WO2011076152A1 - 纳米催化微电解水净化消毒装置及其方法 - Google Patents

纳米催化微电解水净化消毒装置及其方法 Download PDF

Info

Publication number
WO2011076152A1
WO2011076152A1 PCT/CN2011/070739 CN2011070739W WO2011076152A1 WO 2011076152 A1 WO2011076152 A1 WO 2011076152A1 CN 2011070739 W CN2011070739 W CN 2011070739W WO 2011076152 A1 WO2011076152 A1 WO 2011076152A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
nano
electrolysis
tank
micro
Prior art date
Application number
PCT/CN2011/070739
Other languages
English (en)
French (fr)
Inventor
张世文
Original Assignee
波鹰(厦门)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 波鹰(厦门)科技有限公司 filed Critical 波鹰(厦门)科技有限公司
Priority to EP20110727100 priority Critical patent/EP2554521A4/en
Priority to US13/518,304 priority patent/US9169145B2/en
Publication of WO2011076152A1 publication Critical patent/WO2011076152A1/zh
Priority to IN6434DEN2012 priority patent/IN2012DN06434A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46147Diamond coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/043Treatment of partial or bypass streams
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Definitions

  • the invention relates to a water purification and disinfection device and a method thereof, in particular to a water purification and disinfection device and a method thereof, which are integrated by nano catalytic microelectrolysis technology and precision filtration.
  • the traditional water purification process adopts the addition of flocculant and bactericide to precipitate microorganisms, colloids and solid particles in water, and then passes through the filtration process of sand filtration, multi-media filtration and membrane filtration.
  • the disadvantage is that flocculant is added in the production.
  • the disinfectant not only the purification cost is high, but also the added flocculant and fungicide also cause different degrees of pollution to the environment.
  • the object of the present invention is to provide a method and a device for purifying and disinfecting water by using nano-catalytic micro-electrolysis technology and precision filtration integration in view of the problems existing in the existing water purification and disinfection technology, and overcome the prior art investment and high purification operation cost. And defects that cause secondary pollution to the environment.
  • the nano catalytic micro-electrolysis water purification and disinfection device and the method thereof are provided by the water pump (1) and the nano catalytic micro-electrolysis tank (2) ), a neutralization sedimentation tank (5), a sand filter tank (6), and a precision filtration device (7) and a water storage tank (8).
  • the water outlet of the water pump (1) passes through a water outlet of the tee and the nano catalytic micro-electrolysis tank (2)
  • the inlet of the nano-catalyzed micro-electrolysis tank (2) is connected to the water inlet of the neutralization sedimentation tank (5) via the check valve (4) and the water outlet, and the other outlet of the three-way valve passes through the check valve.
  • the raw water is input into the nano catalytic micro-electrolytic tank by 1/20 to 1/5 through the water pump ( 1 ) and the tee ( 2
  • the epoch-organic strong oxidizing substance is generated and then input into the neutralization sedimentation tank (5) through the check valve (4), and the water of 19/20 to 4/5 is directly passed through the water pipe and the check valve ( 3
  • the neutralization sedimentation tank (5) mixed with micro-electrolyzed water, using strong oxidizing substances produced by catalytic micro-electrolysis to kill plankton, microorganisms, viruses in the raw water, killing or inhibiting algae growth, And under the action of the electric field, the solid suspended matter, the colloidal substance dissolved in the water, the charged particles, the algae, and the killed bacteria form larger particles, filtered through the sand filter tank (6), and pumped into the precision filter (7) ) Filtered to remove.
  • the heavy metal ions in the water are enriched in the cathode of the micro-electrolysis to form a cathode mud precipitate, and the organic substances such as pesticide residues, colored substances and oil stains in the water are strongly oxidized by nano-catalytic micro-electrolysis.
  • the phosphate in the water moves toward the cathodic polarization layer and acts on the surface of the cathode to form a phosphate precipitate.
  • An anion is present in the outer layer to form an electric double layer.
  • an anion such as HPO 4 2- , HCO 3 - , Cl - ... is oppositely charged, and the ion of this layer is called 'counter ion'.
  • the main electrode reaction is: 2H + +2e ⁇ H 2 ⁇ ( 2H 3 O + +2e ⁇ H 2 ⁇ + 2H 2 O )
  • the resulting Ca 3 (PO 4 ) 2 , CaCO 3 ... is deposited on the surface of the cathode to form a cathode scale.
  • the nanocatalytic microelectrolysis is different from conventional electrolysis, and the strong oxidizing substance produced is an initial ecological oxygen for fresh water [O] (instead of oxygen produced by conventional electrolysis) and nascent chlorine [Cl], which is nascent chlorine [Cl] for seawater and brackish water (instead of chlorine produced by conventional electrolysis).
  • the microelectrolytic tank has an operating voltage of 2V to 18V and a current intensity of 1 to 5000A. .
  • the plankton, microorganisms, viruses, etc. in the water are killed by the strong oxidizing substances produced by micro-electrolysis in the neutralization sedimentation tank.
  • the suspended solids, colloids and charged particles form larger particles under the action of the electric field, and then filtered through the sand filter tank. Precision filtration removes water for purification.
  • the optimal operating voltage of the microelectrolysis is 3V to 10V, and the current intensity is 5 to 1000A.
  • the precision filtering device is a filter bag, a fiber filter filter, a PP cotton filter, a microfiltration membrane filter or an ultrafiltration membrane filter.
  • the PP cotton filtered PP cotton material has a pore size of 0.10 to 5 ⁇ m.
  • the fiber filter material of the fiber filter element has a pore diameter of 0.10 to 5 ⁇ m.
  • the membrane material filtered by the microfiltration membrane is a ceramic membrane with a pore diameter of 0.05 to 0.1 ⁇ m or a molecular weight cut off of 50000.
  • the above organic film is a ceramic membrane with a pore diameter of 0.05 to 0.1 ⁇ m or a molecular weight cut off of 50000.
