WO2011075985A1 - 臂架系统的定位方法、定位装置及混凝土泵车 - Google Patents

臂架系统的定位方法、定位装置及混凝土泵车 Download PDF

Info

Publication number
WO2011075985A1
WO2011075985A1 PCT/CN2010/074227 CN2010074227W WO2011075985A1 WO 2011075985 A1 WO2011075985 A1 WO 2011075985A1 CN 2010074227 W CN2010074227 W CN 2010074227W WO 2011075985 A1 WO2011075985 A1 WO 2011075985A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier phase
boom
phase information
detection point
predetermined
Prior art date
Application number
PCT/CN2010/074227
Other languages
English (en)
French (fr)
Inventor
易小刚
周翔
周继辉
陈安涛
吴罕奇
Original Assignee
湖南三一智能控制设备有限公司
三一重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一重工股份有限公司 filed Critical 湖南三一智能控制设备有限公司
Priority to EP10838394A priority Critical patent/EP2378031A4/en
Publication of WO2011075985A1 publication Critical patent/WO2011075985A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0436Devices for both conveying and distributing with distribution hose on a mobile support, e.g. truck
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • E04G21/0463Devices for both conveying and distributing with distribution hose with booms with boom control mechanisms, e.g. to automate concrete distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry

Definitions

  • the present invention relates to a control technology for a boom system, and more particularly to a positioning method and positioning device for a boom system, and to a concrete pump truck having a positioning device for the boom system.
  • a concrete pump truck is a commonly used construction machine used to transport concrete slurry through a pipeline to a predetermined location for concrete pouring operations away from the mixing station.
  • the figure is a general structural diagram of a concrete pump truck.
  • the concrete pump truck includes a concrete pump and a boom system
  • the boom system 8 includes a base 10, a turntable 11, and a boom 9.
  • the base 10 is generally mounted on a mobile chassis.
  • the turntable 11 is mounted on the base 10 by a swing mechanism and is rotated about a vertical axis 18 by a hydraulic motor.
  • the boom 9 includes five arm segments 12 to 16 that are sequentially hinged by an articulated shaft, wherein the lower end of the arm segment 12 is hinged to the turntable 11 and depends on a hydraulic cylinder to change the angle with the turntable 11, and between the arm segments It is respectively rotatable relative to the hinge axis between them under the driving of one hydraulic cylinder, thereby changing the positional relationship between the arm segments; in addition, a hose 17 connected to the outermost end of the last arm segment 16 of the boom 9 is also provided, The outermost end of the last section arm section 16 forms a boom end 20.
  • the operator controls the boom system 8 in a suitable manner. Specifically, the relative position between the arm sections of the boom 9 is controlled by adjusting the amount of expansion and contraction of each hydraulic cylinder, and the rotation angle of the turntable 11 is controlled by the hydraulic motor so that the boom end 20 reaches above the predetermined pouring position.
  • the hose 17 is connected to the concrete transfer pump through a conveying pipe fixed to each arm section, and the concrete slurry reaches the boom end 20 through the conveying pipe on the boom 9 under the action of the concrete conveying pump, and then sprays from the end of the hose 17 Out, arrive at the scheduled pouring position.
  • the control principle of the intelligent control system is: using the predetermined coordinate system as a reference coordinate system, determining the target position of the boom end 20 according to the predetermined pouring position.
  • the suitable planning unit determines the rotation angle of the hydraulic motor and the expansion and contraction amount of each hydraulic cylinder according to the position parameter and the target position of the boom end 20, and controls the flow rate of the hydraulic system hydraulic oil through a computer control manner, so that the hydraulic motor and the hydraulic cylinder
  • the coordinated action is performed according to the predetermined strategy, and finally the boom end 20 is subjected to a predetermined action to reach the target position, and the concrete pouring operation is performed at the predetermined position (for details, refer to Chinese Patent Document CN1975070).
  • the intelligent control system mainly uses the tilt sensor to determine the tilt angle of each arm segment, and then determines the attitude parameters of each arm segment according to the obtained tilt angle and a predetermined strategy, and finally determines the boom end 20 according to the posture parameters of each arm segment. Positional parameters in the coordinate system.
  • the prior art can obtain the positional parameters of the boom end 20, in the actual control process, due to the influence of the inclination sensor accuracy, temperature drift, installation mode and the like, the obtained tilt angle has an error; and, according to the concrete pump The pumping flow rate and flow rate are different, and the deformation of each arm section of the boom 9 is also changed; thus, not only the posture parameters of the arm sections obtained are greatly limited, but also the structure of each arm section is hinged.
  • the error of the attitude parameters of each arm segment is superimposed, so that the position parameter of the last obtained boom end 20 is greatly different from the realized position, which is difficult to meet the needs of the control of the boom system, thereby affecting the working efficiency and performance of the concrete pump truck. .
  • attitude parameters of each arm segment and the positional parameters of the boom end 20 there are two main ways to improve the attitude parameters of each arm segment and the positional parameters of the boom end 20: one is to improve the performance of the tilt sensor to reduce the tilt angle error obtained by the tilt sensor; the second is to deform according to the boom.
  • the characteristics compensate the attitude parameters of the boom to reduce errors due to the deformation of the boom.
  • the characteristics and individual differences of the tilt sensor itself, as well as the uncertainty of the boom deformation limit the improvement of the arm attitude parameters and the accuracy of the position parameters of the boom end 20 .
  • the patent document CN200810136105 discloses a technical solution for determining the attitude parameter of each arm segment by using a GPS module as a position sensor, but the technical solution only discloses a method for determining a coordinate parameter of a predetermined detection point of the boom system. It is not possible to reduce the error of the attitude parameters of each arm segment and the positional parameters of the boom end 20, so that it is still difficult to meet the needs of the actual boom control system.
  • an object of an aspect of the present invention is to provide a positioning method and a positioning device for a boom system, which can obtain a positional parameter of a predetermined position of the boom system with high precision.
  • the method for positioning a boom system comprises the following steps:
  • S100 Obtain an initial position parameter of the detection point according to the observation of the predetermined satellite group by the mobile GPS receiver, and acquire carrier phase information transmitted by the reference GPS receiver;
  • the reference GPS receiver is installed at a predetermined reference station, and can be based on Observing the satellite group to obtain carrier phase information;
  • the detection point is located at a predetermined position of the boom system, and a distance between the boom system and the base station is less than a predetermined value;
  • S200, 4 obtaining a position parameter of the detection point according to the carrier phase information and an initial position parameter.
  • the carrier phase information includes a carrier phase correction amount or a carrier phase.
  • step S100 carrier phase information respectively transmitted by a plurality of reference GPS receivers is acquired;
  • step S200 the steps are as follows:
  • the positioning device of the boom system comprises a processor and at least one mobile GPS receiver; the processor comprises a receiving unit and a processing unit;
  • the mobile GPS receiver is mounted at a detection point for obtaining an initial position parameter of the detection point based on observation of a predetermined satellite group; the detection point is located at a predetermined position of the boom system; and the receiving unit is capable of receiving a reference Carrier phase information transmitted by the GPS receiver and the initial position parameter; the reference GPS receiver is installed at a predetermined reference station, and is capable of obtaining the carrier phase information based on observations of the satellite group; the boom system a distance from the base station is less than a predetermined value; the processing unit is capable of being based on the initial position parameter and a carrier phase The bit information obtains a positional parameter of the detection point.
  • the carrier phase information includes a carrier phase correction amount or a carrier phase.
  • the receiving unit is capable of receiving the carrier phase information transmitted by a plurality of predetermined reference GPS receivers;
  • the processing unit includes a correction module and a center module, and the correction module is capable of obtaining a correction according to the plurality of carrier phase information
  • the carrier phase information, the central module is capable of obtaining a position parameter of the detection point according to the modified carrier phase information and the initial position parameter.
  • the arm control unit controls the position of the boom end according to the position parameter of the detection point, and the arm end is the outer end of the end section arm section.
  • the positioning device of the boom system includes a plurality of mobile GPS receivers; the detection points include static detection points and dynamic detection points; the static detection points are relatively fixed to the base, and are in a predetermined coordinate system. Having a predetermined coordinate parameter, at least one of the dynamic detection points is located on the last segment arm segment; the predetermined coordinate system is a reference coordinate system of the intelligent control system control boom system, and the position parameter of the detection point is the processing unit according to the processing unit a coordinate parameter of the dynamic detection point in the predetermined coordinate system obtained by the static detection point and a position parameter of the dynamic detection point.
  • the detection point includes a plurality of dynamic detection points, and the plurality of dynamic detection points are respectively located on each of the arm segments.
  • the dynamic detection points are respectively located at outer ends of each of the arm segments.
  • the initial position parameter of the pre-obtained detection point is used by the mobile GPS receiver, and the carrier phase information transmitted by the reference GPS receiver is used, according to the principle of carrier phase difference,
  • the initial position parameter of the detection point is corrected to obtain the position parameter of the detection point.
  • the technical scheme obtains the position parameter of the detection point by using the carrier phase difference principle, and can obtain the position parameter to the accuracy of centimeters or higher, so that the position parameter of the detection point can be determined more accurately; the predetermined part of the detection arm segment is detected. Or the positional parameters at the end of the boom, It can accurately determine its positional parameters; avoid the deformation of the boom, the error generated by the sensor, meet the need for accurate control of the boom, and lay the foundation for improving the working efficiency of the concrete pump.
  • the corrected carrier phase information is obtained according to the carrier phase information obtained by the plurality of reference GPS receivers, and the corrected carrier phase information is used as a basis for obtaining the detection point position parameter, and the position parameter of the detection point can be further improved. accuracy.
  • the positioning device of the boom system provided by the present invention can implement the above positioning method and has corresponding technical effects.
  • the concrete pump truck provided with the positioning device also has a corresponding technical effect; in a preferred technical solution, the positioning device can also convert the position parameter of the detection point, Converting the ground-referenced position parameter into a coordinate parameter in a predetermined coordinate system, and the predetermined coordinate system is relatively fixed with the base of the concrete pump truck, so that the intelligent control system can be in the predetermined coordinate system according to the target position and the end of the boom
  • the coordinate parameters are faster to determine the amount of movement of each hydraulic component of the boom system, and the control efficiency is improved.
  • Figure 1 is a general structural view of a concrete pump truck
  • FIG. 2 is a schematic diagram showing the principle of a positioning method of a boom system provided by the present invention
  • FIG. 3 is a flowchart of a positioning method of a boom system according to Embodiment 1 of the present invention
  • FIG. 4 is a flowchart of a positioning method of a boom system according to Embodiment 2 of the present invention
  • FIG. 5 is a boom system provided by the present invention. Block diagram of the positioning device. detailed description
  • GPS Global Positioning System
  • GPS Global Positioning System
  • the basic application principle is: positioning the target location and determining its position parameters to provide reference for the next work; for example, determining the position parameters of the aircraft and the ship to determine its heading , to achieve navigation of aircraft, ships; can also determine the longitude, latitude and altitude of the predetermined location to achieve the mapping of the predetermined area, and so on.
  • the core of the technical solution provided by the present invention is to break through the traditional way of determining the positional parameters of predetermined components based on the corresponding position inside the engineering machine, applying the GPS positioning technology to the engineering machinery control process, and fully utilizing the GPS system precise positioning function. Establish an appropriate reference outside the construction machine to determine the positional parameters of the predetermined components to avoid adverse effects of the internal error of the construction machinery on the accuracy and improve the accuracy and accuracy of the position parameters of the predetermined components.
  • FIG. 2 is a schematic diagram of a positioning method of a boom system provided by the present invention
  • FIG. 3 is a flowchart of a method for positioning a boom system according to Embodiment 1 of the present invention.
  • the method of positioning the boom system includes the following steps:
  • S100 Obtain an initial position parameter of the detection point 230 according to the observation of the predetermined satellite group 210 by the mobile GPS receiver 520, and acquire carrier phase information transmitted by the reference GPS receiver.
  • the mobile GPS receiver 520 observes the satellite group 210 based on the carrier phase measurement principle to maintain high measurement accuracy.
  • the mobile GPS receiver 520 is mounted on the detection point 230 of the boom system.
  • the detection point 230 can select a suitable predetermined location according to the actual operation, so that the mobile GPS receiver 520 can observe the satellite group 210.
  • the reference GPS receiver is mounted to a base station 220 having a position parameter that has been accurately determined, the position parameter being a ground referenced position parameter; the reference GPS receiver observing the same satellite group 210 according to the carrier phase measurement principle And obtaining carrier phase information according to the carrier signal of the satellite, and the carrier phase information may be a carrier phase correction amount or a carrier phase.
  • the boom system and base station 220 in order to maintain carrier phase information for mobile GPS receiver 520 availability, reducing errors due to propagation delays between the reference GPS receiver and the mobile GPS receiver 520, the boom system and base station 220 should be made The distance between them is less than a predetermined value, even if the distance between the detection point 230 and the reference station 220 is less than a predetermined value, preferably less than 500 kilometers, Therefore, the carrier base phase information should be transmitted based on the location of the boom system to receive the appropriate base station 220.
  • the distance correction number can be obtained according to the carrier phase information, and then the initial position parameter is corrected by using the distance correction number to eliminate satellite clock error, ephemeris error, ionospheric error and tropospheric error, and the detection point 230 is improved.
  • the accuracy of the positional parameters can be obtained according to the carrier phase information, and then the initial position parameter is corrected by using the distance correction number to eliminate satellite clock error, ephemeris error, ionospheric error and tropospheric error, and the detection point 230 is improved.
  • the positional parameter of the more accurate detection point 230 can be obtained by using the carrier phase difference principle, and the position parameter can be accurate to a positioning accuracy of centimeter or higher; in the actual control operation, the detection point 230 can be set according to the implementation requirement.
  • the detection point 230 can be disposed on each arm segment of the boom 9, so that the attitude parameter of each arm segment can be accurately determined according to the position parameter of the detection point 230, and the detection point 230 can also be set at the arm.
  • the positional parameters of the end 20 of the boom can be accurately determined to meet the need for accurate control of the boom system to improve the control efficiency of the concrete pump boom system.
  • FIG. 4 is a flow chart of a method for positioning a boom system according to Embodiment 2 of the present invention.
  • the difference is that: in step S100, carrier phase information respectively transmitted by the plurality of reference GPS receivers can be acquired.
  • the plurality of reference GPS receivers may be reference GPS receivers located at different base stations 220 or reference GPS receivers located at the same base station 220.
  • Step S200 may include the following steps:
  • the method can reduce the error caused by the base station itself and improve the accuracy of the position parameter of the detection point 230.
  • the present invention also provides a positioning device for a boom system for determining a positional parameter of a predetermined position of the boom system.
  • FIG. 5 is a structural block diagram of a positioning device of the boom system provided by the present invention.
  • the positioning device includes a processor 510 and a plurality of mobile GPS receivers 520; the processor 510 includes a receiving unit 511 and a processing unit 512.
  • a plurality of mobile GPS receivers 520 are respectively mounted on the plurality of detection points 230 for obtaining initial positional parameters of the respective detection points 230 based on the observations of the satellite group 210.
  • the detection point 230 can select an appropriate location according to the needs of the actual operation to facilitate the observation of the satellite group 210 by the mobile GPS receiver 520.
  • the receiving unit 511 is configured to receive carrier phase information transmitted by the reference GPS receiver and initial position parameters of the detection point 230.
  • the reference GPS receiver is installed at a predetermined reference station 220 and is capable of obtaining carrier phase information based on observations of the satellite group 210; likewise, to reduce errors caused by the reference GPS receiver propagating carrier phase information, the detection point 230 and the reference can be made.
  • the distance between the stations 220 is less than a predetermined value, and the distance between the boom system and the reference station 220 can be made less than 500 kilometers, as in the above method.
  • the processing unit 512 is configured to obtain a position parameter of the detection point 230 according to the initial position parameter of the detection point 230 and the carrier phase information.
  • the carrier phase information may be a carrier phase correction amount and a position parameter of the base station 220, or a carrier phase and a position parameter of the base station 220; the processing unit 512 may determine the distance correction number according to the carrier phase information; and the detection point 230 according to the distance correction number
  • the initial position parameter is corrected to obtain a high-precision positional parameter of the detection point 230.
  • the receiving unit 511 can simultaneously receive the carrier phase information transmitted by the plurality of reference GPS receivers in the same manner as the above method.
  • the processing unit 512 includes a correction module and a central module, and the correction module can be The plurality of carrier phase information obtains corrected carrier phase information, and the central module is capable of obtaining the positional parameter of the detection point 230 based on the corrected carrier phase information and the initial position parameter of the detection point 230.
  • the boom system 8 includes a base 10, a turntable 11 and The boom 9, the lower end of the boom 9 is connected to the turntable 11, and includes a multi-section sequential hinge The arm section, each arm section is 12, 13, 14, 15, 16 wherein the arm section 16 is the last section arm section, and the outer end forms the boom end 20;
  • the turntable 11 is mounted on the base 10 by a swing mechanism, the turntable 11 and Between the bases 10, between the boom 5 and the turntable 11 and between the arm sections, relative movement is performed depending on the driving of the hydraulic components;
  • the concrete pump truck further includes an intelligent control system in the prior art, and the intelligent control system can According to the relationship between the positional parameter of the boom end 20 and the target position, the posture of each arm section of the boom 9 is controlled so that the boom end 20 reaches the target position for concrete pouring operation.
  • the specific control principle is the same as the background art, and details
  • the concrete pump further comprises the above-mentioned positioning device of the boom system, wherein at least one detection point 230 is located on the last segment arm segment 16, so that the positioning device can provide the arm frame to the intelligent control system.
  • the position parameter of the end 20; the intelligent control system can adjust the posture of each arm segment of the boom 9 according to the position parameter and the target position parameter, so that the boom end 20 reaches the target position, and the control of the boom system 8 is completed.
  • a preferred technical solution is to make the detection point 230 on the last section arm section 16 coincide with the boom end 20, so that the positional parameter of the detection point 230 can be used as the boom end 20 Positional parameters; it is understood that the detection point 230 is not limited to coincide with the boom end 20, only the detection point 230 is located at a predetermined position of the last section arm section 16, and the boom end 20 has a predetermined positional relationship with the predetermined position,
  • the positional parameters of the boom end 20 can be determined according to the positional parameters of the detection point 230, and the error is increased due to the deformation superposition of the arm sections, thereby achieving the object of the present invention.
  • the attitude parameters of the other arm segments can be determined according to the technical solution provided by the prior art.
  • the arm since the arm can be determined more accurately
  • the positional parameters of the end 20 of the frame therefore, the positional parameters of the boom end 20 can also be easily obtained; the need to accurately control the boom system 8 is achieved to achieve the objectives of the present invention.
  • a preferred technical solution is to provide detection points 230 on each arm segment of the boom 9 respectively, and A mobile GPS receiver 520 is disposed at each detection point; in the same manner as above, the positional parameter of each detection point 230 can be accurately determined, thereby more accurately determining the attitude parameters of each arm segment, and adjusting each arm segment for the intelligent control system.
  • the posture provides the premise.
  • the solution is to set each detecting point 230 at the outer end of each arm segment, so that the positional parameters of the inner end and the outer end of the corresponding arm segment can be more conveniently determined, and the arm can be determined very easily according to the positional parameters of the inner end and the outer end.
  • the pose parameter of the segment is to set each detecting point 230 at the outer end of each arm segment, so that the positional parameters of the inner end and the outer end of the corresponding arm segment can be more conveniently determined, and the arm can be determined very easily according to the positional parameters of the inner end and the outer end.
  • the pose parameter of the segment is to set each detecting point 230 at the outer end of each arm segment, so that the positional parameters of the inner end and the outer end of the corresponding arm segment can be more conveniently determined, and the arm can be determined very easily according to the positional parameters of the inner end and the outer end.
  • the position parameters of the directly obtained detection points 230 can be ground-based parameters (including longitude, latitude, and altitude). Therefore, there are two ways to use the positional parameters of the detection point 230:
  • the first way is to directly use the ground-based position parameter of the detection point 230.
  • the intelligent control system also establishes a ground-based coordinate system, and determines the posture parameters of each arm segment based on the ground, the boom The positional parameters of the end 20 and the target position.
  • This method not only increases the complexity of the intelligent control system, but also prolongs the response time and control period of the intelligent control system. Therefore, the second method is preferred.
  • the second way is to convert the ground-based position parameters of the detection point 230.
  • another concrete pump provided by the present invention converts the ground-based positional parameters of the detection point 230.
  • the detection point 230 includes a static detection point and a plurality of dynamic detection points; the static detection point is relatively fixed to the base 10, and thus can be disposed on the base 10 and has a determined coordinate parameter in a predetermined coordinate system.
  • the static detection point coincides with the origin of the predetermined coordinate system; as in the prior art, the predetermined coordinate system is a reference coordinate system of the intelligent control system control boom system.
  • a plurality of dynamic detection points are located on the boom 9 and are respectively located on the arm sections. Since the coordinate parameter of the static detection point in the predetermined coordinate system has been determined, the processing unit 512 can obtain the dynamic detection point according to the relationship between the static detection point and the ground-based position parameter of the dynamic detection point in the predetermined coordinate system. The coordinate parameter is used as the position parameter provided to the intelligent control system, so that the intelligent control system can directly control the boom system 8 by using the position parameter. The technical solution can confiscate the control structure of the existing intelligent control system to facilitate the transformation of the concrete pump truck.
  • the detection point 230 may also include a static detection point and a dynamic detection point, and the object of the present invention can also be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

臂架系统的定位方法、 定位装置及混凝土泵车 本申请要求于 2009 年 12 月 25 日提交中国专利局、 申请号为 200910260223.0、 发明名称为"臂架系统的定位方法、 定位装置及混凝土泵 车"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种臂架系统的控制技术, 特别涉及一种臂架系统的定位 方法和定位装置, 还涉及到具有该臂架系统的定位装置的混凝土泵车。 背景技术
混凝土泵车是一种常用的工程机械, 用于将混凝土泥浆通过输送管道 输送到预定的地点, 以在远离搅拌站的位置进行混凝土浇注作业。
如图 1所示, 该图是一种混凝土泵车的总体结构图。 混凝土泵车包括 混凝土泵和臂架系统, 臂架系统 8包括底座 10、 转台 11、 臂架 9。 为了施 工转场的方便, 底座 10—般安装在一个移动式底盘上。 转台 11通过回转 机构安装在底座 10上, 并在一个液压马达的驱动下绕一个竖轴 18旋转。 臂架 9包括五个顺序通过铰接轴铰接的臂段 12至 16, 其中臂段 12下端与 转台 11铰接, 并依赖于一个液压缸改变与转台 11之间的夹角, 且各臂段 之间分别能够在一个液压缸驱动下绕其之间的铰接轴相对旋转, 从而改变 各臂段之间的位置关系; 另外,还设置连接在臂架 9的末节臂段 16最外端 的软管 17, 末节臂段 16的最外端形成臂架末端 20。
在进行混凝土施工作业时, 操作人员采用合适的方式对臂架系统 8进 行控制。 具体地, 通过调整各液压缸的伸缩量控制臂架 9各臂段之间的相 对位置, 通过液压马达控制转台 11的旋转角度, 使臂架末端 20到达预定 的浇注位置上方。软管 17通过固定在各臂段上的输送管道连接到混凝土输 送泵, 混凝土泥浆在混凝土输送泵的作用下, 通过臂架 9上的输送管道到 达臂架末端 20, 再从软管 17终端喷出, 到达预定的浇注位置。
目前, 为了提高臂架系统的控制效率, 人们主要通过智能控制系统对 混泥土泵车的臂架系统 8进行自动控制。 智能控制系统的控制原理是: 以 预定坐标系为参考坐标系, 根据预定浇注位置确定臂架末端 20的目标位 置,适合的规划单元根据臂架末端 20的位置参数和目标位置确定液压马达 的旋转角度及各液压缸的伸缩量, 通过计算机控制的方式控制液压系统液 压油的流量, 使液压马达和液压缸按照预定策略进行协调动作, 最终使臂 架末端 20进行预定的动作,到达目标位置,在预定位置进行混凝土浇注作 业(详细内容可参考中国专利文献 CN1975070 )。
根据现有控制方式可以确定,准确确定臂架末端 20的位置参数是控制 臂架系统 8的关键。 目前, 智能控制系统主要采用倾角传感器确定各臂段 的倾斜角度,再根据获得的倾斜角度及预定的策略确定各臂段的姿态参数, 最终根据各臂段的姿态参数确定臂架末端 20在预定坐标系中的位置参数。
现有技术虽然能够获得臂架末端 20的位置参数, 但在实际控制过程 中, 由于倾角传感器的精度、 温漂、 安装方式等因素的影响, 使获得的倾 斜角度具有误差; 而且, 根据混凝土泵泵送流量及流速的不同, 臂架 9各 臂段产生的形变也会产生变化; 这样, 不仅获得的各臂段的姿态参数存在 很大的误差, 而且, 各臂段顺序铰接的结构还会使各臂段姿态参数的误差 进行叠加,使最后获得的臂架末端 20的位置参数与实现位置相差很大,难 以满足对臂架系统控制的需要, 进而影响混凝土泵车的工作效率和使用性 能。
当前,提高各臂段姿态参数及臂架末端 20的位置参数精度的方式主要 有两种: 一是改善倾角传感器的性能, 以减小倾角传感器获得的倾斜角度 误差; 二是根据臂架形变的特性对臂架的姿态参数进行补偿, 以减小由于 臂架形变造成的误差。 但倾角传感器本身的特性和个体差异, 以及臂架形 变的不确定性限制了臂段姿态参数及臂架末端 20位置参数精度的提高。
专利文献 CN200810136105公开了一种用 GPS模件作为位置传感器, 以地为基准确定各臂段的姿态参数的技术方案, 但该技术方案仅仅公开了 一种确定臂架系统预定检测点坐标参数的方法, 并不能减小各臂段姿态参 数及臂架末端 20的位置参数的误差,从而仍然难以满足实际作业对臂架系 统控制的需要。
因此, 如何以较高的精度获得臂架系统预定位置的位置参数是当前该 技术领域的一个技术难题。 发明内容
针对上述技术难题, 本发明一方面的目的在于, 提供一种臂架系统的 定位方法和定位装置, 该定位方法和定位装置能够以较高的精度获得臂架 系统预定位置的位置参数。
在上述臂架系统的定位装置的基础上, 本发明另一方面的目的在于, 提供了一种包括上述定位装置的混凝土泵车。
本发明提供的臂架系统的定位方法, 包括以下步骤:
S100,根据移动 GPS接收器对预定卫星组的观测获得检测点的初始位 置参数, 并获取基准 GPS接收器传送的载波相位信息; 所述基准 GPS接 收器安装在预定的基准站, 并能够根据对所述卫星组的观测获得载波相位 信息; 所述检测点位于臂架系统的预定位置, 所述臂架系统与所述基准站 之间的距离小于预定值;
S200, 4艮据所述载波相位信息和初始位置参数获得所述检测点的位置 参数。
可选的, 所述载波相位信息包括载波相位修正量或载波相位。
优选的, 在步骤 S100中, 获取多个基准 GPS接收器分别传送的载波 相位信息;
在步骤 S200中, 包括步骤:
S210, 根据多个所述载波相位信息获得修正的载波相位信息;
S220, 根据所述修正的载波相位信息和所述初始位置参数获得所述检 测点的位置参数。
本发明提供的臂架系统的定位装置包括处理器和至少一个移动 GPS 接收器; 所述处理器包括接收单元和处理单元;
所述移动 GPS接收器安装在检测点上,用于根据对预定卫星组的观测 获得所述检测点的初始位置参数; 所述检测点位于臂架系统的预定位置; 所述接收单元能够接收基准 GPS接收器传送的载波相位信息和所述 初始位置参数; 所述基准 GPS接收器安装在预定的基准站, 并能够根据对 所述卫星组的观测获得所述载波相位信息; 所述臂架系统与所述基准站之 间的距离小于预定值; 所述处理单元能够根据所述初始位置参数和载波相 位信息获得所述检测点的位置参数。
可选的, 所述载波相位信息包括载波相位修正量或载波相位。
优选的,所述接收单元能够接收多个预定的基准 GPS接收器传送的所 述载波相位信息; 所述处理单元包括修正模块和中心模块, 所述修正模块 能够根据多个载波相位信息获得修正的载波相位信息, 所述中心模块能够 根据所述修正的载波相位信息和所述初始位置参数获得所述检测点的位置 参数。
本发明提供的混凝土泵车包括底座、 转台和臂架, 所述臂架下端与转 台相连, 并包括至少三节顺序铰接的臂段, 所述转台通过回转机构安装在 底座上, 所述转台与底座之间, 臂架与转台之间及各臂段之间依赖于液压 元件的驱动进行相对运动; 还包括智能控制系统和上述任一种臂架系统的 定位装置, 至少一个所述检测点位于末节臂段上; 所述智能控制系统根据 所述检测点的位置参数控制臂架末端的位置, 所述臂架末端为所述末节臂 段的外端。
优选的, 所述臂架系统的定位装置包括多个移动 GPS接收器; 所述检 测点包括静态检测点和动态检测点;所述静态检测点与所述底座相对固定, 且在预定坐标系中具有预定的坐标参数, 至少一个所述动态检测点位于末 节臂段上; 所述预定坐标系为智能控制系统控制臂架系统的参考坐标系, 所述检测点的位置参数为所述处理单元根据所述静态检测点与动态检测点 的位置参数获得的所述动态检测点在所述预定坐标系中的坐标参数。
优选的, 所述检测点包括多个动态检测点, 多个所述动态检测点分别 位于各所述臂段上。
优选的, 所述动态检测点分别位于各所述臂段的外端。
与现有技术相比, 本发明提供的定位方法中, 利用移动 GPS接收器对 预获得检测点的初始位置参数,再用基准 GPS接收器传送的载波相位信息, 根据载波相位差分的原理, 对检测点的初始位置参数进行修正, 获得检测 点的位置参数。该技术方案利用载波相位差分原理获得检测点的位置参数, 可以将获得的位置参数精确到厘米或更高的精度, 因此, 可以更加精确地 确定检测点的位置参数;在检测臂段的预定部位或臂架末端的位置参数时, 可以精确在确定其位置参数; 避免臂架变形, 传感器产生的误差, 满足对 臂架准确控制的需要, 为提高混凝土泵的工作效率奠定基础。
在进一步的技术方案中,根据多个基准 GPS接收器获得的载波相位信 息获得修正的载波相位信息, 并以修正的载波相位信息作为获得检测点位 置参数的依据, 可以进一步提高检测点位置参数的准确性。
另外, 本发明提供的臂架系统的定位装置能够实现上述定位方法, 也 具有相对应的技术效果。
由于具有上述臂架系统的定位装置, 提供的具有该定位装置的混凝土 泵车也具有相对应的技术效果; 在优选的技术方案中, 所述定位装置还可 以将检测点的位置参数进行转换, 将以地为参考的位置参数转换为以预定 坐标系的坐标参数, 且预定坐标系以混凝土泵车的底座相对固定, 这样, 智能控制系统能够根据目标位置和臂架末端在预定坐标系中的坐标参数较 快确定臂架系统各液压元件的运动量, 提高控制效率。 附图说明
图 1是一种混凝土泵车的总体结构图;
图 2是本发明提供的臂架系统的定位方法的原理示意图;
图 3是本发明实施例一提供的臂架系统的定位方法的流程图; 图 4是本发明实施例二提供的臂架系统的定位方法的流程图; 图 5是本发明提供的臂架系统的定位装置的结构框图。 具体实施方式
GPS ( Global Positioning System, 全球定位系统)是一个无线电空间定 位系统, 它利用预定的卫星组和地面上的基准站, 以地为参考, 确定地球 表面上预定地点的位置参数。 目前, GPS系统广泛应用于各领域, 其基本 的应用原理是: 对目标地点进行定位, 确定其位置参数, 以为下一步的工 作提供参考; 如确定飞机、 船舶的位置参数, 以便于确定其航向, 实现对 飞机、 船舶的导航; 还可以确定预定地点经度、 纬度和海拨高度, 以实现 对预定区域的测绘, 等等。
随着工程机械技术的发展, 对工程机械预定部件进行精确控制已经成 为工程机械技术的重要内容之一, 对预定部件进行精确控制的前提是精确 确定预定部件的位置参数; 当前, 确定预定部件的位置参数均是以工程机 械本身相应位置为参考进行, 但是由于工程机械结构、 部件误差变形的存 在, 以这种方式确定的位置参数必然存在较大的误差, 且该误差会由于工 程机械部件运动而变化, 这样就限制了位置参数精度的提高。 为此, 本发 明提供技术方案的核心在于, 突破以工程机械内部相应位置为基础确定预 定部件位置参数的传统方式, 将 GPS 定位技术应用于工程机械控制过程 中, 充分利用 GPS系统精确定位的功能, 在工程机械外部建立适当参照, 确定预定部件的位置参数, 以避免工程机械内部误差对精度的不利影响, 提高预定部件位置参数的精度和准确性。
下面结合附图对本发明提供的技术方案进行详细描述, 本部分的描述 仅是示范性和解释性, 不应对本发明的保护范围有任何的限制作用。
请参考图 2和图 3 , 图 2是本发明提供的臂架系统的定位方法的原理 示意图, 图 3是本发明实施例一提供的臂架系统的定位方法的流程图。
臂架系统的定位方法包括以下步骤:
S100, 根据移动 GPS接收器 520对预定的卫星组 210的观测, 获得检 测点 230的初始位置参数, 并获取基准 GPS接收器传送的载波相位信息。
移动 GPS接收器 520根据载波相位测量原理对卫星组 210进行观测, 以保持较高的测量精度。 移动 GPS接收器 520安装在臂架系统的检测点 230上, 检测点 230可以根据实际作业的需要, 选择合适的预定位置, 以 便于移动 GPS接收器 520对卫星组 210进行观测。
基准 GPS接收器安装于基准站 220, 基准站 220具有已经精确确定的 位置参数, 该位置参数可以是以地为参考的位置参数; 基准 GPS接收器根 据载波相位测量原理对同一卫星组 210进行观测, 并根据卫星的载波信号 获得载波相位信息, 载波相位信息可以是载波相位修正量, 也可以是载波 相位。
根据载波相位差分测量原理,为了保持载波相位信息对移动 GPS接收 器 520可用性, 减小由于基准 GPS接收器与移动 GPS接收器 520之间传 播延迟造成的误差,应当使臂架系统与基准站 220之间的距离小于预定值, 即使检测点 230与基准站 220之间的距离小于预定值,优选小于 500公里, 因此, 应当根据臂架系统所在位置选择接收适合的基准站 220传送载波相 位信息。
S200,根据载波相位信息和检测点 230的初始位置参数获得检测点 230 的位置参数。 根据载波相位差分原理, 并根据载波相位信息可以获得距离 改正数, 进而利用该距离改正数对初始位置参数进行修正, 消除卫星钟误 差、 星历误差、 电离层误差和对流层误差, 提高检测点 230位置参数的精 度。
本例中, 可以利用载波相位差分原理获得比较精确的检测点 230的位 置参数, 该位置参数可以精确到厘米或更高的定位精度; 在实际控制作业 中, 可以根据实现需要将检测点 230设置在适合的位置, 比如, 可以将检 测点 230设置在臂架 9各臂段上, 从而可以根据检测点 230的位置参数精 确地确定各臂段的姿态参数, 也可以将检测点 230设置在臂架末端 20上, 这样可以准确地确定臂架末端 20的位置参数,满足对臂架系统准确控制的 需要, 以提高对混凝土泵车臂架系统的控制效率。
