WO2011076890A1 - Procede de realisation d'un renfort metallique d'aube de turbomachine - Google Patents
Procede de realisation d'un renfort metallique d'aube de turbomachine Download PDFInfo
- Publication number
- WO2011076890A1 WO2011076890A1 PCT/EP2010/070576 EP2010070576W WO2011076890A1 WO 2011076890 A1 WO2011076890 A1 WO 2011076890A1 EP 2010070576 W EP2010070576 W EP 2010070576W WO 2011076890 A1 WO2011076890 A1 WO 2011076890A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reinforcement
- metal reinforcement
- blade
- producing
- sectors
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
- B23P15/04—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine or like blades from several pieces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/25—Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/60—Treatment of workpieces or articles after build-up
- B22F10/64—Treatment of workpieces or articles after build-up by thermal means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/60—Treatment of workpieces or articles after build-up
- B22F10/66—Treatment of workpieces or articles after build-up by mechanical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/009—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0046—Welding
- B23K15/0053—Seam welding
- B23K15/006—Seam welding of rectilinear seams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K37/00—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
- B23K37/04—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
- B23K37/047—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work moving work to adjust its position between soldering, welding or cutting steps
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/147—Construction, i.e. structural features, e.g. of weight-saving hollow blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/282—Selecting composite materials, e.g. blades with reinforcing filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/321—Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
- F04D29/324—Blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/247—Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/248—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/001—Turbines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/483—Reactive adhesives, e.g. chemically curing adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/483—Reactive adhesives, e.g. chemically curing adhesives
- B29C65/484—Moisture curing adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/12—Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
- B29C66/124—Tongue and groove joints
- B29C66/1246—Tongue and groove joints characterised by the female part, i.e. the part comprising the groove
- B29C66/12461—Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being rounded, i.e. U-shaped or C-shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/12—Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
- B29C66/124—Tongue and groove joints
- B29C66/1246—Tongue and groove joints characterised by the female part, i.e. the part comprising the groove
- B29C66/12463—Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being tapered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/301—Three-dimensional joints, i.e. the joined area being substantially non-flat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/53—Joining single elements to tubular articles, hollow articles or bars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/721—Fibre-reinforced materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/74—Joining plastics material to non-plastics material
- B29C66/742—Joining plastics material to non-plastics material to metals or their alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/08—Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/08—Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
- B29L2031/082—Blades, e.g. for helicopters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/36—Application in turbines specially adapted for the fan of turbofan engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/23—Manufacture essentially without removing material by permanently joining parts together
- F05D2230/232—Manufacture essentially without removing material by permanently joining parts together by welding
- F05D2230/234—Laser welding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/23—Manufacture essentially without removing material by permanently joining parts together
- F05D2230/232—Manufacture essentially without removing material by permanently joining parts together by welding
- F05D2230/236—Diffusion bonding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/121—Fluid guiding means, e.g. vanes related to the leading edge of a stator vane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/303—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/13—Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
- F05D2300/133—Titanium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/70—Treatment or modification of materials
- F05D2300/702—Reinforcement
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/49318—Repairing or disassembling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4998—Combined manufacture including applying or shaping of fluent material
Definitions
- the present invention relates to a method for producing a metallic blade reinforcement composite or metal turbomachine.
- the invention relates to a method for producing a turbomachine blade leading edge metal reinforcement.
- the field of the invention is that of turbomachines and more particularly that of the fan blades, made of composite or metallic material, of a turbomachine and whose leading edge comprises a metallic structural reinforcement.
- the invention is also applicable to the production of a metal reinforcement intended to reinforce a turbomachine blade trailing edge.
- leading edge corresponds to the front part of an airfoil which faces the airflow and which divides the airflow into an intrados airflow and a flow of air. extrados air.
- the trailing edge corresponds to the posterior part of an aerodynamic profile where the intrados and extrados flows meet.
- the metal structural reinforcement protects the leading edge of the composite blade by avoiding risks of delamination, fiber breakage or damage by fiber / matrix decohesion.
- a turbomachine blade has a surface aerodynamic device extending in a first direction between a leading edge and a trailing edge and, in a second direction substantially perpendicular to the first direction, between a foot and an apex of the blade.
- the metallic structural reinforcement follows the shape of the leading edge of the aerodynamic surface of the blade and extends in the first direction beyond the leading edge of the aerodynamic surface of the blade to match the profile of the blade. the intrados and the upper surface of the dawn and in the second direction between the foot and the top of the dawn.
- the metallic structural reinforcement is a metal part made entirely by milling from a block of material.
