WO2011070921A1 - 照明装置およびそれを用いた投射型表示装置 - Google Patents

照明装置およびそれを用いた投射型表示装置 Download PDF

Info

Publication number
WO2011070921A1
WO2011070921A1 PCT/JP2010/071087 JP2010071087W WO2011070921A1 WO 2011070921 A1 WO2011070921 A1 WO 2011070921A1 JP 2010071087 W JP2010071087 W JP 2010071087W WO 2011070921 A1 WO2011070921 A1 WO 2011070921A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
guide plate
light guide
angle
Prior art date
Application number
PCT/JP2010/071087
Other languages
English (en)
French (fr)
Inventor
悟郎 齋藤
雅雄 今井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2011545167A priority Critical patent/JP5741445B2/ja
Publication of WO2011070921A1 publication Critical patent/WO2011070921A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H1/024Hologram nature or properties
    • G03H1/0248Volume holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to an illumination device for a projection display device represented by a liquid crystal projector.
  • a liquid crystal projector it is usually necessary to irradiate a liquid crystal panel with polarized light. For this reason, for example, when an LED (Light Emitting Diode) is used as a light source for illuminating the liquid crystal panel, it is desirable to convert light from the LED (non-polarized light) to improve light utilization efficiency. Specifically, polarization conversion is performed so that one of the orthogonally polarized light components of the non-polarized light from the LED is the same as the other polarized light components. If the polarization conversion efficiency is low, the light utilization efficiency is lowered.
  • LED Light Emitting Diode
  • Patent Document 1 describes an illumination device that emits polarized light.
  • This illumination device includes a light guide plate.
  • the light guide plate includes a reflection unit, a polarization separation unit disposed so as to face the reflection unit, and a polarization conversion unit that is provided between the reflection unit and the polarization separation unit and converts a polarization direction of transmitted light. And have.
  • the light from the light source is incident on the end face of the light guide plate.
  • the incident light propagates in the light guide plate.
  • the polarization separation means transmits P-polarized light and reflects S-polarized light.
  • the P-polarized light that has passed through the polarization separation means is emitted light from the illumination device.
  • the S-polarized light reflected by the polarization separating means is transmitted through the polarization converting means and reflected by the reflecting means, and this reflected light is transmitted again through the polarization converting means.
  • the S-polarized light is converted into P-polarized light by passing through the polarization conversion means twice in the process from the polarization separation means to the reflection means and in the process from the reflection means to the polarization separation means.
  • the P-polarized light from the polarization conversion means passes through the polarization separation means.
  • Patent Document 2 describes another illumination device that emits polarized light.
  • This illumination device has a waveguide that emits polarized light.
  • the director has a volume hologram at a position facing the exit surface.
  • the volume hologram selectively diffracts S-polarized light of incident light in the direction of the exit surface.
  • the S-polarized light selectively diffracted by the volume hologram is emitted from the exit surface in a certain direction.
  • Patent Document 3 describes still another illumination device that emits polarized light.
  • This illuminating device includes a light guide portion in which a polarization scattering control layer including a transparent electrode is sandwiched between first and second light guides, and a light source is disposed on an opposing end surface of the light guide portion.
  • a first quarter-wave plate is provided on the exit surface side of the first light guide, and a second quarter-wave plate is provided at a position facing the first quarter-wave plate. Is arranged.
  • a reflecting plate is disposed at a position facing the second light guide.
  • a transparent region and a scattering region are formed by partially applying a voltage between the transparent electrodes.
  • a region on the end face side where the light source is provided is a transparent region, and a central region is a scattering region.
  • the light (non-polarized light) incident on the end face from the light source passes through the transparent area.
  • the light transmitted through the transparent region is repeatedly reflected between the interface between the first light guide and the first quarter-wave plate and the interface between the second light guide and the air, and then the scattering region. Is incident on.
  • the S-polarized light component of the incident light is scattered, and the scattered light passes through the first light guide, the first and second quarter-wave plates.
  • This transmitted light is the outgoing light of the illumination device.
  • the P-polarized component light is transmitted through the scattering region.
  • Part of the P-polarized component light that has passed through the scattering region passes through the first light guide and enters the first quarter-wave plate.
  • the light incident on the first quarter-wave plate is reflected at the interface between the first quarter-wave plate and the air, and this reflected light passes through the first quarter-wave plate again.
  • the light that has passed through the first quarter becomes S-polarized light and passes through the first light guide.
  • the S-polarized light component that has passed through the first light guide is scattered in the scattering region.
  • An object of the present invention is to solve the above-mentioned problems of etendue and incident angle dependency, and to reduce the exit angle (angle distribution), and to provide a lighting device with high light utilization efficiency and a projection display using the same. To provide an apparatus.
  • the lighting device of the present invention includes: At least one light source; A first light guide plate to which light emitted from the light source is supplied to an end surface; A quarter-wave plate provided on the first light guide plate; A holographic layer provided on a surface of the first light guide plate on a side opposite to the quarter-wave plate side; A second light guide plate that is provided on a surface of the holographic layer opposite to the first light guide plate side and returns light incident from the holographic layer to the holographic layer;
  • the holographic layer is formed by alternately laminating a first liquid crystal layer in which liquid crystal molecules are aligned in one direction and a first polymer layer having a refractive index with respect to light having a predetermined polarization different from that of the first liquid crystal layer. Having a first periodic structure The first interface between the first polymer layer and the first liquid crystal layer is inclined with respect to the surface of the quarter-wave plate, the first interface is curved, and the curved portion The concave side is located on the first
  • the projection display device of the present invention is In the illumination device, a plurality of light sources having different colors of emitted light are provided as the light source, and the first periodic structure is provided for each color of the plurality of light sources.
  • Equipment A display element irradiated with light emitted from the illumination device; A projection optical system for projecting an image formed by the display element.
  • Another projection type display device of the present invention comprises a lighting device of each color of red, green and blue, comprising the above lighting device, A first display element irradiated with red light emitted from the red illumination device; A second display element irradiated with green light emitted from the green illumination device; A third display element irradiated with blue light emitted from the blue illumination device; A projection optical system for projecting each color image displayed on the first to third display elements.
  • FIG. 1 It is a schematic diagram which shows the structure of the illuminating device which is the 1st Embodiment of this invention. It is a perspective view which shows a part of periodic structure of the HPDLC layer of the illuminating device shown in FIG. It is a schematic diagram for demonstrating the effect
  • FIG. 1 is a schematic diagram showing a configuration of a lighting device according to the first embodiment of the present invention.
  • the lighting device includes a light source 10, light guide plates 11 and 13, an HPDLC (holographic polymer dispersed liquid crystal) layer 12 that is a holographic layer, and a quarter-wave plate 14.
  • the light source 10 is a semiconductor light source such as a light emitting diode (LED) or a semiconductor laser (LD), or a light source called a solid light source.
  • the light guide plate 11 is provided on one surface side of the HPDLC layer 12, and the light guide plate 13 is provided on the other surface side of the HPDLC layer 12. That is, the HPDLC layer 12 is sandwiched between the light guide plates 11 and 13.
  • the light from the light source 10 is supplied to the end face of the light guide plate 11.
  • light incident from the end face propagates through the light guide plate 11 and enters one surface of the HPDLC layer 12. Further, light that has entered the light guide plate 11 from one surface of the HPDLC layer 12 propagates through the light guide plate 11 and is emitted from the surface of the light guide plate 11 opposite to the side in contact with the HPDLC layer 12. .
  • a reflective surface is formed on the surface of the light guide plate 13 excluding the surface in contact with the HPDLC layer 12.
  • the reflective surfaces 13a to 13c are shown for the sake of convenience, but in addition to this, reflective surfaces may be provided on the near side and the far side as viewed in the drawing.
  • the light incident from the other surface of the HPDLC layer 12 is reflected by each reflecting surface and again enters the other surface of the HPDLC layer 12.
  • a reflective surface may be provided on the entire side surface of the HPDLC layer 12 of the light guide plate 11 (front surface, front surface, left and right surfaces as viewed in the drawing).
  • a reflection surface may be formed on the entire remaining surface except the surface on which the quarter-wave plate 14 is formed and the surface on which the light source 10 is provided. Instead of this reflective surface, the entire remaining surface may be covered with a reflective sheet.
  • the reflective surface may be formed by evaporating Al, Ag, or the like.
  • the reflection surfaces 13 a and 13 b are provided at a predetermined angle with respect to the end surface of the light guide plate 13. Specifically, the reflection surfaces 13 a and 13 b are provided to be inclined with respect to the end surface of the light guide plate 13 so as to face the other surface of the HPDLC layer 12.
  • FIG. 2A is a perspective view showing a part of the periodic structure of the HPDLC layer 12.
  • the HPDLC layer 12 includes a liquid crystal layer 21 in which liquid crystal molecules are aligned in one direction and a polymer layer having a refractive index different from that of the liquid crystal layer 21 with respect to light having a predetermined polarization (P-polarized light or S-polarized light).
  • a periodic structure in which 20 and 20 are alternately stacked.
  • the period of this periodic structure corresponds to the wavelength of light emitted from the light source 10.
  • the interface between the polymer layer 20 and the liquid crystal layer 21 includes a plurality of curved portions, and the concave surface of each curved portion faces the light guide plate 11. Specifically, the concave surface of each curved portion in the periodic structure faces in the direction of the end surface side where the light source 10 is provided.
  • the light incident from the light guide plate 11 on the concave surface of each curved portion of the HPDLC layer 12 light that satisfies the Bragg condition with respect to the first polarized light (for example, P-polarized light) is directed toward the light guide plate 11.
  • the first polarized light for example, P-polarized light
  • Light that is reflected (diffracted) and does not satisfy the Bragg condition passes through the HPDLC layer 12.
  • the light of the second polarization for example, S polarization having a polarization state different from the first polarization is transmitted through the HPDLC layer 12.
  • the quarter-wave plate 14 is provided on the surface of the light guide plate 11 opposite to the surface in contact with the HPDLC layer 12. Of the light incident on the quarter-wave plate 14 from the light guide plate 11, the light whose incident angle satisfies the total reflection condition is reflected in the direction of the light guide plate 11, and other light passes through the quarter-wave plate 14. pass.
  • the light that has passed through the quarter-wave plate 14 is emitted light (circularly polarized light) of the illumination device of this embodiment.
  • another quarter wavelength plate is provided in the optical path of the light emitted from the quarter wavelength plate 14.
  • FIG. 2B to 2D are schematic diagrams for explaining the operation of the periodic structure of the HPDLC layer 12.
  • FIG. 2B to 2D one surface of the HPDLC layer 12, that is, the surface in contact with the light guide plate 11 is located on the upper side in the drawing, and the other surface of the HPDLC layer 12, that is, the surface in contact with the light guide plate 13 is illustrated in the drawings. Located on the lower side.
  • the concave surface at the boundary surface between the polymer layer 20 and the liquid crystal layer 21 The first polarized light whose incident angle satisfies the Bragg condition is reflected upward in the drawing.
  • a plurality of first polarized lights having different incident angles with respect to one surface of the HPDLC layer 12 are approximately aligned in a certain direction (a direction along a straight line perpendicular to one surface of the HPDLC layer 12). Can be aligned and reflected.
  • the second polarized light passes through the HPDLC layer 12 as it is regardless of the incident angle. That is, as shown in FIG. 2C, the HPDLC layer 12 acts as a polarization separating unit that separates the first polarized light and the second polarized light with respect to light whose incident angle satisfies the Bragg condition.
  • the first polarized light whose incident angle at the convex surface of the boundary surface between the polymer layer 20 and the liquid crystal layer 21 satisfies the Bragg condition is Reflected downward toward the drawing.
  • the reflection on the convex surface when a plurality of first polarized light beams having the same incident angle with respect to the other surface of the HPDLC layer 12 are incident on different positions on the convex surface, the first polarized light beams are in different directions. Reflected. In this manner, the first polarized light incident from the other surface of the HPDLC layer 12 can be diffused by the convex surface within a certain angle range corresponding to the convex surface.
  • the HPDLC layer 12 Of the first polarized light incident from the other surface of the HPDLC layer 12, light whose incident angle on the convex surface does not satisfy the Bragg condition passes through the HPDLC layer 12 as it is. The second polarized light passes through the HPDLC layer 12 as it is regardless of the incident angle.
  • FIG. 3A schematically shows a path through which light supplied from the light source 10 into the light guide plate 11 is emitted from the emission surface of the quarter-wave plate 14.
  • an arrow indicated by a solid straight line indicates P-polarized light
  • an arrow indicated by a broken straight line indicates S-polarized light.
  • Open arrows indicate unpolarized light including P-polarized light and S-polarized light.
  • the light incident from the light source 10 into the light guide plate 11 propagates through the light guide plate 11 and then enters the HPDLC layer 12.
  • the light (white arrow shown in FIG. 3A) whose incident angle at the concave surface of the boundary surface of the periodic structure satisfies the Bragg condition is P-polarized light and S Separated into polarized light.
  • the separated P-polarized light is reflected toward the light guide plate 11 by the concave surface.
  • the separated S-polarized light passes through the HPDLC layer 12 and enters the light guide plate 13.
  • the P-polarized light reflected by the concave surface enters the quarter-wave plate 14 via the light guide plate 11.