为了减小基准 GPS接收器发送载波相位信息时产生的误差,在实施例 二中还提供了另一种臂架系统的定位方法。
请参考图 4, 该图是本发明实施例二提供的臂架系统的定位方法的流 程图。 与实施例一提供的臂架系统的定位方法相比, 其不同之处在于: 在步骤 S100中, 还可以获取多个基准 GPS接收器分别传送的载波相 位信息。 多个基准 GPS接收器可以是位于不同基准站 220的基准 GPS接 收器, 也可以是位于相同基准站 220的基准 GPS接收器。
步骤 S200可以包括以下步骤:
S210, 根据多个载波相位信息获得修正的载波相位信息。 获得修正的 载波相位信息方法有多种选择, 可以通过获得平均值的方式获得修正的载 波相位信息,也可以通过均方差的方式获得的修正的载波相位信息,等等。
S220,根据修正的载波相位信息和移动 GPS接收器 520获得的初始位 置参数获得检测点 230的位置参数。
该方法能够减小由于基准站本身原因造成的误差, 提高检测点 230位 置参数的精度。 基于上述臂架系统的定位方法, 本发明还提供了一种臂架系统的定位 装置, 用于确定臂架系统预定位置的位置参数。 请参考图 5 , 该图是本发 明提供的臂架系统的定位装置的结构框图。 该定位装置置包括处理器 510 和多个移动 GPS接收器 520;处理器 510包括接收单元 511和处理单元 512。
多个移动 GPS接收器 520接收器分别安装在多个检测点 230上,用于 根据对卫星组 210的观测分别获得相应检测点 230的初始位置参数。 与上 述定位方法相同,检测点 230可以根据实际作业的需要,选择合适的位置, 以方便移动 GPS接收器 520对卫星组 210进行观测。 同时, 为了方便确定 臂架 9各臂段的姿态参数, 优选使检测点 230位于在各臂段的外端, 这样 能够通过各臂段外端的位置参数更容易地确定各臂段的姿态参数。
接收单元 511用于接收基准 GPS接收器传送的载波相位信息和检测点 230的初始位置参数。 基准 GPS接收器安装在预定的基准站 220, 并能够 根据对卫星组 210的观测获得载波相位信息; 同样, 为了减小基准 GPS接 收器传播载波相位信息造成的误差, 可以使检测点 230与基准站 220之间 的距离小于预定值, 与上述方法相同, 可以使臂架系统与基准站 220之间 的距离小于 500公里。
处理单元 512用于根据检测点 230的初始位置参数和载波相位信息获 得检测点 230的位置参数。 载波相位信息可以是载波相位修正量和基准站 220的位置参数, 或者载波相位和基准站 220的位置参数; 处理单元 512 根据载波相位信息可以确定距离改正数; 依据距离改正数对检测点 230的 初始位置参数进行修正, 获得检测点 230的高精度位置参数。
同样, 为了提高位置参数的精度, 与上述方法相同, 也可以使接收单 元 511同时接收多个基准 GPS接收器传送的载波相位信息; 同时, 处理单 元 512包括修正模块和中心模块, 修正模块能够根据多个载波相位信息获 得修正的载波相位信息, 中心模块能够根据修正的载波相位信息和检测点 230的初始位置参数获得检测点 230的位置参数。
在提供上述臂架系统的定位装置的基础上,还提供了一种混凝土泵车, 该混凝土泵车包括混凝土泵和臂架系统 8,参照图 1 ,臂架系统 8包括底座 10、 转台 11和臂架 9, 臂架 9下端与转台 11相连, 并包括多节顺序铰接 的臂段, 各臂段为 12、 13、 14、 15、 16, 其中臂段 16为末节臂段, 其外 端形成臂架末端 20; 转台 11通过回转机构安装在底座 10上, 转台 11与 底座 10之间, 臂架 5与转台 11之间及各臂段之间依赖于液压元件的驱动 进行相对运动; 所述混凝土泵车还包括现有技术中的智能控制系统, 该智 能控制系统能够根据臂架末端 20的位置参数与目标位置之间的关系,控制 臂架 9各臂段的姿态,使臂架末端 20到达目标位置, 以进行混凝土浇注作 业。 其具体的控制原理与背景技术相同, 在此不再赘述。
与现有技术的不同之处在于, 混凝土泵还包括上述的臂架系统的定位 装置, 其中, 至少一个检测点 230位于末节臂段 16上, 这样, 定位装置就 能够向智能控制系统提供臂架末端 20的位置参数;智能控制系统可以根据 该位置参数和目标位置参数, 调整臂架 9各臂段的姿态, 使臂架末端 20 到达目标位置, 完成对臂架系统 8的控制。
为了方便确定臂架末端 20的位置参数,优选的技术方案是,使位于末 节臂段 16上的检测点 230与臂架末端 20重合, 这样, 检测点 230的位置 参数就可以作为臂架末端 20的位置参数; 可以理解的是,检测点 230不限 于与臂架末端 20重合, 只有检测点 230位于末节臂段 16的预定位置, 且 臂架末端 20 与该预定位置具有预定的位置关系, 就可以根据检测点 230 的位置参数确定臂架末端 20的位置参数,减小由于各臂段变形叠加而使误 差增加, 实现本发明目的。
在定位装置只有一个检测点 230, 且该检测点 230又位于末节臂段 16 上时,其他臂段的姿态参数可以根据现有技术提供的技术方案确定,此时, 由于可以更加精确地确定臂架末端 20的位置参数, 因此,也可以艮容易地 获得臂架末端 20的位置参数; 满足臂架系统 8进行精确控制的需要, 实现 本发明的目的。
为了更精确地确定各臂段的姿态参数, 以使智能控制系统能够实现对 各臂段姿态的精确调整, 优选的技术方案是, 在臂架 9的各臂段上分别设 置检测点 230, 并在各检测点设置移动 GPS接收器 520; 通上述相同的方 式, 可以精确地确定每一个检测点 230的位置参数, 从而更精确地确定各 臂段的姿态参数, 为智能控制系统调整各臂段的姿态提供前提。 优选的技 术方案是, 将各检测点 230设置在各臂段的外端, 这样可以更方便地确定 相应臂段内端与外端的位置参数, 根据内端和外端的位置参数可以非常容 易地确定该臂段的姿态参数。
根据 GPS定位原理,直接获得的检测点 230的位置参数可以是以地为 基础的参数(包括经度、 纬度和海拔高度)。 因此, 利用检测点 230的位置 参数的方式有两种:
第一种方式是, 直接利用检测点 230的以地基础的位置参数, 此时, 智能控制系统也要建立以地为基础的坐标系, 并以地为基础确定各臂段姿 态参数,臂架末端 20的位置参数及目标位置。该方式不仅会增加智能控制 系统的复杂性, 还会延长智能控制系统的响应时间和控制周期, 因此, 优 选第二种方式。
