WO2011071066A1 - 太陽電池電極用ペーストおよび太陽電池セル - Google Patents

太陽電池電極用ペーストおよび太陽電池セル Download PDF

Info

Publication number
WO2011071066A1
WO2011071066A1 PCT/JP2010/071984 JP2010071984W WO2011071066A1 WO 2011071066 A1 WO2011071066 A1 WO 2011071066A1 JP 2010071984 W JP2010071984 W JP 2010071984W WO 2011071066 A1 WO2011071066 A1 WO 2011071066A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solar cell
silver
paste
fatty acid
Prior art date
Application number
PCT/JP2010/071984
Other languages
English (en)
French (fr)
Inventor
奈央 佐藤
和憲 石川
一雄 荒川
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN2010800118253A priority Critical patent/CN102349162B/zh
Priority to JP2011505288A priority patent/JP4743350B1/ja
Priority to DE112010004746T priority patent/DE112010004746T5/de
Priority to KR1020127012063A priority patent/KR101179113B1/ko
Publication of WO2011071066A1 publication Critical patent/WO2011071066A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/121Metallo-organic compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a paste for solar battery electrode and a solar battery cell.
  • Solar cells that convert light energy such as sunlight into electrical energy have been actively developed in various structures and configurations as interest in global environmental issues increases.
  • solar cells using a semiconductor substrate such as silicon are most commonly used due to advantages such as conversion efficiency and manufacturing cost.
  • Patent Document 1 discloses that “a silver electrode paste characterized in that it contains at least silver powder, glass frit, resin, and organic solvent, and the glass frit is a residue classified by a sieve having an opening diameter of 24 to 100 ⁇ m. Is described.
  • Patent Document 2 discloses that “a first silver powder having a crystallite diameter of 58 nm or more, a second silver powder having a crystallite diameter different from that of the silver powder, a glass frit, and a resin binder, and a solar cell electrode paste. Is described.
  • Patent Document 3 describes “a solar cell light-receiving surface electrode paste containing silver particles having a specific surface area of 0.20 to 0.60 m 2 / g, glass frit, a resin binder, and thinner.” Has been.
  • the present inventor replaced the resin-based conductive paste described in Patent Documents 1 to 3 with “silver oxide (A) proposed by the present applicant and a secondary fatty acid having a boiling point of 200 ° C. or less.
  • a conductive composition containing a secondary fatty acid silver salt (B) obtained by using a conductive composition containing silver oxide (A) and a fatty acid silver salt (B) having one or more hydroxyl groups.
  • a conductive composition for example, see Japanese Patent No. 3990712, Japanese Patent Application Laid-Open No. 2009-105034, etc.
  • a wire formed as an electrode may be disconnected. It became clear.
  • the present invention is to form an electrode that can have a low volume resistivity and a high aspect ratio, has excellent adhesion to a silicon substrate, and does not break when formed as a wiring. It is an object of the present invention to provide a solar battery electrode paste that can be used and a solar battery cell using the same.
  • a paste for a solar cell electrode using a silver powder having a specific particle size and shape with respect to a fatty acid silver salt represented by a predetermined formula has a volume resistivity. And an aspect ratio can be increased, and the electrode has excellent adhesion to a silicon substrate, and an electrode that does not break when formed as a wiring can be formed.
  • the present invention provides the following (1) to (4).
  • Silver powder (A), fatty acid silver salt (B) represented by the following formula (I), and solvent (C) are contained, A solar cell electrode paste, wherein the silver powder (A) is a spherical silver powder having an average particle size of 0.5 to 5 ⁇ m.
  • R 1 and R 2 both represent a methyl group, and R 3 represents a hydrogen atom.
  • It comprises a surface electrode on the light receiving surface side, a semiconductor substrate and a back electrode A solar battery cell, wherein the front electrode and / or the back electrode is formed using the solar battery electrode paste according to any one of (1) to (3).
  • a solar cell electrode paste capable of forming an electrode having a low volume resistivity, a high aspect ratio, and excellent adhesion to a silicon substrate, and The used solar battery cell can be provided. Moreover, if the solar cell electrode paste of the present invention is used, it is very useful because wiring (electrode) can be formed while suppressing occurrence of disconnection.
  • FIG. 1 is a cross-sectional view showing an example of a preferred embodiment of a solar battery cell.
  • FIG. 2 is a photograph of silver powder used in the examples (AgC-103, manufactured by Fukuda Metal Foil Co., Ltd.) taken with a scanning electron microscope (SEM).
  • FIG. 3 is a photograph taken with a scanning electron microscope (SEM) of silver powder (AgC-2011, manufactured by Fukuda Metal Foil Co., Ltd.) used in the comparative example.
  • the solar cell electrode paste of the present invention contains silver powder (A), a fatty acid silver salt (B) represented by the above formula (1), and a solvent (C), and the silver powder (A) is an average.
  • This is a paste for a solar cell electrode, which is a spherical silver powder having a particle size of 0.5 to 5 ⁇ m.
  • silver powder (A), fatty-acid silver salt (B), and a solvent (C) are explained in full detail.
  • the silver powder (A) used in the solar cell electrode paste of the present invention is a spherical silver powder having an average particle size of 0.5 to 5 ⁇ m.
  • the term “spherical” refers to the shape of a particle having a major axis / minor axis ratio of 2 or less.
  • an average particle diameter means the average value of the particle diameter of spherical silver powder, and means the 50% volume cumulative diameter (D50) measured using the laser diffraction type particle size distribution measuring apparatus.
  • the particle diameter that is the basis for calculating the average value is the average value obtained by dividing the total value of the major axis and the minor axis by 2, and is a regular circle Refers to its diameter.
  • the silver powder (AgC-103, manufactured by Fukuda Metal Foil Co., Ltd.) used in the examples described later corresponds to a spherical silver powder, but the silver powder (AgC- 2011 (produced by Fukuda Metal Foil Co., Ltd.) (FIG. 3) does not correspond to spherical silver powder, but corresponds to flake (scalar) silver powder.
  • the average particle diameter of the silver powder (A) is preferably 0.7 to 5 ⁇ m because the printing property is good, and because the sintering speed is appropriate and the workability is excellent, 1 More preferably, it is ⁇ 3 ⁇ m.
  • the content of the silver powder (A) is 300 to 700 parts by mass with respect to 100 parts by mass of the solvent (C) to be described later because the printing property is good and an electrode having a smaller specific resistance can be formed.
  • the amount is preferably 400 to 600 parts by mass.
  • a commercially available product can be used as the silver powder (A).
  • Specific examples thereof include AgC-102 (average particle size: 1.5 ⁇ m, manufactured by Fukuda Metal Foil Co., Ltd.), AgC- 103 (average particle size: 1.5 ⁇ m, manufactured by Fukuda Metal Foil Co., Ltd.), AG4-8F (average particle size: 2.2 ⁇ m, manufactured by DOWA Electronics), AG2-1C (average particle size: 1.0 ⁇ m, DOWA Electronics Co., Ltd.) Manufactured), AG3-11F (average particle size: 1.4 ⁇ m, manufactured by DOWA Electronics), EHD (shape: spherical, average particle size: 0.5 ⁇ m, manufactured by Mitsui Kinzoku Co., Ltd.), and the like.
  • flaky silver powder can be used together with the said silver powder (A).
  • content when using together flaky silver powder is 50 mass% or less with respect to the total mass with the said silver powder (A).
  • the description regarding content of the said silver powder (A) mentioned other than this paragraph is the total content of the said silver powder (A) and flaky silver powder.
  • the fatty acid silver salt (B) used in the solar cell electrode paste of the present invention is not particularly limited as long as it is a compound represented by the above formula (1), and specifically, the following fatty acid and silver oxide are reacted. Can be obtained.
  • the fatty acid used in the reaction of the fatty acid silver salt (B) is a fatty acid represented by the following formula (1), that is, 2-methylpropanoic acid (also known as isobutyric acid).
  • 2-methylpropanoic acid also known as isobutyric acid.
  • each of R 1 and R 2 represents a methyl group, and R 3 represents a hydrogen atom.
  • an aliphatic monocarboxylic acid having 8 or more carbon atoms or a tertiary fatty acid silver salt together with the fatty acid represented by the above formula (1).
  • Specific examples of the aliphatic monocarboxylic acid include capric acid, lauric acid, myristic acid, palmitic acid, and stearic acid.
  • Specific examples of the tertiary fatty acid silver salt include neodecanoic acid.
  • the content in the case of using an aliphatic monocarboxylic acid or a tertiary fatty acid silver salt in combination is preferably 50% by mass or less based on the total mass with the fatty acid silver salt (B).
  • the silver oxide used for the reaction of the fatty acid silver salt (B) is silver (I), that is, Ag 2 O.
  • the fatty acid silver salt (B) used in the solar cell electrode paste of the present invention is obtained by reacting the above-described fatty acid and silver oxide, and is a compound represented by the following formula (I) in the reaction formula shown below. is there.
  • This reaction is not particularly limited as long as the reaction represented by the following reaction formula proceeds, for example, a method of proceeding while pulverizing the silver oxide, or the fatty acid after pulverizing the silver oxide.
  • a reaction method is preferred.
  • the former method specifically, the above silver oxide and a solution obtained by dissolving the above fatty acid with a solvent are kneaded with a ball mill or the like to grind the solid silver oxide, and at room temperature, 1 to The reaction is preferably performed for about 24 hours, preferably 2 to 8 hours.
  • R 1 and R 2 both represent a methyl group, and R 3 represents a hydrogen atom.
  • the solvent for dissolving the fatty acid examples include butyl carbitol, methyl ethyl ketone, isophorone, ⁇ -terpineol, and the like. These may be used alone or in combination of two or more. Good.
  • the fatty acid silver salt (B) is preferably taken out as crystals and then dissolved in the solvent (C) described later.
  • the content of the fatty acid silver salt (B) is 1 to 100 parts by mass with respect to 100 parts by mass of the silver powder (A) because the printability is good and an electrode having a smaller specific resistance can be formed. It is preferably 5 to 80 parts by mass.
  • the solar cell electrode paste containing the silver powder (A) and the fatty acid silver salt (B) described above by using the solar cell electrode paste containing the silver powder (A) and the fatty acid silver salt (B) described above, the volume resistivity can be lowered and the aspect ratio can be increased, An electrode that is excellent in adhesiveness with a silicon substrate and does not cause disconnection when formed as a wiring can be formed. It is considered that this is because the silver powder (A) is connected when the silver decomposed from the fatty acid silver salt (B) is melted by heat treatment, thereby suppressing the occurrence of disconnection and expressing high conductivity. In addition, when silver decomposed from the fatty acid silver salt (B) is melted by heat treatment, the silicon substrate is appropriately wetted and spread, so that the adhesion to the silicon substrate is considered to be improved. Furthermore, since the fatty acid silver salt (B) imparts an appropriate thixotropy to the solar cell electrode paste and can suppress the spread of the coated surface while ensuring fluidity during printing, the aspect ratio can
  • the thixotropy of the solar cell electrode paste becomes better and the aspect ratio can be increased, so that the silver oxide content is 10 with respect to 100 parts by mass of the solvent (C) described later. It is preferably no greater than 5 parts by mass, more preferably no greater than 5 parts by mass, even more preferably no greater than 1 part by mass, and most preferably an embodiment containing substantially no silver oxide.
  • the solvent (C) used in the solar cell electrode paste of the present invention is not particularly limited as long as the solar cell electrode paste of the present invention can be applied onto a substrate.
  • Specific examples of the solvent (C) include butyl carbitol, methyl ethyl ketone, isophorone, ⁇ -terpineol, and the like. These may be used alone or in combination of two or more.
  • the solar cell electrode paste of the present invention preferably contains glass frit because the adhesion between the electrode to be formed and the silicon substrate becomes better.
  • the glass frit when blending the glass frit, it is preferable to use one having a softening temperature of 300 ° C. or higher and a firing temperature (heat treatment temperature) or lower.
  • a glass frit include a borosilicate glass frit having a softening temperature of 300 to 800 ° C.
  • the shape of the glass frit is not particularly limited, and may be spherical or crushed powder.
  • the average particle diameter (D50) of the spherical glass frit is preferably 0.1 to 20 ⁇ m, and more preferably 1 to 3 ⁇ m. Furthermore, it is preferable to use a glass frit having a sharp particle size distribution from which particles of 10 ⁇ m or more are removed.
  • the content thereof is preferably 0.1 to 10 parts by mass, and preferably 1 to 5 parts by mass with respect to 100 parts by mass of the silver powder (A). Is more preferable.
  • the solar cell electrode paste of the present invention may contain a vehicle in which a resin having a binder function is dissolved in an organic solvent, if necessary.
  • a resin having a binder function is dissolved in an organic solvent
  • the resin include ethyl cellulose resin, nitrocellulose resin, alkyd resin, acrylic resin, styrene resin, phenol resin and the like, and these may be used alone or in combination of two or more. May be. Among these, it is preferable to use ethyl cellulose resin from the viewpoint of thermal decomposability.
  • Specific examples of the organic solvent include ⁇ -terpineol, butyl carbitol, butyl carbitol acetate, diacetone alcohol, methyl isobutyl ketone, and the like. More than one species may be used in combination.
  • the solar cell electrode paste of the present invention may contain additives such as a metal powder other than the above-described silver powder (A) and a reducing agent, if necessary.
  • a metal powder other than the above-described silver powder (A) and a reducing agent, if necessary.
  • the metal powder include copper and aluminum. Among them, copper is preferable. Further, a metal powder having a particle diameter of 0.01 to 10 ⁇ m is preferable.
  • Specific examples of the reducing agent include ethylene glycols.
  • the method for producing the solar cell electrode paste of the present invention is not particularly limited, and the silver powder (A), the fatty acid silver salt (B), the solvent (C), and an additive (glass frit which may be optionally contained). , Including a vehicle) by a roll, a kneader, an extruder, a universal agitator, or the like.
  • the solar cell of the present invention comprises a light-receiving surface-side surface electrode, a semiconductor substrate, and a back electrode, and the surface electrode and / or the back electrode is formed using the solar cell electrode paste of the present invention described above. It is a solar battery cell.
  • the solar cell electrode of the present invention described above can be applied to the formation of the back electrode of the all back electrode type (so-called back contact type) solar cell,
  • the present invention can also be applied to an electrode type solar cell. Below, the structure of the photovoltaic cell of this invention is demonstrated using FIG.
  • a solar cell 1 of the present invention includes a surface electrode 4 on the light-receiving surface side, a pn junction silicon substrate 7 in which a p layer 5 and an n layer 2 are joined, and a back electrode 6. It is. Further, as shown in FIG. 1, the solar battery cell 1 of the present invention is provided with an antireflection film 3 by, for example, etching the wafer surface to form a pyramidal texture in order to reduce the reflectance. Is preferred.
  • the arrangement (pitch), shape, and height of the electrodes are not particularly limited.
  • the height of the electrode is usually designed to be several to several tens of ⁇ m, but the aspect ratio of the electrode formed using the solar cell electrode paste of the present invention is 0.4 or more.
  • the front surface electrode and the back surface electrode usually have a plurality, but in the present invention, for example, only a part of the plurality of front surface electrodes is for the solar cell electrode of the present invention. It may be formed of a paste, or part of the plurality of front surface electrodes and part of the plurality of back surface electrodes may be formed of the solar cell electrode paste of the present invention.
  • the antireflection film that the solar battery cell of the present invention may have is a film (film thickness: about 0.05 to 0.1 ⁇ m) formed on a portion of the light receiving surface where the surface electrode is not formed.
  • a film film thickness: about 0.05 to 0.1 ⁇ m
  • the silicon substrate included in the solar battery cell of the present invention is not particularly limited, and a known silicon substrate (plate thickness: about 100 to 450 ⁇ m) for forming a solar battery can be used, and a single crystal or polycrystal Any silicon substrate may be used.
  • the silicon substrate has a pn junction, which means that a second conductivity type light-receiving surface impurity diffusion region is formed on the surface side of the first conductivity type semiconductor substrate.
  • the second conductivity type is p-type.
  • the impurity imparting p-type include boron and aluminum
  • examples of the impurity imparting n-type include phosphorus and arsenic.
  • the electrode since the front electrode and / or the back electrode is formed using the solar cell electrode paste of the present invention, the electrode has an aspect ratio of 0.4 or more, and the electromotive force generated by light reception Can be efficiently extracted as a current.
  • the manufacturing method of the photovoltaic cell of this invention is not specifically limited,
  • an antireflection film can be formed by well-known methods, such as a plasma CVD method. Below, a wiring formation process and a heat treatment process are explained in full detail.
  • the said wiring formation process is a process of apply
  • specific examples of the coating method include inkjet, screen printing, gravure printing, offset printing, letterpress printing, and the like.
  • the heat treatment step is a step of obtaining a conductive wiring (electrode) by heat-treating the coating film obtained in the wiring forming step.
  • a conductive wiring electrode
  • the heat treatment step is a step of obtaining a conductive wiring (electrode) by heat-treating the coating film obtained in the wiring forming step.
  • the heat treatment is not particularly limited, but is preferably a treatment of heating (firing) at a temperature of 500 to 850 ° C. for several seconds to several tens of minutes.
  • the temperature and time are within this range, even when an antireflection film is formed on the silicon substrate, the electrode can be easily formed by the fire-through method.
  • the heat treatment step may be performed by irradiation with ultraviolet rays or infrared rays.
  • Examples 1 to 6, Comparative Examples 1 to 6) The silver powder shown in the following Table 1 was added to the ball mill so as to have the composition ratio shown in the following Table 1, and these were mixed to prepare a solar cell electrode paste.
  • the prepared solar cell electrode paste was applied on a silicon substrate (single crystal silicon wafer, LS-25TVA, 156 mm ⁇ 156 mm ⁇ 200 ⁇ m, manufactured by Shin-Etsu Chemical Co., Ltd.) by screen printing to form a wiring. Then, it dried for 10 minutes at 700 degreeC in oven, and produced the sample of the photovoltaic cell in which the electroconductive wiring (electrode) was formed.
  • ⁇ Aspect ratio (before firing)> The wiring before drying (firing) formed by screen printing was observed with a confocal microscope, the height and width were measured, and the aspect ratio (height / width) was determined. An aspect ratio of 0.6 or more is evaluated as “ ⁇ ” as the aspect ratio is sufficiently high (sufficiently satisfactory), and an aspect ratio of 0.4 or more and less than 0.6 is evaluated as “ ⁇ ” as the aspect ratio is high (satisfied). Evaluation was evaluated as “x” as the aspect ratio was low (unsatisfactory) when less than 0.4. These results are shown in Table 1 below.
  • Silver powder 1 AgC-103 (shape: spherical, average particle size: 1.5 ⁇ m, manufactured by Fukuda Metal Foil Co., Ltd.)
  • Silver powder 2 Ag-4-8F (shape: spherical, average particle size: 2.2 ⁇ m, manufactured by DOWA Electronics)
  • Silver powder 3 AgC-2011 (shape: flake shape, average particle size: 2 to 10 ⁇ m, manufactured by Fukuda Metal Foil Co., Ltd.)
  • Silver salt of 2-methylpropanoate First, 50 g of silver oxide (manufactured by Toyo Kagaku Kogyo Co., Ltd.), 38 g of 2-methylpropanoic acid (manufactured by Kanto Chemical Co., Ltd.) and 300 g of methyl ethyl ketone (MEK) are put into a ball mill and are allowed to stand at room temperature for 24 hours. The reaction was allowed to stir. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare silver 2-methylpropanoate.
  • MEK methyl ethyl ketone
  • Silver salt of 2-methylbutanoate First, 50 g of silver oxide (manufactured by Toyo Kagaku Kogyo Co., Ltd.), 44 g of 2-methylbutanoic acid (manufactured by Kanto Chemical Co., Ltd.) and 300 g of MEK are placed in a ball mill and reacted by stirring at room temperature for 24 hours. It was. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare silver 2-methylbutanoate.
  • silver oxide manufactured by Toyo Kagaku Kogyo Co., Ltd.
  • 2-methylbutanoic acid manufactured by Kanto Chemical Co., Ltd.
  • 2-ethylbutyric acid silver salt First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 50.2 g of 2-ethylbutyric acid (manufactured by Kanto Chemical Co., Ltd.) and 300 g of MEK were put into a ball mill and stirred at room temperature for 24 hours. Reacted. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare silver 2-ethylbutyrate.
  • silver oxide manufactured by Toyo Chemical Co., Ltd.
  • 2-ethylbutyric acid manufactured by Kanto Chemical Co., Ltd.
  • -Neodecanoic acid silver salt First, 50 g of silver oxide (manufactured by Toyo Kagaku Kogyo Co., Ltd.), 74.3 g of neodecanoic acid (manufactured by Toyo Gosei Co., Ltd.) and 300 g of MEK were placed in a ball mill and reacted by stirring at room temperature for 24 hours. Next, MEK was removed by suction filtration, and the obtained powder was dried to prepare a silver neodecanoate.
  • Silver stearate First, 50 g of silver oxide (manufactured by Toyo Chemical Co., Ltd.), 123 g of stearic acid (manufactured by Kanto Chemical Co., Ltd.) and 300 g of MEK were placed in a ball mill and reacted by stirring at room temperature for 24 hours. Subsequently, MEK was removed by suction filtration, and the obtained powder was dried to prepare a silver stearate salt.
  • Silver oxide Silver oxide (I) (manufactured by Toyo Chemical Industry Co., Ltd.) ⁇ ⁇ -Terpinel: Solvent ⁇ Glass frit: Lead borosilicate glass powder ⁇ Silver paste: Resin silver paste (DWP-025, manufactured by Toyobo Co., Ltd.)
  • Comparative Example 1 prepared with a conventionally known resin-based silver paste, there was no disconnection, but the volume resistivity of the electrode was slightly high and the adhesion to the silicon substrate was poor, It was found that the aspect ratio was low both before and after firing.
  • Comparative Example 2 prepared with a paste containing silver oxide instead of silver powder has a disconnection, the electrode has a high volume resistivity, is inferior in adhesion to the silicon substrate, and before and after firing. In both cases, the aspect ratio was found to be low.
  • Comparative Example 3 prepared using flaky silver powder not corresponding to silver powder (A) has a disconnection, the electrode has a high volume resistivity, is inferior in adhesion to the silicon substrate, and is further fired.
  • Comparative Examples 4 and 6 prepared using a fatty acid silver salt not corresponding to the fatty acid silver salt (B) have no disconnection, the volume resistivity of the electrode is sufficiently low, and the adhesion to the silicon substrate is also good. Although it was excellent, it was found that the aspect ratio after firing was low. Further, Comparative Example 5 prepared using a fatty acid silver salt not corresponding to the fatty acid silver salt (B) had a sufficiently low volume resistivity of the electrode and excellent adhesion to the silicon substrate. It was found that the aspect ratio after firing was low.
  • Examples 1 to 6 using silver powder (A) and fatty acid silver salt (B) have no disconnection, the volume resistivity of the electrode is sufficiently low, and excellent adhesion to the silicon substrate. Further, it was found that the aspect ratio was high both before and after firing. Moreover, it turned out that the secondary fatty acid silver salt is more suitable for a solar cell electrode use than the tertiary fatty acid silver salt from the result of the photoelectric conversion efficiency of Example 2 and Comparative Example 6. In addition, the difference between the photoelectric conversion efficiency (14.01) of Example 2 and the photoelectric conversion efficiency (13.20) of Comparative Example 6 is remarkable as a difference that appears as a difference of only the electrode material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

 本発明の目的は、体積抵抗率を低く、かつ、アスペクト比を高くすることができ、また、シリコン基板との密着性にも優れ、配線として形成した際に断線が生じない電極を形成することができる太陽電池電極用ペーストおよびそれを用いた太陽電池セルを提供することである。本発明の太陽電池電極用ペーストは、所定の平均粒子径を有する球状の銀粉と、所定の式で表される脂肪酸銀塩と、溶媒とを含有する太陽電池電極用のペーストである。

Description

太陽電池電極用ペーストおよび太陽電池セル
 本発明は、太陽電池電極用ペーストおよび太陽電池セルに関する。
 太陽光のような光エネルギーを電気エネルギーに変換する太陽電池は、地球環境問題に対する関心が高まるにつれ、積極的に種々の構造・構成のものが開発されている。その中でも、シリコンなどの半導体基板を用いた太陽電池は、その変換効率、製造コストなどの優位性により最も一般的に用いられている。
 このような太陽電池の電極を形成する材料としては、樹脂系のペースト材料が知られている。
 例えば、特許文献1には、「銀粉末、ガラスフリット、樹脂および有機溶剤を少なくとも含み、ガラスフリットが、開口径24~100μmの篩で分級した残留分であることを特徴とする銀電極用ペースト。」が記載されている。
 また、特許文献2には、「結晶子径が58nm以上である第1銀粉末、前記銀粉末と結晶子径の異なる第2銀粉末、ガラスフリット、および樹脂バインダーを含む、太陽電池電極用ペースト。」が記載されている。
 また、特許文献3には、「比表面積が0.20~0.60m2/gである銀粒子、ガラスフリット、樹脂バインダー、およびシンナー、を含む、太陽電池受光面電極用ペースト。」が記載されている。
特開2004-146154号公報 特開2007-194581号公報 特開2007-235082号公報
 しかしながら、特許文献1~3に記載されたような樹脂系のペースト材料を用いて電極を形成した場合、電極自体の体積抵抗率(比抵抗)が高くなる場合があり、また、電極の断面の高さと幅の比率(高さ/幅)(以下、「アスペクト比」という。)が小さく、電極とシリコン基板との密着性が劣ることが明らかとなった。
 また、本発明者は、特許文献1~3に記載された樹脂系の導電性ペーストに代えて、本出願人が提案した「酸化銀(A)と、沸点が200℃以下の2級脂肪酸を用いて得られる2級脂肪酸銀塩(B)と、を含有する導電性組成物。」や「酸化銀(A)と、水酸基を1個以上有する脂肪酸銀塩(B)と、を含有する導電性組成物。」等の導電性組成物(例えば、特許第3990712号公報、特開2009-105034号公報等参照)を適用してみたところ、電極として形成される配線に断線が生じる場合があることが明らかとなった。
 そこで、本発明は、体積抵抗率を低く、かつ、アスペクト比を高くすることができ、また、シリコン基板との密着性にも優れ、配線として形成した際に断線が生じない電極を形成することができる太陽電池電極用ペーストおよびそれを用いた太陽電池セルを提供することを課題とする。
 本発明者は、上記課題を解決するため鋭意検討した結果、所定の式で表される脂肪酸銀塩に対して、特定粒径・形状の銀粉末を用いる太陽電池電極用ペーストが、体積抵抗率を低く、かつ、アスペクト比を高くすることができ、また、シリコン基板との密着性にも優れ、配線として形成した際に断線が生じない電極を形成することができることを見出し、本発明を完成させた。即ち、本発明は、下記(1)~(4)を提供する。
 (1)銀粉(A)と、下記式(I)で表される脂肪酸銀塩(B)と、溶媒(C)とを含有し、
 上記銀粉(A)が、平均粒子径が0.5~5μmの球状の銀粉末である太陽電池電極用ペースト。
Figure JPOXMLDOC01-appb-C000002
(式(I)中、R1およびR2は、いずれもメチル基を表し、R3は、水素原子を表す。)
 (2)上記脂肪酸銀塩(B)の含有量が、上記銀粉(A)100質量部に対して1~100質量部である上記(1)に記載の太陽電池電極用ペースト。
 (3)更に、ガラスフリットを含有する上記(1)または(2)に記載の太陽電池電極用ペースト。
 (4)受光面側の表面電極、半導体基板および裏面電極を具備し、
 上記表面電極および/または上記裏面電極が、上記(1)~(3)のいずれかに記載の太陽電池電極用ペーストを用いて形成される太陽電池セル。
 以下に示すように、本発明によれば、体積抵抗率が低く、アスペクト比が高く、また、シリコン基板との密着性にも優れた電極を形成することができる太陽電池電極用ペーストおよびそれを用いた太陽電池セルを提供することができる。
 また、本発明の太陽電池電極用ペーストを用いれば、断線の発生を抑制して配線(電極)を形成することができるため非常に有用である。
図1は太陽電池セルの好適な実施態様の一例を示す断面図である。 図2は実施例で使用する銀粉(AgC-103、福田金属箔社製)を走査型電子顕微鏡(SEM)で撮影した写真である。 図3は比較例で使用する銀粉(AgC-2011、福田金属箔社製)を走査型電子顕微鏡(SEM)で撮影した写真である。
 本発明の太陽電池電極用ペーストは、銀粉(A)と、上記式(1)で表される脂肪酸銀塩(B)と、溶媒(C)とを含有し、上記銀粉(A)が、平均粒子径が0.5~5μmの球状の銀粉末である太陽電池電極用のペーストである。
 以下に、銀粉(A)、脂肪酸銀塩(B)および溶媒(C)について詳述する。
 <銀粉(A)>
 本発明の太陽電池電極用ペーストで用いる銀粉(A)は、平均粒子径が0.5~5μmの球状の銀粉末である。
 ここで、球状とは、長径/短径の比率が2以下の粒子の形状をいう。
 また、平均粒子径とは、球状の銀粉末の粒子径の平均値をいい、レーザー回折式粒度分布測定装置を用いて測定された50%体積累積径(D50)をいう。なお、平均値を算出する基になる粒子径は、球状の銀粉末の断面が楕円形である場合はその長径と短径の合計値を2で割った平均値をいい、正円形である場合はその直径をいう。
 例えば、後述する実施例で使用する銀粉(AgC-103、福田金属箔社製)の写真(図2)で示されるものは球状の銀粉末に該当するが、比較例で使用する銀粉(AgC-2011、福田金属箔社製)の写真(図3)で示されるものは球状の銀粉末には該当せず、フレーク(鱗片)状の銀粉末に該当するものである。
 本発明においては、上記銀粉(A)の平均粒子径は、印刷性が良好となる理由から、0.7~5μmであるのが好ましく、焼結速度が適当となり作業性に優れる理由から、1~3μmであるのがより好ましい。
 また、上記銀粉(A)の含有量は、印刷性が良好となり、比抵抗のより小さい電極を形成することができる理由から、後述する溶媒(C)100質量部に対して300~700質量部であるのが好ましく、400~600質量部であるのがより好ましい。
 また、本発明においては、上記銀粉(A)として市販品を用いることができ、その具体例としては、AgC-102(平均粒子径:1.5μm、福田金属箔粉工業社製)、AgC-103(平均粒子径:1.5μm、福田金属箔社製)、AG4-8F(平均粒子径:2.2μm、DOWAエレクトロニクス社製)、AG2-1C(平均粒子径:1.0μm、DOWAエレクトロニクス社製)、AG3-11F(平均粒子径:1.4μm、DOWAエレクトロニクス社製)、EHD(形状:球状、平均粒子径:0.5μm、三井金属社製)等が挙げられる。
 更に、本発明においては、後述する実施例4にも示すように、上記銀粉(A)とともに、フレーク状の銀粉末を併用することができる。
 ここで、フレーク状の銀粉末を併用する場合の含有量は、上記銀粉(A)との合計の質量に対して50質量%以下であるのが好ましい。
 なお、フレーク状の銀粉末を併用する場合、本段落以外で言及する上記銀粉(A)の含有量に関する記載は、上記銀粉(A)とフレーク状の銀粉末との合計の含有量のことをいう。
 <脂肪酸銀塩(B)>
 本発明の太陽電池電極用ペーストで用いる脂肪酸銀塩(B)は上記式(1)で表される化合物であれば特に限定されず、具体的には、以下に示す脂肪酸と酸化銀とを反応させて得られるものである。
 本発明においては、上記脂肪酸銀塩(B)の反応に用いられる脂肪酸は、下記式(1)で表される脂肪酸、即ち、2-メチルプロパン酸(別名:イソ酪酸)である。このような脂肪酸を用いると、得られる脂肪酸銀塩(B)を含有する本発明の太陽電池電極用ペーストの流動性およびチクソ性が良好となるため印刷性が向上し、また、版離れ性も良好となるため電極(印刷パターン)に断線やニジミが生じにくくなり、更に、スクリーン印刷による目詰まりも生じにくくなる。
Figure JPOXMLDOC01-appb-C000003
(式中、R1およびR2は、いずれもメチル基を表し、R3は、水素原子を表す。)
 また、本発明においては、チクソ性の観点から、上記式(1)で表される脂肪酸とともに、炭素数8以上の脂肪族モノカルボン酸や3級脂肪酸銀塩を併用するのが好ましい。
 上記脂肪族モノカルボン酸としては、具体的には、例えば、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等が好適に挙げられる。
 また、上記3級脂肪酸銀塩としては、具体的には、例えば、ネオデカン酸等が挙げられる。
 ここで、脂肪族モノカルボン酸や3級脂肪酸銀塩を併用する場合の含有量は、上記脂肪酸銀塩(B)との合計の質量に対して50質量%以下であるのが好ましい。
 一方、上記脂肪酸銀塩(B)の反応に用いられる酸化銀は、酸化銀(I)、即ち、Ag2Oである。
 本発明の太陽電池電極用ペーストで用いる脂肪酸銀塩(B)は、上述した脂肪酸と酸化銀とを反応させて得られ、以下に示す反応式中の下記式(I)で表される化合物である。
 この反応は、例えば、以下に示す反応式で表される反応が進行するものであれば特に限定されないが、上記酸化銀を粉砕しつつ進行させる方法や、上記酸化銀を粉砕した後に上記脂肪酸を反応させる方法が好ましい。前者の方法としては、具体的には、上記酸化銀と、溶剤により上記脂肪酸を溶液化したものとを、ボールミル等により混練し、固体である上記酸化銀を粉砕させながら、室温で、1~24時間程度、好ましくは2~8時間反応させるのが好ましい。
Figure JPOXMLDOC01-appb-C000004
(式(I)中、R1およびR2は、いずれもメチル基を表し、R3は、水素原子を表す。)
 上記脂肪酸を溶液化する溶媒としては、具体的には、例えば、ブチルカルビトール、メチルエチルケトン、イソホロン、α-テルピネオール等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 これらの溶媒を用いて脂肪酸銀塩(B)を調製した場合、脂肪酸銀塩(B)を結晶として取り出した後に後述する溶媒(C)に溶解させるのが好ましい。
 上記脂肪酸銀塩(B)の含有量は、印刷性が良好となり、比抵抗のより小さい電極を形成することができる理由から、上記銀粉(A)100質量部に対して1~100質量部であるのが好ましく、5~80質量部であるのがより好ましい。
 本発明においては、上述した銀粉(A)および脂肪酸銀塩(B)を含有する太陽電池電極用ペーストを用いることにより、体積抵抗率を低く、かつ、アスペクト比を高くすることができ、また、シリコン基板との密着性にも優れ、配線として形成した際に断線が生じない電極を形成することができる。
 これは、熱処理により脂肪酸銀塩(B)から分解される銀が融解する際に銀粉(A)を連結することにより、断線の発生を抑制して高い導電性を発現すると考えられる。また、熱処理により脂肪酸銀塩(B)から分解される銀が融解する際にシリコン基板に適度に濡れ広がるため、シリコン基板との密着性が向上すると考えられる。更に、脂肪酸銀塩(B)が太陽電池電極用ペーストに適度なチクソ性を付与し、印刷時の流動性を確保しつつ塗布面の広がりを抑制できるため、アスペクト比を高くすることができると考えられる。
 また、本発明においては、太陽電池電極用ペーストのチクソ性がより良好となり、アスペクト比をより高くすることができる理由から酸化銀の含有量は後述する溶媒(C)100質量部に対して10質量部以下であるのが好ましく、5質量部以下であるのがより好ましく、1質量部以下であるのが更に好ましく、実質的に酸化銀を含有していない態様が最も好ましい。
 <溶媒(C)>
 本発明の太陽電池電極用ペーストで用いる溶媒(C)は、本発明の太陽電池電極用ペーストを基材上に塗布することができるものであれば特に限定されない。
 上記溶媒(C)としては、具体的には、例えば、ブチルカルビトール、メチルエチルケトン、イソホロン、α-テルピネオール等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 <ガラスフリット>
 本発明の太陽電池電極用ペーストは、形成される電極とシリコン基板との密着性がより良好となる理由から、ガラスフリットを含有するのが好ましい。
 本発明においては、上記ガラスフリットを配合する場合、軟化温度が300℃以上で、焼成温度(熱処理温度)以下のものを用いるのが好ましい。
 このようなガラスフリットとしては、具体的には、例えば、軟化温度300~800℃のホウケイ酸ガラスフリット等が挙げられる。
 本発明においては、上記ガラスフリットの形状は特に限定されず、球状でも破砕粉状でもよい。
 また、球状のガラスフリットの平均粒子径(D50)は、0.1~20μmであることが好ましく、1~3μmであることがより好ましい。
 更に、10μm以上の粒子を除去した、シャープな粒度分布を持つガラスフリットを用いることが好ましい。
 本発明においては、上記ガラスフリットを配合する場合、その含有量は、上記銀粉(A)100質量部に対して0.1~10質量部であるのが好ましく、1~5質量部であるのがより好ましい。
 <ビヒクル>
 本発明の太陽電池電極用ペーストは、必要に応じて、バインダー機能を有する樹脂を有機溶剤に溶解したビヒクルを含有していてもよい。
 上記樹脂としては、具体的には、例えば、エチルセルロース樹脂、ニトロセルロース樹脂、アルキド樹脂、アクリル樹脂、スチレン樹脂、フェノール樹脂等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。これらのうち、熱分解性の観点から、エチルセルロース樹脂を用いるのが好ましい。
 また、上記有機溶剤としては、具体的には、例えば、α-テルピネオール、ブチルカルビトール、ブチルカルビトールアセテート、ジアセトンアルコール、メチルイソブチルケトン等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 本発明の太陽電池電極用ペーストは、必要に応じて、上述した銀粉(A)以外の金属粉、還元剤等の添加剤を含有していてもよい。
 上記金属粉としては、具体的には、例えば、銅、アルミニウム等が挙げられ、中でも、銅であるのが好ましい。また、0.01~10μmの粒径の金属粉であるのが好ましい。
 上記還元剤としては、具体的には、例えば、エチレングリコール類等が挙げられる。
 本発明の太陽電池電極用ペーストの製造方法は特に限定されず、上記銀粉(A)、上記脂肪酸銀塩(B)および上記溶媒(C)ならびに所望により含有していてもよい添加剤(ガラスフリット、ビヒクルを含む。)を、ロール、ニーダー、押出し機、万能かくはん機等により混合する方法が挙げられる。
 本発明の太陽電池セルは、受光面側の表面電極、半導体基板および裏面電極を具備し、上記表面電極および/または上記裏面電極が、上述した本発明の太陽電池電極用ペーストを用いて形成される太陽電池セルである。
 ここで、本発明の太陽電池セルは、上述した本発明の太陽電池電極用ペーストが全裏面電極型(いわゆるバックコンタクト型)太陽電池の裏面電極の形成にも適用することができるため、全裏面電極型の太陽電池にも適用することができる。
 以下に、本発明の太陽電池セルの構成について図1を用いて説明する。
 図1に示すように、本発明の太陽電池セル1は、受光面側の表面電極4と、p層5およびn層2が接合したpn接合シリコン基板7と、裏面電極6とを具備するものである。
 また、図1に示すように、本発明の太陽電池セル1は、反射率低減のため、例えば、ウェハー表面にエッチングを施して、ピラミッド状のテクスチャを形成し、反射防止膜3を具備するのが好ましい。
 <表面電極/裏面電極>
 本発明の太陽電池セルが具備する表面電極および裏面電極は、いずれか一方または両方が本発明の太陽電池電極用ペーストを用いて形成されていれば、電極の配置(ピッチ)、形状、高さ、幅等は特に限定されない。なお、電極の高さは、通常、数~数十μmに設計されるが、本発明の太陽電池電極用ペーストを用いて形成した電極のアスペクト比は、0.4以上となる。
 ここで、表面電極および裏面電極は、図1に示すように、通常、複数個有するものであるが、本発明においては、例えば、複数の表面電極の一部のみが本発明の太陽電池電極用ペーストで形成されたものであってもよく、複数の表面電極の一部と複数の裏面電極の一部が本発明の太陽電池電極用ペーストで形成されたものであってもよい。
 <反射防止膜>
 本発明の太陽電池セルが具備していてもよい反射防止膜は、受光面の表面電極が形成されていない部分に形成される膜(膜厚:0.05~0.1μm程度)であって、例えば、シリコン酸化膜、シリコン窒化膜、酸化チタン膜、これらの積層膜等から構成されるものである。
 <シリコン基板>
 本発明の太陽電池セルが具備するシリコン基板は特に限定されず、太陽電池を形成するための公知のシリコン基板(板厚:100~450μm程度)を用いることができ、また、単結晶または多結晶のいずれのシリコン基板であってもよい。
 また、上記シリコン基板はpn接合を有するが、これは、第1導電型の半導体基板の表面側に第2導電型の受光面不純物拡散領域が形成されていることを意味する。なお、第1導電型がn型の場合には、第2導電型はp型であり、第1導電型がp型の場合には、第2導電型はn型である。
 ここで、p型を与える不純物としては、ホウ素、アルミニウム等が挙げられ、n型を与える不純物としては、リン、砒素などが挙げられる。
 本発明の太陽電池セルは、表面電極および/または裏面電極が本発明の太陽電池電極用ペーストを用いて形成されているため、電極のアスペクト比が0.4以上となり、受光により発生した起電力を電流として効率良く取り出すことができる。
 本発明の太陽電池セルの製造方法は特に限定されないが、本発明の太陽電池電極用ペーストをシリコン基板上に塗布して配線を形成する配線形成工程と、得られた配線を熱処理して電極(表面電極および/または裏面電極)を形成する電極形成工程とを有する方法が挙げられる。
 なお、本発明の太陽電池セルが反射防止層を具備する場合、反射防止膜は、プラズマCVD法等の公知の方法により形成することができる。
 以下に、配線形成工程、熱処理工程について詳述する。
 <配線形成工程>
 上記配線形成工程は、本発明の太陽電池電極用ペーストをシリコン基材上に塗布して配線を形成する工程である。
 ここで、塗布方法としては、具体的には、例えば、インクジェット、スクリーン印刷、グラビア印刷、オフセット印刷、凸版印刷等が挙げられる。
 <熱処理工程>
 上記熱処理工程は、上記配線形成工程で得られた塗膜を熱処理して導電性の配線(電極)を得る工程である。
 配線を熱処理することにより、脂肪酸銀塩(B)から分解される銀が融解する際に銀粉(A)が連結され、電極(銀膜)が形成される。
 本発明においては、上記熱処理は特に限定されないが、500~850℃の温度で、数秒~数十分間、加熱(焼成)する処理であるのが好ましい。温度および時間がこの範囲であると、シリコン基板上に反射防止膜を形成した場合であっても、ファイヤースルー法により容易に電極を形成することができる。
 なお、本発明においては、上記配線形成工程で得られた配線は、紫外線または赤外線の照射でも電極を形成することができるため、上記熱処理工程は、紫外線または赤外線の照射によるものであってもよい。
 以下、実施例を用いて、本発明の太陽電池電極用ペーストについて詳細に説明する。ただし、本発明はこれに限定されるものではない。
 (実施例1~6、比較例1~6)
 ボールミルに、下記第1表に示す銀粉等を下記第1表中に示す組成比となるように添加し、これらを混合することにより太陽電池電極用ペーストを調製した。
 調製した太陽電池電極用ペーストをシリコン基板(単結晶シリコンウェハー、LS-25TVA、156mm×156mm×200μm、信越化学工業社製)上に、スクリーン印刷で塗布して配線を形成した。
 その後、オーブンにて700℃で10分間乾燥し、導電性の配線(電極)を形成させた太陽電池セルのサンプルを作製した。
 <断線>
 スクリーン印刷で形成した乾燥(焼成)前の配線を光学顕微鏡で観察し、断線の有無を確認した。その結果を下記第1表に示す。
 <アスペクト比(焼成前)>
 スクリーン印刷で形成した乾燥(焼成)前の配線を共焦点顕微鏡で観察し、高さと幅とを測定し、アスペクト比(高さ/幅)を求めた。
 アスペクト比0.6以上を、アスペクト比が十分に高い(十分満足できる)として「◎」と評価し、0.4以上0.6未満を、アスペクト比が高い(満足できる)として「○」と評価し、0.4未満を、アスペクト比が低い(満足できない)として「×」と評価した。
 これらの結果を下記第1表に示す。
 <体積抵抗率(比抵抗)>
 作製した各太陽電池セルのサンプルについて、電極の体積抵抗率を抵抗率計(ロレスターGP、三菱化学社製)を用いた4端子4探針法により測定した。その結果を下記第1表に示す。
 <密着性>
 作製した各太陽電池セルのサンプルの表面上にセロハン粘着テープ(幅18mm)を完全に付着させた後、直ちにテープの一端を直角に保ち、瞬間的に引き離し、電極(印刷パターン)が剥がれるか否かを調べた。
 電極に剥がれが確認できたものを密着性に劣るものとして「×」と評価し、電極に剥がれが確認できなかったものを密着性に優れるものとして「○」と評価した。その結果を下記第1表に示す。
 <アスペクト比(焼成後)>
 作製した各太陽電池セルのサンプルについて、電極をレーザー顕微鏡で観察し、高さと幅とを測定し、アスペクト比(高さ/幅)を求めた。
 アスペクト比0.6以上を、アスペクト比が十分に高い(十分満足できる)として「◎」と評価し、0.4以上0.6未満を、アスペクト比が高い(満足できる)として「○」と評価し、0.4未満を、アスペクト比が低い(満足できない)として「×」と評価した。
 これらの結果を下記第1表に示す。
 <光電変換効率>
 作製した各太陽電池セルのうち、実施例2および比較例6について、光源としてソーラーシミュレーターを用い、AM1.5の擬似太陽光を100mW/cm2の光強度で光電極側から照射し、電流電圧測定装置(ケースレーインスツルメンツ社製デジタルソースメーター2400)を用いて変換効率を求めた。その結果を下記第1表に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 第1表中の各成分は、以下のものを使用した。
 ・銀粉1:AgC-103(形状:球状、平均粒子径:1.5μm、福田金属箔社製)
 ・銀粉2:Ag-4-8F(形状:球状、平均粒子径:2.2μm、DOWAエレクトロニクス社製)
 ・銀粉3:AgC-2011(形状:フレーク状、平均粒子径:2~10μm、福田金属箔社製)
 ・2-メチルプロパン酸銀塩:まず、酸化銀(東洋化学工業社製)50g、2-メチルプロパン酸(関東化学社製)38gおよびメチルエチルケトン(MEK)300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることにより、2-メチルプロパン酸銀塩を調製した。
 ・2-メチルブタン酸銀塩:まず、酸化銀(東洋化学工業社製)50g、2-メチルブタン酸(関東化学社製)44gおよびMEK300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることにより、2-メチルブタン酸銀塩を調製した。
 ・2-エチル酪酸銀塩:まず、酸化銀(東洋化学工業社製)50g、2-エチル酪酸(関東化学社製)50.2gおよびMEK300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることにより、2-エチル酪酸銀塩を調製した。
 ・ネオデカン酸銀塩:まず、酸化銀(東洋化学工業社製)50g、ネオデカン酸(東洋合成社製)74.3gおよびMEK300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることにより、ネオデカン酸銀塩を調製した。
 ・ステアリン酸銀塩:まず、酸化銀(東洋化学工業社製)50g、ステアリン酸(関東化学社製)123gおよびMEK300gをボールミルに投入し、室温で24時間撹拌させることにより反応させた。次いで、吸引ろ過によりMEKを取り除き、得られた粉末を乾燥させることにより、ステアリン酸銀塩を調製した。
 ・酸化銀:酸化銀(I)(東洋化学工業社製)
 ・α-テルピネール:溶剤
 ・ガラスフリット:硼珪酸鉛ガラス粉末
 ・銀ペースト:樹脂系銀ペースト(DWP-025、東洋紡績社製)
 第1表に示す結果から、従来公知の樹脂系の銀ペーストで調製した比較例1は、断線がなかったが、電極の体積抵抗率が若干高く、シリコン基板との密着性に劣り、また、焼成前後のいずれにおいてもアスペクト比が低いことが分かった。
 また、銀粉の代わりに酸化銀を含有するペーストで調製した比較例2は、断線があり、電極の体積抵抗率も高くなり、また、シリコン基板との密着性にも劣り、更に、焼成前後のいずれにおいてもアスペクト比が低いことが分かった。
 また、銀粉(A)に該当しないフレーク状の銀粉を用いて調製した比較例3は、断線があり、電極の体積抵抗率も高くなり、また、シリコン基板との密着性に劣り、更に、焼成前後のいずれにおいてアスペクト比が低いことが分かった。
 また、脂肪酸銀塩(B)に該当しない脂肪酸銀塩を用いて調製した比較例4および6は、断線がなく、電極の体積抵抗率が十分に低く、また、シリコン基板との密着性にも優れていたが、焼成後のアスペクト比が低いことが分かった。
 また、脂肪酸銀塩(B)に該当しない脂肪酸銀塩を用いて調製した比較例5は、電極の体積抵抗率が十分に低く、また、シリコン基板との密着性にも優れていたが、断線があり、焼成後のアスペクト比が低いことが分かった。
 これに対し、銀粉(A)および脂肪酸銀塩(B)を用いた実施例1~6は、断線がなく、電極の体積抵抗率が十分に低く、また、シリコン基板との密着性に優れ、更に、焼成前後のいずれにおいてもアスペクト比も高いことが分かった。
 また、実施例2および比較例6の光電変換効率の結果から、3級脂肪酸銀塩よりも2級脂肪酸銀塩の方が、太陽電池電極用途に適していることが分かった。なお、実施例2の光電変換効率(14.01)と比較例6の光電変換効率(13.20)との相違は、電極材料のみの相違として現れる差としては顕著なものである。
 1  太陽電池セル
 2  n層
 3  反射防止膜
 4  表面電極
 5  p層
 6  裏面電極
 7  シリコン基板

Claims (4)

  1.  銀粉(A)と、下記式(I)で表される脂肪酸銀塩(B)と、溶媒(C)とを含有し、
     前記銀粉(A)が、平均粒子径が0.5~5μmの球状の銀粉末である太陽電池電極用ペースト。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、R1およびR2は、いずれもメチル基を表し、R3は、水素原子を表す。)
  2.  前記脂肪酸銀塩(B)の含有量が、前記銀粉(A)100質量部に対して1~100質量部である請求項1に記載の太陽電池電極用ペースト。
  3.  更に、ガラスフリットを含有する請求項1または2に記載の太陽電池電極用ペースト。
  4.  受光面側の表面電極、半導体基板および裏面電極を具備し、
     前記表面電極および/または前記裏面電極が、請求項1~3のいずれかに記載の太陽電池電極用ペーストを用いて形成される太陽電池セル。
PCT/JP2010/071984 2009-12-09 2010-12-08 太陽電池電極用ペーストおよび太陽電池セル WO2011071066A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800118253A CN102349162B (zh) 2009-12-09 2010-12-08 太阳能电池电极用膏以及太阳能电池单元
JP2011505288A JP4743350B1 (ja) 2009-12-09 2010-12-08 太陽電池電極用ペーストおよび太陽電池セル
DE112010004746T DE112010004746T5 (de) 2009-12-09 2010-12-08 Paste für solarzellen-elektroden und solarzelle
KR1020127012063A KR101179113B1 (ko) 2009-12-09 2010-12-08 태양 전지 전극용 페이스트 및 태양 전지 셀

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-279670 2009-12-09
JP2009279670 2009-12-09

Publications (1)

Publication Number Publication Date
WO2011071066A1 true WO2011071066A1 (ja) 2011-06-16

Family

ID=44145610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071984 WO2011071066A1 (ja) 2009-12-09 2010-12-08 太陽電池電極用ペーストおよび太陽電池セル

Country Status (5)

Country Link
JP (1) JP4743350B1 (ja)
KR (1) KR101179113B1 (ja)
CN (1) CN102349162B (ja)
DE (1) DE112010004746T5 (ja)
WO (1) WO2011071066A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249257A (ja) * 2010-05-31 2011-12-08 Hitachi Ltd 焼結銀ペースト材料及び半導体チップ接合方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019106A (ja) * 2005-07-05 2007-01-25 Kyocera Chemical Corp 電極形成用導電性ペースト及び太陽電池セル
JP2007280881A (ja) * 2006-04-11 2007-10-25 Yokohama Rubber Co Ltd:The 導電性組成物、導電性被膜の形成方法および導電性被膜
JP2007317535A (ja) * 2006-05-26 2007-12-06 Yokohama Rubber Co Ltd:The 導電性組成物、導電性被膜の形成方法および導電性被膜
JP2008198595A (ja) * 2007-01-16 2008-08-28 Mitsubishi Chemicals Corp 金属微粒子インクペースト及び有機酸処理金属微粒子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4126215B2 (ja) 2002-10-23 2008-07-30 シャープ株式会社 太陽電池セルの製造方法
JP5323307B2 (ja) 2005-12-21 2013-10-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 太陽電池電極用ペースト
JP2007235082A (ja) 2006-02-02 2007-09-13 E I Du Pont De Nemours & Co 太陽電池電極用ペースト
DE102007017005B4 (de) * 2006-04-11 2009-12-31 The Yokohama Rubber Co., Ltd. Elektrisch leitende Zusammensetzung, Verfahren zur Herstellung eines elektrisch leitenden Films
JP4339919B2 (ja) 2007-10-02 2009-10-07 横浜ゴム株式会社 導電性組成物、導電性被膜の形成方法および導電性被膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019106A (ja) * 2005-07-05 2007-01-25 Kyocera Chemical Corp 電極形成用導電性ペースト及び太陽電池セル
JP2007280881A (ja) * 2006-04-11 2007-10-25 Yokohama Rubber Co Ltd:The 導電性組成物、導電性被膜の形成方法および導電性被膜
JP2007317535A (ja) * 2006-05-26 2007-12-06 Yokohama Rubber Co Ltd:The 導電性組成物、導電性被膜の形成方法および導電性被膜
JP2008198595A (ja) * 2007-01-16 2008-08-28 Mitsubishi Chemicals Corp 金属微粒子インクペースト及び有機酸処理金属微粒子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249257A (ja) * 2010-05-31 2011-12-08 Hitachi Ltd 焼結銀ペースト材料及び半導体チップ接合方法

Also Published As

Publication number Publication date
KR101179113B1 (ko) 2012-09-10
JP4743350B1 (ja) 2011-08-10
JPWO2011071066A1 (ja) 2013-04-22
CN102349162B (zh) 2013-03-27
DE112010004746T5 (de) 2013-03-07
CN102349162A (zh) 2012-02-08
KR20120056308A (ko) 2012-06-01

Similar Documents

Publication Publication Date Title
JP5591716B2 (ja) 有機金属修飾剤を有する導電性インク
JP6050357B2 (ja) Li2RuO3およびイオン交換されたLi2RuO3を含有する導電性組成物ならびに半導体デバイスの製造におけるそれらの使用
JP5853541B2 (ja) 太陽電池集電電極形成用導電性組成物および太陽電池セル
JP2013074165A (ja) 太陽電池集電電極形成用導電性組成物、太陽電池セル、および太陽電池モジュール
TW201737502A (zh) 導電性膏及太陽能電池
JP2012023095A (ja) 導電性組成物および太陽電池セル
JP5338846B2 (ja) 太陽電池集電電極形成方法、太陽電池セルおよび太陽電池モジュール
JP5327069B2 (ja) 太陽電池電極用ペーストおよび太陽電池セル
JP5630111B2 (ja) 太陽電池電極用ペーストおよび太陽電池セル
JP2012038846A (ja) 太陽電池電極用ペーストおよび太陽電池セル
WO2012153553A1 (ja) 太陽電池集電電極形成用導電性組成物および太陽電池セル
JP2012023088A (ja) 太陽電池電極用ペーストおよび太陽電池セル
JP2011035062A (ja) 導電性電極付き太陽電池セル基材
JP5844091B2 (ja) 導電性組成物、太陽電池セルおよび太陽電池モジュール
JP4743350B1 (ja) 太陽電池電極用ペーストおよび太陽電池セル
JP2013073890A (ja) 導電性組成物、太陽電池セルおよび太陽電池モジュール
TWI447181B (zh) Paste and solar cell for solar cell electrodes
US10515737B2 (en) Conductive paste composition, method for preparing the composition and electrode formed by the composition
JP2012248790A (ja) 太陽電池集電電極形成用導電性組成物および太陽電池セル
KR101748006B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR101758436B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
JP5625562B2 (ja) 太陽電池電極用ペーストおよび太陽電池セル
CN112204676B (zh) 导电性糊剂及太阳能电池
CN107068775B (zh) 用于形成电极的组合物、使用其制成的电极及太阳能电池
KR101991976B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011825.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011505288

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127012063

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120100047464

Country of ref document: DE

Ref document number: 112010004746

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835986

Country of ref document: EP

Kind code of ref document: A1