WO2011069621A1 - Procédé pour souder deux composants métalliques et agencement de liaison avec deux composants métalliques - Google Patents

Procédé pour souder deux composants métalliques et agencement de liaison avec deux composants métalliques Download PDF

Info

Publication number
WO2011069621A1
WO2011069621A1 PCT/EP2010/007348 EP2010007348W WO2011069621A1 WO 2011069621 A1 WO2011069621 A1 WO 2011069621A1 EP 2010007348 W EP2010007348 W EP 2010007348W WO 2011069621 A1 WO2011069621 A1 WO 2011069621A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
metal components
energy input
welding
weld
Prior art date
Application number
PCT/EP2010/007348
Other languages
German (de)
English (en)
Inventor
Wolfgang Becker
Markus Beck
Markus Geyer
Ulix Goettsch
Klaus Goth
Wolfgang Gref
Claus-Dieter Reiniger
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Priority to US13/515,015 priority Critical patent/US8890022B2/en
Priority to JP2012542387A priority patent/JP5551792B2/ja
Priority to EP10785359.0A priority patent/EP2509742B1/fr
Publication of WO2011069621A1 publication Critical patent/WO2011069621A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding

Definitions

  • the invention relates to a method for welding two metal components according to the preamble of claim 1 and a connection arrangement with two metal components according to the preamble of claim. 7
  • a first heat source is directed to the parts and a melting region is formed, wherein the heat source and the parts are moved relative to each other.
  • a second additional heat source is provided, which is directed to the parts and follows the first heat source at a distance of the same speed and in the same direction, whereby the cooling rate of a solidification region of the melting region is reduced, without melting the solidification region , This should
  • EP 1 747 836 A1 discloses a method for welding metal parts, wherein a welding laser beam of a laser is focused on the metal parts. The metal parts are made by the welding laser beam to form a weld
  • a heat treatment of the weld is provided, wherein the heat treatment is performed by a laser beam.
  • the process is intended to undo a microstructure transformation of the material of the metal parts as a result of welding them in the region of the weld.
  • a method for welding two metal components made of aluminum alloys know a first step, in which the metal components to be joined in a
  • a further step in which the surface of the weld is smoothed by a further energy input with partial melting of the weld in the region of the surface, wherein the further energy input is carried out by means of a defocused laser beam whose focal point in the beam direction in front of or behind the surface the weld is positioned and wherein the defocused laser beam and the surface normal of a surface of the two metal components to which the
  • Laser beam impinges include an angle greater than or equal to 5 degrees.
  • the weld is superficially remelted, resulting in a reduction of the above-mentioned individual surveys results.
  • the topography of the weld is now no longer sharp-edged but much smoother, whereby the two metal components in the welding area have a very high functionality, for example, to be able to provide seals there.
  • the defocused laser beam may, for example, be the laser beam of a laser, by means of which the metal components in the welding area already have
  • the defocused laser beam is the laser beam of a further laser which, for example, tracks the first laser beam at a certain distance.
  • the defocused laser beam and the surface normal close to a surface of the two metal components on which the laser beam impinges, ie
  • One of the defocused laser beam with energy-loaded surface is
  • the process parameters When crossing the defocused laser beam over the weld, the process parameters must be selected so that enough energy is absorbed for the partial re-melting of the weld.
  • Laser beam obeys at least substantially a Gausver Collins, which means that in outer areas of the acted upon by the laser beam with energy surface is lower energy density than in inner areas of this area.
  • the said seam superelevation is in the initial region of the weld and is formed such that the laser beam at the beginning of forming the weld on the corresponding surface of the metal component, the metal melts and even evaporated.
  • the resulting vapor capillary (keyhole) is released in the appropriate, desired direction to form the weld. Due to the
  • Said end crater lies in the opposite end of the weld seam and is also smoothed by the defocused crossing.
  • the end crater is filled with molten metal and leveled.
  • the method according to the invention can be used, for example, in the context of a remote laser beam welding method, which involves a robot-guided welding process.
  • the remote laser beam welding process is a
  • welding method in which the laser beam is directed from a greater distance on the corresponding surface of the metal components and shot, wherein the laser beam is also guided by a scanner on the surface and to the
  • Welding device are arranged mirror of the scanner, which cause a fine adjustment of the laser beam and direct it to the desired locations.
  • the scanner in turn is held on a robot arm which moves the scanner, whereby this movement of the scanner by the robot arm is made coarser than the said fine adjustment of the laser beam by means of the scanner and its mirror.
  • the guide and a deflection of the laser beam by means of the scanner or the mirror is extremely fast and quasi jumpable feasible, whereby a particularly fast repositioning of the laser beam and thus the seam beginning of the weld is made possible.
  • This allows a particularly low spin time of the welding process, which keeps the total cycle time in a small frame and thus allows a particularly favorable process with very low cycle times.
  • the defocused crossing advantageously into the machining sequence.
  • the laser beam is defocused by the scanner and guided against the welding direction over the previously welded seam. This happens during continuous movement of the scanner by the robot over the surface of the metal components to be welded.
  • the remote laser beam welding process is about 3 times faster than conventional methods, although no filler metal is possible due to the rapid readjustment of the laser beam.
  • the method according to the invention now also makes it possible, within the context of the remote laser beam welding method, in particular in connection with the metal components which are formed from aluminum alloys of the series 5000 and / or 7000, to present very good weld seams with a high degree of functionality, even without welding - additional material.
  • Aluminum alloys form a very thin melt whose topography due to high roughness, fracture, sharp edge etc. is disadvantageous in terms of functionality described. These disadvantages are overcome by the method according to the invention.
  • the described, first aspect of the invention thus relates to the method according to the invention, which makes it possible to represent a high functionality of the metal components on the energy input, in particular by means of the laser beam, facing surface of the metal components.
  • the second aspect of the invention now relates to a method which makes it possible to represent a particularly high functionality of the surface, which faces away from the introduction of energy, in particular by means of the laser beam, and thus faces the first surface.
  • the first surface is also referred to as a seam caterpillar while the second surface opposite the first surface is referred to as a seam crawler.
  • An advantageous embodiment of the invention relates to a method for welding two metal components made of an aluminum alloy, wherein the metal components to be joined are melted in a weld by an energy input by means of a laser beam to form a weld. It is now provided in the direction of the energy input, so the laser beam, subsequent, not by the energy input, so the laser beam, molten residual material thickness range of the metal components. In addition, a resulting from the energy input geometry change of the energy input, so the laser beam, opposite surface determined at least one of the metal components in the region of the weld. Thereafter, the extending in the direction of the energy input, so the laser beam extending extension of the residual material thickness range is formed in dependence on the determined change in geometry.,
  • Energy input are formed so deep and thus have such a high penetration depth that a firm connection of the metal components is given. It is therefore a compromise between the penetration depth of the weld and thus to create a firm connection of the metal components on the one hand and the creation of a high surface quality on the energy input (laser beam) facing away
  • Residual material thickness range is. Likewise, the suppression is thus a measure of the strength of the connection of the two metal components.
  • determining or detecting the suppression of the above compromise can be achieved.
  • a profile height and a profile angle of this suppression are determined, from which conclusions can be drawn on the strength of the connection and on extending in the direction of the energy input extension of the residual material thickness range.
  • the puncture has a pointed and high topography while the topography has a broad and flat profile when the melted area of the weld is farther away from the bottom.
  • the method can now be set in accordance with the invention so that a desired topography of the underside is established in the area of the weld, so that on the one hand a high surface quality and, on the other hand, a firm connection between the metal components is made possible.
  • a particularly advantageous range of said profile height is in this case including 20 to 100 pm inclusive, while a range of the said profile angle is in a particularly advantageous range of from 1 ° to 5 ° inclusive inclusive.
  • the profile angle is a very good measure of the strength of the connection with simultaneous realization of a very good surface quality to represent the functionality described also on the surface facing away from the energy input. Lying or the profile angle and / or the profile height in the respective area, so the two metal components are firmly connected to each other despite the non-melting.
  • the inventive method is particularly suitable for the welding of metal components, which consist essentially of aluminum alloys, in particular if at least one of the joining partners of a series 5000 or 7000 aluminum alloys is formed, and are welded together on functional flanges.
  • metal components consist essentially of aluminum alloys, in particular if at least one of the joining partners of a series 5000 or 7000 aluminum alloys is formed, and are welded together on functional flanges.
  • the invention also includes a connection arrangement with two metal components, which are welded together, wherein the two metal components by a method according to the invention of the first aspect of the invention, by an inventive Method of the second aspect of the invention or by a combination of the inventive method of the two aspects are welded together.
  • Fig. 1 is a schematic view of two steps of a method for
  • Fig. 2 is a comparison of a longitudinal section of a weld
  • FIG. 3 shows a relationship between a penetration depth of the weld formed in the method of FIG. 1 and a strength of the joint of the metal components welded in the process;
  • Fig. 4 is an illustration of a height profile transverse to the weld on the
  • Fig. 5 shows a relationship between the height profile of FIG. 4 and the
  • FIG. 1 shows a method for welding a first metal component 12 to a second metal component 14, which are formed from an aluminum alloy of the 5000 or 7000 series.
  • the metal components 12 and 14 are initially arranged overlapping in an overlap region 16, so that a lap joint is thus formed.
  • the laser beam 20 is focused on the weld seam 22 or on a surface 26 of the upper metal component 12 which is upper in the jet direction in accordance with a directional arrow 24. That is, the distance z of the focal point of the laser beam 20 from the surface 26 is zero millimeters.
  • the reference numeral 30 indicates a
  • the further energy input is effected by means of a defocused laser beam 20 '.
  • Focus of the laser beam 20 ' is now 40 mm, for example.
  • Laser beam 20 may be the same laser beam 20, which is only defocused and guided over the weld 22.
  • a penetration depth s of the weld 22 is made smaller than a total material thickness t tot of the metal components 12 and 14 to be joined in the method 10. This means that the weld seam 22 has a beam direction according to the directional arrow 24 bottom surface 32 of the lower direction in the beam direction according to the direction arrow 24 metal component 14 does not penetrate. So it will be in Direction of the laser beam 20 is a subsequent to the weld 22
  • Restmaterialdicken Scheme of the metal components 12 and 14 is provided, extending in the direction of the laser beam 20 extension (thickness) in response to a determined, resulting from the energy input by means of the laser beam 20
  • Metal component 14 is formed in the region of the weld 22, which is illustrated with reference to the following figures.
  • Metal members 12 and 14 are joined together by a series of stitching along a flange portion by means of a remote laser beam welding process, wherein the metal members 12 and 14 are formed of 5000 series aluminum alloy.
  • the distance between the stitching along the flange area is approximately 60 mm from
  • the seam length per stitch seam is 30 mm, wherein the sheet thickness of the two metal components 12 and 14 is in each case 1, 5 mm. The too
  • Welding flange portion of the metal components is pressed against each other by tensioner fingers, which are arranged in the flange between the stitching.
  • the power of the laser is guided via a light guide, which is designed as a glass fiber cable with a core diameter of 200 ⁇ , to a processing head, which is designed as a 3D scanner.
  • the scanner is fixed to a robot flange.
  • the scanner has a motorized collimation for moving the laser beam 20 or 20 'in the beam direction (z-direction), wherein this movement in the z-direction over a path length of +/- 70 mm can be performed.
  • the scanner further comprises two movable mirrors for deflecting or positioning the laser beam 20 or 20 'in two directions (x and y axes).
  • Direction in the scan volume, which are perpendicular to each other and each perpendicular to the z-direction (Cartesian coordinate system).
  • the scan volume is an elliptical scan volume measuring approximately 320 mm x 190 mm x 70 mm.
  • the focal length of the focusing optics of the scanner is 450 mm, and the
  • Imaging ratio is 3: 1.
  • the focus diameter is 600pm.
  • the focus of the laser beam 20 at z 0 mm with respect to the surface 26 of the metal component 12 and the upper flange of the metal component 12.
  • the speed with which the laser beam 20 is guided over the surface 26 is 10 m / min, resulting in a pure welding time for a stitch seam of 180 ms. At this speed, the lower metal member 14 does not become complete
  • Direction of the laser beam 20 extending extension (thickness) of 0.2 to 1 mm.
  • a change in geometry ie a change in the topography of the surface 32, which is also referred to as suppression, which is a permanent, plastic deformation due to the thermal expansion, forms on the surface 32 in the region of the weld 22 ,
  • a profile height of this suppression is approximately 20 to ⁇ , wherein a profile angle of the suppression is approximately 0.5 to 3 °.
  • the profile height and the profile angle are thereby a good measure of the extent of the residual material thickness range extending in the direction of the laser beam 20, that is to say for the unmelted residual material thickness and thus also a measure of the penetration depth s of the weld seam 22 or indirectly for the strength of the weld seam 22 and thus for the connection of the metal components 12 and 14.
  • Laser beam 20 It will now be a defocused crossing of the type described Formed weld 22 in the opposite direction of the previous direction of movement to form the weld 22 performed whereby the surface 28 or a surface area to about to a depth of 0.1 to 1 mm of the previously welded and mostly already solidified weld 22 again melted and is smoothed or leveled.
  • the defocused crossing takes place with a power of the laser of 6 kW and a
  • the laser beam 20 After the defocused crossing, the laser beam 20 'is directed to the beginning of the next stitch seam in a few milliseconds, whereupon the next stitch seam is formed.
  • welds, ie focussed passes, and defocused passes for smoothing the corresponding surfaces 28 alternate with each other.
  • the required movement of the mirror of the scanner and the motorized collimation is determined by a control computer unit, under
  • the robot speed for the coarse alignment of the laser beam 20 or 20 ' is approximately 12.5 m / min and is thus significantly higher than that mentioned
  • Speed of the laser beam 20 to form the weld 22 of 10 m / min which is made possible by the rapid jumping of the laser beam 20 from one stitch seam to the next stitch seam due to the rapid movement of the mirror of the scanner.
  • FIG. 2 shows a longitudinal section through the weld 22 before the surface 28 smoothes. An uneven surface 28 having a plurality of sharp edges can be seen.
  • FIG. 2 shows, according to illustration B, a longitudinal section through the weld seam 22 after smoothing due to the further introduction of energy by means of the defocused laser beam 20 '.
  • the surface 28 is much smoother and no longer has any sharp edges.
  • FIG. 3 shows a diagram 34, on the abscissa 36 of which a welding speed is plotted.
  • the welding speed refers to the speed at which the laser beam 20 for forming the weld 22 relative to the
  • Metal components 12 and 14 is moved. On the ordinate 38 of the diagram 34, the strength of the connection of the metal components 12 and 14 is shown.
  • seam crawler 40 the opposite surface of the weld seam 22 may be referred to as seam crawler 40 become.
  • a region C in the diagram 34 represents an optimal one
  • the second metal component 14 is avoided up to the surface 32.
  • This non-through-welding is also referred to as welding.
  • a profile height is designated as h, and a profile angle with the angle a.
  • Penetration depth s of the weld 22 is sufficient without penetrating the second metal component 14, on the one hand to represent a very good surface finish of the lower surface 32 and at the same time a particularly strong connection between the metal components 12 and 14.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

L'invention concerne un procédé (10) pour souder deux composants métalliques (12, 14) à base d'alliages d'aluminium comprenant les étapes suivantes : - fusion des composants métalliques (12, 14) à assembler dans une zone de soudure (18) par un apport d'énergie au moyen d'un faisceau laser (20) en formant un cordon de soudure (22), - lissage de la surface (28) du cordon de soudure (22) par un nouvel apport d'énergie avec fusion partielle du cordon de soudure (22) dans la zone de la surface (28), le nouvel apport d'énergie étant effectué au moyen d'un faisceau laser (20') défocalisé, dont le foyer est positionné dans le sens du faisceau (24) en amont ou en aval de la surface (28) du cordon de soudure (22), le faisceau laser (20') défocalisé et la perpendiculaire à la surface d'une surface (26, 28) des deux composants métalliques (12, 14), sur lesquels le faisceau laser arrive, formant un angle supérieur ou égal à 5 degrés. L'invention concerne également un agencement de liaison soudé avec ce procédé.
PCT/EP2010/007348 2009-12-11 2010-12-03 Procédé pour souder deux composants métalliques et agencement de liaison avec deux composants métalliques WO2011069621A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/515,015 US8890022B2 (en) 2009-12-11 2010-12-03 Method for welding two metal parts and connecting arrangement with two metal components
JP2012542387A JP5551792B2 (ja) 2009-12-11 2010-12-03 2つの金属構成部材の溶接方法、および2つの金属構成部材を有する接合構成体
EP10785359.0A EP2509742B1 (fr) 2009-12-11 2010-12-03 Procédé pour souder deux composants métalliques

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009057997.4 2009-12-11
DE102009057997A DE102009057997A1 (de) 2009-12-11 2009-12-11 Verfahren zum Verschweißen von zwei Metallbauteilen

Publications (1)

Publication Number Publication Date
WO2011069621A1 true WO2011069621A1 (fr) 2011-06-16

Family

ID=43735953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/007348 WO2011069621A1 (fr) 2009-12-11 2010-12-03 Procédé pour souder deux composants métalliques et agencement de liaison avec deux composants métalliques

Country Status (5)

Country Link
US (1) US8890022B2 (fr)
EP (1) EP2509742B1 (fr)
JP (1) JP5551792B2 (fr)
DE (1) DE102009057997A1 (fr)
WO (1) WO2011069621A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014203025A1 (de) * 2014-02-19 2015-08-20 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Laserstrahlschweißen und Schweißkopf
CN107851738A (zh) * 2015-05-05 2018-03-27 江森自控科技公司 用于电解液填充孔的密封片

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170989A (ja) * 2011-02-22 2012-09-10 Suzuki Motor Corp レーザ重ね溶接方法
DE102012015766A1 (de) 2012-08-09 2013-03-14 Daimler Ag Verfahren zum Verschweißen zweier Bauteile miteinander
JP6774164B2 (ja) 2012-08-24 2020-10-21 中外製薬株式会社 マウスFcγRII特異的Fc抗体
DE102013001210A1 (de) 2013-01-24 2014-07-24 Daimler Ag Verfahren zum Verschweißen von zwei Metallbauteilen
JP6092011B2 (ja) * 2013-06-14 2017-03-08 日立オートモティブシステムズ株式会社 溶接部材、燃料噴射弁、および、レーザ溶接方法
DE102013010560B4 (de) 2013-06-25 2016-04-21 Wieland-Werke Ag Verfahren zum Fügen von Werkstücken aus zinkhaltigen Kupferlegierungen und Fügeteil
DE102014201715A1 (de) * 2014-01-31 2015-08-06 Trumpf Laser Gmbh Verfahren und Vorrichtung zum Punktschweißen von Werkstücken mittels Laserpulsen mit grüner Wellenlänge
JP6032236B2 (ja) * 2014-04-08 2016-11-24 トヨタ自動車株式会社 レーザ溶接方法および溶接構造
US20160016262A1 (en) * 2014-07-17 2016-01-21 Midway Products Group, Inc. Laser welding process
EP3013116A1 (fr) * 2014-10-21 2016-04-27 Bleckmann GmbH & Co. KG Composant de système de chauffage et son procédé de production
EP3012057B1 (fr) 2014-10-24 2019-04-24 General Electric Technology GmbH Procédé de soudage de joints profonds
US10618135B2 (en) * 2015-03-20 2020-04-14 Dm3D Technology, Llc Method of controlling distortion during material additive applications
CN107921585B (zh) 2015-04-30 2019-10-22 通用汽车环球科技运作有限责任公司 铝激光焊接中的热裂纹减少
JP6432467B2 (ja) 2015-08-26 2018-12-05 トヨタ自動車株式会社 レーザ溶接方法
DE102015224765A1 (de) * 2015-12-10 2017-06-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Ausbildung einer Schweißnaht, Schweißnaht und Verfahren zur Sichtkontrolle einer Schweißnaht
JP6719348B2 (ja) * 2016-09-14 2020-07-08 株式会社神戸製鋼所 アルミニウム接合体の製造方法
DE102017201872A1 (de) 2017-02-07 2018-08-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum thermischen Fügen eines Bauteilverbundes und Bauteilverbund
US20200101563A1 (en) * 2017-04-03 2020-04-02 GM Global Technology Operations LLC Smoothing method for enhanced weld surface quality
DE102017209599A1 (de) * 2017-06-07 2018-12-13 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Bauteilverbundes und Bauteilverbund
CN110914014B (zh) * 2017-06-13 2021-07-20 通用汽车环球科技运作有限责任公司 用于使用焊接路径的组合激光焊接金属工件的方法
US20210025417A1 (en) * 2019-07-24 2021-01-28 Shiloh Industries, Inc. Sheet metal assembly with conditioned weld joint
JP7392387B2 (ja) * 2019-10-23 2023-12-06 株式会社デンソー 接合構造体
CN113967791A (zh) * 2020-07-24 2022-01-25 中国科学院上海光学精密机械研究所 一种铝制密封件的激光焊接方法
US20220388096A1 (en) * 2021-06-03 2022-12-08 GM Global Technology Operations LLC Healing energy beam for smoothening surface irregularities in weld joints
DE102021206488A1 (de) * 2021-06-23 2022-12-29 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum mehrfachen Abfahren einer Schweißkontur mit mehreren Laserspots
DE102021206490A1 (de) * 2021-06-23 2022-12-29 Trumpf Laser- Und Systemtechnik Gmbh Verfahren und Vorrichtung zum Erzeugen einer Schweißkontur mit mehreren Laserspots über eine Scanneroptik

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879416A (en) * 1995-03-13 1999-03-09 Nippondenso Co., Ltd. Method of manufacturing battery having polygonal case
US20040099644A1 (en) * 2002-10-18 2004-05-27 Allen John R. System and method for post weld conditioning
US20050028897A1 (en) 2001-10-09 2005-02-10 Wilfried Kurz Process for avoiding cracking in welding
EP1747836A1 (fr) 2005-07-26 2007-01-31 Corus Technology BV Méthode de soudage au laser

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914268A (en) * 1989-06-01 1990-04-03 Cummins Engine Company, Inc. Beam welding process
JPH0919778A (ja) 1995-07-02 1997-01-21 Nippon Light Metal Co Ltd 溶融金属が裏面に露出しないアルミニウム合金のレーザ溶接方法
JPH10328860A (ja) * 1997-06-06 1998-12-15 Toshiba Corp レーザ溶接方法およびレーザ溶接装置
DE19924905C2 (de) * 1999-05-31 2003-02-27 Daimler Chrysler Ag Verfahren zur Erzeugung einer Schweißnaht-Oberfläche beim Laserstrahlschweißen, die für die korrosionssichere Aufbringung eines Oberflächenschutzsystems geeignet ist
JP3762676B2 (ja) * 2001-09-17 2006-04-05 本田技研工業株式会社 ワークの溶接方法
DE502004001425D1 (de) 2004-07-08 2006-10-19 Trumpf Laser Gmbh & Co Kg Laserschweissverfahren und -vorrichtung
JP4669427B2 (ja) 2006-03-29 2011-04-13 東急車輛製造株式会社 レーザ溶接方法
JP5191648B2 (ja) * 2006-11-07 2013-05-08 東京特殊電線株式会社 レーザ溶接装置及びレーザ溶接方法
US8076607B2 (en) * 2007-06-27 2011-12-13 Ross Technology Corporation Method and apparatus for depositing raised features at select locations on a substrate to produce a slip-resistant surface
DE102008022142B3 (de) * 2008-05-05 2009-11-26 Häberle Laser- und Feinwerktechnik GmbH & Co. KG Verfahren zum Verschweißen von Aluminiumteilen
DE102008062866B4 (de) * 2008-11-13 2012-03-08 Daimler Ag Verfahren zur Qualitätsüberwachung einer Verbindungsnaht sowie Vorrichtung zum Laserschweißen oder Laserlöten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879416A (en) * 1995-03-13 1999-03-09 Nippondenso Co., Ltd. Method of manufacturing battery having polygonal case
US20050028897A1 (en) 2001-10-09 2005-02-10 Wilfried Kurz Process for avoiding cracking in welding
US20040099644A1 (en) * 2002-10-18 2004-05-27 Allen John R. System and method for post weld conditioning
EP1747836A1 (fr) 2005-07-26 2007-01-31 Corus Technology BV Méthode de soudage au laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014203025A1 (de) * 2014-02-19 2015-08-20 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Laserstrahlschweißen und Schweißkopf
CN107851738A (zh) * 2015-05-05 2018-03-27 江森自控科技公司 用于电解液填充孔的密封片

Also Published As

Publication number Publication date
US8890022B2 (en) 2014-11-18
EP2509742B1 (fr) 2013-05-01
DE102009057997A1 (de) 2011-06-22
EP2509742A1 (fr) 2012-10-17
US20120298638A1 (en) 2012-11-29
JP2013513486A (ja) 2013-04-22
JP5551792B2 (ja) 2014-07-16

Similar Documents

Publication Publication Date Title
EP2509742B1 (fr) Procédé pour souder deux composants métalliques
EP2160266B1 (fr) Procédé d'assemblage par soudure de pièces métalliques à parois épaisses
DE69628917T2 (de) Verfahren zum überlappschweissen mittels eines höheren energiedichte aufweisenden strahlungsbündels
EP0782489B1 (fr) Procede de soudage de pieces
DE102011089146B4 (de) Laser-Überlappschweißverfahren
DE102018120523A1 (de) Laserstrahllöten von metallischen Werkstücken mit einer Relativbewegung zwischen Laserstrahl und Fülldraht
DE112017007470T5 (de) Verfahren zum laserschweissen von werkstücken aus metall unter verwendung einer kombination von schweissstrecken
DE112016006963T5 (de) LASERPUNKTSCHWEIßEN VON BESCHICHTETEN STÄHLEN MIT MEHREREN LASERSTRAHLEN
DE112016005576T5 (de) Verfahren zum Laserpunktschweißen von beschichteten Stählen
DE112017007174T5 (de) GLÄTTUNGSVERFAHREN ZUR VERBESSERUNG DER OBERFLÄCHENQUALITÄT EINER SCHWEIßNAHT
WO1993023196A1 (fr) Procede et dispositif de soudage avec plusieurs faisceaux de soudage de haute energie
DE112016006580T5 (de) INTEGRIERTES VORBOHREN UND LASERPUNKTSCHWEIßEN VON BESCHICHTETEN STÄHLEN
EP3030372B1 (fr) Procédé de fabrication d'une liaison soudée
DE102016220067B4 (de) Verfahren zum Tiefschweißen eines Werkstücks, wobei eine verkippte Dampfkapillare mittels zweier Laserstrahlen erzeugt wird
DE19608074C2 (de) Verfahren zum Schweißen von relativbewegten Werkstücken
DE102016222402A1 (de) Verfahren zum Verschweißen von Bauteilen mittels Laserstrahlung und Verwendung des Verfahrens
EP1350590B1 (fr) Procédé et dispositif de soudage laser 'key-hole' avec l'aide d'un faisceau chauffant et d'un matériau d'apport
EP2196279B1 (fr) Procédé d'assemblage par soudage en clin
DE10131883B4 (de) Verfahren zum Verschweißen von Metallbauteilen
DE202021101463U1 (de) Lasergeschweißte Schweißkonstruktion
DE102014009737A1 (de) Verfahren zum Herstellen eines Halbzeuges und einer Verbindung sowie ein Halbzeug nach dem Herstellungsverfahren
DE102013010560B4 (de) Verfahren zum Fügen von Werkstücken aus zinkhaltigen Kupferlegierungen und Fügeteil
DE102017201872A1 (de) Verfahren zum thermischen Fügen eines Bauteilverbundes und Bauteilverbund
WO2021175555A1 (fr) Procédé de soudage laser de deux pièces revêtues
DE102015115183A1 (de) Verfahren und eine Vorrichtung zum Herstellen einer Fügeverbindung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10785359

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010785359

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012542387

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13515015

Country of ref document: US