  • the quarter-wave plate 14 light that does not satisfy the total reflection condition passes through the quarter-wave plate 14, and light that satisfies the total reflection condition is that of the quarter-wave plate 14.
  • the light is reflected in the direction of the light guide plate 11 on the exit surface (the surface opposite to the surface in contact with the light guide plate 11).
  • the incident angle of the P-polarized light reflected by the concave surface with respect to the exit surface of the quarter-wave plate 14 does not satisfy the total reflection condition. Therefore, the P-polarized light reflected by the concave surface is emitted from the emission surface of the quarter-wave plate 14.
  • S-polarized light that has passed through the HPDLC layer 12 and entered the light guide plate 13 is reflected in the direction of the HPDLC layer 12 by the reflecting surface 13c.
  • the S-polarized light reflected by the reflecting surface 13c passes through the HPDLC layer 12 as it is.
  • the S-polarized light transmitted through the HPDLC layer 12 enters the quarter-wave plate 14 through the light guide plate 11.
  • the incident angle of the S-polarized light reflected by the reflecting surface 13c with respect to the exit surface of the quarter-wave plate 14 satisfies the total reflection condition. Therefore, the S-polarized reflected light from the reflecting surface 13 c is reflected in the direction of the light guide plate 11 on the exit surface of the quarter-wave plate 14.
  • the light reflected by the exit surface of the quarter-wave plate 14 and incident on the light guide plate 11 passes through the quarter-wave plate 14 twice, so that the polarization direction is the other. Is converted into the polarization direction.
  • the light transmitted through the quarter-wave plate 14 twice is transmitted to the HPDLC layer 12 through the light guide plate 11 as P-polarized light. Incident.
  • the HPDLC layer 12 is transmitted as it is.
  • the incident angle at the concave surface of the P-polarized light incident on the HPDLC layer 12 satisfies the Bragg condition. Therefore, the P-polarized light incident on the HPDLC layer 12 is reflected in the direction of the light guide plate 11 by the concave surface.
  • the P-polarized light reflected by the concave surface enters the quarter-wave plate 14 via the light guide plate 11.
  • the incident angle of the P-polarized light reflected by the concave surface with respect to the exit surface of the quarter-wave plate 14 does not satisfy the total reflection condition. Therefore, the P-polarized light reflected by the concave surface is emitted from the emission surface of the quarter-wave plate 14.
  • the P-polarized light reflected in the direction toward the light source 10 by the reflective surface 13a or the reflective surface 13c enters the HPDLC layer 12.
  • the incident angle of the P-polarized light incident on the HPDLC layer 12 to the convex surface satisfies the Bragg condition.
  • the P-polarized light incident on the HPDLC layer 12 is reflected in the direction of the light guide plate 13 by the convex surface.
  • the reflected light (P-polarized light) from the convex surface that has entered the light guide plate 13 is reflected by the reflective surface 13 c and enters the HPDLC layer 12 again.
  • the incident angle to the convex surface of the reflected light (P-polarized light) from the reflecting surface 13c that has entered the HPDLC layer 12 again does not satisfy the Bragg condition. For this reason, the P-polarized light that has entered the HPDLC layer 12 again passes through the HPDLC layer 12, further passes through the light guide plate 11, and enters the quarter-wave plate 11.
  • the incident angle of the P-polarized light that has passed through the light guide plate 11 to the quarter-wave plate 11 does not satisfy the total reflection condition.
  • the P-polarized light that has passed through the light guide plate 11 passes through the quarter-wave plate 11 as it is, and is emitted from the exit surface of the quarter-wave plate 11 as outgoing light of the illumination device.
  • the light utilization efficiency can be improved and the emission angle (angle distribution) can be reduced by the action of the HPDLC layer 12 as shown in FIGS. 2B to 2D.
  • a part of the light reflected on the concave side and the convex side of the boundary surface of the periodic structure of the HPDLC layer 12 is propagated and reused. Utilization (utilization by circulating light) can further improve light utilization efficiency.
  • FIG. 3B schematically shows how the light supplied from the light source 10 into the light guide plate 11 propagates between the quarter-wave plate 14 and the light guide plate 13.
  • an arrow indicated by a solid straight line indicates P-polarized light
  • an arrow indicated by a broken straight line indicates S-polarized light.
  • Open arrows indicate unpolarized light including P-polarized light and S-polarized light.
  • the first polarized light reflected by the concave surface when the Bragg condition is satisfied is 1 at the incident angle satisfying the total reflection condition. / 4 incident on the wavelength plate 14.
  • the first polarized light is reflected in the direction of the light guide plate 11 by the exit surface of the quarter-wave plate 14.
  • the illumination device of this embodiment as shown in FIG. 3B, not only the light propagating from the light source 10 side to the opposite side of the light source 10 but also the light propagating in the opposite direction in the HPDLC layer 12 The light can be reflected on the convex side and propagated between the quarter-wave plate 14 and the light guide plate 13.
  • the incident angle to the HPDLC layer 12 changes due to reflection on the convex surface, the concave surface, and the reflection surfaces 13a and 13b. Further, polarization separation by the HPDLC layer 12 and the quarter wavelength plate 14 are used. Through the polarization conversion, the first polarized light can be emitted from the emission surface of the quarter-wave plate 14.
  • FIG. 4 is a schematic diagram for explaining the Bragg reflection condition on the concave surface of the periodic structure of the HPDLC layer 12.
  • the angle formed by the boundary surface between the HPDLC layer 12 and the light guide plate 13 and the tangent line of the convex surface is ⁇ r .
  • the refractive index of the HPDLC layer 12 is n
  • the pitch of the periodic structure is d 1
  • the reflection wavelength is ⁇
  • the incident angle is ⁇ a
  • the Bragg reflection condition on the concave surface is given by the following formula 1.
  • N is a positive integer.
  • Equation 2 The pitch d 1 of the periodic structure is given by Equation 2 below.
  • the incident angle of light incident on one surface (surface on the light guide plate 11 side) of the HPDLC layer 12 with respect to the one surface is ⁇ 1
  • the Bragg reflection condition on the concave surface of the incident light can be obtained by setting N to 1 and the incident angle ⁇ a to ⁇ 1 in the above equation 1.
  • the incident angle with respect to one surface (surface on the light guide plate 11 side) of the HPDLC layer 12 is ⁇ 2 ( ⁇ 1 )
  • the incident angle to the concave surface is ⁇ 2 (> ⁇ 1 ).
  • the Bragg reflection condition of light on the concave surface can be obtained by setting N to 2 and the incident angle ⁇ a to ⁇ 2 in the above formula 1.
  • FIG. 5 is a schematic diagram for explaining the relationship between the emission angle of light emitted from the quarter-wave plate 14 and the reflection angle of light reflected by the HPDLC layer 12.
  • ⁇ 0 is an angle of light emitted from the quarter-wave plate 14 with respect to a perpendicular drawn with respect to the emission surface.
  • ⁇ 1 is an angle with respect to a perpendicular line of the reflected light from the HPDLC layer 12 drawn with respect to the boundary surface between the HPDLC layer 12 and the light guide plate 11.
  • n is the refractive index of the light guide plate 11.
  • FIG. 6 is a schematic diagram for explaining the condition of the angle between the concave tangent line in the periodic structure of the HPDLC layer 12 and the boundary surface between the HPDLC layer 12 and the light guide plates 11 and 13.
  • the refractive indexes of the light guide plates 11 and 13 and the HPDLC layer 12 are both n.
  • ⁇ 1 indicates an angle (complementary angle) between the light incident from the light guide plate 11 to the HPDLC layer 12 and the boundary surface between the light guide plate 11 and the HPDLC layer 12.
  • ⁇ 1 represents an angle formed by the boundary surface between the light guide plate 11 and the HPDLC layer 12 on the concave surface of the HPDLC layer 12 and the light reflected at the intersection with the tangent line.
  • ⁇ 1 indicates an incident angle with respect to the concave surface of the light incident on the HPDLC layer 12 from the light guide plate 11.
  • ⁇ 2 indicates an angle (complementary angle) between the light guide plate 11 and the boundary surface between the HPDLC layer 12 and the light incident on the HPDLC layer 12 from the light guide plate 13.
  • ⁇ 2 indicates an angle between the light guide plate 13 and the boundary surface between the HPDLC layer 12 and the light reflected at the intersection with the tangent on the convex surface of the HPDLC layer 12.
  • ⁇ 2 represents an incident angle with respect to the concave surface of the light incident on the HPDLC layer 12 from the light guide plate 13.
  • the reflection wavelength is ⁇
  • the layer interval in the periodic structure of the HPDLC layer 12 is d 1 .
  • ⁇ and d 1 are the same between the incident light at the incident angle ⁇ 1 and the incident light at the incident angle ⁇ 2 , from the condition of Bragg reflection,
  • the tangential angle ⁇ r of the HPDLC layer 12 is
  • the layer interval d 1 of the periodic structure of the HPDLC layer 12 is
  • the HPDLC layer 12 and the light guide plate are configured so that the emission angle (angular distribution) is limited to a certain angle range (emission condition) and the propagating light is diffused (angle conversion condition).
  • the angle ⁇ r of the tangent to the 13 boundary surface and the layer interval d of the HPDLC layer 12 are set.
  • the angle ⁇ 1 and the interval d are determined, and based on the determined angle ⁇ 1 , the angle ⁇ r satisfying the emission condition and the angle conversion condition described above is determined.
  • a specific example of obtaining is given.
  • FIG. 8 is a diagram for explaining conditions for incident light on the concave surface of the HPDLC layer 12.
  • FIG. 9 is a diagram for explaining conditions for incident light on the convex surface of the HPDLC layer 12.
  • the layer spacing d is 398.2 mm.
  • the emission angle ⁇ 0 is in the range of ⁇ 15 ° to + 15 °. Can be inside.
  • the emission angle ⁇ 0 is in the range of ⁇ 15 ° to + 15 °. Can be inside.
  • the emission angle ⁇ 0 is in the range of ⁇ 15 ° to + 15 °. Can be inside.
  • the emission angle ⁇ 0 is in the range of ⁇ 15 ° to + 15 °. Can be inside.
  • FIG. 10 is a schematic diagram for explaining a method for producing the HPDLC layer 12.
  • the HPDLC precursor 100 is sandwiched between the substrates 101 and 102, and the laser beam 104 is irradiated from the substrate 101 side, and the laser beam 105 is irradiated from the substrate 102 side through the microlens 103.
  • the laser beams 104 and 105 are P-polarized light or S-polarized light.
  • the HPDLC precursor 100 includes a polymer layer precursor, a liquid crystal, and an initiator.
  • the liquid crystal is, for example, a nematic liquid crystal.
  • the initiator may contain a sensitizing dye.
  • the polymer layer precursor is composed of any material of photocuring monomer (or photocuring monomer and oligomer), photocuring liquid crystalline monomer and photocuring polymer liquid crystal precursor, or a combination thereof.
  • the photocurable liquid crystalline monomer has liquid crystallinity before photocuring but does not have liquid crystallinity after photocuring.
  • the photocurable polymer liquid crystal precursor becomes a polymer liquid crystal after photocuring.
  • the weight ratio of the polymer layer precursor is 80 to 40%, and the weight ratio of the liquid crystal is 20 to 60%.
  • the laser beam 104 is a reference beam, the laser beam 104 and the laser beam 105 incident through the microlens 103 are caused to interfere with each other, and the state (interference fringes) is recorded in the HPDLC precursor 100.
  • the wavelength of the laser beams 104 and 105, the incident angle of the laser beams 104 and 105 to the HPDLC precursor 100, the shape of the convex surface of the microlens (curvature, etc.), etc. are appropriately set, and the liquid crystal molecules in the liquid crystal layer are oriented in one direction. By orientation, the HPDLC layer 12 shown in FIG. 1 is obtained.
  • the HPDLC layer 12 in which liquid crystal molecules are aligned in one direction can be produced by various methods similar to the production of a liquid crystal element. An example of the creation procedure will be briefly described below.
  • an alignment film for example, polyimide
  • an alignment process such as a rubbing process
  • the HPDLC precursor is sandwiched between the surfaces subjected to the alignment treatment, and the HPDLC precursor (liquid crystal component) is aligned between the light guide plates 11 and 13.
  • the HPDLC layer 12 is formed by interference exposure.
  • the shape of the light guide plate 11 is wedged when the light guide plate 11 is viewed from the side. It is good also as a shape.
  • the wedge shape is such that the thickness of the light guide plate 11 gradually decreases from the end surface where the light source 10 is formed toward the end surface where the reflection surface is formed.
  • the reflection surfaces 13a and 13b are formed so as to intersect with a surface perpendicular to the reflection surface 13c, but are not limited thereto.
  • the reflective surfaces 13a and 13b may be surfaces perpendicular to the reflective surface 13c.
  • the reflection surface 13c may have at least one convex portion having a triangular cross-sectional shape. Angle conversion can be performed by this convex part.
  • FIG. 11 is a schematic diagram showing the configuration of the HPDLC layer of the lighting apparatus according to the second embodiment of the present invention.
  • the illumination device of the present embodiment has the same configuration as that of the illumination device of the first embodiment except that the HPDLC layer is different.
  • the configuration of the HPDLC layer will be mainly described, and description of other parts will be omitted.
  • the HPDLC layer 120 has a structure in which the periodic structures 121 and 122 are multiplexed.
  • the periodic structure 121 is the same as the periodic structure of the HPDLC layer 12 in the illumination device of the first embodiment.
  • the periodic structure 122 is a structure in which polymer layers and liquid crystal layers are alternately stacked. Similar to the periodic structure 121, also in the periodic structure 122, the boundary surface between the polymer layer and the liquid crystal layer is composed of a plurality of curved portions, and the concave surface of each curved portion is the direction of the light guide plate 11 (the direction of the light source 10 shown in FIG. 1). Suitable for.
  • the periodic structures 121 and 122 are formed so that the polymer layer and the liquid crystal layer intersect each other.
  • the periodic structure 121 satisfies the emission condition and the angle conversion condition described in the first embodiment.
  • the periodic structure 122 satisfies only the emission conditions. Specifically, the periodic structure 122 is
  • the emission condition is satisfied.
  • the layer interval d 2 of the periodic structure 122 is
  • the periodic structure 121 limits the emission angle and diffuses the propagating light. Since the periodic structure 121 needs to satisfy both the emission condition and the angle conversion condition, even if the emission angle ⁇ 0 is set to be in the range of ⁇ 15 ° to + 15 °, the emitted light is emitted over the entire angle range. It is difficult to get.
  • the periodic structure 122 does not need to consider the angle conversion condition, and only needs to consider the emission condition. Therefore, when the emission angle ⁇ 0 is set in the range of ⁇ 15 ° to + 15 °, the emitted light can be obtained over the entire angle range.
  • the emission angle ⁇ 0 is set to be in the range of ⁇ 15 ° to + 15 ° as compared with that of the first embodiment. In this case, since the emitted light can be obtained over the entire angular range, the light utilization efficiency can be further improved.
  • FIG. 12 is a schematic diagram for explaining the emission conditions of the periodic structure 122.
  • the layer spacing d is 197.7 mm.
  • the emission angle ⁇ 0 falls within the range of ⁇ 15 ° to + 15 °. Is possible.
  • the periodic structure 122 may be formed such that the concave surface thereof has a direction opposite to the direction of the concave surface of the periodic structure 121.
  • a plurality of periodic structures 121 and 122 may be provided.
  • the periodic structure 122 may be configured to satisfy only the angle conversion condition, not the emission condition. In this case, the periodic structure 122 is
  • the layer interval d 3 of the periodic structure 122 is
  • the diffusion in the periodic structure 122 can be performed more efficiently, the light utilization efficiency can be further improved as compared with that of the first embodiment.
  • FIG. 13 is a schematic diagram showing a configuration of a lighting apparatus according to the third embodiment of the present invention.
  • the lighting device includes light sources 10 a and 10 b, light guide plates 11 and 13, an HPDLC layer 220, and a quarter wavelength plate 14.
  • the light guide plates 11 and 13 and the quarter wave plate 14 are the same as those in the first embodiment.
  • the light sources 10a and 10b are, for example, semiconductor light sources such as light emitting diodes (LEDs) and semiconductor lasers (LD), or light sources called solid light sources.
  • LEDs light emitting diodes
  • LD semiconductor lasers
  • the wavelengths of light emitted from the light sources 10a and 10b are substantially the same.
  • the light source 10 a is provided on one end surface of the light guide plate 11.
  • the light source 10b is provided on the other end surface of the light guide plate 11 (an end surface facing the end surface on which the light source 10a is provided).
  • the HPDLC layer 220 is sandwiched between the light guide plates 11 and 13.
  • light incident from the end face propagates through the light guide plate and enters one surface of the HPDLC layer 220.
  • light incident on the light guide plate 11 from one surface of the HPDLC layer 220 passes through the light guide plate 11 and enters the quarter wavelength plate 14.
  • the HPDLC layer 220 includes a periodic structure 221 in which first polymer layers and first liquid crystal layers are alternately stacked, and a periodic structure 222 in which second polymer layers and second liquid crystal layers are alternately stacked.
  • the periodic structures 221 and 222 have the same period and correspond to the wavelength of light emitted from the light sources 10a and 10b.
  • the boundary surface between the first polymer layer and the first liquid crystal layer includes a plurality of curved portions, and the concave surface of each curved portion faces the light guide plate 11.
  • the boundary surface between the second polymer layer and the second liquid crystal layer includes a plurality of curved portions, and the concave surface of each curved portion faces the light guide plate 11 side.
  • the concave surface of each curved portion in the periodic structure 221 faces the end surface side where the light source 10a is provided
  • the concave surface of each curved portion in the periodic structure 222 is on the end surface side where the light source 10b is provided. Facing the direction.
  • the periodic structures 221 and 222 are formed so that the polymer layer and the liquid crystal layer intersect each other. Specifically, the boundary between the first polymer layer and the first liquid crystal layer and the boundary between the first polymer layer and the second liquid crystal layer, the first plane in contact with the convex surface of each curved portion constituting the boundary surface of the first polymer layer and the first liquid crystal layer The second plane in contact with the convex surface of each curved portion constituting the surface intersects.
  • the angle formed between the first plane and one surface of the HPDLC layer 220 is substantially the same as the angle formed between the second plane and one surface of the HPDLC layer 220.
  • the periodic structures 221 and 222 have the operations described with reference to FIGS. 2B to 2D, similarly to the periodic structure of the HPDLC layer 12 in the illuminating device of the first embodiment.
  • the first polarized light 100 a is mainly transmitted by the periodic structure 221. Reflected in the direction of.
  • the incident angle of the light 100a on the concave surface of the periodic structure 221 satisfies the Bragg condition.
  • the first polarized light 100 b is reflected mainly by the periodic structure 222 in the direction of the light guide plate 11.
  • the incident angle of the light 100b on the concave surface of the periodic structure 222 satisfies the Bragg condition.
  • the periodic structure 221 is formed so that the concave surface is directed in the direction of the light source 10a
  • the periodic structure 222 is formed so that the concave surface is directed in the direction of the light source 10b, whereby light from the light sources 10a and 10b is efficiently obtained. It can be reflected and emitted.
  • light propagating in the direction from the light source 10a side to the light source 10b side is mainly diffused by the periodic structure 222, and from the light source 10b side to the light source 10a.
  • the light propagating in the side direction is mainly diffused by the periodic structure 221.
  • the convex surfaces provided in opposite directions can be efficiently diffused.
  • the emission condition and the angle conversion condition of the periodic structure 221 may be different from those of the periodic structure 222.
  • angles of 9.6 ° ⁇ 1 ⁇ 2.4 °, ⁇ 1.3 ° ⁇ 1 ⁇ 1.3 °, and ⁇ 9.6 ° ⁇ 1 ⁇ 2.4 ° The light can be emitted in a range.
  • the periodic structures 221 and 222 both satisfy the emission condition and the angle conversion condition, but one periodic structure may be configured to satisfy only the emission condition or the angle conversion condition. Good.
  • FIG. 15 is a schematic diagram for explaining a method for producing the HPDLC layer. Also in the production of this HPDLC layer, the HPDLC precursor 100 shown in FIG. 10 is used.
  • the laser beams 104 to 107 are P-polarized light or S-polarized light.
  • the laser beam 104 is irradiated from the substrate 101 side, and the laser beam 105 is irradiated from the substrate 102 side through the microlens 103 (first recording state).
  • the laser beam 104 is a reference beam
  • the laser beam 104 and the laser beam 105 incident through the microlens 103 are caused to interfere with each other, and the state (interference fringes) is caused to the HPDLC precursor 100. Record.
  • the laser beam 106 After stopping the irradiation of the laser beams 104 and 105, the laser beam 106 is irradiated from the substrate 101 side, and the laser beam 107 is irradiated from the substrate 102 side through the microlens 103 (second recording state).
  • the laser beam 106 is a reference beam
  • the laser beam 106 and the laser beam 107 incident through the microlens 103 are caused to interfere with each other, and the state (interference fringes) is made to the HPDLC precursor 100. Record.
  • the wavelength of the laser beams 104 to 107, the incident angle of the laser beams 104 to 107 to the HPDLC precursor 100, the shape of the convex surface of the microlens (curvature, etc.), etc. are appropriately set, and the first and second recording states are sometimes set.
  • the liquid crystal molecules in the liquid crystal layer are aligned in one direction. Thereby, the HPDLC layer 220 shown in FIG. 13 can be formed.
  • the incident angles of the laser beams 106 and 107 to the HPDLC precursor 100 in the second recording state are set to the HPDLC layer 120. It is changed so as to correspond to the periodic structure 122 of FIG.
  • a prism surface 11a may be formed on the end surface of the light guide plate 11 as shown in FIG.
  • the prism surface 11a is composed of a plurality of prism portions having a triangular cross section.
  • An angle ⁇ formed by one side of the prism portion and the end surface of the light guide plate 11 (a surface parallel to the light emitting surface of the light source 10) is set to 7 °, for example.
  • front emission from the light source 10 (emission in a direction perpendicular to the light emitting surface) is inclined by 5 ° with respect to the end face of the light guide plate 11 so as to be within the range of the angle ⁇ 2 described above.
  • the prism surface 11a shown in FIG. 16 may be applied to the illumination devices of the second and third embodiments.
  • the prism surface 11a is formed on each end surface provided with the light sources 10a and 10b.
  • the light from the light source can be incident on the end face of the light guide plate 11 through the light guide plate.
  • FIG. 17A and FIG. 17B show a modification of the illumination device of the third embodiment, FIG. 17A is a side view, and FIG. 17B is a plan view. 17A and 17B, the light guide plates 11 and 13, the HPDLC layer 12, and the quarter wavelength plate 14 are the same as those described in the third embodiment.
  • light from the light sources 30a and 30b is supplied to one end surface of the light guide plate 11 via the prism light guide plate 31a, and light from the light sources 30c and 30d is supplied to the prism light guide plate 31b. To the other end face of the light guide plate 11.
  • the light source 30a is formed on one end face of the prism light guide plate 31a, and the light source 30b is formed on the other end face of the prism light guide plate 31a.
  • the prism light guide plate 31 a has a prism portion for bending light supplied from both end faces in the direction of the end face of the light guide plate 11.
  • the light source 30c is formed on one end face of the prism light guide plate 31b, and the light source 30d is formed on the other end face of the prism light guide plate 31b.
  • the prism light guide plate 31 b has a prism portion for bending light supplied from both end surfaces in the direction of the end surface of the light guide plate 11.
  • the light from the four light sources 30a to 30d can be supplied to the light guide plate 11 without increasing the area of the exit surface of the quarter-wave plate 14. Therefore, the amount of light emitted from the exit surface of the quarter-wave plate 14 can be increased under the etendue constraint.
  • FIGS. 17A and 17B can also be applied to the first and second embodiments.
  • light sources 30 a and 30 b and a prism light guide plate 31 a are used on one end face of the light guide plate 11.
  • the HDLPC layer may have a periodic structure corresponding to each of the three primary colors of light, red, green, and blue.
  • light sources for example, LEDs
  • the HDLPC layer has a red periodic structure whose layer spacing corresponds to the wavelength of the red light source, a green periodic structure whose layer spacing corresponds to the wavelength of the green light source, and a blue layer whose layer spacing corresponds to the wavelength of the blue light source. And having a periodic structure.
  • light (corresponding to white light) of predetermined polarized light (P-polarized light or S-polarized light) of red, green, and blue is emitted from the quarter wavelength plate 14.
  • the illumination device of the present invention described above can be applied to a projection display device represented by a liquid crystal projector.
  • FIG. 18 is a schematic diagram showing a configuration of a projection display device including the illumination device of the present invention.
  • the projection display device includes illumination devices 300 to 302, liquid crystal elements 303 to 305 as display elements, a cross dichroic mirror 306, and a projection optical system 307.
  • All of the lighting devices 300 to 302 are configured by any of the lighting devices of the above-described embodiments.
  • a blue LED is used as the light source of the illumination device 300.
  • a green LED is used as the light source of the illumination device 301.
  • a red LED is used as the light source of the illumination device 302.
  • the 1 ⁇ 4 wavelength plate of the lighting device 300 for example, the 1 ⁇ 4 wavelength plate 14 shown in FIG. 1
  • a wave plate is provided.
  • another quarter wavelength plate is also provided between the quarter wavelength plate of the lighting device 301 and the liquid crystal element 304 and between the quarter wavelength plate of the lighting device 302 and the liquid crystal element 305. Is provided.
  • Another quarter wave plate may be provided in each of the lighting devices 300 to 302.
  • each of the lighting devices 300 to 302 is provided with another quarter-wave plate so as to face the emission surface of the quarter-wave plate.
  • the blue light emitted from the illumination device 300 is applied to the liquid crystal element 303.
  • the liquid crystal element 303 is driven by a liquid crystal driving circuit (not shown) and forms a blue image based on a video signal supplied from the outside.
  • the green light emitted from the illumination device 301 is applied to the liquid crystal element 304.
  • the liquid crystal element 304 is driven by a liquid crystal driving circuit (not shown) and forms a green image based on a video signal supplied from the outside.
  • the red light emitted from the illumination device 302 is applied to the liquid crystal element 305.
  • the liquid crystal element 305 is driven by a liquid crystal drive circuit (not shown), and forms a red image based on a video signal supplied from the outside.
  • the image light of each color formed by the liquid crystal elements 303 to 305 enters the projection optical system 307 via the cross dichroic mirror 306.
  • the projection optical system 307 projects each color image formed by the liquid crystal elements 303 to 305 onto a screen (or a member replacing the screen) (not shown).
  • Another projection display device as the illumination device of the present invention, emits light (corresponding to white light) of predetermined polarized light (P-polarized light or S-polarized light) of red, green and blue from the quarter-wave plate 14.
  • a lighting device Provided with a lighting device. Light emitted from the illumination device is irradiated onto a display element (for example, a liquid crystal element).
  • the display element displays red, green, and blue images based on an external video signal in a time division manner. Each color image formed on the display element is projected by the projection optical system.
  • another quarter wavelength plate is provided between the illumination device and the display element (liquid crystal element).
  • Another quarter wave plate may be provided in the lighting device.
  • another quarter wavelength plate is provided so as to face the emission surface of the quarter wavelength plate 14.
  • the illumination device of the present invention can be used as a backlight of a liquid crystal display in addition to the projection display device described above.
  • the concave surface of each curved portion of the HPDLC layer is provided so as to face the light source side, but is not limited thereto.
  • the concave surface of each curved portion faces the exit surface side, and the flat surface in contact with the concave surface of each curved portion, or the interface between the polymer layer of the HPDLC layer and the liquid crystal layer is the surface of the quarter wavelength plate (exit of the HPDLC layer)
  • the concave surface of each curved portion may be provided in any way as long as the condition of inclining with respect to the surface-side light guide plate is satisfied.
  • FIG. 19 shows a configuration of a lighting device as a modification of the lighting device of the first embodiment, in which the direction of the concave surface of each curved portion is different from that of the lighting device of the first embodiment.
  • the concave surface of each curved portion of the HPDLC layer 12 faces the direction of the end surface located on the side opposite to the end surface where the light source 10a of the light guide plate 11 is provided.
  • an arrow indicated by a solid straight line indicates P-polarized light
  • an arrow indicated by a broken straight line indicates S-polarized light.
  • Open arrows indicate unpolarized light including P-polarized light and S-polarized light.
  • the light source can be provided on one end face of the light guide plate 11, two opposite end faces, or each end face.
  • the angular spread (outgoing angle) of the emitted light can be kept within the range where the light can be used based on the etendue restrictions, so that the light use efficiency can be improved.
  • the boundary surface between the polymer layer and the liquid crystal layer of the holographic layer curved, the dependency on the incident angle of the hologram can be suppressed, so that the light utilization efficiency can be further improved.
  • the light propagating between the first and second light guide plates is diffused on the convex surface of the curved portion, and the light is circulated and used by performing polarization conversion through the quarter wavelength plate. Therefore, the light utilization efficiency can be further improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

照明装置は、光源10と、光源10から出射された光が端面に供給される導光板11と、導光板11上に設けられた1/4波長板14と、導光板11の、1/4波長板14側とは反対の側の面に設けられたHPDLC層12と、HPDLC層12の、導光板11側とは反対の側の面に設けられた導光板13と、を有する。HPDLC層12は、液晶分子が一方向に配向された液晶層と所定の偏光を有する光に対する屈折率が上記液晶層と異なる高分子層とが交互に積層された周期構造を有する。高分子層と液晶層の界面は1/4波長板14の面に対して傾斜し、該界面は湾曲しており、該湾曲した部分の凹面側が、導光板11側に位置する。

Description

照明装置およびそれを用いた投射型表示装置
 本発明は、液晶プロジェクタに代表される投射型表示装置の照明装置に関する。
 液晶プロジェクタでは、通常、偏光光を液晶パネルに照射する必要がある。このため、例えば、液晶パネルを照明するための光源としてLED(Light Emitting Diode)を用いた場合は、LEDからの光(非偏光光)を偏光変換して、光利用効率を高めることが望ましい。具体的には、LEDからの非偏光光の直交する直線偏光成分のうち、どちらか一方を他の偏光成分と同じになるように偏光変換する。この偏光変換の効率が低いと、光利用効率が低下する。
 特許文献1には、偏光光を出射する照明装置が記載されている。この照明装置は、導光板を備える。導光板は、反射手段と、この反射手段と対向するように配置された偏光分離手段と、これら反射手段と偏光分離手段の間に設けられた、透過する光の偏光方向を変換する偏光変換手段とを有する。
 光源からの光が導光板の端面に入射する。入射した光は、導光板内を伝播する。偏光分離手段は、P偏光の光を透過し、S偏光の光を反射する。偏光分離手段を透過したP偏光の光が、照明装置の出射光である。
 偏光分離手段で反射されたS偏光の光は、偏光変換手段を透過し、反射手段によって反射され、この反射光は、偏光変換手段を再び透過する。S偏光の光は、偏光分離手段から反射手段に向かう過程と、反射手段から偏光分離手段に向かう過程で、偏光変換手段を2回通過することで、P偏光の光に変換される。偏光変換手段からのP偏光の光は、偏光分離手段を透過する。
 特許文献2には、偏光光を出射する別の照明装置が記載されている。この照明装置は、偏光光を出射する導波器を有する。導波器は、出口面と対向する位置に体積ホログラムを有する。体積ホログラムは、入射した光のうちS偏光の光を選択的に出口面の方向に回折する。体積ホログラムで選択的に回折されたS偏光の光は、出口面から一定の方向に出射される。
 特許文献3には、偏光光を出射するさらに別の照明装置が記載されている。この照明装置は、透明電極を備える偏光散乱制御層を第1および第2の導光体で挟んだ導光部分を備え、この導光部分の対向する端面に光源が配置されている。第1の導光体の出射面側には、第1の1/4波長板が設けられており、この第1の1/4波長板と対向する位置に、第2の1/4波長板が配置されている。第2の導光体と対向する位置には、反射板が配置されている。
 偏光散乱制御層において、透明電極間への電圧印加を部分的に行うことで、透明領域と散乱領域を形成する。光源が設けられた端面側の領域が透明領域とされ、中央部の領域が散乱領域とされる。
 光源から端面に入射した光(無偏光)は、透明領域を透過する。透明領域を透過した光は、第1の導光体と第1の1/4波長板の界面と、第2の導光体と空気の界面との間で、反射を繰り返し、その後、散乱領域に入射する。
 散乱領域では、入射した光のうちS偏光成分の光は散乱され、その散乱光が、第1の導光体、第1および第2の1/4波長板を透過する。この透過光が、照明装置の出射光である。
 一方、P偏光成分の光は、散乱領域を透過する。散乱領域を透過したP偏光成分の光の一部は、第1の導光体を通過して第1の1/4波長板に入射する。第1の1/4波長板に入射した光は、第1の1/4波長板と空気の界面で反射され、この反射光は、第1の1/4波長板を再び通過する。第1の1/4を通過した光はS偏光成分の光となって、第1の導光体を透過する。第1の導光体を透過したS偏光成分の光は、散乱領域で散乱される。
特開2003-207646号公報 特表2005-504413号公報 特開2002-49037号公報
 液晶プロジェクタ等に用いられる投射光学系においては、光源の面積と発散角とで決まるエテンデューという制約がある。光源からの光を投射光として利用するためには、光源の面積と発散角との積の値を、表示素子の面積と投射レンズのFナンバーで決まる取り込み角(立体角)との積の値以下にする必要がある。このようなエテンデューの制約のため、投射光学系においては、照明光の角度広がり(出射角)を小さくする必要がある。
 特許文献1に記載のものにおいては、出射光の出射角(出射面から出射される光線の、出射面に垂直な直線に対する角度の範囲、すなわち角度分布)が大きいため、エテンデューの制約により、照明光として利用されない光が増大することとなり、その結果、光利用効率が低下する。
 特許文献2に記載のものにおいては、体積ホログラムの角度選択性によって出射光の出射角(角度分布)を小さくすることができるため、エテンデューの制約を回避することは可能であるものの、体積ホログラムにおける回折効率の入射角依存性が高いため、それにより光の利用効率が低下する。
 特許文献3に記載のものにおいては、散乱領域にて散乱したS偏光成分の光がそのまま出射されるため、出射光の出射角(角度分布)が大きい。このため、特許文献1に記載のものと同様、エテンデューの制約により、光利用効率が低下する。
 本発明の目的は、上述したエテンデューの制約や入射角依存性の問題を解決し、出射角(角度分布)を小さくすることができる、光利用効率の高い照明装置およびそれを用いた投射型表示装置を提供することにある。
 上記目的を達成するため、本発明の照明装置は、
 少なくとも1つの光源と、
 前記光源から出射された光が端面に供給される第1の導光板と、
 前記第1の導光板上に設けられた1/4波長板と、
 前記第1の導光板の、前記1/4波長板側とは反対の側の面に設けられたホログラフィック層と、
 前記ホログラフィック層の、前記第1の導光板側とは反対の側の面に設けられ、前記ホログラフィック層から入射した光を前記ホログラフィック層へ戻す第2の導光板と、を有し、
 前記ホログラフィック層は、液晶分子が一方向に配向された第1の液晶層と所定の偏光を有する光に対する屈折率が前記第1の液晶層と異なる第1の高分子層とが交互に積層された第1の周期構造を有し、
 前記第1の高分子層と前記第1の液晶層の第1の界面は前記1/4波長板の面に対して傾斜し、該第1の界面は湾曲しており、該湾曲した部分の凹面側が、前記第1の導光板側に位置する。
 本発明の投射型表示装置は、
 上記の照明装置であって、前記光源として、出射される光の色が異なる複数の光源が設けられており、前記第1の周期構造が、前記複数の光源の色毎に設けられている照明装置と、
 前記照明装置から出射された光が照射される表示素子と、
 前記表示素子によって形成された画像を投射する投射光学系と、を有する。
 本発明の別の投射型表示装置は、上記の照明装置より構成される、赤色、緑色、青色の各色の照明装置と、
 前記赤色の照明装置から出射された赤色の光が照射される第1の表示素子と、
 前記緑色の照明装置から出射された緑色の光が照射される第2の表示素子と、
 前記青色の照明装置から出射された青色の光が照射される第3の表示素子と、
 前記第1乃至第3の表示素子で表示される各色の画像を投射する投射光学系と、を有する。
本発明の第1の実施形態である照明装置の構成を示す模式図である。 図1に示す照明装置のHPDLC層の周期構造の一部を示す斜視図である。 図1に示す照明装置のHPDLC層の周期構造の作用を説明するための模式図である。 図1に示す照明装置のHPDLC層の周期構造の別の作用を説明するための模式図である。 図1に示す照明装置のHPDLC層の周期構造の別の作用を説明するための模式図である。 図1に示す照明装置における光源から供給された光が出射されるまでの経路を示す模式図である。 図1に示す照明装置における光源から供給された光が伝播する様子を示す模式図である。 図1に示す照明装置のHPDLC層の周期構造の凹面におけるブラッグ反射条件を説明するための模式図である。 図1に示す照明装置における1/4波長板から出射される光の出射角とHPDLC層で反射される光の反射角との関係を説明するための模式図である。 図1に示す照明装置のHPDLC層の周期構造における凹面の接線と、HPDLC層と各導光板の境界面とのなす角度の条件を説明するための模式図である。 図1に示す照明装置のHPDLC層の周期構造における層間隔を説明するための模式図である。 図1に示す照明装置のHPDLC層の凹面の入射光に対する条件を説明するための模式図である。 図1に示す照明装置のHPDLC層の凸面の入射光に対する条件を説明するための模式図である。 HPDLC層の作製方法を説明するための模式図である。 本発明の第2の実施形態である照明装置のHPDLC層の構成を示す模式図である。 図11に示すHPDLC層の周期構造の出射条件を説明するための模式図である。 本発明の第3の実施形態である照明装置の構成を示す模式図である。 図13に示す照明装置のHPDLC層の作用を説明するための模式図である。 図13に示す照明装置のHPDLC層の作製方法を説明するための模式図である。 本発明の第1の実施形態である照明装置の変形例を示す模式図である。 本発明の第3の実施形態である照明装置の変形例を示す側面図である。 本発明の第3の実施形態である照明装置の変形例を示す平面図である。 本発明の照明装置を備える投射型表示装置の構成を示す模式図である。 図1に示す照明装置の変形例における光源から供給された光が出射されるまでの経路を示す模式図である。
10 光源
11、13 導光板
12 HPDLC層
14 1/4波長板
 以下、本発明における一実施形態を、図面を参照して説明する。
 (第1の実施形態)
 図1は、本発明の第1の実施形態である照明装置の構成を示す模式図である。
 図1に示すように、照明装置は、光源10、導光板11、13、ホログラフィック層であるHPDLC(ホログラフィック高分子分散液晶)層12および1/4波長板14を有する。光源10は、例えば発光ダイオード(LED)や半導体レーザー(LD)のような半導体光源、あるいは固体光源と呼ばれる光源である。
 導光板11は、HPDLC層12の一方の面側に設けられ、導光板13は、HPDLC層12の他方の面側に設けられている。すなわち、HPDLC層12は、導光板11、13によって挟まれている。
 光源10からの光は、導光板11の端面に供給される。導光板11では、その端面から入射した光は、導光板11内を伝播してHPDLC層12の一方の面に入射する。また、HPDLC層12の一方の面から導光板11内に入射した光は、導光板11内を伝播して、導光板11のHPDLC層12と接する側とは反対の側の面から出射される。
 導光板13のHPDLC層12と接する面を除く面には、反射面が形成されている。図1には、便宜上、反射面13a~13cしか示されていないが、この他、図面に向かって手前側の面および奥側の面に反射面を設けてもよい。導光板13では、HPDLC層12の他方の面から入射した光が各反射面で反射されて再びHPDLC層12の他方の面に入射する。
 導光板11のHPDLC層12の側面全体(図面に向かって手前側の面、奥側の面、左右の面)に反射面を設けてもよい。
 また、導光板11、13およびHPDLC層12の積層構造において、1/4波長板14が形成された面および光源10が設けられた面を除く残りの面全体に反射面を形成してもよく、この反射面に代えて、反射シートで残りの面全体を覆ってもよい。反射面は、Al、Ag等を蒸着することで形成してもよい。
 反射面13a、13bは、導光板13の端面に対して所定の角度で設けられている。具体的には、反射面13a、13bは、HPDLC層12の他方の面に向くように、導光板13の端面に対して傾斜して設けられている。
 図2Aは、HPDLC層12の周期構造の一部を示す斜視図である。図2Aに示すように、HPDLC層12は、液晶分子が一方向に配向された液晶層21と所定の偏光(P偏光またはS偏光)を有する光に対する屈折率が液晶層21と異なる高分子層20とが交互に積層された周期構造を有する。この周期構造の周期は、光源10から出射される光の波長に対応する。周期構造において、高分子層20と液晶層21の界面は複数の湾曲部からなり、各湾曲部の凹面が導光板11の方向に向いている。具体的には、周期構造における各湾曲部の凹面は、光源10が設けられた端面側の方向に向いている。
 HPDLC層12の各湾曲部の凹面において、導光板11から入射した光のうち、第1の偏光(例えばP偏光)の光については、入射角がブラッグ条件を満たす光が導光板11の方向へ反射(回折)され、ブラッグ条件を満たさない光はHPDLC層12を透過する。導光板11から入射した光のうち、偏光状態が第1の偏光と異なる第2の偏光(例えばS偏光)の光は、HPDLC層12を透過する。
 1/4波長板14は、導光板11のHPDLC層12と接する面とは反対の側の面に設けられている。導光板11から1/4波長板14に入射する光のうち、入射角が全反射条件を満たす光は、導光板11の方向へ反射され、それ以外の光は、1/4波長板14を通過する。この1/4波長板14を通過した光が、本実施形態の照明装置の出射光(円偏光)である。
 なお、出射光として直線偏光の光を得る場合は、1/4波長板14から出射した光の光路に、別の1/4波長板を設ける。
 次に、本実施形態の照明装置の動作を具体的に説明する。
 図2B~図2Dは、HPDLC層12の周期構造の作用を説明するための模式図である。図2B~図2Dにおいて、HPDLC層12の一方の面、すなわち導光板11と接する面が図面に向かって上側に位置し、HPDLC層12の他方の面、すなわち導光板13と接する面が図面に向かって下側に位置する。
 図2Bに示すように、HPDLC層12の一方の面から入射した光(図面に向かって右上から左下に向かって伝播する光)のうち、高分子層20と液晶層21の境界面の凹面における入射角がブラッグ条件を満たす第1の偏光の光が、図面に向かって上方向に反射される。この凹面によれば、HPDLC層12の一方の面に対する入射角が異なる複数の第1の偏光の光を、一定の方向(HPDLC層12の一方の面に垂直な直線に沿った方向)にほぼ揃えて反射することができる。これは、HPDLC層12における回折効率の入射角依存性が小さく、HPDLC層12の一方の面から出射される第1の偏光の光の出射角(角度分布)が小さいことを意味する。なお、凹面を用いない構造(平面)の場合は、そのような回折効率の入射角依存性や出射角(角度分布)を実現することは困難である。
 第2の偏光の光は、入射角に関係なく、HPDLC層12をそのまま透過する。すなわち、図2Cに示すように、入射角がブラッグ条件を満たす光について、HPDLC層12は、第1の偏光と第2の偏光を分離する偏光分離手段として作用する。
 図2Dに示すように、HPDLC層12の他方の面から入射した光のうち、高分子層20と液晶層21の境界面の凸面における入射角がブラッグ条件を満たす第1の偏光の光が、図面に向かって下方向に反射される。この凸面における反射によれば、HPDLC層12の他方の面に対する入射角が同じ複数の第1の偏光の光が凸面の異なる位置に入射した場合、それら第1の偏光の光はそれぞれ異なる方向に反射される。このように、HPDLC層12の他方の面から入射した第1の偏光の光を凸面で、凸面に応じた一定角度範囲内に拡散することができる。
 HPDLC層12の他方の面から入射した第1の偏光の光のうち、凸面における入射角がブラッグ条件を満たさない光は、HPDLC層12をそのまま透過する。第2の偏光の光は、入射角に関係なく、HPDLC層12をそのまま透過する。
 図3Aに、光源10から導光板11内に供給された光が1/4波長板14の出射面から出射されるまでの経路を模式的に示す。図3A中、実線の直線で示された矢印はP偏光を示し、破線の直線で示された矢印はS偏光を示す。白抜きの矢印は、P偏光およびS偏光を含む無偏光の光を示す。
 光源10から導光板11内に入射した光は、導光板11内を伝播し、その後、HPDLC層12に入射する。光源10から導光板11を介してHPDLC層12に入射した光のうち、周期構造の境界面の凹面における入射角がブラッグ条件を満たす光(図3Aに示す白抜き矢印)は、P偏光およびS偏光に分離される。分離されたP偏光の光は、凹面によって導光板11の方向へ反射される。分離されたS偏光の光は、HPDLC層12を透過して導光板13に入射する。
 凹面で反射されたP偏光の光は、導光板11を介して1/4波長板14に入射する。1/4波長板14に入射したP偏光の光のうち、全反射条件を満たさない光は、1/4波長板14を通過し、全反射条件を満たす光は、1/4波長板14の出射面(導光板11に接する面とは反対側の面)で、導光板11の方向に反射される。図3Aに示す例では、凹面で反射されたP偏光の1/4波長板14の出射面に対する入射角度は全反射条件を満たさない。したがって、凹面で反射されたP偏光は、1/4波長板14の出射面から出射される。
 HPDLC層12を透過して導光板13に入射したS偏光の光は、反射面13cによってHPDLC層12の方向に反射される。反射面13cで反射されたS偏光の光は、HPDLC層12をそのまま透過する。HPDLC層12を透過したS偏光の光は、導光板11を介して1/4波長板14に入射する。図3Aに示す例では、反射面13cで反射されたS偏光の光の1/4波長板14の出射面に対する入射角度は全反射条件を満たす。したがって、反射面13cからのS偏光の反射光は、1/4波長板14の出射面で導光板11の方向に反射される。
 反射面13cからの反射光のうち、1/4波長板14の出射面で反射されて導光板11に入射する光は、1/4波長板14を2度通過するので、偏光方向がもう一方の偏光方向に変換される。図3Aに示した例では、反射面13cからのS偏光の反射光のうち、1/4波長板14を2回透過した光が、P偏光の光として導光板11を介してHPDLC層12に入射する。
 導光板11からHPDLC層12に入射したP偏光の光のうち、凹面における入射角がブラッグ条件を満たす光は、導光板11の方向に反射され、凹面における入射角がブラッグ条件を満たさない光は、HPDLC層12をそのまま透過する。図3Aに示した例では、HPDLC層12に入射したP偏光の光の凹面における入射角はブラッグ条件を満たす。したがって、HPDLC層12に入射したP偏光の光は、凹面によって導光板11の方向に反射される。
 凹面で反射されたP偏光の光は、導光板11を介して1/4波長板14に入射する。図3Aに示した例では、凹面で反射されたP偏光の1/4波長板14の出射面に対する入射角度は全反射条件を満たさない。したがって、凹面で反射されたP偏光は、1/4波長板14の出射面から出射される。
 反射面13aまたは反射面13cによって光源10側の方向に反射されたP偏光の光(図3Aにおいて、図面に向かって左下から右上に向かうP偏光の光)は、HPDLC層12に入射する。図3Aに示した例では、HPDLC層12に入射したP偏光の光の凸面への入射角はブラッグ条件を満たす。このため、HPDLC層12に入射したP偏光の光は凸面によって導光板13の方向に反射される。導光板13に入射した凸面からの反射光(P偏光)は、反射面13cによって反射されてHPDLC層12に再び入射する。図3Aに示した例では、HPDLC層12に再び入射した反射面13cからの反射光(P偏光)の凸面への入射角はブラッグ条件を満たさない。このため、HPDLC層12に再び入射したP偏光の光は、HPDLC層12を通過し、さらに導光板11を通過して1/4波長板11に入射する。図3Aに示した例では、この導光板11を通過したP偏光の光の1/4波長板11への入射角は全反射条件を満たさない。導光板11を通過したP偏光の光は1/4波長板11をそのまま通過し、照明装置の出射光として、1/4波長板11の出射面から出射される。
 本実施形態の照明装置では、図2B~図2Dに示したようなHPDLC層12の作用によって、光利用効率の向上を図るとともに、出射角(角度分布)を小さくすることができる。
 また、本実施形態の照明装置では、図2B~図2Dに示した作用の他、HPDLC層12の周期構造の境界面の凹面側および凸面側で反射された光の一部を伝播させて再利用(光を循環させて利用すること)することで、光利用効率をさらに向上させることが可能である。
 図3Bに、光源10から導光板11内に供給された光が1/4波長板14および導光板13の間を伝播する様子を模式的に示す。図3B中、実線の直線で示された矢印はP偏光を示し、破線の直線で示された矢印はS偏光を示す。白抜きの矢印は、P偏光およびS偏光を含む無偏光の光を示す。
 HPDLC層12の一方の面に対する入射角度と凹面における入射位置との関係によっては、ブラッグ条件を満たす場合の、凹面で反射された第1の偏光の光が、全反射条件を満たす入射角で1/4波長板14に入射する。この場合は、第1の偏光の光は1/4波長板14の出射面によって導光板11の方向に反射される。本実施形態の照明装置では、図3Bに示すように、HPDLC層12において、光源10側から光源10とは反対側へ伝播する光だけでなく、その反対方向に伝播する光も、凹面側および凸面側で反射させて、1/4波長板14および導光板13の間を伝播させることができる。この伝播過程において、凸面、凹面および反射面13a、13bにおける反射を経ることで、HPDLC層12への入射角度が変化し、さらに、HPDLC層12による偏光分離および1/4波長板14を利用した偏光変換を経ることで、1/4波長板14の出射面から第1の偏光の光を出射させることが可能となる。
 次に、本実施形態の照明装置における、1/4波長板14の出射面から出射される偏光光の出射角を、エテンデューの制約を満たす範囲に設定するための条件について説明する。
 図4は、HPDLC層12の周期構造の凹面におけるブラッグ反射条件を説明するための模式図である。HPDLC層12と導光板13の境界面と、凸面の接線とのなす角度はθrである。HPDLC層12の屈折率をn、周期構造のピッチをd1、反射波長をλ、入射角をθaとする場合、凹面におけるブラッグ反射条件は、以下の式1で与えられる。
Figure JPOXMLDOC01-appb-M000012
ここで、Nは正の整数である。
 周期構造のピッチd1は、以下の式2で与えられる。
Figure JPOXMLDOC01-appb-M000013
 例えば、図4に示す周期構造において、HPDLC層12の一方の面(導光板11側の面)に入射する光の、その一方の面に対する入射角の補角がα1であり、凹面への入射角がθ1である場合、その入射光の凹面におけるブラッグ反射条件は、上記式1において、Nを1とし、入射角θaをθ1とすることで求めることができる。また、HPDLC層12の一方の面(導光板11側の面)に対する入射角の補角がα2(<α1)であり、凹面への入射角がθ2(>θ1)である入射光の、凹面におけるブラッグ反射条件は、上記式1において、Nを2とし、入射角θaをθ2とすることで求めることができる。
 図5は、1/4波長板14から出射される光の出射角とHPDLC層12で反射される光の反射角との関係を説明するための模式図である。φ0は、1/4波長板14から出射される光の、その出射面に対して引いた垂線に対する角度である。φ1は、HPDLC層12からの反射光の、HPDLC層12と導光板11の境界面に対して引いた垂線に対する角度である。
 図5に示すように、1/4波長板14から出射される光の出射角の範囲(出射角度分布)を±φ0とする場合、HPDLC層12から導光板11に入射する反射光の反射角の範囲は±φ1としなければならない。φ1は、以下の式3で与えられる。
Figure JPOXMLDOC01-appb-M000014
ここで、nは導光板11の屈折率である。
 上記式3によれば、例えば、φ0=15°、n=1.5である場合、φ1=9.9°である。
 図6は、HPDLC層12の周期構造における凹面の接線と、HPDLC層12と導光板11、13の境界面とのなす角度の条件を説明するための模式図である。導光板11、13およびHPDLC層12の屈折率はともにnである。
 図6において、α1は、導光板11からHPDLC層12へ入射する光の、導光板11とHPDLC層12の境界面とのなす角度(補角)を示す。β1は、HPDLC層12の凹面における、接線との交点において反射された光の、導光板11とHPDLC層12の境界面とのなす角度を示す。θ1は、導光板11からHPDLC層12に入射する光の凹面に対する入射角を示す。
 また、α2は、導光板13からHPDLC層12へ入射する光の、導光板11とHPDLC層12の境界面とのなす角度(補角)を示す。β2は、HPDLC層12の凸面における、接線との交点において反射された光の、導光板13とHPDLC層12の境界面とのなす角度を示す。θ2は、導光板13からHPDLC層12に入射する光の凹面に対する入射角を示す。
 反射の法則から、導光板11からHPDLC層12に入射角α1で入射する光については、以下のような関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000015
 同様に、導光板13からHPDLC層12に入射角α2で入射する光については、以下のような関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000016
 ここで、反射波長をλ、HPDLC層12の周期構造における層間隔をd1とする。図7に示すように、入射角θ1の入射光と入射角θ2の入射光との間において、λおよびd1は同じであるので、ブラッグ反射の条件から、
Figure JPOXMLDOC01-appb-M000017
の関係が成立する。
 したがって、
Figure JPOXMLDOC01-appb-M000018
の関係が成立する。
 これらの式から、
Figure JPOXMLDOC01-appb-M000019
が得られる。
 角度α1、α2、β2を有する光は、導光板内を伝播する光であるので、
Figure JPOXMLDOC01-appb-M000020
の関係を得る。
 また、HPDLC層12からの出射角度を-φ1から+φ1とするためには、
Figure JPOXMLDOC01-appb-M000021
の関係を満たす必要がある。
 以上から分かるように、出射角度を-φ1から+φ1とするためには、HPDLC層12の接線の角度θrは、
Figure JPOXMLDOC01-appb-M000022
で与えられる。このとき、以下の関係式を満たす必要がある。
Figure JPOXMLDOC01-appb-M000023
 また、式11、式12、式16から、HPDLC層12の周期構造の層間隔d1は、
Figure JPOXMLDOC01-appb-M000024
で与えられる。
 本実施形態の照明装置では、出射角(角度分布)を一定の角度の範囲に制限し(出射条件)、かつ、伝播する光を拡散させる(角度変換条件)ように、HPDLC層12と導光板13の境界面に対する接線の角度θrおよびHPDLC層12の層間隔dが設定される。
 以下、基準となる角度α1、β1を有する光について、角度θ1および間隔dを決定し、その決定した角度θ1に基づいて、上述した出射条件および角度変換条件を満たす角度θrを得る場合の具体例を挙げる。
 (HPDLC層の第1の実施例)
 図8は、HPDLC層12の凹面の入射光に対する条件を説明するための図である。図9は、HPDLC層12の凸面の入射光に対する条件を説明するための図である。
 n=1.5(α1=48.1°)、φ0=±15°(φ1=±9.9°)、λ=530nmである場合において、凹面の導光板13側に端部で、α1=45°の光を反射し、その反射光が、φ1=9.9°の出射角で、HPDLC層12と導光板11の境界面から出射される。この場合、
 θr=17.6°
 β1-90=9.9°
 α2=8.8°
 β2=136.1°となる。層間隔dは、398.2mmである。
 凹面の導光板11側の端部では、α1=40.8°の光を反射し、その反射光が、φ1=5.7°の出射角で、HPDLC層12と導光板11の境界面から出射される。この場合、
 θr=21.8°
 β1-90=5.7°
 α2=4.6°
 β2=131.9°
となる。
 上記から、17.6°≦θr≦21.8°、d=398.2mmを満たすような凹面を有するHPDLC層12を形成することで、出射角φ0を-15°~+15°の範囲内とすることが可能である。
 (HPDLC層の第2の実施例)
 n=1.55(α1<49.8°)、φ0=±15°(φ1=±9.6°)、λ=530nmである場合において、凹面の導光板13側に端部で、α1=45°の光を反射し、その反射光が、φ1=9.6°の出射角で、HPDLC層12と導光板11の境界面から出射される。この場合、
 θr=17.7°
 β1-90=9.6°
 α2=8.7°
 β2=135.9°
となる。層間隔dは、384.8mmである。
 凹面の導光板11側の端部では、α1=39.3°の光を反射し、その反射光が、φ1=3.9°の出射角で、HPDLC層12と導光板11の境界面から出射される。この場合、
 θr=23.4°
 β1-90=3.9°
 α2=3.0°
 β2=130.2°
となる。
 上記から、17.7°≦θr≦23.4°、d=384.8mmを満たすような凹面を有するHPDLC層12を形成することで、出射角φ0を-15°~+15°の範囲内とすることが可能である。
 (HPDLC層の第3の実施例)
 n=1.55(α1<49.8°)、φ0=±15°(φ1=±9.6°)、λ=530nmである場合において、凹面の導光板13側に端部で、α1=49°の光を反射し、その反射光が、φ1=9.6°の出射角で、HPDLC層12と導光板11の境界面から出射される。この場合、
 θr=15.7°
 β1-90=9.6°
 α2=11.2°
 β2=137.4°
となる。層間隔dは、378.2mmである。
 凹面の導光板11側の端部では、α1=41.8°の光を反射し、その反射光が、φ1=2.4°の出射角で、HPDLC層12と導光板11の境界面から出射される。この場合、
 θr=22.9°
 β1-90=2.4°
 α2=4.0°
 β2=130.2°
となる。
 上記から、15.7°≦θr≦22.9°、d=378.2mmを満たすような凹面を有するHPDLC層12を形成することで、出射角φ0を-15°~+15°の範囲内とすることが可能である。
 (HPDLC層の第4の実施例)
 n=1.55(α1<49.8°)、φ0=±15°(φ1=±9.6°)、λ=530nmである場合において、凹面の中央部では、α1=49.0°の光を反射し、その反射光が、φ1=0°(出射面に対して垂直方向に出射されることを意味する)の出射角で、HPDLC層12と導光板11の境界面から出射される。この場合、
 θr=20.5°
 β1-90=0°
 α2=7.4°
 β2=131.6°
となる。層間隔dは、365.1mmである。
 凹面の導光板13側に端部では、α1=49.8°の光を反射し、その反射光が、φ1=0.8°の出射角で、HPDLC層12と導光板11の境界面から出射される。この場合、
 θr=19.7°
 β1-90=0.8°
 α2=8.2°
 β2=132.4°
となる。
 凹面の導光板11側の端部では、α1=47.7°の光を反射し、その反射光が、φ1=-1.3°の出射角で、HPDLC層12と導光板11の境界面から出射される。この場合、
 θr=21.8°
 β1-90=-1.3°
 α2=6.1°
 β2=130.3°
となる。
 上記から、19.7°≦θr≦21.8°、d=378.2mmを満たすような凹面を有するHPDLC層12を形成することで、出射角φ0を-15°~+15°の範囲内とすることが可能である。
 次に、図1に示したHPDLC層12の作製方法を説明する。
 図10は、HPDLC層12の作製方法を説明するための模式図である。基板101、102の間にHPDLC前駆体100を挟み、基板101側からレーザ光104を照射するとともに、基板102側からマイクロレンズ103を介してレーザ光105を照射する。レーザ光104、105は、P偏光またはS偏光の光である。
 HPDLC前駆体100は、高分子層前駆体、液晶および開始剤を含む。液晶は、例えばネマティック液晶である。開始剤は、増感色素を含んでいてもよい。
 高分子層前駆体は、光硬化モノマー(または光硬化モノマーおよびオリゴマー)、光硬化液晶性モノマーおよび光硬化高分子液晶前駆体のいずれかの材料、または、それらの組み合わせによって構成される。光硬化液晶性モノマーは、光硬化前は液晶性を有するが、光硬化後は液晶性を持たない。光硬化高分子液晶前駆体は、光硬化後、高分子液晶となる。
 開始剤を除いた場合の、高分子層前駆体の重量比は80~40%であり、液晶の重量比は20~60%である。
 レーザ光104が参照光であり、このレーザ光104とマイクロレンズ103を介して入射するレーザ光105とを干渉させ、その状態(干渉縞)をHPDLC前駆体100に記録する。レーザ光104、105の波長、レーザ光104、105のHPDLC前駆体100への入射角度、マイクロレンズの凸面の形状(曲率等)等を適宜に設定し、液晶層中の液晶分子を一方向に配向することで、図1に示したHPDLC層12を得る。
 液晶分子が一方向に配向したHPDLC層12は、液晶素子の作製と同様の種々の方法で作成することができる。作成手順の一例を以下に簡単に説明する。
 まず、導光板11、13のHPDLC層12が接する面に、配向膜(例えば、ポリイミド)を塗布し、ラビング処理等の配向処理を行う。
 次に、HPDLC前駆体を配向処理を行った面で挟み込み、導光板11、13間でHPDLC前駆体(液晶成分)を配向させる。
 最後に、HPDLC前駆体(液晶成分)を配向させた後、干渉露光によりHPDLC層12を形成する。
 本実施形態の照明装置において、導光板11の、光源10が形成された端面と対向する端面に反射面を形成した場合、導光板11を側面から見た場合に、導光板11の形状をくさび形状としてもよい。くさび形状は、光源10が形成された端面から反射面が形成された端面に向かって導光板11の厚さが徐々に薄くなるような形状である。
 反射面13a、13bは、反射面13cに垂直な面に対して交差するように形成されているが、これに限定されない。反射面13a、13bは、反射面13cに垂直な面であってもよい。
 反射面13cは、断面形状が三角状の凸部を少なくとも一つ有していてもよい。この凸部によって角度変換を行うことができる。
 (第2の実施形態)
 図11は、本発明の第2の実施形態である照明装置のHPDLC層の構成を示す模式図である。
 本実施形態の照明装置は、HPDLC層が異なる以外は、第1の実施形態の照明装置と同じ構成である。以下では、HPDLC層の構成を主に説明し、他の部分についての説明は省略する。
 図11に示すように、HPDLC層120は、周期構造121、122を多重化した構造である。周期構造121は、第1の実施形態の照明装置におけるHPDLC層12の周期構造と同じである。
 周期構造122は、高分子層と液晶層が交互に積層されたものである。周期構造121と同様、周期構造122においても、高分子層と液晶層の境界面は複数の湾曲部からなり、各湾曲部の凹面が導光板11の方向(図1に示す光源10の方向)に向いている。周期構造121、122は、互いの高分子層と液晶層が交差するように形成されている。
 周期構造121は、第1の実施形態で説明した出射条件および角度変換条件を満たす。
 一方、周期構造122は、出射条件のみを満たす。具体的には、周期構造122は、
Figure JPOXMLDOC01-appb-M000025
の出射条件を満たす。また、周期構造122の層間隔d2は、
Figure JPOXMLDOC01-appb-M000026
の条件を満たす。
 本実施形態の照明装置では、周期構造121によって、出射角が制限されるとともに、伝播する光が拡散される。周期構造121は、出射条件と角度変換条件をともに満たす必要があるため、出射角φ0が-15°~+15°の範囲となるように設定しても、その角度範囲の全体にわたって出射光を得ることは困難である。
 これに対して、周期構造122は、角度変換条件を考慮する必要がなく、出射条件のみを考慮すればよい。よって、出射角φ0が-15°~+15°の範囲となるように設定した場合、その角度範囲の全体にわたって出射光を得ることができる。
 このように、本実施形態によれば、周期構造122を設けたことで、第1の実施形態のものと比較して、出射角φ0が-15°~+15°の範囲となるように設定した場合に、その角度範囲全体にわたって出射光を得ることができるので、さらに光利用効率を向上することができる。
 以下、周期構造122の具体例を挙げる。
 n=1.55(α1<49.8°)、φ0=±15°(φ1=±9.6°)、λ=530nmである場合において、α1=45°の光を反射し、その反射光が、φ1=9.6°の出射角で、HPDLC層120と導光板11の境界面から出射する場合、周期構造121は、39.3°<α1<45°の条件を満たすように構成する。
 一方、周期構造122は、α1≦39.3°を満たす光をφ0=±15°(φ1=±9.6°)で、HPDLC層120と導光板11の境界面から出射するように構成する。
 図12は、周期構造122の出射条件を説明するための模式図である。凹面の中央部では、α1=29.7°の光を反射し、その反射光が、φ1=0°の出射角(出射面に垂直な方向に出射されることを示す)で、HPDLC層120と導光板11の境界面から出射される。この場合、
 θr=30.2°
 β1-90=0°
となる。層間隔dは、197.7mmである。
 凹面の導光板13側の端部では、α1=39.3°の光を反射し、その反射光が、φ1=9.6°の出射角で、HPDLC層120と導光板11の境界面から出射される。この場合、
 θr=20.6°
 β1-90=9.6°
となる。
 凹面の導光板11側の端部では、α1=20.1°の光を反射し、その反射光が、φ1=-9.6°の出射角で、HPDLC層120と導光板11の境界面から出射される。この場合、
 θr=39.8°
 β1-90=-9.6°
となる。
 上記のから、20.6°≦θr≦39.8°、d=197.7mmを満たすように周期構造122を形成することで、出射角φ0を-15°~+15°の範囲内とすることが可能である。
 本実施形態の照明装置において、周期構造122は、その凹面が周期構造121の凹面の向きとは逆の向きとなるように形成してもよい。
 また、周期構造121、122をそれぞれ複数設けてもよい。
 また、周期構造122を、出射条件ではなく、角度変換条件のみを満たすように構成してもよい。この場合、周期構造122は、
Figure JPOXMLDOC01-appb-M000027
の角度変換条件を満たす。また、周期構造122の層間隔d3は、
Figure JPOXMLDOC01-appb-M000028
の条件を満たす。
 上記の構成によれば、周期構造122における拡散をより効率的に行うことができるため、第1の実施形態のものと比較して、光利用効率をさらに向上することができる。
 (第3の実施形態)
 図13は、本発明の第3の実施形態である照明装置の構成を示す模式図である。
 図13に示すように、照明装置は、光源10a、10b、導光板11、13、HPDLC層220および1/4波長板14を有する。導光板11、13および1/4波長板14は、第1の実施形態のものと同じである。
 光源10a、10bは、例えば発光ダイオード(LED)や半導体レーザー(LD)のような半導体光源、あるいは固体光源と呼ばれる光源である。光源10a、10bから出射される光の波長は略同じである。光源10aは、導光板11の一方の端面に設けられている。光源10bは、導光板11の他方の端面(光源10aが設けられた端面と対向する端面)に設けられている。
 HPDLC層220は、導光板11、13によって挟まれている。導光板11では、その端面から入射した光は、導光板内を伝播してHPDLC層220の一方の面に入射する。また、HPDLC層220の一方の面から導光板11に入射した光は、導光板11を通過して1/4波長板14に入射する。
 導光板13では、HPDLC層220の他方の面から入射した光が各反射面13a~13cで反射されて再びHPDLC層220の他方の面に入射する。
 HPDLC層220は、第1の高分子層と第1の液晶層が交互に積層された周期構造221と、第2の高分子層と第2の液晶層が交互に積層された周期構造222とを有する。周期構造221、222の周期は同じであって、光源10a、10bから出射される光の波長に対応する。
 周期構造221において、第1の高分子層と第1の液晶層の境界面は複数の湾曲部からなり、各湾曲部の凹面が導光板11の方向に向いている。これと同様に、周期構造222においても、第2の高分子層と第2の液晶層の境界面は複数の湾曲部からなり、各湾曲部の凹面が導光板11の側に向いている。具体的には、周期構造221における各湾曲部の凹面は、光源10aが設けられた端面側の方向に向いており、周期構造222における各湾曲部の凹面は光源10bが設けられた端面側の方向に向いている。
 周期構造221、222は、互いの高分子層および液晶層が交差するように形成されている。具体的には、第1の高分子層および第1の液晶層の境界面を構成する各湾曲部の凸面に接する第1の平面と、第2の高分子層および第2の液晶層の境界面を構成する各湾曲部の凸面に接する第2の平面とが交差する。第1の平面とHPDLC層220の一方の面とのなす角度と、第2の平面とHPDLC層220の一方の面とのなす角度とは、略同じである。
 本実施形態の照明装置において、周期構造221、222は、第1の実施形態の照明装置におけるHPDLC層12の周期構造と同様、図2B~図2Dで説明したような作用を有する。
 さらに、図14に示すように、光源10aから導光板11を介してHPDLC層220の一方の面に入射した光のうち、第1の偏光の光100aは、主に周期構造221によって導光板11の方向へ反射される。ここで、光100aは、周期構造221の凹面における入射角がブラッグ条件を満たす。
 また、光源10bから導光板11を介してHPDLC層220の一方の面に入射した光のうち、第1の偏光の光100bは、主に周期構造222によって導光板11の方向へ反射される。ここで、光100bは、周期構造222の凹面における入射角がブラッグ条件を満たす。
 このように、光源10aの方向に凹面が向くように周期構造221を形成し、光源10bの方向に凹面が向くように周期構造222を形成することで、光源10a、10bからの光を効率良く反射して出射させることができる。
 また、導光板13からHPDLC層220の他方の面に入射する光のうち、光源10a側から光源10b側の方向へ伝播する光は、主に周期構造222によって拡散され、光源10b側から光源10a側の方向へ伝播する光は、主に周期構造221によって拡散される。このように、互いに逆向きに設けられた凸面で、効率良く拡散することができる。
 本実施形態の照明装置において、周期構造221の出射条件および角度変換条件は、周期構造222と異なっていてもよい。
 例えば、n=1.55(α1<49.8°)、φ0=±15°(φ1=±9.6°)、λ=530nmである場合において、α1=49°の光を反射し、その反射光が、φ1=9.6°の出射角で、HPDLC層220と導光板11の境界面から出射するように、周期構造221を構成する。また、周期構造222は、α1=49°の光を反射し、その反射光が、φ1=0°の出射角で、HPDLC層220と導光板11の境界面から出射するように構成する。
 上記の構成によれば、9.6°<φ1<2.4°、-1.3°<φ1<1.3°、-9.6°<φ1<-2.4°の角度範囲で出射することができる。
 本実施形態の照明装置において、周期構造221、222はいずれも出射条件および角度変換条件を満たすものとしているが、一方の周期構造を、出射条件または角度変換条件のみを満たすように構成してもよい。
 次に、第3の実施形態の照明装置のHPDLC層の作製方法を説明する。
 図15は、そのHPDLC層の作製方法を説明するための模式図である。このHPDLC層の作製においても、図10に示したHPDLC前駆体100を用いる。レーザ光104~107は、P偏光またはS偏光の光である。
 まず、基板101側からレーザ光104を照射するとともに、基板102側からマイクロレンズ103を介してレーザ光105を照射する(第1の記録状態)。この第1の記録状態において、レーザ光104が参照光であり、このレーザ光104とマイクロレンズ103を介して入射するレーザ光105とを干渉させ、その状態(干渉縞)をHPDLC前駆体100に記録する。
 レーザ光104、105の照射を止めた後、基板101側からレーザ光106を照射するとともに、基板102側からマイクロレンズ103を介してレーザ光107を照射する(第2の記録状態)。この第2の記録状態において、レーザ光106が参照光であり、このレーザ光106とマイクロレンズ103を介して入射するレーザ光107とを干渉させ、その状態(干渉縞)をHPDLC前駆体100に記録する。
 レーザ光104~107の波長、レーザ光104~107のHPDLC前駆体100への入射角度、マイクロレンズの凸面の形状(曲率等)等を適宜に設定し、第1および第2の記録状態を時分割で切り替えて、液晶層中の液晶分子を一方向に配向する。これにより、図13に示したHPDLC層220を形成することができる。
 なお、図11に示したHPDLC層120を形成する場合は、図13に示した作製手順において、第2の記録状態におけるレーザ光106、107のHPDLC前駆体100への入射角度を、HPDLC層120の周期構造122に対応するように変更する。
 以上説明した各実施形態の照明装置は、本発明の一例であり、その構成は、発明の趣旨を逸脱しない範囲で適宜に変更することができる。
 例えば、第1の実施形態の照明装置において、図16に示すように、導光板11の端面にプリズム面11aを形成してもよい。プリズム面11aは、断面形状が三角形状の複数のプリズム部からなる。
 プリズム部の一辺と導光板11の端面(光源10の発光面に平行な面)とのなす角度θを、例えば7°とする。この場合は、光源10からの正面出射(発光面に垂直な方向に出射)を導光板11の端面に対して5°だけ傾斜させて、前述の角度α2の範囲内に合わる。これにより、HPDLC層の第2の実施例に最適な構成(17.7°≦θr≦23.4°、d=384.8mm)を提供することができる。
 図16に示したプリズム面11aを、第2および第3の実施形態の照明装置に適用してもよい。この場合は、プリズム面11aは、光源10a、10bが設けられた端面にそれぞれ形成される。
 第3の実施形態において、光源からの光を導光板を介して導光板11の端面に入射させることもできる。図17Aおよび図17B、第3の実施形態の照明装置の変形例を示すものであって、図17Aは側面図、図17Bは平面図である。図17Aおよび図17Bにおいて、導光板11、13、HPDLC層12、1/4波長板14は第3の実施形態で説明したものと同じである。
 図17Aおよび図17Bに示すように、光源30a、30bからの光を、プリズム導光板31aを介して導光板11の一方の端面に供給し、光源30c、30dからの光を、プリズム導光板31bを介して導光板11の他方の端面に供給する。
 光源30aは、プリズム導光板31aの一方の端面に形成され、光源30bは、プリズム導光板31aの他方の端面に形成されている。プリズム導光板31aは、両端面から供給された光を導光板11の端面の方向へ曲げるためのプリズム部を有する。
 光源30cは、プリズム導光板31bの一方の端面に形成され、光源30dは、プリズム導光板31bの他方の端面に形成されている。プリズム導光板31bは、両端面から供給された光を導光板11の端面の方向へ曲げるためのプリズム部を有する。
 図17Aおよび図17Bに示した構成によれば、1/4波長板14の出射面の面積を大きくすることなく、4つの光源30a~30dからの光を導光板11に供給することができる。よって、エテンデューの制約下で、1/4波長板14の出射面からの出射光の光量を増加することができる。
 図17Aおよび図17Bに示した構成は、第1および第2の実施形態にも適用することができる。第1の実施形態においては、導光板11の一方の端面において、光源30a、30bおよびプリズム導光板31aを用いる。
 また、第1乃至第3の実施形態の照明装置において、HDLPC層は、光の三原色である赤色、緑色および青色の各色に対応する周期構造を有していてもよい。この場合は、光源として、赤色、緑色および青色の各色の光源(例えばLED)を設ける。HDLPC層は、層間隔が赤色光源の波長に対応する赤色用の周期構造と、層間隔が緑色光源の波長に対応する緑色用の周期構造と、層間隔が青色光源の波長に対応する青色用の周期構造とを有する。このような構成によれば、1/4波長板14から、赤色、緑色および青色の所定の偏光(P偏光またはS偏光)の光(白色光に対応する)が出射される。
 以上説明した本発明の照明装置は、液晶プロジェクタに代表される投射型表示装置に適用することができる。
 図18は、本発明の照明装置を備える投射型表示装置の構成を示す模式図である。図18を参照すると、投射型表示装置は、照明装置300~302、表示素子である液晶素子303~305、クロスダイクロイックミラー306および投射光学系307を有する。
 照明装置300~302はいずれも、前述した各実施形態の照明装置のいずれかによって構成される。照明装置300の光源として、青色LEDが用いられる。照明装置301の光源として、緑色LEDが用いられる。照明装置302の光源として、赤色LEDが用いられる。
 なお、図18には示されていないが、照明装置300の1/4波長板(例えば図1に示した1/4波長板14)と液晶素子303との間には、別の1/4波長板が設けられている。これと同様に、照明装置301の1/4波長板と液晶素子304との間、および照明装置302の1/4波長板と液晶素子305との間にも、別の1/4波長板が設けられている。
 別の1/4波長板は、各照明装置300~302内に設けてもよい。この場合は、照明装置300~302のそれぞれにおいて、1/4波長板の出射面と対向するように別の1/4波長板を設ける。
 照明装置300から出射された青色の光は、液晶素子303に照射される。液晶素子303は、不図示の液晶駆動回路によって駆動され、外部から供給された映像信号に基づく青色用の画像を形成する。
 照明装置301から出射された緑色の光は、液晶素子304に照射される。液晶素子304は、不図示の液晶駆動回路によって駆動され、外部から供給された映像信号に基づく緑色用の画像を形成する。
 照明装置302から出射された赤色の光は、液晶素子305に照射される。液晶素子305は、不図示の液晶駆動回路によって駆動され、外部から供給された映像信号に基づく赤色用の画像を形成する。
 液晶素子303~305によって形成された各色の画像光は、クロスダイクロイックミラー306を介して投射光学系307に入射する。投射光学系307は、液晶素子303~305によって形成された各色の画像を不図示のスクリーン(またはスクリーンに代わる部材)上に投射する。
 別の投射型表示装置は、本発明の照明装置として、1/4波長板14から、赤色、緑色および青色の所定の偏光(P偏光またはS偏光)の光(白色光に対応する)が出射される照明装置を備える。この照明装置からの出射光が表示素子(例えば液晶素子)に照射される。表示素子は、外部からの映像信号に基づく赤色、緑色および青色の画像を時分割で表示する。表示素子に形成された各色の画像が投射光学系によって投射される。
 上記の別の投射型表示装置においても、別の1/4波長板が照明装置と表示素子(液晶素子)との間に設けられている。別の1/4波長板は、照明装置内に設けてもよい。この場合は、照明装置において、1/4波長板14の出射面と対向するように別の1/4波長板を設ける。
 本発明の照明装置は、上述した投射型表示装置の他、液晶ディスプレイのバックライトとして用いることができる。
 以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成および動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解し得る様々な変更を行うことができる。
 例えば、各実施形態の照明装置では、HPDLC層の各湾曲部の凹面は光源側を向くように設けられているが、これに限定されない。各湾曲部の凹面が出射面側を向き、かつ、各湾曲部の凹面に接する平面、または、HPDLC層の高分子層と液晶層の界面が、1/4波長板の面(HPDLC層の出射面側の導光板との境界面)に対して傾斜するといった条件を満たすのであれば、各湾曲部の凹面はどのように設けられてもよい。
 図19に、第1の実施形態の照明装置の変形例として、各湾曲部の凹面の向きが第1の実施形態の照明装置と異なる照明装置の構成を示す。この変形例では、HPDLC層12の各湾曲部の凹面は、導光板11の光源10aが設けられた端面とは反対側に位置する端面の方向を向いている。図19において、実線の直線で示された矢印はP偏光を示し、破線の直線で示された矢印はS偏光を示す。白抜きの矢印は、P偏光およびS偏光を含む無偏光の光を示す。
 図19に示した代表的な光の経路から分かるように、この変形例の構成においても、第1の実施形態の照明装置と同様な作用効果を得ることができる。
 また、各実施形態の照明装置や変形例において、光源は、導光板11の1つの端面、対向する2つの端面、または各端面に設けることができる。
 以上説明した本発明によれば、出射光の角度広がり(出射角)を、エテンデューの制約に基づく光利用可能な範囲内に収めることができるので、光利用効率を向上することができる。
 また、ホログラフィック層の高分子層と液晶層の境界面を湾曲させたことにより、ホログラムの入射角依存性を抑制することができるので、光利用効率をさらに向上することができる。
 さらに、第1および第2の導光板の間を伝播する光を湾曲した部分の凸面で拡散させるとともに、1/4波長板を介した偏光変換を行うことによって、光を循環させて利用することができるので、光利用効率をさらに向上させることができる。
 この出願は、2009年12月11日に出願された日本出願特願2009-281721を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (17)

  1.  少なくとも1つの光源と、
     前記光源から出射された光が端面に供給される第1の導光板と、
     前記第1の導光板上に設けられた1/4波長板と、
     前記第1の導光板の、前記1/4波長板側とは反対の側の面に設けられたホログラフィック層と、
     前記ホログラフィック層の、前記第1の導光板側とは反対の側の面に設けられ、前記ホログラフィック層から入射した光を前記ホログラフィック層へ戻す第2の導光板と、を有し、
     前記ホログラフィック層は、液晶分子が一方向に配向された第1の液晶層と所定の偏光を有する光に対する屈折率が前記第1の液晶層と異なる第1の高分子層とが交互に積層された第1の周期構造を有し、
     前記第1の高分子層と前記第1の液晶層の第1の界面は前記1/4波長板の面に対して傾斜し、該第1の界面は湾曲しており、該湾曲した部分の凹面側が、前記第1の導光板側に位置する、照明装置。
  2.  前記ホログラフィック層は、液晶分子が一方向に配向された第2の液晶層と前記所定の偏光を有する光に対する屈折率が前記第2の液晶層と異なる第2の高分子層とが交互に積層された第2の周期構造を、さらに有し、
     前記第2の高分子層と前記第2の液晶層の第2の界面は前記第1の周期構造の前記第1の界面と交差し、該第2の界面は湾曲しており、該湾曲した部分の凹面側が、前記第1の導光板側に位置する、請求の範囲第1項に記載の照明装置。
  3.  前記第1および第2の周期構造の湾曲した部分の凹面がともに、前記第1の導光板の所定の端面側の方向に向いている、請求の範囲第2項に記載の照明装置。
  4.  前記1/4波長板から出射される光の出射角をφ0、前記第1の導光板から前記ホログラフィック層に入射する入射光の前記第1および第2の周期構造の凹面における入射角をθ1、該入射角θ1の補角をα1、前記入射光が前記第1および第2の周期構造の凹面によって前記第1の導光板の方向に反射された反射光の、前記ホログラフィック層と前記第1の導光板の境界面に対して引いた垂線に対する角度をφ1、前記反射光の前記第1の導光板と前記ホログラフィック層の境界面とのなす角度をβ1、前記ホログラフィック層と前記第2の導光板の境界面と前記第1および第2の周期構造の凹面の前記入射光の入射点における接線とのなす角度をθrとするとき、
     前記第1および第2の周期構造は、
    Figure JPOXMLDOC01-appb-M000001
    の出射条件を満たし、
     前記第1および第2の周期構造の前記湾曲した部分の凸面の前記入射点に対応する点において反射された光の、前記第2の導光板と前記ホログラフィック層の境界面とのなす角度をβ2、前記第2の導光板から前記ホログラフィック層に入射する光の、前記凸面の前記入射点に対応する点における入射角をθ2、該入射角の補角をα2とするとき、
     前記第1の周期構造は、さらに、
    Figure JPOXMLDOC01-appb-M000002
    の角度変換条件を満たす、請求の範囲第2項または第3項に記載の照明装置。
  5.  前記ホログラフィック層の屈折率をn、前記反射光の波長をλとするとき、
     前記第1の液晶層と前記第1の高分子層の層間隔d1は、
    Figure JPOXMLDOC01-appb-M000003
    で与えられ、
     前記第2の液晶層と前記第2の高分子層の層間隔d2は、
    Figure JPOXMLDOC01-appb-M000004
    で与えられる、請求の範囲第4項に記載の照明装置。
  6.  前記1/4波長板から出射される光の出射角をφ0、前記第1の導光板から前記ホログラフィック層に入射する入射光の前記第1および第2の周期構造の凹面における入射角をθ1、該入射角θ1の補角をα1、前記入射光が前記第1および第2の周期構造の凹面によって前記第1の導光板の方向に反射された反射光の、前記ホログラフィック層と前記第1の導光板の境界面に対して引いた垂線に対する角度をφ1、前記反射光の前記第1の導光板と前記ホログラフィック層の境界面とのなす角度をβ1、前記ホログラフィック層と前記第2の導光板の境界面と前記第1および第2の周期構造の凹面の前記入射光の入射点における接線とのなす角度をθrとするとき、
     前記第1の周期構造は、
    Figure JPOXMLDOC01-appb-M000005
    の出射条件を満たし、
     前記第1および第2の周期構造の前記湾曲した部分の凸面の前記入射点に対応する点において反射された光の、前記第2の導光板と前記ホログラフィック層の境界面とのなす角度をβ2、前記第2の導光板から前記ホログラフィック層に入射する光の、前記凸面の前記入射点に対応する点における入射角をθ2、該入射角の補角をα2とするとき、
     前記第1および第2の周期構造は、
    Figure JPOXMLDOC01-appb-M000006
    の角度変換条件を満たす、請求の範囲第2項または第3項に記載の照明装置。
  7.  前記ホログラフィック層の屈折率をn、前記反射光の波長をλとするとき、
     前記第1の液晶層と前記第1の高分子層の層間隔d1は、
    Figure JPOXMLDOC01-appb-M000007
    で与えられ、
     前記第2の液晶層と前記第2の高分子層の層間隔d3は、
    Figure JPOXMLDOC01-appb-M000008
    で与えられる、請求の範囲第6項に記載の照明装置。
  8.  前記光源は、前記第1の導光板の対向する端面のそれぞれに形成されており、
     前記第1の周期構造の湾曲した部分の凹面が、前記対向する端面の一方の側の方向に向いており、
     前記第2の周期構造の湾曲した部分の凹面が、前記対向する端面の他方の側の方向に向いている、請求の範囲第2項に記載の照明装置。
  9.  前記1/4波長板から出射される光の出射角をφ0、前記第1の導光板から前記ホログラフィック層に入射する入射光の前記第1および第2の周期構造の凹面における入射角をθ1、該入射角θ1の補角をα1、前記入射光が前記第1および第2の周期構造の凹面によって前記第1の導光板の方向に反射された反射光の、前記ホログラフィック層と前記第1の導光板の境界面に対して引いた垂線に対する角度をφ1、前記反射光の前記第1の導光板と前記ホログラフィック層の境界面とのなす角度をβ1、前記ホログラフィック層と前記第2の導光板の境界面と前記第1および第2の周期構造の凹面の前記入射光の入射点における接線とのなす角度をθrとするとき、
     前記第1および第2の周期構造は、
    Figure JPOXMLDOC01-appb-M000009
    の出射条件を満たし、
     前記第1および第2の周期構造の前記湾曲した部分の凸面の前記入射点に対応する点において反射された光の、前記第2の導光板と前記ホログラフィック層の境界面とのなす角度をβ2、前記第2の導光板から前記ホログラフィック層に入射する光の、前記凸面の前記入射点に対応する点における入射角をθ2、該入射角の補角をα2とするとき、
     前記第1および第2の周期構造は、さらに、
    Figure JPOXMLDOC01-appb-M000010
    の角度変換条件を満たす、請求の範囲第2項または第8項に記載の照明装置。
  10.  前記ホログラフィック層の屈折率をn、前記反射光の波長をλ、前記第1の液晶層と前記第1の高分子層の層間隔および前記第2の液晶層と前記第2の高分子層の層間隔をともにd1とするとき、
    Figure JPOXMLDOC01-appb-M000011
    の関係を満たす、請求の範囲第9項に記載の照明装置。
  11.  前記光源として、出射される光の色が異なる複数の光源が設けられており、
     前記第1の周期構造は、前記複数の光源の色毎に設けられている、請求の範囲第1項に記載の照明装置。
  12.  前記光源として、出射される光の色が異なる複数の光源が設けられており、
     前記第1および第2の周期構造は、前記複数の光源の色毎に設けられている、請求の範囲第2項から第10項のいずれか1項に記載の照明装置。
  13.  前記光源は、前記第1の導光板の対向する端面のそれぞれに形成されている、請求の範囲第1項から第7項のいずれか1項に記載の照明装置。
  14.  前記1/4波長板から出射された光が入射する別の1/4波長板を、さらに有する、請求の範囲第1項から第10項、第13項のいずれか1項に記載の照明装置。
  15.  前記1/4波長板から出射された光が入射する別の1/4波長板を、さらに有する、請求の範囲第11項または第12項に記載の照明装置。
  16.  請求の範囲第11項、第12項および第15項のいずれか1項に記載の照明装置と、
     前記照明装置から出射された光が照射される表示素子と、
     前記表示素子によって形成された画像を投射する投射光学系と、を有する、投射型表示装置。
  17.  請求の範囲第1項から第10項、第13項および第14項のいずれか1項に記載の照明装置より構成される、赤色、緑色、青色の各色の照明装置と、
     前記赤色の照明装置から出射された赤色の光が照射される第1の表示素子と、
     前記緑色の照明装置から出射された緑色の光が照射される第2の表示素子と、
     前記青色の照明装置から出射された青色の光が照射される第3の表示素子と、
     前記第1乃至第3の表示素子で表示される各色の画像を投射する投射光学系と、を有する、投射型表示装置。
PCT/JP2010/071087 2009-12-11 2010-11-26 照明装置およびそれを用いた投射型表示装置 WO2011070921A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011545167A JP5741445B2 (ja) 2009-12-11 2010-11-26 照明装置およびそれを用いた投射型表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-281721 2009-12-11
JP2009281721 2009-12-11

Publications (1)

Publication Number Publication Date
WO2011070921A1 true WO2011070921A1 (ja) 2011-06-16

Family

ID=44145468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071087 WO2011070921A1 (ja) 2009-12-11 2010-11-26 照明装置およびそれを用いた投射型表示装置

Country Status (2)

Country Link
JP (1) JP5741445B2 (ja)
WO (1) WO2011070921A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016122149A (ja) * 2014-12-25 2016-07-07 日亜化学工業株式会社 光源装置及び光源装置を備えたプロジェクタ
JP2019512732A (ja) * 2016-03-09 2019-05-16 レオンハード クルツ シュティフトゥング ウント コー. カーゲー セキュリティエレメント及びセキュリティエレメントの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174232A (ja) * 1997-12-12 1999-07-02 Sharp Corp 拡散反射板、および、それを用いたプロジェクタ用スクリーンならびに液晶表示素子
JP2002049037A (ja) * 2000-08-03 2002-02-15 Hitachi Ltd 照明装置及びそれを用いた液晶表示装置
JP2003015509A (ja) * 2001-06-27 2003-01-17 Sony Corp 画像露光記録装置及び画像露光記録方法
JP2003207646A (ja) * 2000-12-28 2003-07-25 Fuji Electric Co Ltd 導光板及びこの導光板を備えた液晶表示装置
JP2005504413A (ja) * 2001-09-26 2005-02-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 導波器、エッジ照射型照明装置及びそのような導波器又は装置を有する表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356757A (ja) * 1999-04-16 2000-12-26 Matsushita Electric Ind Co Ltd 偏光照明装置
JP2002023107A (ja) * 2000-07-05 2002-01-23 Sony Corp 画像表示素子及び画像表示装置
JP2002090538A (ja) * 2000-09-18 2002-03-27 Sony Corp 偏光分離素子及び画像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174232A (ja) * 1997-12-12 1999-07-02 Sharp Corp 拡散反射板、および、それを用いたプロジェクタ用スクリーンならびに液晶表示素子
JP2002049037A (ja) * 2000-08-03 2002-02-15 Hitachi Ltd 照明装置及びそれを用いた液晶表示装置
JP2003207646A (ja) * 2000-12-28 2003-07-25 Fuji Electric Co Ltd 導光板及びこの導光板を備えた液晶表示装置
JP2003015509A (ja) * 2001-06-27 2003-01-17 Sony Corp 画像露光記録装置及び画像露光記録方法
JP2005504413A (ja) * 2001-09-26 2005-02-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 導波器、エッジ照射型照明装置及びそのような導波器又は装置を有する表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016122149A (ja) * 2014-12-25 2016-07-07 日亜化学工業株式会社 光源装置及び光源装置を備えたプロジェクタ
JP2019512732A (ja) * 2016-03-09 2019-05-16 レオンハード クルツ シュティフトゥング ウント コー. カーゲー セキュリティエレメント及びセキュリティエレメントの製造方法

Also Published As

Publication number Publication date
JP5741445B2 (ja) 2015-07-01
JPWO2011070921A1 (ja) 2013-04-22

Similar Documents

Publication Publication Date Title
US7859610B2 (en) Planar lighting and LCD device with a laser light source emitting a linearly-polarized laser beam, optical member to parallelize the beam and a plate-shaped light guide for emitting part of the beam
JP5528623B2 (ja) インコヒーレント化デバイス、およびこれを用いた光学装置
US8233117B2 (en) Wavelength separator, planar illumination device and liquid crystal display device using the wavelength separator
JP6023775B2 (ja) 表示モジュールおよび導光装置
JP5590038B2 (ja) 光学素子、光源装置、及び投射型表示装置
WO2010061699A1 (ja) 薄型バックライトシステムおよびこれを用いた液晶表示装置
WO2010137263A1 (ja) 液晶表示装置
JP5660047B2 (ja) 光学素子、光源装置及び投射型表示装置
JP2007299755A (ja) 偏光導光板ユニット、それを採用したバックライトユニット、及びディスプレイ装置
JP2007087647A (ja) 導光板、バックライトおよび液晶表示装置
US8994055B2 (en) Light source and projection-type display device
JP2010078795A (ja) 液晶表示装置
US20210080629A1 (en) Light source module
CN110794644B (zh) 光学装置及其制造方法
JP3688845B2 (ja) 液晶表示装置
JP5741445B2 (ja) 照明装置およびそれを用いた投射型表示装置
US8866172B2 (en) Light emitting element and image display apparatus using the light emitting element
CN220105333U (zh) 照明波导及光机
CN216956426U (zh) 照明系统以及光机系统
JP2013130810A (ja) 偏光解消素子、光計測機器および投射型表示装置
WO2011125479A1 (ja) 偏光導光板、照明装置および投射型表示装置
WO2011118563A1 (ja) 偏光導光板、照明装置および投射型表示装置
JPH08220531A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835843

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545167

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835843

Country of ref document: EP

Kind code of ref document: A1