  • the membrane material filtered by the ultrafiltration membrane is an organic ultrafiltration membrane having a molecular weight cut-off of 1000 or more, and the membrane module is a tubular membrane module or a membrane module.
  • the filter bag filtered filter bag material has a pore diameter of 0.10 to 5 ⁇ m.
  • the purified water obtained by water purification and disinfection by nano-catalytic micro-electrolysis can be directly used for drinking water.
  • the nascent chlorine [Cl] produced by nanocatalytic microelectrolysis kills algae, microorganisms, viruses and plankton in the raw water.
  • the microbial living body in the raw water is reduced to 30/ml or less to eliminate the pollution of algae and microorganisms.
  • the daily energy consumption for purification and disinfection is 0.01kwh/T, and the electricity price is 1 yuan/ Kwh meter, the daily purification and disinfection operation cost is 0.0089 yuan / T.
  • the daily energy consumption for purification and disinfection is 0.004kwh/T electricity price to 1 yuan/ Kwh meter, the daily purification and disinfection operation cost is 0.0045 yuan / T.
  • FIG. 1 is a schematic view of a nanocatalytic micro-electrolysis water purification device and a method thereof according to the present invention
  • FIG. 2 is a process flow diagram of a nanocatalytic micro-electrolyzed water purification device and a method thereof according to the present invention
  • Figure 3 is a block diagram of a conventional water purification and disinfection process flow
  • FIG. 4 is a block diagram of a conventional membrane water purification and disinfection process
  • Figure 5 is a view showing the detection result of the purification effect of the fresh water purification method of the present invention.
  • Fig. 6 is a view showing the results of purification effect detection by the seawater purification method of the present invention.
  • the nano-catalytic micro-electrolysis water purification device of the present invention comprises a water pump (1) and a nano-catalytic micro-electrolysis tank (2). ), a neutralization sedimentation tank (5), a sand filter tank (6), and a precision filter (7) and a water storage tank (8).
  • the water outlet of the water pump (1) passes through a water outlet of the tee and the nano catalytic micro-electrolysis tank (2)
  • the inlet of the nano-catalyzed micro-electrolysis tank (2) is connected to the water inlet of the neutralization sedimentation tank (5) via the check valve (4) and the water outlet, and the other outlet of the three-way valve passes through the check valve.
  • the precision filter (7) is filter bag, fiber filter, PP A type of cotton filtration, microfiltration membrane filtration or ultrafiltration membrane filtration.
  • the raw water is input into the nano-catalytic micro-electrolytic tank by the pump (1) and the tee (1) to 1/5.
  • the check valve (5) flows into the neutralization sedimentation tank (5), and the raw water of 19/20 to 4/5 enters the neutralization sedimentation tank directly through the water pipe and the check valve (3) (5)
  • Mixing with micro-electrolyzed water using strong oxidizing substances produced by catalytic micro-electrolysis to kill plankton, microorganisms, viruses in raw water, killing or inhibiting algae growth, And under the action of the electric field, the solid suspension, the colloidal substance dissolved in the water, the charged particles, the algae and the killed bacteria form larger particles, and then filtered through the sand filter tank (6) and pumped into the PP cotton filter (7) Filtering removes solid impurities, plankton, colloids, and bacteria in the water to obtain purified water and store it in a water storage tank (8).
  • Nanocatalytic microelectrolysis has the following functions:
  • the strong oxidizing substances produced kill algae, plankton, microorganisms, viruses in raw water And under the action of an electric field, plankton, solid suspension, colloid, bacteria, etc. form a larger crystal nucleus.
  • Neutralization and precipitation tank neutralization has the following functions:
  • crystal nucleus produced by nano-catalytic micro-electrolysis forms larger particle precipitation with raw water, solid suspended matter, colloid, bacteria and the like.
  • 3000 tons of tap water raw water is extracted by a water pump (1) at a flow rate of 150T/H, and a part of it is input into the nano catalytic micro-electrolysis tank (2) at a flow rate of 7.5T/H through a tee.
  • catalytic micro-electrolysis it is input into the neutralization sedimentation tank (5) through the check valve (4), and the remaining raw water directly enters the neutralization sedimentation tank through the three-way and one-way valve (3) at a flow rate of 142.5T/H.
  • the microbial organisms in the wastewater fall below 30/ml to eliminate the pollution of algae, microorganisms and viruses; the nascent oxygen [O] and the nascent chlorine [Cl] produced by nanocatalytic microelectrolysis oxidize and decompose organic matter in tap water, Pesticide residues, colored substances, reduce COD Cr ; in the micro-electrolysis tank (2), the suspended solids, colloids, charged particles in the tap water are destabilized under the action of an electric field to form larger granules, and with raw water The solid suspended matter, plankton, microbial corpse, algae further form a larger crystal nucleus, and then form a precipitate in the neutralization sedimentation tank (5) with the colloid, solid suspension, microbial corpse, algae, etc.
  • the precision filter ( 7) is an ultrafiltration membrane filtration unit, the ultrafiltration membrane of the ultrafiltration membrane filtration unit has an organic membrane with a molecular weight cut-off of 1000 or more, and the membrane module is a tubular membrane module or a membrane module.
  • the nano catalytic microelectrolysis has an operating voltage of 8 to 10 V and a current intensity of 130 to 135 A.
  • the result is shown in the figure. 5 No. 1 water sample.
  • 10,000 tons of tap water raw water is extracted by a water pump (1) at a flow rate of 417T/H, and a part of it is input into the nano catalytic micro-electrolysis tank (2) at a flow rate of 85T/H through a tee.
  • catalytic micro-electrolysis After catalytic micro-electrolysis, it is input into the neutralization sedimentation tank (5) through the check valve (4), and the remaining raw water directly enters the neutralization sedimentation tank through the three-way and one-way valve (3) at a flow rate of 332T/H ( 5)
  • nascent oxygen [O] and nascent chlorine [Cl] produced by nano-catalytic micro-electrolysis to kill algae, plankton, microorganisms and viruses in raw water to make wastewater
  • the microbial organisms are reduced to less than 30/ml, eliminating the pollution of algae, microorganisms and viruses; the oxidative decomposition of organic matter and pesticide residues in the water by oxidative oxidization [O] and nascent chlorine [Cl] produced by nanocatalytic microelectrolysis
  • the colored material reduces COD Cr .
  • the colloid and charged particles dissolved in the raw water are condensed under the action of an electric field to form a larger particle nucleus, and the solid suspended matter and plankton in the raw water.
  • the microbial corpse and algae further form a larger crystal nucleus, and then form a precipitate with the colloid, solid suspended matter, microbial corpse, algae, etc. in the raw water in the neutralization sedimentation tank (5); heavy metal ions in the water
  • Phosphate ions in the water form a precipitate with the cation in the cathodic polarization layer to remove phosphate ions.
  • Phosphate ions in water are precipitated in large amounts, and the lack of phosphorus in the water affects the replication of algae DNA, thereby inhibiting the growth and reproduction of algae in the water.
  • the water precipitated by the neutralization sedimentation tank (5) is then subjected to sand filtration (6) coarse filtration and precision filter (7) to remove the water to purify the water.
  • the precision filter ( 7) For the microfiltration filtration unit, the microfiltration membrane of the microfiltration membrane filtration unit has an organic membrane with a molecular weight cut-off of 50,000 or more, and the membrane module is a tubular membrane module or a membrane module.
  • the nano catalytic microelectrolysis has an operating voltage of 6 to 8 V and a current intensity of 270 to 280 A.
  • the result is shown in the figure. 5 No. 2 water sample.
  • 50,000 tons of tap water was extracted by a water pump (1) at a flow rate of 2085 T/H, and a part of the tap water was fed into the nanocatalytic microelectrolysis tank (2) at a flow rate of 210 T/H through a tee.
  • catalytic micro-electrolysis After catalytic micro-electrolysis, it is input into the neutralization sedimentation tank (5) through the check valve (4), and the remaining raw water directly enters the neutralization sedimentation tank through the three-way and one-way valve (3) at a flow rate of 1875T/H ( 5)
  • nascent oxygen [O] and nascent chlorine [Cl] produced by nano-catalytic micro-electrolysis to kill algae, plankton, microorganisms and viruses in raw water to make wastewater
  • the microbial organisms are reduced to less than 30/ml, eliminating the pollution of algae, microorganisms and viruses; the oxidative decomposition of organic matter and pesticide residues in the water by oxidative oxidization [O] and nascent chlorine [Cl] produced by nanocatalytic microelectrolysis
  • the colored material reduces COD Cr .
  • the colloid and charged particles dissolved in the raw water are condensed under the action of an electric field to form a larger particle nucleus, and the solid suspended matter and plankton in the raw water.
  • the microbial corpse and algae further form a larger crystal nucleus, and then form a precipitate with the colloid, solid suspended matter, microbial corpse, algae, etc. in the raw water in the neutralization sedimentation tank (5); heavy metal ions in the water
  • Phosphate ions in the water form a precipitate with the cation in the cathodic polarization layer to remove phosphate ions.
  • Phosphate ions in water are precipitated in large amounts, and the lack of phosphorus in the water affects the replication of algae DNA, thereby inhibiting the growth and reproduction of algae in the water.
  • the water precipitated by the neutralization sedimentation tank (5) is then subjected to sand filtration (6) coarse filtration and precision filter (7) to remove the water to purify the water.
  • the precision filter ( 7) The microfiltration membrane unit, the microfiltration membrane of the microfiltration membrane filtration unit has a ceramic membrane with a molecular weight cut-off of 50,000 or more, and the membrane module is a tubular membrane module.
  • the nano catalytic microelectrolysis has an operating voltage of 9 to 10 V and a current intensity of 1700 to 1750 A.
  • the result is shown in the figure. 5 No. 3 water sample.
  • 2,500 tons of tap water raw water was extracted by a water pump (1) at a flow rate of 104 T/H, and a part of the tap water was introduced into the nano catalytic micro-electrolysis tank (2) at a flow rate of 10 T/H through a tee. After catalytic micro-electrolysis, it is input into the neutralization sedimentation tank (5) through the check valve (4), and the remaining raw water directly enters the neutralization sedimentation tank through the three-way and one-way valve (3) at a flow rate of 94.2T/H.
  • the precision filter (7) is a filter bag filter unit, and the filter bag material of the filter bag filter has a pore diameter of 0.10 to 5 ⁇ m.
  • the working voltage of the nano catalytic microelectrolysis is 3 ⁇ 5V, current intensity is 9 ⁇ 12A, the initial ecological chlorine [Cl] produced by nano-catalytic micro-electrolysis kills microorganisms in wastewater, oxidizes and decomposes organic matter in wastewater, and makes suspended matter, colloid and charged particles in water in electric field After forming larger particles under the action, the water is purified by coarse filtration and precision filtration, and the result is shown in FIG. 6.
  • the nascent chlorine [Cl] produced by nanocatalytic microelectrolysis kills algae, microorganisms, viruses and plankton in the raw water.
  • the microbial living body in the raw water is reduced to 30/ml or less to eliminate the pollution of algae and microorganisms.
  • the invention can be widely applied to the purification treatment of drinking water, brackish water, sea water and waste water. It has the advantages of low energy consumption, low operating cost, small production equipment, fast purification and disinfection, and has good industrial applicability.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

纳米催化微电解水净化消毒装置及其方法 技术领域
本发明涉及一种水净化消毒装置及其方法,特别涉及一种采用纳米催化微电解技术和精密过滤集成的水净化消毒装置及其方法。
背景技术
淡水资源短缺和水污染已经成为21世纪的三大环境问题之一,因此,水净化、废水水净化后再利用(中水回用)、海水淡化、苦咸水淡化技术成为各国非常重视的高新技术,也是解决水资源危机的重要措施之一。无论是自来水生产,海水利用和海水淡化、苦咸水淡化利用还是废水处理中水回用都离不开对原水净化。时至今日,已开发和应用的水净化方法很 多,但要么效率不高,要么能耗大,不经济,要么设备投入大。因此,从 经济合算的标准衡量,仍然不尽如人意。
目前采用的传统的水净化技术的生产工艺如图3、图4所示。
传统的水净化工艺采用加入絮凝剂和杀菌剂对水中微生物、胶体物、固体颗粒进行沉淀后,再经过砂滤过滤、多介质过滤和膜过滤的净化工艺,其缺点是生产中要加入絮凝剂和消毒杀菌剂,不仅净化成本较高,而且加入的絮凝剂和杀菌剂还对环境造成不同程度的污染。此外,还有一次性设备投资大的缺陷。
技术问题
本发明的目的在于针对现有水净化消毒技术存在的问题,提供一种采用纳米催化微电解技术和精密过滤集成对水进行净化消毒的方法及装置,克服现有技术投资大、净化运行成本高和对环境产生二次污染的缺陷。
技术解决方案
本发明所述的 纳米催化微电解水净化消毒装置及其方法,它由水泵( 1 )、纳米催化微电解罐( 2 )、中和沉淀罐( 5 )、砂滤罐( 6 )和精密过滤装置( 7 )和贮水罐( 8 )构成。取水泵( 1 )的出水口通过三通的一个出水口与纳米催化微电解罐( 2 )的进水口联接,纳米催化微电解罐( 2 )的出水口经单向阀( 4 )和水管与中和沉淀罐( 5 )的进水口联接,三通的另一个出水口经单向阀( 3 )与中和沉淀罐( 5 )中的另一个进水口联接,中和沉淀罐( 5 )的出水口与砂滤罐( 6 )进水口联接,砂滤罐( 6 )出水口与精密过滤装置( 7 )的进水口联接,精密过滤装置( 7 )的出水口与贮水罐( 8 )的进水口联接。
原水经取水泵( 1 )和三通将其 1/20 ~ 1/5 输入纳米催化微电解罐( 2 )中进行催化微电解产生初生态的强氧化性物质后经单向阀( 4 )输入到中和沉淀罐( 5 )中, 19/20 ~ 4/5 的 水直接经水管和单向阀( 3 )进入中和沉淀罐( 5 )中与微电解水混合,利用催化微电解产生的强氧化性物质杀灭原水中的浮游生物、微生物、病毒, 杀灭或抑制藻类生长, 并在电场的作用下使固体悬浮物、溶解在水中胶体物质、带电颗粒、藻类以及被杀灭细菌等形成更大颗粒、经砂滤罐( 6 )过滤后泵入精密过滤器( 7 )过滤除去。水中的重金属离子在微电解的阴极富集形成阴极泥沉淀,水中的农药残留、有色物质、油污等有机物被纳米催化微电解产生的强氧化性物质。 水中的磷酸根向阴极极化层移动,与阴极表面的二价阳离子作用,形成磷酸盐沉淀去除。
阴极沉淀重金属离子、磷酸根离子和碳酸根离子的原理是:
1、 浓差极化
在通电的时候,阴极上有大量的电子,这时由于库伦力的作用,水中的阳离子如H3O+,Na+,Ca2+,Mg 2+,Pb2+,Cu2+……就会向阴极迁移,形成浓差极化。
2 、双电层形成
在阴极表面阳离子的浓度就会显著上升。在其外层就会有阴离子存在,而形成双电层。在双电层的外层又聚集了如HPO4 2-、HCO3 -、Cl -……电荷相反的阴离子,这一层的离子称为'反离子'。
3 、酸碱效应
由于双电层的形成,在双电层中,HPO4 2-等浓度也相应大幅度提高,在阴极上,发生主要的化学反应:
H2O ↔ H++ OH-
主要的电极反应是:2H++2e ↔ H2↑ ( 2H3O++2e ↔ H2↑+2H2O )
由于H2的析出,在阴极附近,酸性降低,碱性上升。
4、 沉淀反应
由于酸碱效应,致使HPO4 2- ↔ H++PO4 3-的平衡向右移动。又由于双电层效应,在阴极附近的[Ca 2+]、[PO4 3-]显著增大,这样一来,就发生沉淀反应:
3Ca2++2PO4 3-→Ca3(PO 4)2
同理,将发生如下沉淀反应:
HCO3 -→H++CO3 2-
Pb2++CO32-→PbCO3
Cu2++CO32-→CuCO3
Ca2++CO32-→CaCO3
生成的Ca3(PO4)2, CaCO3……就沉积在阴极表面,从而形成阴极垢。
所述的纳米催化微电解与常规的电解有区别,产生的强氧化性物质对于淡水为初生态的氧 [O] (而不是常规电解产生的氧气)和初生态的氯 [Cl] ,对于海水和苦咸水为初生态的氯 [Cl] (而不是常规电解产生的氯气)。
所述的微电解罐的工作电压为 2V~18V ,电流强度为 1~5000A 。水中的浮游生物、微生物、病毒等在中和沉淀罐中被微电解产生的强氧化性物质杀灭,悬浮物、胶体、带电微粒在电场作用下形成较大颗粒后,经过砂滤罐过滤和精密过滤去除使水净化。
所述的微电解的最佳工作电压为 3V ~ 10V ,电流强度为 5 ~ 1000A 。
所述的精密过滤装置为滤袋、纤维滤芯过滤、 PP 棉过滤、微滤膜过滤或超滤膜过滤的一种。
所述的PP棉过滤的PP棉材料的孔径0.10~5µm。
所述的纤维滤芯过滤的纤维滤芯材料的孔径0.10~5µm。
所述的微滤膜过滤的膜材料为孔径 0.05 ~ 0.1µm 的陶瓷膜或截留分子量 50000 以上的有机膜。
所述的超滤膜过滤的膜材料为截留分子量1000以上的有机超滤过滤膜,膜组件为管式膜组件或卷式膜组件。
所述的滤袋过滤的滤袋材料的孔径 0.10 ~ 5µm 。
有益效果
采用纳米催化微电解对水净化消毒具有如下突出效果:
1、淡水的净化消毒
(1)用纳米催化微电解产生的初生态的氧[O]和初生态的氯[Cl]杀灭原水中藻类 、微生物、病毒、浮游生物, 使原水中微生物活体下降到30个/ml以下,消除藻类和微生物的污染。
(2)氧化分解水中的有机物,农药残留,快速分解有色物质和降低CODCr
(3)使水中的悬浮物、胶体、带电微粒在电场作用下凝聚形成较大颗粒后,经过粗滤过滤和精密过滤去除使水净化。
(4)水中的重金属离子向微电解罐的阴极移动,在阴极形成沉淀,从而降低水中的重金属离子含量。
( 5)水中的磷酸根离子被大量沉淀,水中缺少磷影响藻类DNA的复制,从而抑制水中藻类的生长和繁殖。
采用纳米催化微电解对水净化消毒所得的净水可以直接饮用水。
2、海水、苦咸水或含氯化钠较多的咸水
(1)用纳米催化微电解产生的初生态的氯[Cl]杀灭原水中藻类 、微生物、病毒、浮游生物, 使原水中微生物活体下降到30个/ml以下,消除藻类、微生物的污染。