第二种方式是, 将检测点 230的以地为基础的位置参数进行转换。 为 了筒化智能控制系统的结构, 缩短系统控制响应时间和控制周期, 本发明 提供的另一种混凝土泵车中, 就对检测点 230的以地为基础的位置参数进 行转换。 该混凝土泵车中, 其检测点 230包括静态检测点和多个动态检测 点; 静态检测点与底座 10相对固定, 因此可以设置在底座 10上, 且在预 定坐标系中具有确定的坐标参数, 优选静态检测点与预定坐标系的原点重 合; 与现有技术相同, 该预定坐标系为智能控制系统控制臂架系统的参考 坐标系。 多个动态检测点均位于臂架 9上, 并分别位于各臂段上。 由于静 态检测点在预定坐标系中的坐标参数已确定, 处理单元 512能够根据静态 检测点与动态检测点的以地为基础的位置参数之间的关系获得的动态检测 点在预定坐标系中的坐标参数, 并将该坐标参数作为向智能控制系统提供 的位置参数, 这样, 智能控制系统就可以直接利用该位置参数对臂架系统 8 进行控制。 该技术方案可以充公利用现有智能控制系统的控制结构, 方 便对混凝土泵车的改造。 当然, 根据上述描述, 本例中, 检测点 230也可 以包括一个静态检测点和一个动态检测点, 也能够实现本发明的目的。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的 普通技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进 和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种臂架系统的定位方法, 其特征在于, 包括以下步骤:
S100, 根据移动 GPS接收器( 520 )对预定卫星组( 210 )的观测获得 检测点 (230 ) 的初始位置参数, 并获取基准 GPS接收器传送的载波相位 信息; 所述基准 GPS接收器安装在预定的基准站(220 ), 并能够根据对所 述卫星组(210 ) 的观测获得载波相位信息; 所述检测点 (230 )位于臂架 系统的预定位置, 所述臂架系统与所述基准站(220 )之间的距离小于预定 值;
S200, 根据所述载波相位信息和初始位置参数获得所述检测点 (230 ) 的位置参数。
2、根据权利要求 1所述的臂架系统的定位方法, 其特征在于, 所述载 波相位信息包括载波相位 4爹正量或载波相位。
3、根据权利要求 1或 2所述的臂架系统的定位方法, 其特征在于, 在 步骤 S100中, 获取多个基准 GPS接收器分别传送的载波相位信息;
在步骤 S200中, 包括步骤:
S210, 根据多个所述载波相位信息获得修正的载波相位信息;
S220 , 根据所述修正的载波相位信息和所述初始位置参数获得所述检 测点 (230 ) 的位置参数。
4、 一种臂架系统的定位装置, 其特征在于, 包括处理器 (510 )和至 少一个移动 GPS接收器( 520 ); 所述处理器( 510 ) 包括接收单元( 511 ) 和处理单元(512 );
所述移动 GPS接收器( 520 )安装在检测点( 230 )上, 用于根据对预 定卫星组(210 ) 的观测获得所述检测点 (230 ) 的初始位置参数; 所述检 测点 (230 )位于臂架系统的预定位置;
所述接收单元(511 ) 能够接收基准 GPS接收器传送的载波相位信息 和所述初始位置参数; 所述基准 GPS接收器安装在预定的基准站(220 ), 并能够根据对所述卫星组(210 )的观测获得所述载波相位信息; 所述臂架 系统与所述基准站(220 )之间的距离小于预定值;
所述处理单元( 512 )能够根据所述初始位置参数和载波相位信息获得 所述检测点 (230 ) 的位置参数。
5、 根据权利要求 4所述的臂架系统的定位装置, 其特征在于, 所述载波相位信息包括载波相位修正量或载波相位。
6、 根据权利要求 4或 5所述的臂架系统的定位装置, 其特征在于, 所述接收单元(511 ) 能够接收多个预定的基准 GPS接收器传送的所 述载波相位信息;
所述处理单元(512 )包括修正模块和中心模块, 所述修正模块能够根 据多个载波相位信息获得修正的载波相位信息, 所述中心模块能够根据所 述修正的载波相位信息和所述初始位置参数获得所述检测点( 230 )的位置 参数。
7、 一种混凝土泵车, 包括底座(10 )、 转台 (11 )和臂架(9 ), 所述 臂架(9 )下端与转台 (11 )相连, 并包括至少三节顺序铰接的臂段, 所述 转台( 11 )通过回转机构安装在底座( 10 )上, 所述转台( 11 )与底座( 10 ) 之间, 臂架(9 )与转台 ( 11 )之间及各臂段之间依赖于液压元件的驱动进 行相对运动; 还包括智能控制系统, 其特征在于, 还包括权利要求 4、 5 或 6所述的臂架系统的定位装置, 至少一个所述检测点( 230 )位于末节臂 段(16 )上; 所述智能控制系统根据所述检测点(230 )的位置参数控制臂 架末端(20 )的位置, 所述臂架末端(20 )为所述末节臂段(16 )的外端。
8、根据权利要求 7所述的混凝土泵车, 其特征在于, 所述臂架系统的 定位装置包括多个移动 GPS接收器(520 ); 所述检测点 (230 ) 包括静态 检测点和动态检测点; 所述静态检测点与所述底座( 10 )相对固定, 且在 预定坐标系中具有预定的坐标参数, 至少一个所述动态检测点位于末节臂 段( 16 )上; 所述预定坐标系为智能控制系统控制臂架系统的参考坐标系, 所述检测点 (230 ) 的位置参数为所述处理单元(512 )根据所述静态检测 点与动态检测点的位置参数获得的所述动态检测点在所述预定坐标系中的 坐标参数。
9、根据权利要求 8所述的混凝土泵车,其特征在于,所述检测点(230 ) 包括多个动态检测点, 多个所述动态检测点分别位于各所述臂段上。
10、 根据权利要求 5所述的混凝土泵车, 其特征在于, 所述动态检测 点分别位于各所述臂段的外端,
PCT/CN2010/074227 2009-12-25 2010-06-22 臂架系统的定位方法、定位装置及混凝土泵车 WO2011075985A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10838394A EP2378031A4 (en) 2009-12-25 2010-06-22 METHOD AND DEVICE FOR POSITIONING ARM SUPPORT SYSTEM AND CONCRETE PUMP TRUCK

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910260223A CN101750620A (zh) 2009-12-25 2009-12-25 臂架系统的定位方法、定位装置及混凝土泵车
CN200910260223.0 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011075985A1 true WO2011075985A1 (zh) 2011-06-30

Family

ID=42477886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074227 WO2011075985A1 (zh) 2009-12-25 2010-06-22 臂架系统的定位方法、定位装置及混凝土泵车

Country Status (3)

Country Link
EP (1) EP2378031A4 (zh)
CN (1) CN101750620A (zh)
WO (1) WO2011075985A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360221B (zh) * 2011-07-14 2013-09-18 中联重科股份有限公司 工程机械以及控制工程机械的机械臂的方法、装置和系统
CN102540229B (zh) * 2011-12-31 2014-04-16 北京邮电大学 一种生命探测装置互定位方法及生命探测装置
CN102589493B (zh) * 2012-02-08 2014-05-21 三一重工股份有限公司 臂架系统、工程机械和臂架系统末端位置参数获取方法
US10144620B2 (en) 2014-09-05 2018-12-04 Xuzhou Heavy Machinery Co., Ltd. Method and system for positioning engineering machinery work objects
CN104199280B (zh) * 2014-09-23 2017-12-15 中国电子科技集团公司第二十九研究所 一种基于差分gps的时间同步误差测量方法
JP6539984B2 (ja) * 2014-10-31 2019-07-10 株式会社タダノ ブーム姿勢検出装置
CN104800995A (zh) * 2015-03-04 2015-07-29 徐州重型机械有限公司 一种臂架定位设备、消防车以及方法
CN108594281A (zh) * 2018-04-17 2018-09-28 上海工程技术大学 基于载波相位差分技术的挖掘设备水平定姿定位辅助方法
CN108894502A (zh) * 2018-07-10 2018-11-27 中国华能集团清洁能源技术研究院有限公司 一种门机结合gps定位技术混凝土浇筑方法
CA3108621A1 (en) * 2018-08-06 2020-02-13 Clark Equipment Company Augmented loader controls
WO2020115829A1 (ja) * 2018-12-05 2020-06-11 有限会社ユニワークス 圧送手段および圧送システム
DE102019107833A1 (de) * 2019-03-27 2020-10-01 Putzmeister Engineering Gmbh Vorrichtung für das Ausbringen eines fluiden Prozesswerkstoffs
CN112049427A (zh) * 2020-08-31 2020-12-08 三一汽车制造有限公司 臂架控制系统、方法和作业车辆
CN112433239A (zh) * 2020-11-09 2021-03-02 陕西中达公路技术服务有限公司 一种砌筑机的定位系统及方法
CN113062598B (zh) * 2021-03-19 2022-02-15 中联重科股份有限公司 臂架回转振动控制系统、方法、介质及工程机械
CN113148872B (zh) * 2021-03-24 2023-07-14 上海宏英智能科技股份有限公司 一种起重机臂架组装顺序识别装置和识别方法
CN113526349B (zh) * 2021-07-27 2022-06-17 上海亥伯智能科技有限公司 重型吊车吊钩斜拉的检测方法及检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640996A (en) * 1993-02-27 1997-06-24 Putzmeister-Werk Maschinenfabrik Gmbh Large manipulator, especially for self-propelled concrete pumps
JPH11228072A (ja) * 1998-02-12 1999-08-24 Kajima Corp 横行トロリー位置検出方法及びその装置
JP2001159518A (ja) * 1999-11-30 2001-06-12 Komatsu Ltd 建設機械のツール位置計測装置、ヨー角検出装置、作業機自動制御装置及び校正装置
JP2002285702A (ja) * 2001-03-26 2002-10-03 Ohbayashi Corp グリーンカットマシンの自動化運転システム
CN1975070A (zh) * 2006-12-31 2007-06-06 三一重工股份有限公司 一种智能臂架控制装置
CN101328767A (zh) * 2002-08-27 2008-12-24 普茨迈斯特混凝土泵有限公司 大型机械手

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951613A (en) * 1996-10-23 1999-09-14 Caterpillar Inc. Apparatus and method for determining the position of a work implement
US6397147B1 (en) * 2000-06-06 2002-05-28 Csi Wireless Inc. Relative GPS positioning using a single GPS receiver with internally generated differential correction terms
ATE316650T1 (de) * 2000-07-19 2006-02-15 Roch Pruefdienste Ag Verfahren und einrichtung zum prüfen der festigkeit von stehend verankerten masten
US7511661B2 (en) * 2004-01-13 2009-03-31 Navcom Technology, Inc. Method for combined use of a local positioning system, a local RTK system, and a regional, wide-area, or global carrier-phase positioning system
US7002513B2 (en) * 2004-03-26 2006-02-21 Topcon Gps, Llc Estimation and resolution of carrier wave ambiguities in a position navigation system
US7522099B2 (en) * 2005-09-08 2009-04-21 Topcon Gps, Llc Position determination using carrier phase measurements of satellite signals

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640996A (en) * 1993-02-27 1997-06-24 Putzmeister-Werk Maschinenfabrik Gmbh Large manipulator, especially for self-propelled concrete pumps
JPH11228072A (ja) * 1998-02-12 1999-08-24 Kajima Corp 横行トロリー位置検出方法及びその装置
JP2001159518A (ja) * 1999-11-30 2001-06-12 Komatsu Ltd 建設機械のツール位置計測装置、ヨー角検出装置、作業機自動制御装置及び校正装置
JP2002285702A (ja) * 2001-03-26 2002-10-03 Ohbayashi Corp グリーンカットマシンの自動化運転システム
CN101328767A (zh) * 2002-08-27 2008-12-24 普茨迈斯特混凝土泵有限公司 大型机械手
CN1975070A (zh) * 2006-12-31 2007-06-06 三一重工股份有限公司 一种智能臂架控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2378031A4 *

Also Published As

Publication number Publication date
EP2378031A4 (en) 2011-12-07
EP2378031A1 (en) 2011-10-19
CN101750620A (zh) 2010-06-23

Similar Documents

Publication Publication Date Title
WO2011075985A1 (zh) 臂架系统的定位方法、定位装置及混凝土泵车
CN109085617B (zh) 一种gnss监测站的定位系统及定位方法
CN106255065B (zh) 智能手机室内外无缝定位系统及其方法
JP5794646B2 (ja) 衛星測位システム、測位端末、測位方法、及びプログラム
CN101806906A (zh) 基于gnss的位置坐标实时动态组合测量装置及方法
JP6865521B2 (ja) 航法信号処理装置、航法信号処理方法および航法信号処理用プログラム
JP6951397B2 (ja) 測位システム、サーバ、情報配信方法及びプログラム
CN111392599A (zh) 一种塔吊自动化控制方法
JP2015075380A (ja) リアルタイムキネマティックシステム及び位置測定方法
JP2004507186A (ja) 地上位置システムおよび方法
US8634846B2 (en) Method and system for determining a location of a mobile device based on a plurality of location samples
CN110716222B (zh) 一种基于无人机的无人车导航方法及系统
CN105376854A (zh) 用于实时追踪移动无线通信设备的位置的方法和装置
CN109839650A (zh) 一种无人机兼容rtk定位方法、系统、设备和存储介质
EP3105616A1 (en) Determining a crane tilt angle
JP2021047054A (ja) 測位システム、サーバ、測位方法、プログラム、測位対象の装置及び移動体
CN105305083A (zh) 一种车载静中通天线的自动对星方法
CN201567797U (zh) 臂架系统的定位装置、臂架系统、混凝土泵车及布料架
WO2015135309A1 (zh) 工程机械作业目标定位方法和系统
US20150160329A1 (en) Determining location and orientation of directional tranceivers
CN108513353B (zh) 基于双信标节点实现移动机器人定位的方法
WO2014036776A1 (zh) 组合式卫星定位测量仪
KR101129255B1 (ko) 자세 센서를 이용한 gps 안테나용 능동형 짐벌
WO2004001337A1 (en) Method and apparatus for improving mobile communication terminal location determination using inertial positioning
RU2444705C1 (ru) Система определения местоположения подвижных объектов в режиме реального времени

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010838394

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE