WO2011070783A1 - 情報表示装置及び情報表示方法 - Google Patents

情報表示装置及び情報表示方法 Download PDF

Info

Publication number
WO2011070783A1
WO2011070783A1 PCT/JP2010/007156 JP2010007156W WO2011070783A1 WO 2011070783 A1 WO2011070783 A1 WO 2011070783A1 JP 2010007156 W JP2010007156 W JP 2010007156W WO 2011070783 A1 WO2011070783 A1 WO 2011070783A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
optical flow
image
vehicle
display
Prior art date
Application number
PCT/JP2010/007156
Other languages
English (en)
French (fr)
Inventor
健士 野上
和彦 岩井
有紀 脇
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/255,296 priority Critical patent/US8536995B2/en
Priority to EP10835706.2A priority patent/EP2511893A4/en
Priority to JP2011545089A priority patent/JP5590684B2/ja
Priority to CN201080014454.4A priority patent/CN102378998B/zh
Publication of WO2011070783A1 publication Critical patent/WO2011070783A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/215Motion-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30261Obstacle

Definitions

  • the present invention relates to an information display device and an information display method for displaying information for supporting driving by a driver.
  • car navigation system car navigation system
  • vehicle speed information for example, vehicle speed information, engine speed, radio station number displayed on the center console, music track number information, etc.
  • information for supporting safe driving such as displayed map information or route guidance information, or warning of danger around the vehicle.
  • a driver often acquires information displayed mainly on an instrument panel or a center console panel through vision.
  • the driver's line-of-sight direction and the direction in which the information is displayed are significantly different, or if the distance between the driver and the position at which the information is displayed is long, the driver In order to confirm the contents, the line of sight was moved or the focus was adjusted.
  • HUD Head-Up Display
  • the HUD is a display that displays predetermined information in a specific range from the upper part of the dashboard of the vehicle to the windshield.
  • the HUD is a type for directly viewing a display device such as a liquid crystal display or an OELD (Organic ElectroLuminescent Display), or a light output from a display device including a liquid crystal display or an OELD or a laser light source is projected onto the windshield.
  • a display device such as a liquid crystal display or an OELD (Organic ElectroLuminescent Display)
  • OELD Organic ElectroLuminescent Display
  • a light output from a display device including a liquid crystal display or an OELD or a laser light source is projected onto the windshield.
  • the line-of-sight movement time for viewing the display from the state of driving while looking forward can be shortened compared to viewing the conventional instrument panel and center console.
  • the type projected on the windshield is characterized in that the display information is superimposed on the foreground of the vehicle, and the optical distance between the driver and the display device can be made longer. As a result, the driver can view the display information with little time for focus adjustment.
  • Such a HUD makes it possible to display information at a position close to the center of the driver's visual field, and is expected to greatly improve the driver's awareness of the display information. In addition, it is considered to be particularly effective for elderly people with poor visual function.
  • Non-Patent Document 1 discloses a result that, as the above-described attracting effect, by adding a movement effect of longitudinal vibration or lateral vibration to the display information, the operator is easily noticed and the operator is less likely to feel annoyance. Has been. Further, as an example of applying the above-described attracting effect using vibration during driving of a vehicle, Patent Document 1 discloses a method of improving the driver's awareness by lateral vibration.
  • Patent Document 1 a vehicle display device and method for generating a flow of light having a moving speed linked to the traveling of a vehicle in a driver's field of view and providing a non-display area indicating the presence of another vehicle in the flow. Is disclosed. Moreover, in this patent document 1, in order to prevent a driver from getting used to the existence of the non-display area, when the non-display area continues for a certain period, the non-display area is laterally vibrated. .
  • Patent Document 1 When displaying on a windshield in a state where a predetermined image is vibrated using HUD, the foreground of the vehicle that changes over time and the image are displayed in a superimposed manner. Therefore, the display method disclosed in Patent Document 1 is used. It can be applied, easily noticed, and less troublesome.
  • the presence of the attention object is displayed by adding a horizontal vibration attracting effect to the image informing the presence of a pedestrian or the like (attention object) on the course of the vehicle.
  • the driver can be surely communicated in a short time.
  • the optical flow of the foreground of the vehicle is mainly in the horizontal direction, and the optical flow and the vibration direction of the display image are substantially parallel. Therefore, there has been a problem that a sufficient attractive effect cannot be obtained for the driver.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide an information display device and information that are not affected by the traveling state of the vehicle, are easily noticed by the driver, and are less likely to feel bothersome.
  • An object is to provide a display method.
  • An information display device is an information display device that displays predetermined information, which is mounted on a vehicle including a camera that captures a foreground image, and displays a predetermined information by moving it.
  • An optical flow calculation unit that acquires a plurality of foreground images captured by the camera and calculates foreground optical flow vector information based on the acquired foreground images, and optical flow vector information from the optical flow calculation unit
  • an exercise effect determination unit that determines the exercise effect of the predetermined information based on the acquired vector information of the optical flow.
  • the information display device and the information display method of the present invention it is possible to realize an information display that is not affected by the traveling state of the vehicle, is easily noticed by the driver, and is less annoying.
  • 1 is a system configuration diagram showing a configuration of an information display system including an information display device according to a first embodiment.
  • the figure which shows an example of the exercise effect determination table The flowchart explaining operation
  • Diagram showing how optical flow is calculated The figure which shows a mode that the vector component of the optical flow in the camera image image
  • FIG. 1 The figure which shows the mode of relative movement of (b), (b) is a figure which shows a mode that the relative movement of the foreground on the basis of a virtual camera is decomposed
  • region The figure which shows an example of the image of route guidance
  • the figure which shows an example of display magnification condition information The figure which shows an example of the pattern of the expansion or reduction movement to the vertical or horizontal of a symbol image, (a) The figure which shows an example of the pattern of the expansion or reduction movement of a sine wave, (b) The positive of the value of a sine wave An example of a pattern of repetitive enlargement or reduction of a part, (c) A diagram showing an example of a motion pattern of enlargement or reduction of a rectangular wave, (d) A diagram showing an example of a pattern of a movement of enlargement or reduction of a triangular wave , (E) An example of a pattern of expansion or contraction of a sawtooth wave
  • a figure showing an example of target in-vehicle information The figure which shows an example of exercise effect condition information
  • the figure which shows the specific example of a movement effect (a) is a figure which shows a sine wave, (b) is a figure which shows a rectangular wave, (c) is a figure which shows a triangular wave, (d) is a figure which shows a saw-tooth waveform.
  • the system block diagram which shows the structure of the information display system containing the vehicle-mounted information display apparatus which is an information display apparatus which concerns on 4th Embodiment.
  • the block diagram which shows the internal structure of the vehicle-mounted information display apparatus which is the information display apparatus which concerns on 4th Embodiment.
  • region (a) The figure which shows the positional relationship seen from the top, (b) The figure which shows the positional relationship seen from the side
  • FIG. 1 is a diagram illustrating a state in which a vehicle on which an information display system including an information display device according to the first embodiment is mounted is traveling.
  • FIG. 2 is a diagram illustrating a state in the vicinity of the driver's seat inside the vehicle on which the information display system including the information display device according to the first embodiment is mounted.
  • the information display system including the information display device will be described as being mounted on a vehicle such as an automobile, and the vehicle will be referred to as “own vehicle 5” and the driver of the own vehicle 5 will be referred to as “driver”.
  • the own vehicle 5 is equipped with a sensor unit including one or a plurality of sensors 6a to 6d.
  • the number of sensors mounted is not limited to four as shown in FIG.
  • the sensors 6a to 6d detect a person or an object existing in a predetermined detection range 7 around the host vehicle 5. Based on the detection information output from the sensors 6a to 6d, the display information is displayed on the display area 21 of the HUD installed in the host vehicle 5.
  • a symbol image indicating the pedestrian 1 is selected based on detection information indicating that “pedestrian” has been detected.
  • a display image in which a movement effect is added to the symbol image is generated and displayed in the display area 21.
  • a camera 8 (first camera) is mounted on the host vehicle 5.
  • the camera 8 photographs the external environment of the host vehicle 5.
  • the camera 8 describes a case where the foreground of the host vehicle 5 is photographed, but this is not a limitation.
  • the camera 8 is installed, for example, on the back side of the room mirror 23 shown in FIG.
  • the camera 8 captures a predetermined shooting range 9 determined based on the angle of view of the camera 8 in the foreground of the host vehicle 5 at a predetermined frame rate, and acquires a foreground image.
  • the foreground image is used to calculate an optical flow.
  • FIG. 3 is a system configuration diagram showing the configuration of the information display system 10a including the information display device 30a according to the first embodiment.
  • the information display system 10a of the first embodiment includes sensors 6a to 6d, a camera 8, a display unit 90, and an information display device 30a.
  • the information display device 30a is connected to the sensors 6a to 6d and the camera 8.
  • the information display device 30 a includes a storage unit 31, an attention object detection unit 32, a symbol image selection unit 33, an optical flow calculation unit 34 a, an exercise effect determination unit 35, a display image generation unit 36, and a display control unit 37.
  • FIG. 7 shows a state immediately before the host vehicle 5 turns right
  • FIG. 8 shows a state in which the host vehicle 5 is turning right.
  • the pedestrian 1 enters from outside the predetermined detection range 7 by the sensors 6a to 6d.
  • the sensors 6a to 6d detect the presence of a person or an object in a predetermined detection range 7 around the host vehicle 5.
  • the sensors 6a to 6d are specifically imaging devices, radar devices, wireless tag readers, road-to-vehicle communication devices, etc., and may be sensors that detect specific types such as people and vehicles, or A sensor having a function of simply detecting the presence of an object may be used.
  • the sensors 6a to 6d When the presence of a detection target such as a person or an object is detected in the predetermined detection range 7, the sensors 6a to 6d output detection information including information on the detected person or object to the attention target detection unit 32. To do.
  • the camera 8 shoots a predetermined shooting range 9 in the foreground of the host vehicle 5.
  • the shooting range 9 is determined by the performance of the camera 8, such as the angle of view.
  • the camera 8 outputs the captured foreground image to the optical flow calculation unit 34a.
  • the display unit 90 is, for example, a partial display area 21 of the windshield 22 of the host vehicle 5.
  • An HUD is used for the display unit 90 of the information display system 10a of the first embodiment.
  • the display unit 90 displays an image generated by the information display device 30a in which an exercise effect is added to information that needs to be notified to the driver.
  • an image used for display on the display unit an image before the exercise effect is added is a “symbol image”, and an image in which the exercise effect is added to the symbol image is a “display image”. It is defined as The symbol image may be predetermined information.
  • the storage unit 31 includes a symbol image selection table 40 including a detection target type and a symbol image that need to be notified to the driver, and an exercise effect determination table 50 indicating conditions for adding a predetermined exercise effect to the symbol image.
  • FIG. 4 is a diagram illustrating an example of the symbol image selection table 40.
  • FIG. 5 is a diagram illustrating an example of the exercise effect determination table.
  • the symbol image selection table 40 will be described with reference to FIG. 4, and the exercise effect determination table 50 will be described with reference to FIG.
  • the symbol image selection table 40 is a table in which a detection information type and a symbol image are associated with each other. For example, “pedestrian image” is assigned as a symbol image to the detection information type “pedestrian”. In addition, a “bicycle image” is assigned as a symbol image to the detection information type “bicycle”. Also, “vehicle image” is assigned as a symbol image to the “vehicle” of the detection information type. The contents of the symbol image selection table 40 are not limited to these.
  • the exercise effect determination table 50 associates an ID for identifying an optical flow condition, an optical flow condition calculated by an optical flow calculation unit 34a described later, and an added exercise effect. It is.
  • ID “001” of the exercise effect determination table 50 indicates that no exercise effect is added when the optical flow condition is “the vector size of the optical flow is smaller than ⁇ ”.
  • the parameter ⁇ is a preset value. In this case, the host vehicle 5 hardly moves and is not dangerous, so there is no need to add an exercise effect.
  • the optical flow condition is “the magnitude of the optical flow vector is ⁇ or more and the horizontal component of the optical flow vector is the magnitude of the vertical component of the optical flow vector. When it is “greater than”, it indicates that the motion effect of longitudinal vibration is added.
  • the optical flow condition is “the vector size of the optical flow is greater than or equal to ⁇ , and the magnitude of the vertical component of the optical flow is greater than or equal to the magnitude of the horizontal component of the optical flow. If the value is equal to or less than the value obtained by adding the parameter ⁇ to the magnitude of the horizontal component, it indicates that a lateral vibration motion effect is added.
  • the optical flow condition is “the value obtained by adding the parameter ⁇ to the size of the horizontal component of the optical flow is less than the size of the vertical component of the optical flow” in the ID “004” of the exercise effect determination table 50, the horizontal It shows that vibration and expansion motion effects are added.
  • the contents of the exercise effect determination table 50 are not limited to these.
  • a default direction and amplitude may be set for the motion effect, and the motion may be performed with the default direction and amplitude when the magnitude of the optical flow vector is a predetermined value or less.
  • the motion effect may be a vibration method, and the motion effect determination unit 35 determines a vibration method of predetermined information based on the vector information of the optical flow.
  • the exercise effect may be an expansion / contraction method, and the exercise effect determination unit 35 determines a predetermined information expansion / contraction method based on the optical flow vector information.
  • FIG. 6 is a flowchart for explaining the operation of the information display device 30a according to the first embodiment.
  • FIG. 7 is a diagram showing a positional relationship between the host vehicle 5 and the pedestrian 1 before the pedestrian 1 is detected by the sensors 6a to 6d of the host vehicle 5.
  • FIG. 8 is a diagram showing a positional relationship between the host vehicle 5 and the pedestrian 1 after the pedestrian 1 is detected by the sensors 6a to 6d of the host vehicle 5.
  • the pedestrian 1 is detected by the sensors 6a to 6d of the host vehicle 5.
  • the attention object detection unit 32 detects the detections output by the sensors 6a to 6d, respectively. Get information.
  • the attention object detection unit 32 determines whether or not the acquired detection information is included in the detection information type of the symbol image selection table 40 illustrated in FIG. 4 (S401).
  • the attention object detection unit 32 compares the symbol image selection table 40 stored in the storage unit 31 with the detection information acquired from the sensors 6a to 6d, and selects the symbol image selection shown in FIG. It is determined whether or not the detection information described above is included in the detection information type of the table 40.
  • the attention object detection unit 32 includes information indicating that the detection information type of the detection information is included in the detection information type of the symbol image selection table 40, and the symbol image selection unit 33. Notify
  • the symbol image selection unit 33 acquires information indicating that detection information is included in the detection information type of the symbol image selection table 40 from the attention object detection unit 32, and selects a corresponding symbol image (S402). The symbol image selection unit 33 outputs the selected symbol image to the display image generation unit 36.
  • FIG. 9 is a diagram showing how the optical flow is calculated.
  • FIG. 4B is a diagram showing the decomposition of the vector into x and y components.
  • FIG. 11 is a diagram regarding the optical flow when the vehicle is traveling straight, (a) is a diagram showing a camera image taken by the camera 8 installed in the vehicle and an example of the optical flow, and (b) It is a figure which shows decomposition
  • FIG. 12 is a diagram regarding the optical flow when the vehicle turns right, (a) is a diagram showing a camera image taken by the camera 8 installed in the vehicle and an example of the optical flow, and (b). It is a figure which shows decomposition
  • the camera 8 always shoots a predetermined shooting range 9 in the foreground of the host vehicle 5, and outputs the shot foreground image to the optical flow calculation unit 34a.
  • the optical flow calculation unit 34a calculates an optical flow in the image based on temporal changes of the plurality of foreground images output by the camera 8.
  • the optical flow calculation unit 34a compares the first foreground image output from the camera 8 with the second foreground image of the next frame after the first foreground image, and estimates the corresponding coordinate points.
  • the coordinate points corresponding to each other are the first coordinate point included in the first foreground image and the second coordinate indicating the background information indicated by the first coordinate point in the second foreground image. It is a point.
  • the optical flow calculation unit 34a calculates a difference (movement vector) between the first coordinate point in the first foreground image and the second coordinate point in the second foreground image as an optical flow vector (S403).
  • a difference movement vector
  • S403 optical flow vector
  • methods such as a gradient method and a block matching method are used.
  • the gradient method takes an x-axis in the horizontal direction of the foreground image and a y-axis in the vertical direction of the foreground image, and assumes that the position and brightness at the same point in the image changes smoothly with respect to time. A flow is required.
  • the luminance at the time t of (x, y) in the foreground image is E (x, y, t)
  • the x component that is the horizontal component of the optical flow vector in the image is u
  • y component which is a vertical component is set to v
  • Numerical formula (1) is formed.
  • Equation (2) is derived from Equation (1), and the least squares solution from the constraint equation near the pixel (x, y) in the image is calculated as an optical flow vector. Equation (2) is a constraint equation.
  • the center 131 of the lens of the camera 8 is the origin O
  • the horizontal right direction of the host vehicle 5 is the X axis
  • the vertical An orthogonal coordinate system is used in which the upward Y-axis and the Z-axis opposite to the traveling direction are taken.
  • the road surface is a plane and the height of the camera 8 from the road surface is h
  • a certain point P (X 0 , Y 0 , Z 0 ) on the road surface in the field of view of the camera 8 moves to a point P ′ (X 1 , Y 1 , Z 1 ) in the next frame, and these points are respectively Z
  • the optical flow vector 132 shown in FIG. 10 is represented by (u, v), Equation (5) and Equation (6) are established, and the actual movement vector 133 is projected onto the optical flow vector 132. become.
  • the optical flow calculation method is not limited to the method described above.
  • the optical flow calculation unit 34a outputs the optical flow calculated by the above-described method to the exercise effect determination unit 35.
  • the exercise effect determination unit 35 acquires the optical flow output by the optical flow calculation unit 34a.
  • the exercise effect determination unit 35 refers to the exercise effect determination table 50 stored in the storage unit 31 and determines an exercise effect according to the acquired optical flow (S404 to S408, S410 to S412).
  • the representative value of the optical flow of the foreground image captured by the camera 8 may be adopted as the optical flow output by the optical flow calculation unit 34a.
  • the optical flow is vector distribution information because the optical flow vector is different at each foreground point.
  • the optical flow is particularly important in the foreground in a region where a display image that can be seen by the driver is superimposed (hereinafter referred to as “superimposed region”).
  • the optical flow calculation unit 34a may calculate the optical flow based only on the superimposed region in the foreground image.
  • the representative value of the optical flow the average of several optical flows in the superimposition region may be used, or the average value of the optical flow limited to the vicinity where the display image is actually displayed is used in the superimposition region. Also good.
  • FIG. 24 is a diagram illustrating a configuration of an information display system 10e including an information display device 30e that calculates an optical flow vector in the vicinity of the overlapping region in the windshield 22.
  • An information display system 10e illustrated in FIG. 24 detects a driver's eye position from a camera 2401 (second camera) that captures a driver's face image, and an image acquired from the camera 2401, and an installation position of the camera 2401. Based on the installation information indicating the driver's eyeball position calculation unit 2402 that calculates the three-dimensional position information of the eyeball, the calculated eyeball position, and the display position of the symbol image 20 on the windshield 22, A superimposition area calculation unit 2403 for calculating an area.
  • installation information indicating the installation position of the camera 2401 is stored in a memory (not shown) included in the information display system 10e.
  • FIG. 25 is a diagram for explaining the eyeball position of the driver 80 and the positional relationship between the overlapping regions.
  • FIG. 25A is a view of the symbol image displayed on the HUD as viewed from the viewpoint of the driver 80, and the symbol image 20 is displayed in the lower region of the windshield 22. In the drawing, a region near the symbol image 20 is a superimposed region 86.
  • FIG. 25 (b) is a cross-sectional view in the lateral direction of the vehicle corresponding to FIG. 25 (a).
  • the emitted light 82 of the HUD unit 81 reaches the windshield 22, the reflected light is directed toward the driver 80, and enters the field of view of the driver 80, so that the display of the symbol image 20 appears in the eyes of the driver 80.
  • the line of sight 83 of the driver 80 passes through the symbol image 20.
  • the line of sight 83 of the driver 80 passes through the symbol image 20 and further reaches the road surface 85.
  • a partial area of the road surface 85 cut out by a predetermined neighboring area centered on the symbol image 20 is the overlapping area 86.
  • the superimposed region 86 is a foreground cut by a straight line 84 connecting the eyeball position of the driver 80 and a predetermined region including the symbol image 20 on the windshield 22, and the camera 8 (first camera) takes a picture. This is a region where the foreground image to be overlapped.
  • FIG. 24 An optical flow calculation method based on the foreground image of the superimposed region 86 will be described with reference to FIGS. 24 and 25.
  • FIG. 24 An optical flow calculation method based on the foreground image of the superimposed region 86 will be described with reference to FIGS. 24 and 25.
  • the camera 2401 takes a face image of the driver 80 at predetermined time intervals. Image data captured by the camera 2401 is input to the eyeball position calculation unit 2402.
  • the camera 2401 is, for example, a stereo camera, and inputs simultaneously captured images to the eyeball position calculation unit 2402.
  • the eyeball position calculation unit 2402 detects the positions of the two eyes of the driver 80 from the input image.
  • the distance to the object here, the eyeball
  • the distance to the object is calculated using the parallax of the image taken from a slightly shifted position. Since the basic distance measuring technique using a stereo camera is known, it will not be described here. In the distance measuring technique using the stereo camera, since there are actually two human eyes, for example, the midpoint of the detected positions of both eyes of the driver 80 may be regarded as the eyeball position.
  • FIG. 34 is a diagram for explaining the eyeball position and the positional relationship between the overlapping regions, and is a diagram schematically showing FIG. 25.
  • FIG. 4A shows the positional relationship seen from above
  • FIG. 4B shows the positional relationship seen from the side.
  • the direction of each coordinate axis is the same as in FIG. 9, but the display position of the symbol image 20 is the origin.
  • the position of the overlapping region 86 can be calculated.
  • the display position of the symbol image 20 can be easily converted into the position coordinate of the coordinate system based on the camera 8 by storing the geometric relationship in advance.
  • the exercise effect determination unit 35 may determine the exercise effect based on the optical flow vector information included in the superimposing region 86 described above.
  • the predetermined value set in advance is the parameter ⁇ in the exercise effect determination table 50 shown in FIG.
  • the motion effect determination unit 35 performs a comparison based on the magnitudes of the horizontal and vertical components of the optical flow, The exercise effect is determined according to the result.
  • the driving effect determination unit 35 is shown in FIG. In accordance with the motion effect determination table 50 shown in FIG. 4, it is determined to add the motion effect of “longitudinal vibration” to the symbol image (S408).
  • the display can be easily noticed by the driver and less troublesome.
  • the driving effect determining unit 35 determines according to the exercise effect determination table 50 shown in FIG. 5 to add the effect of enlarged display in addition to adding the “lateral vibration” exercise effect to the symbol image 20 (S411). Note that the magnification at that time may be fixed in advance or may be calculated separately by some method.
  • the display can be easily noticed by the driver and less troublesome.
  • the motion effect determination unit 35 applies only the motion effect of lateral vibration to the symbol image (S412).
  • the display image generation unit 36 generates a display image in which the exercise effect determined by the exercise effect determination unit 35 is added to the symbol image selected by the symbol image selection unit 33 (S409). Then, the display control unit 37 acquires the display image to which the exercise effect is added by the display image generation unit 36, and displays it on the display unit 90 (S406).
  • the types of motion effects can be, for example, vertical one-dimensional vibration, horizontal one-dimensional vibration, enlargement, or reduction.
  • the attributes such as the amplitude and period of vibration, a predetermined value set in advance is used, but can be arbitrarily edited. Any kind of exercise effect may be used as long as it is a periodic exercise.
  • the position change pattern is a sine wave, rectangular wave, triangular wave, or even the movement of the display position. May be a discontinuous sawtooth waveform.
  • FIG. 13 is a diagram illustrating a specific example of the exercise effect.
  • FIG. 4A shows a sine wave.
  • FIG. 5B is a diagram showing a rectangular wave.
  • FIG. 3C shows a triangular wave.
  • FIG. 4D shows a sawtooth waveform.
  • FIG. 4E shows a sawtooth waveform.
  • the change in the width in the enlargement or reduction direction is a positive value of the sine wave or sine wave value. It may be a repeated part, rectangular wave, triangular wave or sawtooth waveform.
  • FIG. 21 is a diagram illustrating an example of a movement pattern for enlarging or reducing the symbol image 20 vertically or horizontally.
  • FIG. 6A is a diagram showing an example of a movement pattern for expanding or reducing a sine wave.
  • FIG. 6B is a diagram showing an example of a pattern of repetitive enlargement or reduction movement of the positive part of the sine wave value.
  • FIG. 4C is a diagram showing an example of a motion pattern for enlarging or reducing the rectangular wave.
  • FIG. 4D is a diagram showing an example of a movement pattern for expanding or reducing a triangular wave.
  • FIG. 4E is a diagram showing an example of a movement pattern for expanding or reducing a sawtooth waveform.
  • FIG. 4F is a diagram showing an example of a movement pattern for enlarging or reducing a sawtooth waveform.
  • a display method may be used as if the image is rotating vertically or horizontally for the driver. Specifically, for example, if the image changes as shown in FIGS. 23A to 23M, the bicycle symbol image appears to rotate in the horizontal direction with the vertical center line as the rotation axis. .
  • FIG. 23 is a diagram illustrating an example of an image change in which a symbol image appears to rotate.
  • FIGS. 4A to 4M respectively show a series of changing frame images.
  • FIG. 22 is a diagram illustrating an example of a vertical or horizontal motion pattern of an image that appears to rotate the symbol image.
  • Figures (a) to (e) are graphs with the horizontal axis representing time and the vertical axis representing the width of the display image in the direction of rotation. Changes can be made by methods such as sine waves, rectangular waves, triangular waves, and sawtooth waveforms. It is a figure which shows the example made to do.
  • FIG. 4A is a diagram showing an example of a pattern that is moved so as to rotate in the direction of a sine wave.
  • FIG. 4B is a diagram showing an example of a pattern moved so as to rotate in the direction of a rectangular wave.
  • FIG. 4C is a diagram showing an example of a pattern moved so as to rotate in the direction of the triangular wave.
  • FIG. 4D is a diagram showing an example of a pattern moved so as to rotate in the direction of a sawtooth waveform.
  • FIG. 4E is a diagram showing an example of a pattern moved so as to rotate in the direction of a saw-tooth waveform. Note that a minus sign on the vertical axis of the graph indicates that the display image is inverted with respect to the original symbol image.
  • the presence of the pedestrian 1 or the like that is the driver's attention target is detected in the predetermined detection range 7 around the host vehicle 5.
  • the motion effect on the symbol image is determined by calculating the optical flow of the host vehicle 5.
  • the optical flow of the host vehicle 5 is calculated based on the foreground image of the host vehicle 5 taken by the camera 8.
  • the determined exercise effect is added to the symbol image and displayed on the display unit 90 of the host vehicle 5 as a display image.
  • the information display device 30a of the first embodiment is an information display device that displays predetermined information mounted on a vehicle including the camera 8 that captures a foreground image, and exercises the predetermined information.
  • a display unit that displays the image, a plurality of foreground images captured by the camera 8, an optical flow calculation unit that calculates vector information of the foreground optical flow based on the acquired plurality of foreground images, and an optical flow
  • An information display device comprising: an exercise effect determination unit that acquires optical flow vector information from a calculation unit and determines an exercise effect of predetermined information based on the acquired optical flow vector information; There is an effect that it is possible to realize an information display that is not affected by the state, is easily noticed by the driver, and is less troublesome.
  • the sensors 6a to 6d simply have a function of detecting something (whether it is a person or a specific object). It doesn't matter. In that case, a predetermined image may be displayed without performing the selection procedure by the symbol image selection unit.
  • the information display device 30a of the first embodiment can calculate the optical flow of the foreground of the vehicle based on the foreground image of the vehicle that has been taken continuously in time.
  • the driver can easily notice the display image.
  • the added motion effect is a periodic motion, it is easy to predict the trajectory of the display image, and the time from when the display image is noticed until the content of the symbol image is understood is shortened. be able to.
  • the motion effect to be added to the symbol image is determined based on the difference between the vertical and horizontal component sizes of the optical flow. However, the vertical component and the horizontal component of the optical flow are determined. The motion effect added to the symbol image may be determined based on the size ratio.
  • FIG. 14 is a system configuration diagram showing a configuration of an information display system 10b including an information display device 30b according to the second embodiment. 14, the same reference numerals are used for the same components as those in FIG.
  • the second embodiment constituent elements different from those in the first embodiment and operations of the constituent elements will be described, and description of the same contents will be omitted.
  • the difference from the information display system 10a in the first embodiment is that the speed sensor 14 and the yaw rate sensor 15 are connected to the optical flow calculation unit 34b instead of the camera 8, and the optical flow of the optical flow calculation unit 34b. This is the calculation process.
  • the speed sensor 14 always detects the speed of the host vehicle 5 and outputs speed information related to the detected speed to the optical flow calculation unit 34b.
  • the yaw rate sensor 15 always detects the rotational speed of the host vehicle 5 and outputs rotational speed information related to the detected rotational speed to the optical flow calculation unit 34b.
  • FIG. 15 is a diagram for explaining an optical flow calculation process calculated based on the speed information and the rotation speed information output by the speed sensor 14 and the yaw rate sensor 15, respectively. Although it is the own vehicle 5 that actually moves, the foreground appears to move when viewed from the driver. Here, the coordinate system is based on the driver.
  • FIG. 4B is a diagram illustrating a state in which the relative movement of the foreground with respect to the virtual camera is decomposed into each component of parallel movement and rotational movement.
  • FIG. 4C is a diagram showing an optical flow vector on the projection plane.
  • the driver seems to have moved an arbitrary area 156 in the foreground from a point P (X 0 , Y 0 , Z 0 ) to a point Q (X 1 , Y 1 , Z 1 ). Looks like.
  • the movement from point P to point Q at that time is represented by a movement vector 152.
  • a vector 153 is a linear component due to a linear motion when viewed from the viewpoint of the virtual camera 151, and a vector 154 is a rotational component due to a rotational motion.
  • the vector 155 is a projection of the movement vector 152 on the image, that is, an optical flow vector.
  • an arbitrary area 156 in the foreground located at the coordinates of the point P (X 0 , Y 0 , Z 0 ) has a predetermined time ⁇ t.
  • the case where the point Q (X 1 , Y 1 , Z 1 ) is moved will be described later.
  • the optical flow is calculated based on the image projected on the imaging surface of the virtual camera 151.
  • the speed of the host vehicle 5 at the image capturing time of a certain virtual camera 151 is a
  • the rotational speed that is an angular speed is ⁇ .
  • Equation 155 By substituting Equations (9) and (11) into Equation (5) and Equations (9) and (11) into Equation (6), an optical flow vector 155 can be calculated. Is possible.
  • the presence of the pedestrian 1 or the like that is a driver's attention target is detected in the predetermined detection range 7 around the host vehicle 5.
  • the motion effect on the symbol image 20 is determined by calculating the optical flow of the host vehicle 5.
  • the optical flow of the host vehicle 5 is calculated based on the values output by the speed sensor 14 and the yaw rate sensor 15.
  • the determined exercise effect is added to the symbol image 20 and displayed on the display unit 90 of the host vehicle 5 as a display image.
  • the information display device 30a of the second embodiment can realize information display that is not affected by the traveling state of the vehicle, is easily noticed by the driver, and does not feel annoying.
  • the optical flow of the foreground of the vehicle is calculated based on the speed information and the rotational speed information output by the speed sensor 14 and the yaw rate sensor 15 provided in the vehicle, the same effect can be obtained without using the camera 8. Can be obtained.
  • the driver can easily predict the trajectory of the display image. As a result, the time from noticing the display of the image to understanding the contents of the symbol image is shortened.
  • the own vehicle 5 is equipped with one or a plurality of sensors 6a to 6d.
  • the number of mounted sensors 6a to 6d is not limited to four as shown in FIG.
  • the sensors 6a to 6d detect the presence of a person or an object in a predetermined detection range 7 around the host vehicle 5, and obtain detection information generated by this detection.
  • the detection information includes information indicating the presence of the pedestrian 1 as shown in FIG.
  • Each of the sensors 6a to 6d outputs the generated detection information to the in-vehicle information display device.
  • a camera 8 is mounted on the host vehicle 5. As shown in FIG. 1, the camera 8 captures a foreground in a predetermined shooting range 9 in front of the traveling direction of the host vehicle 5. The camera 8 outputs the taken foreground image to the in-vehicle information display device.
  • the display area 21 as the display unit 90 is disposed in the host vehicle 5 in the lower right direction of the room mirror 23 when viewed from the driver and below the windshield 22. .
  • the in-vehicle information display device displays a display area as in-vehicle information that needs to notify the driver of the detected symbol image 20 of the pedestrian 1. 21.
  • FIG. 26 is a system configuration diagram showing a configuration of an in-vehicle information display system 10c including an in-vehicle information display device 30c that is an information display device according to the third embodiment.
  • the in-vehicle information display system 10c according to the third embodiment includes sensors 6a to 6d, a camera 8, a display unit 90, and an in-vehicle information display device 30c.
  • the in-vehicle information display device 30c is connected to the sensors 6a to 6d and the camera 8, respectively.
  • FIG. 27 is a block diagram showing an internal configuration of an in-vehicle information display device 30c that is an information display device according to the third embodiment. As shown in FIG.
  • the in-vehicle information display device 30c includes a storage unit 31c, a display target detection unit 2601, a display image selection unit 2602, an optical flow calculation unit 34c, an exercise effect determination unit 35, an image generation unit 2603, and a display control unit. 37.
  • the display object detection unit 2601 corresponds to the attention object detection unit 32 in the first embodiment
  • the display image selection unit 2602 corresponds to the symbol image selection unit 33 in the first embodiment
  • the image generation unit 2603 This corresponds to the display image generation unit 36 in the first embodiment.
  • Sensors 6a to 6d detect the presence of a person or an object in a predetermined detection range 7 around the host vehicle 5.
  • the sensors 6a to 6d output detection information including information on the detected person or object to the display target detection unit 2601. .
  • the camera 8 captures a foreground in a predetermined capturing range 9 in front of the traveling direction of the host vehicle 5.
  • the camera 8 outputs the captured foreground image to the optical flow calculation unit 34c.
  • the display unit 90 is, for example, a partial display area 21 of the windshield 22 of the host vehicle 5.
  • An HUD is used for the display unit 90 of the in-vehicle information display system 10a of the third embodiment.
  • an image of information that is generated by the in-vehicle information display device 30c and needs to be notified to the driver of the host vehicle 5 is displayed.
  • information that needs to be notified to the driver of the host vehicle 5 is defined as “in-vehicle information”
  • an image indicating the in-vehicle information is defined as “in-vehicle information image”.
  • the storage unit 31c includes at least target vehicle information 2800 including the type and image of the vehicle information, and exercise effect condition information 2900 indicating condition information for giving a predetermined exercise effect to the vehicle information image. I remember it.
  • the target in-vehicle information 2800 will be described with reference to FIG. 28, and the exercise effect condition information 2900 will be described with reference to FIG.
  • FIG. 28 is a diagram illustrating an example of the target in-vehicle information 2800.
  • FIG. 29 is a diagram showing an example of exercise effect condition information 2900.
  • the information stored in the storage unit 31c is an example, and may be information stored in the storage unit 31 in the first embodiment.
  • the target in-vehicle information 2800 in the present embodiment corresponds to the symbol image selection table 40 in the first embodiment, and the exercise effect condition information 2900 in the present embodiment is stored in the exercise effect determination table 50 in the first embodiment. Equivalent to.
  • the target in-vehicle information 2800 is obtained by associating an ID for identifying the target in-vehicle information 2800, a target type of the target in-vehicle information 2800, and an in-vehicle information image.
  • the in-vehicle information type is “pedestrian” and “pedestrian image” is assigned as the in-vehicle information image.
  • the in-vehicle information type is “bicycle” and “bicycle image” is assigned as the in-vehicle information image.
  • the in-vehicle information type is “vehicle” and “vehicle image” is assigned as the in-vehicle information image. Note that the content of the target in-vehicle information 2800 is not limited to these.
  • the exercise effect condition information 2900 is associated with an ID for identifying the exercise effect condition information 2900, an optical flow condition calculated by an optical flow calculation unit 34c described later, and an exercise effect to be applied. It is a thing.
  • the exercise effect condition information 2900 of ID “001” indicates that no exercise effect is given when the optical flow condition is “the magnitude of the optical flow vector ⁇ ”.
  • the parameter ⁇ is a threshold value that determines whether or not an exercise effect may be applied.
  • the optical flow condition is “the magnitude of the horizontal component of the optical flow vector is greater than the magnitude of the vertical component of the optical flow vector”, the motion of the longitudinal vibration An effect is given.
  • the exercise effect condition information 2900 of ID “003” when the optical flow condition is “the magnitude of the horizontal component of the optical flow is equal to or less than the magnitude of the vertical component of the optical flow”, the exercise effect of lateral vibration is given.
  • the contents of the exercise effect condition information 2900 are not limited to these.
  • FIG. 30 is a flowchart for explaining the operation of the in-vehicle information display device 30c which is the information display device according to the third embodiment.
  • FIG. 7 is a diagram showing the positional relationship between the host vehicle 5 and the pedestrian 1 before the pedestrian 1 is detected by the sensors 6a to 6d of the host vehicle 5 as described in the first embodiment.
  • FIG. 8 is a diagram showing the positional relationship between the host vehicle 5 and the pedestrian 1 after the pedestrian 1 is detected by the sensors 6a to 6d of the host vehicle 5, as described in the first embodiment.
  • FIG. 8 shows a state in which the driver is alerted to the presence of the pedestrian 1 approaching when the traveling vehicle 5 turns right at the intersection. The pedestrian 1 is detected by the sensors 6a to 6d of the host vehicle 5.
  • the display target detection unit 2601 detects the detections output by the sensors 6a to 6d, respectively. Get information.
  • the display target detection unit 2601 determines whether or not the target in-vehicle information 2800 illustrated in FIG. 28 is included in the acquired detection information (S3001). Specifically, the display target detection unit 2601 compares the target in-vehicle information 2800 stored in the storage unit 31c with the detection information acquired from the sensors 6a to 6d, and the target in-vehicle information 2800 shown in FIG. It is determined whether the target type is included in the detection information described above.
  • the display target detection unit 2601 When the target type of the target in-vehicle information 2800 is included in the detection information (YES in S3001), the display target detection unit 2601 includes information indicating that the target type of the target in-vehicle information 2800 is included in the detection information. The image is output to the display image selection unit 2602.
  • the display image selection unit 2602 acquires information indicating that the target type of the target in-vehicle information 2800 is included in the detection information from the display target detection unit 2601 and sets the target type of the target in-vehicle information 2800 included in the detection information. A corresponding in-vehicle information image is selected (S3002). The display image selection unit 2602 outputs to the image generation unit 2603 that the in-vehicle information image has been selected.
  • FIG. 9 is a diagram showing how the optical flow is calculated as described in the first embodiment.
  • (B) is a drawing showing the decomposition of a vector into x and y components.
  • FIG. 11 is a drawing relating to an optical flow when the vehicle is traveling straight as described in the first embodiment, and FIG. 11A is a drawing showing an image taken by the camera 8 placed in the vehicle.
  • FIGS. 12A and 12B are diagrams relating to an optical flow when the vehicle turns to the right.
  • FIG. 12A is a diagram illustrating an image taken by the camera 8 placed in the vehicle
  • FIG. 12B is an x of a vector based on the optical flow. It is drawing which shows decomposition
  • the camera 8 always shoots the foreground of the predetermined shooting range 9 in front of the traveling direction of the host vehicle 5, and outputs the shot foreground image to the optical flow calculation unit 34c.
  • the optical flow calculation unit 34 c calculates the optical flow in the image based on the temporal change of the foreground image output by the camera 8.
  • the optical flow of the foreground image captured by the camera 8 is used as a representative value of the optical flow.
  • the optical flow vector is different at each point in the image taken by the camera 8, the optical flow in the display area 21 of the in-vehicle information image that can be seen by the driver is particularly important. Therefore, as a representative value of the optical flow, an average of several optical flows in the display area 21 may be used, or a local optical flow in the vicinity where an image is actually displayed in the display area 21 may be used. An average value may be used.
  • the optical flow calculation unit 34c estimates the same point in the image frame of the two foreground images output by the camera 8, and derives the movement vector of the point as an optical flow vector (S3003).
  • a method for estimating the same point between image frames methods such as a gradient method and a block matching method are used.
  • the x-axis is taken in the horizontal direction of the foreground image and the y-axis is taken in the vertical direction of the foreground image, and the position and brightness at the same point in the image change smoothly with respect to time.
  • Optical flow is required.
  • the luminance at the time t of (x, y) in the foreground image is E (x, y, t)
  • u is the horizontal component of the optical flow vector in the image
  • the vector Assuming that the y component, which is the vertical component, is v, Equation (1) shown in the first embodiment is established.
  • the constraint equation of Formula (2) shown in Embodiment 1 is derived from Formula (1), and the least squares solution from the constraint equation near the pixel (x, y) in the image is calculated as an optical flow vector.
  • the road surface is a plane and the height of the camera 8 from the road surface is h
  • Q ′ (x 1 , y 1 ) respectively, the relationship of Equation (3) and Equation (4) shown in Embodiment 1 is established. The same applies to the projection of the points P ′ and Q ′.
  • optical flow calculation method is not limited to the method described above.
  • the optical flow calculation unit 34c outputs the optical flow derived by the above-described method to the exercise effect determination unit 35.
  • the exercise effect determination unit 35 acquires the optical flow output by the optical flow calculation unit 34c.
  • the exercise effect determination unit 35 refers to the exercise effect condition information 2900 stored in the storage unit 31c, and sets an exercise effect according to the acquired optical flow (S3004 to S3008). For example, when the size of the optical flow vector is less than a predetermined value ⁇ , such as when the host vehicle 5 is stopped or the host vehicle 5 is traveling at a low speed (S3004). NO), the exercise effect determination unit 35 considers that there is no optical flow, and determines not to give the exercise effect to the in-vehicle information image selected by the display image selection unit 2602 (S3005).
  • the predetermined value set in advance is the parameter ⁇ in the exercise effect condition information 2900 shown in FIG.
  • the driving effect determining unit 35 In accordance with the exercise effect condition information 2900 shown in FIG. 5, it is determined to give the “lateral vibration” exercise effect to the in-vehicle information image (S3007).
  • the motion effect of this “lateral vibration” is a motion effect mainly composed of horizontal components.
  • the vehicle information image is displayed in a direction substantially perpendicular to the optical flow having a large vertical component, so that the motion effect of “lateral vibration” is the vehicle information. By being added to the image, it is possible to display in-vehicle information that is easy to notice without causing the driver to feel bothersome.
  • the host vehicle 5 travels close to a turning motion.
  • the driving effect determination unit 35 performs the exercise effect condition shown in FIG. In accordance with the information 2900, it is determined to give the “longitudinal vibration” motion effect to the in-vehicle information image (S3008).
  • This “longitudinal vibration” motion effect is a motion effect mainly composed of vertical components.
  • the vehicle information image is displayed in a substantially vertical direction with respect to the optical flow having a large horizontal component.
  • the in-vehicle information can be displayed easily and easily without being bothered by the driver.
  • the image generation unit 2603 generates an in-vehicle information image in which the exercise effect determined by the exercise effect determination unit 35 is added to the in-vehicle information image selected by the display image selection unit 2602 (S3009).
  • the image generation unit 2603 outputs the generated in-vehicle information image to the display control unit 37.
  • the display control unit 37 acquires the in-vehicle information image output by the image generation unit 2603, and controls the display unit 90 to display the acquired in-vehicle information image (S3010).
  • the types of motion effects can be, for example, vertical one-dimensional vibration, horizontal one-dimensional vibration, enlargement, or reduction.
  • the attributes such as the amplitude and period of vibration, a predetermined value set in advance is used, but can be arbitrarily edited. Any kind of exercise effect may be used as long as it is a periodic exercise.
  • the pattern of change in position or shape may be a sine wave, a rectangular wave, a triangular wave, or a sawtooth waveform in which the movement of the display position is discontinuous.
  • FIG. 31 is a diagram illustrating a specific example of the exercise effect.
  • (A) It is a figure which shows a sine wave.
  • FIG. 5B is a diagram showing a rectangular wave.
  • FIG. 3C shows a triangular wave.
  • FIG. 4D shows a sawtooth waveform.
  • the waveforms shown in FIGS. 13A to 13E shown in the first embodiment may be used.
  • the presence of the pedestrian 1 or the like that is the target of the in-vehicle information image in the predetermined detection range 7 around the own vehicle 5 Is detected.
  • the detection information generated by this detection includes an object of the in-vehicle information image
  • the optical effect of the host vehicle 5 is calculated to determine the exercise effect on the in-vehicle information image.
  • the optical flow of the host vehicle 5 is calculated based on the foreground image in the traveling direction of the host vehicle 5 taken by the camera 8.
  • the on-vehicle information image in which the determined exercise effect is added to the on-vehicle information image is displayed on the display unit 90 of the host vehicle 5.
  • the in-vehicle information display device 30c which is an information display device according to the third embodiment, can display the in-vehicle information without being affected by the traveling state of the vehicle and without being bothered by the driver. . Further, the in-vehicle information display device 30c according to the third embodiment determines whether or not a target of in-vehicle information that needs to be notified to the driver around the vehicle is found based on preset target in-vehicle information 2800. Can be determined with high accuracy. Further, the in-vehicle information display device 30c of the third embodiment can be used either when the vehicle is traveling straight or when rotating, such as turning, depending on the magnitude of the derived horizontal and vertical components of the optical flow.
  • the in-vehicle information display device 30c of the third embodiment can calculate the optical flow in the traveling direction of the vehicle based on continuously captured images in the traveling direction of the vehicle.
  • the driving effect is a periodic motion
  • the in-vehicle information image periodically moves in the direction intersecting the derived optical flow vector main component, the driver can more easily predict the trajectory displayed in the in-vehicle information image. Even after noticing the display, the display contents can be easily understood.
  • the driver since the in-vehicle information image periodically moves in a direction intersecting with the derived vector main component of the optical flow, the driver reduces the movement amount of the line of sight after noticing the display of the in-vehicle information image.
  • the display contents can be easily understood.
  • FIG. 32 is a system configuration diagram showing a configuration of an in-vehicle information display system 10d including an in-vehicle information display device 30d which is an information display device according to the fourth embodiment. 32, the same symbols are used for the same components as in FIG.
  • the fourth embodiment components different from those in the third embodiment and operations of the components will be described, and description of the same contents will be omitted.
  • FIG. 33 is a block diagram showing an internal configuration of an in-vehicle information display device 30d which is an information display device according to the fourth embodiment.
  • the speed sensor 14 and the yaw rate sensor 15 are the same as the speed sensor 14 and the yaw rate sensor 15 described in the second embodiment.
  • the speed sensor 14 always detects the speed of the host vehicle 5 and outputs speed information related to the detected speed to the optical flow calculation unit 34d.
  • the yaw rate sensor 15 always detects the rotational speed of the host vehicle 5 and outputs rotational speed information related to the detected rotational speed to the optical flow calculation unit 34d.
  • FIG. 15 is a diagram for explaining an optical flow calculation process derived based on speed information and rotational speed information output by the speed sensor 14 and the yaw rate sensor 15, respectively.
  • reference numeral 151 denotes a virtual camera
  • reference numeral 152 denotes an arbitrary area 156 of the foreground moved from the point P (X 0 , Y 0 , Z 0 ) to the point Q (X 1 , Y 1 , Z 1 ). It is a movement vector at the time.
  • reference numeral 151 denotes a virtual camera
  • reference numeral 152 denotes an arbitrary area 156 of the foreground moved from the point P (X 0 , Y 0 , Z 0 ) to the point Q (X 1 , Y 1 , Z 1 ). It is a movement vector at the time.
  • reference numeral 155 denotes an optical flow vector of an image in which the movement of an arbitrary area 156 in the foreground is projected by the virtual camera 151.
  • an arbitrary area 156 in the foreground located at the coordinates of the point P (X 0 , Y 0 , Z 0 ) has a predetermined time ⁇ t.
  • the case where the point Q (X 1 , Y 1 , Z 1 ) is moved will be described later.
  • the speed of the host vehicle 5 at the image capturing time in a certain virtual camera 151 is a, and the rotational speed which is an angular speed is ⁇ .
  • an arbitrary region 156 located at an arbitrary point P (X 0 , Y 0 , Z 0 ) in the front field of view moves to an arbitrary point Q (X 1 , Y 1 , Z 1 ) after time ⁇ t.
  • the movement vector 152 from the point P to the point Q can be regarded as the sum of the linear component 153 in the velocity direction and the rotation component 154 centered on the virtual camera 151. For this reason, between the point P and the point Q, Formula (9), Formula (10), and Formula (11) shown in Embodiment 2 hold.
  • the optical flow vector 155 is calculated. It is possible. The motion effect on the in-vehicle information image can be determined by the optical flow vector 155 calculated in this manner, as in the third embodiment.
  • the presence of the pedestrian 1 or the like that is the target of the in-vehicle information image in the predetermined detection range 7 around the host vehicle 5 exists. Is detected.
  • the detection information generated by this detection includes an object of the in-vehicle information image
  • the optical effect of the host vehicle 5 is calculated to determine the exercise effect on the in-vehicle information image.
  • the optical flow of the host vehicle 5 is derived based on the values output by the speed sensor 14 and the yaw rate sensor 15.
  • the on-vehicle information image in which the determined exercise effect is added to the on-vehicle information image is displayed on the display unit 90 of the host vehicle 5.
  • the in-vehicle information display device 30d which is the information display device according to the fourth embodiment, can display the in-vehicle information without being affected by the traveling state of the vehicle and without being bothered by the driver. . Further, the in-vehicle information display device 30d according to the fourth embodiment determines whether or not a target of in-vehicle information that needs to be notified to the driver around the vehicle is found based on preset target in-vehicle information 2800. Can be determined with high accuracy. In addition, it is possible to determine with high accuracy whether the vehicle is traveling straight or rotating based on the absolute values of the derived horizontal and vertical components of the optical flow.
  • the optical flow in the traveling direction of the vehicle can be calculated based on the speed information and the rotational speed information output by the speed sensor 14 and the yaw rate sensor 15 provided in the vehicle.
  • the driver can easily predict the trajectory on which the image of the in-vehicle information is displayed, and can easily understand the display content even after noticing the display of the image.
  • the in-vehicle information image periodically moves in the direction intersecting the derived optical flow vector main component, the driver can more easily predict the trajectory displayed in the in-vehicle information image. Even after noticing the display, the display contents can be easily understood.
  • the driver since the in-vehicle information image periodically moves in a direction intersecting with the derived vector main component of the optical flow, the driver reduces the movement amount of the line of sight after noticing the display of the in-vehicle information image.
  • the display contents can be easily understood.
  • an optical flow vector can be calculated without an image captured by the camera 8. Therefore, the horizontal component of the optical flow vector for the combination of the output value of the speed sensor 14 and the output value of the yaw rate sensor 15, the y component that is the vertical component, and the x component and the y component are formed.
  • the optimal movement direction of the movement effect on the symbol image can be determined based on the table.
  • the optimum movement direction of the movement effect on the symbol image is determined based on the table of FIG. 16B including the position coordinates as parameters. May be.
  • FIG. 16 is a diagram illustrating an example of a table for obtaining an angle formed by a horizontal component and a vertical component of an optical flow vector when a virtual camera is used.
  • FIG. 5A is a diagram showing a table in which the angles formed by the horizontal component and the vertical component of the vector of the optical flow with respect to the vehicle speed and the angular velocity are associated with each other.
  • FIG. 5B is a table in which the position coordinates of the road surface where the HUD overlap region overlaps, the horizontal component of the vector of the optical flow with respect to the vehicle speed and the angular velocity, and the angle formed by the vertical component are associated with each other.
  • FIG. 24 is a diagram illustrating a system configuration of an information display system that calculates the eyeball position of the driver and calculates an optical flow according to the viewpoint of the driver.
  • the driver's eyeball position can be calculated by using a known positioning technique using an in-camera. A technique for converting the viewpoint of an image is also known. Therefore, it is possible to convert the image captured by the camera 8 into an image of the driver's viewpoint, and to calculate the optical flow of the portion that overlaps the display area of the HUD in the converted image.
  • the position and angle of the driver's seat may be taken into consideration.
  • the background (superimposed region) of the display position of the HUD as viewed from the driver also changes. Therefore, if the eyeball position of the driver determined by the position and angle of the seat is recorded in advance as a table, the eyeball position of the driver is determined in conjunction with the position and angle of the seat, and the HUD as viewed from the eyeball position is further determined. It is also possible to calculate an optical flow vector at a position on the road surface beyond the display area.
  • FIG. 17 is a diagram illustrating an example of a table for setting the position coordinates of the road surface where the HUD overlap region overlaps.
  • the optical flow vector is small when the position on the road surface that is the background of the display position is farther away.
  • the size increases.
  • the direction of the optical flow vector is different from that when the vehicle is traveling straight, but the magnitude of the vector is the same.
  • the optical axis of the camera 8 including the virtual camera 151 has been described as being parallel to the Z axis.
  • the camera 8 may have a depression angle.
  • the optical flow can be calculated in the same manner from the geometric relationship.
  • the sensors 6a to 6d and the camera 8 are always operating while the host vehicle 5 is traveling.
  • the operations of the sensors 6a to 6d and the camera 8 may be performed only when the speed is higher than a predetermined speed.
  • the predetermined speed is, for example, 5 km / h or more.
  • the sensors 6a to 6d and the camera 8 may start to operate simultaneously with the start of the engine of the host vehicle 5, or set to operate only when the speed satisfies the operation condition preset by the driver. You may do it.
  • the detection information type may be selected only when the distance between the host vehicle 5 and a specific type of object satisfies a predetermined condition.
  • the predetermined condition is, for example, “the distance between the host vehicle 5 and a specific type of object is 10 [m] or less” or the like.
  • the sensors 6a to 6d can detect the right / left turn of the host vehicle 5, and can detect only the approaching object detected on the right side of the host vehicle 5 when the host vehicle 5 is turning right, for example.
  • FIG. 18 is a diagram illustrating an example of a route guidance image.
  • the symbol image is vibrated, so that the driver can quickly notice the approach of the right / left turn point without feeling troublesome.
  • driving information instrument information, vehicle abnormality warning information, etc.
  • driving support information running environment information, sign information, information to reinforce vision, blind spot information, obstacle warning information, lanes Display of deviations, traffic violations, snooze warnings, recommended speed information, etc.
  • in-car environment information clock, air conditioner, multimedia information, etc.
  • navigation information route guidance information, economic driving support information, etc.
  • the method of determining the motion effect added to the symbol image by the optical flow in either the horizontal direction or the vertical direction has been described.
  • a symbol image such as adding a motion effect in the direction closest to the optical flow direction among the four directions from top to bottom, left to right, top right to bottom left, and top left to bottom right as viewed from the driver.
  • the motion direction options may be subdivided.
  • the options of the direction of the motion effect to be added are further subdivided.
  • the angle formed by the optical flow vector 132 and the direction of the x component described above is ⁇ , and based on the value of ⁇ , A movement effect may be added in a direction closest to the optical flow vector.
  • the symbol image is described as a single image 70 as shown in FIG.
  • FIG. 19B for example, the first image 71 that needs to be notified to the driver and the driver's attractiveness and visibility as shown in FIG. 19B.
  • FIG. 19 is a diagram illustrating an example of a display image displayed on the display unit.
  • FIG. 5A shows an image with only a symbol image.
  • FIG. 5B shows an image composed of a symbol image and a background image.
  • the first image 71 and the second image 72 perform the same exercise, even if the driver notices the first image 71 is moving, the driver's visibility is reduced. Therefore, the visibility of the symbol image 70 can be enhanced by adding exercise only to the second image 72 and not adding exercise effect to the first image 71 in the display control unit 37.
  • the optical flow may be estimated based on the Global Positioning System) information, the steering, the winker, and the traveling state of the host vehicle 5.
  • the visual characteristics of the driver are not taken into consideration, but there are age differences and individual differences in the visual characteristics.
  • age for example, visual acuity, visual field range, spectral visual sensitivity, color contrast sensitivity, luminance contrast sensitivity, etc.
  • the driver's individual visual characteristics can be grasped in advance, it is more suitable for each driver by displaying an image according to the driver's condition based on the driver's individual visual characteristic data. The display is easy to notice and less troublesome.
  • the exercise effect added to the symbol image may be changed over time.
  • the amplitude and period of motion are uniform regardless of the speed of the host vehicle 5, but depending on the output value of the speed sensor 14, for example, when the speed of the host vehicle 5 increases, the symbol image
  • the size of the symbol image or the motion cycle may be changed according to the speed of the host vehicle 5 such as increasing the size of the vehicle or shortening the motion cycle of the motion effect added to the symbol image.
  • the vibration of the vehicle body of the host vehicle 5 is not taken into account, but the vertical vibration of the host vehicle 5 is large by detecting the vibration of the vehicle body of the host vehicle 5 in the vertical direction. It is also possible to increase the vibration amplitude of the symbol image.
  • the sensors 6a to 6d and the camera 8 are not included in the information display device 30a. However, the sensors 6a to 6d and the camera 8 are not included in the information display device 30a. It may be included.
  • the speed sensor 14 and the yaw rate sensor 15 are not included in the information display device 30b. However, the speed sensor 14 and the yaw rate sensor 15 are not included in the information display device 30b. May be included.
  • the display part 90 was demonstrated as a structure which is not included in the information display apparatus 30. FIG. However, the display unit 90 may be included in each information display device 30.
  • the format of the detection information type is text data
  • the format of the symbol image is image data, but is not limited to this.
  • the symbol image management table 40 is used when accessing the other storage unit storing the detected information type and the symbol image. May be stored.
  • the display size of the display image is increased as the relative distance is smaller and the display is larger as the relative speed is larger according to the distance and speed. It is also possible to change the size of the display image such as increasing the display size of the image.
  • the information display device 30 determines the display magnification of the symbol image according to the relative distance between the host vehicle 5 and the pedestrian 1 or the like. And can be displayed.
  • FIG. 20 when the relative distance between the host vehicle 5 and the pedestrian 1 or the like is less than A [m], it is displayed in a size three times the preset size of the display target image. . In the case of A [m] to B [m], it is displayed in a size of 2.0 times, and in the case of B [m] to C [m], it is displayed in a size of 1.0 (normal size). Is displayed.
  • a symbol image having a different hue such as green ⁇ yellow ⁇ red is assigned as the relative distance between the host vehicle 5 and the detection target is shortened, or a symbol image having higher brightness is assigned as the relative distance is shortened. It is possible to assign a symbol image with high saturation or a symbol image with high luminance as the distance becomes shorter.
  • different symbol images may be assigned depending on the value of TTC (Time To Collation) calculated from the values of the relative distance and relative speed between the vehicle 5 and the detection target.
  • TTC Time To Collation
  • the symbol image is selected based on the detected attention object.
  • the attention object portion is trimmed from the acquired camera image, and the attention object image trimmed instead of the symbol image is HUD. It may be displayed above.
  • the display image is superimposed and displayed on the background through the windshield by HUD, but the display image may be displayed on a small non-transparent display installed in front of the driver.
  • the information display device and the information display method according to the present invention are useful as a device or a method that becomes a part of a safe driving support system mounted on a vehicle. It can also be used in a route guidance application, such as being incorporated as a part of a car navigation device and using a route guidance image as a symbol image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Image Processing (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

 車両の走行状態に影響を受けず、運転者が表示情報に気付き易く、かつ煩わしさを感じにくい情報表示装置及び情報表示方法を提供する。運転者に対して表示すべき情報を検出する注意対象検出部32と、運転者に表示するシンボル画像を設定するシンボル画像選択部33と、自車両の前景のオプティカルフローを検出するオプティカルフロー算出部34aと、シンボル画像に付加する運動効果を設定する運動効果決定部35と、シンボル画像に、運動効果決定部にて付加された運動効果を組み合わせた表示画像を生成する表示画像生成部36と、生成された表示画像を運転者に表示する表示制御部37とを有し、運動効果決定部35は、車両の走行状態に応じて、シンボル画像に付加する運動効果を変化させる。

Description

情報表示装置及び情報表示方法
 本発明は、運転者の運転を支援するための情報を表示する情報表示装置及び情報表示方法に関する。
 近年、車両に搭載される機器又は機能が増大する中で、運転者は、当該車両を運転する際、当該車両の内外から得られる様々な情報を処理する必要がある。
 運転者が処理する様々な情報は、例えば、車両の速度情報、エンジンの回転数、センターコンソールに表示されるラジオの局番、音楽のトラックナンバーの情報、カーナビゲーションシステム(Car Navigation System)の画面に表示される地図若しくは経路案内の情報、又は当該車両周囲の危険性の警告等の安全運転を支援するための情報がある。
 従来、運転者は、主にインストルメントパネル又はセンターコンソールパネルに表示される情報を、視覚を通じて取得することが多かった。しかし、運転者の視線方向と、当該情報が表示される方向とが大きく異なる場合、又は運転者と当該情報が表示される位置との距離が離れている場合には、運転者は、当該情報の内容を確認するために、視線を移動したり又は焦点を調節したりしていた。
 このような運転者の視線の移動量又は焦点の調節量を極力減らすために、ヘッドアップディスプレイ(HUD:Head-Up Display)が開発されている。HUDは、車両のダッシュボードの上部からフロントガラスにかけての特定の範囲に所定の情報を表示するディスプレイである。
 HUDには、液晶ディスプレイやOELD(Organic ElectroLuminecsent Display:有機ELディスプレイ)等の表示デバイスを直接視認するタイプや、液晶ディスプレイ又はOELD又はレーザー光源を含んだ表示デバイスから出力された光をフロントガラスに投影させるタイプ等がある。
 HUDを用いることにより、前方を見ながら運転している状態からディスプレイを見るための視線移動時間が、従来のインストルメントパネルやセンターコンソールを見る場合と比較して短縮できる。
 更に、フロントガラスに投影されるタイプでは、表示情報が車両の前景に重畳されるという特徴があり、運転者と表示デバイスとの間の光学的距離をより長くすることができる。これにより、運転者は、焦点調節のためにほとんど時間をかけずに表示情報を視認することができる。
 このようなHUDにより、運転者の視野の中心に近い位置に情報を表示することが可能となり、運転者の表示情報への気付き易さが大きく向上することが期待される。また、視覚機能の低下した高齢者に対しては特に有効であると考えられる。
 その一方で、運転者の視野の中心に近い位置へ情報を表示することにより、運転者が煩わしさを感じる可能性がある。このため、気付き易く、かつ運転者が煩わしさを感じにくい情報の表示方法が望まれている。そこで、運転者(作業者)の視野の周辺に情報の表示を行い、何らかのタイミングで当該表示情報に対する誘目効果を付加することにより表示情報への気付き易さを向上させるための先行技術が開示されている(例えば、非特許文献1参照)。
 例えば、非特許文献1では、前述した誘目効果として、縦振動又は横振動という運動効果を表示情報に付加することにより、作業者が気付き易く、かつ作業者が煩わしさを感じにくいという結果が開示されている。また、車両の運転中に、前述した振動を用いた誘目効果を応用した例として、横振動によって運転者の気付き易さを向上させる方法が特許文献1に開示されている。
 特許文献1では、車両の走行に連動した移動速度を持つ光の流れを運転者の視野内に発生させ、この流れの中に他車両の存在を示す非表示領域を設ける車両用表示装置及び方法が開示されている。また、この特許文献1では、運転者がこの非表示領域の存在に慣れることを防止するために、非表示領域の存在が一定期間継続された場合には、非表示領域を横振動させている。
 HUDを用いて所定の画像を振動させた状態でフロントガラス上に表示する場合、時間的に変化する車両の前景と当該画像とが重畳表示されるため、特許文献1で開示された表示方法を応用し、気付き易く、かつ煩わしさを感じにくくすることが可能である。
 より具体的に説明すると、例えば、車両の進路上の歩行者等(注意対象)の存在を知らせる画像に水平方向の振動の誘目効果を付加してHUDに表示することにより、注意対象の存在を短時間で確実に運転者に伝えることができる。
日本国特開2006-264507号公報
木室俊一他著「マルチディスプレイ環境における頭部姿勢を用いた適応的誘目法」電子情報通信学会・信学技報、HIP2006-135、P.43-48
 しかしながら、本発明の発明者の考察によれば、注意対象の存在を知らせる画像を水平方向へ画一的に振動させた場合に、どのような走行状況においても気付き易く且つ運転者が煩わしさを感じにくいわけでは無い。
 具体的には、交差点等で車両が右左折又は転回を行っている最中では、車両の前景のオプティカルフローは水平方向が主体となり、当該オプティカルフローと表示画像の振動方向とが略平行になるため、運転者にとって充分な誘目効果が得られないという課題があった。
 本発明は、前記従来の課題に鑑みてなされたもので、その目的は、車両の走行状態に影響を受けず、運転者が表示情報に気付き易く、かつ煩わしさを感じにくい情報表示装置及び情報表示方法を提供することを目的とする。
 本発明の一態様の情報表示装置は、前景画像を撮影するカメラを備える車両に搭載された、所定の情報を表示する情報表示装置であって、所定の情報を運動させて表示する表示部と、カメラが撮像した複数の前景画像を取得し、取得された複数の前景画像に基づいて、前景のオプティカルフローのベクトル情報を算出するオプティカルフロー算出部と、オプティカルフロー算出部からオプティカルフローのベクトル情報を取得し、取得されたオプティカルフローのベクトル情報に基づいて、所定の情報の運動効果を決定する運動効果決定部と、を具備する。
 本発明の情報表示装置及び情報表示方法によれば、車両の走行状態に影響を受けず、運転者が気付き易く、かつ煩わしさを感じにくい情報表示を実現することができる。
第1の実施形態に係る情報表示装置を含む情報表示システムが搭載された車両が走行している様子を示す図 第1の実施形態に係る情報表示装置を含む情報表示システムが搭載された車両内部の運転席付近の様子を示す図 第1の実施形態に係る情報表示装置を含む情報表示システムの構成を示すシステム構成図 シンボル画像管理テーブルの一例を示す図 運動効果決定テーブルの一例を示す図 第1の実施形態に係る情報表示装置の動作を説明するフローチャート 第1の実施形態の自車両のセンサにより歩行者が検出される前における自車両と歩行者との位置関係を示す図 第1の実施形態の自車両のセンサにより歩行者が検出された後における自車両と歩行者との位置関係を示す図 オプティカルフローの算出の様子を示した図 カメラにより撮影されたカメラ画像におけるオプティカルフローのベクトル成分がZ=-fの平面に投影された様子を示す図、(a)Z=-fの平面を示す図、(b)当該ベクトルのx、y成分への分解を示す図 車両の直進時のオプティカルフローに関する図、(a)車両内に設置されたカメラにより撮影されたカメラ画像とオプティカルフローの例とを示す図、(b)オプティカルフローのベクトルのx、y成分への分解を示す図 車両の右折時のオプティカルフローに関する図、(a)車両内に設置されたカメラにより撮影された画像とオプティカルフローの例とを示す図、(b)オプティカルフローのベクトルのx、y成分への分解を示す図 運動効果の具体例を示す図、(a)正弦波を示す図、(b)矩形波を示す図、(c)三角波を示す図、(d)鋸状の波形を示す図、(e)鋸状の波形を示す図 第2の実施形態に係る情報表示装置を含む情報表示システムの構成を示すシステム構成図 速度センサ及びヨーレートセンサによりそれぞれ出力された速度情報及び角速度情報に基づいて算出されるオプティカルフローのベクトルの算出過程を説明する図、(a)は仮想カメラのレンズ中心を基準とした座標系における前景の相対的な移動の様子を示す図、(b)は仮想カメラを基準とした前景の相対的な移動を平行移動と回転運動との各成分に分解した様子を示す図、(c)は投影面上のオプティカルフローのベクトルを示す図 仮想カメラを用いた場合にオプティカルフローのベクトルの水平成分、鉛直成分のなす角度を求めるためのテーブルの一例を示す図、(a)は車速、角速度に対するオプティカルフローのベクトルの水平成分、鉛直成分のなす角度が関連付けられたテーブル、(b)は重畳領域の位置座標、車速、角速度に対するオプティカルフローのベクトルの水平成分、鉛直成分のなす角度が関連付けられたテーブル 重畳領域の位置座標を設定するためのテーブルの一例を示す図 経路案内の画像の一例を示す図 表示部に表示される表示画像の一例を示す図、(a)はシンボル画像のみの画像、(b)はシンボル画像と背景画像とで構成された画像 表示倍率条件情報の一例を示す図 シンボル画像の縦又は横への拡大又は縮小の運動のパターンの一例を示す図、(a)正弦波の拡大又は縮小の運動のパターンの一例を示す図、(b)正弦波の値の正の部分の繰り返しの拡大又は縮小の運動のパターンの一例、(c)矩形波の拡大又は縮小の運動のパターンの一例を示す図、(d)三角波の拡大又は縮小の運動のパターンの一例を示す図、(e)鋸状の波形の拡大又は縮小の運動のパターンの一例、(f)鋸状の波形の拡大又は縮小の運動のパターンの一例 シンボル画像が回転しているように見える画像の縦又は横の運動のパターンの一例を示す図、(a)正弦波の方向に回転するように運動させたパターンの一例を示す図、(b)矩形波の方向に回転するように運動させたパターンの一例を示す図、(c)三角波の方向に回転するように運動させたパターンの一例を示す図、(d)鋸状の波形の方向に回転するように運動させたパターンの一例を示す図、(e)鋸状の波形の方向に回転するように運動させたパターンの一例を示す図 シンボル画像が回転しているように見える画像の変化の一例を示す図、(a)~(m)変化する一連のフレーム画像をそれぞれ示した図 前景画像のうちの重畳領域近傍のオプティカルフローのベクトルを算出する情報表示装置を含む情報表示システムの構成を示すシステム構成図 運転者の眼球位置と重畳領域の位置関係とを説明するための図、(a)HUDに表示されているシンボル画像を運転者の視点から見た図、(b)車両の横方向の断面図 第3の実施形態に係る情報表示装置である車載情報表示装置を含む車載情報表示システムの構成を示すシステム構成図 第3の実施形態に係る情報表示装置である車載情報表示装置の内部構成を示すブロック図 対象車載情報の一例を示す図 運動効果条件情報の一例を示す図 第3の実施形態に係る情報表示装置である車載情報表示装置の動作を説明するフローチャート 運動効果の具体例を示す図、(a)は正弦波を示す図、(b)は矩形波を示す図、(c)は三角波を示す図、(d)は鋸状の波形を示す図 第4の実施形態に係る情報表示装置である車載情報表示装置を含む情報表示システムの構成を示すシステム構成図 第4の実施形態に係る情報表示装置である車載情報表示装置の内部構成を示すブロック図 眼球位置と重畳領域の位置関係とを説明するための図、(a)上から見た位置関係を示す図、(b)横から見た位置関係を示す図
 以下、本発明の実施の形態について、図面を参照しながら説明する。
(第1の実施形態)
 図1は、第1の実施形態に係る情報表示装置を含む情報表示システムが搭載された車両が走行している様子を示す図である。図2は、第1の実施形態に係る情報表示装置を含む情報表示システムが搭載された車両内部の運転席付近の様子を示す図である。以下、情報表示装置を含む情報表示システムは自動車等の車両に搭載されるものとして説明し、当該車両を「自車両5」、当該自車両5の運転者を「運転者」と記載する。
 自車両5には、1つ又は複数のセンサ6a~6dを含むセンサ部が搭載されている。但し、センサの搭載数は図1に示すように4つに限定されない。センサ6a~6dは、自車両5の周辺の所定の検出範囲7に存在する人物又は物体を検出する。そして、センサ6a~6dから出力される検出情報に基づいて、自車両5内に設置されたHUDの表示領域21上に表示情報が表示される。
 例えば、図1において、センサ6a~6dによって歩行者1の存在が検出されると、「歩行者」が検出されたことを示す検出情報に基づいて、歩行者1を示すシンボル画像が選択される。そして、更にそのシンボル画像に運動効果を付加した表示画像が生成され、表示領域21に表示される。
 また、図1に示すように、自車両5には、カメラ8(第1のカメラ)が搭載されている。カメラ8は、自車両5の外部環境を撮影する。本実施の形態においては、カメラ8は、自車両5の前景を撮影する場合を説明するが、その限りではない。カメラ8は、例えば、図2に示すルームミラー23の裏側に設置される。
 カメラ8は、図1に示すように、自車両5の前景のうち、カメラ8の画角に基づいて定まる所定の撮影範囲9を、所定のフレームレートで撮影して、前景画像を取得する。前景画像は、オプティカルフローを算出するために用いられる。
 図3は、第1の実施形態に係る情報表示装置30aを含む情報表示システム10aの構成を示すシステム構成図である。第1の実施形態の情報表示システム10aは、センサ6a~6d、カメラ8、表示部90及び情報表示装置30aを備える。情報表示装置30aは、センサ6a~6d及びカメラ8と接続されている。情報表示装置30aは、記憶部31、注意対象検出部32、シンボル画像選択部33、オプティカルフロー算出部34a、運動効果決定部35、表示画像生成部36及び表示制御部37を備える。
 図7は自車両5が右折する直前、図8は自車両5が右折している最中の様子を示す。図7において、自車両5から見ると、センサ6a~6dによる所定の検出範囲7の外から中に歩行者1が進入してくる。センサ6a~6dは、自車両5の周辺の所定の検出範囲7の中に人物又は物体等の存在を検出する。
 センサ6a~6dは、具体的には、撮像装置やレーダー装置、無線タグリ-ダ、路車間通信装置等であり、人物、車両といった具体的な種別ごとに検出するセンサであってもよく、又は、単に物体の存在を検出する機能を持つセンサであってもよい。
 センサ6a~6dは、所定の検出範囲7の中に人物又は物体等の被検出対象の存在が検出された場合、検出された人物又は物体に関する情報を含む検出情報を注意対象検出部32に出力する。
 カメラ8は、自車両5の前景における所定の撮影範囲9を撮影する。撮影範囲9は、カメラ8の性能、たとえば画角等によって定まる。カメラ8は、撮影された前景画像をオプティカルフロー算出部34aに出力する。
 表示部90は、例えば、自車両5のフロントガラス22の一部の表示領域21である。第1の実施形態の情報表示システム10aの表示部90には、HUDが用いられている。表示部90には、情報表示装置30aにより生成された、運転者に対して通知する必要のある情報に運動効果が付加された画像が表示される。
 以下、各実施形態において、表示部への表示に使用される画像であり、運動効果が付加される前の画像を「シンボル画像」、シンボル画像に運動効果が付加された画像を「表示画像」と定義する。シンボル画像は、所定の情報であってもよい。
 記憶部31は、運転者に通知する必要のある検出対象種別及びシンボル画像を含むシンボル画像選択テーブル40と、シンボル画像に所定の運動効果を付加するための条件を示す運動効果決定テーブル50とを少なくとも記憶している。
 図4は、シンボル画像選択テーブル40の一例を示す図である。図5は、運動効果決定テーブルの一例を示す図である。以下、シンボル画像選択テーブル40について図4を参照して説明し、運動効果決定テーブル50について図5を参照して説明する。
 図4に示すように、シンボル画像選択テーブル40は、検出情報種別とシンボル画像が関連付けられたものである。例えば、検出情報種別の「歩行者」には、シンボル画像として「歩行者の画像」が割り当てられている。また、検出情報種別の「自転車」には、シンボル画像として「自転車の画像」が割り当てられている。また、検出情報種別の「車両」には、シンボル画像として「車両の画像」が割り当てられている。なお、シンボル画像選択テーブル40の内容はこれらに限定されない。
 図5に示すように、運動効果決定テーブル50は、オプティカルフローの条件を識別するID、後述するオプティカルフロー算出部34aにより算出されたオプティカルフローの条件、及び付加される運動効果が関連付けられたものである。
 例えば、運動効果決定テーブル50のID「001」では、オプティカルフロー条件が「オプティカルフローのベクトルの大きさがαより小さい」である場合には運動効果が付加されないことを示している。パラメータαは予め設定された値である。この場合、自車両5がほとんど動いておらず、危険ではないと考えられるため、運動効果を付加する必要がない。
 運動効果決定テーブル50のID「002」では、オプティカルフロー条件が「オプティカルフローのベクトルの大きさがα以上で、かつオプティカルフローのベクトルの水平成分の大きさがオプティカルフローのベクトルの鉛直成分の大きさより大きい」である場合には、縦振動の運動効果が付加されることを示している。
 運動効果決定テーブル50のID「003」では、オプティカルフロー条件が「オプティカルフローのベクトルの大きさがα以上で、かつオプティカルフローの鉛直成分の大きさがオプティカルフローの水平成分の大きさ以上で、かつ水平成分の大きさにパラメータβを加算した値以下」である場合には、横振動の運動効果が付加されることを示している。
 運動効果決定テーブル50のID「004」では、オプティカルフロー条件が「オプティカルフローの水平成分の大きさにパラメータβを加算した値がオプティカルフローの鉛直成分の大きさ未満」である場合には、横振動及び拡大の運動効果が付加されることを示している。
 なお、運動効果決定テーブル50の内容はこれらに限定されない。運動効果にデフォルトの方向及び振幅を設定しておき、オプティカルフローのベクトルの大きさが所定値以下の場合にはデフォルトの方向及び振幅で運動させるようにしてもよい。
 すなわち、運動効果は、振動方法であってもよく、運動効果決定部35は、オプティカルフローのベクトル情報に基づいて、所定の情報の振動方法を決定する。また、運動効果は、伸縮方法であってもよく、運動効果決定部35は、オプティカルフローのベクトル情報に基づいて、所定の情報の伸縮方法を決定する。
 次に、情報表示装置30aの動作について図6~図8を参照して説明する。図6は、第1の実施形態に係る情報表示装置30aの動作を説明するフローチャートである。図7は、自車両5のセンサ6a~6dにより歩行者1が検出される前における自車両5と歩行者1との位置関係を示す図である。
 図8は、自車両5のセンサ6a~6dにより歩行者1が検出された後における自車両5と歩行者1との位置関係を示す図である。自車両5のセンサ6a~6dにより、歩行者1が検出される。
 自車両5の周辺の所定の検出範囲7の中に人物又は物体等の存在がセンサ6a~6dにより検出された場合には、注意対象検出部32は、センサ6a~6dによりそれぞれ出力された検出情報を取得する。注意対象検出部32は、この取得された検出情報が、図4に示したシンボル画像選択テーブル40の検出情報種別の中に含まれるか否かを判定する(S401)。
 具体的には、注意対象検出部32は、記憶部31に記憶されているシンボル画像選択テーブル40と、センサ6a~6dから取得された検出情報とを比較し、図4に示したシンボル画像選択テーブル40の検出情報種別の中に前述した検出情報が含まれているか否かを判定する。
 含まれている場合には(S401のYES)、注意対象検出部32は、検出情報の検出情報種別がシンボル画像選択テーブル40の検出情報種別に含まれている旨の情報をシンボル画像選択部33に通知する。
 シンボル画像選択部33は、シンボル画像選択テーブル40の検出情報種別に検出情報が含まれている旨の情報を注意対象検出部32より取得し、該当するシンボル画像を選択する(S402)。シンボル画像選択部33は、選択したシンボル画像を表示画像生成部36に出力する。
 図9は、オプティカルフローの算出の様子を示した図である。
 図10は、カメラ8により撮影されたカメラ画像におけるオプティカルフローのベクトル成分がZ=-fの平面に投影された様子を示す図であり、同図(a)はZ=-fの平面を示す図であり、同図(b)は当該ベクトルのx、y成分への分解を示す図である。
 図11は、車両の直進時のオプティカルフローに関する図であり、(a)は車両内に設置されたカメラ8により撮影されたカメラ画像とオプティカルフローの例とを示す図であり、(b)はオプティカルフローのベクトルのx、y成分への分解を示す図である。
 図12は、車両の右折時のオプティカルフローに関する図であり、(a)は車両内に設置されたカメラ8により撮影されたカメラ画像とオプティカルフローの例とを示す図であり、(b)はオプティカルフローのベクトルのx、y成分への分解を示す図である。
 以下、オプティカルフロー算出部34aの動作について図9~図12を参照して説明する。
 本実施の形態において、カメラ8は、常時、自車両5の前景における所定の撮影範囲9を撮影し、撮影された前景画像をオプティカルフロー算出部34aに出力する。オプティカルフロー算出部34aは、カメラ8により出力された複数の前景画像の時間的変化に基づいて、当該画像内のオプティカルフローを算出する。
 オプティカルフロー算出部34aは、カメラ8により出力された第1の前景画像と、第1の前景画像の次のフレームの第2の前景画像とを比較し、互いに対応する座標点を推定する。ここで、互いに対応する座標点とは、第1の前景画像に含まれる第1の座標点、及び、第2の前景画像において、当該第1の座標点が示す背景情報を示す第2の座標点のことである。
 オプティカルフロー算出部34aは、第1の前景画像における第1の座標点と、第2の前景画像における第2の座標点との差分(移動ベクトル)をオプティカルフローのベクトルとして算出する(S403)。画像間での同一点を推定するための方法としては、勾配法、ブロックマッチング法等の方法が用いられている。
 例えば、勾配法では、前景画像の水平方向にx軸、前景画像の鉛直方向にy軸をとり、当該画像中の同一の点における位置及び輝度が時間に対して滑らかに変化すると仮定してオプティカルフローが求められる。
 具体的には、前景画像中の(x,y)の時刻tでの輝度をE(x,y,t)、画像中のオプティカルフローのベクトルの水平成分であるx成分をu、当該ベクトルの鉛直成分であるy成分をvとすると、数式(1)が成り立つ。
Figure JPOXMLDOC01-appb-M000001
 数式(1)から数式(2)が導き出され、画像中の画素(x、y)近傍の拘束方程式からの最小自乗解がオプティカルフローのベクトルとして算出される。数式(2)は拘束方程式である。
Figure JPOXMLDOC01-appb-M000002
 また、現実の物体の移動と、それを画像上に投影したオプティカルフローとの関係を、図9を参照して説明する。
 図9に示すように、自車両5の進行方向を向いたカメラ8を基準とした座標系として、カメラ8のレンズの中心131を原点Oとし、自車両5の水平右方向をX軸、鉛直上方向Y軸、進行方向と反対向きをZ軸とした直交座標系をとる。
 カメラ8の光軸が水平でZ軸と重なるものとし、カメラ8の焦点距離をfとすれば、実際の撮像面はZ=fの平面上に倒立像を結像するが、像の反転を考慮すると、Z=-fの平面上で順方向の結像をするものと見做すことができる。
 また、路面を平面とし、路面からのカメラ8の高さをhとすると、路面はY=-hの平面で表わされる。カメラ8の視野内の路面上のある地点P(X、Y、Z)が次のフレームにおいて地点P’(X、Y、Z)に移動し、それらの点がそれぞれZ=-fの投影面上の点Q(x,y)、点Q’(x,y)にそれぞれ投影されたとすると、数式(3)及び数式(4)の関係が成り立つ。地点P’と点Q’のZ=-fの平面への投影についても同様である。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 従って、図10に示したオプティカルフローのベクトル132を(u,v)で表すと、数式(5)及び数式(6)が成立し、実際の移動ベクトル133がオプティカルフローベクトル132に投影されることになる。但し、オプティカルフローの算出方法は、前述した方法に限定されない。

Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 オプティカルフロー算出部34aは、前述した方法で算出されたオプティカルフローを運動効果決定部35に出力する。運動効果決定部35は、オプティカルフロー算出部34aにより出力されたオプティカルフローを取得する。運動効果決定部35は、記憶部31に記憶されている運動効果決定テーブル50を参照し、当該取得されたオプティカルフローに応じた運動効果を決定する(S404~S408、S410~S412)。
 なお、本実施形態においては、カメラ8により撮影された前景画像のオプティカルフローの代表値を、オプティカルフロー算出部34aが出力するオプティカルフローとして採用してもよい。
 なお、前景の各点においてオプティカルフローのベクトルは異なるため、オプティカルフローはベクトル分布情報である。オプティカルフローの算出においては、前景のうち、特に運転者から見える表示画像が重畳する領域(以下、「重畳領域」という)におけるオプティカルフローが重要である。
 このため、オプティカルフロー算出部34aは、前景画像のうち重畳領域にのみ基づいてオプティカルフローを算出してもよい。オプティカルフローの代表値としては、重畳領域内の数点のオプティカルフローの平均を用いても良いし、重畳領域内でも実際に表示画像の表示される近傍に限定したオプティカルフローの平均値を用いても良い。
 ここで、重畳領域について説明する。図24は、フロントガラス22のうち重畳領域近傍のオプティカルフローのベクトルを算出する情報表示装置30eを含む情報表示システム10eの構成を示す図である。
 図24に示す情報表示システム10eは、運転者の顔画像を撮影するカメラ2401(第2のカメラ)と、カメラ2401から取得された画像から運転者の眼球位置を検出し、カメラ2401の設置位置を示す設置情報に基づいて、運転者の眼球の三次元位置情報を算出する眼球位置算出部2402と、算出された眼球位置と、フロントガラス22におけるシンボル画像20の表示位置とに基づいて、重畳領域を算出する重畳領域算出部2403と、を備える。
 なお、カメラ2401の設置位置を示す設置情報は、情報表示システム10eに含まれるメモリ(不図示)が記憶する。
 図25は、運転者80の眼球位置と重畳領域の位置関係とを説明するための図である。図25(a)はHUDに表示されているシンボル画像を運転者80の視点から見た図であり、フロントガラス22における下部領域にシンボル画像20が表示されている。本図においては、シンボル画像20の近傍領域が重畳領域86である。
 図25(b)は、図25(a)に対応した、車両の横方向の断面図である。HUDユニット81の射出光82がフロントガラス22に到達し、反射光が運転者80の方向に向かい、運転者80の視野に入ることでシンボル画像20の表示が運転者80の目に映る。運転者80がシンボル画像20を見る場合には、運転者80の視線83はシンボル画像20を通る。
 フロントガラス22は透過的であるため、運転者80の視線83はシンボル画像20を通過し、更に路面85に到達する。図25(b)においては、シンボル画像20を中心とした所定の近傍領域が切り取る路面85の一部の領域が重畳領域86である。
 すなわち、重畳領域86とは、運転者80の眼球位置と、フロントガラス22におけるシンボル画像20を含む所定の領域とを結ぶ直線84によって切り取られた前景と、カメラ8(第1のカメラ)が撮影する前景画像とが重畳する領域である。
 以下、図24および及び図25により、重畳領域86の前景画像に基づいてオプティカルフローの算出方法を説明する。
 カメラ2401は、運転者80の顔画像を所定の時間間隔で撮影している。このカメラ2401にて撮影された画像データが眼球位置算出部2402に入力される。ここで、カメラ2401は例えばステレオカメラであり、同時に撮影した画像を眼球位置算出部2402に入力する。
 眼球位置算出部2402では、入力された画像から運転者80の二つの眼球の位置を検出する。ステレオカメラでは三角測量の原理に基づき、少しずれた位置から撮影した画像の視差を利用して物体(ここでは眼球)までの距離を算出する。ステレオカメラを用いた基本的な測距技術は公知であるため、ここでは特に説明はしない。ステレオカメラを用いた測距技術において、実際には人間の目は二つあるため、例えば、検出された運転者80の両目の位置の中点を眼球位置とみなせばよい。
 次に、図34を用いて、眼球位置と重畳領域の位置関係とを説明する。図34は、眼球位置と重畳領域の位置関係とを説明するための図であり、図25を模式的に表した図である。同図(a)は上から見た位置関係を示し、同図(b)は横から見た位置関係を示している。座標系については、各座標軸の向きは図9と同様とするが、シンボル画像20の表示位置を原点としている。
 この座標系において眼球位置87を(e、e、e)とし、重畳領域86を(x、y、h)とすれば、xは数式(7)、yは数式(8)で表せる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 したがって、シンボル画像20の表示位置と眼球位置87が分かれば、重畳領域86の位置を算出することが可能である。シンボル画像20の表示位置については、予め幾何学的関係を記憶しておくことで、カメラ8を基準とした座標系の位置座標に変換することは容易である。
 そして、数式(7)、数式(8)によって求めたx、yを、カメラ8を基準とした座標系に変換することによって、前述の方法に従って、オプティカルフローのベクトルを算出できる。オプティカルフローのベクトルを算出した後の動作は、上述しているため説明を省略する。
 以上のように、図24に示すシステム構成にすることで、重畳領域86のオプティカルフローのベクトルを算出することが可能である。
 なお、運動効果決定部35は、前述の重畳領域86に含まれるオプティカルフローのベクトル情報に基づいて運動効果を決定してもよい。
 例えば、図6において、自車両5が停止している場合又は当該自車両5が低速度で走行している場合等、オプティカルフローのベクトルの大きさが予め設定された所定値α(例えばα=-2)未満である場合には(S404のNO)、運動効果決定部35は、オプティカルフローがないと見做し、シンボル画像選択部33により選択されたシンボル画像に対して運動効果を付与しないように決定する(S405)。したがって、その場合にはシンボル画像20が動かずにHUDの表示領域に表示される(S406)。
 ここで、予め設定された所定値は、図5に示した運動効果決定テーブル50におけるパラメータαである。
 オプティカルフローのベクトルの大きさが所定値α以上の場合には(S404のNO)、運動効果決定部35は、当該オプティカルフローの水平成分、鉛直成分のそれぞれの大きさに基づいた比較を行い、その結果に応じて運動効果を決定する。
 例えば、図12(a)に示すように自車両5が右折動作を行っている場合に、運動効果決定部35はオプティカルフローのベクトル111を図12(b)のように分解する。その結果、水平成分及び鉛直成分(u、v)=(-10、-2)が得られたとする。そして、運動効果決定部35は、uとvの大きさに関して比較する。
 図12(b)に示す例の場合、運転者から見たオプティカルフローの水平成分uの大きさが鉛直成分vの大きさよりも大きいため(S407のYES)、運転効果決定部35は、図5に示した運動効果決定テーブル50に従って、シンボル画像に対して「縦振動」の運動効果を付加するように決定する(S408)。
 これにより、運転者が気付き易く、かつ煩わしさを感じにくい表示とすることができる。
 また、例えば、図11(a)に示すように自車両5が略直進走行を行っている場合に、図11(b)に示すようにオプティカルフローのベクトル121の水平成分及び鉛直成分(u、v)=(-3、-20)が得られたとする。なお、この例では所定値βの値によって運動効果決定部35における決定内容が異なるため、例えばβ=-7とする。
 この場合には、運転者から見たオプティカルフローの鉛直成分vの大きさが水平成分uの大きさよりも大きく、更にその大きさの差が7より大きいため(S410のYES)、運転効果決定部35は、図5に示した運動効果決定テーブル50に従って、シンボル画像20に対して「横振動」の運動効果を付加することに加えて拡大表示の効果も付加するように決定する(S411)。なお、その際の拡大倍率は予め固定的に設定されているものでもよいし、何らかの方法で別途算出されるものでもよい。
 これにより、運転者が気付き易く、かつ煩わしさを感じにくい表示とすることができる。
 また、図示していないが、図11(b)のようにオプティカルフローのベクトルの鉛直成分vの方が水平成分uよりも大きく、かつ、その差がβより小さい場合には(S410のNO)、運動効果決定部35はシンボル画像に対して横振動の運動効果のみを付与する(S412)。
 表示画像生成部36は、シンボル画像選択部33により選択されたシンボル画像に、運動効果決定部35により決定された運動効果を付加した表示画像を生成する(S409)。そして、表示制御部37は、表示画像生成部36によって前記運動効果を付加された表示画像を取得し、表示部90に表示する(S406)。
 前述したように、運動効果の種類としては、例えば縦方向の一次元的な振動、横方向の一次元的な振動、拡大、又は縮小等があり得る。振動の振幅や周期等の属性は、予め設定された所定の値を用いるが、任意に編集することも可能である。運動効果の種類として、周期的な運動であれば良い。
 例えば、縦又は横の一次元的な振動であれば、図13(a)~(e)に示すように、位置の変化のパターンが正弦波、矩形波、三角波又は、更には表示位置の移動が不連続な鋸状の波形でも良い。図13は、運動効果の具体例を示す図である。同図(a)は、正弦波を示す図である。同図(b)は、矩形波を示す図である。同図(c)は、三角波を示す図である。同図(d)は、鋸状の波形を示す図である。同図(e)は、鋸状の波形を示す図である。
 また、縦又は横の一次元的な拡大又は縮小であれば、図21(a)~(f)に示すように、拡大、縮小方向の幅の変化が正弦波、正弦波の値の正の部分の繰り返し、矩形波、三角波、鋸状の波形でもよい。図21は、シンボル画像20の縦又は横への拡大又は縮小の運動のパターンの一例を示す図である。同図(a)は、正弦波の拡大又は縮小の運動のパターンの一例を示す図である。同図(b)は、正弦波の値の正の部分の繰り返しの拡大又は縮小の運動のパターンの一例を示す図である。同図(c)は、矩形波の拡大又は縮小の運動のパターンの一例を示す図である。同図(d)は、三角波の拡大又は縮小の運動のパターンの一例を示す図である。同図(e)は、鋸状の波形の拡大又は縮小の運動のパターンの一例を示す図である。同図(f)は、鋸状の波形の拡大又は縮小の運動のパターンの一例を示す図である。
 また、拡大、縮小に類似した運動効果として、運転者にとってあたかも画像が縦又は横方向に回転しているように見える表示方法でもよい。具体的には、例えば図23の(a)~(m)のように画像が変化すれば、自転車のシンボル画像が鉛直方向の中心線を回転軸にして水平方向に回転しているように見える。図23は、シンボル画像が回転しているように見える画像の変化の一例を示す図である。同図(a)~(m)は、変化する一連のフレーム画像をそれぞれ示している。
 図22は、シンボル画像が回転しているように見える画像の縦又は横の運動のパターンの一例を示す図である。同図(a)~(e)は、横軸に時刻、縦軸に表示画像の回転方向の幅をとったグラフであり、正弦波、矩形波、三角波、鋸状の波形等の方法で変化をさせた例を示す図である。具体的には、同図(a)は、正弦波の方向に回転するように運動させたパターンの一例を示す図である。同図(b)は、矩形波の方向に回転するように運動させたパターンの一例を示す図である。同図(c)は、三角波の方向に回転するように運動させたパターンの一例を示す図である。同図(d)は、鋸状の波形の方向に回転するように運動させたパターンの一例を示す図である。同図(e)は、鋸状の波形の方向に回転するように運動させたパターンの一例を示す図である。なお、グラフの縦軸におけるマイナス符号は、元のシンボル画像に対して表示画像が反転した状態であることを示している。
 このようにして表示領域21に歩行者1の表示画像が表示されると、たとえ歩行者1そのものが運転者の視野に入っていなくとも、運転者は煩わしさを感じずに表示に気付き易くなり、その結果、当該歩行者1との接触を回避する動作までの時間も短縮することができる。
 従って、第1の実施形態の情報表示装置30aでは、自車両5の周囲の所定の検出範囲7に運転者の注意対象となる歩行者1等の存在が検出される。
 ここで検出された検出情報がシンボル画像管理テーブルに属する検出情報種別に該当する場合には、自車両5のオプティカルフローが算出されることによりシンボル画像に対する運動効果が決定される。
 自車両5のオプティカルフローは、カメラ8により撮影された自車両5の前景画像に基づいて算出される。この決定された運動効果がシンボル画像に付加され、表示画像として自車両5の表示部90に表示される。
 以上のように、第1の実施形態の情報表示装置30aは、前景画像を撮影するカメラ8を備える車両に搭載された、所定の情報を表示する情報表示装置であって、所定の情報を運動させて表示する表示部と、カメラ8が撮影した複数の前景画像を取得し、取得された複数の前景画像に基づいて、前景のオプティカルフローのベクトル情報を算出するオプティカルフロー算出部と、オプティカルフロー算出部からオプティカルフローのベクトル情報を取得し、取得されたオプティカルフローのベクトル情報に基づいて、所定の情報の運動効果を決定する運動効果決定部と、を備える情報表示装置であり、車両の走行状態に影響を受けず、運転者が気付き易く、かつ煩わしさを感じにくい情報表示を実現できる効果を奏する。
 なお、本実施形態では人物又は物体を検出する場合の例を示したが、センサ6a~6dが単に何かの物体(人物なのか、特定の物体なのかまでは分からない)を検出する機能しかなくても構わない。その場合には、シンボル画像選択部による選択手順は行わず、決められた画像を表示すればよい。
 また、本実施形態では検出された注意対象に対応するシンボル画像のある場合の例を示したが、シンボル画像選択テーブル40内に対応するシンボル画像20の存在しない場合もある。予め「その他」の場合のシンボル画像をシンボル画像選択テーブル40に準備しておけば、不明な物体が検出された場合には「その他」を選択した上で表示画像を生成すればよい。
 また、第1の実施形態の情報表示装置30aは、時間的に連続して撮影された車両の前景画像に基づいて、車両の前景のオプティカルフローを算出することができる。
 また、算出されたオプティカルフローのベクトル主体成分と交差する方向に表示画像が運動するため、運転者は、表示画像に容易に気づくことができる。また、付加される運動効果は周期的な運動であるため、表示画像の運動する軌道が予測し易くなり、当該表示画像の表示に気付いてからシンボル画像の内容を理解するまでの時間も短縮することができる。
 なお、本実施形態では、オプティカルフローの鉛直方向と水平方向の成分の大きさの差に基づいてシンボル画像に付加する運動効果を決定したが、オプティカルフローの鉛直方向の成分と水平方向の成分の大きさの比に基づいてシンボル画像に付加する運動効果を決定してもよい。
(第2の実施形態)
 次に、第2の実施形態の情報表示装置を含む情報表示システムについて図14を参照して説明する。図14は、第2の実施形態に係る情報表示装置30bを含む情報表示システム10bの構成を示すシステム構成図である。図14において、図3と同じ構成要素については同じ符号を用いる。
 以下、第2の実施形態では、第1の実施形態と異なる構成要素及び当該構成要素の動作について説明し、同一の内容については説明を省略する。第1の実施形態における情報表示システム10aと異なるのは、カメラ8の代わりに、速度センサ14及びヨーレートセンサ15がオプティカルフロー算出部34bに接続されている点、及びオプティカルフロー算出部34bのオプティカルフローの算出過程である。
 速度センサ14は、常時、自車両5の速度を検出し、この検出された速度に関する速度情報をオプティカルフロー算出部34bに出力する。ヨーレートセンサ15は、常時、自車両5の回転速度を検出し、この検出された回転速度に関する回転速度情報をオプティカルフロー算出部34bに出力する。
 オプティカルフロー算出部34bの算出過程について、図15を参照して説明する。図15は、速度センサ14及びヨーレートセンサ15によりそれぞれ出力された速度情報及び回転速度情報に基づいて算出されるオプティカルフローの算出過程を説明する図である。実際に移動するのは自車両5であるが、運転者から見ると前景が移動するように見え、ここでは運転者を基準とした座標系で考える。
 同図(a)は、仮想カメラのレンズ中心を基準とした座標系における前景の相対的な移動の様子を示す図である。同図(b)は、仮想カメラを基準とした前景の相対的な移動を平行移動と回転運動との各成分に分解した様子を示す図である。同図(c)は、投影面上のオプティカルフローのベクトルを示す図である。
 図15(a)において、運転者からは、前景の任意の領域156が点P(X、Y、Z)から点Q(X、Y、Z)へ移動しているように見える。その際の点Pから点Qへの移動は移動ベクトル152で表される。
 図15(b)において、ベクトル153は仮想カメラ151からの視点で見たときの直進運動による直進成分、ベクトル154は回転運動による回転成分である。
 図15(c)において、図15(a)の移動ベクトル152を仮想カメラ151で写したと仮定すると、ベクトル155は移動ベクトル152が画像に投影されたもの、すなわちオプティカルフローのベクトルである。
 図15(a)に示すように、自車両5の走行中に、点P(X、Y、Z)の座標に位置していた前景の任意の領域156が、所定の時間Δtの後に、点Q(X、Y、Z)に移動した場合について説明する。
 自車両5の走行方向の前方を向いた仮想カメラ151を考えると、オプティカルフローは、当該仮想カメラ151の撮像面に投影された画像をもとに算出される。
 第1の実施形態における図9に示す座標系と同様の仮想カメラ151の座標系を考え、ある仮想カメラ151における画像の撮像時刻の自車両5の速度をa、角速度である回転速度をωとする。
 車両の前景の任意の点P(X、Y、Z)に位置する前景の任意の領域156が、時間Δt後に任意の点Q(X、Y、Z)に移動したとすれば、点Pから点Qへの移動ベクトル152は、図15(b)の直進運動による直進成分(ベクトル)153と仮想カメラ151を中心とした回転運動による回転成分(ベクトル)154の和と見做すことができる。このため、点Pと点Qとの関係は、
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
と表すことができる。
 数式(9)と数式(11)を数式(5)に代入し、また、数式(9)と数式(11)を数式(6)に代入することで、オプティカルフローのベクトル155を算出することが可能である。
 このようにして算出したオプティカルフローのベクトル155に基づいて、第1の実施形態と同様に、シンボル画像20に対する運動効果を決定することが可能である。
 以上のように、第2の実施形態の情報表示装置30bでは、自車両5の周囲の所定の検出範囲7に運転者の注意対象となる歩行者1等の存在が検出される。
 ここで検出された検出情報がシンボル画像管理テーブル40に属する検出情報種別に該当する場合には、自車両5のオプティカルフローが算出されることにより当該シンボル画像20に対する運動効果が決定される。自車両5のオプティカルフローは、速度センサ14及びヨーレートセンサ15により出力された値に基づいて算出される。
 この決定された運動効果がシンボル画像20に付加され、表示画像として自車両5の表示部90に表示される。
 従って、第2の実施形態の情報表示装置30aは、車両の走行状態に影響を受けず、運転者が気付き易く、かつ煩わしさを感じにくい情報表示を実現することができる。
 また、車両に備え付けられている速度センサ14及びヨーレートセンサ15等により出力された速度情報及び回転速度情報に基づいて車両の前景のオプティカルフローを算出するため、カメラ8を使用せずとも同様な効果を得ることができる。
 また、表示画像が周期的に運動するため、運転者は、表示画像の運動する軌道を予測し易くなる。これにより、当該画像の表示に気付いてからシンボル画像の内容を理解するまでの時間が短縮される。
(第3の実施形態)
 第3の実施形態に係る情報表示装置を含む情報表示システムについて説明する。第3の実施形態に係る情報表示装置としての車載情報表示装置を含む車載情報表示システムが搭載された車両の走行状態の様子は、実施の形態1における図1と同様である。また、車載情報表示装置を含む車載情報表示システムが搭載された自車両5内部の様子は、実施の形態1における図2と同様である。したがって、図1および及び図2を用いて、実施の形態3における情報表示システムについて説明する。
 自車両5には、1又は複数のセンサ6a~6dが搭載されている。但し、センサ6a~6dの搭載数は図1に示すように4つに限定されない。センサ6a~6dは、当該自車両5の周辺の所定の検出範囲7に人又は物体等の存在を検出し、この検出により生成された検出情報を取得する。例えば、この検出情報には、図1に示すように、歩行者1の存在を示す旨の情報等である。センサ6a~6dは、それぞれ生成された検出情報を車載情報表示装置に出力する。
 また、図1に示すように、自車両5には、カメラ8が搭載されている。カメラ8は、図1に示すように、当該自車両5の走行方向の前方における所定の撮影範囲9の前景を撮影する。カメラ8は、当該撮影された前景画像を車載情報表示装置に出力する。また、図2に示すように、自車両5には、運転者から見てルームミラー23の右下方向であって、フロントガラス22の下部に表示部90としての表示領域21が配置されている。センサ6a~6dにより歩行者1の存在を示す旨が検出された場合、車載情報表示装置は、当該検出された歩行者1のシンボル画像20を運転者に通知させる必要のある車載情報として表示領域21内に表示する。
 図26は、第3の実施形態に係る情報表示装置である車載情報表示装置30cを含む車載情報表示システム10cの構成を示すシステム構成図である。第3の実施形態の車載情報表示システム10cは、センサ6a~6d、カメラ8、表示部90及び車載情報表示装置30cを備える。車載情報表示装置30cは、センサ6a~6d及びカメラ8にそれぞれ接続されている。図27は、第3の実施形態に係る情報表示装置である車載情報表示装置30cの内部構成を示すブロック図である。図27に示すように、車載情報表示装置30cは、記憶部31c、表示対象検出部2601、表示画像選択部2602、オプティカルフロー算出部34c、運動効果決定部35、画像生成部2603及び表示制御部37を備える。なお、表示対象検出部2601は、実施の形態1における注意対象検出部32に相当し、表示画像選択部2602は、実施の形態1におけるシンボル画像選択部33に相当し、画像生成部2603は、実施の形態1における表示画像生成部36に相当する。
 センサ6a~6dは、自車両5の周辺の所定の検出範囲7の中に人又は物体等の存在を検出する。センサ6a~6dは、所定の検出範囲7の中に当該人又は物体等の存在が検出された場合、当該検出された人又は物体等に関する情報を含む検出情報を表示対象検出部2601に出力する。カメラ8は、自車両5の走行方向の前方における所定の撮影範囲9の前景を撮影する。カメラ8は、この撮影された前景画像をオプティカルフロー算出部34cに出力する。表示部90は、例えば、自車両5のフロントガラス22の一部の表示領域21である。第3の実施形態の車載情報表示システム10aの表示部90には、HUDが用いられている。表示部90には、車載情報表示装置30cにより生成された、自車両5の運転者に対して通知させる必要のある情報の画像が表示される。以下、各実施形態において、自車両5の運転者に対して通知させる必要のある情報を「車載情報」、当該車載情報を示す画像を「車載情報画像」と定義する。
 記憶部31cは、本実施の形態において、車載情報の種別及び画像を含む対象車載情報2800と、車載情報画像に所定の運動効果を付与するための条件情報を示す運動効果条件情報2900とを少なくとも記憶している。対象車載情報2800について図28を参照して説明し、運動効果条件情報2900について図29を参照して説明する。図28は、対象車載情報2800の一例を示す図面である。図29は、運動効果条件情報2900の一例を示す図面である。なお、記憶部31cが記憶している情報は一例であり、実施の形態1における記憶部31の記憶する情報であってもよい。また、本実施の形態における対象車載情報2800は、実施の形態1におけるシンボル画像選択テーブル40に相当し、本実施の形態における運動効果条件情報2900は、実施の形態1における運動効果決定テーブル50に相当する。
 図28に示すように、対象車載情報2800は、当該対象車載情報2800を識別するID、当該対象車載情報2800の対象種別、及び車載情報画像が関連付けられたものである。例えば、ID「001」の対象車載情報2800では、車載情報種別が「歩行者」で、車載情報画像として「歩行者の画像」が割り当てられている。ID「002」の対象車載情報2800では、車載情報種別が「自転車」で、車載情報画像として「自転車の画像」が割り当てられている。ID「003」の対象車載情報2800では、車載情報種別が「車両」で、車載情報画像として「車両の画像」が割り当てられている。なお、対象車載情報2800の内容はこれらに限定されない。
 図29に示すように、運動効果条件情報2900は、当該運動効果条件情報2900を識別するID、後述するオプティカルフロー算出部34cにより算出されたオプティカルフローの条件、及び付与される運動効果が関連付けられたものである。例えば、ID「001」の運動効果条件情報2900では、オプティカルフロー条件が「オプティカルフローのベクトルの大きさ<α」である場合には、運動効果は付与されないことが示される。パラメータαは、運動効果を付与して良いか否かを決める閾値である。ID「002」の運動効果条件情報2900では、オプティカルフロー条件が「オプティカルフローのベクトルの水平成分の大きさがオプティカルフローのベクトルの鉛直成分の大きさより大きい」である場合には、縦振動の運動効果が付与される。ID「003」の運動効果条件情報2900では、オプティカルフロー条件が「オプティカルフローの水平成分の大きさがオプティカルフローの鉛直成分の大きさ以下」である場合には、横振動の運動効果が付与される。ID「004」の運動効果条件情報2900では、オプティカルフロー条件が「オプティカルフローの水平成分の大きさにパラメータβを加算した値がオプティカルフローの鉛直成分の大きさ未満」である場合には、横振動及び拡大の運動効果が付与される。なお、運動効果条件情報2900の内容はこれらに限定されない。
 次に、車載情報表示装置30cの動作について図30、および及び図7および及び図8を参照して説明する。図30は、第3の実施形態に係る情報表示装置である車載情報表示装置30cの動作を説明するフローチャートである。図7は、実施の形態1において説明したとおり、自車両5のセンサ6a~6dにより歩行者1が検出される前における自車両5と歩行者1との位置関係を示す図面である。図8は、実施の形態1において説明したとおり、自車両5のセンサ6a~6dにより歩行者1が検出された後における自車両5と歩行者1との位置関係を示す図面である。図8では、走行している自車両5が交差点を右折する際に接近してきた歩行者1の存在を運転者に注意喚起する状態を示している。自車両5のセンサ6a~6dにより、歩行者1が検出される。
 自車両5の周辺の所定の検出範囲7の中に人又は物体等の存在がセンサ6a~6dにより検出された場合には、表示対象検出部2601は、センサ6a~6dによりそれぞれ出力された検出情報を取得する。表示対象検出部2601は、この取得された検出情報の中に、図28に示した対象車載情報2800の有無を判定する(S3001)。具体的には、表示対象検出部2601は、記憶部31cに記憶されている対象車載情報2800と、センサ6a~6dから取得された検出情報とを比較し、図28に示した対象車載情報2800の対象種別が前述した検出情報に含まれているか否かを判定する。対象車載情報2800の対象種別が検出情報に含まれている場合には(S3001のYES)、表示対象検出部2601は、対象車載情報2800の対象種別が検出情報に含まれている旨の情報を表示画像選択部2602に出力する。
 表示画像選択部2602は、対象車載情報2800の対象種別が検出情報に含まれている旨の情報を表示対象検出部2601より取得し、検出情報に含まれている対象車載情報2800の対象種別に対応する車載情報画像を選択する(S3002)。表示画像選択部2602は、車載情報画像が選択された旨を画像生成部2603に出力する。
 オプティカルフロー算出部34cの動作については、実施の形態1におけるオプティカルフロー算出部34aと同様であるため、図9から図12を参照して説明する。図9は、実施の形態1において説明したとおり、オプティカルフローの算出の様子を示した図面である。図10は、実施の形態1において説明したとおり、カメラ画像におけるオプティカルフローのベクトル成分がZ=-fの平面に投影された様子を示す図面であり、(a)はZ=-fの平面を示す図面であり、(b)はベクトルのx、y成分への分解を示す図面である。図11は、実施の形態1において説明したとおり、車両の直進時のオプティカルフローに関する図面であり、(a)は車両内に載置されたカメラ8により撮影された画像を示す図面であり、(b)はオプティカルフローに基づくベクトルのx、y成分への分解を示す図面である。図12は、車両の右折時にオプティカルフローに関する図面であり、(a)は車両内に載置されたカメラ8により撮影された画像を示す図面であり、(b)はオプティカルフローに基づくベクトルのx、y成分への分解を示す図面である。
 カメラ8は、常時、自車両5の走行方向の前方における所定の撮影範囲9の前景を撮影し、この撮影された前景の画像をオプティカルフロー算出部34cに出力する。オプティカルフロー算出部34cは、カメラ8により出力された前景の画像の時間的変化に基づいて、当該画像内のオプティカルフローを算出する。また、第3の実施形態において、カメラ8により撮影された前景の画像のオプティカルフローを、オプティカルフローの代表値として用いることとする。また、カメラ8により撮影された画像内の各点においてオプティカルフローのベクトルは異なるが、特に運転者から見える車載情報画像の表示領域21におけるオプティカルフローが重要である。このため、オプティカルフローの代表値としては、表示領域21内の数点のオプティカルフローの平均を用いても良いし、表示領域21内でも実際に画像の表示される近傍の局所的なオプティカルフローの平均値を用いても良い。
 オプティカルフロー算出部34cは、カメラ8により出力された2枚の前景の画像の当該画像フレームにおける同一点を推定し、当該点の移動ベクトルをオプティカルフローのベクトルとして導出する(S3003)。画像フレーム間での同一点を推定するための方法としては、勾配法、ブロックマッチング法等の方法が用いられている。
 例えば、勾配法では、前景の画像の水平方向にx軸、前景の画像の鉛直方向にy軸をとり、当該画像中の同一の点における位置及び輝度が時間に対して滑らかに変化すると仮定してオプティカルフローが求められる。具体的には、前景の画像中の(x,y)の時刻tでの輝度をE(x,y,t)、画像中のオプティカルフローのベクトルの水平成分であるx成分をu、当該ベクトルの鉛直成分であるy成分をvとすると、実施の形態1において示した数式(1)が成り立つ。
 数式(1)より、実施の形態1において示した数式(2)の拘束方程式が導き出され、画像中の画素(x、y)近傍の拘束方程式からの最小自乗解がオプティカルフローのベクトルとして算出される。
 また、現実の物体の移動と、それを画像上に投影したオプティカルフローとの関係を、図9を参照して説明する。図9に示すように、自車両5の進行方向を向いたカメラ8を基準とした座標系として、カメラ8のレンズの中心131を原点Oとし、自車両5の水平右方向をX軸、鉛直上方向Y軸、進行方向と反対向きをZ軸とした直交座標系をとる。カメラ8の光軸が水平でZ軸と重なるものとし、カメラ8の焦点距離をfとすれば、実際の撮像面はZ=fの平面上に倒立像を結像するが、像の反転を考慮すると、Z=-fの平面上で順方向の結像をすると見做することができる。また、路面を平面とし、路面からのカメラ8の高さをhとすると、路面はY=-hの平面で表わされ、カメラ8の視野内の路面上のある地点P(X、Y、Z)が次のフレームにおいて地点P’(X、Y、Z)に移動し、それらの点がそれぞれZ=-fの投影面上の点Q(x,y)、点Q’(x,y)にそれぞれ投影されたとすると、実施の形態1において示した数式(3)及び数式(4)の関係が成り立つ。地点P’と点Q’の投影についても同様である。
 従って、図10に示したオプティカルフローのベクトル132を(u,v)で表すと、実施の形態1において示した数式(5)及び数式(6)が成立し、実際の移動ベクトル133がオプティカルフローベクトル132に投影されることになる。
但し、オプティカルフローの算出方法は、前述した方法に限定されない。
 オプティカルフロー算出部34cは、前述した方法で導出されたオプティカルフローを運動効果決定部35に出力する。運動効果決定部35は、オプティカルフロー算出部34cにより出力されたオプティカルフローを取得する。運動効果決定部35は、記憶部31cに記憶されている運動効果条件情報2900を参照し、当該取得されたオプティカルフローに応じた運動効果を設定する(S3004~S3008)。例えば、自車両5が停止している場合又は当該自車両5が低速度で走行している場合等、オプティカルフローのベクトルの大きさが予め設定された所定値α未満である場合には(S3004のNO)、運動効果決定部35は、オプティカルフローがないと見做し、表示画像選択部2602により選択された車載情報画像に対して運動効果を付与しないように決定する(S3005)。ここで、予め設定された所定値は、図29に示した運動効果条件情報2900におけるパラメータαである。
 オプティカルフローのベクトルの大きさが所定値α以上の場合には(S3004のNO)、運動効果決定部35は、当該オプティカルフローの水平成分、鉛直成分のそれぞれの大きさに応じて運動効果を決定する。例えば、図11(a)に示すように自車両5が直進に近い走行を行っている場合に、オプティカルフローのベクトル111の水平成分及び鉛直成分が(u、v)=(-3、-20)が得られたとする。運動効果決定部35は、このオプティカルフローのベクトル111を図11(b)に示すように、画像の水平成分であるx軸成分と鉛直成分であるy軸成分とに分解し、当該水平成分及び鉛直成分のそれぞれの大きさを比較する。
 図11(b)に示す例の場合、運転者から見たオプティカルフローの鉛直成分vの大きさが水平成分uの大きさよりも大きいため(S3006のYES)、運転効果決定部35は、図29に示した運動効果条件情報2900に従って、車載情報画像に対して「横振動」の運動効果を付与するように決定する(S3007)。この「横振動」の運動効果は、水平成分主体の運動効果である。また、自車両5が図11に示す走行を行っている場合では鉛直成分の大きいオプティカルフローに対して略垂直の方向に車載情報画像が表示されるため、「横振動」の運動効果が車載情報画像に付与されることにより、運転者に煩わしさを感じさせず、容易に気づき易い車載情報を表示することができる。
 また、例えば、図12(a)に示すように自車両5が右折動作を行う場合に、オプティカルフローのベクトル121の水平成分及び鉛直成分が(u、v)=(-10、2)が得られたとする。この場合、自車両5は旋回運動に近い走行となる。この場合には、運転者から見たオプティカルフローの水平成分uの大きさが鉛直成分vの大きさよりも大きいため(S3006のNO)、運転効果決定部35は、図29に示した運動効果条件情報2900に従って、車載情報画像に対して「縦振動」の運動効果を付与するように決定する(S3008)。この「縦振動」の運動効果は、鉛直成分主体の運動効果である。また、自車両5が図12に示す走行を行っている場合では水平成分の大きいオプティカルフローに対して略垂直の方向に車載情報画像が表示されるため、「縦振動」の運動効果が車載情報画像に付与されることにより、運転者に煩わしさを感じさせず、容易に気づき易く車載情報を表示することができる。
 画像生成部2603は、表示画像選択部2602により選択された車載情報画像に、運動効果決定部35により決定された運動効果を付与した車載情報画像を生成する(S3009)。画像生成部2603は、この生成された車載情報画像を表示制御部37に出力する。表示制御部37は、画像生成部2603により出力された車載情報画像を取得し、当該取得された車載情報画像を表示部90に表示するように制御する(S3010)。
 前述したように、運動効果の種類としては、例えば縦方向の一次元的な振動、横方向の一次元的な振動、拡大、又は縮小等があり得る。振動の振幅や周期等の属性は、予め設定された所定の値を用いるが、任意に編集することも可能である。運動効果の種類として、周期的な運動であれば良い。例えば、図31(a)~(d)に示すように、位置又は形状の変化のパターンが正弦波、矩形波、三角波又は、更には表示位置の移動が不連続な鋸状の波形でも良い。図31は、運動効果の具体例を示す図である。同図(a)正弦波を示す図である。同図(b)は、矩形波を示す図である。同図(c)は、三角波を示す図である。同図(d)は、鋸状の波形を示す図である。また、実施の形態1において示した図13(a)~(e)の波形でも良い。
 このようにして表示領域21に歩行者1のシンボル画像20が表示されると、自車両5の運転者は、たとえ歩行者1そのものが視野に入っていなくても、煩わしさを感じずに表示に気付き易くなり、その結果、当該歩行者1との接触を回避する動作までの時間も短縮することができる。
 以上のように、第3の実施形態に係る情報表示装置である車載情報表示装置30cでは、自車両5の周囲の所定の検出範囲7に車載情報の画像の対象となる歩行者1等の存在が検出される。この検出により生成された検出情報の中に車載情報の画像の対象がある場合には、自車両5のオプティカルフローが算出されることにより当該車載情報の画像に対する運動効果が決定される。自車両5のオプティカルフローは、カメラ8により撮影された自車両5の走行方向の前景の画像に基づいて算出される。この決定された運動効果が車載情報の画像に付与された車載情報の画像が自車両5の表示部90に表示される。
 従って、第3の実施形態に係る情報表示装置である車載情報表示装置30cは、車両の走行状態に影響を受けず、運転者が煩わしさを感じずに気付き易く車載情報を表示することができる。また、第3の実施形態の車載情報表示装置30cは、予め設定された対象車載情報2800に基づいて、車両の周囲に運転者に対して通知させる必要のある車載情報の対象が見つかるか否かを高精度に判定することができる。また、第3の実施形態の車載情報表示装置30cは、導出されたオプティカルフローの水平成分及び鉛直成分の大きさにより、車両が直進している場合又は旋回等の回転している場合のいずれであるのかを高精度に判定することができる。また、第3の実施形態の車載情報表示装置30cは、連続的に撮影された車両の走行方向における画像に基づいて、車両の走行方向のオプティカルフローを算出することができる。また、運転効果は、周期的な運動であるため、車載情報の画像の表示する軌道が予測し易くなり、当該画像の表示に気付いた後でさえ表示内容を容易に理解することができる。また、導出されたオプティカルフローのベクトル主体成分と交差する方向に車載情報の画像が周期的に運動するため、運転者は、車載情報の画像の表示する軌道がより予測し易くなり、当該画像の表示に気付いた後でさえ表示内容を容易に理解することができる。また、導出されたオプティカルフローのベクトル主体成分と交差する方向に車載情報の画像が周期的に運動するため、運転者は、車載情報の画像の表示に気づいた後の視線の移動量を小さくすることができると共に、更に表示内容を容易に理解することができる。
(第4の実施形態)
 次に、第4の実施形態の車載情報表示装置を含む車載情報表示システムについて図32を参照して説明する。図32は、第4の実施形態に係る情報表示装置である車載情報表示装置30dを含む車載情報表示システム10dの構成を示すシステム構成図である。図32において、図26と同じ構成要素については同じ符号を用いる。以下、第4の実施形態では、第3の実施形態と異なる構成要素及び当該構成要素の動作について説明し、同一の内容については説明を省略する。第3の実施形態における車載情報表示システム10cと異なるのは、カメラ8の代わりに、速度センサ14及びヨーレートセンサ15がオプティカルフロー算出部34dに接続されている点、及びオプティカルフロー算出部34dのオプティカルフローの算出過程である。図33は、第4の実施形態に係る情報表示装置である車載情報表示装置30dの内部構成を示すブロック図である。なお、速度センサ14および及びヨーレートセンサ15は、実施の形態2において説明した速度センサ14および及びヨーレートセンサ15と同じものである。
 速度センサ14は、常時、自車両5の速度を検出し、この検出された速度に関する速度情報をオプティカルフロー算出部34dに出力する。ヨーレートセンサ15は、常時、自車両5の回転速度を検出し、この検出された回転速度に関する回転速度情報をオプティカルフロー算出部34dに出力する。
 オプティカルフロー算出部34dの導出過程について、実施の形態2におけるオプティカルフロー算出部34bの導出過程と同様であるため、図15を参照して説明する。図15は、速度センサ14及びヨーレートセンサ15によりそれぞれ出力された速度情報及び回転速度情報に基づいて導出されるオプティカルフローの算出過程を説明する図面である。図15(a)において、151は仮想カメラであり、152は前景の任意の領域156が点P(X、Y、Z)から点Q(X、Y、Z)へ移動した際の移動ベクトルである。図15(b)において、153は移動ベクトル152を仮想カメラ151の視点で見たときに分解した直進成分、154は移動ベクトル152を仮想カメラ151の視点で見たときに分解した回転成分である。図15(c)において、155は前景の任意の領域156の移動が仮想カメラ151により投影された像のオプティカルフローのベクトルである。
 図15(a)に示すように、自車両5の走行中に、点P(X、Y、Z)の座標に位置していた前景の任意の領域156が、所定の時間Δtの後に、点Q(X、Y、Z)に移動した場合について説明する。自車両5の走行方向の前方を向いた仮想カメラ151を考え、当該仮想カメラ151の撮像面に対して導出されるオプティカルフローを考える。第3の実施形態における図9に示す座標系と同様の仮想カメラ151の座標系を考え、ある仮想カメラ151における画像の撮像時刻の自車両5の速度をa、角速度である回転速度をωとし、前方視野内の任意の点P(X、Y、Z)に位置する任意の領域156が、時間Δt後に任意の点Q(X、Y、Z)に移動したとすれば、点Pから点Qへの移動ベクトル152は、速度方向の直進成分153と仮想カメラ151を中心とした回転成分154の和と見做すことができる。このため、点Pと点Qの間には、実施の形態2において示した数式(9)、数式(10)及び数式(11)が成立する。
 数式(9)と数式(11)とを数式(5)に代入し、また、数式(9)と数式(11)とを数式(6)に代入することで、オプティカルフローのベクトル155を算出することが可能である。このようにして算出したオプティカルフローのベクトル155により、第3の実施形態と同様に、車載情報画像に対する運動効果を決定することが可能である。
 以上のように、第4の実施形態に係る情報表示装置である車載情報表示装置30dでは、自車両5の周囲の所定の検出範囲7に車載情報の画像の対象となる歩行者1等の存在が検出される。この検出により生成された検出情報の中に車載情報の画像の対象がある場合には、自車両5のオプティカルフローが算出されることにより当該車載情報の画像に対する運動効果が決定される。自車両5のオプティカルフローは、速度センサ14及びヨーレートセンサ15により出力された値に基づいて導出される。この決定された運動効果が車載情報の画像に付与された車載情報の画像が自車両5の表示部90に表示される。
 従って、第4の実施形態に係る情報表示装置である車載情報表示装置30dは、車両の走行状態に影響を受けず、運転者が煩わしさを感じずに気付き易く車載情報を表示することができる。また、第4の実施形態の車載情報表示装置30dは、予め設定された対象車載情報2800に基づいて、車両の周囲に運転者に対して通知させる必要のある車載情報の対象が見つかるか否かを高精度に判定することができる。また、導出されたオプティカルフローの水平成分及び鉛直成分の絶対値により、車両が直進している場合又は回転している場合のいずれであるのかを高精度に判定することができる。また、車両に備え付けられている速度センサ14及びヨーレートセンサ15等により出力された速度情報及び回転速度情報に基づいて、車両の走行方向のオプティカルフローを算出することができる。また、運転者は、車載情報の画像の表示する軌道が予測し易くなり、当該画像の表示に気付いた後でさえ表示内容を容易に理解することができる。また、導出されたオプティカルフローのベクトル主体成分と交差する方向に車載情報の画像が周期的に運動するため、運転者は、車載情報の画像の表示する軌道がより予測し易くなり、当該画像の表示に気付いた後でさえ表示内容を容易に理解することができる。また、導出されたオプティカルフローのベクトル主体成分と交差する方向に車載情報の画像が周期的に運動するため、運転者は、車載情報の画像の表示に気づいた後の視線の移動量を小さくすることができると共に、更に表示内容を容易に理解することができる。
 以上、図面を参照しながら各種の実施形態について説明したが、本発明の情報表示装置はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。例えば、前述した各実施形態は、適宜、組み合わせて構成することにより、車両の走行状態に影響を受けず、運転者が気付き易く、かつ運転者に煩わしさを与えにくい情報表示を実現することができる。
 なお、速度センサ14とヨーレートセンサ15を用いた第4の実施形態では、カメラ8で撮影した画像がなくともオプティカルフローのベクトルを算出することができる。したがって、予め速度センサ14の出力値とヨーレートセンサ15の出力値の組み合わせに対するオプティカルフローのベクトルの水平成分であるx成分と、鉛直成分であるy成分と、当該x成分及びy成分で形成される角度とを、図16(a)に示すテーブルに予め記憶しておくことにより、当該テーブルに基づいてシンボル画像に対する運動効果の最適な運動方向を決定することができる。また、予めHUDの重畳領域が重なる路面の位置座標が分かる場合には、当該位置座標をもパラメータとして含んだ図16(b)のテーブルに基づいてシンボル画像に対する運動効果の最適な運動方向を決定してもよい。図16は、仮想カメラを用いた場合にオプティカルフローのベクトルの水平成分、鉛直成分のなす角度を求めるためのテーブルの一例を示す図である。同図(a)は、車速、角速度に対するオプティカルフローのベクトルの水平成分、鉛直成分のなす角度が関連付けられたテーブルを示す図である。同図(b)は、HUDの重畳領域が重なる路面の位置座標、車速、角速度に対するオプティカルフローのベクトルの水平成分、鉛直成分のなす角度が関連付けられたテーブルである。
 また、運転者の眼球位置を特定し、カメラ8を基準とした座標系から運転者の眼球位置(又は左右の眼球位置の中点)を基準とした座標系に座標変換を行うことにより、運転者視点のオプティカルフローを算出してもよい。図24は、運転者の眼球位置を算出し、運転者の視点に応じたオプティカルフローを算出する情報表示システムのシステム構成を示す図である。運転者の眼球位置算出は、インカメラを用いた公知の測位技術を用いることにより可能である。また、画像の視点変換の技術も公知である。したがって、カメラ8で撮影した画像を運転者視点の画像に変換し、変換後の画像の中でHUDの表示領域と重なる部分のオプティカルフローを算出することが可能である。
 更に、運転席のシートの位置及び角度を考慮してもよい。運転席のシートの位置及び角度によって、運転者から見たHUDの表示位置の背景(重畳領域)も変化する。したがって、シートの位置及び角度で決まる運転者の眼球位置を予めテーブルとして記録しておけば、シートの位置及び角度に連動して運転者の眼球位置が定まり、更にその眼球位置から見たHUDの表示領域の先にある路面上の位置のオプティカルフローのベクトルも算出することが可能である。
 また、運転者に見やすいようにHUDの表示位置を手動又は自動で調整することも可能である。この場合に、図17に示すように、HUDの表示位置(設定位置)と、その表示位置を運転者から見たときの背景となる路面上の位置の関係を予めテーブルとして記録しておくことによって、HUDの表示位置が決まった時に当該テーブルに基づいてオプティカルフローのベクトルを算出することもできる。図17は、HUDの重畳領域が重なる路面の位置座標を設定するためのテーブルの一例を示す図である。
 具体的には、例えば自車両5が直進している場合でも、表示位置の背景となる路面上の位置がより遠い場合にはオプティカルフローのベクトルの大きさが小さく、より近い場合にはベクトルの大きさが大きくなる。車両が右折又は左折しているときにも、直進時とはオプティカルフローのベクトルの方向が異なるが、ベクトルの大きさについては同様である。
 また、前述した各実施形態においては、仮想カメラ151を含むカメラ8の光軸をZ軸と平行であるとして説明したが、カメラ8は俯角を持っても良い。その場合にも幾何学的な関係から同様にオプティカルフローを算出することが可能である。
 また、自車両5の走行中にセンサ6a~6d及びカメラ8が常時、動作を行っているものとして説明した。しかし、センサ6a~6d及びカメラ8の動作は所定の速度以上の場合にのみ動作するようにしても良い。所定の速度とは、例えば、時速5km以上等である。また、センサ6a~6d及びカメラ8は、自車両5のエンジンの始動と同時に動作を開始しても良いし、運転者により予め設定された動作条件を満たす速度のときのみ、動作するように設定しても良い。
 また、前述した各実施形態では歩行者1が検出された例を説明した。しかし、自転車や車両が検出された場合も同様に、シンボル画像管理テーブルに登録された検出対象種別であれば、シンボル画像が選択され、表示画像が表示される。また、自車両5と特定の種別の物体との距離が所定の条件を満たす場合にのみ、検出情報種別として選択されるようにしても構わない。所定の条件とは、例えば、「自車両5と特定の種別の物体との距離が10[m]以下」等である。また、センサ6a~6dは、自車両5の右左折の動作を検出し、例えば、右折中の場合には当該自車両5の右側で検出された接近物体のみを検出することも可能である。
 なお、前述した各実施形態では歩行者1や自転車、車両等を検出して注意喚起する安全運転支援のアプリケーションの例を説明した。しかし、カーナビゲーション装置に表示される右折時の経路案内表示画像(図18)をシンボル画像として、経路案内アプリケーションに用いること等も可能である。図18は、経路案内の画像の一例を示す図である。この場合には、例えば右左折地点が近付いたらシンボル画像を振動させることで、運転者に煩わしさを感じさせずに右左折地点の接近に早期に気付かせることができる。
 更には、運転情報(計器の情報、車両異常警報の情報等)、運転支援情報(走行環境の情報、標識の情報、視覚を補強するための情報、死角の情報、障害物警告の情報、車線逸脱や交通違反、居眠り等の警報、推奨速度の情報等)、車内環境情報(時計、エアコン、マルチメディアの情報等)、ナビゲーション情報(経路案内の情報、経済走行支援の情報等)等の表示情報についても同様に適用可能である。
 また、前述した各実施形態ではオプティカルフローによるシンボル画像に付加する運動効果を水平方向又は鉛直方向のどちらかに決定される方法を説明した。しかし、例えば運転者から見た上~下、左~右、右上~左下、左上~右下の4方向の中でオプティカルフローの方向に最も垂直に近い方向に運動効果を付加する等、シンボル画像の運動方向の選択肢を細分化してもよい。また、付加する運動効果の方向の選択肢を更に細分化し、例えば図9に示すように、オプティカルフローのベクトル132が前述したx成分の方向となす角度をθとし、当該θの値に基づいて、オプティカルフローのベクトルに対して最も垂直に近い方向に運動効果を付加してもよい。
 また、前述した各実施形態では、図19(a)に示すように、シンボル画像を単一の画像70として運動効果が付加されるものとして説明した。しかし、これまでシンボル画像70と捉えていた画像を、たとえば図19(b)に示すように、運転者に対して通知させる必要のある第1の画像71と、運転者に対する誘目性及び視認性を高めるための第2の画像(背景画像)72とから構成されてもよい。図19は、表示部に表示される表示画像の一例を示す図である。同図(a)は、シンボル画像のみの画像である。同図(b)は、シンボル画像と背景画像とで構成された画像である。この場合、第1の画像71と第2の画像72が同じ運動を行えば、運転者が気付けたとしても、第1の画像71は運動しているため、運転者の視認性が低下する。したがって、表示制御部37において、第2の画像72のみを運動を付加し、第1の画像71については運動効果を付加しないことにより、シンボル画像70の視認性を高めることができる。
 また、前述した各実施形態では、オプティカルフローの算出をカメラ8により撮影された画像から行う方法と、速度センサ14及びヨーレートセンサ15の各出力値を組み合わせて算出する方法について説明したが、GPS(Global Positioning System)情報やステアリング、ウィンカ、自車両5の走行状態に基づいてオプティカルフローを推定しても良い。
 また、前述した各実施形態では、運転者個人の視覚特性を考慮していないが、視覚特性には年齢差、個人差がある。例えば、運転者の年齢情報取得手段、年齢別視覚特性情報テーブルを設ければ、年齢による視覚特性(例えば視力、視野範囲、分光視感度、色コントラスト感度、輝度コントラスト感度等)に基づいて、特定の年齢によって比較的画像が見え易くなるような色、大きさを決定し、誘目のための運動効果をシンボル画像に付加することも可能である。更には、予め運転者個人の視覚特性が把握できていれば、運転者個人の視覚特性データに基づき、且つ運転者の状態に応じた画像表示を行うことにより、より各運転者個人に適した、気付き易く、かつ煩わしさを感じにくい表示になる。
 なお、シンボル画像に付加する運動効果を時間の経過に応じて変化させても良い。例えば、シンボル画像の表示開始時刻からの時間の経過に応じて、シンボル画像の運動の振幅を大きく、周期を短くする等、運動効果を徐々に激しくなるよう変化させて表示することも可能である。
 また、前述した各実施形態では、運動の振幅や周期が自車両5の速度によらず一律であるが、速度センサ14の出力値に応じて、例えば、自車両5の速度が大きくなるとシンボル画像の大きさを大きくし、又は当該シンボル画像に付加する運動効果の運動周期を短くする等、自車両5の速度に応じて当該シンボル画像の大きさ又は運動周期を変化させてもよい。
 また、前述した各実施形態では、自車両5の車体の振動を考慮していないが、自車両5の車体の垂直方向の振動を検出することにより、自車両5の垂直方向の振動が大きい場合にはシンボル画像の振動の振幅を大きくすることも可能である。
 また、第1の実施形態および及び第3の実施形態では、センサ6a~6d及びカメラ8を情報表示装置30aに含めていない構成であるが、センサ6a~6d及びカメラ8を情報表示装置30aに含めるようにしても良い。同様に、第2の実施形態および及び第4の実施形態では、速度センサ14及びヨーレートセンサ15を情報表示装置30bに含めていない構成であるが、速度センサ14及びヨーレートセンサ15を情報表示装置30bに含めるようにしても良い。また前述した各実施形態では、表示部90は情報表示装置30に含めていない構成として説明した。しかし、表示部90を情報表示装置30にそれぞれ含めるようにしても構わない。
 なお、図28に示したシンボル画像管理テーブル40において、検出情報種別の形式はテキストデータであり、シンボル画像の形式はイメージデータであるが、これに限定されない。例えば、シンボル画像のイメージデータが他の記憶部に記憶されている場合、シンボル画像管理テーブル40は、検出情報種別と、更に、当該シンボル画像の記憶されている他の記憶部へのアクセスする際のアドレス等を記憶していても良い。
 また、自車両5を基準とした検出物体の相対位置や相対速度の情報を活用すれば、距離や速度に応じて、相対距離が小さいほど表示画像の表示サイズを大きく、相対速度が大きいほど表示画像の表示サイズを大きくする等、表示画像の大きさを変えることも可能である。例えば、図20に示す表示倍率条件情報60を記憶部31に記憶させることにより、情報表示装置30は、自車両5と歩行者1等との相対距離に応じて、シンボル画像の表示倍率を決定し、表示することができる。図20では、自車両5と歩行者1等との相対距離が、A[m]未満の場合には、予め設定されている表示対象の画像の大きさの3倍の大きさで表示される。A[m]~B[m]の場合には、2.0倍の大きさで表示され、B[m]~C[m]の場合には、1.0倍(通常の大きさ)で表示される。
 また、例えば自車両5と検出対象との相対距離が短くなるにつれて緑→黄→赤のように色相の異なるシンボル画像を割り当てたり、相対距離が短くなるにつれて明度の高いシンボル画像を割り当てたり、相対距離が短くなるにつれて彩度の高いシンボル画像を割り当てたり、輝度の高いシンボル画像を割り当てたりすることも可能である。また、自車両5と検出対象との相対距離と相対速度の値から算出したTTC(Time To Collision)の値によって異なるシンボル画像を割り当てても良い。また、例えば左から近付く自転車には右向き自転車のシンボル画像、右から近付く自転車には左向き自転車のシンボル画像を割り当てる等、自車両5に対する検出対象の相対位置に応じて異なるシンボル画像を用いてもよい。
 また、本発明では、検出された注意対象に基づいてシンボル画像を選択するものとしたが、取得したカメラ画像から注意対象の部分をトリミングし、シンボル画像の代わりにトリミングした注意対象の画像をHUD上に表示させてもよい。
 また、本発明では、HUDによって表示画像をフロントガラス越しの背景に重畳表示させる例を示したが、運転者前方に設置された不透過の小型のディスプレイに表示画像を表示させてもよい。
 なお、本出願は、2009年12月10日出願の日本特許出願(特願2009-280559)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明にかかる情報表示装置及び情報表示方法は、車両に搭載される安全運転支援システムの一部となる装置又は方法として有用である。また、カーナビゲーション装置の一部として組み込んで経路案内画像をシンボル画像として使用する等、経路案内アプリケーションに用いることも可能である。
 1 歩行者
 5 自車両
6a~6d センサ
 7 検出範囲
 8、2401 カメラ
 9 撮影範囲
10a~10e 情報表示システム
 14 速度センサ
 15 ヨーレートセンサ
 20、70 シンボル画像
 21 表示領域
 22 フロントガラス
 23 ルームミラー
30a~30e 情報表示装置
 31 記憶部
 32 注意対象検出部
 33 シンボル画像選択部
34a~34e オプティカルフロー算出部
 35 運動効果決定部
 36 表示画像生成部
 37 表示制御部
 40 シンボル画像選択テーブル
 50 運動効果決定テーブル
 60 表示倍率条件情報
 71 第1の画像
 72 第2の画像
 80 運転者
 81 HUDユニット
 82 HUDの射出光
 83 視線
 84 直線
 85 路面
 86 重畳領域
 87 眼球位置
 90 表示部
111、121、132、155 オプティカルフローのベクトル
131 レンズの中心
133 移動ベクトル
151 仮想カメラ
152 移動ベクトル
153 直進成分
154 回転成分
156 前景の任意の領域
2402 眼球位置算出部
2403 重畳領域算出部
2601 表示対象検出部
2602 表示画像選択部
2603 画像生成部
2800 対象車載情報
2900 運動効果条件情報

Claims (9)

  1.  前景画像を撮影する第1のカメラを備える車両に搭載された、所定の情報を表示する情報表示装置であって、
     前記所定の情報を運動させて表示する表示部と、
     前記第1のカメラが撮影した複数の前景画像を取得し、取得された前記複数の前景画像に基づいて、前景のオプティカルフローのベクトル情報を算出するオプティカルフロー算出部と、
     前記オプティカルフロー算出部から前記オプティカルフローのベクトル情報を取得し、取得された前記オプティカルフローのベクトル情報に基づいて、前記所定の情報の運動効果を決定する運動効果決定部と、を備える情報表示装置。
  2.  前記運動効果は、振動方法であって、
     前記運動効果決定部は、前記オプティカルフローのベクトル情報に基づいて、前記所定の情報の振動方法を決定する請求項1に記載の情報表示装置。
  3.  前記運動効果は、伸縮方法であって、
     前記運動効果決定部は、前記オプティカルフローのベクトル情報に基づいて、前記所定の情報の伸縮方法を決定する請求項1に記載の情報表示装置。
  4.  前記運動効果決定部において決定された運動効果の情報を取得し、前記所定の情報に前記運動効果の情報を付加して前記表示部に表示させる表示画像を生成する表示画像生成部を、更に備える請求項1に記載の情報表示装置。
  5.  前記車両が周囲に存在する被検出対象を検出するセンサを備える場合において、
     注意対象である被検出対象を記憶する記憶部と、
     前記センサから取得された被検出対象の情報と、前記記憶部から取得された被検出対象の情報とを比較し、前記センサから取得された被検出対象が注意対象であるか否かを判定する注意対象検出部と、
     前記注意対象検出部において、前記センサから取得された被検出対象が注意対象であると判定された場合に、前記取得された被検出対象に応じたシンボル画像を選択するシンボル画像選択部と、
     を更に備え、
     前記表示部は、前記シンボル画像を前記所定の情報として運動させて表示する請求項1に記載の情報表示装置。
  6.  前記車両の運転者の画像を撮影する第2のカメラを備え、前記撮影された運転者の画像に基づいて前記運転者の視線方向を検出する視線検出部を、更に備え、
     前記運動効果決定部は、前記オプティカルフローのベクトル情報のうち、前記視線検出部において検出された前記視線方向を含む所定の領域と、前記前景との重畳領域に含まれるベクトル情報に基づいて、前記所定の情報の運動効果を決定する請求項1に記載の情報表示装置。
  7.  前記運動効果決定部は、取得された前記オプティカルフローのベクトル情報の鉛直成分の大きさと、水平成分の大きさとの比較結果に基づいて、前記所定の情報の運動効果を決定する請求項1に記載の情報表示装置。
  8.  速度情報及び回転速度情報を検出するセンサを備える車両に搭載された、所定の情報を表示する情報表示装置であって、
     前記所定の情報を運動させて表示する表示部と、
     前記センサから前記速度情報及び前記回転速度情報を取得し、取得された前記速度情報及び前記回転速度情報に基づいて、前景のオプティカルフローのベクトル情報を算出するオプティカルフロー算出部と、
     前記オプティカルフロー算出部から前記オプティカルフローのベクトル情報を取得し、取得された前記オプティカルフローのベクトル情報に基づいて、前記所定の情報の運動効果を決定する運動効果決定部と、を備える情報表示装置。
  9.  前景画像を撮影するカメラを備える車両に搭載された、所定の情報を表示する情報表示方法であって、
     表示部は、前記所定の情報を運動させて表示し、
     オプティカルフロー算出部は、前記カメラが撮像した複数の前景画像を取得し、取得された前記複数の前景画像に基づいて、前景のオプティカルフローのベクトル情報を算出し、
     運動効果決定部は、前記オプティカルフロー算出部から前記オプティカルフローのベクトル情報を取得し、取得された前記オプティカルフローのベクトル情報に基づいて、前記所定の情報の運動効果を決定する情報表示方法。
PCT/JP2010/007156 2009-12-10 2010-12-08 情報表示装置及び情報表示方法 WO2011070783A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/255,296 US8536995B2 (en) 2009-12-10 2010-12-08 Information display apparatus and information display method
EP10835706.2A EP2511893A4 (en) 2009-12-10 2010-12-08 Information display apparatus and information display method
JP2011545089A JP5590684B2 (ja) 2009-12-10 2010-12-08 情報表示装置及び情報表示方法
CN201080014454.4A CN102378998B (zh) 2009-12-10 2010-12-08 信息显示设备和信息显示方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009280559 2009-12-10
JP2009-280559 2009-12-10

Publications (1)

Publication Number Publication Date
WO2011070783A1 true WO2011070783A1 (ja) 2011-06-16

Family

ID=44145342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007156 WO2011070783A1 (ja) 2009-12-10 2010-12-08 情報表示装置及び情報表示方法

Country Status (5)

Country Link
US (1) US8536995B2 (ja)
EP (1) EP2511893A4 (ja)
JP (1) JP5590684B2 (ja)
CN (1) CN102378998B (ja)
WO (1) WO2011070783A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092346A (ja) * 2014-11-18 2015-05-14 株式会社デンソー 表示装置
US9063328B2 (en) 2013-01-28 2015-06-23 Electronics And Telecommunications Research Institute Head-up display apparatus and method for vehicle
US9475420B2 (en) 2012-10-05 2016-10-25 Denso Corporation Display apparatus
WO2016199442A1 (ja) * 2015-06-10 2016-12-15 株式会社Jvcケンウッド レーザレーダ装置および検知方法
US9576489B2 (en) 2014-01-23 2017-02-21 Electronics And Telecommunications Research Institute Apparatus and method for providing safe driving information
WO2017134876A1 (ja) * 2016-02-05 2017-08-10 日立マクセル株式会社 ヘッドアップディスプレイ装置及びその表示制御方法
JP2019109656A (ja) * 2017-12-18 2019-07-04 東芝情報システム株式会社 軽車両・軽二輪車の情報管理システム
JP2020013274A (ja) * 2018-07-17 2020-01-23 富士通株式会社 表示プログラム、表示装置及び表示方法
JP2022175877A (ja) * 2021-05-14 2022-11-25 トヨタ自動車株式会社 車両用表示装置、表示方法及びプログラム

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10018703B2 (en) * 2012-09-13 2018-07-10 Conduent Business Services, Llc Method for stop sign law enforcement using motion vectors in video streams
US9230501B1 (en) * 2012-01-06 2016-01-05 Google Inc. Device control utilizing optical flow
JP5774770B2 (ja) * 2012-03-12 2015-09-09 本田技研工業株式会社 車両周辺監視装置
US9975483B1 (en) * 2013-02-08 2018-05-22 Amazon Technologies, Inc. Driver assist using smart mobile devices
US9514650B2 (en) * 2013-03-13 2016-12-06 Honda Motor Co., Ltd. System and method for warning a driver of pedestrians and other obstacles when turning
US9064420B2 (en) * 2013-03-14 2015-06-23 Honda Motor Co., Ltd. Augmented reality heads up display (HUD) for yield to pedestrian safety cues
CN104321682B (zh) * 2013-03-28 2017-09-22 松下知识产权经营株式会社 图像显示装置
TW201500735A (zh) * 2013-06-18 2015-01-01 Nat Applied Res Laboratories 行動式影像流速辨識之方法及其裝置
JP6032195B2 (ja) * 2013-12-26 2016-11-24 トヨタ自動車株式会社 センサ異常検出装置
JP6233599B2 (ja) 2014-02-25 2017-11-22 マツダ株式会社 車両用表示制御装置
WO2015128985A1 (ja) * 2014-02-27 2015-09-03 パイオニア株式会社 表示装置、制御方法、プログラム、及び記憶媒体
JP6273976B2 (ja) * 2014-03-31 2018-02-07 株式会社デンソー 車両用表示制御装置
US9495814B2 (en) * 2014-06-19 2016-11-15 Atieva, Inc. Vehicle fault early warning system
US9626811B2 (en) 2014-06-19 2017-04-18 Atieva, Inc. Vehicle fault early warning system
US10309797B2 (en) * 2014-12-19 2019-06-04 Here Global B.V. User interface for displaying navigation information in a small display
US9718405B1 (en) 2015-03-23 2017-08-01 Rosco, Inc. Collision avoidance and/or pedestrian detection system
DE112016006199B4 (de) * 2016-02-12 2024-02-01 Mitsubishi Electric Corporation Informationsanzeigeeinrichtung und informationsanzeigeverfahren
JP6784058B2 (ja) * 2016-05-23 2020-11-11 株式会社リコー 情報表示装置
FR3056490B1 (fr) * 2016-09-29 2018-10-12 Valeo Vision Procede de projection d'une image par un systeme de projection d'un vehicule automobile, et systeme de projection associe
FR3056775B1 (fr) * 2016-09-29 2021-08-20 Valeo Vision Procede de projection d'images par un systeme de projection d'un vehicule automobile, et systeme de projection associe
KR102581779B1 (ko) * 2016-10-11 2023-09-25 주식회사 에이치엘클레무브 교차로충돌방지시스템 및 교차로충돌방지방법
KR101899396B1 (ko) 2016-11-24 2018-09-18 현대자동차주식회사 차량 및 그 제어방법
JP2018151940A (ja) * 2017-03-14 2018-09-27 株式会社デンソーテン 障害物検出装置および障害物検出方法
JP7077616B2 (ja) * 2017-12-28 2022-05-31 トヨタ自動車株式会社 表示制御装置および表示制御方法
CN112424788B (zh) * 2019-06-17 2024-08-16 谷歌有限责任公司 使用三维眼睛注视矢量的车辆乘员参与
US11580833B2 (en) * 2020-03-24 2023-02-14 Object Video Labs, LLC Camera detection of human activity with co-occurrence
KR102347423B1 (ko) * 2020-03-25 2022-01-12 주식회사 만도모빌리티솔루션즈 차량 후측방 경보 장치 및 그 방법
US11292398B2 (en) * 2020-04-20 2022-04-05 Hyundai Mobis Co., Ltd. Apparatus for displaying forward blind spot situation
CN111767844B (zh) 2020-06-29 2023-12-29 阿波罗智能技术(北京)有限公司 用于三维建模的方法和装置
CN112925241A (zh) * 2021-01-25 2021-06-08 常州机电职业技术学院 一种汽车开关门自动响应系统及控制方法
US12115916B2 (en) 2021-02-01 2024-10-15 Rosco, Inc. Downlighting signal and illumination mirror head for vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257378A (ja) * 2007-04-03 2008-10-23 Honda Motor Co Ltd 物体検出装置
JP2009017572A (ja) * 2008-08-04 2009-01-22 Mitsubishi Motors Corp ノーズビューモニタ装置
JP2009277021A (ja) * 2008-05-15 2009-11-26 Hitachi Ltd 接近物検出装置および接近物検出方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727807B2 (en) * 2001-12-14 2004-04-27 Koninklijke Philips Electronics N.V. Driver's aid using image processing
US7266220B2 (en) * 2002-05-09 2007-09-04 Matsushita Electric Industrial Co., Ltd. Monitoring device, monitoring method and program for monitoring
US7190282B2 (en) * 2004-03-26 2007-03-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Nose-view monitoring apparatus
JP4639921B2 (ja) * 2004-06-11 2011-02-23 日産自動車株式会社 運転支援装置
JP4899340B2 (ja) * 2004-08-02 2012-03-21 日産自動車株式会社 運転感覚調整装置及び運転感覚調整方法
JP4701773B2 (ja) 2005-03-24 2011-06-15 日産自動車株式会社 車両用表示装置及び方法
JP2009009446A (ja) * 2007-06-29 2009-01-15 Denso Corp 車両用情報表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257378A (ja) * 2007-04-03 2008-10-23 Honda Motor Co Ltd 物体検出装置
JP2009277021A (ja) * 2008-05-15 2009-11-26 Hitachi Ltd 接近物検出装置および接近物検出方法
JP2009017572A (ja) * 2008-08-04 2009-01-22 Mitsubishi Motors Corp ノーズビューモニタ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2511893A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9475420B2 (en) 2012-10-05 2016-10-25 Denso Corporation Display apparatus
US9771022B2 (en) 2012-10-05 2017-09-26 Denso Corporation Display apparatus
US9063328B2 (en) 2013-01-28 2015-06-23 Electronics And Telecommunications Research Institute Head-up display apparatus and method for vehicle
US9576489B2 (en) 2014-01-23 2017-02-21 Electronics And Telecommunications Research Institute Apparatus and method for providing safe driving information
JP2015092346A (ja) * 2014-11-18 2015-05-14 株式会社デンソー 表示装置
WO2016199442A1 (ja) * 2015-06-10 2016-12-15 株式会社Jvcケンウッド レーザレーダ装置および検知方法
WO2017134876A1 (ja) * 2016-02-05 2017-08-10 日立マクセル株式会社 ヘッドアップディスプレイ装置及びその表示制御方法
JP2019109656A (ja) * 2017-12-18 2019-07-04 東芝情報システム株式会社 軽車両・軽二輪車の情報管理システム
JP2020013274A (ja) * 2018-07-17 2020-01-23 富士通株式会社 表示プログラム、表示装置及び表示方法
JP2022175877A (ja) * 2021-05-14 2022-11-25 トヨタ自動車株式会社 車両用表示装置、表示方法及びプログラム

Also Published As

Publication number Publication date
EP2511893A1 (en) 2012-10-17
EP2511893A4 (en) 2018-01-31
JPWO2011070783A1 (ja) 2013-04-22
US8536995B2 (en) 2013-09-17
JP5590684B2 (ja) 2014-09-17
CN102378998B (zh) 2014-12-10
CN102378998A (zh) 2012-03-14
US20120235805A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5590684B2 (ja) 情報表示装置及び情報表示方法
US8692739B2 (en) Dynamic information presentation on full windshield head-up display
JP6485732B2 (ja) 情報提供装置、情報提供方法及び情報提供用制御プログラム
US10293745B2 (en) Projection of a pre-definable light pattern
JP6379779B2 (ja) 車両用表示装置
JP2019011017A (ja) 表示システム、情報提示システム、表示システムの制御方法、プログラム、及び移動体
WO2011108091A1 (ja) 車載用表示装置及び表示方法
JP6883759B2 (ja) 表示システム、表示システムの制御方法、プログラム、及び移動体
JP2009196630A (ja) 表示装置
US20200249044A1 (en) Superimposed-image display device and computer program
JP5488303B2 (ja) 車両用表示装置
JP2014036268A (ja) 移動体の周辺画像表示装置
JP6796806B2 (ja) 表示システム、情報提示システム、表示システムの制御方法、プログラム、及び移動体
JP6876277B2 (ja) 制御装置、表示装置、表示方法及びプログラム
JP7310560B2 (ja) 表示制御装置及び表示制御プログラム
JP2013174667A (ja) 車両用表示装置
JP2016109645A (ja) 情報提供装置、情報提供方法及び情報提供用制御プログラム
JP2019202589A (ja) 表示装置
JP2019116229A (ja) 表示システム
JP2016107947A (ja) 情報提供装置、情報提供方法及び情報提供用制御プログラム
JP2016021116A (ja) 車両用表示装置
JP6186905B2 (ja) 車載表示装置およびプログラム
JP2019206262A (ja) 表示装置
JP7318431B2 (ja) 表示制御装置及び表示制御プログラム
JP2018019155A (ja) 車両用表示制御装置、車両用表示システム、車両用表示制御方法およびプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014454.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011545089

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13255296

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010835706

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE