WO2011074586A1 - 酸化物の生成能を有する新規微生物 - Google Patents
酸化物の生成能を有する新規微生物 Download PDFInfo
- Publication number
- WO2011074586A1 WO2011074586A1 PCT/JP2010/072503 JP2010072503W WO2011074586A1 WO 2011074586 A1 WO2011074586 A1 WO 2011074586A1 JP 2010072503 W JP2010072503 W JP 2010072503W WO 2011074586 A1 WO2011074586 A1 WO 2011074586A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron
- iron oxide
- metal oxide
- medium
- ferrihydrite
- Prior art date
Links
- 244000005700 microbiome Species 0.000 title claims abstract description 36
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 193
- 241000894006 Bacteria Species 0.000 claims abstract description 64
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 57
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims abstract description 50
- 238000012258 culturing Methods 0.000 claims abstract description 33
- 241000862991 Leptothrix <Bacteria> Species 0.000 claims abstract description 28
- 239000002105 nanoparticle Substances 0.000 claims abstract description 26
- 238000012216 screening Methods 0.000 claims abstract description 19
- 239000001963 growth medium Substances 0.000 claims abstract description 9
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical group [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 claims abstract description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 70
- 239000002609 medium Substances 0.000 claims description 65
- 229910004740 OUMS1 Inorganic materials 0.000 claims description 56
- 229910052742 iron Inorganic materials 0.000 claims description 32
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 15
- 239000010703 silicon Substances 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 239000003673 groundwater Substances 0.000 claims description 12
- 229910052698 phosphorus Inorganic materials 0.000 claims description 12
- 108020004465 16S ribosomal RNA Proteins 0.000 claims description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 11
- 239000011574 phosphorus Substances 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 9
- 239000002775 capsule Substances 0.000 claims description 9
- 239000002071 nanotube Substances 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 239000011591 potassium Substances 0.000 claims description 7
- 229910052700 potassium Inorganic materials 0.000 claims description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 6
- 229910052816 inorganic phosphate Inorganic materials 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000011734 sodium Substances 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 5
- 239000011575 calcium Substances 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 150000002506 iron compounds Chemical class 0.000 claims description 4
- 239000012533 medium component Substances 0.000 claims description 4
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims 1
- 235000013980 iron oxide Nutrition 0.000 description 89
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 239000007788 liquid Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 238000002441 X-ray diffraction Methods 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 229910000358 iron sulfate Inorganic materials 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- -1 and the like Inorganic materials 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 7
- 239000007995 HEPES buffer Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 239000011164 primary particle Substances 0.000 description 7
- 241000295146 Gallionellaceae Species 0.000 description 6
- DGLRDKLJZLEJCY-UHFFFAOYSA-L disodium hydrogenphosphate dodecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].OP([O-])([O-])=O DGLRDKLJZLEJCY-UHFFFAOYSA-L 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 6
- 230000005389 magnetism Effects 0.000 description 6
- 229920001817 Agar Polymers 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 239000001888 Peptone Substances 0.000 description 5
- 108010080698 Peptones Proteins 0.000 description 5
- 239000008272 agar Substances 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 235000019319 peptone Nutrition 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 229960005069 calcium Drugs 0.000 description 4
- LLSDKQJKOVVTOJ-UHFFFAOYSA-L calcium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ca+2] LLSDKQJKOVVTOJ-UHFFFAOYSA-L 0.000 description 4
- 229940052299 calcium chloride dihydrate Drugs 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 238000009630 liquid culture Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- PHIQPXBZDGYJOG-UHFFFAOYSA-N sodium silicate nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-][Si]([O-])=O PHIQPXBZDGYJOG-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000000306 component Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 3
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- KDPUQELWHOMNPN-UHFFFAOYSA-M potassium;dihydrogen phosphate;dihydrate Chemical compound O.O.[K+].OP(O)([O-])=O KDPUQELWHOMNPN-UHFFFAOYSA-M 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000021164 cell adhesion Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229940099596 manganese sulfate Drugs 0.000 description 2
- 239000011702 manganese sulphate Substances 0.000 description 2
- 235000007079 manganese sulphate Nutrition 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 2
- 235000019796 monopotassium phosphate Nutrition 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 2
- 229920000137 polyphosphoric acid Polymers 0.000 description 2
- 229910001414 potassium ion Inorganic materials 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 229940005657 pyrophosphoric acid Drugs 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- 244000153158 Ammi visnaga Species 0.000 description 1
- 235000010585 Ammi visnaga Nutrition 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241001478313 Leptothrix cholodnii Species 0.000 description 1
- 241000862989 Leptothrix discophora Species 0.000 description 1
- 241000219220 Leptothrix mobilis Species 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 241000588653 Neisseria Species 0.000 description 1
- 241001478894 Sphaerotilus Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QBRPIXOGXMPIMA-UHFFFAOYSA-N [Mg].S(O)(O)(=O)=O.O.O.O.O.O.O.O Chemical compound [Mg].S(O)(O)(=O)=O.O.O.O.O.O.O.O QBRPIXOGXMPIMA-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- AIUDWMLXCFRVDR-UHFFFAOYSA-N dimethyl 2-(3-ethyl-3-methylpentyl)propanedioate Chemical class CCC(C)(CC)CCC(C(=O)OC)C(=O)OC AIUDWMLXCFRVDR-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 229940108890 emend Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 210000003495 flagella Anatomy 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229910052598 goethite Inorganic materials 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- PWPJGUXAGUPAHP-UHFFFAOYSA-N lufenuron Chemical compound C1=C(Cl)C(OC(F)(F)C(C(F)(F)F)F)=CC(Cl)=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F PWPJGUXAGUPAHP-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229940066779 peptones Drugs 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- 229910006540 α-FeOOH Inorganic materials 0.000 description 1
- 229910006299 γ-FeOOH Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P3/00—Preparation of elements or inorganic compounds except carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/009—Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
- C01G49/08—Ferroso-ferric oxide [Fe3O4]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/13—Nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/16—Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
Definitions
- the present invention relates to a microorganism belonging to the genus Leptothrix having the ability to produce iron oxide, an iron oxide producing bacterium, a medium for screening a metal oxide producing bacterium, and a method for screening a metal oxide producing bacterium About. Furthermore, the present invention relates to a culture medium for culturing metal oxide-producing bacteria and a method for culturing metal oxide-producing bacteria. The present invention also relates to a method for producing a metal oxide and a novel metal oxide.
- Material with a unique shape, size, and composition is important because it has the potential to exhibit innovative functions.
- materials with unique structures, shapes, sizes, and compositions that cannot be artificially created have great potential.
- microorganisms belonging to the genus Leptosurix are known to inhabit wetlands and springs rich in iron and manganese, and form a sheath-like substance composed of iron oxide and manganese oxide.
- Recent studies of these microorganism-derived sheath materials have revealed that the unique microtubule structure is an attractive inorganic material and can be applied in various industrial fields.
- ceramics derived from microorganisms produced by iron bacteria as described above have been treated exclusively as waste in order to clog piping and cause red water damage.
- ceramics derived from microorganisms are environmentally friendly because they are derived from living organisms, and are untapped resources that can be continuously obtained because they are mainly composed of ubiquitous elements such as iron and silicon.
- a unique structure is artificially created, enormous labor, technology and energy are required. Therefore, the development of new materials using microorganism-derived ceramics obtained from the natural world Very significant on both sides.