(2)氧化分解水中的有机物,农药残留,快速分解有钯物质等有机物和降低CODCr
(3)使水中的悬浮物、溶解在水中的胶体、带电微粒在电场作用下凝聚形成较大颗粒后,经过粗滤过滤和精密过滤去除使水净化水。
(4)水中的重金属离子向微电解罐的阴极移动,在阴极形成沉淀,从而降低水中的重金属离子含量。
( 5)水中的磷酸根离子被大量沉淀,水中缺少磷影响藻类DNA的复制,从而抑制水中藻类的生长和繁殖。
采用纳米催化微电解对水净化消毒具有如下突出优点:
1、能耗极低、运行成本小
对于淡水,每天的净化消毒的能耗为0.01kwh/T,电价以1元/ kwh计,每天的净化消毒运行成本为0.0089元/T。对于海水、苦咸水,每天的净化消毒的能耗为0.004kwh/T电价以1元/ kwh计,每天的净化消毒运行成本为0.0045元/ T。
2、生产设备小 净化消毒速度快
常规的絮凝沉淀消毒净化需要在絮凝沉淀池和毒净池中进行,需要较长的时间和较大的絮凝沉淀池和毒净池,占地面积大,投资大,而采用纳米催化微电解对水净化消毒只需要原水流经微电解罐,设备小,时间在25分钟以内。
附图说明
图1是本发明的一种采用纳米催化微电解水净化装置及其方法的示意图;
图2是本发明的采用纳米催化微电解水净化装置及其方法的工艺流程框图;
图3传统的水净化消毒工艺流程框图;
图4传统的膜法水净化消毒工艺流程框图;
图5是本发明的淡水净化化方法的净化效果检测结果;
图6是本发明的海水净化化方法的净化效果检测结果。
本发明的最佳实施方式
下面结合附图对本发明作进一步的说明:
如图 1 所示,本发明 所述纳米催化微电解水净化装置由水泵( 1 )、纳米催化微电解罐( 2 )、中和沉淀罐( 5 )、砂滤罐( 6 )和精密过滤器( 7 )和贮水罐( 8 )构成。取水泵( 1 )的出水口通过三通的一个出水口与纳米催化微电解罐( 2 )的进水口联接,纳米催化微电解罐( 2 )的出水口经单向阀( 4 )和水管与中和沉淀罐( 5 )的进水口联接,三通的另一个出水口经单向阀( 3 )与中和沉淀罐( 5 )中的另一个进水口联接,中和沉淀罐( 5 )的出水口与砂滤罐( 6 )进水口联接,砂滤罐( 6 )出水口与精密过滤器( 7 )的进水口联接,精密过滤器( 7 )的出水口与贮水罐( 8 )的进水口联接。
所述的精密过滤器( 7 )为 滤袋、纤维滤芯过滤、 PP 棉过滤、微滤膜过滤或超滤膜过滤的一种。
原水经取水泵( 1 )和三通 将其 1/20 ~ 1/5 输入纳米催化微电解罐( 2 )中进行催化微电解后经单向阀( 4 )流入中和沉淀罐( 5 ) 中, 19/20 ~ 4/5 的 原 水直接经水管和单向阀( 3 )进入中和沉淀罐( 5 )中与微电解水混合,利用催化微电解产生的强氧化性物质杀灭原水中的浮游生物、微生物、病毒, 杀灭或抑制藻类生长, 并在电场的作用下使固体悬浮物、溶解在水中胶体物质、带电颗粒、藻类以及被杀灭细菌等形成更大颗粒、 再 经砂滤罐( 6 )过滤后 泵入 PP 棉过滤器( 7 )过滤除去水中的固体杂质、浮游生物、胶体、细菌,从而得到净化水并贮存于贮水罐( 8 )中。
纳米催化微电解具有如下功能:
( 1 )产生的强氧化性物质杀灭原水中藻类、 浮游生物、微生物、病毒 ,并在电场作用下使浮游生物、固体悬浮物、胶体、细菌等形成更大晶核。
( 2 )水中的重金属离子在微电解的阴极富集形成阴极泥沉淀,降低水中重金属离子浓度,消除重金属危害。
( 3 )利用纳米催化微电解产生的强氧化性物质氧化分解水中的农药残留、有色物质、油污等有机物。
(4)水中的重金属离子向微电解罐的阴极移动,在阴极形成沉淀,从而降低水中的重金属离子含量。
(5)水中的磷酸根离子在阴极极化层与阳离子形成沉淀除去磷酸根离子。
( 6)水中的磷酸根离子被大量沉淀,水中缺少磷影响藻类DNA的复制,从而抑制水中藻类的生长和繁殖。
中和沉淀罐中和具有如下功能:
( 1 )利用进入中和沉淀罐的 19/20 ~ 4/5 的 原 水中和消耗 纳米催化微电解产生的强氧化性物质。
( 2 )利用纳米催化微电解产生的强氧化性物质杀灭原水中藻类、微生物、病毒。
( 3 )纳米催化微电解产生的晶核与原水的、固体悬浮物、胶体、细菌等形成更大颗粒沉淀。
以下给出采用图 1 所示的纳米催化微电解水净化消毒装置实施例的水净化消毒方法。
本发明的实施方式
实施例 1
3000 吨 / 日的生活小区自饮水净化消毒方法
3000吨的自来水原水经水泵( 1)按150T/H的流速提取后,经三通将其中一部分以7.5T/H流速输入纳米催化微电解罐(2)中。进行催化微电解后,再经单向阀(4)输入中和沉淀罐(5)中,余下的原水以142.5T/H的流速经三通和单向阀(3)直接进入中和沉淀罐(5)中与纳米催化微电解水混合沉淀, 用纳米催化微电解产生的初生态的氧[O]和初生态的氯[Cl]杀灭原水中的藻类、 浮游生物、微生物、病毒,使废水中微生物活体下降到30个/ml以下,消除藻类、微生物、病毒的污染;用纳米催化微电解产生的初生态的氧[O]和初生态的氯[Cl]氧化分解自来水中的有机物、农药残留、有色物质,降低COD Cr;在微电解罐(2)中,使自来水中的悬浮物、胶体、带电微粒等在电场作用下脱稳凝聚形成较大颗粒后晶核,并与原水中的固体悬浮物、浮游生物、微生物尸体、藻类作用进一步形成更大的晶核,然后在中和沉淀罐(5) 中,与原水中的胶体、固体悬浮物、微生物尸体、藻类等形成沉淀;水中的重金属离子向微电解罐的阴极移动,在阴极形成沉淀,从而降低废水中的重金属离子含量。水中的磷酸根离子在阴极极化层与阳离子形成沉淀除去磷酸根离子。水中的磷酸根离子被大量沉淀,水中缺少磷影响藻类 DNA的复制,从而抑制水中藻类的生长和繁殖。 经过中和沉淀罐( 5)沉淀的水再 经过砂滤(6)粗滤过滤和精密过滤器( 7) 精密过滤去除使水净化。
所述的精密过滤器( 7)为超滤膜过滤单元,超滤膜过滤单元的超滤膜的截留分子量1000以上有机膜,膜组件为管式膜组件或卷式膜组件。
所述纳米催化微电解的工作电压为 8 ~ 10V ,电流强度为 130 ~ 135A ,纳米催化微电解产生的初生态的氯 [Cl] 杀灭废水中微生物、氧化分解废水中的有机物,并使水中的悬浮物、胶体、带电微粒在电场作用下形成较大颗粒后,经过粗滤过滤和精密过滤去除使水净化水,结果如图 5 的 1 号水样。
实施例 2
10000 吨 / 日的自来水净化消毒方法
10000吨的自来水原水经水泵( 1)按417T/H的流速提取后,经三通将其中一部分以85T/H流速输入纳米催化微电解罐(2)中。进行催化微电解后,再经单向阀(4)输入中和沉淀罐(5)中,余下的原水以332T/H的流速经三通和单向阀(3)直接进入中和沉淀罐(5)中与纳米催化微电解水混合沉淀, 用纳米催化微电解产生的初生态的氧[O]和初生态的氯[Cl]杀灭原水中的藻类、 浮游生物、微生物、病毒,使废水中微生物活体下降到30个/ml以下,消除藻类、微生物、病毒的污染;用纳米催化微电解产生的初生态的氧[O]和初生态的氯[Cl]氧化分解水中的有机物、农药残留、有色物质,降低COD Cr;在微电解罐(2)中,使溶解在原水中的胶体、带电微粒在电场作用下凝聚形成较大颗粒后晶核,并与原水中的固体悬浮物、浮游生物、微生物尸体、藻类作用进一步形成更大的晶核,然后在中和沉淀罐(5) 中,与原水中的胶体、固体悬浮物、微生物尸体、藻类等形成沉淀;水中的重金属离子向微电解罐的阴极移动,在阴极形成沉淀,从而降低废水中的重金属离子含量。水中的磷酸根离子在阴极极化层与阳离子形成沉淀除去磷酸根离子。水中的磷酸根离子被大量沉淀,水中缺少磷影响藻类 DNA的复制,从而抑制水中藻类的生长和繁殖。 经过中和沉淀罐( 5)沉淀的水再 经过砂滤(6)粗滤过滤和精密过滤器( 7) 精密过滤去除使水净化。
所述的精密过滤器( 7)为微滤过滤单元,微滤膜过滤单元的微滤膜的截留分子量50000以上有机膜,膜组件为管式膜组件或卷式膜组件。
所述纳米催化微电解的工作电压为 6 ~ 8V ,电流强度为 270 ~ 280A ,纳米催化微电解产生的初生态的氯 [Cl] 杀灭废水中微生物、氧化分解废水中的有机物,并使水中的悬浮物、胶体、带电微粒在电场作用下形成较大颗粒后,经过粗滤过滤和精密过滤去除使水净化水,结果如图 5 的 2 号水样。
实施例 3
50000 吨 / 日的自来水净化消毒方法
50000吨的自来水原水经水泵( 1)按2085T/H的流速提取后,经三通将其中一部分以210T/H流速输入纳米催化微电解罐(2)中。进行催化微电解后,再经单向阀(4)输入中和沉淀罐(5)中,余下的原水以1875T/H的流速经三通和单向阀(3)直接进入中和沉淀罐(5)中与纳米催化微电解水混合沉淀, 用纳米催化微电解产生的初生态的氧[O]和初生态的氯[Cl]杀灭原水中的藻类、 浮游生物、微生物、病毒,使废水中微生物活体下降到30个/ml以下,消除藻类、微生物、病毒的污染;用纳米催化微电解产生的初生态的氧[O]和初生态的氯[Cl]氧化分解水中的有机物、农药残留、有色物质,降低COD Cr;在微电解罐(2)中,使溶解在原水中的胶体、带电微粒在电场作用下凝聚形成较大颗粒后晶核,并与原水中的固体悬浮物、浮游生物、微生物尸体、藻类作用进一步形成更大的晶核,然后在中和沉淀罐(5) 中,与原水中的胶体、固体悬浮物、微生物尸体、藻类等形成沉淀;水中的重金属离子向微电解罐的阴极移动,在阴极形成沉淀,从而降低废水中的重金属离子含量。水中的磷酸根离子在阴极极化层与阳离子形成沉淀除去磷酸根离子。水中的磷酸根离子被大量沉淀,水中缺少磷影响藻类 DNA的复制,从而抑制水中藻类的生长和繁殖。 经过中和沉淀罐( 5)沉淀的水再 经过砂滤(6)粗滤过滤和精密过滤器( 7) 精密过滤去除使水净化。
所述的精密过滤器( 7)为微滤过滤单元,微滤膜过滤单元的微滤膜的截留分子量50000以上的陶瓷膜,膜组件为管式膜组件。
所述纳米催化微电解的工作电压为 9 ~ 10V ,电流强度为 1700 ~ 1750A ,纳米催化微电解产生的初生态的氯 [Cl] 杀灭废水中微生物、氧化分解废水中的有机物,并使水中的悬浮物、胶体、带电微粒在电场作用下形成较大颗粒后,经过粗滤过滤和精密过滤去除使水净化水,结果如图 5 的 3 号水样。
实施例 4
2500 吨 / 日的海水净化消毒方法
2500吨的自来水原水经水泵(1)按104T/H的流速提取后,经三通将其中一部分以10T/H流速输入纳米催化微电解罐(2)中。进行催化微电解后,再经单向阀(4)输入中和沉淀罐(5)中,余下的原水以94.2T/H的流速经三通和单向阀(3)直接进入中和沉淀罐(5)中与纳米催化微电解水混合沉淀, 用纳米催化微电解产生的初生态的氯[Cl]杀灭原水中的藻类、 浮游生物、微生物、病毒,使海水水中微生物活体下降到30个/ml以下,消除藻类、微生物、病毒的污染;用纳米催化微电解产生的初生态的氯[Cl]氧化分解水中的有机物、农药残留、有色物质,降低COD Cr;在微电解罐(2)中,使溶解在原水中的胶体、带电微粒在电场作用下凝聚形成较大颗粒后晶核,并与原水中的固体悬浮物、浮游生物、微生物尸体、藻类作用进一步形成更大的晶核,然后在中和沉淀罐(5) 中,与原水中的胶体、固体悬浮物、微生物尸体、藻类等形成沉淀;水中的重金属离子向微电解罐的阴极移动,在阴极形成沉淀,从而降低废水中的重金属离子含量。水中的磷酸根离子在阴极极化层与阳离子形成沉淀除去磷酸根离子。水中的磷酸根离子被大量沉淀,水中缺少磷影响藻类 DNA的复制,从而抑制水中藻类的生长和繁殖。 经过中和沉淀罐(5)沉淀的水再 经过砂滤(6)粗滤过滤和精密过滤器( 7) 精密过滤去除使水净化。
所述的精密过滤器(7)为滤袋过滤单元, 滤袋过滤的滤袋材料的孔径为0.10~5µm。
所述纳米催化微电解的工作电压为 3~5V,电流强度为9~12A,纳米催化微电解产生的初生态的氯[Cl]杀灭废水中微生物、氧化分解废水中的有机物,并使水中的悬浮物、胶体、带电微粒在电场作用下形成较大颗粒后,经过粗滤过滤和精密过滤去除使水净化水,结果如图6。
采用纳米催化微电解对海水净化消毒具有如下突出效果:
(1)用纳米催化微电解产生的初生态的氯[Cl]杀灭原水中藻类 、微生物、病毒、浮游生物, 使原水中微生物活体下降到30个/ml以下,消除藻类、微生物的污染。
(2)氧化分解水中的有机物,农药残留,快速分解有钯物质等有机物和降低CODCr
(3)使水中的悬浮物、溶解在水中的胶体、带电微粒在电场作用下凝聚形成较大颗粒后,经过粗滤过滤和精密过滤去除使水净化水。
(4)水中的重金属离子向微电解罐的阴极移动,在阴极形成沉淀,从而降低水中的重金属离子含量。
( 5)水中的磷酸根离子被大量沉淀,水中缺少磷影响藻类DNA的复制,从而抑制水中藻类的生长和繁殖。
工业实用性
本发明可广泛应用于生活饮用水、苦咸水、海水和废水的净化处理, 具有能耗极低、运行成本小、生产设备小、净化消毒速度快等优点,具有良好的工业实用性。
序列表自由内容

Claims (11)

  1. 纳米催化微电解水净化消毒装置,其特征在于它由水泵(1)、纳米催化微电解罐(2)、中和沉淀罐(5)、砂滤罐(6)和精密过滤器(7)、贮水罐(8)构成;取水泵(1)的出水口通过三通的一个出水口与纳米催化微电解罐(2)的进水口联接,纳米催化微电解罐(2)的出水口经单向阀(4)和水管与中和沉淀罐(5)的进水口联接,三通的另一个出水口经单向阀(3)与中和沉淀罐(5)中的另一个进水口联接,中和沉淀罐(5)的出水口与砂滤罐(6)进水口联接,砂滤罐(6)出水口与精密过滤器(7)的进水口联接,精密过滤器(7)的出水口与贮水罐(8)的进水口联接。
  2. 纳米催化微电解水净化消毒方法,其特征在于采用如权利要求1所述的纳米催化微电解水净化消毒装置,所述的纳米催化微电解水净化消毒方法包括如下步骤:
    取水泵(1)所得的原水经三通将1/20~1/5的原水输入纳米催化微电解罐(2)中进行催化微电解使其产生初生态的强氧化性物质后经单向阀(4)流入中和沉淀罐中(5),19/20~4/5的原水经水管和单向阀(3)直接进入中和沉淀罐(5)中与纳米催化微电解水混合沉淀后经砂滤罐(6)过滤后泵入精密过滤装置(7)过滤除去水中的固体杂质、浮游生物、胶体、细菌,从而得到净化水,贮存于贮水罐(8)中。
  3. 如权利要求2所述的纳米催化微电解水净化消毒方法,其特征在于纳米微电解的工作电压为2V~18V,电流强度为1~5000A,纳米催化微电解产生的强氧化性物质杀灭原水中的浮游生物、微生物、病毒,杀灭或抑制藻类生长,并在电场的作用下使固体悬浮物、溶解在水中胶体物质、带电颗粒、藻类以及被杀灭细菌等形成更大颗粒、经砂滤过滤后泵入精密过滤装置过滤除去;水中的重金属离子在微电解的阴极富集形成阴极泥沉淀去除;水中的农药残留、有色物质、油污等有机物被纳米催化微电解产生的强氧化性物质氧化分解去除;水中的磷酸根向阴极极化层移动,与阴极表面的二价阳离子作用,形成磷酸盐沉淀去除。
  4. 如权利要求2所述的纳米催化微电解水净化消毒方法,其特征在于所述的纳米微电解的产生的强氧化性物质对于淡水为初生态的氧[O]和初生态的氯[Cl],初生态的氧[O] 和初生态的氯[Cl]杀灭废水中微生物,使废水中微生物活体下降到30个/ml以下,大肠菌群阴性,消除微生物的污染,沉淀水重金属离子和磷酸根,氧化分解水中的有机物,农药残留,快速分解有色物质和降低CODCr。
  5. 如权利要求2所述的纳米催化微电解水净化消毒方法,其特征在于所述的纳米微电解的产生的强氧化性物质对于海水为对于海水和苦咸水为初生态的氯[Cl] ,初生态的氯[Cl] ,杀灭废水中微生物,使废水中微生物活体下降到30个/ml以下,大肠菌群阴性,消除微生物的污染,氧化分解水中的有机物,农药残留,快速分解有色物质和降低CODCr。
  6. 如权利要求2所述的纳米催化微电解水净化消毒方法,其特征在于所述的纳米微电解的最佳工作电压为3V~10V,电流强度为5~3000A。
  7. 如权利要求2所述的纳米催化微电解水净化消毒方法,其特征在于所述的精密过滤为滤袋、纤维滤芯过滤、PP棉过滤、微滤膜或滤袋的一种。
  8. 如权利要求2或7所述的纳米催化微电解水净化消毒方法,其特征在于所述的微滤的膜材料为孔径0.05~0.1µm的陶瓷膜。
  9. 如权利要求2或7所述的纳米催化微电解水净化消毒方法,其特征在于所述的微滤的膜材料为截留分子量50000以上的有机膜,膜组件为管式膜组件或卷式膜组件。
  10. 如权利要求2或7所述的纳米催化微电解水净化消毒方法,其特征在于所述的超滤膜过滤的膜材料为截留分子量1000以上的超滤过滤膜,膜组件为管式膜组件或卷式膜组件。
  11. 如权利要求2或7所述的纳米催化微电解水净化消毒方法,其特征在于所述的滤袋过滤的滤袋材料的孔径0.10~5µm。
PCT/CN2011/070739 2009-12-21 2011-01-28 纳米催化微电解水净化消毒装置及其方法 WO2011076152A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20110727100 EP2554521A4 (en) 2009-12-21 2011-01-28 APPARATUS AND METHOD FOR PURIFYING AND STERILIZING WATER USING NANOCATALYTIC MICROELECTROLYSIS
US13/518,304 US9169145B2 (en) 2009-12-21 2011-01-28 Apparatus and method for purifying and sterilizing water using nano catalytic microelectrolysis
IN6434DEN2012 IN2012DN06434A (zh) 2009-12-21 2012-07-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910113006.9A CN101921029B (zh) 2009-12-21 2009-12-21 纳米催化微电解水净化消毒装置及其方法
CN200910113006.9 2009-12-21

