WO2011074310A1 - 往復動内燃機関の排ガス浄化方法及び排ガス浄化システム - Google Patents

往復動内燃機関の排ガス浄化方法及び排ガス浄化システム Download PDF

Info

Publication number
WO2011074310A1
WO2011074310A1 PCT/JP2010/067422 JP2010067422W WO2011074310A1 WO 2011074310 A1 WO2011074310 A1 WO 2011074310A1 JP 2010067422 W JP2010067422 W JP 2010067422W WO 2011074310 A1 WO2011074310 A1 WO 2011074310A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
exhaust
internal combustion
combustion engine
aqueous solution
Prior art date
Application number
PCT/JP2010/067422
Other languages
English (en)
French (fr)
Inventor
石田 裕幸
信之介 長船
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020127010742A priority Critical patent/KR20120058624A/ko
Priority to CN2010800483488A priority patent/CN102695855A/zh
Priority to EP10837340.8A priority patent/EP2514935A4/en
Publication of WO2011074310A1 publication Critical patent/WO2011074310A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/1468Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an ammonia content or concentration of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification method and an exhaust gas purification system applied to a reciprocating internal combustion engine such as a marine diesel engine.
  • Diesel engines are widely used in the transportation industry and the like for ships and automobiles because they have better fuel efficiency than gasoline engines.
  • particulate matter such as unburned fuel (PM) contained in the exhaust gas, NO X (NO, NO 2, etc.) known as nitrogen oxides, etc.
  • PM unburned fuel
  • NO X NO, NO 2, etc.
  • nitrogen oxides etc.
  • SCR Selective Catalytic Reduction
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-209896 discloses this SCR system.
  • This SCR system removes PM and gaseous hydrocarbon components from the exhaust gas of the diesel engine on the front stage side in the exhaust path, and then, on the SCR catalyst provided on the rear stage side, ammonia gas and NO X by reacting, thereby obtaining a nitrogen and water by reducing the NO X.
  • ammonia gas is toxic, it is not easy to handle. For this reason, it is necessary to use a double pipe or to keep the pipe and container at a low temperature in order to prevent evaporation of ammonia. Therefore, an aqueous urea solution (CO (NH 2 ) 2 ⁇ aq) is sprayed on the exhaust gas in a mist, and the aqueous urea solution is vaporized by the heat of the exhaust gas, and the aqueous urea solution is hydrolyzed to obtain ammonia gas. ing.
  • the concentration of ammonia gas that can be released into the atmosphere because it is defined in a very strict standards, as ammonia gas amount with respect to NO X in the exhaust gas is equal to or less than equivalent, to adjust the supply amount of the urea aqueous solution, reduction reaction It is necessary to prevent ammonia from remaining later.
  • the two-stroke reciprocating marine diesel engine 100 includes a plurality of cylinders 102, a scavenging chamber 114, and an exhaust collecting pipe 116.
  • a crank chamber 104 is provided below the cylinder 102, and a crankshaft 108 is provided in the crank chamber 104.
  • a piston 106 provided inside the cylinder 102 is connected to a crankshaft 108 via a piston rod 110.
  • a cylinder head 102 a is provided on the upper part of each cylinder 102, and each cylinder head 102 a is connected to an exhaust collecting pipe 116 via an exhaust branch pipe 118.
  • An exhaust valve 112 is provided at the outlet of the cylinder head 102a.
  • the compressed air a compressed by the compressor 122 of the supercharger 120 is supplied to the cylinder 102 via the scavenging pipe 126 and the scavenging chamber 114.
  • the exhaust gas discharged from the cylinder 102 is discharged to the exhaust collecting pipe 116 through the exhaust branch pipe 118.
  • the exhaust gas discharged from the exhaust collecting pipe 116 to the exhaust pipe 128 is driven into the exhaust pipe 130 after driving the turbine 124 of the supercharger 120.
  • the exhaust gas discharged to the exhaust pipe 130 reaches the SCR catalytic converter 132 in which the SCR catalyst is built.
  • the aqueous urea solution b or the aqueous ammonia solution c is sprayed on the exhaust pipe 130, and the aqueous urea solution b evaporates at the temperature of the exhaust gas, hydrolyzes and changes to ammonia gas.
  • the exhaust temperature is as low as about 250 ° C., and does not reach around 320 ° C., which is the temperature at which the SCR catalyst can perform its catalytic function. Therefore, the SCR catalyst cannot exhibit its catalytic function.
  • the chemical reaction for converting urea water into ammonia requires a higher temperature (350 ° C. or higher).
  • the present invention eliminates NO X in exhaust gas of an internal combustion engine equipped with a supercharger with an SCR system, without deteriorating excessive characteristics of the internal combustion engine.
  • the purpose is to enable X removal.
  • the exhaust gas purification method for a reciprocating internal combustion engine of the present invention comprises: A reciprocating internal combustion engine in which a reducing agent is supplied to an exhaust path of a reciprocating internal combustion engine provided with a supercharger, and the reducing agent reacts with NO X in the exhaust by a reduction catalyst to remove NO X.
  • the urea aqueous solution is supplied to the exhaust path between the reciprocating internal combustion engine and the supercharger, and the urea aqueous solution is evaporated by the retained heat of the exhaust gas until the urea aqueous solution reaches the turbocharger turbine. Hydrolyze to ammonia gas. Then, the generated ammonia gas uniformly mixed with the exhaust gas in a strong turbulent flow field formed in the turbine, the NO X ammonia gas and the exhaust gas are reacted in the presence of a reducing catalyst in this condition, the NO X Reduce.
  • the urea aqueous solution supply unit on the upstream side of the supercharger, the urea aqueous solution can be sprayed into the higher temperature exhaust gas, and ammonia gas can be generated efficiently. Further, since the vaporized ammonia gas enters the turbine, is exposed to a strong turbulence field in the turbine and enters the SCR catalyst, mixing of exhaust gas and ammonia gas can be further promoted. At that time, it is more effective if the urea water supply position is set so that the urea water to be sprayed is vaporized before reaching the supercharger.
  • the reciprocating internal combustion engine of the reciprocating internal combustion engine is compared with the case where both the urea aqueous solution supply unit and the SCR catalyst are arranged on the upstream side of the supercharger. Deterioration of excessive characteristics can be suppressed. As a result, sufficient exhaust gas purification performance can be ensured without additional heating equipment such as an auxiliary combustion burner that leads to deterioration in fuel consumption of the internal combustion engine.
  • the ammonia concentration in the exhaust gas after the reduction step is detected, and the supply amount of the urea aqueous solution is adjusted based on the detected value to reduce the residual ammonia concentration in the exhaust gas.
  • the concentration of ammonia remaining in the exhaust gas can be reduced, and the amount of externally released toxic ammonia can be reduced to a very small amount.
  • a method to detect the operation state quantity of the reciprocating internal combustion engine this corresponds to the detected value is adjusted to a preset amount of supply amount of the urea aqueous solution, a NO X concentration and the residual ammonia concentration in the exhaust gas It is good to reduce.
  • a preset amount of supply amount of the urea aqueous solution, a NO X concentration and the residual ammonia concentration in the exhaust gas It is good to reduce.
  • state quantities representing the operating state of the reciprocating internal combustion engine include the rotational speed, output, and exhaust gas temperature of the reciprocating internal combustion engine.
  • the amount of exhaust gas can be determined from the rotational speed and output.
  • the exhaust gas purification system for a reciprocating internal combustion engine of the present invention that can be directly used for carrying out the method of the present invention includes a reducing agent supply unit and an exhaust gas supply path of the reciprocating internal combustion engine provided with a supercharger.
  • exhaust gas purification system of a reciprocating internal combustion engine provided with a reducing portion by reduction catalyst downstream reacting the exhaust gas with a reducing agent to reduce NO X in the, between the reciprocating internal combustion engine and the turbocharger
  • a urea aqueous solution supply unit provided in the exhaust path for supplying urea aqueous solution into the exhaust gas, and a urea aqueous solution provided in the exhaust path between the urea aqueous solution supply unit and the supercharger.
  • the urea aqueous solution supply unit is provided in an exhaust path having a high exhaust gas temperature between the reciprocating internal combustion engine and the supercharger, and the urea aqueous solution is evaporated with the high temperature exhaust gas and hydrolyzed into ammonia gas. Then, the generated ammonia gas uniformly mixed with the exhaust gas in the turbine strong turbulence of the supercharger, the NO X ammonia gas and the exhaust gas are reacted in the presence of a reducing catalyst in this condition, the NO X Reduce.
  • the urea aqueous solution supply unit on the upstream side of the supercharger, the urea aqueous solution can be sprayed into the higher temperature exhaust gas, and ammonia gas can be generated efficiently. Further, since the vaporized ammonia gas enters the turbine, is exposed to a strong turbulence field in the turbine and enters the SCR catalyst, mixing of exhaust gas and ammonia gas can be further promoted. In addition, since the SCR catalyst having a large heat capacity is disposed on the downstream side of the supercharger, it is possible to suppress deterioration of excessive characteristics of the reciprocating internal combustion engine. As a result, sufficient exhaust gas purification performance can be ensured without additional heating equipment such as an auxiliary combustion burner that leads to deterioration in fuel consumption of the internal combustion engine.
  • the urea aqueous solution supply unit is provided in the exhaust branch pipe connected to the reciprocating internal combustion engine and the exhaust collecting pipe, and a phase detection sensor for detecting the phase of the crank of the reciprocating internal combustion engine is provided. It is preferable that the urea aqueous solution is supplied to the exhaust branch pipe in accordance with the timing when the exhaust valve of the internal combustion engine is opened. Thereby, since the reducing agent aqueous solution can be supplied to the exhaust passage in accordance with the timing when the exhaust gas is discharged to the exhaust passage, the reduction reaction between ammonia gas and NO x is effectively caused without wasting the urea aqueous solution, The NO X concentration in the exhaust gas can be reduced.
  • the urea aqueous solution supply unit may spray the urea aqueous solution into the exhaust gas, and the position of the urea aqueous solution supply unit may be set to a position where the sprayed urea aqueous solution can be vaporized before reaching the supercharger.
  • ammonia gas can be effectively generated from the urea aqueous solution before the urea aqueous solution reaches the supercharger. Therefore, since additional heating equipment such as an auxiliary combustion burner is not required, deterioration in fuel consumption of the internal combustion engine can be suppressed.
  • the turbocharger supplies a reducing agent to the exhaust path of the reciprocating internal combustion engine which is provided, by reacting NO X in the exhaust gas and the reducing agent in the reduction catalyst to remove NO X
  • the urea decomposition step of supplying the urea aqueous solution to the exhaust path between the reciprocating internal combustion engine and the supercharger and hydrolyzing the urea aqueous solution into ammonia gas with the retained heat of the exhaust gas
  • a mixing step in which ammonia gas is introduced into a turbulent flow field of exhaust gas formed in the turbine of the supercharger and uniformly mixed with the exhaust gas, and in the presence of a reduction catalyst in an exhaust path downstream of the turbine.
  • a reduction step of removing by reducing NO X in the exhaust gas with ammonia gas since a, it is possible effectively converted into ammonia gas aqueous urea solution at a high temperature in the exhaust gas, and vaporized ammonia gas Since the Igasu can be introduced into the SCR catalyst in a state of uniformly mixed with a strong turbulence field within the turbine, it can promote the reduction reaction of the NO X in the SCR catalyst, whereby it is possible to increase the NO X reduction effect.
  • the SCR catalyst having a large heat capacity is arranged on the downstream side of the supercharger, it is possible to suppress the deterioration of excessive characteristics of the reciprocating internal combustion engine. As a result, sufficient exhaust gas purification performance can be ensured without additional heating equipment such as an auxiliary combustion burner that leads to deterioration in fuel consumption of the internal combustion engine.
  • the exhaust gas of the reciprocating internal combustion engine provided with the supercharger is caused to react with the exhaust gas and the reducing agent by the reducing catalyst on the downstream side of the reducing agent supplying unit and the reducing agent supplying unit.
  • the aqueous urea solution supply unit for supplying the aqueous urea solution is provided in an exhaust passage in the exhaust gas between a reciprocating internal combustion engine and the turbocharger
  • the urea aqueous solution supply section and the supercharger are provided in an exhaust path, and the urea aqueous solution supplied to the exhaust path is hydrolyzed into ammonia gas by the retained heat of the exhaust gas until the urea aqueous solution reaches the supercharger.
  • FIG. 1 is a system diagram showing an exhaust gas treatment apparatus for a reciprocating marine diesel engine according to a first embodiment of the method and apparatus of the present invention. It is front view explanatory drawing of the reciprocating marine diesel engine which concerns on the said 1st Embodiment. It is a systematic diagram which shows the exhaust gas processing apparatus of the reciprocating type marine diesel engine which concerns on 2nd Embodiment of this invention method and apparatus. It is a systematic diagram which shows the exhaust gas processing apparatus of the reciprocating type marine diesel engine which concerns on 3rd Embodiment of this invention method and apparatus. It is a block diagram of the control device of the third embodiment. It is a systematic diagram showing a conventional exhaust gas treatment device of a reciprocating marine diesel engine. It is front view explanatory drawing of the reciprocating marine diesel engine of FIG.
  • the two-cycle reciprocating marine diesel engine 10 includes a plurality of cylinders 12, a scavenging chamber 24, and an exhaust collecting pipe 26.
  • a crank chamber 14 is provided below the cylinder 12, and a crankshaft 18 is provided in the crank chamber 14.
  • a piston 16 provided inside the cylinder 12 is connected to a crankshaft 18 via a piston rod 20.
  • a cylinder head 12 a is provided at the top of each cylinder 12, and each cylinder head 12 a is connected to an exhaust collecting pipe 26 via an exhaust branch pipe 28.
  • An exhaust valve 22 is provided at the outlet of the cylinder head 12a.
  • the compressed air a compressed by the compressor 32 of the supercharger 30 is supplied to the cylinder 12 through the scavenging pipe 36 and the scavenging chamber 14.
  • the exhaust gas discharged from the cylinder 12 is discharged to the exhaust collecting pipe 26 through the exhaust branch pipe 28.
  • the exhaust gas discharged from the exhaust collecting pipe 26 to the exhaust pipe 38 is discharged to the exhaust pipe 44 after operating the turbine 34 of the supercharger 30.
  • the exhaust gas discharged to the exhaust pipe 44 reaches the SCR catalytic converter 46 in which the SCR catalyst is built.
  • a urea aqueous solution supply unit 42 is provided in the exhaust pipe 38, and the urea aqueous solution supply unit 42 is connected to a urea aqueous solution tank 40 through a pipe 41.
  • the urea aqueous solution b is supplied from the urea aqueous solution tank 40 to the urea aqueous solution supply unit 42 by a pump (not shown) or the like.
  • the urea aqueous solution b is sprayed into the exhaust pipe 38 by the urea aqueous solution supply unit 42.
  • the numerical value in the figure indicates the temperature of the exhaust gas flowing through the exhaust pipe 38 or 44.
  • the urea aqueous solution b is evaporated by the retained heat of the exhaust gas flowing through the exhaust pipe 38 and is hydrolyzed into ammonia gas.
  • the exhaust pipe 38 has a length and an inner diameter sufficient for the urea aqueous solution b to evaporate by the retained heat of the exhaust gas and to be hydrolyzed to ammonia gas.
  • the generated ammonia gas flows into the turbine 34.
  • the ammonia gas is agitated in a strong turbulent flow field in the turbine 34 and is uniformly mixed with the exhaust gas.
  • the ammonia gas exiting the turbine 34 reaches the SCR catalytic converter 46, reacts with NO X in the exhaust gas on the SCR catalyst built in the SCR catalytic converter 46, and NO X is reduced to nitrogen and water vapor.
  • the exhaust gas from which NO X has been removed in this way is discharged from the chimney 50 through the exhaust pipe 48.
  • the urea aqueous solution b is supplied to the exhaust pipe 38, evaporated with the high retained heat of the exhaust gas flowing through the exhaust pipe 38, hydrolyzed into ammonia gas, and the generated ammonia gas is further removed from the turbine 34. since as mixing and stirring and the exhaust gas with strong turbulence, it can promote the reduction reaction with ammonia gas and the NO X in the SCR catalytic converter 46.
  • the urea aqueous solution b can be sprayed into the higher temperature exhaust gas, and the urea aqueous solution
  • the urea aqueous solution b can be efficiently converted into ammonia gas before b reaches the supercharger 30.
  • Vaporized ammonia gas enters the turbine 34, since it is exposed to strong turbulence field within the turbine 34 enters the SCR catalytic converter 46, can further promote the mixing of exhaust gas and ammonia gas, it can be reduced NO X concentration.
  • the SCR catalytic converter 46 having a large heat capacity is arranged on the downstream side of the supercharger 30, it is possible to suppress the deterioration of excessive characteristics of the reciprocating marine diesel engine 10. As a result, sufficient exhaust gas purification performance can be ensured without additional heating equipment such as an auxiliary burner that leads to deterioration in fuel efficiency of the reciprocating marine diesel engine 10.
  • FIG. 3 a plurality of urea aqueous solution supply parts 54 are provided in each of the plurality of exhaust branch pipes 28.
  • the urea aqueous solution b is supplied from the urea aqueous solution supply device 52 to each urea aqueous solution supply unit 54 via the pipe 56.
  • a balancer 58 is mounted on the crankshaft 18 that protrudes outside the crank chamber 14.
  • a crank phase sensor 62 is provided in the vicinity of the crankshaft 18, and the phase of the crankshaft 18 is detected by detecting a detection mark (not shown) attached to the balancer 58 by the crank phase sensor 62.
  • the phase detection signal of the crank phase sensor 62 is sent to the controller 60, and the controller 60 sends a control signal to the urea aqueous solution supply device 52 based on the phase detection signal.
  • the controller 60 sends a control signal to the urea aqueous solution supply device 52 based on the phase detection signal.
  • the urea aqueous solution b is supplied to the urea aqueous solution supply unit 54 at the timing when the exhaust valve 22 provided in the cylinder head 12a is opened.
  • the configuration other than the above is the same as that of the first embodiment, and the same reference numerals are given to the same parts or devices.
  • the urea aqueous solution b is supplied to the exhaust branch pipe 26 whose exhaust gas temperature is higher than that of the exhaust pipe 38, it is easy to evaporate the urea aqueous solution b and hydrolyze it to ammonia gas. Further, since the distance from the exhaust branch pipe 28 for supplying the urea aqueous solution b to the turbine 34 can be increased, the mixing of the exhaust gas and the urea aqueous solution b can be promoted and ammonia gas can be generated effectively. Therefore, the NO X reduction reaction in the SCR catalytic converter 46 can be promoted, and the NO X reduction effect in the exhaust gas can be enhanced.
  • FIG. 4 a third embodiment of the method and the system of the present invention will be described with reference to FIGS.
  • the urea aqueous solution supply unit 54 is provided in each exhaust branch pipe 28 in the same manner as in the second embodiment.
  • a rotation speed sensor 72 for detecting the rotation speed of the crankshaft 18 is provided instead of the crank phase sensor 62.
  • an exhaust temperature sensor 74 for detecting the temperature of the exhaust gas flowing through each exhaust branch pipe 28 is provided, and an ammonia concentration sensor 76 is attached to the exhaust path 48 on the downstream side of the SCR catalytic converter 46.
  • Other configurations are the same as those of the second embodiment.
  • the rotational speed of the crankshaft 18 is detected by the rotational speed sensor 72 and the exhaust gas flowing through each exhaust branch pipe 26 by the exhaust temperature sensor 74.
  • the temperature is detected, and these detection signals are sent to the controller 70. As shown in FIG.
  • the correlation map showing the relationship between the measured value of the outlet ammonia of the SCR catalytic converter 46 and the required urea aqueous solution supply amount, the relationship between the crankshaft rotation speed and the output of the reciprocating marine diesel engine 10, and these
  • a correlation map indicating the relationship between the required urea aqueous solution supply amount and the correlation value and a correlation map indicating the relationship between the exhaust gas temperature and the required urea supply amount are created in advance and stored in the controller 70.
  • the controller 70 obtains the output of the reciprocating marine diesel engine 10 from the correlation between the known crankshaft rotational speed and the output of the reciprocating marine diesel engine 10 based on the detection value of the rotational speed sensor 72.
  • the required supply amount of the urea aqueous solution is obtained in advance from the correlation map with respect to the operating state quantities such as the output and exhaust gas temperature of the reciprocating marine diesel engine 10, and the urea aqueous solution supply amount is set based on these correlation maps. Then, the urea aqueous solution supply device 52 is controlled by the controller 70 so that the set value is obtained. In addition, the ammonia concentration sensor 76 detects the residual ammonia concentration, and the controller 70 controls the urea aqueous solution supply device 52 so that the residual ammonia concentration is reduced based on the correlation map.
  • an optimal urea aqueous solution preset in accordance with the operating state of the reciprocating marine diesel engine 10 at that time can be supplied.
  • the reduction reaction of the NO X in the promoted thereby reducing the residual amount of NO X.
  • the controller 70 controls the supply amount of the urea aqueous solution so as to reduce the residual ammonia concentration on the downstream side of the SCR catalytic converter 46, the residual ammonia concentration released to the outside can be reduced to a very small amount.
  • the present invention is applied to a reciprocating marine diesel engine.
  • the scope of the present invention is not limited to marine diesel engines, but for stationary power generation and for vehicles.
  • the present invention can also be applied to other reciprocating diesel engines.
  • NO X in exhaust gas can be efficiently removed using the SCR system without reducing the performance of the supercharger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

