WO2011074756A1 - Substrate processing method - Google Patents

Substrate processing method Download PDF

Info

Publication number
WO2011074756A1
WO2011074756A1 PCT/KR2010/004664 KR2010004664W WO2011074756A1 WO 2011074756 A1 WO2011074756 A1 WO 2011074756A1 KR 2010004664 W KR2010004664 W KR 2010004664W WO 2011074756 A1 WO2011074756 A1 WO 2011074756A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
substrate
reaction chamber
buffer
group
Prior art date
Application number
PCT/KR2010/004664
Other languages
French (fr)
Korean (ko)
Inventor
홍성재
한석만
진주
정진열
Original Assignee
엘아이지에이디피 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090124226A external-priority patent/KR101062459B1/en
Priority claimed from KR1020090124224A external-priority patent/KR101062463B1/en
Priority claimed from KR1020090124678A external-priority patent/KR101075179B1/en
Priority claimed from KR1020090135715A external-priority patent/KR101078596B1/en
Priority claimed from KR1020090135707A external-priority patent/KR101071249B1/en
Application filed by 엘아이지에이디피 주식회사 filed Critical 엘아이지에이디피 주식회사
Priority to CN2010800638493A priority Critical patent/CN102884642A/en
Publication of WO2011074756A1 publication Critical patent/WO2011074756A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67754Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a batch of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67745Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices

Definitions

  • the present invention relates to a substrate processing method, and more particularly, to a method for forming a thin film on a substrate.
  • an LED Light Emitting Diode
  • One such method for forming an n-type layer, an active layer, or a p-type layer is a metal organic chemical vapor deposition method (Metal Organic Chemical Vapor Deposition).
  • the organometallic chemical vapor deposition method is a method of injecting a metal organic compound gas toward a heated substrate and causing a chemical reaction on the heated substrate surface to form a desired film on the surface of the substrate.
  • the steps of forming the n-type layer, the active layer, and the p-type layer are all performed in one reaction chamber.
  • the problem with this method is that the deposition process takes too much time.
  • the cause of the problem is that the temperature and gas atmosphere required for each step of depositing the layers are different, so that the temperature must be raised or lowered to the required temperature, or each step must be stopped and waited while adjusting the gas atmosphere.
  • the undoped comprising a group-III element and a group-V element on the substrate by a vapor deposition process in the first chamber Forming an undoped layer; Removing the substrate from the first chamber into the buffer chamber and then loading the substrate into the second chamber; And forming an n-type layer including a group-III element and a group-V element on the substrate by a vapor deposition process in the second chamber. It includes.
  • group-III element may include at least one of aluminum (Al), gallium (Ga), and indium (In).
  • the undoped layer may include an undoped GaN layer.
  • the internal temperature of the second chamber may be about 1000 to 1200 degrees Celsius.
  • the internal temperature of the buffer chamber may be about 600 ⁇ 900 degrees Celsius.
  • the internal gas atmosphere of the buffer chamber may be a hydrogen gas atmosphere.
  • the method may further include removing the substrate from the second chamber into the buffer chamber and then carrying the substrate into the third chamber; And forming an active layer including a group-III element and a group-V element on the substrate by a vapor deposition process in the third chamber.
  • an active layer including a group-III element and a group-V element on the substrate by a vapor deposition process in the third chamber.
  • the internal temperature of the third chamber may be about 700 to 900 degrees Celsius.
  • the method may further include removing the substrate from the third chamber into the buffer chamber and then carrying the substrate into the fourth chamber; And forming a p-type layer including a group-III element and a group-V element on the substrate by a vapor deposition process in the fourth chamber. It may further include.
  • an active layer including a group-III element and a group-V element on the substrate by vapor deposition in the second chamber after forming the n-type layer forming a layer); Removing the substrate from the second chamber into the buffer chamber and then loading the substrate into a third chamber; And forming a p-type layer including a group-III element and a group-V element on the substrate by a vapor deposition process in the third chamber. It may further include.
  • the internal temperature of the third chamber may be about 1000 to 1200 degrees Celsius.
  • a group-III element and a group-V element are included in the substrate by a vapor deposition process in the first chamber before the step of forming the undoped layer.
  • the method may further include forming a buffer layer.
  • the internal temperature of the first chamber may be about 450 to 700 degrees Celsius.
  • the buffer layer may include at least one of AlN, GaN, and AlGaN.
  • the method may further include heat treating the substrate in a third chamber before forming the buffer layer; And removing the substrate from the third chamber to the buffer chamber and then carrying the substrate into the first chamber.
  • the heat treatment may include heating the substrate to about 1000 to 1200 degrees Celsius.
  • a group-III element and a group-V element are included on the substrate by a vapor deposition process in a third chamber before the step of forming the undoped layer.
  • the internal temperature of the first chamber may be about 1000 to 1200 degrees Celsius.
  • the method may further include heat treating the substrate in a fourth chamber before forming the buffer layer; And removing the substrate from the fourth chamber to the buffer chamber and then carrying the substrate into the third chamber.
  • each process can be carried out immediately by bringing the substrate into each reaction chamber. Therefore.
  • the time required for temperature control or gas atmosphere control can be shortened.
  • the buffer chamber is previously adjusted to the temperature required for the next step of the process, the time required to adjust the temperature of the substrate in the reaction chamber in which the next step of the process will be carried out can be saved.
  • the buffer chamber can prevent the film quality deterioration due to a sudden temperature change.
  • the temperature of the buffer chamber may be adjusted to be similar to the temperature of the first reaction chamber.
  • the process time can be shortened because the next process can be performed without interruption by bringing the substrate into another reaction chamber.
  • FIG. 1 is a schematic plan view of a first embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view A-A 'of the chemical vapor deposition apparatus of FIG.
  • FIG 3 is a schematic plan view of a second embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment.
  • FIG. 4 is a schematic plan view of a third embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment.
  • FIG. 5 is a schematic plan view of a fourth embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment.
  • FIG. 6 is a schematic plan view of a fifth embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment.
  • FIG. 7 is a flowchart of a substrate processing method using a chemical vapor deposition apparatus including nine reaction chambers.
  • FIG. 8 is a flowchart of a substrate processing method using a chemical vapor deposition apparatus including six reaction chambers.
  • FIG. 9 is a flow chart of a substrate processing method using a chemical vapor deposition apparatus including three reaction chambers.
  • FIG. 1 is a schematic plan view of a first embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment.
  • the chemical vapor deposition apparatus includes a reaction chamber 1100, a buffer chamber 1200, a transfer apparatus, a gas supply unit 1400, and a power supply unit ( 1500, and a control unit 1600.
  • the transfer device includes a substrate supply / discharge device 1310, a first pickup device 1320, an actuator unit 1330, a robot arm 1340, a first plate 1350a, a second plate 1350b, and a first device. It may include a three plate (1350c) and the second pickup device (1370).
  • the substrate supply / discharge apparatus 1310 is a means for supplying a substrate (W) in the form of a wafer (wafer) to the workplace or to discharge the substrate to the outside of the workplace, conveyor, transport robot, pickup robot or linear actuator ( linear actuator) or the like.
  • the first pickup device 1320 is a means for loading the substrate W on an upper surface of the susceptor S, and may be a transport robot or a pickup robot. As another example, the substrate may be directly loaded onto the plate using the first pickup device 1320 without loading the substrate onto the susceptor.
  • the actuator unit 1330 includes a first actuator 1331, a second actuator 1332, and a third actuator 1333.
  • the first actuator 1331, the second actuator 1332, and the third actuator 1333 respectively include the first plate 1350a, the second plate 1350b, and the third plate 1350c in the respective reaction chambers 1100.
  • the first plate 1350a, the second plate 1350b, and the third plate 1350c are the same plates on which the substrate or susceptor can be loaded.
  • Each plate is provided with a recess or hole through which the lift unit 1380 can be lifted and lifted so as to lift the substrate or susceptor loaded on the plate upper surface.
  • the robot arm 1340 may hold the susceptor S and enter the buffer chamber 1200 to lower the susceptor on the upper surface of the first plate 1350a.
  • the robot arm 1340 may transfer the susceptor mounted on the upper surface of the first plate 1350a to the second plate 1350b in the buffer chamber 1200, and may be loaded on the upper surface of the second plate 1350b.
  • the susceptor may be transferred to the third plate 1350c.
  • the lift unit 1380 may be provided inside the buffer chamber as a member for elevating the susceptor.
  • the robot arm 1340 enters the buffer chamber and then lifts the lifter 1380 to lift the susceptor S.
  • the lift unit 1380 descends to lower the susceptor S on the plates 1350a, 1350b, and 1350c.
  • the robot arm 1340 may enter the buffer chamber 1200 through the buffer chamber gate 1213.
  • the susceptor placed on the first plate 1350a may be transferred to the second plate 1350b or the third plate 1350c.
  • the configuration of the transfer device is not limited to the embodiments described below, and various modifications are possible to carry out or carry the substrate into the plurality of reaction chambers and the buffer chamber.
  • the gas supply unit 1400 includes a hydrogen supply unit 1410, a nitrogen supply unit 1420, an ammonia (NH 3) supply unit 1430, a silane (SiH 4) supply unit 1440, a trimethylgallium (TMG) supply unit 1450, and trimethyl indium ( TMI) supply unit 1460, Cp2Mg (bis-cyclopentadienyl magnesium) supply unit 1470, and the like.
  • the hydrogen supply unit 1410, the nitrogen supply unit 1420, and the ammonia supply unit 1430 may each include hydrogen in the buffer chamber 1200, the first reaction chamber 1110, the second reaction chamber 1120, and the third reaction chamber 1130. (H2), nitrogen (N2) and ammonia (NH3) can be supplied. As another embodiment, an embodiment including a supply unit for supplying Group V gas other than ammonia is also possible.
  • the silane (SiH 4) supply unit 1440 may supply the silane (SiH 4) to the reaction chamber 1100.
  • a supply unit for supplying another n-type doping gas eg, a gas containing Ge, Sn, etc.
  • SiH 4 a gas containing Ge, Sn, etc.
  • the trimethylgallium supply unit 1450 may supply trimethylgallium to the reaction chamber 1100.
  • an embodiment including a supply for supplying other group III gas in addition to trimethylgallium is also possible.
  • the trimethyl indium supply unit 1460 may supply trimethyl indium to the reaction chamber 1100.
  • an embodiment including a supply for supplying other group III gas in addition to trimethyl indium is also possible.
  • a supply unit for supplying trimethyl aluminum (TMA) as a group III gas may be provided.
  • the Cp2Mg supply unit 1470 may supply Cp2Mg (bis-cyclopentadienyl-magnesium) to the reaction chamber 1100.
  • the embodiment also includes a supply for supplying other p-type doping gas (for example, gas containing Zn, Ca, Be, etc.) in addition to the Cp2Mg gas containing magnesium (Mg) as a p-type doping gas It is possible.
  • the power supply unit 1500 may supply power to the reaction chamber 1100 or the buffer chamber 1200.
  • the power supply unit 1500 includes a first power supply unit 1510, a second power supply unit 1520, and a third power supply unit 1530.
  • the controller 1600 may control the reaction chamber 1100, the buffer chamber 1200, the transfer apparatus, the gas supply unit 1400, the power supply unit 1500, and the like.
  • the reaction chamber 1100 includes a first reaction chamber 1110, a second reaction chamber 1120, and a third reaction chamber 1130 arranged in a row.
  • the reaction chamber is not necessarily limited to three, but may be composed of two to nine or more.
  • the susceptor S is loaded into the first reaction chamber 1110 through the first reaction chamber gate 1115. Inside the first reaction chamber 1110, a rotating part (1112 of FIG. 2) is installed on which a susceptor is mounted. In another embodiment, a susceptor support on which the susceptor is simply mounted on the upper surface of the first reaction chamber 1110 may be installed without rotating.
  • the gas supply unit 1400 may form a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and nitrogen inside the first reaction chamber 1110.
  • the foreign material layer such as an oxide layer on the substrate may be removed by controlling the temperature inside the first reaction chamber 1110 to about 1000 to 1200 degrees Celsius by a heater (not shown).
  • a process of growing a GaN buffer layer may be performed.
  • the hydrogen supply atmosphere may be formed inside the first reaction chamber 1110 by the gas supply unit 1400, and trimethylgallium (TMG) and ammonia gas may be introduced.
  • TMG trimethylgallium
  • the substrate or susceptor may be heated by about 450 degrees to about 700 degrees Celsius, and more specifically about 500 to 600 degrees Celsius.
  • the GaN buffer layer may be grown on the upper surface of the substrate heat-treated by this process.
  • the buffer layer may be an AlN layer including an aluminum element and a nitrogen element.
  • the buffer layer may include an AlGaN layer.
  • a process of growing a GaN buffer layer and then growing an undoped GaN layer may be performed.
  • a process of growing an undoped InGaN layer or an undoped AlGaN layer may be performed.
  • the inside of the first reaction chamber 1110 is heated so that the temperature of the substrate is about 1000 degrees to 1200 degrees Celsius, and more specifically, about 1030 degrees to 1080 degrees Celsius so that the undoped GaN layer can grow.
  • the process of growing the buffer layer and the undoped GaN layer on the sapphire substrate can improve the electrical and crystallographic growth efficiency of the GaN thin film.
  • a process of growing an n-type GaN layer may be performed on the undoped GaN layer.
  • the hydrogen supply atmosphere may be formed inside the first reaction chamber 1110 by the gas supply unit 1400, and trimethylgallium (TMG) and ammonia gas may be introduced.
  • TMG trimethylgallium
  • Silane (SiH 4) or Germane (Germane) (GeH 4) may be further added to dope Si or Ge.
  • the substrate or susceptor may be heated to about 1000 ⁇ 1200 degrees Celsius by the heater. By this process, an n-type GaN layer may be grown on the upper surface of the GaN layer.
  • the n-type layer may be a stacked structure of n-GaN / n-AlGaN / n-InGaN.
  • the n-type layer is formed of n-GaN / n-AlGaN, n-GaN / n-AlGaN / n-GaN, n-GaN / n-InGaN / n-AlGaN / n-GaN, or the like. It may be a structure.
  • Each n-type layer may be formed on the substrate by a vapor deposition process in a different reaction chamber.
  • the n-type layer may include an n-AlGaN layer.
  • a process of growing an active layer may be performed.
  • Nitrogen (N2) gas atmosphere may be formed inside the reaction chamber by the gas supply unit 1400.
  • Tri-methyl-gallium (TMG), tri-methyl-indium (TMI) and ammonia gas may be formed. It can be put in.
  • the temperature of the substrate or susceptor can be adjusted by about 700 degrees to 900 degrees Celsius by the heater.
  • the active layer may be a single quantum well (SQW) layer or a multi quantum well (MQW) layer having a plurality of quantum wells. That is, multiple quantum well layers may be formed by alternately stacking a barrier layer and a quantum well layer having different indium (In) and gallium (Ga) contents.
  • an active layer may be grown on the n-type GaN layer.
  • the active layer may have a stacked structure such as InGaN QW, InGaN / GaN QW, InGaN / AlGaN QW, InGaN / InGaN QW, GaN / AlGaN QW, InAlGaN / InAlGaN QW.
  • a process of growing a p-type GaN layer may be performed.
  • a hydrogen gas atmosphere may be formed inside the reaction chamber by the gas supply unit 1400, and trimethylgallium (TMG), bis-cyclopentadienyl-magnesium (Cp2Mg), and ammonia gas may be introduced.
  • TMG trimethylgallium
  • Cp2Mg bis-cyclopentadienyl-magnesium
  • ammonia gas may be introduced.
  • the temperature of the substrate or susceptor may be adjusted by about 900 to 1200 degrees Celsius by a heater (not shown). By this process, a p-type GaN layer may be grown on the active layer.
  • the p-type GaN layer may have a stacked structure of p-AlGaN / p-GaN, p-AlGaN / p-GaN / p-AlGaN / p-GaN, p-GaN / p-AlGaN / p-GaN.
  • the gas supply unit may supply hydrogen, group III gas (TMA: trimethylaluminium), and group V gas required to form the AlGaN layer.
  • an annealing process may be performed in the third reaction chamber 1130.
  • annealing may be performed on the thin film formed in the previous process by maintaining the temperature inside the reaction chamber at 600 to 900 degrees Celsius.
  • a cooling process may be performed or only the cooling process may be performed without the annealing process.
  • a process of irradiating a low energy electron beam irradiation treatment may be performed instead of the annealing process in the third reaction chamber.
  • an annealing process may be performed in the buffer chamber 1200.
  • the buffer chamber 1200 is connected to the plurality of reaction chambers 1100 and serves as a passage through which the susceptor passes when the susceptor is taken out from one reaction chamber and then brought into the other reaction chamber.
  • the temperature of the buffer chamber 1200 may be adjusted similarly to the temperatures of the first reaction chamber 1110 and the second reaction chamber 1120. That is, before the heat treatment process is performed in the first reaction chamber 1110, the temperature inside the buffer chamber 1200 may be adjusted in advance to about 500 to 1200 degrees Celsius, and more specifically to about 600 to 900 degrees Celsius. Accordingly, the time required to heat the substrate to the temperature required for the heat treatment process can be reduced.
  • the hydrogen supply unit 1410 and the nitrogen supply unit 1420 the inside of the buffer chamber 1200 may be previously adjusted to a hydrogen atmosphere or a nitrogen atmosphere.
  • FIG. 2 is a schematic cross-sectional view A-A 'of the chemical vapor deposition apparatus of FIG.
  • the first actuator 1331 passes through the buffer chamber gate 1213 to pass the first plate 1350a into the buffer chamber 1200.
  • Imported into The robot arm 1340 loads the susceptor S on the first plate 1350a in the buffer chamber.
  • the thermal shock to the substrate is reduced when the substrate is removed from the reaction chamber 1100.
  • the temperature can be adjusted to about 500-1200 degrees in advance.
  • the gas atmosphere inside the buffer chamber 1200 may be adjusted to a hydrogen atmosphere.
  • the lift part 1119 provided in the rotating part 1112 is raised to lift the susceptor loaded on the upper part of the rotating part 1112.
  • the first plate 1350a is carried into the first reaction chamber 1110 and is positioned between the rotating part 1112 and the susceptor S.
  • the lift unit 1119 descends, the susceptor S is loaded on the first plate 1350a, and the first plate is carried out to the buffer chamber 1200.
  • the first plate 1350a passes through the first reaction chamber gate 1115 and is buffered from the first reaction chamber 1110. It may be transferred to the chamber 1200.
  • the lift unit 1380 on the upper surface of the pedestal 1351 may be raised so that the robot arm 1340 may hold the susceptor S transferred to the buffer chamber 1200 (see FIG. 1).
  • the robot arm 1340 grips the susceptor S.
  • the susceptor is mounted on the second plate 1350b positioned in front of the second reaction chamber gate 1125.
  • the buffer chamber 1200 is provided with a heater 1203 for adjusting the internal temperature of the buffer chamber to about 600 degrees Celsius to 900 degrees Celsius.
  • This heater 1203 may be a lamp heater or an RF heater.
  • the first reaction chamber 1110 is provided with a shower head 1111 for injecting a processing gas toward the susceptor.
  • a heater (not shown) for heating the susceptor may be installed inside the rotating unit 1112.
  • the motor 1114 may rotate the susceptor S and the rotating part 1112.
  • the susceptor S may be separated from and coupled to the rotating part 1112 at the upper end of the rotating shaft 1113.
  • FIG. 3 is a schematic plan view of a second embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment.
  • the description overlapping with the first embodiment of FIG. 1 will be omitted.
  • the second embodiment includes three reaction chambers, and the manner of conveying the susceptor is different from that of the first embodiment.
  • the actuator unit 2330 includes an actuator 2331, an actuator transfer motor 2332, and an actuator transfer rail 2333.
  • the actuator 2331 is slidably coupled to the actuator transfer rail 2333, and the actuator 2331 is slidable along the actuator transfer rail 2333 by the actuator transfer motor 2332.
  • the actuator transfer motor 2332 is positioned so that the susceptor S is located in front of the second reaction chamber. Move the actuator 2331.
  • the actuator 2331 moves, the susceptor S is transferred in a state located inside the buffer chamber 2200. Accordingly, the substrate may be loaded into each reaction chamber 2100 or the buffer chamber 2200 using only one actuator.
  • FIG. 4 is a schematic plan view of a third embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment. The description overlapping with the first and second embodiments is omitted.
  • the third embodiment includes four reaction chambers, and the manner of conveying the susceptor is different from that of the first and second embodiments.
  • the transfer apparatus includes a first robot arm 3706, a first robot arm transfer rail 3705, a second robot arm 3708, a second robot arm transfer rail 3707, and a first plate.
  • Reference numeral 3702a may include a second plate 3702b, a third plate 3702c, a fourth plate 3702d, and a roller portion 3701.
  • the second robot arm 3708 may receive the unprocessed substrate W from the substrate supply unit 3801, pick up the substrate, and load the substrate on the susceptor.
  • the second robot arm 3708 is coupled to the second robot arm transfer rail 3707 to be slidably movable.
  • the second robot arm 3708 may access the susceptor placed in the susceptor carrying part 3803, pick up the processed substrate, and transfer the processed substrate to the substrate carrying part 3804.
  • the first robot arm 3706 picks up the susceptor on which the substrate is loaded from the susceptor supply unit 3802 and carries it into the buffer chamber 3200, and loads the loaded susceptor into the first plate 3702a.
  • the first robot arm 3706 picks up the susceptor loaded in the fourth plate 3702d and takes it out, and the susceptor carrying part Transfer the susceptor to (3803).
  • the roller part 3701 is provided inside the buffer chamber 3200 and is rotatable in place so that the first plate 3702a may be conveyed to the first reaction chamber.
  • the roller portion 3701 includes one or a plurality of rotatable rollers. The roller and the plate may be coupled to each other by a gear provided to transfer the plate.
  • FIG. 5 is a schematic plan view of a fourth embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment.
  • the description overlapping with the first to third embodiments is omitted.
  • the fourth embodiment includes four reaction chambers, and the manner of conveying the susceptor is different from that of the first to third embodiments.
  • the transfer apparatus includes a substrate supply / discharge apparatus 4310, a first pickup apparatus 4320, a first actuator 4331, a second actuator 4332, a third actuator 4333, and a third actuator 4 actuator 4340, first plate 4350a, second plate 4350b, third plate 4350c, fourth plate 4350d, first robot arm 4340, second robot arm 4360a, A third robot arm 4360b, a fourth robot arm 4360c, and a second pickup device 4370 may be included.
  • the second robot arm 4360a may transport the susceptor mounted on the upper surface of the first plate 4350a to the upper surface of the second plate 4350b inside the buffer chamber 4200.
  • the lower portion of each plate is provided with a lift portion 4380 for lifting the substrate or susceptor. Therefore, when the lift unit 4380 raises the susceptor loaded on the upper surface of the first plate 4350a, the second robot arm 4360a may enter between the susceptor and the first plate 4350a. Next, when the lift part 4380 lowers the susceptor, the susceptor is loaded on the upper surface of the second robot arm 4360a.
  • the third robot arm 4360b may transport the susceptor mounted on the upper surface of the second plate 4350b to the upper surface of the third plate 4350c inside the buffer chamber 4200.
  • the second robot arm 4360a to the fourth robot arm 4360c are preferably made of a heat resistant material to operate stably at a temperature of about 1000 degrees Celsius.
  • the buffer chamber 4200 is provided with a first buffer chamber gate 4213, a first buffer chamber gate valve 4214, a second buffer chamber gate 4223, and a second buffer chamber gate valve 4224.
  • FIG. 6 is a schematic plan view of a fifth embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment.
  • the fifth embodiment includes six reaction chambers, and the manner of conveying the susceptor is different from that of the first to fourth embodiments.
  • the transfer apparatus includes a substrate supply / discharge apparatus 5310, a first pickup apparatus 5320, an actuator 5330, a plurality of plates 5340, and a second pickup apparatus 5260.
  • Actuator 5330 includes first to sixth actuators 5331, 5332, 5333, 5334, 5335, and 5336.
  • the plate 5340 is detachable from the actuator 5330, and when the plate 5340 is loaded on the plate carrying part 5350 and then separated from the actuator 5330, the plate 5340 and the plate 5340 are separated from the actuator 5330.
  • the susceptor S is transferred horizontally to the other reaction chamber.
  • the plate carrier 5350 may be a conveyor belt or similar device.
  • a coupling device (not shown) is provided at the rod end of the actuator 5330 so that the plate 5340 and the actuator 5330 are coupled or separated. Therefore, when the process is completed in any one reaction chamber and the plate is taken out, a control signal is transmitted to the coupling device to separate the plate 5340 and the actuator 5330.
  • the thin film to be formed by this method is composed of a buffer layer / undoped GaN layer / n-type GaN layer / n-type AlGaN layer / active layer / p-type AlGaN layer / p-type GaN layer.
  • a type of processes that may be performed in each reaction chamber may be modified, and a plurality of processes may be performed in any one reaction chamber.
  • a step (S101) of loading a substrate into the first reaction chamber is performed.
  • a step S102 of performing heat treatment on the substrate in the first reaction chamber is performed.
  • Hydrogen gas, or a mixture of hydrogen and nitrogen may be supplied into the first reaction chamber, and the substrate or susceptor is heated (for example, about 1200 degrees) to remove a foreign material layer such as an oxide film on the substrate. can do.
  • the step S103 of carrying out the substrate from the first reaction chamber to the buffer chamber and carrying it into the second reaction chamber is performed.
  • the buffer chamber is heated to a predetermined temperature in advance so that a sudden temperature change does not occur with respect to the substrate.
  • a step (S104) of forming a buffer layer on the substrate in the second reaction chamber is performed. That is, hydrogen, trimethylgallium (TMG) and ammonia gas are introduced into the second reaction chamber, and the substrate or susceptor is heated to a predetermined temperature (for example, about 600 degrees). By this process, the GaN buffer layer may be grown on the heat treated substrate.
  • TMG trimethylgallium
  • step (S105) of carrying out the substrate from the second reaction chamber to the buffer chamber and carrying it into the third reaction chamber is performed.
  • step S106 an undoped GaN layer is formed on the substrate in the third reaction chamber.
  • Hydrogen (H 2), trimethylgallium (TMG), ammonia (NH 3) are injected into the third reaction chamber, and the substrate or susceptor may be heated to, for example, 1200 degrees.
  • H 2 Hydrogen
  • TMG trimethylgallium
  • NH 3 ammonia
  • step S107 of carrying out the substrate from the third reaction chamber to the buffer chamber and carrying it into the fourth reaction chamber is performed.
  • step S108 an n-type GaN layer is formed on the substrate in the fourth reaction chamber. That is, hydrogen (H 2), trimethylgallium (TMG), ammonia (NH 3), and SiH 4 are injected into the fourth reaction chamber, and the substrate or susceptor is heated at, for example, 1200 degrees. By this process, an n-type GaN layer (Si doping) is grown on the undoped GaN layer.
  • the buffer chamber may be heated to a predetermined temperature so that a sudden temperature change does not occur with respect to the substrate.
  • the heating temperature may be set between approximately 500 to 1200 degrees Celsius, and in some cases, may be set to about 700 degrees.
  • step S110 an n-type AlGaN layer is formed on the substrate in the fifth reaction chamber.
  • SiH 4, trimethylaluminum, trimethylgallium, ammonia and hydrogen may be supplied into the fifth reaction chamber to form a si-doped AlGaN layer.
  • step S111 of carrying out the substrate from the fifth reaction chamber to the buffer chamber and carrying it into the sixth reaction chamber is performed.
  • N 2 nitrogen
  • TMG trimethylgallium
  • TMI trimethyl indium
  • NH 3 ammonia
  • step S113 of carrying out the substrate from the sixth reaction chamber to the buffer chamber and carrying it into the seventh reaction chamber is performed.
  • Mp-doped AlGaN layer is formed on the substrate in the seventh reaction chamber. That is, Mp-doped AlGaN layer may be formed by supplying Cp 2 Mg, trimethylaluminum, trimethylgallium, ammonia, and hydrogen.
  • step S115 of carrying out the substrate from the seventh reaction chamber to the buffer chamber and carrying it into the eighth reaction chamber is performed.
  • a p-type GaN layer on the substrate in the eighth reaction chamber (S116) is performed.
  • Cp 2 Mg, trimethylgallium, ammonia and hydrogen are injected into the eighth reaction chamber, and the substrate or susceptor is variably controlled at about 1200 degrees.
  • the Mg-doped GaN layer may be grown on the active layer.
  • Cp2Mg as the p-type doping gas
  • a cleaning operation is necessary because the magnesium component may be attached inside the reaction chamber, and such magnesium component may adversely affect other processes. While the eighth reaction chamber is cleaned, each process may proceed without interruption in the remaining reaction chambers.
  • step S117 of carrying out the substrate from the eighth reaction chamber to the buffer chamber and carrying it into the ninth reaction chamber is performed.
  • step S118 of performing annealing in the ninth reaction chamber is performed. That is, the interior of the chamber is adjusted to 600-900 degrees Celsius while maintaining a nitrogen atmosphere.
  • a cooling process may be performed after annealing in the ninth reaction chamber, and a cooling process may be performed without annealing in the ninth reaction chamber.
  • the cooling process may be performed in the buffer chamber.
  • the cooling process may be, for example, a process of naturally cooling the substrate to about 100 to 300 degrees.
  • the susceptor is carried out to the outside, and the substrate on the upper surface of the susceptor is picked up by the pickup device and transferred to the substrate supply and discharge device.
  • the thin film to be formed by this method consists of a buffer layer / n-type GaN layer / active layer / p-type GaN layer.
  • step S206 the n-type GaN layer is formed in the third reaction chamber, and the substrate is carried out from the third reaction chamber to the buffer chamber and then loaded into the fourth reaction chamber (S207).
  • reaction chambers are included.
  • a chemical vapor device can be used. That is, forming the buffer layer and forming the undoped GaN layer may be performed in the second reaction chamber.
  • the forming of the n-type GaN layer and the forming of the n-type AlGaN layer may be performed in the third reaction chamber.
  • the forming of the p-type AlGaN layer and the forming of the p-type GaN layer may be performed in the fifth reaction chamber.
  • FIG. 9 is a flow chart of a substrate processing method using a chemical vapor deposition apparatus including three reaction chambers.
  • the thin film to be formed by this method consists of a buffer layer / n-type GaN layer / active layer / p-type GaN layer.
  • a step (S301) of carrying a substrate into the first reaction chamber and a step (S302) of heat treating the substrate in the first reaction chamber are performed.
  • the step S303 of carrying out the substrate from the first reaction chamber to the buffer chamber and carrying it into the second reaction chamber is performed.
  • forming a buffer layer on the substrate in the second reaction chamber (S304), forming an n-type GaN layer (S305), and forming an active layer (S306) are performed.
  • the substrate is carried out from the second reaction chamber to the buffer chamber and loaded into the third reaction chamber.
  • heat treating the substrate and forming the buffer layer may be performed in different reaction chambers. This process separation reduces the time required to adjust the temperature inside the reaction chamber to the process temperature required, and also prevents the problem that the gas used in the previous process affects the next process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A substrate processing method is required in a process for forming a thin film on a substrate so as to improve the process efficiency and form a high quality thin film. To this end, the substrate processing method according to the present invention comprises: forming an undoped layer including a group-III element and a group-V element on a substrate in the first chamber by a vapor deposition process; carrying the substrate out of the first chamber to a buffer chamber then into the second chamber; and forming an n-type layer including a group-III element and a group-V element on a substrate in the second chamber by a vapor deposition process.