Publications (1)

Publication Number Publication Date
WO2011076152A1 true WO2011076152A1 (zh) 2011-06-30

Family

ID=43336282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070739 WO2011076152A1 (zh) 2009-12-21 2011-01-28 纳米催化微电解水净化消毒装置及其方法

Country Status (5)

Country Link
US (1) US9169145B2 (zh)
EP (1) EP2554521A4 (zh)
CN (1) CN101921029B (zh)
IN (1) IN2012DN06434A (zh)
WO (1) WO2011076152A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626342A (zh) * 2012-08-29 2014-03-12 昆山开思拓节能技术有限公司 中央水处理装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101921029B (zh) * 2009-12-21 2014-06-18 波鹰(厦门)科技有限公司 纳米催化微电解水净化消毒装置及其方法
CN102824109A (zh) * 2012-09-12 2012-12-19 永康市研坤工贸有限公司 一种饮水机
CN105967283B (zh) * 2016-06-24 2019-03-05 山东木齐健康科技有限公司 高活性废水处理微电解材料及其制备方法
CN106219835A (zh) * 2016-09-14 2016-12-14 胡振刚 一种家用高纯弱碱性水的制造方法和装置
CN106746043A (zh) * 2016-11-30 2017-05-31 青岛农业大学 一种复合微污染水源水的深度净化方法
CN107500448A (zh) * 2017-09-19 2017-12-22 南京益能环境工程有限公司 一种移动式高含盐量水源淡化设备
CN108928968B (zh) * 2018-08-17 2022-01-04 沧州临港中科保生物科技有限公司 一种多功能海水淡化盐析装置
CN109380171A (zh) * 2018-12-12 2019-02-26 浙江省海洋水产养殖研究所 一种南美白对虾海水养殖生态循环净化系统
CN111689626A (zh) * 2020-07-17 2020-09-22 西藏神州瑞霖环保科技股份有限公司 水中污染物去除装置和去除水中纳米污染物的方法
CN114804499B (zh) * 2022-05-25 2022-11-22 山东凤鸣桓宇环保有限公司 一种含油海水处理工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1452595A (zh) * 2000-05-31 2003-10-29 河野市藏 将海水或污水变成饮用水的处理活化方法
JP2007202508A (ja) * 2006-02-03 2007-08-16 Hoshizaki Electric Co Ltd 魚介類の保存用水、魚介類を保存する保存方法、および、同保存方法で使用する電解生成水を生成する電解水生成装置
US20090071844A1 (en) * 2001-06-14 2009-03-19 Gomez Rodolfo Antonio M Electrolytic activation of water
CN101417830A (zh) * 2008-09-04 2009-04-29 张金松 一种微电解水用过滤材料及其制备方法
CN101462804A (zh) * 2009-01-08 2009-06-24 张世文 电膜法海水淡化方法及成套装置
CN101921029A (zh) * 2009-12-21 2010-12-22 张世文 纳米催化微电解水净化消毒装置及其方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676334A (en) * 1969-05-14 1972-07-11 Envirotech Corp Wastewater treatment sequence
US4574049B1 (en) * 1984-06-04 1999-02-02 Ionpure Filter Us Inc Reverse osmosis system
US5236595A (en) * 1990-07-06 1993-08-17 International Environmental Systems, Inc., Usa Method and apparatus for filtration with plural ultraviolet treatment stages
US5266203A (en) * 1992-01-30 1993-11-30 Arrowhead Industrial Water, Inc. Method for treating process streams containing cyanide and heavy metals
JPH065523U (ja) * 1992-06-29 1994-01-25 吉田工業株式会社 開閉用係止具
JP3343162B2 (ja) * 1993-11-29 2002-11-11 富士写真フイルム株式会社 写真廃液の処理方法
JP2772619B2 (ja) * 1994-06-28 1998-07-02 株式会社シーエーシー 多糖類水溶液用循環風呂
JPH08126886A (ja) * 1994-10-28 1996-05-21 Japan Organo Co Ltd 超純水の製造方法及び装置
US6428705B1 (en) * 1996-11-26 2002-08-06 Microbar Incorporated Process and apparatus for high flow and low pressure impurity removal
US6416668B1 (en) * 1999-09-01 2002-07-09 Riad A. Al-Samadi Water treatment process for membranes
US8071055B2 (en) * 2002-12-04 2011-12-06 Blue Water Technologies, Inc. Water treatment techniques
EP1477458A3 (en) * 2003-05-16 2005-01-05 Fuji Photo Film Co., Ltd. Method of treating photographic waste liquid
ITMI20040408A1 (it) * 2004-03-04 2004-06-04 De Nora Elettrodi Spa Cella per processi elettrochimici
US20080017586A1 (en) * 2006-02-15 2008-01-24 Matousek Rudolf C Ballast tank circulation management system
GR1006202B (el) * 2006-04-07 2008-12-22 Ηλεκτρολυτικη μεθοδος διαχειρισης αστικων λυματων
CN1884148A (zh) * 2006-06-30 2006-12-27 天津市塘沽区鑫宇环保科技有限公司 对高cod值高色度印染废水的处理方法
CN100560517C (zh) * 2007-08-10 2009-11-18 南京大学 一种电化学氧化絮凝组合工艺预处理焦化废水的方法
US7553418B2 (en) * 2007-08-18 2009-06-30 Khudenko Engineering, Inc. Method for water filtration
WO2009049035A1 (en) * 2007-10-10 2009-04-16 Concord Materials Technologies Llc Process and apparatus for complex treatment of liquids
US8157972B2 (en) * 2008-01-31 2012-04-17 Oxygenator Water Technologies, Inc. Apparatus and method for improved electrolytic water treatment process
CN101337749A (zh) * 2008-08-05 2009-01-07 波鹰(厦门)科技有限公司 一种太阳能海水淡化方法及成套装置
CA2735462A1 (en) * 2009-01-05 2010-07-08 Auxsol, Inc. Water treatment process
CN101704594B (zh) * 2009-11-27 2011-11-16 波鹰(厦门)科技有限公司 一种印染深度处理废水净化装置及净化方法
CN102010107B (zh) * 2010-12-24 2011-12-28 波鹰(厦门)科技有限公司 一种制革废水处理循环利用装置及其方法
CN102050555B (zh) * 2010-12-24 2012-07-25 波鹰(厦门)科技有限公司 一种印染废水处理循环利用装置及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1452595A (zh) * 2000-05-31 2003-10-29 河野市藏 将海水或污水变成饮用水的处理活化方法
US20090071844A1 (en) * 2001-06-14 2009-03-19 Gomez Rodolfo Antonio M Electrolytic activation of water
JP2007202508A (ja) * 2006-02-03 2007-08-16 Hoshizaki Electric Co Ltd 魚介類の保存用水、魚介類を保存する保存方法、および、同保存方法で使用する電解生成水を生成する電解水生成装置
CN101417830A (zh) * 2008-09-04 2009-04-29 张金松 一种微电解水用过滤材料及其制备方法
CN101462804A (zh) * 2009-01-08 2009-06-24 张世文 电膜法海水淡化方法及成套装置
CN101921029A (zh) * 2009-12-21 2010-12-22 张世文 纳米催化微电解水净化消毒装置及其方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103626342A (zh) * 2012-08-29 2014-03-12 昆山开思拓节能技术有限公司 中央水处理装置

Also Published As

Publication number Publication date
CN101921029B (zh) 2014-06-18
EP2554521A4 (en) 2013-08-14
US9169145B2 (en) 2015-10-27
US20120267316A1 (en) 2012-10-25
EP2554521A1 (en) 2013-02-06
IN2012DN06434A (zh) 2015-10-09
CN101921029A (zh) 2010-12-22

Similar Documents

Publication Publication Date Title
WO2011076152A1 (zh) 纳米催化微电解水净化消毒装置及其方法
WO2013163963A1 (zh) 一种污水处理及再生循环利用装置及其方法
US6572902B2 (en) Process for producing improved alkaline drinking water and the product produced thereby
Laîné et al. Status after 10 years of operation—overview of UF technology today
WO2012155607A1 (zh) 一种基于电解和双膜技术的再生水制造装置及其方法
WO2013143506A1 (zh) 垃圾渗滤液的处理方法
Ma et al. The pretreatment with enhanced coagulation and a UF membrane for seawater desalination with reverse osmosis
WO2012088867A1 (zh) 一种纳米催化电解絮凝装置
Qiao et al. Pre-oxidation with KMnO4 changes extra-cellular organic matter's secretion characteristics to improve algal removal by coagulation with a low dosage of polyaluminium chloride
WO2013010388A1 (zh) 垃圾渗滤液的处理装置及其处理方法
WO2013143505A1 (zh) 海水淡化装置及其方法
WO2010122336A2 (en) Water treatment
Glucina et al. Assessment of an integrated membrane system for surface water treatment
JPH06134465A (ja) 水処理法
WO2021223369A1 (zh) 一种火电厂循环水无药剂化电法联合处理工艺系统及方法
KR20070112818A (ko) 오존 및 재순환을 사용하여 액체를 정화하는 장치 및 방법
JP3731555B2 (ja) 冷却水の処理方法及び処理装置
JP2011050843A (ja) 被処理水の淡水化方法および淡水化システム
EP2701827A1 (en) Method for treatment of sludge from water and wastewater treatment plants with chemical treatment
CN1810662A (zh) 一种将污水制成纯水的工艺
IE86828B1 (en) Rainwater purification system
CN210915600U (zh) 一种ro浓盐水的再利用装置
CN100534930C (zh) 一种高效杀菌的冶金污水处理方法
WO2013039291A1 (ko) 기능성을 가진 수소수 및 오존수 제조장치
KR20190118998A (ko) 먹는 물 생산을 위한 수처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11727100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13518304

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 6434/DELNP/2012

Country of ref document: IN

Ref document number: 2011727100

Country of ref document: EP