WO2011070089A1 - Verfahren zum betreiben einer zündvorrichtung für eine verbrennungskraftmaschine und zündvorrichtung für eine verbrennungskraftmaschine zur durchführung des verfahrens - Google Patents

Verfahren zum betreiben einer zündvorrichtung für eine verbrennungskraftmaschine und zündvorrichtung für eine verbrennungskraftmaschine zur durchführung des verfahrens Download PDF

Info

Publication number
WO2011070089A1
WO2011070089A1 PCT/EP2010/069221 EP2010069221W WO2011070089A1 WO 2011070089 A1 WO2011070089 A1 WO 2011070089A1 EP 2010069221 W EP2010069221 W EP 2010069221W WO 2011070089 A1 WO2011070089 A1 WO 2011070089A1
Authority
WO
WIPO (PCT)
Prior art keywords
igbt
voltage
switching element
ignition coil
control
Prior art date
Application number
PCT/EP2010/069221
Other languages
English (en)
French (fr)
Inventor
Sven Eisen
Martin GÖTZENBERGER
Achim Reuther
Harald Schmauss
Stephan Bolz
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to IN5108DEN2012 priority Critical patent/IN2012DN05108A/en
Priority to CN201080063551.2A priority patent/CN102741544B/zh
Priority to BR112012014053A priority patent/BR112012014053A2/pt
Priority to RU2012129185/07A priority patent/RU2012129185A/ru
Priority to KR1020127018037A priority patent/KR101778010B1/ko
Priority to US13/515,190 priority patent/US8985090B2/en
Publication of WO2011070089A1 publication Critical patent/WO2011070089A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • F02P3/0435Opening or closing the primary coil circuit with electronic switching means with semiconductor devices
    • F02P3/0442Opening or closing the primary coil circuit with electronic switching means with semiconductor devices using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/08Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value

Definitions

  • Ignition coil is on the primary side according to their Induk ⁇ tivity from the vehicle electrical system voltage partially loaded into their shet ⁇ ment area.
  • the charging is interrupted by means of an electronic circuit, for example by an ignition IGBT (Insulated Gate Bipolar Transistor).
  • ignition IGBT Insulated Gate Bipolar Transistor
  • this builds up a voltage of, for example, 5 kV to 35 kV, which leads to an over ⁇ impact in the combustion chamber of the internal combustion engine in the spark gap of the spark plug. Subsequently, the energy stored in the coil dissipates in the ignition plasma.
  • Combustion chamber pressures to improve the engine efficiency he ⁇ increase the breakdown resistance in the spark gap and force an increase in the breakdown voltage, which also has an influence on the spark plug wear.
  • the latter becomes secondary in künfti ⁇ gen supercharged engine generations Voltage rises far beyond the 35kV lead.
  • Both the increasing breakdown voltages and the intensifying flow conditions at the spark plug tend to shorten the burning time of the spark, since ever greater proportions of the energy stored in the coil must be made available for sparking and sustaining.
  • a promising trend in the development of new combustion processes is the use of multiple sparks, whereby the coil energy is efficiently transferred to the mixture in short intervals, which increases the flameproofness.
  • ignition coil When currently in use detonators designed as a transformer with magnetic storage capability ignition coil is initially loaded on the primary side of the 12V board power supply up to a current of about 8A.
  • a secondary diode mounted blocking diode prevents ei ⁇ ne unwanted sparking during the charging phase.
  • At the ignition ⁇ time is interrupted by means of an electronic switch - eg an IGBT - the current flow.
  • the collapse of the magnetic field of the ignition coil now induces a voltage increase on the primary and secondary side. Due to the used semiconductor technology of the IGBT, the primary voltage is limited to a typical 400V. On the secondary side, however, the voltage reaches a much higher value, which is initially determined by the transformation ratio of the transformer. In a conventional ratio of 1:80 is thus a maxi ⁇ male secondary voltage of 32kV results. However, this voltage is not reached in practice, since already before a voltage breakthrough ⁇ between the electrodes of the spark plug followed by arc, whereupon the secondary voltage drops abruptly to the value of the arc voltage. Typical values for the breakdown voltage are 5kV to 35kV and depend strongly on the electrode spacing, the combustion chamber pressure and the gas temperature.
  • the arc voltage of the arc is in the range of a few kV.
  • Csec is the secondary effective capacity
  • Lh is the main inductance of the transformer
  • the ignition coil is designed as a pure transformer with low storage capacity.
  • a primary voltage of 200V is required to achieve a breakdown voltage of eg 20 kV, which in turn requires a complex and expensive voltage converter.
  • the efficiency of the voltage converter which in turn reduces the Contrex ⁇ kungsgrad the ignition system.
  • the use of such an alternating voltage ignition can solve the combustion technical problem but is also suitable from Kos ⁇ tencommunn only for luxury cars. So far, the spark plug wear associated with rising spark energy has had to be accepted or ignited. critical operating conditions could not be rea ⁇ lembl the production engine.
  • the problem underlying the invention is a significant improvement in the ignition behavior at the same time wesent ⁇ lich increased life of the spark plug. Also, the components of a conventional ignition system should be able to be used without additional cost ⁇ .
  • the object is achieved according to claim 1 by a method for operating an ignition device for an internal combustion engine, which is formed with a trained as a transformer coil, a connected to the secondary winding of the ignition coil, a series-connected to the primary winding of the ignition coil controllable switching element and one with the primary winding of Ignition coil and the control input of the switching element connected control unit is formed, solved.
  • the control unit an a ⁇ adjustable supply voltage for the ignition coil and an ANS control signal for the switching element depending on the flow through the primary and secondary windings of the ignition coil and the voltage between the connection point of the primary winding of the ignition coil with the switching element and the negative to - Connection of the supply voltage ready.
  • the method has the following sequence: in a first phase (charging), the switching element is turned on by the drive signal to a first turn-on time and again non-conducting at the predetermined ignition time,
  • the primary voltage or a voltage derived therefrom is compared with a first threshold value, and when the first threshold value is undershot by this voltage, the switching element is compared. ment to a second switch-conductive again ge ⁇ on,
  • the supply voltage is controlled such that the current through the secondary winding of the ignition coil corresponds approximately to a predetermined current and the current through the primary winding of the ignition coil is compared with a predetermined second threshold and at the second threshold switched by this current, the switching element to a first turn-off time again non-conductive,
  • the current through the secondary winding of the ignition coil is compared with a third threshold value, and when the third threshold value falls below this current, the switching element is again switched to a third turn-on time point,
  • the third and the fourth phase are ge ⁇ repeated if necessary, until a predetermined burning time is reached at a point in time at which the switching element is valid final switched non-conductive.
  • the knowledge is used that the candle wear in the conventional ignition system is significantly influenced by the height of the maximum current value during the burning phase of the arc.
  • An approximately constant direct current causes significantly less wear at the same effective value than the conventional triangular secondary current with a high peak value.
  • the polarity of the current flow once or more ⁇ times reversed, so the wear continues to decrease.
  • the method according to the invention and the ignition device according to the invention have the following special features:
  • the trained as a transformer ignition coil is operated conventionally until the first breakthrough of the spark. After the breakthrough, the spark is essentially fed from the primary side of the transformer.
  • a va riable ⁇ supply voltage is used such that the se- kundär workede current has a desired time profile.
  • There is a recharging of the main inductance in order to re-ignite quickly when He ⁇ delete the spark. Due to the operation of the transformer variable versor ⁇ supply voltage premature sparking (Power ⁇ spark) avoided.
  • the state of charge of the transformer can be set during the burning period. It can be shown a Ent ⁇ coupling of charging time and charging energy, in-which the supply voltage is regulated on reaching the target current to a constant current.
  • transformer an AC operation by alternately supplying the spark from the primary-side supply ⁇ voltage and the energy stored in the ignition transformer. This always reverses the polarity of the current and voltage across the spark plug.
  • the burning time of the spark can be made almost free. Multiple sparks are possible by fast charging with the available high voltage considering the residual energy of the coil.
  • the spark can be actively switched off by reducing the supply voltage below the transformed arc voltage with the IGBT switched on at the same time.
  • the combination of reduced secondary peak current and polarity reversal now allows the arc to sustain much longer without compromising the life of the spark plug. The longer burning time of the arc significantly improves the flaming behavior.
  • the inventive concept utilizes the components of be ⁇ standing ignition system completely, with the blocking diode is not used because the OF INVENTION ⁇ to the invention control advantageously in the ignition coil.
  • the inventive concept also allows a significant reduction of the ignition coil, which is particularly advantageous for "pencil coils" because of the limited space in the plug shaft. Reducing the size of the ignition coil significantly reduces its production costs.
  • the shaping of the spark energy according to the invention by means of control enables a largely freely selectable spark duration and freely selectable spark current profile. At the same time to be stored in the ignition coil energy is reduced to a value that is guaranteed with the still secure pitching the respective maximum he ⁇ waiting breakdown voltage.
  • FIG. 1 is a block diagram of an ignition device according to the invention
  • Fig. 2 is a detailed circuit of a control unit and Fig. 3 is a flow chart illustrating the temporal relationships.
  • 1 comprises a controllable supply voltage source DC / DC designed as a voltage converter for supplying one or more ignition coils ZS with a variable supply voltage Vsupply. It is supplied from the vehicle electrical system voltage V_bat of currently about 12V. It supplies one or more ignition coils ZS, advantageously no more blocking diode is needed.
  • Conventional spark plugs ZK can be used, which are connected to the secondary winding of the ignition coil ZS.
  • the primary winding of the ignition coil ZS is connected in series with a switching element, usually designed as an IGBT, for switching the ignition coil ZS.
  • Devices are provided for detecting the primary voltage and the primary and secondary currents.
  • a control unit SE generated in dependence on the detected loading ⁇ operating variables by means of the voltage converter DC / DC, the changed ⁇ Variable-supply voltage Vsupply and the drive signal for the switching element IGBT Control IGBT.
  • the control unit SE is in turn controlled by a (not darges ⁇ set) microcontroller, which specifies via separate timing inputs in real time the ignition time per ignition coil. Via another interface - such as the common SPI (Serial Peripheral Interface) - data can be see the microcontroller and the control unit SE are exchanged.
  • a microcontroller which specifies via separate timing inputs in real time the ignition time per ignition coil.
  • another interface - such as the common SPI (Serial Peripheral Interface) - data can be see the microcontroller and the control unit SE are exchanged.
  • SPI Serial Peripheral Interface
  • the voltage converter DC / DC generates a supply voltage Vsupply from the 12V on-board supply V_bat.
  • the value of this supply voltage Vsupply is dynamically controllable by means of the control signal V_Control at the control input Ctrl of the voltage converter DC / DC in a range of, for example, 2 to 30V.
  • the voltage converter DC / DC can supply the required charging current for the respectively activated ignition coil ZS.
  • ignition coil ZS can be a conventional type with a transmission ratio of, for example 1:80 serve, but can be dispensed with the usual today in use blocking diode. Depending on the number of cylinders of the gasoline engine used, for example, 3 to 8 ignition coils are required. Due to the method according to the invention, however, it is pos ⁇ lich to use an ignition coil with much lower maximum storage energy.
  • spark plug ZK can serve a common type. Their exact design is determined by the use in the engine.
  • a switching element IGBT a common type with an internal voltage limitation of, for example, 400V can also be used. Depending on the required charging current its required current carrying capacity can be reduced to but ⁇ .
  • the signal V_Prim maps the primary voltage of the ignition coil ZS of up to 400V, which is reduced by means of a voltage divider comprising resistors R1 and R2, to a value range of, for example, 5V which can be used for the control unit SE.
  • the value of the chip In the example mentioned, division is 1:80.
  • the voltage divider Rl, R2 is arranged between the connection point of the primary winding of the ignition coil ZS and the switching element IGBT and the ground terminal 0.
  • the ground terminal 0 is connected to the negative potential GND of the supply voltage Vsupply.
  • a resistor R3 is connected in series with the primary winding and the switching element IGBT. By the reflection ⁇ stand R3 generates a charging current flowing to the current repre ⁇ animal voltage I_Prim.
  • a resistor R4 is connected in series with the secondary winding of the ignition coil ZS.
  • the current flowing through this resistor R4 secondary current generated the most resistance ⁇ stood R4 voltage drop I_Sec.
  • the control unit SE comprises the voltage converter DC / DC and a control circuit Control. This captures the signals
  • V_Prim, I_Prim and I_Sec compares them by means of voltage comparators Compl ... Comp4 according to FIG. Setpoints VI ... V5.
  • the control unit SE triggers an ignition process, wherein the burning time and arc current are regulated.
  • the supply voltage Vsupply is controlled according to the invention via the control signal V_Control, or the switching element IGBT is switched on and off via the drive signal IGBT_Control.
  • the control signal V_Control is applied to the output of a controllable by the flow control ALS switching means SM and depending on the control either formed by a regulator circuit regulator or the sequence control ALS.
  • control circuit Control is connected to the microcontroller via an SPI interface.
  • the microcontroller can specify specifications for charging current, burning time,
  • the controller can transmit status and diagnostic information to the microcontroller.
  • Control sequence con ⁇ tion ALS can either by a microcontroller with software contained therein, as well as by a - from standard Lo ⁇ gic modules existing - hardware flow control (state machine) may be formed.
  • the method comprises several consecutive phases.
  • the switching element IGBT is switched on at the time t 1 via the control signal IGBT_Control by the control unit SE.
  • the charging ⁇ current is detected as a signal I_Prim. Since no sec- där workede blocking diode is used must during the charging process ⁇ the supply voltage Vsupply timed to verän- dert that the secondary side induced clamping voltage ⁇ sure under the current breakdown voltage remains. Their value is essentially given by the instantaneous combustion chamber pressure, which changes continuously during the compression stroke. It is important that the charging current value ⁇ who speaks the desired storage energy ent ⁇ , is reached later than the ignition timing t2.
  • IGBT_Control switched off. Driven by the collapse of the magnetic field now increase the primary and secondary voltage of the ignition coil ZS quickly.
  • the Pri ⁇ märschreib shows - observable as a signal V_Prim - initially a very rapid rise to the use of the voltage limitation by the switching element IGBT at about 400V. The reason for this is the discharge of the primary leakage inductance. At ⁇ closing the primary-side voltage decreases again until it rises again - now with a sinusoidal voltage waveform. This voltage profile is due to the backtrans ⁇ formed secondary voltage.
  • the secondary capa- Frequency which is formed by the secondary winding and the electrodes of the spark plug ZK, loaded with a resonant Umschwingvorgang from the main inductance and the secondary-side leakage inductance of the ignition coil ZS.
  • the sinusoidal Umschwingvorgang is abruptly terminated and the Pri ⁇ märschreib falls to a value of 10V to 50V. This value, in turn, is composed of the supply voltage Vsupply and the back-transformed secondary-side arc voltage.
  • the supply voltage V supply is provided at the beginning of the penetration phase by means of the control signal V_Control quickly to its maximum value of eg 30V what just ⁇ if not seen in Figure 3 in detail.
  • the arc current is now to be kept constant, it is compared in a regulator circuit regulator with a first setpoint value V2.
  • the output signal of the regulator circuit Reglerl is supplied via the corresponding control by the flow control ⁇ expensive switching means SM as control signal V_Control the voltage converter voltage ⁇ DC / DC and now controls the supply voltage Vsupply ⁇ such that the secondary current I_Sec the setpoint V2 corresponds.
  • the supply voltage Vsupply will initially assume a value of, for example, 20V, which rises steadily as the burning duration continues.
  • IGBT_Control the switching element IGBT at time t4 off again.
  • the supply voltage Vsupply is in turn quickly set by the control signal V_Control to its maximum value of eg 30V.
  • V_Control the maximum value of eg 30V.
  • the collapse of the magnetic field now drives the secondary voltage into positive Rich ⁇ tung, up - takes place at a voltage of about + AFR a renewed breakthrough with subsequent arc phase.
  • This re-phase sheet is now fed by the previously stored energy in the Hauptinduk- tivity, wherein the (now ⁇ positi ve) secondary-side arc current decreases continuously. Since the renewed breakthrough has occurred at much lower voltage, much less energy is required to charge the secondary capacitance, and the remaining residual energy essentially corresponds to the previously stored energy.
  • the secondary-side arc current is compared with a third voltage comparator Comp3 against a third threshold value V4 via the signal I_Sec. If the value of I_Sec below the third threshold value V4, so change of the out ⁇ stand of the third voltage comparator Comp3, and the switching element ⁇ IGBT is turned on again at time t5. Since ⁇ takes place by Ström a new arc phase with negative arc, as described above.
  • the first threshold VI can be made dynamic, whereby a variable fuel flow profile can be generated. Examples play as can rise with increasing burning time of the arc current, which increases the Entflammcertain without affecting the candles ⁇ wear-negative.
  • the arc may go out, e.g. caused by blowing due to increased turbulence in the electrode area or by wetting the electrodes with fuel droplets. If this occurs in an arc phase when the switching element IGBT is switched on, then the secondary current spontaneously drops to zero and can be detected by observing the signal I_Sec.
  • the signal I_Sec is compared by a fourth voltage comparator Comp4 with a fourth threshold V5 and turned off when this threshold V5 is exceeded by the signal I_Sec the switching element IGBT, whereupon a renewed breakthrough takes place. Subsequently, the sequence of the arc phase described above takes place.
  • the sequence of multiple ignition essentially corresponds to the operating phases described above.
  • the burning phase is greatly shortened, about 0.1ms compared to the usual 0.5ms to 1.5ms.
  • the ignition is repeated several times in rapid succession.
  • the following firing phase (with the switching element IGBT switched on) is interrupted at the desired time by lowering the supply voltage Vsupply. This is rapidly lowered to a value that is required to maintain the charging current and safely below the back-transformed arc voltage of the arc. The spark thus spontaneously goes out and the coil remains charged.
  • the switching element IGBT will now turn off and he ⁇ follows a renewed breakthrough with subsequent arc phase. This process can now be repeated several times according to the default setting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben einer Zündvorrichtung für eine Verbrennungskraftmaschine, die mit einer als Transformator ausgebildeten Zündspule (ZS), einer mit der Sekundärwicklung der Zündspule (ZS) verbundenen Zündkerze (ZK), einem in Serie zur Primärwicklung der Zündspule (ZS) geschalteten ansteuerbaren Schaltelement (IGBT) und einer mit der Primärwicklung der Zündspule (ZS) und dem Steuereingang des Schaltelements (IGBT) verbundenen Steuereinheit (SE) gebildet ist, wobei die Steuereinheit (SE) eine einstellbare Versorgungsspannung (Vsupply) für die Zündspule (ZS) und ein Ansteuersignal (IGBT_Control) für das Schaltelement (IGBT) abhängig von den Strömen (I_Prim, I_Sec) durch die Primär- und die Sekundärwicklung der Zündspule (ZS) und der Spannung zwischen dem Verbindungspunkt der Primärwicklung der Zündspule (ZS) mit dem Schaltelement (IGBT) und dem negativen Anschluss der Versorgungsspannung (GND) bereitstellt, wodurch einerseits ein Betrieb der Zündkerze (ZK) mit Wechselstrom und andererseits eine Regelung dieses Stromes möglich ist, was zu einer sichereren Zündung bei geringerem Verschleiß der Zündkerzen führt.

Description

Beschreibung
Verfahren zum Betreiben einer Zündvorrichtung für eine Verbrennungskraftmaschine und Zündvorrichtung für eine Verbren- nungskraftmaschine zur Durchführung des Verfahrens
Serien-Zündanlagen in heutigen als Ottomotoren ausgebildeten Verbrennungskraftmaschinen arbeiten seit vielen Jahrzehnten nach dem einfachen und zuverlässigen Prinzip der Spulenentla- dung, d.h. eine entsprechend als Transformator ausgelegte
Zündspule wird auf der Primärseite entsprechend ihrer Induk¬ tivität aus der Bordnetzspannung teilweise bis in ihren Sät¬ tigungsbereich geladen. Zum Zündzeitpunkt wird mittels einer elektronischen Schaltung, z.B. durch einen Zündungs-IGBT (In- sulated Gate Bipolar Transistor), die Aufladung unterbrochen. Auf der Sekundärseite baut sich dadurch eine Spannung von z.B. 5kV bis 35kV auf, die im Brennraum der Verbrennungskraftmaschine im Funkenspalt der Zündkerze zu einem Über¬ schlag führt. Anschließend baut sich die in der Spule gespei- cherte Energie im Zündplasma ab.
Im Zuge der voranschreitenden Motorenentwicklung müssen Verbrauchseinsparungen und Emissionen realisiert werden, die in den letzten Jahren konsequent zu einer steigenden Mehrbelas- tung des Zündsystems geführt haben und künftig noch weiter führen werden. Beispiele hierfür sind z.B. die Schichtverbrennung, bei der flüssige Kraftstoffbestandteile mit hohen Strömungsgeschwindigkeiten die Funkenentladung behindern und zahlreiche Funkenneubildungen erzwingen. Auch steigende
Brennraumdrücke zur Verbesserung des Motorwirkungsgrades er¬ höhen den Durchbruchswiderstand im Funkenspalt und erzwingen einen Anstieg der Durchbruchsspannung, die auch Einfluss auf den Zündkerzenverschleiß besitzt. Letzteres wird bei künfti¬ gen hoch aufgeladenen Motorgenerationen zu sekundärseitigen Spannungsanstiegen weit jenseits der 35kV führen. Sowohl die steigenden Durchbruchsspannungen als auch die intensiver werdenden Strömungszustände an der Zündkerze verkürzen tendenziell die Brenndauer des Funkens, da immer größere Anteile der in der Spule gespeicherten Energie zum Funkenaufbau und - erhalt bereit gestellt werden müssen. Ein viel versprechender Trend in der Entwicklung neuer Brennverfahren ist der Einsatz von Mehrfachfunken, wobei die Spulenenergie in kurzen Intervallen effizient an das Gemisch übertragen wird, was die Ent- flammungssicherheit erhöht.
Bei sich derzeit im Einsatz befindenden Zündvorrichtungen wird eine als Transformator mit magnetischer Speicherfähigkeit ausgebildete Zündspule zunächst primärseitig aus der 12V Bordnetzversorgung bis zu einem Strom von ca. 8A geladen. Eine sekundärseitig angebrachte Sperrdiode verhindert dabei ei¬ ne ungewollte Funkenbildung während der Ladephase. Zum Zünd¬ zeitpunkt wird mittels eines elektronischen Schalters - z.B. eines IGBT - der Stromfluss unterbrochen.
Der Zusammenbruch des magnetischen Feldes der Zündspule induziert nun primär- und sekundärseitig einen Spannungsanstieg. Bedingt durch die verwendete Halbleitertechnologie des IGBT wird die Primärspannung dabei auf typisch 400V begrenzt. Se- kundärseitig erreicht die Spannung jedoch einen wesentlich höheren Wert, der zunächst durch das Übersetzungsverhältnis des Transformators bestimmt ist. Bei einem gebräuchlichen Übersetzungsverhältnis von 1:80 ergibt sich somit eine maxi¬ male Sekundärspannung von 32kV. Diese Spannung wird jedoch in der Praxis nicht erreicht, da bereits vorher ein Spannungs¬ durchbruch zwischen den Elektroden der Zündkerze mit anschließendem Lichtbogen erfolgt, woraufhin die Sekundärspannung abrupt auf den Wert der Bogenbrennspannung abfällt. Typische Werte für die Durchbruchspannung liegen bei 5kV bis 35kV und hängen stark vom Elektrodenabstand, dem Brennraumdruck und der Gastemperatur ab. Die Brennspannung des Lichtbogens liegt im Bereich von wenigen kV. Zum Erreichen der Durchbruchspannung müssen zunächst die se- kundärseitigen Kapazitäten - verursacht durch die Zündkerze und den Aufbau der Sekundärwicklung - aufgeladen werden. Für eine gegebene Durchbruchspannung Uz gilt dabei: {1} Ec = Csec* Uz2/2
Ec ist die zum Erreichen der Durchbruchspannung erforderliche Energie,
Csec ist die sekundär wirksame Kapazität.
Diese Energie wird beim gebräuchlichen Zündsystem von der Hauptinduktivität Lh des Zündtransformators geliefert, die zuvor entsprechend aufgeladen wurde. {2} El = Lh* I2/2
El ist die gespeicherte Energie
Lh ist der Hauptinduktivität des Transformators
I ist der Ladestrom
Bei gebräuchlichen als Zündtransformatoren ausgebildeten Zündspulen beträgt die maximale gespeicherte Energie 50mJ bis 130mJ. Die nach dem Durchbruch verfügbare Restenergie wird in der anschließenden Bogenphase im Lichtbogen umgesetzt, wobei der Sekundärstrom stetig fällt. Die Brenndauer des Bogens von typisch 0,5ms bis 1,5ms wird im Wesentlichen durch diese Restenergie bestimmt. Der Forderung nach längerer Brenndauer - und damit erhöhter Zündenergie - bei schwierigen Entflammungssituationen kann durch Erhöhung der maximalen gespeicherten Energie entsprochen werden. Dies bedingt allerdings eine Vergrößerung des Magnetkerns, was zu einer unerwünschten Vergrößerung der Zündspule führt. Besonders bei sogenannten "Pencil Coils", die direkt im Kerzenschacht verbaut sind, ist eine Vergröße¬ rung nicht möglich. Ein weiterer Nachteil einer einfachen Erhöhung der Zündenergie ist der damit einhergehende überpro- portionale Verschleiß der Zündkerze, weshalb die gewünschte Lebensdauer nicht mehr erreichbar ist. Heutige Zündsysteme haben diese Grenze zum Teil bereits erreicht, so dass die einfache Erhöhung der Zündenergie kein technisch sinnvoller Ansatz ist.
Es hat sich jedoch gezeigt, dass ein Betrieb der Zündkerze mit Wechselstrom eine zwei- bis dreifach längere Lebensdauer ermöglicht. Entsprechend wurden Wechselspannungszündsysteme für Kfz entwickelt. Hierbei ist die Zündspule als reiner Transformator mit nur geringer Speicherfähigkeit ausgebildet. Bei technisch sinnvollen Übersetzungsverhältnissen von z.B. 1:100 wird zum Erreichen einer Durchbruchsspannung von z.B. 20kV eine Primärspannung von 200V benötigt, was wiederum einen aufwändigen und teueren Spannungswandler erforderlich macht. Auch reduziert das große Übersetzungsverhältnis - von 12V Bordnetzspannung zu 200V Zündungsversorgung - den Wirkungsgrad des Spannungswandlers, was wiederum den Gesamtwir¬ kungsgrad des Zündsystems reduziert. Die Verwendung solch einer Wechselspannungszündung kann das verbrennungstechnische Problem zwar lösen, ist aber aus Kos¬ tengründen nur für Fahrzeuge der Oberklasse geeignet. Also musste bisher der mit steigender Funkenenergie einhergehende Zündkerzenverschleiß akzeptiert werden bzw. entflammungs- kritische Betriebszustände konnten am Serienmotor nicht rea¬ lisiert werden.
Die der Erfindung zugrundeliegende Aufgabe ist eine wesentli- che Verbesserung des Zündverhaltens bei gleichzeitig wesent¬ lich erhöhter Lebensdauer der Zündkerze. Auch sollen die Komponenten eines gebräuchlichen Zündsystems möglichst ohne zu¬ sätzlichen Aufwand genutzt werden können. Die Aufgabe wird gemäß Patentanspruch 1 durch ein Verfahren zum Betreiben einer Zündvorrichtung für eine Verbrennungskraftmaschine, die mit einer als Transformator ausgebildeten Zündspule, einer mit der Sekundärwicklung der Zündspule verbundenen Zündkerze, einem in Serie zur Primärwicklung der Zündspule geschalteten ansteuerbaren Schaltelement und einer mit der Primärwicklung der Zündspule und dem Steuereingang des Schaltelements verbundenen Steuereinheit gebildet ist, gelöst. Erfindungsgemäß stellt die Steuereinheit eine ein¬ stellbare Versorgungsspannung für die Zündspule und ein Ans- teuersignal für das Schaltelement abhängig von den Strömen durch die Primär- und die Sekundärwicklung der Zündspule und der Spannung zwischen dem Verbindungspunkt der Primärwicklung der Zündspule mit dem Schaltelement und dem negativen An- schluss der Versorgungsspannung bereit. Das Verfahren hat da- bei folgenden Ablauf: in einer ersten Phase (Aufladung) wird das Schaltelement durch das Ansteuersignal zu einem ersten EinschaltZeitpunkt leitend und zum vorgegebenen Zündzeitpunkt wieder nicht- leitend geschaltet,
in einer sich anschließenden zweiten Phase (Durchbruch) wird die Primärspannung oder eine davon abgeleitete Spannung mit einem ersten Schwellwert verglichen und bei Unterschreiten des ersten Schwellwerts durch diese Spannung das Schaltele- ment zu einem zweiten EinschaltZeitpunkt wieder leitend ge¬ schaltet,
in einer sich daran anschließenden dritten Phase (Bogen) wird die Versorgungsspannung derart geregelt, dass der Strom durch die Sekundärwicklung der Zündspule etwa einem vorgegebenen Strom entspricht und der Strom durch die Primärwicklung der Zündspule wird mit einem vorgegebenem zweiten Schwellwert verglichen und bei Überschreiten des zweiten Schwellwerts durch diesen Strom das Schaltelement zu einem ersten Ab- schaltZeitpunkt wieder nicht-leitend geschaltet,
in einer sich daran anschließenden vierten Phase (Durchbruch) wird der Strom durch die Sekundärwicklung der Zündspule mit einem dritten Schwellwert verglichen und bei Unterschreiten des dritten Schwellwerts durch diesen Strom wird das Schalt- element zu einem dritten EinschaltZeitpunkt wieder leitend geschaltet,
daran anschließend werden die dritte und die vierte Phase ge¬ gebenenfalls wiederholt, bis eine vorgegebene Brenndauer zu einem Zeitpunkt erreicht ist, zu dem das Schaltelement end- gültig nicht-leitend geschaltet wird.
Die Aufgabe wird außerdem durch eine Zündvorrichtung für eine Verbrennungskraftmaschine gemäß Patentanspruch 5 gelöst. Vor¬ teilhafte Weiterbildungen sind in den Unteransprüchen angege- ben.
In erfindungsgemäßer Weise wird dabei die Erkenntnis genutzt, dass der Kerzenverschleiß beim gebräuchlichen Zündsystem ganz wesentlich durch die Höhe des maximalen Stromwertes während der Brennphase des Lichtbogens beeinflusst wird. Ein etwa konstanter Gleichstrom verursacht bei gleichem Effektivwert deutlich weniger Verschleiß als der gebräuchliche dreieckför- mige Sekundärstrom mit hohem Spitzenwert. Wird während der Brennphase die Polarität des Stromflusses einmal oder mehr¬ mals umgekehrt, so verringert sich der Verschleiß weiter.
Das erfindungsgemäße Verfahren und die erfindungsgemäße Zünd- Vorrichtung haben dabei folgende besonderen Merkmale:
Die als Transformator ausgebildete Zündspule wird bis zum ersten Durchbruch des Funkens konventionell betrieben. Nach dem Durchbruch wird der Zündfunke im Wesentlichen von der Primärseite des Transformators gespeist. Dabei wird eine va¬ riable Versorgungsspannung dergestalt verwendet, dass der se- kundärseitige Strom einen gewünschten zeitlichen Verlauf hat. Es erfolgt ein Nachladen der Hauptinduktivität, um beim Er¬ löschen des Funkens schnell neu zünden zu können. Aufgrund des Betriebs des Transformators mit veränderbarer Versor¬ gungsspannung wird eine vorzeitige Funkenbildung (Einschalt¬ funken) vermieden. Der Ladezustand des Transformators kann während der Brenndauer eingestellt werden. Es kann eine Ent¬ kopplung von Ladezeit und Ladeenergie dargestellt werden, in- dem die Versorgungsspannung bei Erreichen des Sollstroms auf Konstantstrom geregelt wird. Es kann eine kostenoptimierte Zündspule (Transformator) verwendet werden, die nur die für den Durchbruch nötige Spannung / Energie darstellen kann. Es erfolgt ein Wechselspannungsbetrieb, indem wechselweise die Versorgung des Funkens aus der primärseitigen Versorgungs¬ spannung und der im Zündtransformator gespeicherten Energie erfolgt. Hierdurch kehren sich jedes Mal die Polarität von Strom und Spannung an der Zündkerze um. Die Brenndauer des Funkens kann nahezu frei gestaltet werden. Es sind Mehrfach- funken durch schnelles Laden mit der verfügbaren hohen Spannung unter Berücksichtigung der Restenergie der Spule möglich. Der Funken kann aktiv ausgeschaltet werden durch Verringerung der Versorgungsspannung unter die rücktransformierte Bogenspannung bei gleichzeitig eingeschaltetem IGBT. Die Kombination aus verringertem sekundärem Spitzenstrom und Polaritätswechsel erlaubt es nun, den Lichtbogen wesentlich länger aufrecht zu erhalten, ohne die Lebensdauer der Zündkerze einzuschränken. Die längere Brenndauer des Lichtbogens verbessert das Entflammungsverhalten ganz wesentlich.
Zudem erlaubt die gewählte Ausführung gemäß einer vorteilhaf¬ ten Weiterbildung ein spontanes Nachzünden, sollte der Lichtbogen durch extrem hohe Turbulenzen Verblasen werden und ver- löschen. Dies wiederum erhöht die Zündsicherheit ganz wesent¬ lich.
Auch ist die Erzeugung mehrerer, rasch aufeinander folgender Zündfunken möglich.
Das erfindungsgemäße Konzept nutzt die Komponenten eines be¬ stehenden Zündsystems vollständig, wobei aufgrund der erfin¬ dungsgemäßen Ansteuerung in vorteilhafter Weise die Sperrdiode in der Zündspule entfällt.
Das erfindungsgemäße Konzept erlaubt auch eine wesentliche Verkleinerung der Zündspule, was für "Pencil Coils" wegen des beengten Bauraumes im Kerzenschacht von besonderem Vorteil ist. Die Verkleinerung der Zündspule reduziert ihre Herstel- lungskosten ganz wesentlich.
Die erfindungsgemäße Formung der Funkenenergie mittels Rege¬ lung ermöglicht eine weitgehend frei wählbare Funkendauer und frei wählbaren Funkenstromverlauf. Zugleich wird die in der Zündspule zu speichernde Energie auf einen Wert verringert, mit dem noch ein sicherer Aufbau der jeweilig maximal zu er¬ wartenden Durchbruchsspannung gewährleistet ist. Die Erfindung wird nachfolgend anhand eines Ausführungsbei¬ spiels mit Hilfe von Figuren näher beschrieben. Dabei zeigen
Fig. 1 ein Blockschaltbild einer erfindungsgemäßen Zünd- Vorrichtung,
Fig. 2 eine detaillierte Schaltung einer Steuereinheit und Fig. 3 ein Ablaufdiagramm, das die zeitlichen Zusammenhänge verdeutlicht. Die erfindungsgemäße Zündvorrichtung gemäß Fig. 1 beinhaltet eine steuerbare, als Spannungswandler ausgebildete Versor- gunsspannungsquelle DC/DC zur Versorgung einer oder mehrerer Zündspulen ZS mit einer veränderbaren Versorgungsspannung Vsupply. Sie wird aus der Bordnetzspannung V_bat von derzeit etwa 12V versorgt. Sie versorgt eine oder mehrere Zündspulen ZS, wobei in vorteilhafter Weise keine Sperrdiode mehr nötig ist. Es können gebräuchliche Zündkerzen ZK verwendet werden, die mit der Sekundärwicklung der Zündspule ZS verbunden werden. Die Primärwicklung der Zündspule ZS ist mit einem meist als IGBT ausgebildeten Schaltelement zum Schalten der Zündspule ZS in Serie geschaltet. Es sind Vorrichtungen zum Er¬ fassen der Primärspannung und des Primär- sowie des Sekundärstroms vorgesehen.
Eine Steuereinheit SE erzeugt abhängig von den erfassten Be¬ triebsgrößen mittels des Spannungswandlers DC/DC die verän¬ derbare Versorgungsspannung Vsupply sowie das Ansteuersignal IGBT Control für das Schaltelement IGBT.
Die Steuereinheit SE wird wiederum von einem (nicht darges¬ tellten) Mikrokontroller gesteuert, welcher über gesonderte Timing-Eingänge in Echtzeit den Zündzeitpunkt je Zündspule vorgibt. Über eine weitere Schnittstelle - etwa das gebräuch liehe SPI (Serial Peripheral Interface) - können Daten zwi- sehen dem Mikrokontroller und der Steuereinheit SE ausgetauscht werden.
Der Spannungswandler DC/DC erzeugt aus der 12V Bordnetzver- sorgung V_bat eine Versorgungsspannung Vsupply. Der Wert dieser Versorgungsspannung Vsupply ist mittels des Steuersignals V_Control am Steuereingang Ctrl des Spannungswandlers DC/DC in einem Bereich von beispielsweise 2 bis 30V hoch dynamisch steuerbar. Der Spannungswandler DC/DC kann dabei den erfor- derlichen Ladestrom für die jeweils aktivierte Zündspule ZS liefern .
Als Zündspule ZS kann ein gebräuchlicher Typ mit einem Übersetzungsverhältnis von z.B. 1:80 dienen, wobei jedoch auf die bei heute gebräuchlichen notwendige Sperrdiode verzichtet werden kann. Abhängig von der Anzahl der Zylinder des verwendeten Ottomotors sind z.B. 3 bis 8 Zündspulen erforderlich. Aufgrund des erfindungsgemäßen Verfahrens ist es jedoch mög¬ lich, eine Zündspule mit wesentlich geringerer maximaler Speicherenergie zu verwenden.
Als Zündkerze ZK kann ein gebräuchlicher Typ dienen. Ihre genaue Ausgestaltung wird vom Einsatz im Motor bestimmt. Als Schaltelement IGBT kann ebenfalls ein gebräuchlicher Typ mit einer internen Spannungsbegrenzung von beispielsweise 400V verwendet werden. Abhängig vom benötigten Ladestrom kann seine erforderliche Stromtragfähigkeit jedoch verringert wer¬ den .
Das Signal V_Prim bildet die mittels eines Spannungsteilers aus Widerständen Rl und R2 untersetzte Primärspannung der Zündspule ZS von bis zu 400V auf einen für die Steuereinheit SE nutzbaren Wertebereich von z.B. 5V ab. Der Wert der Span- nungsteilung beträgt im genannten Beispiel 1:80. Der Spannungsteiler Rl, R2 ist zwischen dem Verbindungspunkt der Primärwicklung der Zündspule ZS und dem Schaltelement IGBT und dem Masseanschluss 0 angeordnet. Der Masseanschluss 0 ist mit dem negativen Potential GND der Versorgungsspannung Vsupply verbunden .
Zur Messung des Stromes durch die Primärwicklung des Zündspule ZS ist ein Widerstand R3 in Serie mit der Primärwicklung und dem Schaltelement IGBT geschaltet. Der durch den Wider¬ stand R3 fließende Ladestrom erzeugt eine den Strom repräsen¬ tierende Spannung I_Prim.
In gleicher Weise ist mit der Sekundärwicklung der Zündspule ZS ein Widerstand R4 in Reihe geschaltet. Der durch diesen Widerstand R4 fließende Sekundärstrom erzeugt die am Wider¬ stand R4 abfallende Spannung I_Sec.
Die Steuereinheit SE umfasst den Spannungswandler DC/DC und eine Steuerschaltung Control. Diese erfasst die Signale
V_Prim, I_Prim und I_Sec und vergleicht sie mittels Span- nungsvergleichern Compl ... Comp4 gemäß Fig. 2 mit Schwellbzw. Sollwerten VI ... V5. Zu einem Zeitpunkt, der durch das Eingangssignal Timing vom Mikrokontroller vorgegeben wird, löst die Steuereinheit SE einen Zündvorgang aus, wobei Brenndauer und Bogenstrom geregelt werden. Dazu wird erfindungsgemäß über das Steuersignal V_Control die Versorgungsspannung Vsupply gesteuert, bzw. über das Ansteuersignal IGBT_Control das Schaltelement IGBT ein- und ausgeschaltet. Das Steuersignal V_Control liegt am Ausgang eines von der Ablaufsteuerung ALS steuerbaren Schaltmittels SM an und wird abhängig von der Ansteuerung entweder von einer Reglerschaltung Reglerl oder der Ablaufsteuerung ALS gebildet.
Bei Ottomotoren mit mehreren Zylindern sind entsprechend meh- rere Timing-Eingänge und mehrere IGBT_Control Ausgänge vorzu¬ sehen .
Des Weiteren ist die Steuerschaltung Control über eine SPI- Schnittstelle mit dem Mikrokontroller verbunden. Hiermit kann der Mikrokontroller Vorgaben für Ladestrom, Brenndauer,
Brennstrom übertragen; aber auch Vorgaben für die Ausgestaltung einer Mehrfachfunkenzündung. In Gegenrichtung kann die Steuerung Status- und Diagnoseinformationen an den Mikrokontroller übertragen.
Die in der Steuerschaltung Control ausgebildete Ablaufsteue¬ rung ALS kann sowohl durch einen Mikrokontroller mit darin enthaltener Software, als auch durch eine - aus Standard Lo¬ gik Bausteinen bestehende - Hardware Ablaufsteuerung (State Machine) gebildet sein.
Im Folgenden soll das erfindungsgemäße Verfahren anhand der Fig. 3 näher erläutert werden. Das Verfahren umfasst dabei mehrere aufeinanderfolge Phasen.
1. Aufladung der Spuleninduktivität
Zu Beginn der Zündung wird - wie auch bisher üblich - die Hauptinduktivität der Zündspule ZS aufgeladen. Dazu wird über das Ansteuersignal IGBT_Control von der Steuereinheit SE das Schaltelement IGBT zum Zeitpunkt tl eingeschaltet. Der Lade¬ strom wird dabei als Signal I_Prim erfasst. Da keine sekun- därseitige Sperrdiode verwendet wird, muss während des Lade¬ vorganges die Versorgungsspannung Vsupply zeitlich so verän- dert werden, dass die dabei sekundärseitig induzierte Span¬ nung sicher unter der momentanen Durchbruchspannung bleibt. Deren Wert ist im Wesentlichen durch den momentanen Brennraumdruck gegeben, welcher sich während des Kompressionstak- tes stetig verändert. Wichtig ist hierbei, dass der Lade¬ stromwert, welcher der gewünschten Speicherenergie ent¬ spricht, spätestens zum Zündzeitpunkt t2 erreicht ist. Ein etwas früheres Erreichen des Ladestromwertes ist dabei uner¬ heblich, da durch Absenken der Versorgungsspannung Vsupply der Strom konstant gehalten werden kann. Die Versorgungsspannung Vsupply wird dabei auf einen Wert geregelt, der durch den Innenwiderstand der Primärwicklung und den Ladestrom gegeben ist. Zusätzlich sind noch die Spannungsverluste am Schaltelement IGBT und am Strommesswiderstand R3 berücksich- tigt. Der Wert der zu speichernden Energie kann - basierend auf der Beobachtung vorangegangener Zündvorgänge bzw. über SPI vorgegeben - bei jeder Ladephase unterschiedlich sein und entsprechend adaptiert werden. 2. Durchbruch
Zum vorgegebenen Zündzeitpunkt t2 wird - wie auch bisher üblich - das Schaltelement IGBT über das Ansteuersignal
IGBT_Control ausgeschaltet. Getrieben durch den Zusammenbruch des magnetischen Feldes steigen nun die Primär- und Sekundärspannung der Zündspule ZS rasch an. Im Detail zeigt die Pri¬ märspannung - beobachtbar als Signal V_Prim - zunächst einen sehr schnellen Anstieg bis zum Einsatz der Spannungsbegrenzung durch das Schaltelement IGBT bei ca. 400V. Ursache hier- für ist die Entladung der primären Streuinduktivität. An¬ schließend sinkt die primärseitige Spannung wiederum, bis sie abermals ansteigt - nun mit einem sinusförmigen Spannungsverlauf. Dieser Spannungsverlauf ist begründet in der rücktrans¬ formierten Sekundärspannung. Hierbei wird die sekundäre Kapa- zität, die durch die Sekundärwicklung und die Elektroden der Zündkerze ZK gebildet wird, mit einem resonanten Umschwingvorgang aus der Hauptinduktivität und der sekundärseitigen Streuinduktivität der Zündspule ZS aufgeladen. (Bei der Be- trachtung ist der zwischengeschaltete ideale Transformator zu berücksichtigen.) Bei Erreichen der Durchbruchspannung wird der sinusförmige Umschwingvorgang abrupt beendet und die Pri¬ märspannung fällt auf einen Wert von 10V bis 50V. Dieser Wert wiederum setzt sich zusammen aus der Versorgungsspannung Vsupply und der rücktransformierten sekundärseitigen Bogen- spannung. Diese Details sind in der Fig. 3 nicht dargestellt.
Die Versorgungsspannung Vsupply wird mit Beginn der Durchbruchsphase mittels des Steuersignals V_Control schnell auf ihren Maximalwert von z.B. 30V gestellt, was in Fig.3 eben¬ falls nicht im Detail zu erkennen ist.
3. Brennphase (Bogen) Der Beginn der Brennphase wird erkannt, sobald die Primär¬ spannung zum Zeitpunkt t3 unter einen vorgegebenen Wert von z.B. 40V absinkt. Das davon mittels des Spannungsteilers Rl, R2 abgeleitete Signal V_Prim hat dann einen Wert von z.B. 0,5V und kann mit einem ersten Spannungsvergleicher Compl ge- gen einen ersten Schwellwert VI verglichen werden. Der Ausgang des ersten Spannungsvergleichers Compl wechselt bei Un¬ terschreiten des Sollwertes VI seinen logischen Zustand. Dieser Wechsel dient dazu, das Schaltelement IGBT zum Zeitpunkt t3 abermals einzuschalten. Da nun die Versorgungsspannung Vsupply wieder hoch eingestellt wird (30V) , wird diese über die Zündspule ZS sekundärseitig als hohe, negative Spannung von z.B. -2,4kV übertragen. Da zu diesem Zeitpunkt wegen des Lichtbogens ionisiertes Gas zwischen den Elektroden der Zünd- kerze ZK existiert, erfolgt ein erneuter Durchbruch ungefähr bei der Bogenspannung von ca. -lkV.
Als Folge der Spannungsdifferenz zwischen der Brennspannung und der transformierten Primärspannung baut sich sehr schnell ein negativer Bogenstrom auf. Der Anstieg ist dabei im Wesentlichen durch die primären und sekundären Streuinduktivitäten und die Spannungsabfälle an den Wicklungswiderständen bestimmt. Der Bogenstrom wird dabei durch das Signal I_Sec mittels des Widerstands R4 erfasst.
Soll der Bogenstrom nun konstant gehalten werden, so wird er in einer Reglerschaltung Reglerl mit einem ersten Sollwert V2 verglichen. Das Ausgangssignal der Reglerschaltung Reglerl wird über das entsprechend von der Ablaufsteuerung anges¬ teuerte Schaltmittel SM als Steuersignal V_Control dem Span¬ nungswandler DC/DC zugeführt und steuert nun die Versorgungs¬ spannung Vsupply dergestalt, dass der Sekundärstrom I_Sec dem Sollwert V2 entspricht. Die Versorgungsspannung Vsupply wird dabei anfangs einen Wert von z.B. 20V annehmen, der mit fortdauernder Brenndauer stetig steigt.
Da zugleich zur Stromübertragung auf die Sekundärseite auch die Hauptinduktivität der Zündspule ZS geladen wird, steigt deren Stromfluss stetig an. Er wird über das Signal I_Prim am Widerstand R3 erfasst und durch einen zweiten Spannungsvergleicher Comp2 mit einem zweiten Sollwert V3 verglichen.
Steigt das Signal I_Prim infolge des Stromanstieges über den zweiten Sollwert V3, so wird über das Ansteuersignal
IGBT_Control das Schaltelement IGBT zum Zeitpunkt t4 erneut ausgeschaltet . Die Versorgungsspannung Vsupply wird wiederum mittels des Steuersignals V_Control schnell auf ihren Maximalwert von z.B. 30V gestellt. Wie unter 2. Durchbruch beschrieben, treibt der Zusammenbruch des Magnetfeldes nun die Sekundärspannung in positive Rich¬ tung, bis - bei einer Spannung von ca. +lkV ein erneuter Durchbruch mit anschließender Bogenphase erfolgt. Diese erneute Bogenphase wird nun durch die zuvor in der Hauptinduk- tivität gespeicherte Energie gespeist, wobei der (nun positi¬ ve) sekundärseitige Bogenstrom stetig abnimmt. Da der erneute Durchbruch bei wesentlich geringerer Spannung erfolgt ist, ist hierbei auch wesentlich weniger Energie zur Aufladung der Sekundärkapazität erforderlich und die verbleibende Restener- gie entspricht im Wesentlichen der zuvor gespeicherten Energie .
Über das Signal I_Sec wird nun der sekundärseitige Bogenstrom mit einem dritten Spannungsvergleicher Comp3 gegen einen dritten Schwellwert V4 verglichen. Sinkt der Wert von I_Sec unter den dritten Schwellwert V4, so wechselt der Ausgangszu¬ stand des dritten Spannungsvergleichers Comp3 und das Schalt¬ element IGBT wird zum Zeitpunkt t5 erneut eingeschaltet. Da¬ durch erfolgt eine erneute Bogenphase mit negativem Bogen- ström, wie oben beschrieben.
In einer vorteilhaften Ausgestaltung der Erfindung kann der erste Schwellwert VI dynamisch gestaltet werden, wodurch ein veränderliches Brennstromprofil erzeugt werden kann. Bei- spielsweise kann mit steigender Brenndauer der Bogenstrom steigen, was die Entflammsicherheit erhöht, ohne den Kerzen¬ verschleiß negativ zu beeinflussen.
4. Ende der Brennphase Dieser zyklische Wechsel von negativem und positivem Brennstrom kann beliebig oft wiederholt werden und wird erst durch die vorgegebene Brenndauer von z.B. 1ms beendet. Nun wird das Schaltelement IGBT endgültig ausgeschaltet. Die zu diesem Zeitpunkt t6 in der Zündspule ZS gespeicherte Energie baut sich noch im Bogen ab, woraufhin dieser verlischt. Der Zündvorgang ist beendet. 5. Nachzünden bei Zündaussetzern
Während der Brennphase kann der Lichtbogen verlöschen, z.B. verursacht durch Verblasen wegen erhöhter Turbulenzen im Elektrodenbereich oder durch Benetzung der Elektroden mit Kraftstofftröpfchen . Geschieht dies in einer Bogenphase bei eingeschaltetem Schaltelement IGBT, so fällt der Sekundärstrom spontan auf Null und kann durch Beobachtung des Signals I_Sec erkannt werden. Zu diesem Zwecke wird das Signal I_Sec durch einen vierten Spannungsvergleicher Comp4 mit einem vierten Schwellwert V5 verglichen und bei Überschreiten dieses Schwellwerts V5 durch das Signal I_Sec das Schaltelement IGBT ausgeschaltet, woraufhin ein erneuter Durchbruch erfolgt. Anschließend erfolgt der oben beschriebenen Ablauf der Bogenphase .
Geschieht dies während der Entladephase der Hauptinduktivität bei ausgeschaltetem Schaltelement IGBT, so treibt diese die Sekundärspannung, bis ein abermaliger Durchbruch stattfindet. Fällt der Bogenstrom in Folge des Energieverlustes unter den dritten Schwellwert V4, so wird das Schaltelement IGBT aber¬ mals eingeschaltet und der Ablauf der Bogenphase setzt - wie oben beschrieben - erneut ein. Somit ist sichergestellt, dass im Falle eines Verlöschens des Lichtbogens eine sofortige Nachzündung erfolgt. Zündaussetzer finden mit hoher Wahrscheinlichkeit nicht mehr statt. 6. Mehrfachfunkenzündung
Der Ablauf einer Mehrfachzündung entspricht im Wesentlichen den oben beschriebenen Betriebsphasen. Im Gegensatz dazu ist aber die Brennphase stark verkürzt, etwa 0,1ms im Vergleich zu üblichen 0,5ms bis 1,5ms. Jedoch wird der Zündvorgang in rascher Folge mehrmals wiederholt.
Nach erfolgter Aufladung und erfolgtem Überschlag wird die folgende Brennphase (bei eingeschaltetem Schaltelement IGBT) zum gewünschten Zeitpunkt durch Absenken der Versorgungsspannung Vsupply unterbrochen. Diese wird dabei rasch auf einen Wert abgesenkt, der zum Erhalt des Ladestromes erforderlich ist und sicher unterhalb der rücktransformierten Brennspannung des Lichtbogens liegt. Der Funke verlischt also spontan und die Spule bleibt geladen. Zum vorgegebenen Zeitpunkt wird nun das Schaltelement IGBT wiederum ausgeschaltet und es er¬ folgt ein erneuter Durchbruch mit anschließender Bogenphase. Dieser Vorgang kann nun entsprechend der Voreinstellung mehrmals wiederholt werden.
Mit dem hier beschriebenen Verfahren und der Zündvorrichtung werden sämtliche eingangs gestellten Anforderungen vollständig erfüllt. Wegen der Weiterverwendung der gebräuchlichen Zündungskomponenten und der vergleichsweise einfach gehalte- nen Zusatzelektronik entstehen nur geringe Mehrkosten, die durch die nun mögliche Verkleinerung der Zündspulen sicher aufgefangen werden. Von besonderem Vorteil ist das erfindungsgemäße Verfahren bei schwierigen Entflammungslagen wie etwa beim Kaltstart von Motoren, die mit Ethanol betrieben werden .

Claims

Patentansprüche
1. Verfahren zum Betreiben einer Zündvorrichtung für eine Verbrennungskraftmaschine, die mit einer als Transformator ausgebildeten Zündspule (ZS) , einer mit der Sekundärwicklung der Zündspule (ZS) verbundenen Zündkerze (ZK) , einem in Serie zur Primärwicklung der Zündspule (ZS) geschalteten ansteuerbaren Schaltelement (IGBT) und einer mit der Primärwicklung der Zündspule (ZS) und dem Steuereingang des Schaltelements (IGBT) verbundenen Steuereinheit (SE) gebildet ist,
wobei die Steuereinheit (SE) eine einstellbare Versorgungs¬ spannung (Vsupply) für die Zündspule (ZS) und ein Ansteuer- signal ( IGBT_Control ) für das Schaltelement (IGBT) abhängig von den Strömen (I_Prim, I_Sec) durch die Primär- und die Se- kundärwicklung der Zündspule (ZS) und der Spannung zwischen dem Verbindungspunkt der Primärwicklung der Zündspule (ZS) mit dem Schaltelement (IGBT) und dem negativen Anschluss der Versorgungsspannung (GND) bereitstellt, mit folgendem Ablauf: in einer ersten Phase (Aufladung) wird das Schaltelement
(IGBT) durch das Ansteuersignal ( IGBT_Control ) zu einem ers¬ ten EinschaltZeitpunkt (tl) leitend und zum vorgegebenen Zündzeitpunkt (t2) wieder nicht-leitend geschaltet, in einer sich anschließenden zweiten Phase (Durchbruch) wird die Primärspannung oder eine davon abgeleitete Spannung
(V_prim) mit einem ersten Schwellwert (VI) verglichen und bei Unterschreiten des ersten Schwellwerts (VI) durch diese Spannung (V_prim) das Schaltelement (IGBT) zu einem zweiten Ein- schaltZeitpunkt (t3) wieder leitend geschaltet, in einer sich daran anschließenden dritten Phase (Bogen) wird die Versorgungsspannung (Vsupply) derart geregelt, dass der Strom (I_sec) durch die Sekundärwicklung der Zündspule (ZS) etwa einem vorgegebenen Strom (V2) entspricht und der Strom (I_prim) durch die Primärwicklung der Zündspule (ZS) wird mit einem vorgegebenem zweiten Schwellwert (V3) verglichen und bei Überschreiten des zweiten Schwellwerts (V3) durch diesen Strom (I_prim) das Schaltelement (IGBT) zu einem ersten Abschaltzeitpunkt (t4) wieder nicht-leitend geschaltet, in einer sich daran anschließenden vierten Phase (Durchbruch) wird der Strom (I_sec) durch die Sekundärwicklung der Zünd- spule (ZS) mit einem dritten Schwellwert (V4) verglichen und bei Unterschreiten des dritten Schwellwerts (V4) durch diesen Strom (I_sec) wird das Schaltelement (IGBT) zu einem dritten EinschaltZeitpunkt (t5) wieder leitend geschaltet, daran anschließend wird die dritte und die vierte Phase gege¬ benenfalls wiederholt, bis eine vorgegebene Brenndauer zu ei¬ nem Zeitpunkt (t6) erreicht ist, zu dem das Schaltelement (IGBT) endgültig nicht-leitend geschaltet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass mit dem nicht-leitend Schalten des Schaltelements (IGBT) die Versorgungsspannung (Vsupply) auf ihren Maximalwert einges¬ tellt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der in der dritten Phase vorgegebene Strom (V2) variabel, insbesondere ansteigend, ist.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass während der Phasen (Bogen) , in denen das Schaltelement (IGBT) leitend geschaltet ist, der Strom (I_sec) durch die Sekundärwicklung mit einem vierten Schwellwert (V5) verglichen wird und das Schaltelement (IGBT) nicht¬ leitend geschaltet wird, wenn der vierte Schwellwert (V5) durch diesem Strom überschritten wird und dass darauffolgend die Primärspannung oder eine davon abgeleitete Spannung
(V_prim) mit dem ersten Schwellwert (VI) verglichen und bei Unterschreiten des ersten Schwellwerts durch diese Spannung (V_prim) das Schaltelement wieder leitend geschaltet wird.
5. Zündvorrichtung für eine Verbrennungskraftmaschine, die mit einer als Transformator ausgebildeten Zündspule (ZS) , deren Sekundärwicklung zur Verbindung mit einer Zündkerze (ZK) ausgebildet ist,
einem in Serie zur Primärwicklung der Zündspule (ZS) geschal¬ teten ansteuerbaren Schaltelement (IGBT) und
einer mit der Primärwicklung der Zündspule (ZS) und dem Steuereingang des Schaltelements (IGBT) verbundenen Steuereinheit (SE) gebildet ist,
wobei die Steuereinheit (SE) zur Durchführung eines Verfah¬ rens gemäß einem der Ansprüche 1 bis 4
mit einem steuerbaren Spannungswandler (DC/DC) gebildet ist, der an seinem Ausgang (Vout) eine abhängig von einem an seinem Steuereingang (Ctrl) anliegenden Steuersignal (V_Control) einstellbare Versorgungsspannung (Vsupply) für die Zündspule (ZS) bereitstellt und mit einer Kraftfahrzeugbordnetzspannung (V_bat) verbindbar ist,
und mit einer Steuerschaltung (Control) gebildet ist, die das Steuersignal (V_Control) für den Spannungswandler (DC/DC) und ein Ansteuersignal ( IGBT_Control ) für das Schaltelement
(IGBT) abhängig von den Strömen durch die Primär- und die Sekundärwicklung der Zündspule (ZS) und der Spannung zwischen dem Verbindungspunkt der Primärwicklung mit dem Schaltelement (IGBT) und dem negativen Anschluss (GND) der Versorgungsspannung (Vsupply) bereitstellt.
6. Zündvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Steuerschaltung (Control) Spannungsvergleicher
(Compl, ... Comp4) aufweist, deren Referenzeingänge mit Refe¬ renzsignalen (VI, V3, V3, V5) und deren Vergleichseingänge mit den Strom durch die Primärwicklung der Zündspule und den Strom durch die Sekundärwicklung der Zündspule repräsentierenden Signalen und der von der Spannung zwischen dem Verbindungspunkt der Primärwicklung mit dem Schaltelement (IGBT) und dem negativen Anschluss (GND) der Versorgungsspannung (Vsupply) abgeleiteten Spannung (V_Prim) beaufschlagbar sind und deren Ausgänge mit Eingängen einer Ablaufsteuerung (ALS) verbunden sind, deren erster Ausgang mit dem Steuereingang des Schaltelements (IGBT) und deren zweiter Ausgang über ein von der Ablaufsteuerung (ALS) umschaltbares Schaltmittel (SM) mit dem Steuereingang (Ctrl) des Spannungswandlers (DC/DC) verbunden ist und
dass die Steuerschaltung (Control) eine Reglerschaltung (Reg- lerl) aufweist, deren Referenzeingang mit einem einen Sollwert repräsentierenden Referenzsignal (V5) und deren Vergleichseingang mit dem den Strom durch die Sekundärwicklung der Zündspule (I_sec) repräsentierenden Signal beaufschlagbar ist und deren Ausgang über das umschaltbare Schaltmittel (SM) mit dem Steuereingang (Ctrl) des Spannungswandlers (DC/DC) verbunden ist.
PCT/EP2010/069221 2009-12-11 2010-12-08 Verfahren zum betreiben einer zündvorrichtung für eine verbrennungskraftmaschine und zündvorrichtung für eine verbrennungskraftmaschine zur durchführung des verfahrens WO2011070089A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
IN5108DEN2012 IN2012DN05108A (de) 2009-12-11 2010-12-08
CN201080063551.2A CN102741544B (zh) 2009-12-11 2010-12-08 用于运行内燃机的点火装置的方法和内燃机的用于执行该方法的点火装置
BR112012014053A BR112012014053A2 (pt) 2009-12-11 2010-12-08 método para operar um dispositivo de ignição para um motor de combustão interna, e dispositivo de ignição para um motor de combustão interna para a execução do método
RU2012129185/07A RU2012129185A (ru) 2009-12-11 2010-12-08 Способ эксплуатации устройства зажигания для двигателя внутреннего сгорания и устройство зажигания для двигателя внутреннего сгорания для осуществления способа
KR1020127018037A KR101778010B1 (ko) 2009-12-11 2010-12-08 내연기관용 점화 장치를 작동시키기 위한 방법 및 상기 방법을 수행하기 위한 내연기관용 점화 장치
US13/515,190 US8985090B2 (en) 2009-12-11 2010-12-08 Method for operating an ignition device for an internal combustion engine, and ignition device for an internal combustion engine for carrying out the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009057925A DE102009057925B4 (de) 2009-12-11 2009-12-11 Verfahren zum Betreiben einer Zündvorrichtung für eine Verbrennungskraftmaschine und Zündvorrichtung für eine Verbrennungskraftmaschine zur Durchführung des Verfahrens
DE102009057925.7 2009-12-11

Publications (1)

Publication Number Publication Date
WO2011070089A1 true WO2011070089A1 (de) 2011-06-16

Family

ID=43709002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/069221 WO2011070089A1 (de) 2009-12-11 2010-12-08 Verfahren zum betreiben einer zündvorrichtung für eine verbrennungskraftmaschine und zündvorrichtung für eine verbrennungskraftmaschine zur durchführung des verfahrens

Country Status (8)

Country Link
US (1) US8985090B2 (de)
KR (1) KR101778010B1 (de)
CN (1) CN102741544B (de)
BR (1) BR112012014053A2 (de)
DE (1) DE102009057925B4 (de)
IN (1) IN2012DN05108A (de)
RU (1) RU2012129185A (de)
WO (1) WO2011070089A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013098112A1 (de) * 2011-12-27 2013-07-04 Continental Automotive Gmbh Verfahren zum betreiben einer zündvorrichtung für eine verbrennungskraftmaschine

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130121887A (ko) 2010-11-23 2013-11-06 콘티넨탈 오토모티브 게엠베하 내연 기관의 점화 장치 및 내연 기관의 점화 장치 작동 방법
DE102010061799B4 (de) 2010-11-23 2014-11-27 Continental Automotive Gmbh Verfahren zum Betreiben einer Zündvorrichtung für eine Verbrennungskraftmaschine und Zündvorrichtung für eine Verbrennungskraftmaschine zur Durchführung des Verfahrens
ITMI20111669A1 (it) 2011-09-16 2013-03-17 St Microelectronics Srl Accensione graduale in un sistema di accensione di un motore a combustione
DE102011085957A1 (de) * 2011-11-08 2013-05-08 Bayerische Motoren Werke Aktiengesellschaft Zündanlage mit sekundärseitig miteinander verbundenen Zündspulen
US9810191B2 (en) * 2012-02-09 2017-11-07 Sem Ab Engine for vehicle using alternative fuels
CN102588184A (zh) * 2012-02-21 2012-07-18 南京航空航天大学 活塞式发动机高能点火系统
SE536577C2 (sv) * 2012-04-13 2014-03-04 Sem Ab Tändsystem innefattande en mätanordning anordnad att ge mätsignaler till en förbränningsmotors styrsystem
DE102012207973B4 (de) 2012-05-14 2015-07-16 Continental Automotive Gmbh Verfahren zum Betreiben einer Zündvorrichtung eines Kraftfahrzeugs
JP5866023B2 (ja) * 2012-12-19 2016-02-17 新電元工業株式会社 点火制御装置および点火制御方法
JP5802229B2 (ja) * 2013-03-12 2015-10-28 本田技研工業株式会社 内燃機関の点火制御装置
DE102013004728A1 (de) * 2013-03-19 2014-09-25 Daimler Ag Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie Verbrennungskraftmaschine
JP6318708B2 (ja) * 2013-04-11 2018-05-09 株式会社デンソー 点火制御装置
JP5873839B2 (ja) * 2013-06-13 2016-03-01 日本特殊陶業株式会社 点火装置
EP2873850A1 (de) 2013-11-14 2015-05-20 Delphi Automotive Systems Luxembourg SA Verfahren und Vorrichtung zur Steuerung eines Vielfachfunkenzündsystems für eine Brennkraftmaschine
DE102014002557A1 (de) 2014-02-24 2015-08-27 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren zum Betreiben einer Zündvorrichtung
JP6269271B2 (ja) * 2014-04-10 2018-01-31 株式会社デンソー 内燃機関用点火装置
JP6455190B2 (ja) 2014-04-10 2019-01-23 株式会社デンソー 点火装置および点火システム
DE102014210746A1 (de) * 2014-06-05 2015-12-17 Robert Bosch Gmbh Zündsystem und Verfahren zum Verhindern einer Funkenentladung während des Einschaltvorgangs
JP6128249B1 (ja) * 2016-03-29 2017-05-17 デンソートリム株式会社 内燃機関用負荷駆動装置および内燃機関用点火装置
SE542389C2 (en) * 2018-09-04 2020-04-21 Sem Ab An ignition system and method controlling spark ignited combustion engines
DE112019004778T5 (de) * 2018-10-24 2021-09-09 Hitachi Astemo, Ltd. Steuervorrichtung für brennkraftmaschine
CN110242473A (zh) * 2019-06-03 2019-09-17 昆山凯迪汽车电器有限公司 车用燃气智能点火系统
CN115875172B (zh) * 2023-03-03 2023-05-09 南京工业大学 一种无人机发动机的电感式双点火系统驱动电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004056844A1 (de) * 2004-11-25 2006-06-01 Daimlerchrysler Ag Schnelle Vielfachfunkenzündung
DE102007000052A1 (de) * 2006-01-31 2007-08-09 Denso Corp., Kariya Mehrfachfunkenzündungssystem für eine Brennkraftmaschine
DE102007034399A1 (de) * 2007-07-24 2009-01-29 Daimler Ag Verfahren zum Betreiben eines Zündsystems für einen fremdzündbaren Verbrennungsmotor eines Kraftfahrzeugs und Zündsystem
DE102007034390A1 (de) * 2007-07-24 2009-01-29 Daimler Ag Verfahren zum Betreiben eines Zündsystems für einen fremdzündbaren Verbrennungsmotor eines Kraftfahrzeugs und Zündsystem
DE102009026424A1 (de) * 2008-05-30 2009-12-03 DENSO CORPORATION, Kariya-shi Zündsteuervorrichtung und Zündsteuersystem einer Brennkraftmaschine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558071A (en) * 1994-03-07 1996-09-24 Combustion Electromagnetics, Inc. Ignition system power converter and controller
US5947093A (en) * 1994-11-08 1999-09-07 Ignition Systems International, Llc. Hybrid ignition with stress-balanced coils
DE19524539C1 (de) * 1995-07-05 1996-11-28 Telefunken Microelectron Schaltungsanordnung zur Ionenstrommessung im Verbrennungsraum einer Brennkraftmaschine
DE19605803A1 (de) * 1996-02-16 1997-08-21 Daug Deutsche Automobilgesells Schaltungsanordnung zur Ionenstrommessung
DE19608526C2 (de) * 1996-03-06 2003-05-15 Bremi Auto Elek K Bremicker Gm Verfahren zur Regelung der Mindestzündenergie bei einer Brennkraftmaschine
DE19614287C1 (de) * 1996-04-11 1997-06-26 Telefunken Microelectron Schaltungsanordnung zur Ionenstrommessung im Verbrennungsraum einer Brennkraftmaschine und zur Wechselstromzündung der Brennkraftmaschine
JP2003511612A (ja) * 1999-10-06 2003-03-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関の点火装置および方法
AT409406B (de) * 2000-10-16 2002-08-26 Jenbacher Ag Zündsystem mit einer zündspule
DE10062892A1 (de) * 2000-12-16 2002-07-11 Bosch Gmbh Robert Zündeinrichtung für Brennkraftmaschinen
DE10121993B4 (de) * 2001-05-05 2004-08-05 Daimlerchrysler Ag Zündsystem für Verbrennungsmotoren
AT504010B1 (de) * 2006-05-12 2008-10-15 Ge Jenbacher Gmbh & Co Ohg Zündeinrichtung für eine brennkraftmaschine
AT504369B8 (de) * 2006-05-12 2008-09-15 Ge Jenbacher Gmbh & Co Ohg Zündeinrichtung für eine brennkraftmaschine
US7401603B1 (en) 2007-02-02 2008-07-22 Altronic, Inc. High tension capacitive discharge ignition with reinforcing triggering pulses
JP2009165288A (ja) * 2008-01-08 2009-07-23 Sanken Electric Co Ltd スイッチング電源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004056844A1 (de) * 2004-11-25 2006-06-01 Daimlerchrysler Ag Schnelle Vielfachfunkenzündung
DE102007000052A1 (de) * 2006-01-31 2007-08-09 Denso Corp., Kariya Mehrfachfunkenzündungssystem für eine Brennkraftmaschine
DE102007034399A1 (de) * 2007-07-24 2009-01-29 Daimler Ag Verfahren zum Betreiben eines Zündsystems für einen fremdzündbaren Verbrennungsmotor eines Kraftfahrzeugs und Zündsystem
DE102007034390A1 (de) * 2007-07-24 2009-01-29 Daimler Ag Verfahren zum Betreiben eines Zündsystems für einen fremdzündbaren Verbrennungsmotor eines Kraftfahrzeugs und Zündsystem
DE102009026424A1 (de) * 2008-05-30 2009-12-03 DENSO CORPORATION, Kariya-shi Zündsteuervorrichtung und Zündsteuersystem einer Brennkraftmaschine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013098112A1 (de) * 2011-12-27 2013-07-04 Continental Automotive Gmbh Verfahren zum betreiben einer zündvorrichtung für eine verbrennungskraftmaschine
CN103998766A (zh) * 2011-12-27 2014-08-20 大陆汽车有限公司 内燃机点火装置的工作方法
US9709016B2 (en) 2011-12-27 2017-07-18 Continental Automotive Gmbh Method for operating an ignition device for an internal combustion engine

Also Published As

Publication number Publication date
DE102009057925A1 (de) 2011-06-16
BR112012014053A2 (pt) 2016-04-12
KR20120120218A (ko) 2012-11-01
US20120312285A1 (en) 2012-12-13
RU2012129185A (ru) 2014-01-20
US8985090B2 (en) 2015-03-24
CN102741544A (zh) 2012-10-17
IN2012DN05108A (de) 2015-10-09
CN102741544B (zh) 2015-05-20
KR101778010B1 (ko) 2017-09-13
DE102009057925B4 (de) 2012-12-27

Similar Documents

Publication Publication Date Title
DE102009057925B4 (de) Verfahren zum Betreiben einer Zündvorrichtung für eine Verbrennungskraftmaschine und Zündvorrichtung für eine Verbrennungskraftmaschine zur Durchführung des Verfahrens
DE102010061799B4 (de) Verfahren zum Betreiben einer Zündvorrichtung für eine Verbrennungskraftmaschine und Zündvorrichtung für eine Verbrennungskraftmaschine zur Durchführung des Verfahrens
DE102007034390B4 (de) Verfahren zum Betreiben eines Zündsystems für einen fremdzündbaren Verbrennungsmotor eines Kraftfahrzeugs und Zündsystem
DE102011089966B4 (de) Verfahren zum Betreiben einer Zündvorrichtung für eine Verbrennungskraftmaschine
DE112014003208B4 (de) Zündsteuervorrichtung
WO2012069358A2 (de) Zündvorrichtung für eine verbrennungskraftmaschine und verfahren zum betreiben einer zündvorrichtung für eine verbrennungskraftmaschine
WO2012130649A1 (de) Verfahren und vorrichtung zur verlängerung der brenndauer eines von einer zündkerze gezündeten funkens in einem verbrennungsmotor
DE102013215663A1 (de) Zündapparatur
DE102015208033B4 (de) Zündvorrichtung
DE102016221656B4 (de) Zündsteuervorrichtung und zündsteuerverfahren für verbrennungsmotor
WO2015071047A1 (de) Zündsystem und verfahren zum betreiben eines zündsystems
DE2628509C2 (de) Kapazitätsentladungs-Zündsystem
DE102013218227A1 (de) Zündsystem für eine Verbrennungskraftmaschine
DE102004056844A1 (de) Schnelle Vielfachfunkenzündung
DE102007034399A1 (de) Verfahren zum Betreiben eines Zündsystems für einen fremdzündbaren Verbrennungsmotor eines Kraftfahrzeugs und Zündsystem
WO2015071062A1 (de) Zündsystem und verfahren zum betreiben eines zündsystems
DE10121993A1 (de) Zündsystem für Verbrennungsmotoren
EP3069008A1 (de) Zündsystem und verfahren zum betreiben eines zündsystems für eine brennkraftmaschine
WO1991002153A1 (de) Vollelektronische zündeinrichtung für eine brennkraftmaschine
DE102013112039B4 (de) Korona-Zündsystem für einen Verbrennungsmotor und Verfahren zur Steuerung eines Korona-Zündsystems
DE3404245A1 (de) Hochspannungs-generatorschaltung fuer ein kraftfahrzeugzuendsystem
DE102013218922A1 (de) Zündvorrichtung
DE102012218698B3 (de) Vorrichtung und Verfahren zum Zünden einer Zündkerze eines Kraftfahrzeugs
EP3177824A1 (de) Zündsystem und verfahren zum steuern eines zündsystems für eine fremdgezündete brennkraftmaschine
EP0824848B1 (de) Leistungssteuerung einer mit wechselstrom betriebenen hochdruckgasentladungslampe, insbesondere für kraftfahrzeuge

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063551.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10790553

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10790553

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 5108/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127018037

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012129185

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13515190

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012014053

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 10790553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112012014053

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120611