- the invention aims to solve the problems mentioned above by proposing a method for producing a leading edge metal reinforcement or turbomachine blade trailing edge to significantly reduce the costs of production. of such a piece and to simplify the manufacturing range.
- the invention proposes a method for producing a leading edge, or trailing edge, turbomachine blade reinforcement comprising a reinforcing foot and a reinforcing head, said method comprising successively:
- the metallic structural reinforcement is made simply and quickly from a plurality of sectors which are then secured to form a complete monoblock reinforcement.
- the step of producing several sectors of the reinforcement makes it possible to limit the stresses stored in the part during the manufacturing process and thus the deformation of the thin-walled flanks during removal of the piece from the tooling.
- This production method thus makes it possible to overcome the complex implementation of the reinforcement by milling in the mass from one-piece flats requiring large volume of processing material and consequently significant costs in supply of raw material.
- the method according to the invention also makes it possible to substantially reduce the manufacturing costs of such a part.
- the method for producing a turbomachine blade metal reinforcement according to the invention may also have one or more of the following characteristics, considered individually or in any technically possible combination:
- each sector is produced by means of a laser melting process; said step of joining the different sectors is carried out by means of a soldering diffusion method;
- the method comprises a hot conformation step carried out simultaneously with said step of joining;
- the method comprises a step of demolding said metal reinforcement of said tool, said tool being formed by a plurality of removable sections, said demolding being operated by the successive removal of said removable sections;
- the method comprises a step of finishing said metal reinforcement consisting of a sub-step of polishing the surface of said reinforcement and / or a substep of recovery of the flanks of said reinforcement;
- said step of joining the various sectors is carried out by means of a welding method; in this case, advantageously, said step of joining the various sectors is successively followed by:
- a finishing step of said metal reinforcement consisting of a sub-step of polishing the surface of said reinforcement and / or a substep of recovery of the sidewalls of said reinforcement.
- the invention also relates to a method of repairing a turbomachine blade having a used metal reinforcement of the leading edge or the trailing edge of said blade, said method comprising: a step of separating said used metal reinforcement from said blade;
- the invention also relates to a tool for implementing the method of producing a turbomachine blade metal reinforcement according to the invention comprising a plurality of removable sections.
- the tool according to the invention may also have one or more of the following characteristics, considered individually or in any technically possible combination:
- said tool comprises a number of removable sections greater than the number of sectors of the reinforcement
- said tooling is made of a material having a coefficient of expansion greater than the coefficient of expansion of the material of said reinforcement.
- FIG. 1 is a side view of a blade comprising a metallic leading edge structural reinforcement obtained by means of the embodiment method according to the invention
- Figure 2 is a partial sectional view of Figure 1 along a cutting plane AA;
- FIG. 3 is a block diagram showing the main steps for producing a turbomachine blade leading edge metallic structural reinforcement of the embodiment method according to the invention
- FIG. 4 is a view of the blade leading edge metal reinforcement turbomachine during the first step of the process illustrated in FIG. 3;
- FIG. 5 is a view of the turbomachine blade leading edge metal reinforcement during the second step of the process illustrated in FIG. 3;
- FIG. 6 is a view of the turbomachine blade leading edge metal reinforcement in its final state obtained by the embodiment method according to the invention illustrated in FIG. 3.
- FIG. 1 is a side view of a blade comprising a metallic leading edge structural reinforcement obtained by means of the embodiment method according to the invention.
- the blade 10 illustrated is for example a mobile blade of a fan of a turbomachine (not shown).
- the blade 10 has an aerodynamic surface 12 extending in a first axial direction 14 between a leading edge 16 and a trailing edge 18 and in a second radial direction 20 substantially perpendicular to the first direction 14 between a foot 22 and a summit 24.
- the aerodynamic surface 12 forms the extrados face 13 and intrados 1 1 of the blade 10, the extrados face 13 of the blade 10 being shown in FIG.
- the intrados 11 and the extrados 13 form the lateral faces of the blade 10 which connect the leading edge 16 to the trailing edge 18 of the blade 10.
- the blade 10 is a composite blade typically obtained by draping a woven composite material.
- the composite material used may be composed of an assembly of woven carbon fibers and a resinous matrix, the assembly being formed by molding using a vacuum resin injection method of RTM (for "Resin Transfer Molding").
- the blade 10 has a metal structural reinforcement 30 bonded at its leading edge 16 and which extends both in the first direction 14 beyond the leading edge 16 of the aerodynamic surface 12 of the blade. dawn 10 and in the second direction 20 between the foot 22 and the apex 24 of the dawn.
- the structural reinforcement 30 matches the shape of the leading edge 16 of the aerodynamic surface 12 of the blade 10 that it extends to form a leading edge 31, said leading edge of the reinforcement .
- the structural reinforcement 30 is a one-piece piece having a substantially V-shaped section having a base 39 forming the leading edge 31 and extended by two lateral flanks 35 and 37 respectively fitting the intrados 11 and extrados 13 the aerodynamic surface 12 of the dawn.
- Flanks 35, 37 have a tapered or thinned profile towards the trailing edge of the blade.
- the base 39 has a rounded internal profile 33 capable of conforming to the rounded shape of the leading edge 16 of the blade 10.
- the structural reinforcement 30 is metallic and preferably based on titanium. This material has indeed a high energy absorption capacity due to shocks.
- the reinforcement is glued on the blade 10 by means of adhesive known to those skilled in the art, such as a cyanoacrylic or epoxy glue.
- the method according to the invention makes it possible to carry out a structural reinforcement as illustrated in FIGS. 1, 2 and 6, FIGS. 2 and 6 illustrating the reinforcement 30 in its final state.
- FIG. 3 represents a block diagram illustrating the main steps of a method for producing a metallic structural reinforcement blade leading edge 10 as illustrated in FIGS. 1 and 2.
- the first step 1 10 of the embodiment method 100 is a step of producing several sectors 30a, 30b, 30c, 30d of the metal reinforcement 30.
- FIG. 4 particularly illustrates the different sectors 30a, 30b, 30c, 30d obtained during the first step 1 10.
- the metal reinforcement 30 is previously divided into several sectors during the design or during the construction of a digital model.
- the different sectors of the reinforcement 30 are made independently by a rapid prototyping method, and more particularly by means of a laser melting process.
- the laser melting is a process which makes it possible to produce each sector of the reinforcement 30 by the deposition of several successive layers of material, which makes it possible to easily create complex shapes and in particular the tapered V shape of the metal reinforcement 30 with low thicknesses at the flanks 35, 37.
- the laser melting process or laser melting sintering method is a method known to those skilled in the art and treated in many patents, such as in particular patents EP2060343 or EP2125339; therefore we will not describe in more detail the operating principle of this manufacturing process.
- the realization of the metal reinforcement 30 by the recombination of several sectors 30a, 30b, 30c, 30d avoids the drifts related to the manufacture of such a piece in one piece from a flat part, and in particular to twisting flanks 35, 37 of small thickness.
- Each sector 30a, 30b, 30c, 30d, made in the first step 1 10, forms part of the base 39, the leading edge 31 and the sidewalls 35, 37 of the final reinforcement 30.
- the second step 120 of the production method 100 is a step of positioning the different sectors 30a, 30b, 30c, 30d on a specific form tooling 40 for the purpose of recombination. This second positioning step 120 is illustrated in FIG.
- the tooling 40 is formed by the combination of several sections 40a, 40b, 40c, 40d, 40e, 40f which cooperate together so as to form a recess 43 complementary to the internal profile 33 of the reinforcement 30.
- the impression 43 of the tool 40 substantially corresponding to the profile of the blade 10 when the different sections 40b, 40c, 40d, 40e, 40f are assembled.
- the different sectors 30a, 30b, 30c, 30d of the reinforcement 30 are positioned sector by sector on the tool 40 so as to completely build the profile of the reinforcement on the tooling.
- the shape of the tooling 40, and in particular the profile of the impression 43 are made so as to form the contour and the desired intrados and extrados profile of the metal reinforcement 30.
- the tool 40 comprises a number of sections greater than the number of sectors of the reinforcement 30.
- the third step 130 of the production method 100 is a step of assembling, or securing, the different sectors 30a, 30b, 30c, 30d of the reinforcement 30 by a diffusion brazing process.
- the joints 31 present between each sector 30a, 30b, 30c, 30d attached are filled by solder cords obtained by soldering diffusion from a filler metal in the form of strip or in the form of powder. This filler metal secures the various sectors 30a, 30b, 30c, 30d to form a monobloc reinforcement 30 with its final profile.
- soldering diffusion is an operation consisting in completely migrating the filler metal into the base material until the disappearance of the molten metal portion.
- diffusion brazing makes it possible to obtain excellent results for assembling relatively small machined workpieces and profiles. complex.
- the fourth step 140 of the method of embodiment 100 is a hot shaping step performed in the same form tool 40 as in the previous steps, the tool being then placed in a furnace heated to the forging temperature of the material used.
- This hot conformation step makes it possible to shape the reinforcement 30 in order to obtain its final shape.
- the tool 40 is made of a material having a coefficient of expansion greater than the coefficient of expansion of the reinforcement material.
- the tool 40 may be made of steel when the reinforcement is made of titanium.
- the profile of the tool 40 and the dimensions of the tool 40 are designed taking into account the removal of the different materials used.
- the hot forming step 140 is carried out during the soldering step 130.
- the fifth step 150 is a demolding step of said reinforcement 30 of the tooling 40.
- the different sections 40a, 40b, 40c, 40d, 40e, 40f of the tooling 40 are removable and able to disassemble individually from each other. in order to facilitate demolding of the reinforcement 30.
- this protective layer may be an alumina layer.
- the sixth step 160 of the production method 100 is a finishing step and recovery of the reinforcement 30 by machining.
- This finishing step 160 consists notably of:
- flanks 35, 37 At the resumption of flanks 35, 37; this step consisting in particular of the trimming of the flanks 35, 37 and the thinning of the intrados and extrados flanks 35, 37; - Polishing the reinforcement 30 to obtain the required surface condition.
- FIG. 6 illustrates the reinforcement 30 in its final state obtained by the embodiment method according to the invention.
- the method according to the invention may also comprise non-destructive testing steps of the reinforcement 30 making it possible to ensure the geometrical and metallurgical conformity of the assembly obtained.
- the non-destructive tests can be carried out by an X-ray method.
- the step of assembling or joining the different reinforcements by diffusion brazing is replaced by a step of assembling the various reinforcements by welding, for example by means of a beam electron.
- the welding assembly step is performed without the use of form tooling. This step comes after the step of realization of different sectors of the reinforcement.
- the method of making a blade blade leading edge metal structural reinforcement 10 as illustrated in FIGS. 1 and 2 comprises:
- a first step of producing several sectors 30a, 30b, 30c, 30d of the metal reinforcement for example by a laser melting method
- a sixth demolding step of the metal reinforcement 30 of the tool the tool being divided into different removable sections so as to facilitate demolding the reinforcement 30;
- a step of finishing the metal reinforcement 30 consisting of a sub-step of polishing the surface of the reinforcement and / or a sub-step of taking up the sides of the reinforcement 30.
- the process according to the invention has been described mainly for a titanium-based metal structural reinforcement; however, the process according to the invention is also applicable with nickel-based or steel-based materials.
- the invention has been particularly described for producing a metal reinforcement of a composite turbomachine blade; however, the invention is also applicable for producing a metal reinforcement of a turbomachine metal blade.
- the invention has been particularly described for producing a metal reinforcement of a turbomachine blade leading edge; however, the invention is also applicable for producing a metal reinforcement of a trailing edge of a turbomachine blade.
- the invention has been particularly described with a laser melting method for carrying out the first step; however, the first step may be performed for example by another prototyping method or a machining method.
- the advantage of the laser melting of the reinforcement by a plurality of independent sectors makes it possible to limit the stresses stored in the part during the laser melting process and thus the deformation of the thin-walled flanks when the part is removed. tooling. Indeed, the reinforcement has thin-walled flanks that tend to deform when removing the workpiece from the tooling plus the size of the workpiece is important.
- the method of producing a metal reinforcement according to the invention fits perfectly into a global process for repairing a composite or metallic turbine engine blade.
