medida de la actividad enzimática. e) Preparación de homogenados de cerebro.
Se disecciona el cerebro lo más rápidamente posible y se guarda en frío (sobre hielo). Una vez separado se homogeniza de manera análoga a la descrita para el caso de los enterocitos. f) Obtención de mitocondrias sinápticas y no-sinápticas.
Para la obtención de mitocondrias no sinápticas se sigue una variación del procedimiento descrito por Kosenko y colaboradores (Kosenko, E., et al., 2001 , Brain Res. Protoc; 7:248-254). Tras la decapitación del animal, se extrae la masa encefálica rápidamente, se sumerge en tampón de homogenización y se homogeniza en un potter de vidrio a mano, con suavidad, 6 pasadas, evitando la formación de espuma. El homogenado se centrifuga a 2.000 x g, durante 3 min, a 4 °C, y se recoge el sobrenadante. El precipitado se resuspende de nuevo en el mismo volumen de tampón de homogenización y se centrifuga nuevamente a 2.000 x g, durante 3 min, 4°C, recogiéndose nuevamente el sobrenadante. Se juntan los dos sobrenadantes y se centrifugan durante 10 min a 13.000 x g, recogiéndose el precipitado. Las mitocondrias así obtenidas se lavan con tampón de homogenización sin EDTA y nuevamente se centrifugan, 10 min, a 13.000 x g, a 4°C. La separación de las mitocondrias de los astrocitos se lleva a cabo en un gradiente de Ficoll . Se centrifuga 15 min a 1 .000 x g, a 4o C y se lava con tampón de homogenización sin quelantes, guardándose las mitocondrias congeladas a -80 °C. Para la rotura de la pared mitocondrial y la liberación de la enzima glutaminasa en la solución se descongelan las muestras en dos ciclos de congelación-descongelación antes de la realización de la medida de actividad enzimática. Estas muestras de mitocondrias de astrocitos constituyen las muestras de partida para la realización de los estudios de actividad glutaminasa. g) Medición de ia actividad glutaminasa.
Para estudiar la actividad en enterocitos, se practica una biopsia de mucosa duodenal . Las muestras se homogenizan en Tris-EDTA, pH 7,9 y se toman al ícuotas, que son incubadas a 37 °C en medio de incubación en buffer fosfato, pH 8,2, en presencia de 1 71 mM glutamina, como sustrato (nmol glutamato min-1 mg-1 proteina o nmol/L).
La actividad glutaminasa se cuantifica mediante la medición espectrofotométrica del amonio derivatizado con OPA, como medida directa de formación de producto. Para las mediciones anteriormente descritas se utilizan los reactivos proporcionados por la firma Sigma Corp. USA, basados en el procedimiento de Heini ya descrito. h) Medición de los niveles de amonio en plasma y en tejidos.
La cantidad de amonio presente en la muestra se mide por el método enzimático de la glutamato-deshidrogenasa (ROCH E, Barcelona), en un anal izador COBAS I ntegra 700. La g l utamato-deshidrogenasa (GLDH) cataliza la aminación reductora del 2-oxoglutarato en presencia de N H + y NADPH, para producir glutamato y NADP+. La concentración del NADP+ es directamente proporcional a la concentración del amonio consumido. Por lo que la reacción se puede seguir midiendo la disminución de la absorbancia del NADPH a 340 nm.
Tras dormir al animal, con hidrato de doral, se pincha la yugular y rá p id a m e nte se recog e n u nos 1 50 μί de sangre en un tubo sin anticoagulante, se centrifuga 5 min a 3.500 g. Se trasvasa el sobrenadante obtenido y se mide el amonio como se ha descrito anteriormente. Para la medida de amonio en tejidos se procede de la siguiente forma: tejidos congelados a -80°C rápidamente tras su obtención, se homogenizan en nitrógeno l íquido en un mortero. Una vez homogenizados, se añaden 2 vol ú menes de TCA al 1 0% , y se sonican (6 ciclos de 30 segundos). Seguidamente se centrifuga a 13.000 x g, 15 min, a 4°C. El sobrenadanante se neutraliza con KHCO3 2M y se determinan las distintas cantidades de amonio evitando la descongelación de los tejidos en su manipulación.
Los ensayos de cinética in vitro, ex vivo e in vivo demuestran que el compuesto con mayor potencial de inhibición es A/-fenil-/V'-(3-metil-2- butenil)tiourea, un inhibidor no competitivo. La Km y Vmáx de la enzima GAP están prácticamente modificadas por el mismo factor. La Vmáx sin inhibidor es 1 1 .1 E3 ± 0,78 U/L y con 10 μΜ de A/-fenil-A/'-(3-metil-2-butenil)tiourea es 4,73E3 ± 1 ,4 U/L. A esta concentración el compuesto A/-fenil-/V'-(3-metil-2- butenil)tiourea inhibe parcialmente la actividad de GAP (56±14 %) (Figura 3).

Claims

REIVINDICACIONES
1 . Uso del compuesto A/-fenil-/V'-(3-metil-2-butenil)tiourea para la elaboración de un medicamento.
2. Uso del compuesto A/-fenil-/V'-(3-metil-2-butenil)tiourea para la elaboración de un medicamento para su uso en el tratamiento de enfermedades que cursan con hiperamoniemia.
3. Uso del compuesto según la reivindicación 2 donde las enfermedades que cursan con hiperamoniemia se seleccionan de la lista que comprende: errores congénitos del metabolismo del ciclo de la urea, errores co n g é n i to s d e l m eta bo l i s m o d e l a U s i n a , a c idemias orgánicas, hiperamoniemia transitoria del recién nacido, insuficiencia hepática, encefalopatía hepática o cirrosis.
4. Uso del compuesto según cualquiera de las reivindicaciones 2 ó 3 donde la enfermedad es la cirrosis.
5. Uso del compuesto según cualquiera de las reivindicaciones 2 a 4 donde la enfermedad es la encefalopatía hepática.
6. Composición farmacéutica que comprende el compuesto N- fenil-/V'-(3-metil-2-butenil)tiourea.
7. Composición farmacéutica según la reivindicación 6 que comprende, además, otro principio activo.
8. Composición farmacéutica según cualquiera de las reivindicaciones 6 ó 7 que comprende, además, un vehículo farmacéuticamente aceptable.
9. Uso de la composición farmacéutica según cualquiera de las reivindicaciones 6 a 8 para la elaboración de un medicamento.
10. Uso de la composición farmacéutica según la reivindicación 9 donde el medicamento es para su uso en el tratamiento de enfermedades que cursan con hiperamoniemia.
1 1 . Uso de la composición farmacéutica según la reivindicación 10 donde las enfermedades que cursan con hiperamoniemia se seleccionan de la lista que comprende: errores congénitos del metabolismo del ciclo de la urea, errores congénitos del metabolismo de la lisina, acidemias orgánicas, h i pera mon iem ia tra ns itoria d el recién n acido, insuficiencia hepática, encefalopatía hepática o cirrosis.
12. Uso de la composición farmacéutica según cualquiera de las reivindicaciones 10 u 1 1 donde la enfermedad es la cirrosis.
13. Uso de la composición farmacéutica según cualquiera de las reivindicaciones 10 a 12 donde la enfermedad es la encefalopatía hepática.
PCT/ES2010/070855 2009-12-24 2010-12-21 Uso del compuesto n-fenil-n'-(3-metil-2-butenil)tiourea para la elaboración de medicamentos destinados al tratamiento de la encefalopatía hepática WO2011076967A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200931265 2009-12-24
ES200931265A ES2362770B1 (es) 2009-12-24 2009-12-24 Uso de compuesto n-fenil-n'-(3-metil-2-butenil)tiourea para la elaboración de medicamentos destinados al tratamiento de la encefalopatía hepática.

Publications (1)

Publication Number Publication Date
WO2011076967A1 true WO2011076967A1 (es) 2011-06-30

Family

ID=44194996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070855 WO2011076967A1 (es) 2009-12-24 2010-12-21 Uso del compuesto n-fenil-n'-(3-metil-2-butenil)tiourea para la elaboración de medicamentos destinados al tratamiento de la encefalopatía hepática

Country Status (2)

Country Link
ES (1) ES2362770B1 (es)
WO (1) WO2011076967A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015101957A2 (en) 2014-01-06 2015-07-09 Rhizen Pharmaceuticals Sa Novel glutaminase inhibitors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0528146A1 (en) * 1991-07-01 1993-02-24 Sandoz Ltd. N-phenylthiourea derivatives and pharmaceutical use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0528146A1 (en) * 1991-07-01 1993-02-24 Sandoz Ltd. N-phenylthiourea derivatives and pharmaceutical use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAGO, K.: "Synthesis ofplaunotol derivatives and their antibacterial activities against Helicobacter Pylori", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 9, 2001, pages 1781 - 1791, XP027414414 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015101957A2 (en) 2014-01-06 2015-07-09 Rhizen Pharmaceuticals Sa Novel glutaminase inhibitors
WO2015101958A2 (en) 2014-01-06 2015-07-09 Rhizen Pharmaceuticals Sa Novel inhibitors of glutaminase
US9783533B2 (en) 2014-01-06 2017-10-10 Rhizen Pharmaceuticals Sa Glutaminase inhibitors
US10611759B2 (en) 2014-01-06 2020-04-07 Rhizen Pharmaceuticals Sa Glutaminase inhibitors

Also Published As

Publication number Publication date
ES2362770A1 (es) 2011-07-13
ES2362770B1 (es) 2012-05-22

Similar Documents

Publication Publication Date Title
Lo et al. Potential use of the anti-inflammatory drug, sulfasalazine, for targeted therapy of pancreatic cancer
AU2003279236B8 (en) Pharmaceutical use of nitric oxide, heme oxygenase-1 and products of heme degradation
ES2524056T3 (es) Agente terapéutico para enfermedades inflamatorias intestinales que comprende como ingrediente activo un derivado de 2-amino-1,3-propanodiol, y método para el tratamiento de enfermedades inflamatorias intestinales
PL205066B1 (pl) Zastosowanie tlenku węgla do wytwarzania kompozycji farmaceutycznej
Wilhelm et al. Hepatoprotective effect of 3-alkynyl selenophene on acute liver injury induced by D-galactosamine and lipopolysaccharide
US20150148423A1 (en) Use of n-acetylcysteine amide in the treatment of disease and injury
ES2668525T3 (es) Composición farmacéutica antihipóxica y su aplicación
ES2356986T3 (es) Agentes antitumorales.
Lei et al. Beneficial effect of cyclosporine A on traumatic hemorrhagic shock
JP2023513926A (ja) コロナウイルス感染症の治療のための化合物
Senbel et al. Evaluation of l-arginine on kidney function and vascular reactivity following ischemic injury in rats: protective effects and potential interactions
WO2010004060A1 (es) Uso de la cilastatina para reducir la nefrotoxicidad de distintos compuestos
ES2917982T3 (es) Método para tratar trastornos hepáticos
Fu et al. Exploring a novel triptolide derivative possess anti-colitis effect via regulating T cell differentiation
ES2362770B1 (es) Uso de compuesto n-fenil-n&#39;-(3-metil-2-butenil)tiourea para la elaboración de medicamentos destinados al tratamiento de la encefalopatía hepática.
Jin et al. Renal ischemia/reperfusion injury in rats is probably due to the activation of the 5-HT degradation system in proximal renal tubular epithelial cells
Alirezaei et al. An update on allopurinol and kidney failure; new trend for an old drug
Dugbartey Nitric oxide in kidney transplantation
US9456995B2 (en) Methods for inhibition of BNIP3 and prevention and treatment of ischemia reperfusion injury by tetra-O-methyl nordihydroguaiaretic acid
ES2931104T3 (es) Uso de 2-fenil-6-(1H-imidazol-1-il)quinazolina para el tratamiento de enfermedades neurodegenerativas, preferentemente la enfermedad de Alzheimer
ES2964286T3 (es) Método de tratamiento de la Esteatohepatitis no alcohólica avanzada
ES2351005B1 (es) Uso de anhidrasa carbónica ii para la elaboración de un medicamento.
CN115634228B (zh) 嘌呤合成抑制剂在制备治疗缺血和缺血再灌注损伤药物中的应用
US20230159442A1 (en) Cellular energy compounds, compositions, and methods of use thereof
US20140213530A1 (en) Methods for treatment of cancer by targeting sirt5

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10838726

Country of ref document: EP

Kind code of ref document: A1