- Patent Document 1 discloses a method for recovering sheath-like iron oxide from an aggregate produced by a water purification method using iron bacteria, and an aggregated precipitate produced by a bio-water purification method using iron bacteria, and a dispersant.
- a method for producing sheath-like iron oxide particles is disclosed, which is characterized by reacting with (for example, Noriutsugi extract or Troll's extract).
- the pipe-shaped iron oxide recovered by this method has a unique composition, shape, and excellent characteristics, and can be used as a magnetic material, catalyst, adsorbent, and battery material.
- Patent Document 1 Since the method for recovering sheath-like iron oxide described in Patent Document 1 is a method for obtaining aggregates using various iron bacteria existing in nature, it is difficult to completely remove substances other than sheath-like iron oxide. is there. Moreover, since the supplied water is also natural water and the temperature and contained ions cannot be controlled, the yield is unstable and the same composition is not always obtained. And in order to use a sheath material as an industrial material, refinement
- the shortest method is to isolate an iron bacterium that produces sheath-like iron oxide and to find culture conditions for producing sheath-like oxide using this isolated bacterium.
- Non-Patent Document 1 As a method for isolating iron-oxidizing bacteria selected from the group consisting of difficult-to-culture and aerobic iron-oxidizing bacteria represented by the genus Leptothrix, several methods using a low nutrient medium have been reported so far.
- these mediums contain organic components such as hydrocarbons, and a wide variety of bacteria other than the bacteria can grow. Therefore, it is difficult to be a selective medium for the bacteria.
- a continuous culture system that simulates a natural habitat has been devised (Non-Patent Document 2). If this method is used, the probability of isolation increases, but there are drawbacks such as that the system becomes very large and that one type of strain cannot be obtained completely.
- Non-Patent Documents 3 and 4 the sheath-forming strain Leptothrix chorodnii SP-6 (Non-Patent Documents 3 and 4), and the Leptothrix colodini SA-1 strain that produces sheath-like iron oxide. It has been reported that it has been isolated (Non-Patent Documents 5 and 6).
- Leptococcus cordinii sp-6 described in Non-Patent Documents 3 and 4 has problems such as low organic matter that can be metabolized, low cell adhesion, low sheath-forming ability, low ability to maintain sheath-forming ability, etc. There is.
- Non-Patent Documents 5 and 6 do not disclose details about the characteristics of the Leptolith cholodini SA-1 strain, the method for isolating the strain, the method for culturing the strain, the method for producing the sheath material, and the like. .
- the present invention provides a microorganism that belongs to the genus Leptosurix having the ability to produce a specific iron oxide and a specific iron oxide by isolating a novel iron bacterium that has been difficult to isolate from the natural world.
- An object of the present invention is to provide a bacterium, a medium for screening a metal oxide-producing bacterium, and a method for screening a metal oxide-producing bacterium.
- an object of the present invention is to provide a culture medium for culturing metal oxide-producing bacteria and a method for culturing metal oxide-producing bacteria.
- Another object of the present invention is to provide a method for producing a metal oxide and a novel iron oxide.
- the inventors of the present invention have established a groundwater precipitation in a storage tank of a water purification plant that produces tap water using groundwater by using a specific medium for a novel iron bacterium that has conventionally been difficult to isolate from nature.
- the knowledge that it can be isolated from the product was obtained.
- the knowledge about the culture medium which can accelerate the growth and the formation of iron oxide at the same time was also obtained.
- the present invention has been completed based on these findings, the following microorganisms belonging to the genus Leptolith having the ability to produce iron oxide, iron oxide producing bacteria, medium for screening for metal oxide producing bacteria, The present invention provides a screening method for metal oxide producing bacteria.
- Item 1 It belongs to the genus Leptothrix, which has the structure of ferrihydrite ⁇ or lepidocrocite, and has the ability to produce iron oxide that is an aggregate of ferrihydrite nanoparticles or lipidocrosite nanoparticles. The microorganism to which it belongs.
- Item 2 The microorganism according to Item 1, wherein the iron oxide contains phosphorus and silicon.
- Item 3 The microorganism according to Item 1 or 2, which has 16S rDNA consisting of the base sequence represented by SEQ ID NO: 1.
- Item 4. The microorganism according to any one of Items 1 to 3, which is Leptotrix Korodini OUMS1 (NITE BP-860).
- Item 5 An iron oxide-producing bacterium having a ferrihydrite or lipidoclosite structure and an aggregate of ferrihydrite nanoparticles or lipidocrosite nanoparticles.
- Item 6 The producing bacterium according to Item 5, wherein the iron oxide contains phosphorus and silicon.
- Item 7 A culture medium for screening a metal oxide producing bacterium in which an inorganic phosphate compound and an iron compound are added to natural groundwater.
- Item 8 A screening method for a metal oxide-producing bacterium, which is cultured in the medium according to Item 7.
- Item 9 A medium for culturing a metal oxide-producing bacterium, comprising a carbon source, a nitrogen source, silicon, sodium, calcium, magnesium, potassium, inorganic phosphoric acid and iron as medium components.
- Item 10 A method for culturing a metal oxide-producing bacterium, wherein the medium according to Item 9 is used.
- Item 11 A method for producing a metal oxide, comprising culturing the microorganism according to any one of Items 1 to 4 or the producing bacteria according to Item 5 or 6, and recovering the metal oxide from the culture solution.
- Item 12. The method according to Item 11, wherein the shape of the metal oxide is a microtube shape, a nanotube shape, a hollow string shape, a capsule shape, a string-shaped and spherical aggregate, a string shape, or a rod shape.
- Item 13 An iron oxide having a ferrihydrite or lipidoclosite structure, an aggregate of ferrihydrite nanoparticles or lipidocrosite nanoparticles, and having a fibrous or scaly surface.
- a novel iron bacteria screening method that has been difficult to isolate from the natural world can be provided. And it became possible to manufacture highly purified iron oxide by using the microorganisms which belong to the Leptothrix genus of this invention. Further, by using a microorganism belonging to the genus Leptothrix or an iron oxide producing bacterium of the present invention, it is possible to produce iron oxide which is an aggregate of ferrihydrite nanoparticles or lipidocrosite nanoparticles.
- FIG. 2 shows an optical microscope image (A) and a scanning electron microscope (SEM) image (B) of the sheath-like oxide formed after culturing OUMS1 strain in GP liquid medium.
- A optical microscope image
- SEM scanning electron microscope
- FIG. 2 is an optical microscopic image (A) and an SEM image (B) of a sheath oxide formed after culturing OUMS1 strain in SIGP liquid medium. This is an SEM image of iron oxide produced by OUMS1 strain. This is an SEM image of iron oxide produced by OUMS1 strain. This is a TEM image of iron oxide produced by OUMS1 strain.
- the producing bacteria having the ability to produce iron oxide has a structure of ferrihydrite or lipidoclosite, which is a low crystalline iron oxide, and is an aggregate of ferrihydrite nanoparticles or lipidoclosite nanoparticles Provide iron oxide producing bacteria.
- Ferrihydrite means low crystalline iron oxide. It is called 2-line ferrihydrite or 6-line ferrihydrite depending on the number of peaks appearing in the X-ray diffraction pattern.
- the composition of 2-line ferrihydrite is Fe 4 (O, OH, H 2 O) and the composition of 6-line ferrihydrite is Fe 4.6 (O, OH, H 2 O) 12 (RA Eggleton and RW Fitzpatrick, “ New data and a revised structural model for ferrihydrite ”, Clays and Clay Minerals, Vol. 36, No. 2, pp111-124, 1988).
- Repidocrocite is crystalline iron oxide whose chemical formula is represented by ⁇ -FeOOH.
- the iron oxide produced by the producing bacteria may contain phosphorus and silicon.
- the primary particle size of the ferrihydrite nanoparticles is preferably about 3 to 5 nm, and the primary particle size of the lipidocrosite nanoparticles is preferably 30. It is about 50 nm.
- the producing bacteria may be any as long as they have the ability to produce iron oxide having the structure of ferrihydrite or lepidocrotite (or the same structure as ferrihydrite or lepidocrotite). However, it is preferably a microorganism belonging to the genus Leptothrix, more preferably Leptothrix chordini.
- An example of such a microorganism is Leptothrix chorodini OUMS1 strain isolated from a water purification plant.
- the Leptotrix Korodini OUMS1 strain has the ability to produce iron oxide having a ferrihydrite or lepidocrotite structure. The following are the mycological and genetic properties of Leptotrix Korodini OUMS1.
- the shape is a gonococcus with a length of several ⁇ m and a width of about 1 ⁇ m.
- This bacterium grows, both ends of the cell become connected, and since a fibrous substance consisting of polysaccharides and proteins is formed around the microbial cell, it does not exist uniformly in the liquid medium, and is in an aggregated and precipitated state. Become.
- iron or manganese is added to the medium, these oxides adhere to fibrous substances outside the cells, forming a sheath-like structure.
- a white and irregular fibrous colony is formed, and when iron is added, it becomes yellow brown, and when manganese is added, it becomes a brown colony.
- Leptotrix Korodini OUMS1 strain has properties such as many organic substances that can be metabolized, high cell adhesion, high sheath-forming ability, and high ability to maintain sheath-forming ability. As a result, an inexpensive organic substance can be selected, and many cells adhere to the iron piece and are involved in the formation of iron oxide, and it is possible to produce iron oxide stably.
- the Leptothrix Korodini OUMS1 strain was issued on December 25, 2009 by the National Institute for Product Evaluation Technology Patent Microorganisms Deposit Center (2-5-8 Kazusa Kamashi, Kisarazu City, Chiba Prefecture, Japan) )), The deposit number is NITE P-860. This strain has now been transferred to an international deposit and its deposit number is NITE BP-860.
- microorganism belonging to the genus Leptothrix having the ability to produce iron oxide having the structure of ferrihydrite or lepidocrocite other than the above-mentioned Leptothrix chordini OUMS1 strain 16S consisting of the base sequence represented by SEQ ID NO: 1
- examples include microorganisms belonging to the genus Leptothrix having rDNA.
- a specific example of an iron oxide-producing bacterium having a ferrihydrite or lipidoclosite structure is a bacterium having 16S rDNA consisting of the base sequence represented by SEQ ID NO: 1.
- the medium for screening metal oxide-producing bacteria of the present invention is characterized in that an inorganic phosphate compound and an iron compound are added to natural groundwater.
- Such a carbon source is not essential, and by using a medium supplemented with iron and phosphorus, which are constituents of the metal oxide, the bacteria producing the metal oxide preferentially grow.
- the metal oxide examples include iron oxide (for example, iron oxide having a ferrihydrite or lipidocrosite structure), manganese oxide, and the like, and metals here include silicon and phosphorus.
- examples of the shape of the metal oxide include a microtube shape, a nanotube shape, a hollow string shape, a capsule shape, a string-like and spherical aggregate, a string shape, and a rod shape.
- Natural groundwater may be collected from any location as long as it is collected from the ground, but each atom contains 10 to 50 ppm of silicon, especially about 15 to 25 ppm, and calcium. 5-50 ppm, especially 10-15 ppm, sodium 1-100 ⁇ ppm, especially 5-10 ppm, magnesium 1-15 ppm, especially 3-5 ppm, potassium 0.1-10 ppm, especially 1- Those containing about 2 ppm are desirable. These elements are usually present in the medium as silicate ions, calcium ions, sodium ions, magnesium ions, and potassium ions.
- ppm used in this specification represents ion concentration (mg / L).
- the concentration of inorganic phosphate in the medium is preferably 1 to 50 ppm, particularly 5 to 20 ppm, and the iron concentration is preferably 0.01 to 1 mM, particularly 0.03 to 0.1 mM.
- the inorganic phosphoric acid compound include phosphate, polyphosphoric acid, pyrophosphoric acid, and examples of the iron compound include iron sulfate, iron nitrate, and iron pieces.
- the pH of the medium for screening of the present invention is preferably in the neutral range, particularly 7. Further, the medium for screening of the present invention may contain a buffer such as HEPES (2- (4- (2-hydroxyethyl) -1-piperazinyl) estanesulfonic acid).
- a buffer such as HEPES (2- (4- (2-hydroxyethyl) -1-piperazinyl) estanesulfonic acid).
- natural groundwater for example, silicon is about 15 to 25 ppm, calcium is about 10 to 15 ppm, sodium is about 5 to 10 ppm, magnesium is about 3 to 5 ppm, potassium is 1 to 2 (including about ppm) as basic components, inorganic phosphate ions at about 10 ppm, HEPES at about 2.3-2.4 kg per liter of medium, iron sulfate (II) at about 0.01-0.05 mm, iron pieces (99.9% purity, approx. 5 mm square) and pH adjusted to 7.0 are listed.
- GP medium 0.076 g disodium hydrogen phosphate dodecahydrate in 1 liter of sterilized groundwater, 2 dibasic potassium dihydrogen phosphate 0.02 g Japanese, 2.383 HHEPES, 0.01 mM iron sulfate, pH adjusted to 7.0 with aqueous sodium hydroxide).
- the screening method for metal oxide producing bacteria of the present invention is characterized by culturing in the medium. By culturing using the medium, it is possible to screen for metal oxide-producing bacteria that have been difficult to isolate from nature.
- the culture may be either solid culture or liquid culture, and can be performed according to the culture of general microorganisms.
- the culture conditions can be appropriately set according to the characteristics of the microorganism to be screened.
- An example of the culture temperature is 15 to 30 ° C, preferably 20 to 25 ° C.
- the culture time cannot be defined uniformly, but can usually be 4 to 35 days, preferably about 7 to 21 days.
- the diluted solution of the culture solution is instilled and cultured on an agar plate medium to obtain a single colony.
- the medium for culturing metal oxide-producing bacteria of the present invention comprises a carbon source, nitrogen source, silicon, sodium, calcium, magnesium, potassium, inorganic phosphorus as medium components. It contains acid and iron.
- Examples of the metal oxide include those described above.
- Examples of the carbon source in the medium include glucose, sucrose, fructose, maltose, glycerin, dextrin, oligosaccharide, starch, molasses, corn steep liquor, malt extract, organic acid and the like.
- the concentration of the carbon source is preferably 0.01 to 10 Lg / L, particularly 0.1 to 2 g / L.
- Examples of the nitrogen source in the medium include corn steep liquor, yeast extract, various peptones, soybean flour, meat extract, bran extract, casein, amino acid, urea and the like.
- the concentration of the nitrogen source is preferably 0.01 to 10 Lg / L, particularly 0.1 to 2 g / L.
- the concentration of the mineral component in the medium is preferably a composition similar to that of groundwater, with 10 to 50 ppm, particularly about 15 to 25 ppm, and 5 to 50 ppm, especially 10 to 10 ppm of silicon as atoms. Concentrations of about 15 ppm, sodium 1-100 ppm, especially 5-10 ppm, magnesium 1-15 ppm, especially 3-5 ppm, potassium 0.1-10 ppm, especially 1-2 ppm Is preferred. These elements are usually present in the medium as silicate ions, calcium ions, sodium ions, magnesium ions, and potassium ions.
- the concentration of inorganic phosphate in the medium is preferably 1 to 50 ppm, particularly 5 to 20 ppm, and the iron concentration is preferably 0.01 to 1 mM, particularly 0.03 to 0.1 mM.
- Inorganic phosphoric acid can be added to the medium as phosphate, polyphosphoric acid, pyrophosphoric acid or the like, and iron can be added to the medium as iron sulfate, iron nitrate, iron pieces or the like.
- the pH of the medium is preferably in the neutral range, particularly 7.
- the culture medium for screening of the present invention may contain a buffer such as HEPES.
- such a medium in 1 L of sterile distilled water, glucose 0.01-10 g, peptone 0.01-10 g, sodium metasilicate nonahydrate 0.1-1 g, calcium chloride dihydrate 0.02-0.1 g, sulfuric acid Magnesium heptahydrate 0.01-0.1 g, disodium hydrogen phosphate dodecahydrate 0.02-0.2 g, potassium dihydrogen phosphate dihydrate 0.01-0.05 g, HEPES 1-4 g, iron (II) sulfate 0.01 -0.05 mM and iron pieces (99.9% purity, approx. 5-10 mm square) were added, and the medium was adjusted to pH 7.0 with sodium hydroxide aqueous solution.
- SIGP liquid medium sterile distilled water
- the method for culturing a metal oxide-producing bacterium according to the present invention is characterized in that the medium is used.
- the culture medium By using the culture medium, it is possible to achieve both iron oxide formation and culturing of the producing bacteria.
- the culture may be either solid culture or liquid culture, and can be performed according to the culture of general microorganisms. For example, it can be performed by shaking culture of liquid culture.
- the culture conditions can be appropriately set according to the characteristics of the metal oxide producing bacteria to be cultured. Examples of the culture temperature include 15 to 30 ° C, preferably 20 to 25 ° C.
- the culture time cannot be uniformly defined, but is usually 7 to 35 days, preferably about 7 to 21 days.
- the method for producing a metal oxide of the present invention is characterized by culturing a microorganism belonging to the genus Leptolith or genus producing iron oxide and recovering the metal oxide from the culture solution.
- the metal oxide examples include iron oxide (for example, iron oxide having a ferrihydrite or lipidocrosite structure), manganese oxide, and the like, and the metal here includes silicon and phosphorus.
- the shape of the metal oxide include a microtube shape, a nanotube shape, a hollow string shape, a capsule shape, a string-like and spherical aggregate, a string shape, and a rod shape.
- the size of the metal oxide is as follows: Microtube shape: diameter 0.3-4 ⁇ m, length 5-200 ⁇ m, nanotube shape: diameter 300-450 mm, length 5-200 ⁇ m, hollow string shape: length 3-10 ⁇ m, capsule Shape: major axis 0.5-7 ⁇ m, minor axis 0.5-3 ⁇ m, string: length 0.5-5 ⁇ m, rod shape: length 5-30 ⁇ m.
- the medium and the culturing method described in the above item “Medium for culturing metal oxide-producing bacteria” can be employed.
- the medium component can be removed while the supernatant of the medium is replaced several times with distilled water, and the medium can be naturally dried and recovered.
- Iron oxide has a ferrihydrite or lipidocrosite structure, is an aggregate of ferrihydrite nanoparticles or lipidocrosite nanoparticles, and has a fibrous or scaly surface. It is characterized by.
- the surface is the outer surface of the tube, the fibrous is a surface shape in which thread-like substances are intricately entangled, and the scale-like is a surface shape filled with a scale-like substance.
- examples of the shape of the iron oxide include a microtube shape, a nanotube shape, a hollow string shape, a capsule shape, a string-like and spherical aggregate, a string shape, and a rod shape.
- the size of the iron oxide is as follows: Micro tube shape: 0.3 to 4 ⁇ m in diameter, 5 to 200 ⁇ m in length, nanotube shape: 300 to 450 mm in diameter, 5 to 200 ⁇ m in length, hollow string shape: 3 to 10 ⁇ m in length, capsule shape : Major axis 0.5-7 ⁇ m, minor axis 0.5-3 ⁇ m, string: 0.5-5 ⁇ m in length, rod: 5-30 ⁇ m in length.
- the constituents of the iron oxide of the present invention are, for example, Fe, O, Si, P, and this iron oxide usually contains carbon atoms and hydrogen atoms.
- the element ratio of iron, silicon, and phosphorus is atomic% (at%), and it is usually preferably about 66 to 87: 2 to 27: 1 to 32.
- the primary particle size of the ferrihydrite nanoparticles of the iron oxide of the present invention is preferably about 3 to 5 nm, and the primary particle size of the lipidocrosite nanoparticles is preferably about 30 to 50 nm.
- the iron oxide can be produced by the method described in the item “Production method of metal oxide” above.
- Iron oxide having magnetism can be obtained by heat-treating the iron oxide to give magnetism.
- the heat treatment conditions are such that the iron atoms contained in the iron oxide are reduced and oxidized, and the iron atoms contained in the iron oxide become magnetic iron oxide (eg, Fe 3 O 4 , ⁇ -Fe 2 O 3, etc.). If it does not specifically limit.
- the heat treatment includes heat treatment with oxidation, heat treatment with reduction, and heat treatment without these.
- the heat treatment includes, for example, oxidation that is heated at 700 to 900 ° C. in the presence of oxygen gas (for example, air), hydrogen reduction that is heated at about 400 to 650 ° C. in the presence of hydrogen gas, and N 2 gas.
- heat treatment for producing the iron oxide having magnetism
- a method including the following steps (1) and (2) may be mentioned.
- the steps (1) and (2) By the heat treatment having, magnetic iron oxide mainly containing Fe 3 O 4 can be obtained.
- heat treatment for producing the iron oxide having magnetism
- a method including the following step (3) is also exemplified.
- Example 1 Isolation of microorganisms of the present invention (1) Isolation of OUMS1 strain from Jyoyo City Water Treatment Plant, Kyoto Prefecture Water from a groundwater sediment in an iron bacteria tank of Joyo City Culture Park, Joyo City, Kyoto Prefecture, and a small amount (for example, , 0.5-1 g), GP liquid medium containing small iron pieces (99.9% purity, approx.
- a small amount of the liquid in the flask was collected and diluted to 10 ⁇ 2 to 10 ⁇ 6 with GP liquid medium. Each dilution was instilled onto GP agar plate in a separate sterile Petri dish and spread onto the medium with a sterile glass rod. When these media were cultured in an incubator at 20 ° C. for 7 to 10 days, the target bacteria grew and formed sheath-like oxides.
- the formed single colony was individually cut with a sterilized toothpick, inoculated on a freshly prepared GP agar plate medium, and cultured at 20 ° C. for 10 days. Colonies appeared on the medium. . Among these colonies, pale yellowish brown and irregular colonies were identified. When observed with a low-magnification optical microscope, the light yellowish-brown part was mainly a sheath-like structure. The isolated strain having this property was referred to as OUMS1 strain.
- a portion of the identified OUMS1 strain colony is scraped off, transferred to a flask containing freshly prepared GP liquid medium, cultured at 20 ° C. for 10 days on a shaking incubator (70 rpm), and then increased suspended.
- a shaking incubator 70 rpm
- the suspended matter was placed on a slide glass and observed with an optical microscope and a scanning electron microscope, formation of a sheath-like oxide was confirmed (FIGS. 1A and 1B).
- the amplified fragment was TA cloned using TA PCR cloning kit (BioDynamics Laboratory Inc.), and the DNA sequence was decoded according to the dideoxy method (Sanger method).
- the decoded DNA sequence was the base sequence of SEQ ID NO: 1.
- the base sequence of the 16S ribosomal DNA was subjected to homology search using BLAST of DDBJ.
- FIGS. 2-A and 2-B The homology search results are shown in FIGS. 2-A and 2-B.
- a test result was obtained that there was 99% homology with the 16S ribosomal DNA base sequence (Non-patent Document 4) of the known iron-oxidizing bacterium Leptothrix chorodini SP-6 strain (Non-patent Document 3).
- the OUMS1 strain is cultured in MSVP (see Non-Patent Document 2) liquid medium at 20 ° C for 4 days, the grown bacterial cells are recovered, genomic DNA is extracted by the CTAB method, and the amplified fragment polymorphism method (RAPD method) is used. Therefore, genomic DNA analysis was performed and compared with the genomic DNA of the known iron-oxidizing bacteria Leptothrix cholodini SP-6 strain.
- FIG. 3 shows the electrophoresis pattern of genomic DNA between the OUMS1 strain and the known iron-oxidizing bacterium Leptothrix cholodini SP-6 strain.
- the OUMS1 strain was different from that of the known SP-6 in the length and number of amplified fragments in all six types of primers used. It became clear that the strain was different from the strain.
- a portion of the OUMS1 colony is scraped off and transplanted to a flask containing MSVP liquid medium (Non-patent Document 3) containing manganese sulfate instead of iron sulfate, and then shaken at 70 ° C for 10 days at 20 ° C. After culturing, the increased suspension was placed on a glass slide and observed with an optical microscope. As a result, formation of a sheath-like oxide was confirmed.
- the OUMS1 strain is consistent with the description of the known iron-oxidizing bacterium Leptothrix chordini SP-6 regarding the shape of the cultured colony, the ability to form sheath oxide, and the ability to oxidize manganese, and the homology of the 16S ribosomal DNA base sequence.
- the OUMS1 strain and the known iron-oxidizing bacterium Leptothrix Korodini SP-6 strain had 99% homology, and thus the OUMS1 strain was identified as the known iron-oxidizing bacterium Leptothrix Korodini.
- the OUMS1 strain was confirmed to be different from the known iron-oxidizing bacterium Leptothrix korodyni SP-6 strain by comparison of the electrophoretic pattern of genomic DNA by RAPD method.
- the strain was named (NITE-BP-860).
- the OUMS1 strain is a SIGP liquid medium (in 1 L of sterile distilled water) containing iron pieces (99.9% purity, approx. 5 mm square).
- Fig. 5-A 1-14 and Fig. 5-B 1 and 2 show SEM images of iron oxide formed by the OUMS1 strain. It was revealed that most structures in the field of view have a micron-order tube (microtube) shape. The outer diameter was 1.6 to 3.7 ⁇ m, and the inner diameter was about 0.5 to 0.8 ⁇ m. Moreover, the surface shape of iron oxide formed by OUMS1 strain can be roughly classified into three types. That is, the surface shape in which the fibrous particles (fiber width of about 100-200 nm) shown in FIG.
- the surface shape is such that the fiber width (about 100-300 nm) is closely entangled, and the surface shape is composed of scaly particles shown in 12-14.
- an aggregate as shown in 1 of FIG. 5-B and a rod-shaped iron oxide having a thickness of about 1 ⁇ m shown in 2 of FIG. 5-B were also confirmed.
- FIGS. 6-5 and 6 having an outer diameter of about 350 to 400 nm is shown in FIG.
- FIG. 7 shows the XRD pattern (bottom) of iron oxide formed by the OUMS1 strain and the XRD patterns of 2-line ferrihydrite (second from the bottom) and 6-line ferrihydrite (third from the bottom) as comparative samples.
- the iron oxide formed by the OUMS1 strain showed a peak in which 2-line ⁇ ferrihydrite and 6-line ferrihydrite were mixed. These results revealed that the iron oxide produced by OUMS1 is ferrihydrite.
- Fig. 8 shows a high-resolution transmission electron microscope (HRTEM) image of a typical iron oxide microtube produced by OUMS1. From this, it became clear that the primary particle diameter of iron oxide formed by OUMS1 is about 3-5 nm. In addition, it was clarified that the iron oxide produced by OUMS1 was an aggregate of microcrystals because clear lattice fringes were confirmed for the primary particles.
- HRTEM transmission electron microscope
- the iron oxide produced by OUMS1 is an aggregate of ferrihydrite fine particles having a primary particle diameter of about 3 to 5 nm.
- Example 2 Optimal culture conditions for promoting the growth of the OUMS1 strain and promoting the formation of the sheath-like oxide lepidochrosite. Using OUMS1 isolated in Example 1 above, lipidoclosite was prepared under the following culture conditions.
- OUMS1 strain SIGP liquid medium containing 3 pieces of iron pieces (99.9% purity, approx. 1cm square) (1g of glucose, 1g of peptone, 0.2g of sodium metasilicate nonahydrate in 1L of sterile distilled water, Calcium chloride dihydrate 0.044 g, magnesium sulfate heptahydrate 0.041 g, disodium hydrogen phosphate dodecahydrate 0.076 g, potassium dihydrogen phosphate dihydrate 0.022g, HEPES ⁇ 2.383 g, iron sulfate 0.05 mM The pH was adjusted to 7.0 with an aqueous sodium hydroxide solution) and suspended sufficiently, followed by culturing at 20 ° C.
- Optical microscope Olympus Corporation BX-51 (Fig. 1-A, Fig. 4-A, Fig. 9) X-ray diffraction (XRD) measurement: RINTaku 2000, Rigaku (Figs. 7 and 10) Scanning Electron Microscope (SEM): Hitachi High-Technologies Corporation Miniscope TM-1000 ( Figure 1-B, Figure 4-B) Scanning electron microscope (SEM): JEOL Ltd. JSM-6700F (Fig. 5-A, Fig. 5-B) Energy dispersive X-ray (EDX) analysis: JEOL JED-2200F (Table 1) Transmission electron microscope (TEM): JEOL JEM-2100F (Figs. 6 and 8)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Inorganic Chemistry (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Nanotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
本発明は、低結晶性酸化鉄であるフェリハイドライト又はレピドクロサイトの構造を有し、且つフェリハイドライトナノ粒子又はレピドクロサイトナノ粒子の集合体である酸化鉄の生産菌を提供する。
形状は、長さ数μm、幅約1μmの桿菌で、単一細胞のときは鞭毛を使い活発に運動する。本菌は増殖するにつれて細胞の両端が連結した状態となり、また菌体の周りに多糖とタンパク質からなる繊維状の物質を作るので、液体培地中では均一に存在せず、凝集・沈殿した状態となる。培地に鉄やマンガンを加えると、それらの酸化物が菌体外の繊維状物質に付着し、鞘状の構造物を形成する。寒天培地上では、白色で不定形の繊維状コロニーを形成し、鉄を添加すると黄褐色、マンガンを添加すると茶色のコロニーとなる。
レプトスリックス・コロディニ OUMS1株の16S rDNAの塩基配列を配列表の配列番号1に示す。当該16S rDNAの塩基配列についてDDBJのデータベースに対するBLAST検索を行った結果及び上記の菌学的性質から、当該菌株はレプトスリックス・コロディニに属することが分かった。
本発明の金属酸化物の生産菌をスクリーニングするための培地は、天然の地下水に無機リン酸化合物及び鉄化合物が添加されたものであることを特徴とする。
本発明の金属酸化物の生産菌を培養するための培地は、培地成分として炭素源、窒素源、ケイ素、ナトリウム、カルシウム、マグネシウム、カリウム、無機リン酸及び鉄を含むことを特徴とする。
本発明の金属酸化物の製造方法は、上記のレプトスリックス属に属する微生物又は酸化鉄の生産菌を培養し、培養液から金属酸化物を回収することを特徴とする。
本発明の酸化鉄は、フェリハイドライト又はレピドクロサイトの構造を有し、フェリハイドライトナノ粒子又はレピドクロサイトナノ粒子の集合体であり、且つ表面が繊維状又は鱗片状であることを特徴とする。
上記酸化鉄を加熱処理して磁性を付与し、磁性を有する酸化鉄とすることもできる。加熱処理の条件は、上記酸化鉄に含まれる鉄原子が還元、酸化されて、酸化鉄中に含まれる鉄原子が磁性酸化鉄(例えばFe3O4、γ-Fe2O3等)になれば特に限定されない。なお、当該加熱処理には、酸化を伴う加熱処理、還元を伴う加熱処理や、これらを伴わない加熱処理も含まれる。加熱処理は、例えば、酸素ガス(例えば、大気)の存在下に700~900℃で加熱する酸化や、水素ガスの存在下に400~650℃程度で加熱する水素還元、さらに、N2ガスで置換したFe2+イオンの存在するアルカリ水溶液中に原料酸化鉄を混合し、還流条件で加熱する方法(例えば、「S. A. Kahani and M. jafari, J.Magn.Magn.Mater., 321 (2009) 1951-1954」等)等により行われる。
(1):前記酸化鉄を加熱する工程、及び
(2):工程(1)で得られた酸化鉄を水素ガスの存在下、加熱下に還元する工程
かかる工程(1)及び(2)を有する加熱処理により、主にFe3O4を含む磁性を有する酸化鉄が得られる。
(3):工程(2)で得られた磁性を有する酸化鉄を酸素ガス存在下に加熱する工程(酸化処理、アニール処理工程)
1.本発明の微生物の単離
(1)京都府城陽市浄水場からのOUMS1株の単離
京都府城陽市文化パルク城陽の鉄バクテリア槽内の地下水沈殿物から水を容器に汲み取り、その少量(たとえば、0.5~1 g)を、鉄小片(99.9%純度、約5 mm角)を入れたGP液体培地(滅菌地下水1L中、リン酸水素二ナトリウム12水和物0.076 g、リン酸二水素カリウム2水和物0.02 g、HEPES 2.383 g、硫酸鉄0.01 mM、pHを水酸化ナトリウム水溶液で7.0に調整)に投入し、十分に懸濁した後に、振とう培養器(70rpm)上で20℃で10日間培養した。当該培養中に増加した沈殿物の一部を取り出し、鉄小片を入れた新たなGP液体培地を入れたフラスコに移植し、さらに同条件で10日間振とう培養した。この過程をさらにもう一度繰り返した。フラスコ中の液体を少量採取し、GP液体培地で10-2~10-6に希釈した。それぞれの希釈液を別個の滅菌ペトリ皿中のGP寒天平板培地上に点滴し、滅菌したガラス棒で培地上に拡散塗布した。これらの培地を20℃の恒温器中で7~10日培養したところ、対象細菌が増殖し、鞘状酸化物を形成した。
OUMS1株をGP寒天プレート上で23℃、10日間培養し、プレート上にTEバッファー(10 mM Tris/1 mM EDTA)を1 ml加えてセルスクレイパー(TRP 社製)で菌体を掻き取り、エッペンドルフチューブに回収した後、5000×g、10 minの遠心で菌体を回収した。CTAB法によってゲノムDNAを抽出し、16S rDNA領域を次のプライマーでPCR増幅した。
5'-AGA GTT TGA TCM TGG CTC AG-3'
5'-GGY TAC CTT GTT ACG ACT T-3'
レプトスリックス・コロディニOUMS1株を、GP液体培地又はMSVP液体培地中で4日間培養後、そのうちの1mLを滅菌した50容量%グリセロール液0.5mLと懸濁し、-80℃で凍結保存し、14ヶ月後に融解し、硫酸マンガン含有のMSVP液体培地に移植して振とう培養器(70rpm)で20℃で培養し、その増殖能、鞘状酸化物の形成能の保存を確認した。
OUMS1株を、鉄小片(99.9%純度、約5 mm角)を入れたSIGP液体培地(滅菌蒸留水1L中、グルコース1 g、ペプトン1 g、メタケイ酸ナトリウム9水和物0.2 g、塩化カルシウム2水和物0.044 g、硫酸マグネシウム7水和物0.041 g、リン酸水素二ナトリウム12水和物0.076 g、リン酸二水素カリウム2水和物0.02 g、HEPES 2.383 g、硫酸鉄0.05 mM、pHを水酸化ナトリウム水溶液で7.0に調整)に投入し、十分に懸濁した後に、振とう培養器(70rpm)上で20℃で21日間培養した。培養後、鉄小片表面及び増加した沈殿物を光学顕微鏡及び走査型電子顕微鏡で観察すると、鞘状酸化物を観察することができた(図4A、B)。
OUMS1株が形成した酸化鉄の結晶構造をX線回折(XRD)測定、組成分析をエネルギー分散型X線(EDX)分析、微細構造観察を走査型電子顕微鏡(SEM)及び透過型電子顕微鏡(TEM)を用いて評価した。
1.OUMS1株の増殖を促進し、且つ鞘状酸化物レピドクロサイトの形成を促進する最適培養条件
前記実施例1で単離したOUMS1を使用し、下記の培養条件でレピドクロサイトを調製した。
光学顕微鏡:オリンパス(株)社BX-51(図1-A、図4-A、図9)
X線回折(XRD)測定:Rigaku社RINT-2000(図7、図10)
走査型電子顕微鏡(SEM):(株)日立ハイテクノロジーズ社Miniscope TM-1000(図1-B、図4-B)
走査型電子顕微鏡(SEM):日本電子(株)JSM-6700F(図5-A、図5-B)
エネルギー分散型X線(EDX)分析:日本電子(株)JED-2200F(表1)
透過型電子顕微鏡(TEM):日本電子(株)JEM-2100F(図6、図8)
Claims (13)
- フェリハイドライト(ferrihydrite)又はレピドクロサイト(lepidocrocite)の構造を有し、且つフェリハイドライトナノ粒子又はレピドクロサイトナノ粒子の集合体である酸化鉄の生成能を有するレプトスリックス(Leptothrix)属に属する微生物。
- 酸化鉄がリンとケイ素を含むことを特徴とする、請求項1に記載の微生物。
- 配列番号1で示される塩基配列からなる16S rDNAを有することを特徴とする、請求項1に記載の微生物
- レプトスリックス・コロディニ OUMS1(NITE BP-860)である、請求項1に記載の微生物。
- フェリハイドライト又はレピドクロサイトの構造を有し、且つフェリハイドライトナノ粒子又はレピドクロサイトナノ粒子の集合体である酸化鉄の生産菌。
- 酸化鉄がリンとケイ素を含むことを特徴とする、請求項5に記載の生産菌。
- 天然の地下水に無機リン酸化合物及び鉄化合物が添加されたものである金属酸化物の生産菌をスクリーニングするための培地。
- 請求項7に記載の培地で培養することを特徴とする、金属酸化物の生産菌のスクリーニング方法。
- 培地成分として炭素源、窒素源、ケイ素、ナトリウム、カルシウム、マグネシウム、カリウム、無機リン酸及び鉄を含むことを特徴とする、金属酸化物の生産菌を培養するための培地。
- 請求項9に記載の培地を使用することを特徴とする、金属酸化物の生産菌の培養方法。
- 請求項1に記載の微生物又は請求項5に記載の生産菌を培養し、培養液から金属酸化物を回収することを特徴とする、金属酸化物の製造方法。
- 前記金属酸化物の形状がマイクロチューブ状、ナノチューブ状、中空ひも状、カプセル状、ひも状と球状の凝集体、ひも状、又はロッド状である、請求項11に記載の方法。
- フェリハイドライト又はレピドクロサイトの構造を有し、フェリハイドライトナノ粒子又はレピドクロサイトナノ粒子の集合体であり、且つ表面が繊維状又は鱗片状である酸化鉄。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011546135A JP5818690B2 (ja) | 2009-12-15 | 2010-12-14 | 酸化物の生成能を有する新規微生物 |
US13/515,943 US20120315437A1 (en) | 2009-12-15 | 2010-12-14 | Novel microorganism capable of producing oxide |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009284445 | 2009-12-15 | ||
JP2009-284445 | 2009-12-15 | ||
JP2010-003269 | 2010-01-08 | ||
JP2010003269 | 2010-01-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011074586A1 true WO2011074586A1 (ja) | 2011-06-23 |
Family
ID=44167338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/072503 WO2011074586A1 (ja) | 2009-12-15 | 2010-12-14 | 酸化物の生成能を有する新規微生物 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20120315437A1 (ja) |
JP (1) | JP5818690B2 (ja) |
WO (1) | WO2011074586A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0530668A (ja) * | 1991-07-16 | 1993-02-05 | Murata Mfg Co Ltd | バツテリ充電回路 |
JP2013006160A (ja) * | 2011-06-27 | 2013-01-10 | Osaka Sangyo Univ | 硫黄酸化物除去材 |
WO2013100050A1 (ja) | 2011-12-27 | 2013-07-04 | 国立大学法人岡山大学 | 負極活物質及びその利用 |
WO2014148396A1 (ja) | 2013-03-19 | 2014-09-25 | 国立大学法人岡山大学 | 植物保護剤及び植物病害の防除方法 |
WO2018074598A1 (ja) * | 2016-10-21 | 2018-04-26 | 国立大学法人 岡山大学 | 赤色顔料用酸化鉄及びその製造方法 |
WO2018096962A1 (ja) * | 2016-11-22 | 2018-05-31 | 国立大学法人九州大学 | 排水からのマンガンの除去方法 |
JP2018086643A (ja) * | 2016-11-22 | 2018-06-07 | 国立大学法人九州大学 | 排水からのマンガンの除去方法 |
JP2019076877A (ja) * | 2017-10-20 | 2019-05-23 | 門上 洋一 | 鉄バクテリアの固定化および固定化鉄バクテリアによる重金属の除去方法 |
JP2020078293A (ja) * | 2018-10-02 | 2020-05-28 | ナノバクテリー | 高純度酸化鉄ナノ粒子の細胞での生産 |
WO2021210212A1 (ja) * | 2020-04-14 | 2021-10-21 | 国立大学法人 岡山大学 | チューブ状酸化鉄粒子、その製造方法、及び、抗菌性赤色顔料 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2412677A4 (en) * | 2009-03-27 | 2013-01-16 | Univ Okayama Nat Univ Corp | ORGANIC-INORGANIC COMPOSITE MATERIAL AND PROCESS FOR PRODUCING THE SAME |
RU2767952C1 (ru) * | 2021-07-07 | 2022-03-22 | Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" | Способ получения наночастиц ферригидрита |
JP7541275B1 (ja) | 2023-03-16 | 2024-08-28 | 日本製鉄株式会社 | インピーダーシート、電縫管製造装置のマンドレル及び電縫管の製造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001261506A (ja) * | 2000-03-16 | 2001-09-26 | Hakuto Co Ltd | 水系における微生物の抑制方法 |
JP2005272251A (ja) * | 2004-03-25 | 2005-10-06 | Japan Science & Technology Agency | 鞘状酸化鉄粒子の生産方法、及びその利用 |
-
2010
- 2010-12-14 JP JP2011546135A patent/JP5818690B2/ja active Active
- 2010-12-14 WO PCT/JP2010/072503 patent/WO2011074586A1/ja active Application Filing
- 2010-12-14 US US13/515,943 patent/US20120315437A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001261506A (ja) * | 2000-03-16 | 2001-09-26 | Hakuto Co Ltd | 水系における微生物の抑制方法 |
JP2005272251A (ja) * | 2004-03-25 | 2005-10-06 | Japan Science & Technology Agency | 鞘状酸化鉄粒子の生産方法、及びその利用 |
Non-Patent Citations (7)
Title |
---|
EMERSON, D. ET AL.: "Isolation, Cultural Maintenance, and Taxonomy of a Sheath-Forming Strain of Leptothrix discophora and Characterization of Manganese-Oxidizing Activity Associated with the Sheath.", APPL. ENVIRON.MICROBIOL., vol. 58, no. 12, 1992, pages 4001 - 4010 * |
HASHIMOTO H. ET AL.: "Characteristics of hollow microtubes consisting of amorphous iron oxide nanoparticles produced by iron oxidizing bacteria, Leptothrix ochracea", JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, vol. 310, 2007, pages 2405 - 2407 * |
HIDEKI HASHIMOTO ET AL.: "Tetsu Bacteria ga Tsukuru Bio Sankatetsu no HEXRD ni yoru Kozo Kaiseki", DAI 23 KAI THE JAPANESE SOCIETY FOR SYNCHROTRON RADIATION RESEARCH NENKAI - HOSHAKO KAGAKU GODO SYMPOSIUM YOKOSHU, 10 December 2009 (2009-12-10), pages 101 * |
ISAACSON L.S. ET AL.: "Iron(III) accumulations in inland saline waterways, Hunter Valley, Australia: Mineralogy, micromorphology and pore-water geochemistry", APPLIED GEOCHEMISTRY, vol. 24, no. 10, October 2009 (2009-10-01), pages 1825 - 1834, XP026639976, DOI: doi:10.1016/j.apgeochem.2009.06.004 * |
JUN TAKADA: "Nano Ryushi Sankatetsu ga Irodoru Tasai na Sekai -Bizen'yaki 'Hidasuki Moyo' to Biseibutsu ga Tsukuru Bio Sankatetsu Microtube", DAI 26 KAI AEROSOL KAGAKU GIJUTSU KENKYU TORONKAI RONBUNSHU, 19 August 2009 (2009-08-19), pages 161 - 162 * |
MICHINORI SAWAYAMA ET AL.: "Isolation of the genus Leptothrix and culture condition for its iron sheath formation", DAI 61 KAI ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, vol. 125, 25 August 2009 (2009-08-25), JAPAN, pages 125 * |
YOSHIO UMEZAWA ET AL.: "Kiki Bunseki Jikken", 1 March 2002, KABUSHIKI KAISHA TOKYO KAGAKU DOJIN, pages: 139 - 149 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0530668A (ja) * | 1991-07-16 | 1993-02-05 | Murata Mfg Co Ltd | バツテリ充電回路 |
JP2013006160A (ja) * | 2011-06-27 | 2013-01-10 | Osaka Sangyo Univ | 硫黄酸化物除去材 |
WO2013100050A1 (ja) | 2011-12-27 | 2013-07-04 | 国立大学法人岡山大学 | 負極活物質及びその利用 |
JPWO2013100050A1 (ja) * | 2011-12-27 | 2015-05-11 | 国立大学法人 岡山大学 | 負極活物質及びその利用 |
US9595715B2 (en) | 2011-12-27 | 2017-03-14 | National University Corporation Okayama University | Negative electrode active material and use of same |
KR101738853B1 (ko) * | 2011-12-27 | 2017-05-23 | 고꾸리츠 다이가꾸 호우징 오까야마 다이가꾸 | 음극 활물질 및 그의 이용 |
WO2014148396A1 (ja) | 2013-03-19 | 2014-09-25 | 国立大学法人岡山大学 | 植物保護剤及び植物病害の防除方法 |
JP2018070441A (ja) * | 2016-10-21 | 2018-05-10 | 国立大学法人 岡山大学 | 赤色顔料用及び触媒用酸化鉄並びにその製造方法 |
WO2018074598A1 (ja) * | 2016-10-21 | 2018-04-26 | 国立大学法人 岡山大学 | 赤色顔料用酸化鉄及びその製造方法 |
JP7038995B2 (ja) | 2016-10-21 | 2022-03-22 | 国立大学法人 岡山大学 | 赤色顔料用及び触媒用酸化鉄並びにその製造方法 |
WO2018096962A1 (ja) * | 2016-11-22 | 2018-05-31 | 国立大学法人九州大学 | 排水からのマンガンの除去方法 |
JP2018086643A (ja) * | 2016-11-22 | 2018-06-07 | 国立大学法人九州大学 | 排水からのマンガンの除去方法 |
JP2019076877A (ja) * | 2017-10-20 | 2019-05-23 | 門上 洋一 | 鉄バクテリアの固定化および固定化鉄バクテリアによる重金属の除去方法 |
JP2020078293A (ja) * | 2018-10-02 | 2020-05-28 | ナノバクテリー | 高純度酸化鉄ナノ粒子の細胞での生産 |
WO2021210212A1 (ja) * | 2020-04-14 | 2021-10-21 | 国立大学法人 岡山大学 | チューブ状酸化鉄粒子、その製造方法、及び、抗菌性赤色顔料 |
JP2021169378A (ja) * | 2020-04-14 | 2021-10-28 | 国立大学法人 岡山大学 | チューブ状酸化鉄粒子、その製造方法、及び、抗菌性赤色顔料 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011074586A1 (ja) | 2013-04-25 |
JP5818690B2 (ja) | 2015-11-18 |
US20120315437A1 (en) | 2012-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5818690B2 (ja) | 酸化物の生成能を有する新規微生物 | |
Huber et al. | Respiration of arsenate and selenate by hyperthermophilic archaea | |
JP5669754B2 (ja) | 磁性セラミックス及びその製造方法 | |
US7060473B2 (en) | Fermentative process for making inorganic nanoparticles | |
Baesman et al. | Enrichment and isolation of Bacillus beveridgei sp. nov., a facultative anaerobic haloalkaliphile from Mono Lake, California, that respires oxyanions of tellurium, selenium, and arsenic | |
KR20210124232A (ko) | 바실러스 톈션니 균주, 이의 미생물 제제 및 중금속 복구 분야의 응용 | |
Ibrahim et al. | A Literature Review of Bio-cement: Microorganisms, Production, Properties, and Potential Applications. | |
RU2767952C1 (ru) | Способ получения наночастиц ферригидрита | |
CN101397544A (zh) | 锰氧化细菌芽孢杆菌菌株wh4及其应用 | |
JP5540327B2 (ja) | 蛍光特性のあるカルサイト結晶およびその製造方法 | |
RU2355756C1 (ru) | ШТАММ БАКТЕРИЙ Desulfovibrio oxamicus, ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ СУЛЬФАТОВ И ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ | |
JP2007228960A (ja) | 塩化物イオン耐性をもつ硫黄酸化細菌 | |
Singh et al. | Lysobacter agri sp. nov., a bacterium isolated from soil | |
CN111826302B (zh) | 一种铁氧化菌、其应用于砷污染土壤修复、产品及方法 | |
Bhaskar et al. | Bioleaching of Iron from fly ash using a novel isolated Acidithiobacillus ferrooxidans strain and evaluation of catalytic role of leached iron in the Fenton's oxidation of cephelaxin | |
JP7095871B2 (ja) | Iii-v族化合物半導体を生成する微生物 | |
Kundu et al. | Enhancement of magnetotactic bacterial yield in a modified MSGM medium without alteration of magnetosomes properties | |
RU2615461C1 (ru) | Способ получения наночастиц элементного аморфного селена | |
Wei et al. | Transformation of calcite (CaCO3) into earlandite [Ca3 (C6H5O7) 2· 4H2O] by the fungus Trichoderma asperellum BDH65 | |
WO2019119166A1 (es) | Método para biolixiviar minerales sulfurados de cobre usando un consorcio de microorganismos que comprende bacterias ferrooxidantes y el hongo acidomyces acidophilus he17 en un medio inorgánico libre de sulfato ferroso y ph menor que 2, favoreciendo el crecimiento bacteriano y aumentando la extracción del metal desde el mineral | |
JPH0564582A (ja) | アンモニア酸化細菌およびその増殖法 | |
CN113736691B (zh) | 一株苯甲酸厌氧降解菌及其应用 | |
CN118086109B (zh) | 一株分离自海洋生物被膜的兼性厌氧硫氧化菌及其应用 | |
RU2150502C1 (ru) | Штамм бактерий desulfovibrio baarsii "эгаст-6", используемый для очистки сточных вод от ионов тяжелых металлов | |
RU2135422C1 (ru) | Штамм бактерий desulfovibrio sp. "эгаст-4", используемый для очистки сточных вод от ионов тяжелых металлов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10837612 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011546135 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13515943 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10837612 Country of ref document: EP Kind code of ref document: A1 |