- the method of repairing a turbomachine blade then consists of:
- a third step of securing the metal reinforcement made in the previous step by gluing with an adhesive known to those skilled in the art to paste a reinforcement on a blade, such as a cyanoacrylic glue or still an epoxy glue.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Architecture (AREA)
- Thermal Sciences (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080059392.9A CN102686356B (zh) | 2009-12-23 | 2010-12-22 | 制造用于涡轮引擎叶片的金属加固件方法 |
BR112012015720-5A BR112012015720B1 (pt) | 2009-12-23 | 2010-12-22 | Método para fabricar um reforço de metal para bordo de ataque ou bordo de fuga de uma pá de turbomáquina, método para reparar uma pá de turbomáquina e ferramenta para implementar o método |
CA2785374A CA2785374C (fr) | 2009-12-23 | 2010-12-22 | Procede de realisation d'un renfort metallique d'aube de turbomachine |
EP10798095.5A EP2516107B1 (fr) | 2009-12-23 | 2010-12-22 | Procede de realisation d'un renfort metallique d'aube de turbomachine |
JP2012545337A JP5628342B2 (ja) | 2009-12-23 | 2010-12-22 | タービンエンジンブレード用の金属補強材の製造方法 |
RU2012130953/02A RU2551741C2 (ru) | 2009-12-23 | 2010-12-22 | Способ выполнения металлического усиления лопатки турбомашины |
US13/518,179 US9199345B2 (en) | 2009-12-23 | 2010-12-22 | Method for producing a metal reinforcement for a turbine engine blade |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0959551 | 2009-12-23 | ||
FR0959551A FR2954200B1 (fr) | 2009-12-23 | 2009-12-23 | Procede de realisation d'un renfort metallique d'aube de turbomachine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011076890A1 true WO2011076890A1 (fr) | 2011-06-30 |
Family
ID=42321088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/070576 WO2011076890A1 (fr) | 2009-12-23 | 2010-12-22 | Procede de realisation d'un renfort metallique d'aube de turbomachine |
Country Status (9)
Country | Link |
---|---|
US (1) | US9199345B2 (fr) |
EP (1) | EP2516107B1 (fr) |
JP (1) | JP5628342B2 (fr) |
CN (1) | CN102686356B (fr) |
BR (1) | BR112012015720B1 (fr) |
CA (1) | CA2785374C (fr) |
FR (1) | FR2954200B1 (fr) |
RU (1) | RU2551741C2 (fr) |
WO (1) | WO2011076890A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103717347A (zh) * | 2011-08-01 | 2014-04-09 | 西门子公司 | 用于制造流动力机器的叶片的方法和流动力机器的叶片 |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2990642B1 (fr) * | 2012-05-16 | 2014-12-26 | Snecma | Procede de collage de pieces intermediaires de fabrication dites pif sur une aube en materiau composite de turbomachine |
FR2994708B1 (fr) * | 2012-08-23 | 2018-07-27 | Safran Aircraft Engines | Aube a bord renforce pour une turbomachine |
CN103008463A (zh) * | 2012-12-12 | 2013-04-03 | 山西汾西重工有限责任公司 | 中厚铝板压制成型模具 |
FR3005280B1 (fr) * | 2013-05-06 | 2015-05-15 | Safran | Outillage pour la fixation d'un renfort metallique sur le bord d'attaque d'une aube de turbomachine et procede utilisant un tel outillage |
JP6090931B2 (ja) * | 2013-10-02 | 2017-03-08 | 三菱重工業株式会社 | 継手及び航空機構造 |
JP6278191B2 (ja) * | 2014-04-07 | 2018-02-14 | 株式会社Ihi | 複合材翼及び複合材翼の製造方法 |
CN104002050A (zh) * | 2014-05-08 | 2014-08-27 | 中航飞机股份有限公司西安飞机分公司 | 一种钛合金鱼唇形薄壁蒙皮零件的激光焊接方法和装置 |
US20150345310A1 (en) * | 2014-05-29 | 2015-12-03 | General Electric Company | Turbine bucket assembly and turbine system |
US20150345309A1 (en) * | 2014-05-29 | 2015-12-03 | General Electric Company | Turbine bucket assembly and turbine system |
US20150345307A1 (en) * | 2014-05-29 | 2015-12-03 | General Electric Company | Turbine bucket assembly and turbine system |
DE102014012425B4 (de) * | 2014-08-22 | 2024-06-06 | Concept Laser Gmbh | Verfahren zum Herstellen eines dreidimensionalen Objekts |
CN105436819B (zh) * | 2014-09-01 | 2018-05-25 | 中国航发商用航空发动机有限责任公司 | 航空发动机风扇叶片金属加强边的加工方法 |
EP3020925A1 (fr) * | 2014-10-29 | 2016-05-18 | Alstom Technology Ltd | Pale de rotor avec protection des bords |
FR3040902B1 (fr) * | 2015-09-10 | 2017-09-01 | Snecma | Procede de fabrication d'un renfort de protection pour une aube (p) presentant un bord d'attaque ou de fuite courbe |
CN106514149B (zh) * | 2016-11-29 | 2018-08-10 | 沈阳黎明航空发动机(集团)有限责任公司 | 一种整体式导向器的加工方法 |
US10934850B2 (en) * | 2017-08-25 | 2021-03-02 | DOOSAN Heavy Industries Construction Co., LTD | Turbine blade having an additive manufacturing trailing edge |
CN107674959B (zh) * | 2017-09-25 | 2019-04-16 | 哈尔滨汽轮机厂有限责任公司 | 一种用于大叶片热处理定型工具 |
FR3076753B1 (fr) * | 2018-01-18 | 2020-10-02 | Safran Aircraft Engines | Procede de fabrication d'une aube de turbomachine |
EP3533897A1 (fr) * | 2018-02-28 | 2019-09-04 | Siemens Aktiengesellschaft | Améliorations relatives à des composants d'alliage métallique et leur fabrication |
US11426818B2 (en) | 2018-08-10 | 2022-08-30 | The Research Foundation for the State University | Additive manufacturing processes and additively manufactured products |
CN109590192B (zh) * | 2018-11-27 | 2019-11-12 | 中国航空制造技术研究院 | 一种复合材料叶片保护壳体制造方法 |
CN111687606B (zh) * | 2019-03-11 | 2021-06-29 | 中国航发商用航空发动机有限责任公司 | 复合材料风扇叶片前缘金属加强边的制备方法 |
FR3102378B1 (fr) * | 2019-10-23 | 2021-11-12 | Safran Aircraft Engines | Procédé de fabrication d’une aube en matériau composite avec bord d’attaque métallique rapporté |
FR3114762B1 (fr) * | 2020-10-06 | 2022-08-19 | Safran Aircraft Engines | Procédé de fabrication d'une aube de compresseur de turbomachine par compactage |
CN114952523B (zh) * | 2021-02-26 | 2023-12-05 | 中国航发商用航空发动机有限责任公司 | 航空发动机的叶片的加工方法和加工装置 |
CN113263250B (zh) * | 2021-04-20 | 2022-07-19 | 上海交通大学 | 航空发动机风扇叶片金属加强边的复合制造方法 |
CN113578872B (zh) * | 2021-08-07 | 2022-04-19 | 武汉晟和自动化模冲有限公司 | 一种汽车冲压模具内腔面清洁处理机械及清洁处理方法 |
FR3128891B1 (fr) * | 2021-11-08 | 2024-05-24 | Safran | Procédé de fabrication d’un clinquant |
CN115255093B (zh) * | 2022-07-29 | 2023-03-14 | 山东大学 | 一种大型坯料或构件的构筑锻挤成形方法 |
FR3141721A1 (fr) * | 2022-11-09 | 2024-05-10 | Safran | Support d’encollage de renfort et procédé d’encollage de renfort à l’aide d’un tel support d’encollage |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3430898A (en) * | 1967-05-01 | 1969-03-04 | Us Navy | Leading edge for hypersonic vehicle |
FR2319008A1 (fr) * | 1975-07-24 | 1977-02-18 | United Technologies Corp | Procede de fabrication de gaines protectrices pour pales |
JPS61164002A (ja) * | 1985-01-17 | 1986-07-24 | Toshiba Corp | タ−ビン羽根 |
EP1489264A1 (fr) * | 2003-06-18 | 2004-12-22 | Siemens Aktiengesellschaft | Aube constituèe des modules |
EP1574270A1 (fr) * | 2004-03-08 | 2005-09-14 | Snecma Moteurs | Procédé de fabrication d'un bord d'attaque ou de fuite de renforcement pour une aube de soufflante |
RU2297538C2 (ru) * | 2005-04-28 | 2007-04-20 | Открытое акционерное общество "Теплоэнергосервис" | Способ упрочнения поверхности верхней части пера турбинной лопатки |
US20070163114A1 (en) * | 2006-01-13 | 2007-07-19 | General Electric Company | Methods for fabricating components |
EP1908919A1 (fr) | 2006-09-26 | 2008-04-09 | Snecma | Aube composite de turbomachine à renfort métallique |
EP2060343A1 (fr) | 2006-08-28 | 2009-05-20 | Panasonic Electric Works Co., Ltd | Poudre métallique pour photofabrication métallique et procédé de photofabrication métallique l'utilisant |
EP2125339A1 (fr) | 2007-11-27 | 2009-12-02 | EOS GmbH Electro Optical Systems | Procédé de réalisation d'un objet tridimensionnel par frittage laser |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2834843A1 (de) * | 1978-08-09 | 1980-06-26 | Motoren Turbinen Union | Zusammengesetzte keramik-gasturbinenschaufel |
US4326833A (en) * | 1980-03-19 | 1982-04-27 | General Electric Company | Method and replacement member for repairing a gas turbine engine blade member |
SU1278469A1 (ru) * | 1985-03-25 | 1986-12-23 | Предприятие П/Я А-3513 | Рабоча лопатка влажно-паровой турбины |
SU1483049A1 (ru) * | 1987-09-17 | 1989-05-30 | Ленинградский Политехнический Институт Им.М.И.Калинина | Рабоча лопатка влажно-паровой турбины |
DE3815906A1 (de) * | 1988-05-10 | 1989-11-23 | Mtu Muenchen Gmbh | Luftschraubenblatt aus faserverstaerktem kunststoff |
US5694683A (en) * | 1993-04-20 | 1997-12-09 | Chromalloy Gas Turbine Corporation | Hot forming process |
RU2118462C1 (ru) * | 1995-07-20 | 1998-08-27 | Акционерное общество "К.Т.С." | Рабочая лопатка турбомашины |
DE19734273A1 (de) * | 1997-08-07 | 1999-02-11 | Siemens Ag | Hitzebeständige Leitschaufel |
US6508000B2 (en) * | 2001-02-08 | 2003-01-21 | Siemens Westinghouse Power Corporation | Transient liquid phase bonding repair for advanced turbine blades and vanes |
US6532656B1 (en) * | 2001-10-10 | 2003-03-18 | General Electric Company | Gas turbine engine compressor blade restoration method |
US6843928B2 (en) * | 2001-10-12 | 2005-01-18 | General Electric Company | Method for removing metal cladding from airfoil substrate |
RU2241123C1 (ru) * | 2003-04-22 | 2004-11-27 | Открытое акционерное общество "Теплоэнергосервис" | Способ упрочения поверхности верхней части пера турбинной лопатки |
US6800829B1 (en) * | 2003-05-29 | 2004-10-05 | General Electric Company | Method and apparatus for repairing air-cooled airfoils |
US20050235492A1 (en) * | 2004-04-22 | 2005-10-27 | Arness Brian P | Turbine airfoil trailing edge repair and methods therefor |
US7246773B2 (en) * | 2004-05-06 | 2007-07-24 | Goodrich Coporation | Low power, pulsed, electro-thermal ice protection system |
US7789621B2 (en) * | 2005-06-27 | 2010-09-07 | Rolls-Royce North American Technologies, Inc. | Gas turbine engine airfoil |
RU2316418C1 (ru) * | 2006-09-18 | 2008-02-10 | Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "САЛЮТ" (ФГУП "ММПП "САЛЮТ") | Способ ремонта лопаток турбинных машин |
US20090050735A1 (en) * | 2007-08-24 | 2009-02-26 | Kirkhill-Ta Co. | Systems and methods related to electromagnetic energy dissipation |
US7805839B2 (en) * | 2007-12-31 | 2010-10-05 | Turbine Engine Components Technologies Corporation | Method of manufacturing a turbine fan blade |
WO2010084942A1 (fr) * | 2009-01-22 | 2010-07-29 | 株式会社Ihi | Procédé de fabrication d'un élément de renfort du bord d'attaque d'une aube de soufflante |
WO2010084941A1 (fr) * | 2009-01-22 | 2010-07-29 | 株式会社Ihi | Procédé de fabrication d'un élément de renfort du bord d'attaque d'une aube de soufflante |
US9222362B2 (en) * | 2010-11-05 | 2015-12-29 | Barnes Group Inc. | Hybrid metal leading edge part and method for making the same |
-
2009
- 2009-12-23 FR FR0959551A patent/FR2954200B1/fr active Active
-
2010
- 2010-12-22 EP EP10798095.5A patent/EP2516107B1/fr active Active
- 2010-12-22 US US13/518,179 patent/US9199345B2/en active Active
- 2010-12-22 BR BR112012015720-5A patent/BR112012015720B1/pt active IP Right Grant
- 2010-12-22 JP JP2012545337A patent/JP5628342B2/ja active Active
- 2010-12-22 CA CA2785374A patent/CA2785374C/fr active Active
- 2010-12-22 RU RU2012130953/02A patent/RU2551741C2/ru active
- 2010-12-22 WO PCT/EP2010/070576 patent/WO2011076890A1/fr active Application Filing
- 2010-12-22 CN CN201080059392.9A patent/CN102686356B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3430898A (en) * | 1967-05-01 | 1969-03-04 | Us Navy | Leading edge for hypersonic vehicle |
FR2319008A1 (fr) * | 1975-07-24 | 1977-02-18 | United Technologies Corp | Procede de fabrication de gaines protectrices pour pales |
JPS61164002A (ja) * | 1985-01-17 | 1986-07-24 | Toshiba Corp | タ−ビン羽根 |
EP1489264A1 (fr) * | 2003-06-18 | 2004-12-22 | Siemens Aktiengesellschaft | Aube constituèe des modules |
EP1574270A1 (fr) * | 2004-03-08 | 2005-09-14 | Snecma Moteurs | Procédé de fabrication d'un bord d'attaque ou de fuite de renforcement pour une aube de soufflante |
RU2297538C2 (ru) * | 2005-04-28 | 2007-04-20 | Открытое акционерное общество "Теплоэнергосервис" | Способ упрочнения поверхности верхней части пера турбинной лопатки |
US20070163114A1 (en) * | 2006-01-13 | 2007-07-19 | General Electric Company | Methods for fabricating components |
EP2060343A1 (fr) | 2006-08-28 | 2009-05-20 | Panasonic Electric Works Co., Ltd | Poudre métallique pour photofabrication métallique et procédé de photofabrication métallique l'utilisant |
EP1908919A1 (fr) | 2006-09-26 | 2008-04-09 | Snecma | Aube composite de turbomachine à renfort métallique |
EP2125339A1 (fr) | 2007-11-27 | 2009-12-02 | EOS GmbH Electro Optical Systems | Procédé de réalisation d'un objet tridimensionnel par frittage laser |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103717347A (zh) * | 2011-08-01 | 2014-04-09 | 西门子公司 | 用于制造流动力机器的叶片的方法和流动力机器的叶片 |
US9670782B2 (en) | 2011-08-01 | 2017-06-06 | Siemens Aktiengesellschaft | Method for creating a blade for a flow engine and blade for a flow force engine |
Also Published As
Publication number | Publication date |
---|---|
BR112012015720A2 (pt) | 2021-01-26 |
JP5628342B2 (ja) | 2014-11-19 |
CN102686356A (zh) | 2012-09-19 |
US9199345B2 (en) | 2015-12-01 |
CA2785374A1 (fr) | 2011-06-30 |
RU2012130953A (ru) | 2014-01-27 |
US20120255176A1 (en) | 2012-10-11 |
JP2013527359A (ja) | 2013-06-27 |
CN102686356B (zh) | 2016-05-11 |
BR112012015720B1 (pt) | 2021-08-17 |
EP2516107A1 (fr) | 2012-10-31 |
EP2516107B1 (fr) | 2016-07-06 |
FR2954200A1 (fr) | 2011-06-24 |
RU2551741C2 (ru) | 2015-05-27 |
FR2954200B1 (fr) | 2012-03-02 |
CA2785374C (fr) | 2018-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2516107B1 (fr) | Procede de realisation d'un renfort metallique d'aube de turbomachine | |
EP2507010B1 (fr) | Procédé de réalisation d'un renfort métallique d'aube de turbomachine | |
CA2823525C (fr) | Procede de realisation d'un renfort metallique | |
CA2870229C (fr) | Procede de realisation d'un renfort metallique avec insert pour la protection d'un bord d'attaque en materiau composite | |
CA2823497C (fr) | Procede de realisation d'un renfort metallique | |
EP2627809B1 (fr) | Procede de fabrication d'une structure fibreuse metallique par tissage | |
EP2681004B1 (fr) | Procédé de réalisation d'une pièce métallique telle qu'un renfort d'aube de turbomachine | |
WO2011104192A1 (fr) | Procede de realisation d'un renfort metallique d'aube de turbomachine | |
WO2011161385A1 (fr) | Procede de realisation d'un renfort metallique d'aube de turbomachine | |
WO2012045980A1 (fr) | Procède de réalisation d'un renfort métallique d'aube de turbomachine | |
FR2970891A1 (fr) | Procede de realisation d’une piece metallique renforcee, telle qu’un renfort d’aube de turbomachine | |
EP2624996B1 (fr) | Procédé de réalisation d'une pièce métallique. | |
CA2921901C (fr) | Procede de conformage a haute temperature d'un renfort metallique d'aube | |
FR2972127A1 (fr) | Procede de realisation d'une piece metallique telle qu'un renfort d'aube de turbomachine | |
FR2953430A1 (fr) | Procede de realisation d’un renfort metallique d’aube de turbomachine | |
WO2012117202A1 (fr) | Procede de realisation d'une piece metallique telle qu'un renfort d'aube de turbomachine | |
FR2972126A1 (fr) | Procede de realisation d'une piece metallique telle qu'un renfort d'aube de turbomachine | |
FR2972128A1 (fr) | Procede de realisation d'une piece metallique telle qu'un renfort de turbomachine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080059392.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10798095 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2785374 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13518179 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012545337 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010798095 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010798095 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012130953 Country of ref document: RU |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012015720 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012015720 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120625 |