Description

기판처리방법Substrate Processing Method
본 발명은 기판처리방법에 대한 것으로서, 보다 자세하게는 기판에 박막을 형성하는 방법에 대한 것이다.The present invention relates to a substrate processing method, and more particularly, to a method for forming a thin film on a substrate.
LED(Light Emitting Diode)는 일반적으로 n타입층(n-type layer), 활성층(active layer), p타입층(p-type layer)이 순차적으로 적층된 구조로 되어 있다. 그러한, n타입층, 활성층, p타입층을 형성하는 방법중의 하나가 유기금속화학기상증착방법(Metal Organic Chemical Vapor Deposition)이다. 유기금속화학기상증착방법은 금속유기화합물 가스를 가열된 기판을 향하여 분사하고, 가열된 기판 표면에서 화학반응을 일으켜서 기판 표면에 원하는 막을 형성하는 방법이다.In general, an LED (Light Emitting Diode) has a structure in which an n-type layer, an active layer, and a p-type layer are sequentially stacked. One such method for forming an n-type layer, an active layer, or a p-type layer is a metal organic chemical vapor deposition method (Metal Organic Chemical Vapor Deposition). The organometallic chemical vapor deposition method is a method of injecting a metal organic compound gas toward a heated substrate and causing a chemical reaction on the heated substrate surface to form a desired film on the surface of the substrate.
종래의 유기금속화학기상증착방법의 경우, n타입층, 활성층, p타입층을 형성하는 단계가 모두 하나의 반응챔버에서 수행된다. 그런데, 이와 같은 방법의 문제점은 증착공정에 너무 많은 시간이 소요된다는 것이다. In the conventional organometallic chemical vapor deposition method, the steps of forming the n-type layer, the active layer, and the p-type layer are all performed in one reaction chamber. However, the problem with this method is that the deposition process takes too much time.
그러한 문제점의 원인은 각각의 층을 증착하는 단계마다 요구되는 온도와 가스 분위기가 상이하기 때문에 요구되는 온도로 승온 또는 감온하거나, 가스 분위기를 조정하는 동안 각각의 단계를 중단하고 대기하여야 하기 때문이다. The cause of the problem is that the temperature and gas atmosphere required for each step of depositing the layers are different, so that the temperature must be raised or lowered to the required temperature, or each step must be stopped and waited while adjusting the gas atmosphere.
기판에 박막을 형성하는 공정에 있어서 공정효율을 향상시킬 수 있고 고품질의 박막을 형성할 수 있는 기판처리방법이 필요하다.In the process of forming a thin film on a substrate, there is a need for a substrate processing method capable of improving process efficiency and forming a high quality thin film.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자가 명확하게 이해할 수 있을 것이다.Technical problems of the present invention are not limited to the above-mentioned technical problems, and other technical problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 해결하기 위한 본 발명에 따른 기판처리방법은, 제1챔버에서 기상증착공정에 의하여 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 언도프트층(undoped layer)을 형성하는 단계; 상기 기판을 상기 제1챔버로부터 버퍼챔버로 반출한 다음에 제2챔버에 반입하는 단계; 및 상기 제2챔버에서 기상증착공정에 의하여 상기 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 n타입층(n-type layer)을 형성하는 단계;를 포함한다.The substrate processing method according to the present invention for solving the above problems, the undoped comprising a group-III element and a group-V element on the substrate by a vapor deposition process in the first chamber Forming an undoped layer; Removing the substrate from the first chamber into the buffer chamber and then loading the substrate into the second chamber; And forming an n-type layer including a group-III element and a group-V element on the substrate by a vapor deposition process in the second chamber. It includes.
또한, 상기 3족원소(group-Ⅲ element)는 알루미늄(Al), 갈륨(Ga), 인듐(In) 중에서 적어도 어느 하나를 포함할 수 있다.In addition, the group-III element may include at least one of aluminum (Al), gallium (Ga), and indium (In).
또한, 상기 언도프트층(undoped layer)은 언도프트GaN층을 포함할 수 있다.In addition, the undoped layer may include an undoped GaN layer.
또한, 상기 기판이 상기 제2챔버에 반입될 때 상기 제2챔버의 내부 온도는 약 섭씨 1000~1200도일 수 있다.In addition, when the substrate is loaded into the second chamber, the internal temperature of the second chamber may be about 1000 to 1200 degrees Celsius.
또한, 상기 버퍼챔버의 내부 온도는 약 섭씨 600~900도일 수 있다.In addition, the internal temperature of the buffer chamber may be about 600 ~ 900 degrees Celsius.
또한, 상기 버퍼챔버의 내부 가스 분위기는 수소 가스 분위기일 수 있다.In addition, the internal gas atmosphere of the buffer chamber may be a hydrogen gas atmosphere.
또한, 상기 기판을 상기 제2챔버로부터 상기 버퍼챔버로 반출한 다음에 제3챔버에 반입하는 단계; 및 상기 제3챔버에서 기상증착공정에 의하여 상기 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 활성층(active layer)을 형성하는 단계;를 더 포함할 수 있다.The method may further include removing the substrate from the second chamber into the buffer chamber and then carrying the substrate into the third chamber; And forming an active layer including a group-III element and a group-V element on the substrate by a vapor deposition process in the third chamber. Can be.
또한, 상기 기판이 상기 제3챔버에 반입될 때 상기 제3챔버의 내부 온도는 약 섭씨 700~900도일 수 있다.In addition, when the substrate is loaded into the third chamber, the internal temperature of the third chamber may be about 700 to 900 degrees Celsius.
또한, 상기 기판을 상기 제3챔버로부터 상기 버퍼챔버로 반출한 다음에 제4챔버에 반입하는 단계; 및 상기 제4챔버에서 기상증착공정에 의하여 상기 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 p타입층(p-type layer)을 형성하는 단계;를 더 포함할 수 있다.The method may further include removing the substrate from the third chamber into the buffer chamber and then carrying the substrate into the fourth chamber; And forming a p-type layer including a group-III element and a group-V element on the substrate by a vapor deposition process in the fourth chamber. It may further include.
또한, 상기 n타입층을 형성하는 단계 이후에 상기 제2챔버에서 기상증착공정에 의하여 상기 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 활성층(active layer)를 형성하는 단계; 상기 기판을 상기 제2챔버로부터 상기 버퍼챔버로 반출한 다음에 제3챔버에 반입하는 단계; 및 상기 제3챔버에서 기상증착공정에 의하여 상기 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 p타입층(p-type layer)을 형성하는 단계;를 더 포함할 수 있다.In addition, an active layer including a group-III element and a group-V element on the substrate by vapor deposition in the second chamber after forming the n-type layer. forming a layer); Removing the substrate from the second chamber into the buffer chamber and then loading the substrate into a third chamber; And forming a p-type layer including a group-III element and a group-V element on the substrate by a vapor deposition process in the third chamber. It may further include.
또한, 상기 기판이 상기 제3챔버에 반입될 때 상기 제3챔버의 내부 온도는 약 섭씨 1000~1200도일 수 있다.In addition, when the substrate is loaded into the third chamber, the internal temperature of the third chamber may be about 1000 to 1200 degrees Celsius.
또한, 상기 언도프트층(undoped layer)을 형성하는 단계 이전에 상기 제1챔버에서 기상증착공정에 의하여 상기 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 버퍼층을 형성하는 단계를 더 포함할 수 있다.In addition, a group-III element and a group-V element are included in the substrate by a vapor deposition process in the first chamber before the step of forming the undoped layer. The method may further include forming a buffer layer.
또한, 상기 버퍼층을 형성하는 단계에서 상기 제1챔버의 내부 온도는 약 섭씨 450~700도일 수 있다.In addition, in the forming of the buffer layer, the internal temperature of the first chamber may be about 450 to 700 degrees Celsius.
또한, 상기 버퍼층은 AlN, GaN, AlGaN중의 적어도 어느 하나를 포함할 수 있다.In addition, the buffer layer may include at least one of AlN, GaN, and AlGaN.
또한, 상기 버퍼층을 형성하는 단계 이전에 제3챔버에서 상기 기판에 대하여 열처리(heat treatment)하는 단계; 및 상기 기판을 상기 제3챔버로부터 버퍼챔버로 반출한 다음에 상기 제1챔버에 반입하는 단계;를 더 포함할 수 있다.The method may further include heat treating the substrate in a third chamber before forming the buffer layer; And removing the substrate from the third chamber to the buffer chamber and then carrying the substrate into the first chamber.
또한, 상기 열처리(heat treatment)하는 단계는 상기 기판을 약 섭씨 1000~1200도로 가열하는 단계를 포함할 수 있다.In addition, the heat treatment may include heating the substrate to about 1000 to 1200 degrees Celsius.
또한, 상기 언도프트층(undoped layer)을 형성하는 단계 이전에 제3챔버에서 기상증착공정에 의하여 상기 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 버퍼층을 형성하는 단계; 및 상기 기판을 상기 제3챔버로부터 버퍼챔버로 반출한 다음에 상기 제1챔버에 반입하는 단계;를 더 포함할 수 있다.In addition, a group-III element and a group-V element are included on the substrate by a vapor deposition process in a third chamber before the step of forming the undoped layer. Forming a buffer layer; And carrying out the substrate from the third chamber to the buffer chamber and then carrying the substrate into the first chamber.
또한, 상기 기판이 상기 제1챔버에 반입될 때 상기 제1챔버의 내부 온도는 약 섭씨 1000~1200도일 수 있다.In addition, when the substrate is loaded into the first chamber, the internal temperature of the first chamber may be about 1000 to 1200 degrees Celsius.
또한, 상기 버퍼층을 형성하는 단계 이전에 제4챔버에서 상기 기판에 대하여 열처리(heat treatment)하는 단계; 및 상기 기판을 상기 제4챔버로부터 버퍼챔버로 반출한 다음에 상기 제3챔버에 반입하는 단계;를 더 포함할 수 있다.The method may further include heat treating the substrate in a fourth chamber before forming the buffer layer; And removing the substrate from the fourth chamber to the buffer chamber and then carrying the substrate into the third chamber.
각각의 반응챔버 내부온도를 서로 다른 온도 또는 가스 분위기로 미리 조절해 놓음으로써 기판을 각각의 반응챔버에 반입하여 즉시 각각의 공정을 수행할 수 있다. 따라서. 온도조절 또는 가스 분위기 조절에 소요되는 시간이 단축될 수 있다. 뿐만 아니라, 버퍼챔버가 미리 다음 단계의 공정에 필요한 온도로 조절된 경우에는 다음 단계의 공정이 진행될 반응챔버에서 기판의 온도를 조절하는데 소요되는 시간이 절약될 수 있다.By controlling the internal temperature of each reaction chamber to a different temperature or gas atmosphere in advance, each process can be carried out immediately by bringing the substrate into each reaction chamber. therefore. The time required for temperature control or gas atmosphere control can be shortened. In addition, when the buffer chamber is previously adjusted to the temperature required for the next step of the process, the time required to adjust the temperature of the substrate in the reaction chamber in which the next step of the process will be carried out can be saved.
또한, 버퍼챔버는 급격한 온도변화에 의한 박막품질 저하를 방지할 수 있다. 예를 들어, 제1반응챔버에서 공정이 완료된 기판이 버퍼챔버로 반출될 때, 버퍼챔버의 온도는 제1반응챔버의 온도와 유사하도록 조절될 수 있다. In addition, the buffer chamber can prevent the film quality deterioration due to a sudden temperature change. For example, when the substrate having been processed in the first reaction chamber is carried out to the buffer chamber, the temperature of the buffer chamber may be adjusted to be similar to the temperature of the first reaction chamber.
또한, 어느 하나의 공정이 완료된 후에 반응챔버 내부를 세정하는 동안에도 기판을 다른 반응챔버로 반입하여 중단 없이 다음 공정이 수행될 수 있으므로 공정시간이 단축될 수 있다.In addition, during the cleaning of the inside of the reaction chamber after any one process is completed, the process time can be shortened because the next process can be performed without interruption by bringing the substrate into another reaction chamber.
본 발명의 기술적 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 기술적 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical effects of the present invention are not limited to the above-mentioned effects, and other technical effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 본 실시예에 따른 기판처리방법을 수행하기 위한 화학기상증착장치의 제1실시예의 개략적인 평면도이다. 1 is a schematic plan view of a first embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment.
도 2는 도 1의 화학기상증착장치의 개략적인 단면도(A-A')이다. FIG. 2 is a schematic cross-sectional view A-A 'of the chemical vapor deposition apparatus of FIG.
도 3은 본 실시예에 따른 기판처리방법을 수행하기 위한 화학기상증착장치의 제2실시예의 개략적인 평면도이다.3 is a schematic plan view of a second embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment.
도 4는 본 실시예에 따른 기판처리방법을 수행하기 위한 화학기상증착장치의 제3실시예의 개략적인 평면도이다. 4 is a schematic plan view of a third embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment.
도 5는 본 실시예에 따른 기판처리방법을 수행하기 위한 화학기상증착장치의 제4실시예의 개략적인 평면도이다.5 is a schematic plan view of a fourth embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment.
도 6은 본 실시예에 따른 기판처리방법을 수행하기 위한 화학기상증착장치의 제5실시예의 개략적인 평면도이다.6 is a schematic plan view of a fifth embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment.
도 7은 9개의 반응챔버(reaction chamber)를 포함하는 화학기상증착장치를 이용한 기판처리방법의 순서도이다.7 is a flowchart of a substrate processing method using a chemical vapor deposition apparatus including nine reaction chambers.
도 8는 6개의 반응챔버를 포함하는 화학기상증착장치를 이용한 기판처리방법의 순서도이다.8 is a flowchart of a substrate processing method using a chemical vapor deposition apparatus including six reaction chambers.
도 9는 3개의 반응챔버(reaction chamber)를 포함하는 화학기상증착장치를 이용한 기판처리방법의 순서도이다.9 is a flow chart of a substrate processing method using a chemical vapor deposition apparatus including three reaction chambers.
이하 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 그러나 본 실시예는 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면에서의 요소의 형상 등은 보다 명확한 설명을 위하여 과장되게 표현된 부분이 있을 수 있으며, 도면상에서 동일 부호로 표시된 요소는 동일 요소를 의미한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present embodiment is not limited to the embodiments disclosed below, but can be implemented in various forms, and only this embodiment makes the disclosure of the present invention complete, and the scope of the invention to those skilled in the art. It is provided for complete information. Shapes of the elements in the drawings may be exaggerated parts for a more clear description, elements denoted by the same reference numerals in the drawings means the same element.
도 1은 본 실시예에 따른 기판처리방법을 수행하기 위한 화학기상증착장치의 제1실시예의 개략적인 평면도이다. 1 is a schematic plan view of a first embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment.
도 1에 도시된 바와 같이, 제1실시예에 따른 화학기상증착장치는 반응챔버(reaction chamber)(1100), 버퍼챔버(buffer chamber)(1200), 이송장치, 가스공급부(1400), 전원부(1500), 제어부(1600)를 포함한다. As illustrated in FIG. 1, the chemical vapor deposition apparatus according to the first embodiment includes a reaction chamber 1100, a buffer chamber 1200, a transfer apparatus, a gas supply unit 1400, and a power supply unit ( 1500, and a control unit 1600.
먼저, 이송장치부터 상세하게 설명한다. 이송장치는 기판 공급/배출장치(1310), 제1픽업장치(1320), 액추에이터부(1330), 로봇암(1340), 제1플레이트(plate)(1350a), 제2플레이트(1350b), 제3플레이트(1350c) 및 제2픽업장치(1370)를 포함할 수 있다. First, the transfer apparatus will be described in detail. The transfer device includes a substrate supply / discharge device 1310, a first pickup device 1320, an actuator unit 1330, a robot arm 1340, a first plate 1350a, a second plate 1350b, and a first device. It may include a three plate (1350c) and the second pickup device (1370).
구체적으로, 기판 공급/배출장치(1310)는 웨이퍼(wafer) 형태의 기판(substrate)(W)을 작업장으로 공급하거나 기판을 작업장 외부로 배출하는 수단으로서 컨베이어, 운반로봇, 픽업로봇 또는 리니어 액추에이터(linear actuator) 등으로 마련될 수 있다.Specifically, the substrate supply / discharge apparatus 1310 is a means for supplying a substrate (W) in the form of a wafer (wafer) to the workplace or to discharge the substrate to the outside of the workplace, conveyor, transport robot, pickup robot or linear actuator ( linear actuator) or the like.
제1픽업장치(1320)는 기판(W)을 서셉터(susceptor)(S) 상면에 적재하는 수단이며, 운반로봇 또는 픽업로봇일 수 있다. 다른 실시예로서, 기판을 서셉터에 적재하지 않고 제1픽업장치(1320)를 이용하여 기판을 직접 플레이트에 적재할 수도 있다. The first pickup device 1320 is a means for loading the substrate W on an upper surface of the susceptor S, and may be a transport robot or a pickup robot. As another example, the substrate may be directly loaded onto the plate using the first pickup device 1320 without loading the substrate onto the susceptor.
액추에이터부(1330)는 제1액추에이터(1331), 제2액추에이터(1332), 제3액추에이터(1333)를 포함한다. 제1액추에이터(1331), 제2액추에이터(1332), 제3액추에이터(1333)는 각각 제1플레이트(1350a), 제2플레이트(1350b), 제3플레이트(1350c)를 각각의 반응챔버(1100)로부터 버퍼챔버(1200)로, 또는 버퍼챔버(1200)로부터 반응챔버(1100)로 이송할 수 있다.The actuator unit 1330 includes a first actuator 1331, a second actuator 1332, and a third actuator 1333. The first actuator 1331, the second actuator 1332, and the third actuator 1333 respectively include the first plate 1350a, the second plate 1350b, and the third plate 1350c in the respective reaction chambers 1100. To the buffer chamber 1200, or from the buffer chamber 1200 to the reaction chamber 1100.
제1플레이트(plate)(1350a), 제2플레이트(1350b), 제3플레이트(1350c)는 기판 또는 서셉터가 적재될 수 있는 판과 같은 것이다. 플레이트 상면에 적재된 기판 또는 서셉터를 들어 올릴 수 있도록 각각의 플레이트에는 리프트부(1380)가 승강할 수 있는 오목부 또는 홀이 마련된다.The first plate 1350a, the second plate 1350b, and the third plate 1350c are the same plates on which the substrate or susceptor can be loaded. Each plate is provided with a recess or hole through which the lift unit 1380 can be lifted and lifted so as to lift the substrate or susceptor loaded on the plate upper surface.
로봇암(1340)은 서셉터(S)를 파지하여 버퍼챔버(1200) 내측으로 진입하여 제1플레이트(1350a) 상면에 서셉터를 내려놓을 수 있다. 그리고, 로봇암(1340)은 버퍼챔버(1200) 내부에서 제1플레이트(1350a) 상면에 적재된 서셉터를 제2플레이트(1350b)로 이송할 수 있고, 제2플레이트(1350b) 상면에 적재된 서셉터를 제3플레이트(1350c)로 이송할 수 있다. The robot arm 1340 may hold the susceptor S and enter the buffer chamber 1200 to lower the susceptor on the upper surface of the first plate 1350a. In addition, the robot arm 1340 may transfer the susceptor mounted on the upper surface of the first plate 1350a to the second plate 1350b in the buffer chamber 1200, and may be loaded on the upper surface of the second plate 1350b. The susceptor may be transferred to the third plate 1350c.
리프트부(1380)는 서셉터를 승강시키는 부재로서 버퍼챔버 내측에 마련될 수 있다. 로봇암(1340)이 버퍼챔버 내부로 진입한 다음에 리프트부(1380)가 상승하면서 서셉터(S)를 들어올리게 된다. 그리고, 로봇암(1340)이 버퍼챔버 외부로 빠져나가면 리프트부(1380)가 하강하여 서셉터(S)를 플레이트(1350a,1350b,1350c)에 내려놓게 된다.The lift unit 1380 may be provided inside the buffer chamber as a member for elevating the susceptor. The robot arm 1340 enters the buffer chamber and then lifts the lifter 1380 to lift the susceptor S. When the robot arm 1340 exits the buffer chamber, the lift unit 1380 descends to lower the susceptor S on the plates 1350a, 1350b, and 1350c.
버퍼챔버 게이트 밸브(1214)가 개방되면 로봇암(1340)은 버퍼챔버 게이트(1213)를 통과하여 버퍼챔버(1200) 내부로 진입할 수 있다. 그리고, 제1플레이트(1350a)에 놓인 서셉터를 제2플레이트(1350b) 또는 제3플레이트(1350c)로 이송할 수 있다. 상기 이송장치의 구성은 이하에서 설명하는 실시예에 한정되지 않으며, 복수의 반응챔버와 버퍼챔버 내측으로 기판을 반출 또는 반입시킬 수 있도록 다양한 변형이 가능하다. When the buffer chamber gate valve 1214 is opened, the robot arm 1340 may enter the buffer chamber 1200 through the buffer chamber gate 1213. The susceptor placed on the first plate 1350a may be transferred to the second plate 1350b or the third plate 1350c. The configuration of the transfer device is not limited to the embodiments described below, and various modifications are possible to carry out or carry the substrate into the plurality of reaction chambers and the buffer chamber.
다음으로, 가스공급부(1400)에 대하여 상세하게 설명한다. 가스공급부(1400)는 수소 공급부(1410), 질소 공급부(1420), 암모니아(NH3)공급부(1430), 실레인(SiH4)공급부(1440), 트리메틸갈륨(TMG)공급부(1450), 트리메틸인듐(TMI)공급부(1460), Cp2Mg(bis- cyclopentadienyl- magnesium)공급부(1470) 등을 포함한다.Next, the gas supply unit 1400 will be described in detail. The gas supply unit 1400 includes a hydrogen supply unit 1410, a nitrogen supply unit 1420, an ammonia (NH 3) supply unit 1430, a silane (SiH 4) supply unit 1440, a trimethylgallium (TMG) supply unit 1450, and trimethyl indium ( TMI) supply unit 1460, Cp2Mg (bis-cyclopentadienyl magnesium) supply unit 1470, and the like.
수소 공급부(1410), 질소 공급부(1420) 및 암모니아 공급부(1430)는 버퍼챔버(1200), 제1반응챔버(1110), 제2반응챔버(1120), 제3반응챔버(1130)에 각각 수소(H2), 질소(N2), 암모니아(NH3)를 공급할 수 있다. 다른 실시예로서, 암모니아 이외에 다른 Ⅴ족가스를 공급하는 공급부를 포함하는 실시예도 가능하다.The hydrogen supply unit 1410, the nitrogen supply unit 1420, and the ammonia supply unit 1430 may each include hydrogen in the buffer chamber 1200, the first reaction chamber 1110, the second reaction chamber 1120, and the third reaction chamber 1130. (H2), nitrogen (N2) and ammonia (NH3) can be supplied. As another embodiment, an embodiment including a supply unit for supplying Group V gas other than ammonia is also possible.
실레인(SiH4)공급부(1440)는 반응챔버(1100)에 실레인(SiH4)을 공급할 수 있다. 다른 실시예로서, SiH4 이외에 다른 n형(n-type) 도핑가스(예를 들어, Ge, Sn 등을 포함하는 가스)를 공급하는 공급부를 포함하는 실시예도 가능하다.The silane (SiH 4) supply unit 1440 may supply the silane (SiH 4) to the reaction chamber 1100. As another embodiment, an embodiment including a supply unit for supplying another n-type doping gas (eg, a gas containing Ge, Sn, etc.) in addition to SiH 4 may be possible.
트리메틸갈륨 공급부(1450)는 반응챔버(1100)에 트리메틸갈륨을 공급할 수 있다. 다른 실시예로서, 트리메틸갈륨 이외에 다른 Ⅲ족 가스를 공급하는 공급부를 포함하는 실시예도 가능하다.The trimethylgallium supply unit 1450 may supply trimethylgallium to the reaction chamber 1100. As another embodiment, an embodiment including a supply for supplying other group III gas in addition to trimethylgallium is also possible.
트리메틸인듐 공급부(1460)는 반응챔버(1100)에 트리메틸인듐(tri-methyl-indium)을 공급할 수 있다. 다른 실시예로서, 트리메틸인듐 이외에 다른 Ⅲ족 가스를 공급하는 공급부를 포함하는 실시예도 가능하다. 다른 실시예로서, AlGaN층을 형성하는 공정이 포함되는 경우에는 Ⅲ족 가스로서 트리메틸알루미늄(TMA:tri-methyl-aluminium)를 공급하는 공급부가 마련될 수도 있다.The trimethyl indium supply unit 1460 may supply trimethyl indium to the reaction chamber 1100. As another embodiment, an embodiment including a supply for supplying other group III gas in addition to trimethyl indium is also possible. As another embodiment, when a process of forming an AlGaN layer is included, a supply unit for supplying trimethyl aluminum (TMA) as a group III gas may be provided.
Cp2Mg공급부(1470)는 반응챔버(1100)에 Cp2Mg(bis- cyclopentadienyl- magnesium)을 공급할 수 있다. 다른 실시예로서, p형 도핑가스로서 마그네슘(Mg)을 포함하는 Cp2Mg 가스 이외에 다른 p형 도핑가스(예를 들어, Zn, Ca, Be 등을 포함하는 가스)를 공급하는 공급부를 포함하는 실시예도 가능하다.The Cp2Mg supply unit 1470 may supply Cp2Mg (bis-cyclopentadienyl-magnesium) to the reaction chamber 1100. As another embodiment, the embodiment also includes a supply for supplying other p-type doping gas (for example, gas containing Zn, Ca, Be, etc.) in addition to the Cp2Mg gas containing magnesium (Mg) as a p-type doping gas It is possible.
전원부(1500)는 반응챔버(1100) 또는 버퍼챔버(1200) 등에 전력을 공급할 수 있다. 전원부(1500)는 제1전원부(1510), 제2전원부(1520) 및 제3전원부(1530)를 포함한다.The power supply unit 1500 may supply power to the reaction chamber 1100 or the buffer chamber 1200. The power supply unit 1500 includes a first power supply unit 1510, a second power supply unit 1520, and a third power supply unit 1530.
제어부(1600)는 반응챔버(1100), 버퍼챔버(1200), 이송장치, 가스공급부(1400), 전원부(1500) 등을 제어할 수 있다.The controller 1600 may control the reaction chamber 1100, the buffer chamber 1200, the transfer apparatus, the gas supply unit 1400, the power supply unit 1500, and the like.
다음으로, 반응챔버(1100)에 대하여 상세하게 설명한다. 반응챔버(1100)는 일렬로 배열된 제1반응챔버(1110), 제2반응챔버(1120), 제3반응챔버(1130)를 포함한다. 반응챔버(reaction chamber)는 반드시 3개에 국한되는 것이 아니라 2개 내지 9개, 또는 그 이상으로 구성될 수도 있다. Next, the reaction chamber 1100 will be described in detail. The reaction chamber 1100 includes a first reaction chamber 1110, a second reaction chamber 1120, and a third reaction chamber 1130 arranged in a row. The reaction chamber is not necessarily limited to three, but may be composed of two to nine or more.
제1반응챔버 게이트(1115)를 통하여 제1반응챔버(1110) 내부로 서셉터(S)가 반입된다. 제1반응챔버(1110) 내부에는 상면에 서셉터가 적재되는 회전부(도 2의 1112)가 설치된다. 다른 실시예로서, 제1반응챔버(1110) 내부에 회전하지 않으면서 단순히 상면에 서셉터가 적재되는 서셉터지지대가 설치될 수도 있다.The susceptor S is loaded into the first reaction chamber 1110 through the first reaction chamber gate 1115. Inside the first reaction chamber 1110, a rotating part (1112 of FIG. 2) is installed on which a susceptor is mounted. In another embodiment, a susceptor support on which the susceptor is simply mounted on the upper surface of the first reaction chamber 1110 may be installed without rotating.
제1반응챔버(1110)에서는 기판을 열처리(heat treatment)하는 공정이 진행될 수 있다. 가스공급부(1400)에 의하여 제1반응챔버(1110) 내측에 수소 분위기, 또는 수소 및 질소의 혼합가스 분위기가 형성될 수 있다. 히터(미도시)에 의하여 제1반응챔버(1110) 내부의 온도가 섭씨 약 1000~1200도로 되도록 조절함으로써 기판상의 산화막과 같은 이물질층이 제거될 수 있다.In the first reaction chamber 1110, a process of heat treating the substrate may be performed. The gas supply unit 1400 may form a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and nitrogen inside the first reaction chamber 1110. The foreign material layer such as an oxide layer on the substrate may be removed by controlling the temperature inside the first reaction chamber 1110 to about 1000 to 1200 degrees Celsius by a heater (not shown).
또한, 제1반응챔버(1110)에서는, GaN 버퍼층을 성장시키는 공정이 진행될 수도 있다. 가스공급부(1400)에 의하여 제1반응챔버(1110) 내측에 수소 가스 분위기가 형성될 수 있으며, 트리메틸갈륨(TMG: Trimethylgallium)과 암모니아 가스가 투입될 수 있다. 또한, 히터에 의하여 기판 또는 서셉터는 섭씨 약 450도 ~ 700도, 보다 구체적으로는 섭씨 약 500~600도 정도로 가열될 수 있다. 이러한 공정에 의하여 열처리된 기판 상면에 GaN 버퍼층을 성장시킬 수 있다. In the first reaction chamber 1110, a process of growing a GaN buffer layer may be performed. The hydrogen supply atmosphere may be formed inside the first reaction chamber 1110 by the gas supply unit 1400, and trimethylgallium (TMG) and ammonia gas may be introduced. In addition, the substrate or susceptor may be heated by about 450 degrees to about 700 degrees Celsius, and more specifically about 500 to 600 degrees Celsius. The GaN buffer layer may be grown on the upper surface of the substrate heat-treated by this process.
다른 실시예로서, 버퍼층은 알루미늄 원소와 질소 원소를 포함하는 AlN layer일 수 있다. 다른 실시예로서, 활성층(active layer)이 InAlGaN을 포함하는 경우에는 버퍼층은 AlGaN층을 포함할 수 있다.In another embodiment, the buffer layer may be an AlN layer including an aluminum element and a nitrogen element. In another embodiment, when the active layer includes InAlGaN, the buffer layer may include an AlGaN layer.
또한, 제1반응챔버(1110)에서는 GaN 버퍼층을 성장시킨 다음에 언도프트 GaN층(undoped-GaN layer)을 성장시키는 공정이 수행될 수 있다. 다른 실시예로서 언도프트 InGaN층 또는 언도프트 AlGaN층을 성장시키는 공정이 수행될 수도 있다. 언도프트 GaN층이 성장할 수 있도록 기판의 온도가 섭씨 약 1000도 ~ 1200도, 보다 구체적으로는 섭씨 약 1030도 ~ 1080도가 되도록 제1반응챔버(1110) 내부가 가열된다. 사파이어 기판 상에 버퍼층과 언도프트 GaN층을 성장시키는 공정은 GaN 박막의 전기적, 결정학적 성장 효율을 향상시킬 수 있다.In the first reaction chamber 1110, a process of growing a GaN buffer layer and then growing an undoped GaN layer may be performed. In another embodiment, a process of growing an undoped InGaN layer or an undoped AlGaN layer may be performed. The inside of the first reaction chamber 1110 is heated so that the temperature of the substrate is about 1000 degrees to 1200 degrees Celsius, and more specifically, about 1030 degrees to 1080 degrees Celsius so that the undoped GaN layer can grow. The process of growing the buffer layer and the undoped GaN layer on the sapphire substrate can improve the electrical and crystallographic growth efficiency of the GaN thin film.
또한, 제1반응챔버(1110)에서는 언도프트 GaN층(undoped-GaN layer)상면에 n타입 GaN층(Si 또는 Ge 도핑(doping))을 성장시키는 공정이 수행될 수 있다. 가스공급부(1400)에 의하여 제1반응챔버(1110) 내측에 수소 가스 분위기가 형성될 수 있으며, 트리메틸갈륨(TMG: Trimethylgallium)과 암모니아 가스가 투입될 수 있다. 또한, 실레인(Silane)(SiH4) 또는 저메인(Germane)(GeH4)을 추가로 투입하여 Si 또는 Ge을 도핑할 수 있다. 또한, 히터에 의하여 기판 또는 서셉터는 섭씨 약 1000~1200도로 가열될 수 있다. 이러한 공정에 의하여 GaN층 상면에 n타입 GaN층(n-type GaN layer)이 성장할 수 있다.Further, in the first reaction chamber 1110, a process of growing an n-type GaN layer (Si or Ge doping) may be performed on the undoped GaN layer. The hydrogen supply atmosphere may be formed inside the first reaction chamber 1110 by the gas supply unit 1400, and trimethylgallium (TMG) and ammonia gas may be introduced. Further, Silane (SiH 4) or Germane (Germane) (GeH 4) may be further added to dope Si or Ge. In addition, the substrate or susceptor may be heated to about 1000 ~ 1200 degrees Celsius by the heater. By this process, an n-type GaN layer may be grown on the upper surface of the GaN layer.
다른 실시예로서, n타입층(n-type layer)은 n-GaN/n-AlGaN/n-InGaN의 적층구조일 수 있다. 또한, 다른 실시예로서, n타입층은 n-GaN/ n-AlGaN, n-GaN/n-AlGaN/n-GaN, n-GaN/n-InGaN/n-AlGaN/n-GaN 등으로 구성된 적층구조일 수 있다. 각각의 n타입층들은 서로 다른 반응챔버에서 기상증착공정에 의하여 기판에 형성될 수도 있다. 또한, 다른 실시예로서, 활성층(active layer)이 InAlGaN을 포함하는 경우에는 n타입층은 n-AlGaN층을 포함할 수 있다.In another embodiment, the n-type layer may be a stacked structure of n-GaN / n-AlGaN / n-InGaN. In another embodiment, the n-type layer is formed of n-GaN / n-AlGaN, n-GaN / n-AlGaN / n-GaN, n-GaN / n-InGaN / n-AlGaN / n-GaN, or the like. It may be a structure. Each n-type layer may be formed on the substrate by a vapor deposition process in a different reaction chamber. In another embodiment, when the active layer includes InAlGaN, the n-type layer may include an n-AlGaN layer.
제2반응챔버(1120)에서는, 활성층(active layer)을 성장시키는 공정이 진행될 수 있다. 가스공급부(1400)에 의하여 반응챔버 내측에 질소(N2) 가스 분위기가 형성될 수 있으며, 트리메틸갈륨(TMG: Tri-methyl-gallium), 트리메틸인듐(TMI:tri-methyl-indium) 및 암모니아 가스를 투입할 수 있다. 또한, 히터에 의하여 기판 또는 서셉터의 온도를 섭씨 약 700도 내지 900도로 조절할 수 있다. 활성층(active layer)은 단일 양자 우물(single quantum well: SQW)층 또는 복수개의 양자 우물(quantum well)을 갖는 다중양자우물(multi quantum well: MQW)층일 수 있다. 즉, 인듐(In)과 갈륨(Ga)의 함량이 서로 다른 장벽층(barrier layer)과 양자 우물층(quantum well layer)을 교대로 복수회 적층함으로써 다중 양자우물층이 형성될 수 있다. 이러한 공정에 의하여 n-type GaN층 상면에 활성층(active layer)을 성장시킬 수 있다. 활성층의 구성은 InGaN QW, InGaN/GaN QW, InGaN/AlGaN QW, InGaN/InGaN QW, GaN/AlGaN QW, InAlGaN/InAlGaN QW 등의 적층구조일 수 있다.In the second reaction chamber 1120, a process of growing an active layer may be performed. Nitrogen (N2) gas atmosphere may be formed inside the reaction chamber by the gas supply unit 1400. Tri-methyl-gallium (TMG), tri-methyl-indium (TMI) and ammonia gas may be formed. It can be put in. In addition, the temperature of the substrate or susceptor can be adjusted by about 700 degrees to 900 degrees Celsius by the heater. The active layer may be a single quantum well (SQW) layer or a multi quantum well (MQW) layer having a plurality of quantum wells. That is, multiple quantum well layers may be formed by alternately stacking a barrier layer and a quantum well layer having different indium (In) and gallium (Ga) contents. By this process, an active layer may be grown on the n-type GaN layer. The active layer may have a stacked structure such as InGaN QW, InGaN / GaN QW, InGaN / AlGaN QW, InGaN / InGaN QW, GaN / AlGaN QW, InAlGaN / InAlGaN QW.
제3반응챔버(1130)에서는, p형 GaN층(p-type GaN layer)(Mg 도핑)을 성장시키는 공정이 수행될 수 있다. 가스공급부(1400)에 의하여 반응챔버 내부에 수소 가스 분위기가 형성될 수 있으며, 트리메틸갈륨(TMG: Trimethylgallium), Cp2Mg(bis- cyclopentadienyl- magnesium), 암모니아 가스가 투입될 수 있다. 또한, 히터(미도시)에 의하여 기판 또는 서셉터의 온도는 섭씨 약 900~1200도로 조절될 수 있다. 이러한 공정에 의하여 활성층(active layer) 상면에 p형 GaN층을 성장시킬 수 있다. p형 GaN층의 구성은 p-AlGaN/p-GaN, p-AlGaN/p-GaN/p-AlGaN/p-GaN, p-GaN/p-AlGaN/p-GaN 등의 적층구조일 수 있다. AlGaN층을 성장시키는 공정이 추가되는 경우에는 가스공급부는 AlGaN층을 형성하는데 필요한 수소, Ⅲ족 가스(TMA:trimethylaluminium), Ⅴ족 가스를 공급할 수 있다.In the third reaction chamber 1130, a process of growing a p-type GaN layer (Mg doping) may be performed. A hydrogen gas atmosphere may be formed inside the reaction chamber by the gas supply unit 1400, and trimethylgallium (TMG), bis-cyclopentadienyl-magnesium (Cp2Mg), and ammonia gas may be introduced. In addition, the temperature of the substrate or susceptor may be adjusted by about 900 to 1200 degrees Celsius by a heater (not shown). By this process, a p-type GaN layer may be grown on the active layer. The p-type GaN layer may have a stacked structure of p-AlGaN / p-GaN, p-AlGaN / p-GaN / p-AlGaN / p-GaN, p-GaN / p-AlGaN / p-GaN. When a process of growing an AlGaN layer is added, the gas supply unit may supply hydrogen, group III gas (TMA: trimethylaluminium), and group V gas required to form the AlGaN layer.
다른 실시예에 의하면, 제3반응챔버(1130)에서는 어닐링(annealing) 공정이 진행될 수도 있다. 예를 들어, 반응챔버 내부의 온도를 섭씨 600~900도로 유지함으로써 이전 공정에서 형성된 박막에 대하여 어닐링을 수행할 수 있다. 다른 실시예로서, 어닐링 공정 이후에 쿨링(cooling) 공정이 수행되거나 어닐링 공정 없이 쿨링 공정만 수행될 수도 있다. 다른 실시예로서, 제3반응챔버에서 어닐링 공정이 아니라 저에너지 전자빔을 조사(low energy electron beam irradiation treatment)하는 공정이 수행될 수도 있다. 다른 실시예로서, 어닐링 공정이 버퍼챔버(1200)에서 수행될 수도 있다. In another embodiment, an annealing process may be performed in the third reaction chamber 1130. For example, annealing may be performed on the thin film formed in the previous process by maintaining the temperature inside the reaction chamber at 600 to 900 degrees Celsius. In another embodiment, after the annealing process, a cooling process may be performed or only the cooling process may be performed without the annealing process. In another embodiment, a process of irradiating a low energy electron beam irradiation treatment may be performed instead of the annealing process in the third reaction chamber. As another example, an annealing process may be performed in the buffer chamber 1200.
다음으로, 버퍼챔버(1200)를 상세하게 설명한다. 버퍼챔버(1200)는 복수의 반응챔버(1100)와 연결되며, 어느 하나의 반응챔버에서 서셉터를 반출한 다음에 다른 반응챔버로 서셉터를 반입할 때 서셉터가 통과하는 통로 역할을 한다. 제1반응챔버(1110)에서 서셉터가 반출되기 전에 미리 버퍼챔버(1200)의 온도를 제1반응챔버(1110) 및 제2반응챔버(1120)의 온도와 유사하게 조절할 수 있다. 즉, 제1반응챔버(1110)에서 열처리 공정을 진행하기 전에 버퍼챔버(1200) 내부 온도를 미리 섭씨 약 500~1200도, 보다 구체적으로는 대략 600~900도 정도로 조절할 수 있다. 이에 따라, 열처리 공정에 필요한 온도로 기판을 가열하는 데 소요되는 시간을 감소시킬 수 있다. 수소 공급부(1410)와 질소 공급부(1420)에 의하여 버퍼챔버(1200) 내부는 수소 분위기 또는 질소 분위기로 미리 조절될 수 있다.Next, the buffer chamber 1200 will be described in detail. The buffer chamber 1200 is connected to the plurality of reaction chambers 1100 and serves as a passage through which the susceptor passes when the susceptor is taken out from one reaction chamber and then brought into the other reaction chamber. Before the susceptor is removed from the first reaction chamber 1110, the temperature of the buffer chamber 1200 may be adjusted similarly to the temperatures of the first reaction chamber 1110 and the second reaction chamber 1120. That is, before the heat treatment process is performed in the first reaction chamber 1110, the temperature inside the buffer chamber 1200 may be adjusted in advance to about 500 to 1200 degrees Celsius, and more specifically to about 600 to 900 degrees Celsius. Accordingly, the time required to heat the substrate to the temperature required for the heat treatment process can be reduced. By the hydrogen supply unit 1410 and the nitrogen supply unit 1420, the inside of the buffer chamber 1200 may be previously adjusted to a hydrogen atmosphere or a nitrogen atmosphere.
도 2는 도 1의 화학기상증착장치의 개략적인 단면도(A-A')이다. FIG. 2 is a schematic cross-sectional view A-A 'of the chemical vapor deposition apparatus of FIG.
도 1 및 도 2에 도시된 바와 같이, 버퍼챔버 게이트밸브(1214)가 개방되면 제1엑추에이터(1331)가 버퍼챔버 게이트(1213)를 통과하여 제1플레이트(1350a)를 버퍼챔버(1200) 내부로 반입된다. 그리고, 로봇암(1340)이 버퍼챔버 내부에서 서셉터(S)를 제1플레이트(1350a)에 적재한다.1 and 2, when the buffer chamber gate valve 1214 is opened, the first actuator 1331 passes through the buffer chamber gate 1213 to pass the first plate 1350a into the buffer chamber 1200. Imported into The robot arm 1340 loads the susceptor S on the first plate 1350a in the buffer chamber.
만약, 어느 하나의 반응챔버에서 n형 GaN층을 형성하는 공정이 섭씨 약 1200도에서 진행된다면, 그 반응챔버(1100)에서 기판이 반출될 때에 기판에 대한 열충격이 감소되도록 버퍼챔버(1200)의 온도는 미리 약 500~1200도 정도로 조절될 수 있다. 그리고, 버퍼챔버(1200) 내부의 가스 분위기는 수소 분위기로 조정될 수 있다. If the process of forming the n-type GaN layer in any one reaction chamber proceeds at about 1200 degrees Celsius, the thermal shock to the substrate is reduced when the substrate is removed from the reaction chamber 1100. The temperature can be adjusted to about 500-1200 degrees in advance. In addition, the gas atmosphere inside the buffer chamber 1200 may be adjusted to a hydrogen atmosphere.
제1반응챔버에서의 공정이 완료되면 회전부(1112) 내부에 마련된 리프트부(1119)가 상승하여 회전부(1112) 상면에 적재된 서셉터를 들어올린다. 그리고, 제1플레이트(1350a)가 제1반응챔버(1110) 내부로 반입되어 회전부(1112)와 서셉터(S) 사이에 위치하게 된다. 그리고, 리프트부(1119)가 하강하면 서셉터(S)가 제1플레이트(1350a)에 적재되며, 제1플레이트는 버퍼챔버(1200)로 반출된다.When the process in the first reaction chamber is completed, the lift part 1119 provided in the rotating part 1112 is raised to lift the susceptor loaded on the upper part of the rotating part 1112. In addition, the first plate 1350a is carried into the first reaction chamber 1110 and is positioned between the rotating part 1112 and the susceptor S. When the lift unit 1119 descends, the susceptor S is loaded on the first plate 1350a, and the first plate is carried out to the buffer chamber 1200.
제1반응챔버 반출입구(1110a)에 마련된 제1반응챔버 게이트밸브(1116)가 개방되면 제1플레이트(1350a)가 제1반응챔버 게이트(1115)를 통과하여 제1반응챔버(1110)로부터 버퍼챔버(1200)로 이송될 수 있다. When the first reaction chamber gate valve 1116 provided at the first reaction chamber outlet 1110a is opened, the first plate 1350a passes through the first reaction chamber gate 1115 and is buffered from the first reaction chamber 1110. It may be transferred to the chamber 1200.
버퍼챔버(1200)로 이송된 서셉터(S)를 로봇암(1340)이 파지할 수 있도록 받침대(1351) 상면의 리프트부(1380)가 상승할 수 있다(도 1 참조). 플레이트의 오목부 사이로 리프트부(1380)가 상승하여 서셉터(S)를 들어 올리면 로봇암(1340)이 서셉터(S)를 파지한다. 그리고, 서셉터는 제2반응챔버 게이트(1125) 앞에 위치한 제2플레이트(1350b)에 적재된다.The lift unit 1380 on the upper surface of the pedestal 1351 may be raised so that the robot arm 1340 may hold the susceptor S transferred to the buffer chamber 1200 (see FIG. 1). When the lift unit 1380 is raised between the recesses of the plate to lift the susceptor S, the robot arm 1340 grips the susceptor S. The susceptor is mounted on the second plate 1350b positioned in front of the second reaction chamber gate 1125.
버퍼챔버(1200)에는 버퍼챔버 내부온도를 섭씨 600도 ~ 900도 정도로 조절하기 위한 히터(1203)가 설치된다. 이러한 히터(1203)는 램프(lamp)히터 또는 RF 히터일 수 있다.The buffer chamber 1200 is provided with a heater 1203 for adjusting the internal temperature of the buffer chamber to about 600 degrees Celsius to 900 degrees Celsius. This heater 1203 may be a lamp heater or an RF heater.
제1반응챔버(1110)에는 서셉터를 향하여 공정가스(processing gas)를 분사하는 샤워헤드(1111)가 마련된다. 회전부(1112) 내측에는 서셉터를 가열하기 위한 히터(미도시)가 설치될 수 있다. 모터(1114)는 서셉터(S) 및 회전부(1112)를 회전시킬 수 있다. 서셉터(S)는 회전축(1113) 상단의 회전부(1112)와 분리 및 결합이 가능하다.The first reaction chamber 1110 is provided with a shower head 1111 for injecting a processing gas toward the susceptor. A heater (not shown) for heating the susceptor may be installed inside the rotating unit 1112. The motor 1114 may rotate the susceptor S and the rotating part 1112. The susceptor S may be separated from and coupled to the rotating part 1112 at the upper end of the rotating shaft 1113.
도 3은 본 실시예에 따른 기판처리방법을 수행하기 위한 화학기상증착장치의 제2실시예의 개략적인 평면도이다. 도 1의 제1실시예와 중복되는 설명은 생략한다. 제2실시예는 3개의 반응챔버(reaction chamber)를 포함하며, 서셉터(susceptor)를 운반하는 방식이 제1실시예의 방식과 다르다.3 is a schematic plan view of a second embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment. The description overlapping with the first embodiment of FIG. 1 will be omitted. The second embodiment includes three reaction chambers, and the manner of conveying the susceptor is different from that of the first embodiment.
도 3에 도시된 바와 같이, 액추에이터부(2330)는 액추에이터(2331), 액추에이터 이송모터(2332), 액추에이터 이송레일(2333)을 포함한다. As shown in FIG. 3, the actuator unit 2330 includes an actuator 2331, an actuator transfer motor 2332, and an actuator transfer rail 2333.
액추에이터(2331)는 액추에이터 이송레일(2333)에 슬라이딩 가능하게 결합되며, 액추에이터 이송모터(2332)에 의하여 액추에이터(2331)는 액추에이터 이송레일(2333)을 따라 슬라이딩 가능하다.The actuator 2331 is slidably coupled to the actuator transfer rail 2333, and the actuator 2331 is slidable along the actuator transfer rail 2333 by the actuator transfer motor 2332.
액추에이터(2331)에 의하여 제1반응챔버(2110)에서 버퍼챔버(2200)로 서셉터(S)가 반출된 다음에 액추에이터 이송모터(2332)는 서셉터(S)가 제2반응챔버 앞에 위치하도록 액추에이터(2331)를 이동시킨다. 액추에이터(2331)가 이동할 때에 서셉터(S)는 버퍼챔버(2200) 내부에 위치한 상태로 이송된다. 이에 따라 액추에이터 한 개만을 사용하여 기판을 각각의 반응챔버(2100) 또는 버퍼챔버(2200) 내부로 반입시킬 수 있다.After the susceptor S is taken out from the first reaction chamber 2110 to the buffer chamber 2200 by the actuator 2331, the actuator transfer motor 2332 is positioned so that the susceptor S is located in front of the second reaction chamber. Move the actuator 2331. When the actuator 2331 moves, the susceptor S is transferred in a state located inside the buffer chamber 2200. Accordingly, the substrate may be loaded into each reaction chamber 2100 or the buffer chamber 2200 using only one actuator.
도 4는 본 실시예에 따른 기판처리방법을 수행하기 위한 화학기상증착장치의 제3실시예의 개략적인 평면도이다. 제1,제2실시예와 중복되는 설명은 생략한다. 제3실시예는 4개의 반응챔버를 포함하며, 서셉터를 운반하는 방식이 제1,제2실시예의 방식과 다르다.4 is a schematic plan view of a third embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment. The description overlapping with the first and second embodiments is omitted. The third embodiment includes four reaction chambers, and the manner of conveying the susceptor is different from that of the first and second embodiments.
도 4에 도시된 바와 같이, 이송장치는 제1로봇암(3706), 제1로봇암 이송레일(3705), 제2로봇암(3708), 제2로봇암 이송레일(3707), 제1플레이트(3702a), 제2플레이트(3702b), 제3플레이트(3702c), 제4플레이트(3702d) 및 롤러부(3701)를 포함할 수 있다.As shown in FIG. 4, the transfer apparatus includes a first robot arm 3706, a first robot arm transfer rail 3705, a second robot arm 3708, a second robot arm transfer rail 3707, and a first plate. Reference numeral 3702a may include a second plate 3702b, a third plate 3702c, a fourth plate 3702d, and a roller portion 3701.
제2로봇암(3708)은 기판 공급부(3801)에서 미처리 기판(W)을 공급받아서 기판을 픽업한 다음 서셉터에 적재할 수 있다. 제2로봇암(3708)은 제2로봇암 이송레일(3707)에 슬라이딩 이동가능하도록 결합된다. 제2로봇암(3708)은 서셉터 반출부(3803)에 놓인 서셉터에 접근하여 처리완료된 기판을 픽업하여 기판 반출부(3804)로 이송할 수 있다.The second robot arm 3708 may receive the unprocessed substrate W from the substrate supply unit 3801, pick up the substrate, and load the substrate on the susceptor. The second robot arm 3708 is coupled to the second robot arm transfer rail 3707 to be slidably movable. The second robot arm 3708 may access the susceptor placed in the susceptor carrying part 3803, pick up the processed substrate, and transfer the processed substrate to the substrate carrying part 3804.
제1로봇암(3706)은 서셉터 공급부(3802)에서 기판이 적재된 서셉터를 픽업하여 버퍼챔버(3200) 내측으로 반입하며, 반입된 서셉터를 제1플레이트(3702a)에 적재한다. 제1로봇암(3706)은 처리완료된 서셉터가 제4반응챔버(3140)에서 버퍼챔버로 반출되면, 제4플레이트(3702d)에 적재된 서셉터를 픽업하여 외측으로 반출하고, 서셉터 반출부(3803)로 서셉터를 이송한다.The first robot arm 3706 picks up the susceptor on which the substrate is loaded from the susceptor supply unit 3802 and carries it into the buffer chamber 3200, and loads the loaded susceptor into the first plate 3702a. When the processed susceptor is taken out from the fourth reaction chamber 3140 to the buffer chamber, the first robot arm 3706 picks up the susceptor loaded in the fourth plate 3702d and takes it out, and the susceptor carrying part Transfer the susceptor to (3803).
롤러부(3701)는 버퍼챔버(3200) 내측에 마련되며 제1플레이트(3702a)를 제1반응챔버측으로 구름 이송할 수 있도록 제자리에서 회전가능하다. 롤러부(3701)는 하나 또는 복수개의 회전가능한 롤러를 포함한다. 롤러와 플레이트는 각각에 마련된 기어에 의하여 결합이 되어 플레이트를 이송할 수도 있다. The roller part 3701 is provided inside the buffer chamber 3200 and is rotatable in place so that the first plate 3702a may be conveyed to the first reaction chamber. The roller portion 3701 includes one or a plurality of rotatable rollers. The roller and the plate may be coupled to each other by a gear provided to transfer the plate.
도 5는 본 실시예에 따른 기판처리방법을 수행하기 위한 화학기상증착장치의 제4실시예의 개략적인 평면도이다. 제1 내지 제3실시예와 중복되는 설명은 생략한다. 제4실시예는 4개의 반응챔버를 포함하며, 서셉터를 운반하는 방식이 제1 내지 제3실시예의 방식과 다르다.5 is a schematic plan view of a fourth embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment. The description overlapping with the first to third embodiments is omitted. The fourth embodiment includes four reaction chambers, and the manner of conveying the susceptor is different from that of the first to third embodiments.
도 5에 도시된 바와 같이, 이송장치는 기판 공급/배출장치(4310), 제1픽업장치(4320), 제1액추에이터(4331), 제2액추에이터(4332), 제3액추에이터(4333), 제4액추에이터(4334), 제1플레이트(4350a), 제2플레이트(4350b), 제3플레이트(4350c), 제4플레이트(4350d), 제1로봇암(4340), 제2로봇암(4360a), 제3로봇암(4360b), 제4로봇암(4360c) 및 제2픽업장치(4370)를 포함할 수 있다. As shown in FIG. 5, the transfer apparatus includes a substrate supply / discharge apparatus 4310, a first pickup apparatus 4320, a first actuator 4331, a second actuator 4332, a third actuator 4333, and a third actuator 4 actuator 4340, first plate 4350a, second plate 4350b, third plate 4350c, fourth plate 4350d, first robot arm 4340, second robot arm 4360a, A third robot arm 4360b, a fourth robot arm 4360c, and a second pickup device 4370 may be included.
제2로봇암(4360a)은 버퍼챔버(4200) 내측에서 제1플레이트(4350a) 상면에 적재된 서셉터를 제2플레이트(4350b) 상면으로 운반할 수 있다. 각각의 플레이트 하부에는 기판 또는 서셉터를 승강시키는 리프트부(4380)가 설치된다. 따라서, 리프트부(4380)가 제1플레이트(4350a) 상면에 적재된 서셉터를 상승시키면 제2로봇암(4360a)이 서셉터와 제1플레이트(4350a) 사이로 진입할 수 있다. 그 다음, 리프트부(4380)가 서셉터를 하강시키면 서셉터가 제2로봇암(4360a) 상면에 적재된다. 제3로봇암(4360b)은 버퍼챔버(4200) 내측에서 제2플레이트(4350b) 상면에 적재된 서셉터를 제3플레이트(4350c) 상면으로 운반할 수 있다. 제2로봇암(4360a) 내지 제4로봇암(4360c)은 섭씨 1000도 내외의 온도에서도 안정적으로 동작하도록 내열 재질로 제작되는 것이 바람직하다. The second robot arm 4360a may transport the susceptor mounted on the upper surface of the first plate 4350a to the upper surface of the second plate 4350b inside the buffer chamber 4200. The lower portion of each plate is provided with a lift portion 4380 for lifting the substrate or susceptor. Therefore, when the lift unit 4380 raises the susceptor loaded on the upper surface of the first plate 4350a, the second robot arm 4360a may enter between the susceptor and the first plate 4350a. Next, when the lift part 4380 lowers the susceptor, the susceptor is loaded on the upper surface of the second robot arm 4360a. The third robot arm 4360b may transport the susceptor mounted on the upper surface of the second plate 4350b to the upper surface of the third plate 4350c inside the buffer chamber 4200. The second robot arm 4360a to the fourth robot arm 4360c are preferably made of a heat resistant material to operate stably at a temperature of about 1000 degrees Celsius.
버퍼챔버(4200)에는 제1버퍼챔버 게이트(4213), 제1버퍼챔버 게이트밸브(4214), 제2버퍼챔버 게이트(4223), 제2버퍼챔버 게이트밸브(4224)가 마련된다. The buffer chamber 4200 is provided with a first buffer chamber gate 4213, a first buffer chamber gate valve 4214, a second buffer chamber gate 4223, and a second buffer chamber gate valve 4224.
도 6은 본 실시예에 따른 기판처리방법을 수행하기 위한 화학기상증착장치의 제5실시예의 개략적인 평면도이다. 제5실시예는 6개의 반응챔버(reaction chamber)를 포함하며, 서셉터(susceptor)를 운반하는 방식이 제1 내지 제4 실시예의 방식과 다르다.6 is a schematic plan view of a fifth embodiment of a chemical vapor deposition apparatus for performing a substrate processing method according to the present embodiment. The fifth embodiment includes six reaction chambers, and the manner of conveying the susceptor is different from that of the first to fourth embodiments.
도 6에 도시된 바와 같이, 이송장치는 기판 공급/배출장치(5310), 제1픽업장치(5320), 액추에이터(5330), 복수의 플레이트(5340), 제2픽업장치(5360)를 포함한다. 액추에이터(5330)는 제1 내지 제6액추에이터(5331, 5332, 5333, 5334, 5335, 5336)를 포함한다. As shown in FIG. 6, the transfer apparatus includes a substrate supply / discharge apparatus 5310, a first pickup apparatus 5320, an actuator 5330, a plurality of plates 5340, and a second pickup apparatus 5260. . Actuator 5330 includes first to sixth actuators 5331, 5332, 5333, 5334, 5335, and 5336.
플레이트(5340)는 액추에이터(5330)와 탈착가능하며, 플레이트(5340)가 플레이트 운반부(5350)에 적재된 다음에 액추에이터(5330)로부터 분리되면 플레이트운반부(5350)에 의하여 플레이트(5340) 및 서셉터(S)는 다른 반응챔버쪽으로 수평방향으로 이송된다. 플레이트운반부(5350)는 컨베이어 벨트 또는 이와 유사한 장치일 수 있다. 플레이트(5340)와 액추에이터(5330)가 결합되거나 또는 분리되도록 액추에이터(5330)의 로드(rod) 단부에 결합장치(미도시)가 마련된다. 따라서, 어느 하나의 반응챔버에서 공정이 완료되어 플레이트가 반출되면 제어신호가 결합장치로 전달되어 플레이트(5340)와 액추에이터(5330)가 분리된다. The plate 5340 is detachable from the actuator 5330, and when the plate 5340 is loaded on the plate carrying part 5350 and then separated from the actuator 5330, the plate 5340 and the plate 5340 are separated from the actuator 5330. The susceptor S is transferred horizontally to the other reaction chamber. The plate carrier 5350 may be a conveyor belt or similar device. A coupling device (not shown) is provided at the rod end of the actuator 5330 so that the plate 5340 and the actuator 5330 are coupled or separated. Therefore, when the process is completed in any one reaction chamber and the plate is taken out, a control signal is transmitted to the coupling device to separate the plate 5340 and the actuator 5330.
이하에서는 본 발명에 따른 기판처리방법을 설명한다.Hereinafter, a substrate processing method according to the present invention will be described.
도 7은 9개의 반응챔버(reaction chamber)를 포함하는 화학기상증착장치를 이용한 기판처리방법의 순서도이다. 본 방법에 의하여 형성하고자 하는 박막은 버퍼층/언도프트 GaN층/n형GaN층/n형AlGaN층/활성층/p형AlGaN층/p형GaN층으로 이루어진 것이다. 도 7에 도시한 방법 이외에도 각각의 반응챔버(reaction chamber)에서 수행될 수 있는 공정의 종류를 변형하여 실시할 수 있으며, 어느 하나의 반응챔버(reaction chamber)에서 복수개의 공정이 수행될 수도 있다. 7 is a flowchart of a substrate processing method using a chemical vapor deposition apparatus including nine reaction chambers. The thin film to be formed by this method is composed of a buffer layer / undoped GaN layer / n-type GaN layer / n-type AlGaN layer / active layer / p-type AlGaN layer / p-type GaN layer. In addition to the method illustrated in FIG. 7, a type of processes that may be performed in each reaction chamber may be modified, and a plurality of processes may be performed in any one reaction chamber.
도 7에서 보듯이, 먼저 기판(substrate)을 제1반응챔버에 반입하는 단계(S101)가 수행된다. 다음으로, 제1반응챔버에서 기판에 대하여 열처리(heat treatment)하는 단계(S102)가 수행된다. 제1반응챔버 내측으로 수소가스, 또는 수소 및 질소의 혼합가스가 공급될 수 있으며, 기판 또는 서셉터(susceptor)를 가열하여(예를 들어, 1200도 정도) 기판상의 산화막과 같은 이물질층을 제거할 수 있다. As shown in FIG. 7, first, a step (S101) of loading a substrate into the first reaction chamber is performed. Next, a step S102 of performing heat treatment on the substrate in the first reaction chamber is performed. Hydrogen gas, or a mixture of hydrogen and nitrogen, may be supplied into the first reaction chamber, and the substrate or susceptor is heated (for example, about 1200 degrees) to remove a foreign material layer such as an oxide film on the substrate. can do.
다음으로, 기판을 제1반응챔버로부터 버퍼챔버로 반출하고, 제2반응챔버에 반입하는 단계(S103)가 수행된다. 기판에 대하여 급격한 온도변화가 발생되지 않도록 버퍼챔버는 미리 소정 온도로 가열된다. Next, the step S103 of carrying out the substrate from the first reaction chamber to the buffer chamber and carrying it into the second reaction chamber is performed. The buffer chamber is heated to a predetermined temperature in advance so that a sudden temperature change does not occur with respect to the substrate.
다음으로, 제2반응챔버에서 기판에 버퍼층을 형성하는 단계(S104)가 수행된다. 즉, 제2반응챔버 내측으로 수소, 트리메틸갈륨(TMG: Trimethylgallium)과 암모니아 가스가 투입되며, 기판 또는 서셉터(susceptor)를 소정온도(예를 들어 약 600도)로 가열한다. 이러한 공정에 의하여 열처리(heat treatment)된 기판 상면에 GaN 버퍼층을 성장시킬 수 있다. Next, a step (S104) of forming a buffer layer on the substrate in the second reaction chamber is performed. That is, hydrogen, trimethylgallium (TMG) and ammonia gas are introduced into the second reaction chamber, and the substrate or susceptor is heated to a predetermined temperature (for example, about 600 degrees). By this process, the GaN buffer layer may be grown on the heat treated substrate.
다음으로, 기판(substrate)을 제2반응챔버로부터 버퍼챔버로 반출하고, 제3반응챔버에 반입하는 단계(S105)가 수행된다.Next, a step (S105) of carrying out the substrate from the second reaction chamber to the buffer chamber and carrying it into the third reaction chamber is performed.
다음으로, 제3반응챔버에서 기판에 언도프트 GaN층(undoped GaN layer)을 형성하는 단계(S106)가 수행된다. 제3반응챔버 내부로 수소(H2), 트리메틸갈륨(TMG), 암모니아(NH3)가 분사되며, 기판 또는 서셉터(susceptor)는 예를 들어 1200도로 가열될 수 있다. 이러한 공정에 의하여 GaN 버퍼층 상면에 언도프트 GaN층(undoped GaN layer)이 성장된다.Next, in step S106, an undoped GaN layer is formed on the substrate in the third reaction chamber. Hydrogen (H 2), trimethylgallium (TMG), ammonia (NH 3) are injected into the third reaction chamber, and the substrate or susceptor may be heated to, for example, 1200 degrees. By this process, an undoped GaN layer is grown on the GaN buffer layer.
다음으로, 기판을 제3반응챔버로부터 버퍼챔버로 반출하고, 제4반응챔버에 반입하는 단계(S107)가 수행된다.Next, the step S107 of carrying out the substrate from the third reaction chamber to the buffer chamber and carrying it into the fourth reaction chamber is performed.
다음으로, 제4반응챔버에서 기판에 n타입 GaN층(n-type GaN layer)을 형성하는 단계(S108)가 수행된다. 즉, 수소(H2), 트리메틸갈륨(TMG), 암모니아(NH3), SiH4이 제4반응챔버 내측으로 분사되며, 기판 또는 서셉터(susceptor)는 예를 들어 1200도로 가열된다. 이러한 공정에 의하여 undoped GaN층 상면에 n타입 GaN층(n-type GaN layer)(Si 도핑)이 성장된다.Next, in step S108, an n-type GaN layer is formed on the substrate in the fourth reaction chamber. That is, hydrogen (H 2), trimethylgallium (TMG), ammonia (NH 3), and SiH 4 are injected into the fourth reaction chamber, and the substrate or susceptor is heated at, for example, 1200 degrees. By this process, an n-type GaN layer (Si doping) is grown on the undoped GaN layer.
다음으로, 기판을 제4반응챔버로부터 버퍼챔버(buffer chamber)로 반출하고, 제5반응챔버에 반입하는 단계(S109)가 수행된다. 버퍼챔버(buffer chamber)에서는 기판에 대하여 급격한 온도변화가 발생되지 않도록 소정 온도로 가열될 수 있다. 가열온도는 대략 섭씨 500~1200도 사이로 설정될 수 있으며, 경우에 따라 약 700도 정도로 설정될 수도 있다.Next, a step (S109) of carrying out the substrate from the fourth reaction chamber to the buffer chamber and carrying it into the fifth reaction chamber is performed. The buffer chamber may be heated to a predetermined temperature so that a sudden temperature change does not occur with respect to the substrate. The heating temperature may be set between approximately 500 to 1200 degrees Celsius, and in some cases, may be set to about 700 degrees.
다음으로, 제5반응챔버에서 기판에 n타입 AlGaN층(n-type AlGaN layer)을 형성하는 단계(S110)가 수행된다. SiH4, 트리메틸알루미늄, 트리메틸갈륨, 암모니아, 수소가 제5반응챔버 내부로 공급되어 si-doped AlGaN layer가 형성될 수 있다.Next, in step S110, an n-type AlGaN layer is formed on the substrate in the fifth reaction chamber. SiH 4, trimethylaluminum, trimethylgallium, ammonia and hydrogen may be supplied into the fifth reaction chamber to form a si-doped AlGaN layer.
다음으로, 기판을 제5반응챔버로부터 버퍼챔버(buffer chamber)로 반출하고, 제6반응챔버에 반입하는 단계(S111)가 수행된다.Next, the step S111 of carrying out the substrate from the fifth reaction chamber to the buffer chamber and carrying it into the sixth reaction chamber is performed.
다음으로, 제6반응챔버에서 기판에 활성층을 형성하는 단계(S112)가 수행된다. 즉, 질소(N2), 트리메틸갈륨(TMG), 트리메틸인듐(TMI), 암모니아(NH3)가 제6반응챔버 내측으로 분사되며, 기판 또는 서셉터의 온도는 약 700도 내지 900도로 가변조절된다.Next, forming an active layer on the substrate in the sixth reaction chamber (S112) is performed. That is, nitrogen (N 2), trimethylgallium (TMG), trimethyl indium (TMI), and ammonia (NH 3) are injected into the sixth reaction chamber, and the temperature of the substrate or susceptor is variably controlled at about 700 to 900 degrees.
다음으로, 기판을 제6반응챔버로부터 버퍼챔버(buffer chamber)로 반출하고, 제7반응챔버에 반입하는 단계(S113)가 수행된다.Next, the step S113 of carrying out the substrate from the sixth reaction chamber to the buffer chamber and carrying it into the seventh reaction chamber is performed.
다음으로, 제7반응챔버에서 기판에 p타입 AlGaN층(p-type AlGaN layer)을 형성하는 단계(S114)가 수행된다. 즉, Cp2Mg, 트리메틸알루미늄, 트리메틸갈륨, 암모니아, 수소를 공급하여 Mg-doped AlGaN layer를 형성할 수 있다.Next, in operation S114, a p-type AlGaN layer is formed on the substrate in the seventh reaction chamber. That is, Mp-doped AlGaN layer may be formed by supplying Cp 2 Mg, trimethylaluminum, trimethylgallium, ammonia, and hydrogen.
다음으로, 기판을 제7반응챔버로부터 버퍼챔버(buffer chamber)로 반출하고, 제8반응챔버에 반입하는 단계(S115)가 수행된다.Next, the step S115 of carrying out the substrate from the seventh reaction chamber to the buffer chamber and carrying it into the eighth reaction chamber is performed.
다음으로, 제8반응챔버에서 기판에 p-type GaN layer를 형성하는 단계(S116)가 수행된다. Cp2Mg, 트리메틸갈륨, 암모니아, 수소가 제8반응챔버 내측으로 분사되며, 기판 또는 서셉터(susceptor)는 약 1200도로 가변조절된다. 이러한 공정에 의하여 활성층(active layer) 상면에 Mg-doped GaN layer를 성장시킬 수 있다. p형 도핑가스로 Cp2Mg를 사용하는 경우에, 마그네슘 성분이 반응챔버 내부에 부착될 수 있고, 그러한 마그네슘 성분은 다른 공정에 악영향을 미칠 수 있기 때문에 세정작업이 필요하다. 제8반응챔버를 세정하는 동안 나머지 반응챔버에서는 각각의 공정이 중단 없이 진행될 수 있다.Next, forming a p-type GaN layer on the substrate in the eighth reaction chamber (S116) is performed. Cp 2 Mg, trimethylgallium, ammonia and hydrogen are injected into the eighth reaction chamber, and the substrate or susceptor is variably controlled at about 1200 degrees. By this process, the Mg-doped GaN layer may be grown on the active layer. In the case of using Cp2Mg as the p-type doping gas, a cleaning operation is necessary because the magnesium component may be attached inside the reaction chamber, and such magnesium component may adversely affect other processes. While the eighth reaction chamber is cleaned, each process may proceed without interruption in the remaining reaction chambers.
다음으로, 기판을 제8반응챔버로부터 버퍼챔버(buffer chamber)로 반출하고, 제9반응챔버에 반입하는 단계(S117)가 수행된다.Next, the step S117 of carrying out the substrate from the eighth reaction chamber to the buffer chamber and carrying it into the ninth reaction chamber is performed.
다음으로, 제9반응챔버에서 어닐링(annealing)을 수행하는 단계(S118)가 수행된다. 즉, 챔버 내부는 질소 분위기 상태를 유지하면서 섭씨 600-900도로 조절된다. 다른 실시예로서, 제9반응챔버에서 어닐링 이후에 쿨링 공정을 수행할 수도 있으며, 제9반응챔버에서 어닐링 없이 쿨링 공정이 수행될 수도 있다. 또한, 쿨링 공정을 버퍼챔버에서 수행할 수도 있다. 쿨링 공정은 예를 들어, 100도 내지 300도 정도로 기판을 자연 냉각시키는 공정일 수 있다.Next, step S118 of performing annealing in the ninth reaction chamber is performed. That is, the interior of the chamber is adjusted to 600-900 degrees Celsius while maintaining a nitrogen atmosphere. As another example, a cooling process may be performed after annealing in the ninth reaction chamber, and a cooling process may be performed without annealing in the ninth reaction chamber. In addition, the cooling process may be performed in the buffer chamber. The cooling process may be, for example, a process of naturally cooling the substrate to about 100 to 300 degrees.
다음으로, 서셉터는 외부로 반출되며, 픽업장치에 의하여 서셉터(susceptor) 상면의 기판은 픽업되어 기판공급 및 배출장치로 이송된다.Next, the susceptor is carried out to the outside, and the substrate on the upper surface of the susceptor is picked up by the pickup device and transferred to the substrate supply and discharge device.
도 8은 6개의 반응챔버를 포함하는 화학기상증착장치를 이용한 기판처리방법의 순서도이다. 도 7에서는 9개의 반응챔버를 이용하는 경우를 설명하였으나, 6개의 반응챔버를 이용하는 경우를 아래에서 설명한다. 본 방법에 의하여 형성하고자 하는 박막은 버퍼층/n형GaN층/활성층/p형GaN층으로 이루어진 것이다. 8 is a flowchart of a substrate processing method using a chemical vapor deposition apparatus including six reaction chambers. In FIG. 7, the case of using nine reaction chambers has been described, but the case of using six reaction chambers will be described below. The thin film to be formed by this method consists of a buffer layer / n-type GaN layer / active layer / p-type GaN layer.
먼저, 기판을 제1반응챔버에 반입하는 단계(S201), 제1반응챔버에서 기판을 열처리(heat treatment)하는 단계(S202), 기판을 제1반응챔버로부터 버퍼챔버로 반출하고, 제2반응챔버에 반입하는 단계(S203)가 수행된다.First, the step of bringing the substrate into the first reaction chamber (S201), the step of heat treating the substrate in the first reaction chamber (S202), the substrate is taken out of the first reaction chamber into the buffer chamber, the second reaction Step S203 is carried in to the chamber.
다음으로, 제2반응챔버에서 버퍼층을 형성하는 단계(S204), 기판을 제2반응챔버로부터 버퍼챔버로 반출하고, 제3반응챔버에 반입하는 단계(S205)가 수행된다. Next, forming a buffer layer in the second reaction chamber (S204), carrying out the substrate from the second reaction chamber to the buffer chamber, and step (S205) carried in the third reaction chamber.
다음으로, 제3반응챔버에서 n-type GaN층을 형성하는 단계(S206), 기판을 제3반응챔버로부터 버퍼챔버로 반출하고, 제4반응챔버에 반입하는 단계(S207)가 수행된다.Next, in step S206, the n-type GaN layer is formed in the third reaction chamber, and the substrate is carried out from the third reaction chamber to the buffer chamber and then loaded into the fourth reaction chamber (S207).
다음으로, 제4반응챔버에서 활성층(active layer)을 형성하는 단계(S208), 기판을 제4반응챔버로부터 버퍼챔버로 반출하고, 제5반응챔버에 반입하는 단계(S209)가 수행된다.Next, forming an active layer in the fourth reaction chamber (S208), carrying out the substrate from the fourth reaction chamber to the buffer chamber, and carrying in the fifth reaction chamber (S209).
다음으로, 제5반응챔버에서 p형 GaN층을 성장시키는 단계(S210), 기판을 제5반응챔버로부터 버퍼챔버로 반출하고, 제6반응챔버에 반입하는 단계(S211)가 수행된다. p형 도핑가스로 Cp2Mg를 사용하는 경우에, 마그네슘 성분이 반응챔버 내부에 부착될 수 있고, 그러한 마그네슘 성분은 다른 공정에 악영향을 미칠 수 있기 때문에 세정작업이 필요하다. 제5반응챔버를 세정하는 동안 나머지 반응챔버에서는 각각의 공정이 중단 없이 진행될 수 있다. 다음으로, 제6반응챔버에서 기판을 어닐링하는 단계(S212) 또는 쿨링단계가 수행된다. Next, growing the p-type GaN layer in the fifth reaction chamber (S210), carrying out the substrate from the fifth reaction chamber to the buffer chamber, and carrying in the sixth reaction chamber (S211). In the case of using Cp2Mg as the p-type doping gas, a cleaning operation is necessary because the magnesium component may be attached inside the reaction chamber, and such magnesium component may adversely affect other processes. While the fifth reaction chamber is cleaned, each process may proceed without interruption in the remaining reaction chambers. Next, annealing the substrate in the sixth reaction chamber (S212) or cooling is performed.
한편, 버퍼층/언도프트 GaN층/n형GaN층/n형AlGaN층/활성층/p형AlGaN층/p형GaN층으로 이루어진 적층구조처럼 보다 복잡한 적층구조를 형성하는 경우에도 6개의 반응챔버를 포함하는 화학기상장치를 이용할 수 있다. 즉, 버퍼층을 형성하는 단계와 언도프트 GaN층을 형성하는 단계가 제2반응챔버에서 수행될 수 있다. 그리고, n형GaN층을 형성하는 단계와 n형AlGaN층을 형성하는 단계가 제3반응챔버에서 수행될 수 있다. 그리고, p형AlGaN층을 형성하는 단계와 p형GaN층을 형성하는 단계가 제5반응챔버에서 수행될 수 있다.On the other hand, even in the case of forming a more complicated lamination structure such as a buffer layer / undoped GaN layer / n type GaN layer / n type AlGaN layer / active layer / p type AlGaN layer / p type GaN layer, six reaction chambers are included. A chemical vapor device can be used. That is, forming the buffer layer and forming the undoped GaN layer may be performed in the second reaction chamber. In addition, the forming of the n-type GaN layer and the forming of the n-type AlGaN layer may be performed in the third reaction chamber. In addition, the forming of the p-type AlGaN layer and the forming of the p-type GaN layer may be performed in the fifth reaction chamber.
도 9는 3개의 반응챔버(reaction chamber)를 포함하는 화학기상증착장치를 이용한 기판처리방법의 순서도이다. 도 8에서는 6개의 반응챔버를 이용하는 경우를 설명하였으나, 3개의 반응챔버를 이용하는 경우를 아래에서 설명한다. 본 방법에 의하여 형성하고자 하는 박막은 버퍼층/n형GaN층/활성층/p형GaN층으로 이루어진 것이다. 9 is a flow chart of a substrate processing method using a chemical vapor deposition apparatus including three reaction chambers. In FIG. 8, the case of using six reaction chambers has been described, but the case of using three reaction chambers will be described below. The thin film to be formed by this method consists of a buffer layer / n-type GaN layer / active layer / p-type GaN layer.
먼저, 기판을 제1반응챔버에 반입하는 단계(S301) 및 제1반응챔버에서 기판을 열처리(heat treatment)하는 단계(S302)가 수행된다. 다음으로, 기판을 제1반응챔버로부터 버퍼챔버로 반출하고, 제2반응챔버에 반입하는 단계(S303)가 수행된다. First, a step (S301) of carrying a substrate into the first reaction chamber and a step (S302) of heat treating the substrate in the first reaction chamber are performed. Next, the step S303 of carrying out the substrate from the first reaction chamber to the buffer chamber and carrying it into the second reaction chamber is performed.
다음으로, 제2반응챔버에서 기판에 버퍼층을 형성하는 단계(S304), n형GaN층을 형성하는 단계(S305), 활성층(active layer)을 형성하는 단계(S306)가 수행된다. 그리고, 기판을 제2반응챔버로부터 버퍼챔버로 반출하고, 제3반응챔버에 반입하는 단계(S307)가 수행된다.Next, forming a buffer layer on the substrate in the second reaction chamber (S304), forming an n-type GaN layer (S305), and forming an active layer (S306) are performed. In operation S307, the substrate is carried out from the second reaction chamber to the buffer chamber and loaded into the third reaction chamber.
다음으로, 제3반응챔버에서 p형GaN층을 성장시키는 단계(S308), 어닐링을 수행하는 단계(S309)가 수행된다. Next, growing the p-type GaN layer in the third reaction chamber (S308), performing annealing (S309) is performed.
다른 실시예로서, 기판을 열처리(heat treatment)하는 단계와 버퍼층을 형성하는 단계가 서로 다른 반응챔버(reaction chamber)에서 수행될 수도 있다. 이러한 공정분리에 의하여 필요로 하는 공정온도로 반응챔버(reaction chamber) 내부의 온도를 조정하는데 소요되는 시간이 절감되고, 종전 공정에 사용되었던 가스가 다음 공정에 영향을 미치는 문제도 방지된다. In another embodiment, heat treating the substrate and forming the buffer layer may be performed in different reaction chambers. This process separation reduces the time required to adjust the temperature inside the reaction chamber to the process temperature required, and also prevents the problem that the gas used in the previous process affects the next process.
앞에서 설명되고, 도면에 도시된 본 발명의 일 실시예는, 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.An embodiment of the present invention described above and illustrated in the drawings should not be construed as limiting the technical idea of the present invention. The protection scope of the present invention is limited only by the matters described in the claims, and those skilled in the art can change and change the technical idea of the present invention in various forms. Therefore, such improvements and modifications will fall within the protection scope of the present invention, as will be apparent to those skilled in the art.

Claims (19)

  1. 제1챔버에서 기상증착공정에 의하여 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 언도프트층(undoped layer)을 형성하는 단계;Forming an undoped layer including a group-III element and a group-V element on the substrate by a vapor deposition process in the first chamber;
    상기 기판을 상기 제1챔버로부터 버퍼챔버로 반출한 다음에 제2챔버에 반입하는 단계; 및Removing the substrate from the first chamber into the buffer chamber and then loading the substrate into the second chamber; And
    상기 제2챔버에서 기상증착공정에 의하여 상기 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 n타입층(n-type layer)을 형성하는 단계;를 포함하는 기판처리방법.Forming an n-type layer including a group-III element and a group-V element on the substrate by a vapor deposition process in the second chamber; Substrate processing method comprising.
  2. 제1항에 있어서,The method of claim 1,
    상기 3족원소(group-Ⅲ element)는 알루미늄(Al), 갈륨(Ga), 인듐(In) 중에서 적어도 어느 하나를 포함하는 기판처리방법.The group-III element includes at least one of aluminum (Al), gallium (Ga), and indium (In).
  3. 제1항에 있어서,The method of claim 1,
    상기 언도프트층(undoped layer)은 언도프트GaN층을 포함하는 기판처리방법.And the undoped layer comprises an undoped GaN layer.
  4. 제1항에 있어서,The method of claim 1,
    상기 기판이 상기 제2챔버에 반입될 때 상기 제2챔버의 내부 온도는 약 섭씨 1000~1200도인 기판처리방법.And the inner temperature of the second chamber is about 1000 to 1200 degrees Celsius when the substrate is loaded into the second chamber.
  5. 제1항에 있어서,The method of claim 1,
    상기 버퍼챔버의 내부 온도는 약 섭씨 600~900도인 기판처리방법.The internal temperature of the buffer chamber is about 600 ~ 900 degrees Celsius substrate processing method.
  6. 제1항에 있어서,The method of claim 1,
    상기 버퍼챔버의 내부 가스 분위기는 수소 가스 분위기인 기판처리방법.The internal gas atmosphere of the buffer chamber is a hydrogen gas atmosphere.
  7. 제1항에 있어서,The method of claim 1,
    상기 기판을 상기 제2챔버로부터 상기 버퍼챔버로 반출한 다음에 제3챔버에 반입하는 단계; 및Removing the substrate from the second chamber into the buffer chamber and then loading the substrate into a third chamber; And
    상기 제3챔버에서 기상증착공정에 의하여 상기 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 활성층(active layer)을 형성하는 단계;를 더 포함하는 기판처리방법.Forming an active layer including a group-III element and a group-V element on the substrate by a vapor deposition process in the third chamber; Treatment method.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 기판이 상기 제3챔버에 반입될 때 상기 제3챔버의 내부 온도는 약 섭씨 700~900도인 기판처리방법.Wherein the internal temperature of the third chamber is about 700 to 900 degrees Celsius when the substrate is loaded into the third chamber.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 기판을 상기 제3챔버로부터 상기 버퍼챔버로 반출한 다음에 제4챔버에 반입하는 단계; 및Removing the substrate from the third chamber into the buffer chamber and then loading the substrate into the fourth chamber; And
    상기 제4챔버에서 기상증착공정에 의하여 상기 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 p타입층(p-type layer)을 형성하는 단계;를 더 포함하는 기판처리방법.Forming a p-type layer including a group-III element and a group-V element on the substrate by a vapor deposition process in the fourth chamber; Further comprising a substrate processing method.
  10. 제1항에 있어서,The method of claim 1,
    상기 n타입층을 형성하는 단계 이후에 상기 제2챔버에서 기상증착공정에 의하여 상기 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 활성층(active layer)을 형성하는 단계;An active layer including a group-III element and a group-V element on the substrate by vapor deposition in the second chamber after forming the n-type layer. Forming a;
    상기 기판을 상기 제2챔버로부터 상기 버퍼챔버로 반출한 다음에 제3챔버에 반입하는 단계; 및Removing the substrate from the second chamber into the buffer chamber and then loading the substrate into a third chamber; And
    상기 제3챔버에서 기상증착공정에 의하여 상기 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 p타입층(p-type layer)을 형성하는 단계;를 더 포함하는 기판처리방법.Forming a p-type layer including a group-III element and a group-V element on the substrate by a vapor deposition process in the third chamber; Further comprising a substrate processing method.
  11. 제10항에 있어서,The method of claim 10,
    상기 기판이 상기 제3챔버에 반입될 때 상기 제3챔버의 내부 온도는 약 섭씨 1000~1200도인 기판처리방법.And wherein the internal temperature of the third chamber is about 1000 to 1200 degrees Celsius when the substrate is loaded into the third chamber.
  12. 제1항에 있어서,The method of claim 1,
    상기 언도프트층(undoped layer)을 형성하는 단계 이전에 상기 제1챔버에서 기상증착공정에 의하여 상기 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 버퍼층을 형성하는 단계를 더 포함하는 기판처리방법.A buffer layer including a group-III element and a group-V element on the substrate by a vapor deposition process in the first chamber prior to forming the undoped layer. Substrate processing method further comprising the step of forming.
  13. 제12항에 있어서,The method of claim 12,
    상기 버퍼층을 형성하는 단계에서 상기 제1챔버의 내부 온도는 약 섭씨 450~700도인 기판처리방법.Wherein the internal temperature of the first chamber in the step of forming the buffer layer is about 450 to 700 degrees Celsius.
  14. 제12항에 있어서,The method of claim 12,
    상기 버퍼층은 AlN, GaN, AlGaN 중의 적어도 어느 하나를 포함하는 기판처리방법.The buffer layer comprises at least one of AlN, GaN, AlGaN.
  15. 제12항에 있어서,The method of claim 12,
    상기 버퍼층을 형성하는 단계 이전에 제3챔버에서 상기 기판에 대하여 열처리(heat treatment)하는 단계; 및 Heat treating the substrate in a third chamber prior to forming the buffer layer; And
    상기 기판을 상기 제3챔버로부터 버퍼챔버로 반출한 다음에 상기 제1챔버에 반입하는 단계;를 더 포함하는 기판처리방법.Removing the substrate from the third chamber into the buffer chamber and then loading the substrate into the first chamber.
  16. 제15항에 있어서,The method of claim 15,
    상기 열처리(heat treatment)하는 단계는 상기 기판을 약 섭씨 1000~1200도로 가열하는 단계를 포함하는 기판처리방법.The heat treatment may include heating the substrate at about 1000 to 1200 degrees Celsius.
  17. 제1항에 있어서,The method of claim 1,
    상기 언도프트층(undoped layer)을 형성하는 단계 이전에 제3챔버에서 기상증착공정에 의하여 상기 기판에 3족원소(group-Ⅲ element)와 5족원소(group-Ⅴ element)를 포함하는 버퍼층을 형성하는 단계; 및 Prior to forming the undoped layer, a buffer layer including a group-III element and a group-V element is formed on the substrate by vapor deposition in a third chamber. Forming; And
    상기 기판을 상기 제3챔버로부터 버퍼챔버로 반출한 다음에 상기 제1챔버에 반입하는 단계;를 더 포함하는 기판처리방법.Removing the substrate from the third chamber into the buffer chamber and then loading the substrate into the first chamber.
  18. 제17항에 있어서,The method of claim 17,
    상기 기판이 상기 제1챔버에 반입될 때 상기 제1챔버의 내부 온도는 약 섭씨 1000~1200도인 기판처리방법.And wherein the internal temperature of the first chamber is about 1000 to 1200 degrees Celsius when the substrate is loaded into the first chamber.
  19. 제17항에 있어서,The method of claim 17,
    상기 버퍼층을 형성하는 단계 이전에 제4챔버에서 상기 기판에 대하여 열처리(heat treatment)하는 단계; 및 Heat treating the substrate in a fourth chamber before forming the buffer layer; And
    상기 기판을 상기 제4챔버로부터 버퍼챔버로 반출한 다음에 상기 제3챔버에 반입하는 단계;를 더 포함하는 기판처리방법.Removing the substrate from the fourth chamber into the buffer chamber and then loading the substrate into the third chamber.
PCT/KR2010/004664 2009-12-14 2010-07-16 Substrate processing method WO2011074756A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800638493A CN102884642A (en) 2009-12-14 2010-07-16 Substrate processing method

