WO2011073186A1 - Pneumatique hiver a adherence sur glace amelioree - Google Patents

Pneumatique hiver a adherence sur glace amelioree Download PDF

Info

Publication number
WO2011073186A1
WO2011073186A1 PCT/EP2010/069621 EP2010069621W WO2011073186A1 WO 2011073186 A1 WO2011073186 A1 WO 2011073186A1 EP 2010069621 W EP2010069621 W EP 2010069621W WO 2011073186 A1 WO2011073186 A1 WO 2011073186A1
Authority
WO
WIPO (PCT)
Prior art keywords
phr
tire according
metal oxide
tire
oils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2010/069621
Other languages
English (en)
French (fr)
Inventor
Masayuki Maesaka
Salvatore Pagano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michelin Recherche et Technique SA Switzerland
Societe de Technologie Michelin SAS
Original Assignee
Michelin Recherche et Technique SA Switzerland
Societe de Technologie Michelin SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland, Societe de Technologie Michelin SAS filed Critical Michelin Recherche et Technique SA Switzerland
Priority to CA2784412A priority Critical patent/CA2784412A1/fr
Priority to EP10790785A priority patent/EP2512825A1/fr
Priority to JP2012543681A priority patent/JP5778171B2/ja
Priority to EA201290524A priority patent/EA201290524A1/ru
Publication of WO2011073186A1 publication Critical patent/WO2011073186A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • C08L2207/324Liquid component is low molecular weight polymer

Definitions

  • the invention relates to rubber compositions used as treads of tires for vehicles, in particular tires “winter” able to roll on floors covered with ice or ice without being provided with nails (also called “studless” tires).
  • treads of winter tires which are specifically adapted for running under so-called "melting ice” conditions encountered in a temperature range typically between -5 ° C and 0 ° C. It is recalled that, in such a field, the pressure of the tires at the passage of a vehicle causes a superficial melting of the ice which is covered with a thin film of water detrimental to the adhesion of these tires.
  • Such powders solubilize more or less in contact with snow or melted ice, which allows on the one hand the creation on the surface of the tread of porosities likely to improve the attachment of the tread on the ground and on the other hand the creation of throats acting as evacuation channels of the liquid film created between the pneumatic and soil.
  • water-soluble powders include, for example, the use of cellulose powder, PVA (polyvinyl alcohol) or starch, or powders of guar gum or xanthan gum (see for example, patent application JP 3-159803, JP 2002-211203, EP 940,435, WO 2008/080750, WO 2008/080751).
  • the solubility at very low temperature and in a very short time of the powder used is an essential factor for the proper functioning of the tread. If the powder is not soluble in the conditions of use of the tire, the aforementioned functions (creation of microporosities and water discharge channels) are not met and the adhesion is not improved.
  • Another known drawback of these solutions is that they can strongly penalize the reinforcement of the rubber compositions (and therefore their resistance to wear) or their hysteresis (and therefore their rolling resistance).
  • the Applicants have discovered a rubber composition capable of generating an effective surface microroughness by means of specific microparticles, and which makes it possible to greatly improve the ice adhesion of the treads and tires comprising them, under conditions of melting ice, without penalizing the strengthening and hysteresis properties.
  • the present invention relates to a tire whose tread comprises a rubber composition comprising at least one diene elastomer, more than 30 phr of a liquid plasticizer, and between 50 and 150 phr of a reinforcing filler, characterized in that that said composition further comprises 35 to 50 phr of hollow microparticles of at least one metal oxide having a median size by weight of between 2 and 500 ⁇ .
  • these hollow microparticles which are protruding on the surface of the tread, fulfill the claw function described above without the disadvantage of being highly abrasive vis-à-vis the asphalt used as a road surface.
  • said microparticles create microcavities which act as storage volume and drainage channel of the water film on the surface. ice ; under these conditions, the contact between the surface of the tread and the ice is no longer lubricated and the coefficient of friction is thus improved.
  • the tires of the invention are particularly intended to equip tourism-type motor vehicles, including 4x4 vehicles (four-wheel drive) and SUV vehicles ("Sport Utility Vehicles"), two-wheel vehicles (including motorcycles) as industrial vehicles chosen in particular from vans and "heavy goods vehicles” (ie, metro, buses, road transport vehicles such as trucks, tractors).
  • 4x4 vehicles four-wheel drive
  • SUV vehicles Sport Utility Vehicles
  • two-wheel vehicles including motorcycles
  • industrial vehicles chosen in particular from vans
  • "heavy goods vehicles” ie, metro, buses, road transport vehicles such as trucks, tractors.
  • treads and rubber compositions constitutive of these treads are characterized, before and after cooking, as indicated below.
  • the measurements are carried out at 150 ° C. with an oscillating chamber rheometer according to DIN 53529 - Part 3 (June 1983).
  • the evolution of the rheometric torque as a function of time describes the evolution of the stiffening of the composition as a result of the vulcanization reaction.
  • the measurements are processed according to DIN 53529 - Part 2 (March 1983): Ti is the induction time, that is to say the time required for the beginning of the vulcanization reaction; T a (for example T 90 ) is the time required to achieve a cc% conversion, i.e., cc% (eg 90%) of the difference between the minimum and maximum torque.
  • T a for example T 90
  • cc% eg 90%
  • Dynamic properties are measured on a viscoanalyzer (Metravib VA4000) according to ASTM D5992-96.
  • the response of a sample of vulcanized composition (cylindrical specimen of 4 mm thickness and 400 mm 2 section), subjected to a sinusoidal stress in alternating simple shear, at the frequency of 10 Hz, at a temperature of 0, is recorded. ° C.
  • a strain amplitude sweep of 0.1% to 50%> (forward cycle) is performed, followed by 50%> to 1% (return cycle).
  • any range of values designated by the expression “between a and b” represents the range of values greater than “a” and less than “b” (i.e., terminals a and b excluded). while that any range of values designated by the term “from a to b” means the range of values from “a” to "b” (i.e. including the strict limits a and b).
  • the rubber composition of the tread according to the invention is therefore based on at least one diene elastomer, a plasticizer system, a reinforcing filler and specific hollow microparticles, components which are described in detail hereinafter.
  • elastomer or rubber, the two terms being synonymous
  • dienes monomers carrying two double bonds carbon - carbon, conjugated or not
  • the diene elastomers can be classified in known manner into two categories: those known as “essentially unsaturated” and those known as “essentially saturated”.
  • Butyl rubbers such as, for example, copolymers of dienes and alpha-olefins of the EPDM type, fall into the category of essentially saturated diene elastomers having a diene origin ratio which is low or very low, always less than 15. % (mole%).
  • essentially unsaturated diene elastomer is understood to mean a diene elastomer derived at least in part from conjugated diene monomers having a proportion of units or units of diene origin (conjugated dienes) which is greater than 15% (mol%). ).
  • the term “highly unsaturated” diene elastomer is particularly understood to mean a diene elastomer having a content of units of diene origin (conjugated dienes) which is greater than 50%.
  • At least one diene elastomer of the highly unsaturated type in particular a diene elastomer chosen from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), polybutadienes (BR) and butadiene copolymers, copolymers of isoprene and mixtures of these elastomers.
  • a diene elastomer chosen from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), polybutadienes (BR) and butadiene copolymers, copolymers of isoprene and mixtures of these elastomers.
  • Such copolymers are more preferably selected from the group consisting of butadiene-styrene copolymers (SBR), isoprene-butadiene copolymers (BIR), isoprene-styrene copolymers (SIR), isoprene-copolymers of butadiene-styrene (SBIR) and mixtures of such copolymers.
  • SBR butadiene-styrene copolymers
  • BIR isoprene-butadiene copolymers
  • SIR isoprene-styrene copolymers
  • SBIR isoprene-copolymers of butadiene-styrene
  • the elastomers can be for example block, statistical, sequenced, microsequenced, and be prepared in dispersion or in solution; they may be coupled and / or starred or functionalized with a coupling agent and / or starring or functionalization.
  • a coupling with carbon black there may be mentioned for example functional groups comprising a C-Sn bond or amino functional groups such as benzophenone for example; for coupling to a reinforcing inorganic filler such as silica, mention may be made, for example, of silanol or polysiloxane functional groups having a silanol end (as described, for example, in US Pat. No.
  • alkoxysilane groups as described, for example, in US 5,977,238), carboxylic groups (as described, for example, in US 6,815,473 or US 2006/0089445) or polyether groups (as described for example in US 6,503,973).
  • elastomers such as SBR, BR, NR or IR of the epoxidized type.
  • Polybutadienes and in particular those having a 1,2-unit content of between 4% and 80%, or those having a cis-1,4 content of greater than 80%, polyisoprenes and copolymers of butadiene- styrene and in particular those having a styrene content of between 5% and 50% by weight and more particularly between 20% and 40%, a 1,2-butadiene content of the butadiene part of between 4% and 65%. %, a trans-1,4-linkage content of between 20% and 80%, butadiene-isoprene copolymers and in particular those having an isoprene content of between 5% and 90% by weight and a glass transition temperature.
  • Tg "Tg" - measured according to ASTM D3418-82) from -40 ° C to -80 ° C, the isoprene-styrene copolymers and in particular those having a styrene content of between 5% and 50% by weight and a Tg between -25 ° C and -50 ° C.
  • butadiene-styrene-isoprene copolymers are especially suitable those having a styrene content of between 5% and 50% by weight and more particularly of between 10% and 40%, an isoprene content of between 15% and 60%.
  • the diene elastomer is chosen from the group consisting of natural rubber, synthetic polyisoprenes and polybutadienes having a cis-1,4 bond ratio of greater than 90%, copolymers of butadiene-styrene and mixtures of these elastomers.
  • the rubber composition comprises 50 to 100 phr of natural rubber or synthetic polyisoprene, said natural rubber or synthetic polyisoprene which can be used in particular in cutting (mixture) with not more than 50 phr of a polybutadiene having a cis-1,4 bond ratio of greater than 90%.
  • the rubber composition comprises 50 to 100 phr of a polybutadiene having a cis-1,4 bond ratio greater than 90%, said polybutadiene being able to be used in particular in a blend with at most 50 pce of natural rubber or synthetic polyisoprene.
  • diene elastomers of the treads according to the invention could be associated, in a minor amount, synthetic elastomers other than diene, or even polymers other than elastomers, for example thermoplastic polymers.
  • the rubber composition according to the invention comprises at least 30 phr of a liquid plasticizer (at 20 ° C.) whose function is to soften the matrix by diluting the elastomer and the reinforcing filler; its Tg is by definition less than -20 ° C, preferably less than -40 ° C.
  • a liquid plasticizer at 20 ° C.
  • Tg is by definition less than -20 ° C, preferably less than -40 ° C.
  • these plasticizers or these oils are liquids (that is to say, as a reminder, substances having the capacity to eventually take on the shape of their container) , in contrast to, in particular, hydrocarbon plasticizing resins which are inherently solid at room temperature.
  • liquid plasticizers selected from the group consisting of naphthenic oils (low or high viscosity, including hydrogenated or not), paraffinic oils, MES oils (Medium Extracted Solvates), Treated Distillate Aromatic Extracts (TDAE) oils, mineral oils, vegetable oils, ethers plasticizers, ester plasticizers, phosphate plasticizers, sulphonate plasticizers and mixtures of these compounds.
  • phosphate plasticizers for example, mention may be made of those containing from 12 to 30 carbon atoms, for example trioctyl phosphate.
  • ester plasticizers mention may be made in particular of compounds selected from the group consisting of trimellitates, pyromellitates, phthalates, 1,2-cyclohexane dicarboxylates, adipates, azela- lates, sebacates, tri-esters, glycerol and mixtures of these compounds.
  • glycerol triesters preferably consisting mainly (for more than 50%>, more preferably for more than 80% by weight) of a unsaturated fatty acid Ci 8, that is to say selected from the group consisting of oleic acid, linoleic acid, linolenic acid and mixtures of these acids. More preferably, whether of synthetic or natural origin (for example vegetable oils of sunflower or rapeseed), the fatty acid used is more than 50% by weight, more preferably still more than 80% by weight. % by weight of oleic acid.
  • Such high oleic acid triesters are well known and have been described, for example, in application WO 02/088238, as plasticizers in tire treads.
  • the level of liquid plasticizer in the composition according to the invention is preferably greater than 40 phr, more preferably within a range of 50 to 100 phr.
  • compositions according to the invention may also comprise, as solid plasticizer (at 20 ° C.), a hydrocarbon resin having a Tg greater than + 20 ° C., preferably greater than + 30 ° C. C, as described for example in applications WO 2005/087859, WO 2006/061064 and WO 2007/017060.
  • Hydrocarbon resins are polymers that are well known to those skilled in the art, essentially based on carbon and hydrogen, and therefore inherently miscible in diene (s) elastomer compositions when they are further qualified as “plasticisers”. ". They have been described, for example, in the book “Hydrocarbon Resins” by R. Mildenberg, M. Zander and G. Collin (New York, VCH, 1997, ISBN 3-527-28617-9), chapter 5 of which is devoted their applications, in particular pneumatic rubber (5.5 “Rubber Tires and Mechanical Goods”). They may be aliphatic, aromatic or aliphatic / aromatic type that is to say based on aliphatic and / or aromatic monomers. They may be natural or synthetic, whether or not based on petroleum (if so, also known as petroleum resins). They are preferably exclusively hydrocarbon-based, that is to say they contain only carbon and hydrogen atoms.
  • the plasticizing hydrocarbon resin has at least one, more preferably all, of the following characteristics: a Tg greater than 20 ° C (more preferably between 40 and 100 ° C);
  • Mn a number-average molecular weight (Mn) of between 400 and 2000 g / mol (more preferentially between 500 and 1500 g / mol);
  • the Tg is measured in a known manner by DSC (Differential Scanning Calorimetry), according to the ASTM D3418 (1999) standard.
  • the macrostructure (Mw, Mn and Ip) of the hydrocarbon resin is determined by steric exclusion chromatography (SEC): solvent tetrahydrofuran; temperature 35 ° C; concentration 1 g / 1; flow rate 1 ml / min; filtered solution on 0.45 ⁇ porosity filter before injection; Moore calibration with polystyrene standards; set of 3 "WATERS” columns in series (“STYRAGEL” HR4E, HR1 and HR0.5); differential refractometer detection (“WATERS 2410") and its associated operating software (“WATERS EMPOWER”).
  • SEC steric exclusion chromatography
  • the plasticizing hydrocarbon resin is chosen from the group consisting of cyclopentadiene homopolymer or copolymer resins (abbreviated to CPD), dicyclopentadiene homopolymer or copolymer resins (abbreviated to DCPD), homopolymer or terpene copolymer resins, C5 homopolymer or copolymer resins, C9 homopolymer or copolymer resins, and mixtures of these resins.
  • CPD cyclopentadiene homopolymer or copolymer resins
  • DCPD dicyclopentadiene homopolymer or copolymer resins
  • C5 homopolymer or copolymer resins C9 homopolymer or copolymer resins
  • copolymer resins are more preferably used those selected from the group consisting of (D) CPD / vinylaromatic copolymer resins, (D) CPD / terpene copolymer resins, copolymer resins (D) CPD / C5 cut, (D) CPD / C9 cut copolymer resins, terpene / vinylaromatic copolymer resins, terpene / phenol copolymer resins, C5 / vinylaromatic cut copolymer resins, C9 / vinylaromatic cut copolymer resins, and mixtures of these resins.
  • pene here combines in a known manner the alpha-pinene, beta-pinene and limonene monomers; preferably, a limonene monomer is used which is present in a known manner in the form of three possible isomers: L-limonene (laevorotatory enantiomer), D-limonene (dextrorotatory enantiomer), or the dipentene, racemic of the dextrorotatory and levorotatory enantiomers. .
  • Suitable vinylaromatic monomers are, for example, styrene, alpha-methylstyrene, ortho-, meta-, para-methylstyrene, vinyltoluene, para-tert-butylstyrene, methoxystyrenes, chlorostyrenes, hydroxystyrenes, vinylmesitylene, and the like. , divinylbenzene, vinylnaphthalene, any vinylaromatic monomer from a C 9 cut (or more generally from a C 8 to C 10 cut).
  • the vinyl-aromatic compound is styrene or a vinylaromatic monomer derived from a C 9 cut (or more generally from a C 8 to C 10 cut).
  • the vinylaromatic compound is the minor monomer, expressed as a mole fraction, in the copolymer under consideration.
  • the content of hydrocarbon resin is preferably between 3 and 60 phr, more preferably between 3 and 40 phr, especially between 5 and 30 phr.
  • the level of total plasticizer ie, liquid plasticizer plus, if appropriate, solid hydrocarbon resin
  • reinforcing filler known for its ability to reinforce a rubber composition that can be used for manufacturing tires, for example an organic filler such as carbon black, or a reinforcing inorganic filler such as silica to which is associated in a known manner a coupling agent.
  • Such a reinforcing filler typically consists of nanoparticles whose average size (in mass) is less than 500 nm, most often between 20 and 200 nm, in particular and preferably between 20 and 150 nm.
  • Suitable carbon blacks are all carbon blacks, especially blacks conventionally used in tires or treads of tires (so-called pneumatic grade blacks).
  • the reinforcing carbon blacks of the 100, 200 or 300 series for example blacks NI15, N134, N234, N326, N330, N339, N347, N375, will be mentioned more particularly.
  • the carbon blacks could for example already be incorporated into the isoprene elastomer in the form of a masterbatch (see for example WO 97/36724 or WO 99/16600).
  • organic fillers other than carbon blacks mention may be made of functionalized polyvinyl organic fillers as described in applications WO-A-2006/069792 and WO-A-2006/069793, WO-A-2008/003434. and WO-A-2008/003435.
  • Reinforcing inorganic filler means any inorganic or mineral filler, irrespective of its color and origin (natural or synthetic), also called “white” filler, “clear” filler or even “non-black” filler. "As opposed to carbon black, capable of reinforcing on its own, with no other means than an intermediate coupling agent, a rubber composition for the manufacture of tires, in other words able to replace, in its function of reinforcement, a conventional carbon black of pneumatic grade; such a filler is generally characterized, in known manner, by the presence of hydroxyl groups (-OH) on its surface.
  • -OH hydroxyl groups
  • Suitable reinforcing inorganic fillers are in particular siliceous type mineral fillers, in particular silica (SiO 2) , or aluminous type, in particular alumina (Al 2 O 3 ),
  • the silica used may be any reinforcing silica known from the person skilled in the art, in particular any precipitated or fumed silica having a BET surface, and that a CTAB specific surface area both less than 450 m 2 / g, preferably 30 to 400 m 2 / g, especially between 60 and 300 m 2 / g.
  • HDS highly dispersible precipitated silicas
  • reinforcing aluminas examples include “Baikalox” A 125 or CRI 25 aluminas from Baikowski, “APA-100RDX” from Condea, “Aluminoxid C” from Degussa or “AKP-G015" from Sumitomo Chemicals.
  • the total reinforcing filler content is between 60 and 120 phr, in particular between 70 and 100 phr.
  • the filler comprises silica, carbon black or a mixture of carbon black and silica.
  • the reinforcing filler comprises predominantly carbon black; in such a case, the carbon black is present at a level preferably greater than 60 phr, associated or not with a reinforcing inorganic filler such as silica in a minority amount.
  • the reinforcing filler comprises an inorganic filler, in particular silica, as a majority; in such a case, the inorganic filler, in particular silica, is present at a rate preferably greater than 70 phr, associated or not with carbon black in a minor amount; the carbon black, when present, is preferably used at a level of less than 20 phr, more preferably less than 10 phr (for example between 0.1 and 10 phr).
  • the majority use of a reinforcing inorganic filler such as silica is also advantageous from the point of view of adhesion. on wet or snowy ground.
  • the reinforcing filler comprises a blend of carbon black and reinforcing inorganic filler such as silica in similar amounts; in such a case, the level of inorganic filler, in particular silica, and the level of carbon black are preferably each between 25 and 75 phr, more particularly each between 30 and 50 phr.
  • a well-known at least bifunctional coupling agent (or bonding agent) is well known for ensure a sufficient chemical and / or physical connection between the inorganic filler (surface of its particles) and the diene elastomer.
  • organosilanes or bifunctional polyorganosiloxanes are used.
  • polysulfide silanes, called “symmetrical” or “asymmetrical” silanes according to their particular structure, are used, as described for example in the applications WO03 / 002648 (or US 2005/016651) and WO03 / 002649 (or US 2005/016650).
  • x is an integer of 2 to 8 (preferably 2 to 5);
  • A is a divalent hydrocarbon radical (preferably alkylene groups
  • C 18 or C 6 -C 12 arylene groups more particularly C 1 -C 10 alkylenes, especially C 1 -C 4 alkylenes, in particular propylene);
  • R2 R2 in which:
  • the radicals R.1 which may be substituted or unsubstituted, which are identical to or different from one another, represent a Ci-Cs alkyl, C 5 -C 8 cycloalkyl or C 6 -C 18 aryl group (preferably C 1 -C 8 alkyl groups); -C 6 , cyclohexyl or phenyl, especially C 1 -C 4 alkyl groups, more particularly methyl and / or ethyl).
  • the R radicals substituted or unsubstituted, identical or different, represent an alkoxyl group Ci-Cig cycloalkoxy or C 5 -C 8 (preferably a group selected from Ci-Cg alkoxyls and C 5 cycloalkoxyls -C 8 , more preferably still a group selected from C 1 -C 4 alkoxyls, in particular methoxyl and ethoxyl).
  • polysulphide silanes examples include polysulfides of bis (3-trimethoxysilylpropyl) or of bis (3-triethoxysilylpropyl).
  • polysulfides of bis (3-trimethoxysilylpropyl) or of bis (3-triethoxysilylpropyl examples include bis (3-triethoxysilylpropyl) tetrasulfide, abbreviated as TESPT, or bis (triethoxysilylpropyl) disulfide, abbreviated as TESPD, is especially used.
  • polysulfides in particular disulphides, trisulphides or tetrasulfides
  • monoalkoxyl C 1 -C 4 ) -dialkyl (C 1 -C 4 ) silylpropyl
  • bis-monoethoxydimethylsilylpropyl tetrasulfide as described in patent application WO 02/083782 (or US 2004/132880).
  • the content of coupling agent is preferably between 2 and 12 phr, more preferably between 3 and 8 phr.
  • the equivalent filler of the reinforcing inorganic filler described in this paragraph it would be possible to use a reinforcing filler of another nature, in particular an organic filler, since this reinforcing filler would be covered with a filler.
  • inorganic layer such as silica, or would comprise on its surface functional sites, especially hydroxyl, requiring the use of a coupling agent to establish the bond between the filler and the elastomer.
  • the rubber composition according to the invention has the essential feature of comprising 35 to 50 phr of hollow microparticles (or microspheres) of at least one metal oxide, the term oxide including, of course, hydroxides; these microparticles have a median size by weight of between 2 and 500 ⁇ .
  • microparticles is meant by definition and generally micrometric size particles, that is to say whose average size or median size (both expressed by weight) are between 1 ⁇ and 1 mm.
  • the intended technical effect namely the creation of a suitable micro-roughness
  • the rubber composition is used as a tread: in addition to a possible loss of aesthetics (particles too visible on the surface of the tread) and a risk of loosening, during rolling, relatively large tread elements it was found that the melting ice adhesion performance could be degraded.
  • the hollow microparticles have a median size (by weight) within a range of 5 to 200 ⁇ . This area of particularly preferred size seems to correspond to an optimized compromise between on the one hand the desired surface roughness and on the other hand a good contact between the rubber composition and the ice.
  • the metal of the metal oxide is selected from the group consisting of aluminum, silicon, zirconium, transition metals and mixtures of such metals.
  • transition metal is meant more particularly the metals of the fourth period ranging from scandium to zinc, preferably titanium and zinc.
  • Aluminum, silicon, titanium, zirconium and zinc are even more preferable.
  • the metal oxide is chosen from the group consisting of aluminum oxides and / or hydroxides, oxides and / or hydroxides of silicon, oxides and / or hydroxides of aluminum and silicon, and mixtures of such oxides and / or hydroxides. More preferably still, the metal oxide used is an aluminosilicate.
  • various known methods are applicable, for example by laser diffraction (see, for example, ISO-8130-13 or JIS standard K5600-9-3).
  • the operation consists in sieving a defined quantity of sample (for example 200 g) on a vibrating table for 30 min with different sieve diameters (for example, according to a progression reason equal to 1.26, with meshes of 1000, 800, 630, 500, 400, ... 100, 80, 63 ⁇ ); the refusals collected on each sieve are weighed on a precision scale; we deduce the% of refusal for each mesh diameter with respect to the total weight of product; the median (or median diameter) or mean (or mean diameter) size is finally calculated in a known manner from the histogram of the particle size distribution. 5.5 - Miscellaneous additives
  • the rubber compositions according to the invention also comprise all or part of the usual additives usually used in elastomer compositions intended for the manufacture of tire treads, in particular for winter tires, such as, for example, protective agents such as waxes.
  • protective agents such as waxes.
  • compositions may also contain coupling activators when a coupling agent is used, inorganic filler recovery agents or, more generally, processing aid agents that are capable in a known manner, by means of an improvement of the dispersion of the filler in the rubber matrix and a lowering of the viscosity of the compositions, to improve their ability to implement in the green state;
  • these agents are for example hydrolysable silanes such as alkyl-alkoxysilanes, polyols, polyethers, amines, hydroxylated or hydrolysable polyorganosiloxanes.
  • the rubber compositions according to the invention are manufactured in appropriate mixers, using two successive preparation phases according to a general procedure well known to those skilled in the art: a first thermomechanical working or mixing phase (sometimes referred to as a "no" phase). -productive ”) at high temperature, up to a maximum temperature of between 130 ° C and 200 ° C, preferably between 145 ° C and 185 ° C, followed by a second phase of mechanical work (sometimes called phase" Producer ”) at a lower temperature, typically below 120 ° C, for example between 60 ° C and 100 ° C, finishing phase during which is incorporated the crosslinking system or vulcanization.
  • a first thermomechanical working or mixing phase (sometimes referred to as a "no" phase).
  • -productive ) at high temperature, up to a maximum temperature of between 130 ° C and 200 ° C, preferably between 145 ° C and 185 ° C
  • a second phase of mechanical work sometimes called phase” Producer ”
  • a method that can be used for the manufacture of such compositions comprises, for example, and preferably the following steps: incorporating into the diene elastomer, in a mixer, more than 30 phr of a liquid plasticizer, between 50 and 150 phr of a reinforcing filler , 35 to 50 phr of hollow microparticles of a metal oxide having a median weight of between 2 and 500 ⁇ , by thermomechanically kneading the whole, in one or more times, until a maximum temperature of between 130 ° C. and 200 ° C;
  • the first (non-productive) phase is carried out in a single thermomechanical step during which all the necessary constituents, the possible coating agents, are introduced into a suitable mixer such as a conventional internal mixer. or other complementary additives and other additives, with the exception of the crosslinking system.
  • a suitable mixer such as a conventional internal mixer. or other complementary additives and other additives, with the exception of the crosslinking system.
  • the low temperature crosslinking system is then incorporated, generally in an external mixer such as a roll mill; the whole is then mixed (productive phase) for a few minutes, for example between 5 and 15 min.
  • the actual crosslinking system is preferably based on sulfur and a primary vulcanization accelerator, in particular a sulfenamide type accelerator.
  • a primary vulcanization accelerator in particular a sulfenamide type accelerator.
  • various known secondary accelerators or vulcanization activators such as zinc oxide, stearic acid, guanidine derivatives (especially diphenylguanidine), etc.
  • the sulfur content is preferably between 0.5 and 3.0 phr, that of the primary accelerator is preferably between 0.5 and 5.0 phr.
  • accelerator primary or secondary
  • any compound capable of acting as an accelerator of vulcanization of diene elastomers in the presence of sulfur in particular thiazole-type accelerators and their derivatives, accelerators of thiuram type, zinc dithiocarbamates.
  • These accelerators are more preferably selected from the group consisting of 2-mercaptobenzothiazyl disulfide (abbreviated "MBTS”), N-cyclohexyl-2-benzothiazyl sulfenamide (abbreviated “CBS”), N, N-dicyclohexyl-2-benzothiazyl sulfenamide (“DCBS”), N-tert-butyl-2-benzothiazylsulfenamide (“TBBS”), N-tert-butyl-2-benzothiazylsulfenimide (“TBSI”), zinc dibenzyldithiocarbamate (“ZBEC”) and mixtures thereof. these compounds.
  • MBTS 2-mercaptobenzothiazyl disulfide
  • CBS N-cyclohexyl-2-benzothiazyl sulfenamide
  • DCBS N-dicyclohexyl-2-benzothiazyl sulfenamide
  • the final composition thus obtained is then calendered, for example in the form of a sheet or a plate, in particular for a characterization in the laboratory, or else extruded in the form of a rubber profile that can be used directly as a tread of a tire. winter.
  • the vulcanization (or cooking) is conducted in a known manner at a temperature generally between 130 ° C and 200 ° C, for a sufficient time which may vary for example between 5 and 90 min depending in particular on the cooking temperature, the system of vulcanization adopted and the kinetics of vulcanization of the composition under consideration.
  • the rubber compositions according to the invention previously described may constitute only part of the tread according to the invention, at least for the portion (therefore carved) of the tread intended to come into contact with the road during the rolling of the tire.
  • the invention relates to the tires previously described both in the green state (ie, before firing) and in the fired state (ie, after crosslinking or vulcanization).
  • the reinforcing filler carbon black, silica and its agent
  • the initial batch temperature of which was approximately 60 ° C. associated coupling the liquid plasticizer
  • the hollow microparticles of metal oxide the diene elastomer (or diene elastomer cutting)
  • the various other ingredients with the exception of the vulcanization system; the mixer is thus filled to about 70% (% by volume).
  • Theromechanical work (non-productive phase) is then carried out in one step, which lasts a total of about 3 to 4 minutes, until a maximum temperature of "fall" of 165 ° C is reached.
  • Tables 1 and 2 give the formulation of the two compositions (Table 1 - rate of the various products expressed in phr), their properties before and after curing (30 min at 150 ° C.); the vulcanization system is sulfur and sulfenamide.
  • the two compositions are then subjected to a laboratory test consisting in measuring their coefficient of friction on ice.
  • the principle is based on a rubber composition slider sliding at a given speed (for example 5 km / h) on an ice track with an imposed load (for example equal to 3 kg / cm 2 ).
  • the surface of the test pad Prior to the test, the surface of the test pad is lapped by planing to a thickness of 0.5 mm, followed by a series of repeated sliding friction on real dry soil (asphalt) under the said imposed load (for example 3 kg / cm 2 ).
  • the forces generated in the direction of advance (Fx) of the pad and perpendicular to the advance (Fz) are measured.
  • the Fx Fz ratio determines the coefficient of friction of the specimen on the ice.
  • the temperature during the measurement is set at -2 ° C.
  • compositions according to the invention offer the tires and their treads a melting ice adhesion which is significantly improved.
  • Zerosil 1115MP silica from Rhodia, type “HDS” (BET and CTAB: about 120 m 7 g);

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
PCT/EP2010/069621 2009-12-18 2010-12-14 Pneumatique hiver a adherence sur glace amelioree Ceased WO2011073186A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2784412A CA2784412A1 (fr) 2009-12-18 2010-12-14 Pneumatique hiver a adherence sur glace amelioree
EP10790785A EP2512825A1 (fr) 2009-12-18 2010-12-14 Pneumatique hiver a adherence sur glace amelioree
JP2012543681A JP5778171B2 (ja) 2009-12-18 2010-12-14 氷上でのグリップが向上した冬季タイヤ
EA201290524A EA201290524A1 (ru) 2009-12-18 2010-12-14 Зимняя пневматическая шина с улучшенным сцеплением со льдом

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0959168A FR2955584B1 (fr) 2009-12-18 2009-12-18 Composition de caoutchouc pour bande de roulement de pneumatique hiver.
FR0959168 2009-12-18

Publications (1)

Publication Number Publication Date
WO2011073186A1 true WO2011073186A1 (fr) 2011-06-23

Family

ID=42312939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/069621 Ceased WO2011073186A1 (fr) 2009-12-18 2010-12-14 Pneumatique hiver a adherence sur glace amelioree

Country Status (6)

Country Link
EP (1) EP2512825A1 (enExample)
JP (1) JP5778171B2 (enExample)
CA (1) CA2784412A1 (enExample)
EA (1) EA201290524A1 (enExample)
FR (1) FR2955584B1 (enExample)
WO (1) WO2011073186A1 (enExample)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011111A1 (fr) * 2011-07-21 2013-01-24 Compagnie Generale Des Etablissements Michelin Bandage pneumatique pourvu d'une bande de roulement à base d'un élastomère thermoplastique
WO2013092524A1 (fr) * 2011-12-21 2013-06-27 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une composition essentiellement depourvue de derive guanidique et comprenant un hydroxyde de metal alcalin ou alcalino-terreux
FR2997409A1 (fr) * 2012-10-30 2014-05-02 Michelin & Cie Pneumatique a adherence sur glace amelioree
FR2998509A1 (fr) * 2012-11-29 2014-05-30 Michelin & Cie Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
WO2014084404A1 (ja) * 2012-11-30 2014-06-05 コンパニー ゼネラール デ エタブリッスマン ミシュラン 空気入りタイヤ用トレッド及びこのトレッドを有する空気入りタイヤ
WO2015090975A1 (fr) 2013-12-19 2015-06-25 Compagnie Generale Des Etablissements Michelin Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides contenant des microparticules hydrosolubles
WO2015090976A1 (fr) 2013-12-19 2015-06-25 Compagnie Generale Des Etablissements Michelin Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides comportant des microparticules d'oxyde ou carbure metallique
WO2015090974A1 (fr) 2013-12-19 2015-06-25 Compagnie Generale Des Etablissements Michelin Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides comportant un caoutchouc thermo-expansible a l'etat cru, ou caoutchouc mousse a l'etat cuit
US9260588B2 (en) 2011-12-21 2016-02-16 Compagnie Generale Des Etablissements Michelin Tire comprising a composition essentially devoid of guanidine derivative and comprising an amino ether alcohol
US9403406B2 (en) 2012-09-17 2016-08-02 Compagnie Generale Des Etablissements Michelin Tire provided with a tread including a thermoplastic elastomer and carbon black
US9522571B2 (en) 2011-12-21 2016-12-20 Compagnie Generale Des Etablissements Michelin Tire comprising a composition essentially free of guanidine derivative and comprising a hydroxyalkylpiperazine
US9849727B2 (en) 2011-05-12 2017-12-26 Compagnie Generale Des Etablissements Michelin Tire provided with a tread comprising a thermoplastic elastomer
US10227475B2 (en) 2011-12-21 2019-03-12 Compagnie Generale Des Etablissements Michelin Tire comprising a composition essentially free of guanidine derivative and comprising a primary amine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032172A1 (en) 2012-08-31 2014-03-06 Soucy Techno Inc. Rubber compositions and uses thereof
WO2015016388A1 (en) * 2013-07-31 2015-02-05 Compagnie Generale Des Etablissements Michelin A pneumatic tire having a tread comprising milliparticles
WO2015054779A1 (en) 2013-10-18 2015-04-23 Soucy Techno Inc. Rubber compositions and uses thereof
WO2015089647A1 (en) 2013-12-19 2015-06-25 Soucy Techno Inc. Rubber compositions and uses thereof
US10179479B2 (en) 2015-05-19 2019-01-15 Bridgestone Americas Tire Operations, Llc Plant oil-containing rubber compositions, tread thereof and race tires containing the tread

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878147A (en) 1973-12-27 1975-04-15 Du Pont Composition for increasing the friction of surfaces on ice
JPH03159803A (ja) 1989-11-17 1991-07-09 Sumitomo Rubber Ind Ltd スタッドレスタイヤ
WO1997036724A2 (en) 1996-04-01 1997-10-09 Cabot Corporation Novel elastomer composites, method and apparatus
WO1999016600A1 (en) 1997-09-30 1999-04-08 Cabot Corporation Elastomer composite blends and methods for producing them
EP0940435A1 (en) 1998-03-03 1999-09-08 Bridgestone Corporation Rubber compositions for tire tread
US5967211A (en) * 1997-09-24 1999-10-19 The Goodyear Tire & Rubber Company Tire tread for ice traction
US5977238A (en) 1997-07-11 1999-11-02 Michelin & Cie Rubber composition based on carbon black having silica fixed to its surface and on diene polymer functionalized with alkoxysilane
US6013718A (en) 1995-11-07 2000-01-11 Michelin & Cie Rubber composition based on silica and on functionalized diene polymer which has a silanol end functional group
EP1052270A1 (en) 1998-11-27 2000-11-15 The Yokohama Rubber Co., Ltd. Rubber composition for tire tread having improved running performance on ice and pneumatic tire using the same
EP1061098A2 (en) * 1999-06-16 2000-12-20 The Goodyear Tire & Rubber Company Rubber composition which contains irregular-shaped hollow, inorganic particles and article having component thereof
US20020014292A1 (en) * 2000-06-29 2002-02-07 Akira Minagoshi Pneumatic tire
WO2002031041A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel
WO2002030939A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention
JP2002211203A (ja) 2001-01-19 2002-07-31 Sumitomo Rubber Ind Ltd スタッドレスタイヤ
WO2002083782A1 (fr) 2001-04-10 2002-10-24 Societe De Technologie Michelin Pneumatique et bande de roulement comportant comme agent de couplage un tetrasulfure de bis-alkoxysilane
WO2002088238A1 (fr) 2001-03-12 2002-11-07 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique
US6503973B2 (en) 2000-02-24 2003-01-07 Michelin Recherche Et Technique S.A. Vulcanizable rubber composition usable for the manufacture of a tire, and a tire comprising this composition
WO2003002649A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a tres basse surface specifique
WO2003002648A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a basse surface specifique
US6815473B2 (en) 2000-05-26 2004-11-09 Michelin Recherche Et Technique S.A. Rubber composition usable as a tire tread
EP1505112A1 (en) 2003-08-06 2005-02-09 Sumitomo Rubber Industries Limited Rubber composition for tire and pneumatic tire using the same
WO2005087859A1 (fr) 2004-02-11 2005-09-22 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
US20060089445A1 (en) 2003-04-29 2006-04-27 Michelin Recherche Et Technique S.A. Process for obtaining a grafted elastomer having functional groups along the chain and a rubber composition
WO2006061064A1 (fr) 2004-10-28 2006-06-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2006069793A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Composition elastomerique renforcee d'une charge de polyvinylaromatique fonctionnalise
WO2006069792A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Nanoparticules de polyvinylaromatique fonctionnalise
WO2006125533A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Compostion de cautchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique
WO2006125532A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane
WO2006125534A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique
EP1752491A1 (en) * 2005-08-10 2007-02-14 The Goodyear Tire & Rubber Company Pneumatic tire with sidewall component containing high strength glass bubbles
WO2007017060A1 (fr) 2005-08-08 2007-02-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2008003435A1 (fr) 2006-07-06 2008-01-10 Societe De Technologie Michelin Composition élastomèrique renforcée d'une charge de polymère vinylique non aromatique fonctionnalise
WO2008003434A1 (fr) 2006-07-06 2008-01-10 Societe De Technologie Michelin Nanoparticules de polymere vinylique fonctionnalise
WO2008080751A1 (fr) 2006-12-27 2008-07-10 Societe De Technologie Michelin Bande de roulement dont la composition comporte une poudre de gomme de xanthane
WO2008080750A1 (fr) 2006-12-27 2008-07-10 Société de Technologie Michelin Bande de roulement dont la composition comporte une poudre de gomme de guar
EP2080782A1 (de) * 2008-01-18 2009-07-22 Continental Aktiengesellschaft Kautschukmischung mit verbesserter Steifigkeit
EP2108527A1 (en) * 2008-04-09 2009-10-14 The Goodyear Tire & Rubber Company Tire with tread having an intermediate rubber layer containing a microsphere dispersion

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170840A (ja) * 1988-12-23 1990-07-02 Bridgestone Corp タイヤトレッド用ゴム組成物
JPH06322325A (ja) * 1993-05-17 1994-11-22 Nichiban Co Ltd 粘着テープ
JP2000145053A (ja) * 1998-11-09 2000-05-26 Toyo Ink Mfg Co Ltd 屋根下地材
JP2001302848A (ja) * 2000-04-25 2001-10-31 Toyo Tire & Rubber Co Ltd スタッドレスタイヤ用ゴム組成物
JP4827326B2 (ja) * 2000-06-29 2011-11-30 住友ゴム工業株式会社 空気入りタイヤ
MXPA06002054A (es) * 2003-08-22 2006-05-19 Ici Plc Composiciones de revestimiento ignifugas.
FR2925913B1 (fr) * 2007-12-27 2010-10-22 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique hiver
FR2928647B1 (fr) * 2008-03-13 2011-11-25 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique hiver

Patent Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878147A (en) 1973-12-27 1975-04-15 Du Pont Composition for increasing the friction of surfaces on ice
JPH03159803A (ja) 1989-11-17 1991-07-09 Sumitomo Rubber Ind Ltd スタッドレスタイヤ
US6013718A (en) 1995-11-07 2000-01-11 Michelin & Cie Rubber composition based on silica and on functionalized diene polymer which has a silanol end functional group
WO1997036724A2 (en) 1996-04-01 1997-10-09 Cabot Corporation Novel elastomer composites, method and apparatus
US5977238A (en) 1997-07-11 1999-11-02 Michelin & Cie Rubber composition based on carbon black having silica fixed to its surface and on diene polymer functionalized with alkoxysilane
US5967211A (en) * 1997-09-24 1999-10-19 The Goodyear Tire & Rubber Company Tire tread for ice traction
WO1999016600A1 (en) 1997-09-30 1999-04-08 Cabot Corporation Elastomer composite blends and methods for producing them
EP0940435A1 (en) 1998-03-03 1999-09-08 Bridgestone Corporation Rubber compositions for tire tread
EP1052270A1 (en) 1998-11-27 2000-11-15 The Yokohama Rubber Co., Ltd. Rubber composition for tire tread having improved running performance on ice and pneumatic tire using the same
EP1061098A2 (en) * 1999-06-16 2000-12-20 The Goodyear Tire & Rubber Company Rubber composition which contains irregular-shaped hollow, inorganic particles and article having component thereof
US6503973B2 (en) 2000-02-24 2003-01-07 Michelin Recherche Et Technique S.A. Vulcanizable rubber composition usable for the manufacture of a tire, and a tire comprising this composition
US6815473B2 (en) 2000-05-26 2004-11-09 Michelin Recherche Et Technique S.A. Rubber composition usable as a tire tread
US20020014292A1 (en) * 2000-06-29 2002-02-07 Akira Minagoshi Pneumatic tire
WO2002031041A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel
WO2002030939A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention
US6774255B1 (en) 2000-10-13 2004-08-10 Michelin Recherche Et Technique, S.A. Polyfunctional organosilane usable as a coupling agent and process for the obtainment thereof
US20040051210A1 (en) 2000-10-13 2004-03-18 Jean-Claude Tardivat Rubber composition comprising a polyfunctional organosilane as coupling agent
JP2002211203A (ja) 2001-01-19 2002-07-31 Sumitomo Rubber Ind Ltd スタッドレスタイヤ
WO2002088238A1 (fr) 2001-03-12 2002-11-07 Societe De Technologie Michelin Composition de caoutchouc pour bande de roulement de pneumatique
US20040132880A1 (en) 2001-04-10 2004-07-08 Olivier Durel Tire and tread comprising a bis-alkoxysilane testrasulfide as coupling agent
WO2002083782A1 (fr) 2001-04-10 2002-10-24 Societe De Technologie Michelin Pneumatique et bande de roulement comportant comme agent de couplage un tetrasulfure de bis-alkoxysilane
WO2003002648A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a basse surface specifique
WO2003002649A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a tres basse surface specifique
US20050016651A1 (en) 2001-06-28 2005-01-27 Michelin Recherche Et Technique S.A. Tire tread reinforced with a silica of low specific surface area
US20050016650A1 (en) 2001-06-28 2005-01-27 Michelin Recherche Et Technique S.A. Tire tread reinforced with a silica of very low specific surface area
US20060089445A1 (en) 2003-04-29 2006-04-27 Michelin Recherche Et Technique S.A. Process for obtaining a grafted elastomer having functional groups along the chain and a rubber composition
EP1505112A1 (en) 2003-08-06 2005-02-09 Sumitomo Rubber Industries Limited Rubber composition for tire and pneumatic tire using the same
WO2005087859A1 (fr) 2004-02-11 2005-09-22 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2006061064A1 (fr) 2004-10-28 2006-06-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2006069792A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Nanoparticules de polyvinylaromatique fonctionnalise
WO2006069793A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Composition elastomerique renforcee d'une charge de polyvinylaromatique fonctionnalise
WO2006125533A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Compostion de cautchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique
WO2006125532A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane
WO2006125534A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique
WO2007017060A1 (fr) 2005-08-08 2007-02-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
EP1752491A1 (en) * 2005-08-10 2007-02-14 The Goodyear Tire & Rubber Company Pneumatic tire with sidewall component containing high strength glass bubbles
WO2008003435A1 (fr) 2006-07-06 2008-01-10 Societe De Technologie Michelin Composition élastomèrique renforcée d'une charge de polymère vinylique non aromatique fonctionnalise
WO2008003434A1 (fr) 2006-07-06 2008-01-10 Societe De Technologie Michelin Nanoparticules de polymere vinylique fonctionnalise
WO2008080751A1 (fr) 2006-12-27 2008-07-10 Societe De Technologie Michelin Bande de roulement dont la composition comporte une poudre de gomme de xanthane
WO2008080750A1 (fr) 2006-12-27 2008-07-10 Société de Technologie Michelin Bande de roulement dont la composition comporte une poudre de gomme de guar
EP2080782A1 (de) * 2008-01-18 2009-07-22 Continental Aktiengesellschaft Kautschukmischung mit verbesserter Steifigkeit
EP2108527A1 (en) * 2008-04-09 2009-10-14 The Goodyear Tire & Rubber Company Tire with tread having an intermediate rubber layer containing a microsphere dispersion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DE R. MILDENBERG; M. ZANDER; G. COLLIN: "Hydrocarbon Resins", 1997, NEW YORK, VCH