過給機を備えた往復動内燃機関の排ガス中のNOをSCRシステムで除去する場合に、往復動内燃機関の過度特性悪化を抑制して排ガス中のNO除去を可能とすることを目的とする。過給機30が排気管38,44,48に設けられた往復動式舶用ディーゼル機関10において、タービン34の上流側排気管38に尿素水溶液供給部42を設け、尿素水溶液タンク40から尿素水溶液bを供給する。排ガスの保有熱で尿素水溶液bを蒸発させかつアンモニアガスに加水分解する。アンモニアガスはタービン34の強い乱流場で排ガスと均一に攪拌混合される。その後排ガスは過給機30の下流側排気管44に設けられたSCR触媒コンバータ46でアンモニアガスが排ガス中のNOを還元し、窒素と水蒸気に変える。タービン34の上流側排気管38に尿素水溶液bを供給するので、助燃バーナ等の追加加熱設備なしでアンモニアガスを発生できる。

Description

往復動内燃機関の排ガス浄化方法及び排ガス浄化システム
 本発明は、例えば舶用ディーゼル機関等の往復動内燃機関に適用される排ガス浄化方法及び排ガス浄化システムに関する。
 ディーゼル機関は、ガソリン機関よりも燃費に優れていることから、輸送業界などで舶用、自動車用などに広く用いられている。しかし、排気ガス中に含まれている未燃焼燃料などの粒子状物質(PM;Paticulate Matter)や、窒素酸化物として知られているNO(NO、NO等)などが問題になっている。そこで、排気ガスからこのNOを除去するための手段として、尿素水の加水分解によって得られたアンモニアガスにより、排気ガス中に含まれるNOを触媒上で還元して除去する方法が知られている。この方法は、SCR(Selective Catalytic Reduction;選択性還元触媒)システムとして知られている。
 特許文献1(特開2009-209896号公報)には、このSCRシステムが開示されている。このSCRシステムは、排気経路中の前段側において、ディーゼル機関の排気ガス中のPMと気体状の炭化水素成分とを取り除いた後、後段側に設けられたSCR触媒上でアンモニアガスとNOとを反応させることによって、NOを還元して窒素と水とを得るものである。
 アンモニアガスは毒性を有するため、取り扱いが容易ではなく、そのため二重配管としたり、あるいはアンモニアの蒸発を防ぐため、配管や容器を低温に保持する必要があった。そのため、排気ガスに尿素水溶液(CO(NH・aq)をミスト状に噴霧し、排気ガスの熱により尿素水溶液を気化させると共に、この尿素水溶液を加水分解してアンモニアガスを得るようにしている。
 また、大気に放出できるアンモニアガスの濃度は、極めて厳しい基準に規定されているため、排ガス中のNOに対するアンモニアガス量が当量以下となるように、尿素水溶液の供給量を調整し、還元反応後にアンモニアが残留しないようにする必要がある。
 往復動式低速舶用ディーゼル機関では、排気経路に過給機の排気経路が設けられている場合、後述する理由により、過給機の排気経路下流側にSCR触媒が配置されていた。この構成を図6及び図7に示す。
 図6及び図7において、2サイクルの往復動式舶用ディーゼル機関100は、複数のシリンダ102と、掃気室114と、排気集合管116とから構成されている。シリンダ102の下部にはクランク室104が設けられ、クランク室104内にクランク軸108が設けられている。シリンダ102の内部に設けられたピストン106がピストンロッド110を介してクランク軸108に接続されている。
 各シリンダ102の上部にシリンダヘッド102aが設けられ、各シリンダヘッド102aは、排気枝管118を介して排気集合管116と接続されている。シリンダヘッド102aの出口には排気弁112が設けられている。
 過給機120のコンプレッサ122で圧縮された被圧縮空気aは、掃気管126及び掃気室114を介してシリンダ102に供給される。シリンダ102から排出される排ガスは、排気枝管118を介して排気集合管116に排出される。排気集合管116から排気管128に排出された排ガスは、過給機120のタービン124を駆動させた後、排気管130に排出される。排気管130に排出された排ガスは、SCR触媒が内蔵されたSCR触媒コンバータ132に達する。排気管130に尿素水溶液b又はアンモニア水溶液cが噴霧され、尿素水溶液bは排ガスの温度で蒸発し、加水分解してアンモニアガスに変わる。
 そして、SCR触媒コンバータ132に内蔵されたSCR触媒上でアンモニアガスと排ガス中のNOとが反応し、NOが窒素と水蒸気に還元される。こうしてNOが除去された排ガスが排気管134を経て煙突136から排出される。図中の数値は、排気管128又は130を流れる排ガスの温度を示す。
特開2009-209896号公報
 過給機120の下流側の排気管130にSCR触媒コンバータ132を配置した場合、排気温度が250℃程度と低くなり、SCR触媒がその触媒機能を発揮できる温度である320℃前後に達しない。従って、SCR触媒がその触媒機能を発揮できない。特に、毒性があるアンモニアに比べてハンドリングが比較的容易な尿素水を用いる場合、尿素水からアンモニアに変換する化学反応は、さらに高い温度(350℃以上)が必要になる。
 この温度条件を満たすため、助燃バーナ等の追加加熱設備を設けて排ガスを加熱する手段があるが、この手段は、往復動式内燃機関のトータルの燃費悪化に繋がる。
 このため、タービン124の上流側の排気管128にSCR触媒コンバータ132を設ける案が考えられる。しかし、この案では、排気温度は条件を満たすが、熱容量が大きいSCR触媒がタービン124に供給されるべき熱量を奪い去るため、舶用ディーゼル機関100の過度特性の悪化が懸念される。
 このように、尿素水の供給とSCR触媒とからなる組み合わせが過給機の上流側又は下流側のいずれかにあっても夫々前述のような問題がある。
 本発明は、かかる従来技術の課題に鑑み、過給機を備えた内燃機関の排ガス中のNOをSCRシステムで除去する場合に、内燃機関の過度特性を悪化させることなく、排ガス中のNO除去を可能とすることを目的とする。
 かかる目的を達成するため、本発明の往復動内燃機関の排ガス浄化方法は、
 過給機が設けられた往復動内燃機関の排気経路に還元剤を供給し、還元触媒で該還元剤と排気中のNOを反応させてNOを除去するようにした往復動内燃機関の排ガス浄化方法において、
 往復動内燃機関と過給機との間の排気経路に尿素水溶液を供給し、排ガスの保有熱で尿素水溶液をアンモニアガスに加水分解させる尿素分解ステップと、
 前記アンモニアガスを該過給機のタービン内に形成される排ガスの乱流場に導入して排ガスと均一に混合させる混合ステップと、
 該タービンの下流側排気経路で、還元触媒の存在下でアンモニアガスで排ガス中のNOを還元して除去する還元ステップと、からなるものである。
 本発明方法では、尿素水溶液を往復動式内燃機関と過給機との間の排気経路に供給し、尿素水溶液が過給機のタービンに達するまでに、排ガスの保有熱で尿素水溶液を蒸発させアンモニアガスに加水分解させるようにする。次に、生成したアンモニアガスをタービン内に形成される強い乱流場で排ガスと均一に混合させ、この状態で還元触媒の存在下でアンモニアガスと排ガス中のNOを反応させ、NOを還元させる。
 このように、尿素水溶液供給部を過給機の上流側に配置したことにより、尿素水溶液をより高温の排ガス中に噴霧することができ、アンモニアガスを効率よく生成することが可能となる。また、気化したアンモニアガスがタービンに入り、タービン内の強い乱れ場にさらされてSCR触媒に入るため、より排ガスとアンモニアガスの混合を促進することができる。その際、噴霧する尿素水が過給機に到達する前に気化するように尿素水供給位置を設定してあるとより効果的である。