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR1020090124226A KR101062459B1 (en) 2009-12-14 2009-12-14 Metal organic chemical vapor deposition apparatus and metal organic chemical vapor deposition method using the same
KR1020090124224A KR101062463B1 (en) 2009-12-14 2009-12-14 Metal organic chemical vapor deposition apparatus and metal organic chemical vapor deposition method using the same
KR10-2009-0124226 2009-12-14
KR10-2009-0124224 2009-12-14
KR1020090124678A KR101075179B1 (en) 2009-12-15 2009-12-15 Apparatus for metal organic chemical vapor deposition and method using the same
KR10-2009-0124678 2009-12-15
KR1020090135715A KR101078596B1 (en) 2009-12-31 2009-12-31 Method for metal organic chemical vapor deposition
KR10-2009-0135715 2009-12-31
KR10-2009-0135707 2009-12-31
KR1020090135707A KR101071249B1 (en) 2009-12-31 2009-12-31 Method for metal organic chemical vapor deposition

Publications (1)

Publication Number Publication Date
WO2011074756A1 true WO2011074756A1 (en) 2011-06-23

Family

ID=44167495

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/KR2010/004664 WO2011074756A1 (en) 2009-12-14 2010-07-16 Substrate processing method
PCT/KR2010/004663 WO2011074755A1 (en) 2009-12-14 2010-07-16 Substrate processing method
PCT/KR2010/004661 WO2011074754A1 (en) 2009-12-14 2010-07-16 Substrate processing method

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/KR2010/004663 WO2011074755A1 (en) 2009-12-14 2010-07-16 Substrate processing method
PCT/KR2010/004661 WO2011074754A1 (en) 2009-12-14 2010-07-16 Substrate processing method

Country Status (2)

Country Link
CN (3) CN102804413A (en)
WO (3) WO2011074756A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074616A (en) * 2012-12-26 2013-05-01 光达光电设备科技(嘉兴)有限公司 Method for depositing multiple material layers on substrate and chemical vapor deposition equipment
CN103276369B (en) * 2013-05-06 2016-02-17 南方科技大学 A kind of PECVD coating system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195348A (en) * 1995-08-28 1996-07-30 Semiconductor Energy Lab Co Ltd Semiconductor device manufacturing equipment
KR20030089051A (en) * 2002-05-16 2003-11-21 이도연 Method of pressing a reducing pipe
US20060040475A1 (en) * 2004-08-18 2006-02-23 Emerson David T Multi-chamber MOCVD growth apparatus for high performance/high throughput
KR20080022639A (en) * 2006-09-07 2008-03-12 엘지이노텍 주식회사 Nitride semiconductor light-emitting device and manufacturing method thereof
KR20080090799A (en) * 2007-04-06 2008-10-09 주식회사 하이닉스반도체 Deposition device and the method for fabricating semiconductor device using the same
KR20080108382A (en) * 2006-04-14 2008-12-15 어플라이드 머티어리얼스, 인코포레이티드 Epitaxial growth of compound nitride semiconductor structures
US20090194026A1 (en) * 2008-01-31 2009-08-06 Burrows Brian H Processing system for fabricating compound nitride semiconductor devices
WO2009099776A1 (en) * 2008-01-31 2009-08-13 Applied Materials, Inc. Closed loop mocvd deposition control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020081730A (en) * 2001-04-19 2002-10-30 삼성전자 주식회사 Semiconductor production device for removing hume
US20040035360A1 (en) * 2002-05-17 2004-02-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
US7824498B2 (en) * 2004-02-24 2010-11-02 Applied Materials, Inc. Coating for reducing contamination of substrates during processing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195348A (en) * 1995-08-28 1996-07-30 Semiconductor Energy Lab Co Ltd Semiconductor device manufacturing equipment
KR20030089051A (en) * 2002-05-16 2003-11-21 이도연 Method of pressing a reducing pipe
US20060040475A1 (en) * 2004-08-18 2006-02-23 Emerson David T Multi-chamber MOCVD growth apparatus for high performance/high throughput
KR20080108382A (en) * 2006-04-14 2008-12-15 어플라이드 머티어리얼스, 인코포레이티드 Epitaxial growth of compound nitride semiconductor structures
KR20080022639A (en) * 2006-09-07 2008-03-12 엘지이노텍 주식회사 Nitride semiconductor light-emitting device and manufacturing method thereof
KR20080090799A (en) * 2007-04-06 2008-10-09 주식회사 하이닉스반도체 Deposition device and the method for fabricating semiconductor device using the same
US20090194026A1 (en) * 2008-01-31 2009-08-06 Burrows Brian H Processing system for fabricating compound nitride semiconductor devices
WO2009099776A1 (en) * 2008-01-31 2009-08-13 Applied Materials, Inc. Closed loop mocvd deposition control

Also Published As

Publication number Publication date
WO2011074754A1 (en) 2011-06-23
CN102804412A (en) 2012-11-28
WO2011074755A1 (en) 2011-06-23
CN102884642A (en) 2013-01-16
CN102804413A (en) 2012-11-28

Similar Documents

Publication Publication Date Title
WO2012057517A2 (en) Compound semiconductor device and method for manufacturing a compound semiconductor
WO2013019062A2 (en) Equipment for manufacturing semiconductor for epitaxial process
WO2011074753A1 (en) Chemical vapor deposition apparatus
WO2011037377A2 (en) Batch-type epitaxial layer forming device and a method for forming the same
WO2013073888A1 (en) Apparatus comprising heat-blocking plate for treating substrate
WO2014189207A1 (en) Light-emitting element and method for preparing same
WO2013089417A1 (en) Semiconductor device and method of fabricating the same
WO2011019215A2 (en) Apparatus for forming layer
WO2011074756A1 (en) Substrate processing method
WO2012065467A1 (en) Process integration system for led chip and processing method thereof
KR101141927B1 (en) Apparatus for metal organic chemical vapor deposition
KR101139691B1 (en) Apparatus for metal organic chemical vapor deposition
KR101071249B1 (en) Method for metal organic chemical vapor deposition
WO2009128646A2 (en) Semiconductor substrate and method for manufacturing the same
KR101078596B1 (en) Method for metal organic chemical vapor deposition
KR101100645B1 (en) Apparatus for chemical vapor deposition and method using the same
KR101062463B1 (en) Metal organic chemical vapor deposition apparatus and metal organic chemical vapor deposition method using the same
KR101052889B1 (en) Chemical Vapor Deposition Equipment
KR101133282B1 (en) Apparatus for metal organic chemical vapor deposition
KR101062459B1 (en) Metal organic chemical vapor deposition apparatus and metal organic chemical vapor deposition method using the same
WO2014092320A1 (en) Method of growing gallium nitride based semiconductor layers and method of fabricating light emitting device therewith
KR101113700B1 (en) Method for chemical vapor deposition
KR101075179B1 (en) Apparatus for metal organic chemical vapor deposition and method using the same
KR20110078809A (en) Apparatus for metal organic chemical vapor deposition
WO2024019381A1 (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063849.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837755

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837755

Country of ref document: EP

Kind code of ref document: A1