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9849727B2 (en) 2011-05-12 2017-12-26 Compagnie Generale Des Etablissements Michelin Tire provided with a tread comprising a thermoplastic elastomer
US20140190604A1 (en) * 2011-07-21 2014-07-10 Michelin Recherche Et Technique S.A. Pneumatic tyre provided with a tread based on a thermoplastic elastomer
FR2978154A1 (fr) * 2011-07-21 2013-01-25 Michelin Soc Tech Bandage pneumatique pourvu d'une bande de roulement a base d'un elastomere thermoplastique
CN103648796B (zh) * 2011-07-21 2016-06-08 米其林集团总公司 设置有基于热塑性弹性体的胎面的充气轮胎
CN103648796A (zh) * 2011-07-21 2014-03-19 米其林集团总公司 设置有基于热塑性弹性体的胎面的充气轮胎
WO2013011111A1 (fr) * 2011-07-21 2013-01-24 Compagnie Generale Des Etablissements Michelin Bandage pneumatique pourvu d'une bande de roulement à base d'un élastomère thermoplastique
US20150031814A1 (en) * 2011-12-21 2015-01-29 Christelle Darnaud Tire comprising a composition essentially free of guanidine derivative and comprising an alkali metal hydroxide or alkaline-earth metal hydroxide
US9260588B2 (en) 2011-12-21 2016-02-16 Compagnie Generale Des Etablissements Michelin Tire comprising a composition essentially devoid of guanidine derivative and comprising an amino ether alcohol
US10227475B2 (en) 2011-12-21 2019-03-12 Compagnie Generale Des Etablissements Michelin Tire comprising a composition essentially free of guanidine derivative and comprising a primary amine
WO2013092524A1 (fr) * 2011-12-21 2013-06-27 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une composition essentiellement depourvue de derive guanidique et comprenant un hydroxyde de metal alcalin ou alcalino-terreux
US9522571B2 (en) 2011-12-21 2016-12-20 Compagnie Generale Des Etablissements Michelin Tire comprising a composition essentially free of guanidine derivative and comprising a hydroxyalkylpiperazine
CN103998252A (zh) * 2011-12-21 2014-08-20 米其林集团总公司 包括基本上不含胍衍生物并包含碱金属氢氧化物或碱土金属氢氧化物的组合物的轮胎
CN103998252B (zh) * 2011-12-21 2016-08-24 米其林集团总公司 包括基本上不含胍衍生物并包含碱金属氢氧化物或碱土金属氢氧化物的组合物的轮胎
FR2984895A1 (fr) * 2011-12-21 2013-06-28 Michelin Soc Tech Pneumatique comprenant une composition essentiellement depourvue de derive guanidique et comprenant un hydroxyde de metal alcalin ou alcalino-terreux
US9267014B2 (en) 2011-12-21 2016-02-23 Compagnie Generale Des Etablissements Michelin Tire comprising a composition essentially free of guanidine derivative and comprising an alkali metal hydroxide or alkaline-earth metal hydroxide
US9403406B2 (en) 2012-09-17 2016-08-02 Compagnie Generale Des Etablissements Michelin Tire provided with a tread including a thermoplastic elastomer and carbon black
FR2997409A1 (fr) * 2012-10-30 2014-05-02 Michelin & Cie Pneumatique a adherence sur glace amelioree
WO2014067828A1 (fr) 2012-10-30 2014-05-08 Compagnie Generale Des Etablissements Michelin Pneumatique a adherence sur glace amelioree
FR2998509A1 (fr) * 2012-11-29 2014-05-30 Michelin & Cie Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
WO2014082963A1 (fr) 2012-11-29 2014-06-05 Compagnie Generale Des Etablissements Michelin Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
WO2014084404A1 (ja) * 2012-11-30 2014-06-05 コンパニー ゼネラール デ エタブリッスマン ミシュラン 空気入りタイヤ用トレッド及びこのトレッドを有する空気入りタイヤ
WO2015090974A1 (fr) 2013-12-19 2015-06-25 Compagnie Generale Des Etablissements Michelin Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides comportant un caoutchouc thermo-expansible a l'etat cru, ou caoutchouc mousse a l'etat cuit
WO2015090976A1 (fr) 2013-12-19 2015-06-25 Compagnie Generale Des Etablissements Michelin Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides comportant des microparticules d'oxyde ou carbure metallique
WO2015090975A1 (fr) 2013-12-19 2015-06-25 Compagnie Generale Des Etablissements Michelin Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides contenant des microparticules hydrosolubles
EP3083812B1 (fr) * 2013-12-19 2020-07-15 Compagnie Générale des Etablissements Michelin Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides comportant des microparticules d'oxyde ou carbure metallique

Also Published As

Publication number Publication date
EA201290524A1 (ru) 2012-12-28
EP2512825A1 (fr) 2012-10-24
FR2955584A1 (fr) 2011-07-29
CA2784412A1 (fr) 2011-06-23
JP5778171B2 (ja) 2015-09-16
JP2013514398A (ja) 2013-04-25
FR2955584B1 (fr) 2014-08-22

Similar Documents

Publication Publication Date Title
EP2307491B1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver
EP2655089B1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique
EP2512826B1 (fr) Pneumatique hiver a adherence sur glace amelioree
EP2501558B1 (fr) Pneumatique dont la bande de roulement comporte un elastomere thermoplastique hydrogene.
WO2011073186A1 (fr) Pneumatique hiver a adherence sur glace amelioree
EP2516537B1 (fr) Pneumatique dont la zone sommet est pourvue d'une sous-couche comportant un elastomere thermoplastique
WO2011113731A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver
FR2928647A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver
EP2231769A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver
EP2526145A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver
WO2011000797A1 (fr) Pneumatique dont la bande de roulement comprend un elastomere thermoplastique sature
FR2957082A1 (fr) Pneumatique dont la bande de roulement comporte un elastomere thermoplastique.
EP2629986A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique
FR2958295A1 (fr) Pneumatique dont la bande de roulement comporte une composition de caoutchouc comprenant une resine poly(vinylester).
EP2864134B1 (fr) Composition de caoutchouc thermo-expansible et pneumatique pour vehicule dont la bande de roulement comporte une telle composition
FR2989090A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique comportant des microparticules de sulfate de potassium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10790785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2784412

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012543681

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010790785

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010790785

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201290524

Country of ref document: EA