 また、熱容量の大きなSCR触媒を過給機の下流側に配置しているため、尿素水溶液供給部とSCR触媒とを共に過給機の上流側に配置する場合に比べて、往復動内燃機関の過度特性悪化を抑制できる。
 その結果、内燃機関の燃費悪化につながる助燃バーナ等加熱設備の追設無しで、十分な排ガス浄化性能を確保することが可能となる。
 本発明方法において、還元ステップ後の排ガス中のアンモニア濃度を検知し、この検知値に基づいて尿素水溶液の供給量を調整して排ガス中の残留アンモニア濃度を低減するようにするとよい。これによって、排ガス中に残留するアンモニア濃度を低減でき、毒性を有するアンモニアの外部放出量をごく微量に低減できる。
 本発明方法において、往復動内燃機関の運転状態量を検知し、この検知値に対応して尿素水溶液の供給量を予め設定された量に調整し、排ガス中のNO濃度及び残留アンモニア濃度を低減するようにするとよい。このように、往復動内燃機関の運転状態に応じて尿素水溶液の供給量を調整することで、往復動内燃機関の運転状態が変わっても、NOの還元反応に十分な尿素を供給できると共に、排ガス中の残留アンモニア濃度を低減できる。
 往復動内燃機関の運転状態を表す状態量として、例えば、往復動内燃機関の回転数、出力及び排ガス温度がある。該回転数及び出力から排ガス量を求めることができる。これらの状態量から求めた排ガス量と排ガス温度とに対して予め設定された尿素水溶液の供給量とすることにより、NO量及び残留アンモニア量を共に低減できる。
 前記本発明方法の実施に直接使用可能な本発明の往復動内燃機関の排ガス浄化システムは、過給機が設けられた往復動内燃機関の排気経路に、還元剤供給部と、該還元剤供給部の下流側に還元触媒により排ガスと還元剤とを反応させてNOを低減する還元部とを設けた往復動内燃機関の排ガス浄化システムにおいて、往復動内燃機関と過給機との間の排気経路に設けられ尿素水溶液を排ガス中に供給する尿素水溶液供給部と、該尿素水溶液供給部と過給機との間の排気経路に設けられ、排気経路に供給された尿素水溶液が過給機に到達するまでに排ガスの熱で尿素水溶液を蒸発させアンモニアガスに加水分解させる尿素分解領域と、過給機の下流側排気経路に設けられ、還元触媒の存在下でアンモニアガスで排ガスのNOを還元して除去する還元部と、を備えたものである。
 本発明システムでは、尿素水溶液供給部を往復動内燃機関と過給機との間の排ガス温度が高い排気経路に設け、高い温度の排ガスで尿素水溶液を蒸発させると共に、アンモニアガスに加水分解させる。次に、生成したアンモニアガスを過給機のタービンの強い乱流場で排ガスと均一に混合させ、この状態で還元触媒の存在下でアンモニアガスと排ガス中のNOを反応させ、NOを還元させる。
 このように、尿素水溶液供給部を過給機の上流側に配置したことにより、尿素水溶液をより高温の排ガス中に噴霧することができ、アンモニアガスを効率よく生成できる。また、気化したアンモニアガスがタービンに入り、タービン内の強い乱れ場にさらされてSCR触媒に入るため、排ガスとアンモニアガスの混合をより促進することができる。
 また、熱容量の大きなSCR触媒を過給機の下流側に配置しているため、往復動内燃機関の過度特性悪化を抑制できる。その結果、内燃機関の燃費悪化につながる助燃バーナ等加熱設備の追設無しで、十分な排ガス浄化性能を確保することが可能となる。
 本発明システムにおいて、尿素水溶液供給部が往復動内燃機関と排気集合管とに接続された排気枝管に設けられると共に、往復動内燃機関のクランクの位相を検知する位相検知センサを設け、往復動内燃機関の排気弁が開放されたタイミングに合わせて尿素水溶液を排気枝管に供給するように構成するとよい。
 これによって、排ガスが排気経路に排出されたタイミングに合わせて還元剤水溶液を排気経路に供給できるので、尿素水溶液を無駄にすることなく、アンモニアガスとNOとの還元反応を有効に生起させ、排ガス中のNO濃度を低減できる。
 本発明システムにおいて、尿素水溶液供給部で尿素水溶液を排ガス中に噴霧するようにし、尿素水溶液供給部の位置を噴霧された尿素水溶液が過給機に到達する前に気化可能な位置に設定するとよい。これによって、尿素水溶液が過給機に達するまでに、尿素水溶液から効果的にアンモニアガスを発生させることができる。そのため、助燃バーナ等の追加加熱設備を必要としないため、内燃機関の燃費悪化を抑制できる。
 本発明方法によれば、過給機が設けられた往復動内燃機関の排気経路に還元剤を供給し、還元触媒で該還元剤と排気中のNOを反応させてNOを除去するようにした往復動内燃機関の排ガス浄化方法において、往復動内燃機関と過給機との間の排気経路に尿素水溶液を供給し、排ガスの保有熱で尿素水溶液をアンモニアガスに加水分解させる尿素分解ステップと、アンモニアガスを該過給機のタービン内に形成される排ガスの乱流場に導入して排ガスと均一に混合させる混合ステップと、該タービンの下流側排気経路で、還元触媒の存在下でアンモニアガスで排ガス中のNOを還元して除去する還元ステップと、からなるので、尿素水溶液を高温の排ガス中で効率良くアンモニアガスに変換できると共に、気化したアンモニアガスとハイガスとをタービン内の強い乱れ場で均一に混合した状態でSCR触媒に導入できるので、SCR触媒でのNOの還元反応を促進でき、これによって、NO低減効果を高めることができる。
 また、熱容量の大きなSCR触媒を過給機の下流側に配置しているため、往復動内燃機関の過度特性悪化を抑制できる。その結果、内燃機関の燃費悪化につながる助燃バーナ等加熱設備の追設無しで、十分な排ガス浄化性能を確保することが可能となる。
 本発明システムによれば、過給機が設けられた往復動内燃機関の排気経路に、還元剤供給部と、該還元剤供給部の下流側に還元触媒により排ガスと還元剤とを反応させてNOを低減する還元部とを設けた往復動内燃機関の排ガス浄化システムにおいて、往復動内燃機関と過給機との間の排気経路に設けられ尿素水溶液を排ガス中に供給する尿素水溶液供給部と、該尿素水溶液供給部と過給機との間の排気経路に設けられ、排気経路に供給された尿素水溶液が過給機に到達するまでに排ガスの保有熱で尿素水溶液をアンモニアガスに加水分解させる尿素分解領域と、過給機の下流側排気経路に設けられ、還元触媒の存在下でアンモニアガスで排ガスのNOを還元して除去する還元部と、を備えたことにより、前記本発明方法と同様の作用効果を得ることができる。
本発明方法及び装置の第1実施形態に係る往復動式舶用ディーゼル機関の排ガス処理装置を示す系統図である。 前記第1実施形態に係る往復動式舶用ディーゼル機関の正面視説明図である。 本発明方法及び装置の第2実施形態に係る往復動式舶用ディーゼル機関の排ガス処理装置を示す系統図である。 本発明方法及び装置の第3実施形態に係る往復動式舶用ディーゼル機関の排ガス処理装置を示す系統図である。 前記第3実施形態の制御装置のブロック線図である。 往復動式舶用ディーゼル機関の従来の排ガス処理装置を示す系統図である。 図6の往復動式舶用ディーゼル機関の正面視説明図である。
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。
(実施形態1)
 本発明方法及び本発明システムを2サイクルの往復動式舶用ディーゼル機関に適用した第1実施形態を図1及び図2により説明する。図1及び図2において、2サイクルの往復動式舶用ディーゼル機関10は、複数のシリンダ12と、掃気室24と、排気集合管26とから構成されている。シリンダ12の下部にはクランク室14が設けられ、クランク室14内にクランク軸18が設けられている。シリンダ12の内部に設けられたピストン16がピストンロッド20を介してクランク軸18に接続されている。
 各シリンダ12の上部にシリンダヘッド12aが設けられ、各シリンダヘッド12aは、排気枝管28を介して排気集合管26と接続されている。シリンダヘッド12aの出口には排気弁22が設けられている。
 過給機30のコンプレッサ32で圧縮された被圧縮空気aは、掃気管36及び掃気室14を介してシリンダ12に供給される。シリンダ12から排出される排ガスは、排気枝管28を介して排気集合管26に排出される。排気集合管26から排気管38に排出された排ガスは、過給機30のタービン34を作動させた後、排気管44に排出される。排気管44に排出された排ガスは、SCR触媒が内蔵されたSCR触媒コンバータ46に達する。
 排気管38に尿素水溶液供給部42が設けられ、尿素水溶液供給部42は配管41を介して尿素水溶液タンク40に接続されている。尿素水溶液タンク40から図示省略のポンプ等によって尿素水溶液供給部42に尿素水溶液bが供給される。尿素水溶液供給部42で、尿素水溶液bは排気管38内に噴霧される。図中の数値は、排気管38又は44を流れる排ガスの温度を示す。
 尿素水溶液bは排気管38を流れる排ガスの保有熱により蒸発すると共に、アンモニアガスに加水分解される。排気管38は、排ガスの保有熱により尿素水溶液bが蒸発すると共に、アンモニアガスに加水分解されるのに十分な長さと内径とを有する。生成したアンモニアガスは、タービン34に流入する。アンモニアガスは、タービン34内の強い乱流場で攪拌され、排ガスと均一に混合される。タービン34を出たアンモニアガスは、SCR触媒コンバータ46に達し、SCR触媒コンバータ46に内蔵されたSCR触媒上で排ガス中のNOと反応し、NOが窒素と水蒸気に還元される。こうしてNOが除去された排ガスが排気管48を経て煙突50から外部に排出される。
 本実施形態によれば、尿素水溶液bを排気管38に供給し、排気管38を流れる排ガスの高い保有熱で蒸発させると共に、アンモニアガスに加水分解し、さらに、生成したアンモニアガスをタービン34の強い乱流場で排ガスと攪拌混合するようにしているので、SCR触媒コンバータ46でのアンモニアガスとNOとの還元反応を促進できる。
 このように、尿素水溶液供給部42のみを排ガス保有熱が高い過給機30の上流側排気管38に配置したことにより、尿素水溶液bをより高温の排ガス中に噴霧することができ、尿素水溶液bが過給機30に達するまでに、尿素水溶液bを効率良くアンモニアガスに変換できる。気化したアンモニアガスがタービン34に入り、タービン34内の強い乱れ場にさらされてSCR触媒コンバータ46に入るため、排ガスとアンモニアガスの混合をより促進でき、NO濃度を低減できる。
 また、熱容量の大きなSCR触媒コンバータ46を過給機30の下流側に配置しているため、往復動式舶用ディーゼル機関10の過度特性悪化を抑制できる。これらの結果、往復動式舶用ディーゼル機関10の燃費悪化につながる助燃バーナ等加熱設備の追設無しで、十分な排ガス浄化性能を確保することが可能となる。
(実施形態2)
 次に、本発明方法及び本発明システムの第2実施形態を図3により説明する。図3において、複数の排気枝管28の各々に複数の尿素水溶液供給部54が設けられている。尿素水溶液供給装置52から各尿素水溶液供給部54に配管56を介して尿素水溶液bが供給される。
クランク室14の外部に突出したクランク軸18にはバランサ58が装着されている。クランク軸18の近傍には、クランク位相センサ62が設けられ、クランク位相センサ62でバランサ58に取り付けられた検知マーク(図示省略)を検知することにより、クランク軸18の位相を検知している。
 クランク位相センサ62の位相検知信号は、コントローラ60に送られ、コントローラ60では、該位相検知信号に基づいて尿素水溶液供給装置52に制御信号を送る。この制御信号によって、シリンダヘッド12aに設けられた排気弁22が開放されたタイミングに合わせて、尿素水溶液供給部54に尿素水溶液bを供給するようにしている。
 なお、本実施形態において、前記以外の構成は前記第1実施形態と同一であり、同一の部位又は機器には同一の符号を付している。
 本実施形態によれば、尿素水溶液bを排気管38より排ガス温度が高い排気枝管26に供給しているので、尿素水溶液bを蒸発させてアンモニアガスに加水分解するのが容易になる。
 また、尿素水溶液bを供給する排気枝管28からタービン34に至るまでの距離を長く取れるので、排ガスと尿素水溶液bとの混合を促進でき、アンモニアガスを効果的に発生させることができる。そのため、SCR触媒コンバータ46でのNOの還元反応を促進でき、排ガス中のNO低減効果を高めることができる。
 また、排気弁22の開放タイミングに合わせて、排気枝管26に尿素水溶液bを供給するようにしているので、尿素水溶液を無駄にすることなく、アンモニアガスとNOとの還元反応を有効に生起させ、排ガス中のNO濃度を低減できる。
(実施形態3)
 次に、本発明方法及び本発明システムの第3実施形態を図4及び図5により説明する。図4において、本実施形態において、尿素水溶液供給部54を各排気枝管28に設けた点は、前記第2実施形態と同様である。第2実施形態と異なる点は、クランク位相センサ62の代わりに、クランク軸18の回転数を検知する回転数センサ72を設けた点である。そして、さらに、各排気枝管28を流れる排ガスの温度を検知する排気温度センサ74を設けていると共に、SCR触媒コンバータ46の下流側の排気経路48に、アンモニア濃度センサ76を装着している。その他の構成は、第2実施形態と同一である。
 本実施形態では、稼動中の往復動式舶用ディーゼル機関10の運転状態量として、回転数センサ72でクランク軸18の回転数を検知すると共に、排気温度センサ74で各排気枝管26を流れる排ガス温度を検知し、これらの検知信号をコントローラ70に送る。
 図5に示すように、SCR触媒コンバータ46の出口アンモニア計測値と必要尿素水溶液供給量との関係を示す相関マップと、往復動式舶用ディーゼル機関10のクランク軸回転数と出力との関係及びこれらの値に対する必要尿素水溶液供給量との関係を示す相関マップと、排ガス温度と必要尿素供給量との関係を示す相関マップとが予め作成され、コントローラ70に記憶されている。
 コントローラ70では、回転数センサ72の検知値をもとに、既知のクランク軸回転数と往復動式舶用ディーゼル機関10の出力との相関関係から、往復動式舶用ディーゼル機関10の出力を求める。
 往復動式舶用ディーゼル機関10の出力及び排ガス温度等の運転状態量に対して、前記相関マップから尿素水溶液の必要供給量が予め求められており、これら相関マップに基づいて尿素水溶液供給量を設定し、この設定値となるように、コントローラ70で尿素水溶液供給装置52を制御する。
 また、アンモニア濃度センサ76で残留アンモニア濃度を検知し、前記相関マップに基づいて、残留アンモニア濃度が低減するように、コントローラ70によって尿素水溶液供給装置52を制御する。
 本実施形態によれば、第2実施形態で得られる作用効果に加えて、そのときの往復動式舶用ディーゼル機関10の運転状態に合わせて予め設定された最適の尿素水溶液を供給できるので、排ガス中のNOの還元反応を促進して、残留NO量を低減できる。
 また、SCR触媒コンバータ46の下流側の残留アンモニア濃度を低減するようにコントローラ70で尿素水溶液供給量を制御するようにしているので、外部に放出する残留アンモニア濃度も極く微量に低減できる。
 なお、前記実施形態は、いずれも本発明を往復動式舶用ディーゼル機関に適用したものであるが、本発明の適用範囲は舶用ディーゼル機関に限定されるものではなく、定置式発電用、車両用等、他の往復動式ディーゼル機関にも適用可能である。
 本発明によれば、排気経路に過給機を設けた往復動式内燃機関で、過給機の性能を低減することなく、SCRシステムを用いて、排ガス中のNOを効率良く除去できる。

Claims (6)

  1.  過給機が設けられた往復動内燃機関の排気経路に還元剤を供給し、還元触媒で該還元剤と排気中のNOを反応させてNOを除去するようにした往復動内燃機関の排ガス浄化方法において、
     前記往復動内燃機関と過給機との間の排気経路に尿素水溶液を供給し、排ガスの保有熱で尿素水溶液をアンモニアガスに加水分解させる尿素分解ステップと、
     前記アンモニアガスを該過給機のタービン内に形成される排ガスの乱流場に導入して排ガスと均一に混合させる混合ステップと、
     該タービンの下流側排気経路で、還元触媒の存在下でアンモニアガスで排ガス中のNOを還元して除去する還元ステップと、からなることを特徴とする往復動内燃機関の排ガス浄化方法。
  2.  前記還元ステップ後の排ガス中のアンモニア濃度を検知し、この検知値に基づいて尿素水溶液の供給量を調整して排ガス中の残留アンモニア濃度を低減するようにしたことを特徴とする請求項1に記載の往復動内燃機関の排ガス浄化方法。
  3.  往復動内燃機関の運転状態量を検知し、この検知値に対応して尿素水溶液の供給量を該運転状態量に応じて予め設定された供給量に調整し、排ガス中のNO濃度及び残留アンモニア濃度を低減するようにしたことを特徴とする請求項1又は2に記載の往復動内燃機関の排ガス浄化方法。
  4.  過給機が設けられた往復動内燃機関の排気経路に、還元剤供給部と、該還元剤供給部の下流側に還元触媒により排ガスと還元剤とを反応させてNOを低減する還元部とを設けた往復動内燃機関の排ガス浄化システムにおいて、
     往復動内燃機関と過給機との間の排気経路に設けられ尿素水溶液を排ガス中に供給する尿素水溶液供給部と、
    該尿素水溶液供給部と過給機との間の排気経路に設けられ、排気経路に供給された尿素水溶液が過給機に到達するまでに排ガスの保有熱で尿素水溶液をアンモニアガスに加水分解させる尿素分解領域と、
     過給機の下流側排気経路に設けられ、還元触媒の存在下でアンモニアガスで排ガスのNOを還元して除去する還元部と、を備えたことを特徴とする往復動内燃機関の排ガス浄化システム。
  5.  前記尿素水溶液供給部が往復動内燃機関と排気集合管とに接続された排気枝管に設けられると共に、往復動内燃機関のクランクの位相を検知する位相検知センサを設け、
     往復動内燃機関の排気弁が開放されたタイミングに合わせて尿素水溶液を排気枝管に供給するように構成したことを特徴とする請求項4に記載の往復動内燃機関の排ガス浄化システム。
  6.  前記尿素水溶液供給部で尿素水溶液を排ガス中に噴霧するようにし、尿素水溶液供給部の位置を噴霧された尿素水溶液が過給機に到達する前に気化可能な位置に設定したことを特徴とする請求項4又は5に記載の往復動内燃機関の排ガス浄化システム。
PCT/JP2010/067422 2009-12-16 2010-10-05 往復動内燃機関の排ガス浄化方法及び排ガス浄化システム WO2011074310A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127010742A KR20120058624A (ko) 2009-12-16 2010-10-05 왕복동 내연 기관의 배기 가스 정화 방법 및 배기 가스 정화 시스템
CN2010800483488A CN102695855A (zh) 2009-12-16 2010-10-05 往复式内燃机的废气净化方法和废气净化系统
EP10837340.8A EP2514935A4 (en) 2009-12-16 2010-10-05 EMISSION CONTROL METHOD AND EMISSION CONTROL SYSTEM FOR A PISTON ENGINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-285303 2009-12-16
JP2009285303A JP2011127471A (ja) 2009-12-16 2009-12-16 往復動内燃機関の排ガス浄化方法及び排ガス浄化システム

Publications (1)

Publication Number Publication Date
WO2011074310A1 true WO2011074310A1 (ja) 2011-06-23

Family

ID=44167076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067422 WO2011074310A1 (ja) 2009-12-16 2010-10-05 往復動内燃機関の排ガス浄化方法及び排ガス浄化システム

Country Status (5)

Country Link
EP (1) EP2514935A4 (ja)
JP (1) JP2011127471A (ja)
KR (1) KR20120058624A (ja)
CN (1) CN102695855A (ja)
WO (1) WO2011074310A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5878860B2 (ja) * 2011-12-08 2016-03-08 エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド 排気ガス浄化機能を有するターボ過給式大型2ストロークディーゼルエンジン
JP5961995B2 (ja) * 2011-12-12 2016-08-03 いすゞ自動車株式会社 内燃機関とその制御方法
JP6019594B2 (ja) * 2012-01-27 2016-11-02 株式会社Ihi 脱硝装置
DE102013002999A1 (de) * 2013-02-22 2014-08-28 Man Diesel & Turbo Se Brennkraftrnaschine
JP6136960B2 (ja) 2014-01-31 2017-05-31 トヨタ自動車株式会社 内燃機関の排気系構造
US9387438B2 (en) 2014-02-14 2016-07-12 Tenneco Automotive Operating Company Inc. Modular system for reduction of sulphur oxides in exhaust
JP6713745B2 (ja) * 2014-10-07 2020-06-24 ヴィンタートゥール ガス アンド ディーゼル アーゲー レシプロ式内燃機関、とりわけ2サイクル大型ディーゼル・エンジン、及び混合流路、とりわけ混合管路
EP3351760A1 (en) * 2017-01-18 2018-07-25 Winterthur Gas & Diesel Ltd. Propulsion system, method for reducing nox, ship comprising a propulsion system and control system for controlling the injection of a reducing agent
CN115126574B (zh) * 2022-06-23 2023-04-25 江苏航运职业技术学院 一种船舶废气脱硝装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157415A (ja) * 1988-12-07 1990-06-18 Mitsubishi Heavy Ind Ltd 内燃機関の排気脱硝装置
JPH03213614A (ja) * 1990-01-18 1991-09-19 Fuel Tec Japan Kk ディーゼルエンジンの排気処理装置
JPH03229911A (ja) * 1990-01-31 1991-10-11 Nippon Shokubai Kagaku Kogyo Co Ltd ディーゼルエンジン排ガス中の窒素酸化物除去方法
JP2000282843A (ja) * 1999-03-31 2000-10-10 Toyota Motor Corp 内燃機関の排気浄化装置
JP2001065333A (ja) * 1999-06-23 2001-03-13 Toyota Motor Corp 内燃機関の排気浄化装置
JP2004239109A (ja) * 2003-02-04 2004-08-26 Hino Motors Ltd エンジンの排ガス浄化装置
JP2005061362A (ja) * 2003-08-19 2005-03-10 Hino Motors Ltd 排気浄化装置
JP2006526102A (ja) * 2003-05-09 2006-11-16 エミテク・ゲゼルシャフト・フュール・エミシオーンテクノロギー・ミット・ベシュレンクテル・ハフツング 粒子トラップの再生
JP2009209896A (ja) 2008-03-06 2009-09-17 Toyo Kiko Kk 窒素酸化物還元装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10357402A1 (de) * 2003-12-09 2005-07-07 Robert Bosch Gmbh Verfahren zum Betreiben eines Verbrennungsmotors und Verbrennungsmotor
ATE369486T1 (de) * 2004-12-18 2007-08-15 Haldor Topsoe As Verfahren zur regelung der zugabe eines reduktionsmittels in das abgas einer brennkraftmaschine
JP2007321647A (ja) * 2006-05-31 2007-12-13 Hitachi Ltd エンジン用の排気処理装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157415A (ja) * 1988-12-07 1990-06-18 Mitsubishi Heavy Ind Ltd 内燃機関の排気脱硝装置
JPH03213614A (ja) * 1990-01-18 1991-09-19 Fuel Tec Japan Kk ディーゼルエンジンの排気処理装置
JPH03229911A (ja) * 1990-01-31 1991-10-11 Nippon Shokubai Kagaku Kogyo Co Ltd ディーゼルエンジン排ガス中の窒素酸化物除去方法
JP2000282843A (ja) * 1999-03-31 2000-10-10 Toyota Motor Corp 内燃機関の排気浄化装置
JP2001065333A (ja) * 1999-06-23 2001-03-13 Toyota Motor Corp 内燃機関の排気浄化装置
JP2004239109A (ja) * 2003-02-04 2004-08-26 Hino Motors Ltd エンジンの排ガス浄化装置
JP2006526102A (ja) * 2003-05-09 2006-11-16 エミテク・ゲゼルシャフト・フュール・エミシオーンテクノロギー・ミット・ベシュレンクテル・ハフツング 粒子トラップの再生
JP2005061362A (ja) * 2003-08-19 2005-03-10 Hino Motors Ltd 排気浄化装置
JP2009209896A (ja) 2008-03-06 2009-09-17 Toyo Kiko Kk 窒素酸化物還元装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2514935A4 *

Also Published As

Publication number Publication date
EP2514935A4 (en) 2014-06-11
JP2011127471A (ja) 2011-06-30
CN102695855A (zh) 2012-09-26
EP2514935A1 (en) 2012-10-24
KR20120058624A (ko) 2012-06-07

Similar Documents

Publication Publication Date Title
WO2011074310A1 (ja) 往復動内燃機関の排ガス浄化方法及び排ガス浄化システム
JP4438828B2 (ja) 内燃機関の排気浄化装置
KR101671271B1 (ko) 배기가스 정화기능을 갖는 대형 터보차지 2-행정 디젤 엔진
US8250857B2 (en) Exhaust aftertreatment system
US7200989B2 (en) Apparatus and method for cleaning exhaust gas from an internal combustion engine
US20090104085A1 (en) Reducing agent spray control system ensuring operation efficiency
CA2830295C (en) Process for the reduction of nitrogen oxides and sulphur oxides in the exhaust gas from internal combustion engine
EP1674681B1 (en) Method for adjusting the temperature of an exhaust gas treatment system for internal combustion engines and engine apparatus
CN104395572A (zh) 排气净化装置、液体还原剂或者其前体的解冻方法
CN104234801A (zh) 排气取样设备
JP5582854B2 (ja) 排気ガス浄化装置
JP2011112005A (ja) 排ガスのnox低減方法及び装置
US8480962B2 (en) Exhaust gas purification apparatus for engine
JP2006307734A (ja) 内燃機関の排気装置
WO2013035199A1 (ja) 排気ガス浄化装置
JP2003293736A (ja) 内燃機関のNOx浄化装置
CN108729981A (zh) 一种废气处理系统及处理方法
JP2005264894A (ja) 排気浄化装置
KR101047402B1 (ko) Urea-SCR 시스템
CN109356750A (zh) 一种用于乘用车的燃料电池耦合发动机喷水的方法
US11098631B2 (en) NOx sensor protection system
JP2004011428A (ja) 内燃機関のNOx浄化装置
JP4779774B2 (ja) 内燃機関の排気浄化装置
JP6273532B2 (ja) 添加剤の供給構造
JP2014219013A (ja) 排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127010742

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010837340

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE