WO2011069259A1 - Tissu industriel composé de film sélectivement fendu et gaufré - Google Patents
Tissu industriel composé de film sélectivement fendu et gaufré Download PDFInfo
- Publication number
- WO2011069259A1 WO2011069259A1 PCT/CA2010/001956 CA2010001956W WO2011069259A1 WO 2011069259 A1 WO2011069259 A1 WO 2011069259A1 CA 2010001956 W CA2010001956 W CA 2010001956W WO 2011069259 A1 WO2011069259 A1 WO 2011069259A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- protrusions
- fabric
- film
- strips
- Prior art date
Links
- 239000004744 fabric Substances 0.000 title claims abstract description 192
- 238000000034 method Methods 0.000 claims abstract description 75
- 238000003825 pressing Methods 0.000 claims abstract description 11
- 238000005520 cutting process Methods 0.000 claims abstract description 9
- 230000002787 reinforcement Effects 0.000 claims description 31
- 238000004826 seaming Methods 0.000 claims description 27
- 230000003746 surface roughness Effects 0.000 claims description 7
- 239000004745 nonwoven fabric Substances 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000004049 embossing Methods 0.000 abstract description 18
- 238000010276 construction Methods 0.000 abstract description 4
- 238000004381 surface treatment Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 180
- 239000000463 material Substances 0.000 description 25
- 230000003014 reinforcing effect Effects 0.000 description 10
- 238000003466 welding Methods 0.000 description 9
- 238000005304 joining Methods 0.000 description 7
- 239000004753 textile Substances 0.000 description 7
- 229920001721 polyimide Polymers 0.000 description 5
- 239000012779 reinforcing material Substances 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 4
- 235000004879 dioscorea Nutrition 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- -1 polybutylene terephthalate Polymers 0.000 description 4
- 229920006254 polymer film Polymers 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000002759 woven fabric Substances 0.000 description 4
- 229920002292 Nylon 6 Polymers 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 210000001503 joint Anatomy 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- SQEHCNOBYLQFTG-UHFFFAOYSA-M lithium;thiophene-2-carboxylate Chemical compound [Li+].[O-]C(=O)C1=CC=CS1 SQEHCNOBYLQFTG-UHFFFAOYSA-M 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
- B29C66/438—Joining sheets for making hollow-walled, channelled structures or multi-tubular articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/50—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
- B29C65/5007—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like characterised by the structure of said adhesive tape, threads or the like
- B29C65/5035—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like characterised by the structure of said adhesive tape, threads or the like being in thread form, i.e. in the form of a single filament, e.g. in the form of a single coated filament
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/50—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
- B29C65/5042—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like covering both elements to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/50—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
- B29C65/5057—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/56—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/725—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being hollow-walled or honeycombs
- B29C66/7252—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being hollow-walled or honeycombs hollow-walled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/729—Textile or other fibrous material made from plastics
- B29C66/7294—Non woven mats, e.g. felt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/266—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/04—Punching, slitting or perforating
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H13/00—Other non-woven fabrics
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F1/00—Wet end of machines for making continuous webs of paper
- D21F1/0027—Screen-cloths
- D21F1/0063—Perforated sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0022—Combinations of extrusion moulding with other shaping operations combined with cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
- B29C48/21—Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/731—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
- B29C66/7316—Surface properties
- B29C66/73161—Roughness or rugosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/14—Filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/709—Articles shaped in a closed loop, e.g. conveyor belts
- B29L2031/7092—Conveyor belts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/737—Articles provided with holes, e.g. grids, sieves
- B29L2031/7374—Slotted
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/04—Punching, slitting or perforating
- B32B2038/045—Slitting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/06—Embossing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/18—Handling of layers or the laminate
- B32B38/1825—Handling of layers or the laminate characterised by the control or constructional features of devices for tensioning, stretching or registration
- B32B38/1833—Positioning, e.g. registration or centering
- B32B38/1841—Positioning, e.g. registration or centering during laying up
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1002—Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
- Y10T156/1007—Running or continuous length work
- Y10T156/1016—Transverse corrugating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24273—Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
- Y10T428/24281—Struck out portion type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24273—Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
- Y10T428/24281—Struck out portion type
- Y10T428/24289—Embedded or interlocked
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24273—Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
- Y10T428/24298—Noncircular aperture [e.g., slit, diamond, rectangular, etc.]
- Y10T428/24314—Slit or elongated
Definitions
- This invention relates to industrial fabrics for filtration, conveyance and similar purposes, and in particular to such fabrics constructed of one or more layers of a polymer film, to which contouring is provided by a combination of an embossing or similar process to raise portions of the film above its general plane, and slits to create apertures in the raised portions.
- the fabrics of the invention are useful in a variety of industrial applications, including for filtration and conveyance in papermaking machines, and have particular application for use as dryer fabrics for conveying a paper web through the dryer section of a papermaking machine.
- Industrial fabrics used in filtration, conveyance and similar processes are typically manufactured by means of a weaving process whereby natural or synthetic yarns are interwoven to provide either the entire fabric, or only a base portion which may subsequently be either encapsulated (e.g. with polyurethane or other similar rugged material) or needled to attach a nonwoven batt material.
- Such fabrics have been satisfactory for these uses, but the cost of their production is high, particularly when the fabrics must be finely and precisely woven using relatively small yams.
- these fabrics must be rendered endless in some manner, either by installing a seaming element at their opposed longitudinal ends, or by re-weaving the longitudinal yams back into the fabric structure to form seaming loops or similar joining means, for secure connection by a pintle, coil or similar securing means. It is also known to weave such fabrics in an endless manner, so that there is no seam, or to interweave the yams from one longitudinal end into the yams of the opposed end to form a woven seam. These fabrics are expensive to produce and require a high capital investment in wide industrial looms and similar related equipment for subsequent processing, as well as a skilled workforce to operate the equipment and produce an acceptable finished product.
- the film can be comprised of any thermoplastic however PET is preferred; two or more layers of the same of differing material can be laminated together and reinforcing fibers can be included within the structure.
- GB 2,202,873 and GB 2,235,705 both to Lefkowtiz disclose paper machine fabrics, in particular press felts, having knuckle-free surfaces which include parallel machine-direction yarns laid in a single plane and subsequently embedded in a sheet of polymeric material such as polyurethane or fluorinated polymers; the sheet, yarns and embedding matrix are then perforated to allow drainage and a batt material may subsequently be attached to one or both surfaces of the resulting textile.
- US 6,700,036 discloses an absorbent article including an "acquisition distribution layer" formed from a three dimensional apertured film.
- US 7,722,588 discloses a multlayered apertured film for use in thermal sealing processes for formation of an absorbent article.
- US 7,589,249 discloses an apertured web comprising multiple discrete zones of land arrangements and at least two apertures.
- JP 2002/113775 discloses a process for producing an uneven plastic sheet including convex lens formations.
- an industrial fabric having desired properties of a woven fabric can be formed from a polymeric film, which is selectively provided with contouring similar to that resulting from various weave designs for woven fabrics, by a combination of an embossing or similar process, generally through heat and pressure, to raise portions or deformations of the film above its general plane, and slits to create apertures in the deformations, for the passage of fluid, e.g. liquid drainage or air passage through the fabric.
- fluid e.g. liquid drainage or air passage through the fabric.
- a two layer fabric can be provided in which a first layer of the embossed film is mated with a second layer so that the deformations formed by the embossing process either face or oppose one another.
- the two layers are secured together by any suitable means, for example by welding.
- each layer of the fabric is itself constructed from a plurality of strips, preferably the joining regions of one layer are offset from those of the other, so that one strip of the film in the first layer overlays a longitudinal butt joint of two similar strips in the second layer.
- the slit areas between the deformations allow for the passage of fluid, while the deformations maintain an interior space or void between the two layers.
- Additional layers can be added, for example a first and second layer can be constructed as described above, and then a third layer secured to the second layer to provide a specific surface profile to the upper surface of the finished fabric.
- two layers can be joined back to back, so that the deformations of each layer face outwardly.
- each strip of the film is precisely slit according to a predetermined pattern in a discontinuous slitting process, and the film material between alternate adjacent slits is then deformed in an embossing process to push the film material out of plane, creating raised areas beneath which openings into the plane are formed.
- embossing process is performed using heat and pressure so that the deformations are permanent.
- the planar film can be embossed with a preliminary profile, or with the eventual desired profile, and then slits are cut at the required locations, followed by further embossing to complete the desired profile if only a preliminary profile was provided at the first stage.
- the fabric is then assembled to the desired length and width from a plurality of such processed strips.
- two or more strips are laid side by side so that their longitudinal edges abut.
- a third strip of film which has been slit and embossed according to a pattern so as to be matable with embossments in the strips forming the first layer, is laid over the strips of the first layer, with its embossments facing down towards those on the first layer.
- the second layer is preferably offset from the first layer, by each strip of the second layer being laid over the abutted longitudinal edges so as to overlap a portion of each of two adjacent strips of the first layer.
- the third strip forming the second layer is then bonded to the first two strips, preferably using a laser or similar heat source.
- Additional strips are added in the same manner so as to build up the desired length and width of the finished fabric.
- each of the layers can be formed with the strips oriented in the intended machine direction (MD) of the fabric, or each in the intended cross-machine direction (CD); or one layer can be oriented in the MD, and another in the CD. Where there are more than two layers, any combination of directions can be used, to provide the desired configuration and end properties.
- MD intended machine direction
- CD intended cross-machine direction
- At least one additional nonwoven porous structure e.g. film, batt, or a layer of nonwoven material
- suitable means such as bonding or adhesion, to either or both of the outer surfaces of the single or multiple layer film structures of the invention.
- the opposing ends of the fabric can be joined by any suitable means to form a continuous belt, for its intended end use.
- a seaming element such as disclosed in WO
- the ends of the fabric body of the invention can be suitably provided with slits or openings as in the manner described in relation to embodiments disclosed in CA 2,688,168, or may be deformed and cut in the manner described in relation to suitable embodiments disclosed in WO 2010/121360, so that the seaming portion at each end is integrally constructed with the fabric body, and the two prepared fabric body ends can be brought together and joined.
- the ends of the fabric body can be bonded together by known means, such as welding.
- the film materials used in the fabrics of the invention are any thermoplastic polymers which are suitable for use in the manufacture of industrial textiles, and would have sufficient tensile strength, stability, chemical and hydrolysis resistance to suit the intended end use of the finished fabric.
- the film materials would be polymeric films such as are commonly available, for example a bi-axially oriented thermoplastic polymeric film or sheet of which the polymer has been rendered hydrolysis resistant, or is resistant to heat and hydrolysis by its
- Appropriate polymeric materials for the film include, but are not limited to, hydrolysis stabilized polyester terephthalate (PET), polybutylene terephthalate (PBT), polyethylene, polyethylene naphthalate (PEN), polypropylene (PP), polyphenylene sulphide (PPS), polyether ether ketone (PEEK) and other polymers such as would be appropriate for use in forming monofilament intended for use in papermachine clothing, such as dryer fabrics and the like.
- Various nylon polymers such as polyamide 6, polyamide 6/6, polyamide 6/10 and the like, as well as their copolymers and blends thereof, may also be appropriate materials for use in the film materials for the fabrics of the present invention.
- Non-thermoplastic materials such as polyimides.
- polyimides There are two general types of polyimides. One type, so-called linear polyimides, are made by combining imides into long chains. Aromatic heterocyclic polyimides are the other usual kind, where R' and R" are two carbon atoms of an aromatic ring. Examples of polyimide films include ApicalTM, KaptonTM, UPILEXTM, VTECTM PI, NortonTM TH and KaptrexTM. These materials are not suitable for laser welding, and layers of film or sheet must therefore be joined by means of an adhesive or other suitable bonding methods.
- films suitable for the invention can include films in which additional yarns have been embedded, to enhance MD or CD strength and stability or abrasion resistance, for example as in US 7,815,773 or US 6,531,418.
- films in which additional yarns have been embedded can most readily be done at the time of film extrusion, especially with multilayer films.
- One yarn type that may be especially useful is carbon fiber nanowires or nanofibers; however other small diameter yarns of PET, PPS, PEEK, PEN, PBT, nylon or the like may also be used.
- Metal wires may also be suitable with some films.
- the fibers/wires could be embedded into the film extrusion, or between layers of a multilayer film, or they could be laminated to one or both surfaces of the film.
- reinforcing materials such as yarns can be inserted between selected ones of the protrusions, in at least one of the machine direction, the cross-machine direction, or any suitable direction such as a diagonal. Further, as discussed below, such reinforcement materials can at the same time comprise, or contribute to, the joining of lateral edges of adjacent strips of the fabric.
- the polymeric film has a gauge of from about 1,000 to 1,400, corresponding to a thickness of from about 0.25 to 0.35mm.
- film will be used in reference to the film of polymeric material used in the invention. Film whose thickness is greater than about 0.35mm is referred to as "sheet" in the industry.
- the invention therefore seeks to provide a nonwoven industrial fabric, comprising at least one layer of a polymeric film having
- each protrusion can extend from one of the upper surface and the lower surface of the layer, and generally preferably each protrusion extends from the same surface of the layer.
- selected ones of the land areas between pairs of the protrusions comprise planar areas.
- the fabric comprises a plurality of strips secured in an adjacent relationship at joining locations at respective lateral edges.
- the nonwoven industrial fabric comprises a first layer and a second layer of polymeric film, and optionally can comprise a third or more layers.
- the lower surface of the first layer comprises a first set of protrusions
- the upper surface of the second layer comprises a second set of protrusions
- at least some of the protrusions of the second set are secured to at least some of the protrusions of the first set.
- the lower surface of the first layer comprises a first set of protrusions
- the upper surface of the second layer comprises a second set of protrusions; (c) selected ones of the land areas between pairs of the protrusions of each set comprise planar areas;
- each protrusion of the first set is received between an adjacent pair of protrusions of the second set, and each protrusion of the second set is received between an adjacent pair of protrusions of the first set;
- each protrusion extends from the same surface of the layer, such that each layer has a first surface profiled by the protrusions and an opposing substantially planar second surface, and the second surface of the first layer is secured to the second surface of the second layer.
- each layer can comprise a plurality of strips secured in an adjacent relationship at joining locations at respective lateral edges.
- the strips of each layer are secured in an abutting relationship, and the joining locations of the first layer are offset from the joining locations of the second layer.
- adjacent strips of each layer are secured together at weld joints.
- the fabric further comprises a set of reinforcement strips, each reinforcement strip being secured to selected planar areas between selected ones of the protrusions on at least two adjacent strips of the fabric, or in the case of a multi-layer fabric, on at least two adjacent strips of the respective fabric layer.
- the fabric further comprises a set of reinforcement strips, each reinforcement strip passing through selected ones of the protrusions on at least two adjacent strips of the respective fabric layer.
- the reinforcement strips comprise yarns.
- the apertures can comprise slits having a configuration in a plane of the upper surface of the film selected from arcuate and linear and combinations thereof. Where the slits have a linear configuration, this can be selected from a straight line and a line comprising a plurality of linear segments.
- the protrusions can have an outer surface in a plane substantially parallel to a plane of the upper surface of the film, the outer surface having a configuration selected from circular, elliptical and polygonal.
- at least part of at least the upper surface of the film can comprise a surface roughness, preferably comprising between 5 ⁇ and lOOum.
- the fabric further comprises a fabric body having a first seamable end and a second seamable end, a first seaming element provided at the first seamable end, a second seaming element provided at the second seamable end, the first and second seaming elements being constructed and arranged to be secured together to form a fabric seam.
- a fabric body having a first seamable end and a second seamable end, a first seaming element provided at the first seamable end, a second seaming element provided at the second seamable end, the first and second seaming elements being constructed and arranged to be secured together to form a fabric seam.
- at least one of the first seaming element and the second seaming element is integrally constructed with the fabric body at the respective seamable end.
- the invention further seeks to provide a method of constructing an industrial nonwoven fabric, the method comprising the steps of
- the invention further seeks to provide a method of constructing an industrial nonwoven fabric, the method comprising the steps of
- step (d) selectively treating the film to set the contoured profile.
- step (a) can comprise providing a polymeric film having a surface roughness treatment to at least part of the upper surface, preferably comprising between 5um and ⁇ .
- the step of applying pressure is performed as an intermediate step to provide intermediate configurations of the protruding embossed areas, and the method further comprises after the cutting step the step of selectively applying pressure to provide final configurations to selected ones of the protruding embossed areas.
- the contoured profile comprises protrusions on only one surface of the polymeric film layer.
- the formation of the contoured profile comprises forming a plurality of planar land areas.
- the methods of the invention further comprise constructing the fabric as a plurality of strips secured in an adjacent relationship at joining locations at respective lateral edges.
- the methods of the invention further comprise providing a first layer and a second layer of polymeric film, and optionally at least a third layer.
- the contoured profile comprises a first set of protrusions on the lower surface of the first layer, a second set of protrusions in the upper surface of the second layer, and the method further comprises the step of securing at least some of the protrusions of the second set to at least some of the protrusions of the first set.
- the contoured profile comprises a first set of protrusions on the lower surface of the first layer, a second set of protrusions in the upper surface of the second layer, and a plurality of planar land areas in each layer, and the method further comprises the steps of
- the contoured profile is provided to a respective first surface, an opposing second surface is substantially planar, and the method further comprises securing the second surface of the first layer to the second surface of the second layer.
- step (a) can comprise providing each layer as a plurality of strips, and the method further comprises the step of securing the strips in an adjacent relationship at joining locations at respective lateral edges, preferably by securing the strips of each layer in an abutting relationship, and offsetting the joining locations of the first layer from the joining locations of the second layer.
- step (d.l) comprises securing the adjacent strips of each layer together at weld joints.
- the methods of the invention further comprise providing a set of reinforcement strips, and securing each reinforcement strip to selected planar areas between selected ones of the protrusions on at least two adjacent strips of the fabric, or in the case of a multi-layer fabric, on at least two adjacent strips of the respective fabric layer.
- the methods of the invention further comprise providing a set of reinforcement strips, and passing each reinforcement strip through selected ones of the protrusions on at least two adjacent strips of the respective fabric layer.
- the reinforcement strips comprise yarns.
- the selective cutting of the film can provides slits having a configuration in a plane of the upper surface of the film selected from arcuate and linear and combinations thereof.
- the slits have a linear configuration, this can be selected from a straight line and a line comprising a plurality of linear segments.
- the pressing provides protrusions having an outer surface in a plane substantially parallel to a plane of the upper surface of the film, the outer surface having a configuration selected from circular, elliptical and polygonal.
- the industrial fabric comprises a fabric body having a first seamable end and a second seamable end
- the method further comprises providing a first seaming element at the first seamable end, and a second seaming element at the second seamable end, the first and second seaming elements being securable together to form a fabric seam.
- Figure 1 is a perspective view of one surface of a portion of a fabric in an embodiment of the invention
- Figure 2 is a top view of the fabric shown in Figure 1 ;
- Figure 3 is a sectional side view of the fabric shown in Figure 2 taken along the line
- Figure 4 is a sectional side view of the fabric shown in Figure 2 taken along the line
- Figure 5 is an enlarged view of the circled area 5 in Figure 4.
- Figure 6 is an enlarged view of the circled area 6 in Figure 3;
- Figure 7 is an enlarged view of a portion of the fabric of Figure 1;
- Figure 8 is a perspective view of two layers of the fabric of Figure 1 in an assembled position in a second embodiment of the invention
- Figure 9 is an enlarged view of a portion of the fabric shown in Figure 8.
- Figure 10 is a sectional side view of the fabric shown in Figure 8.
- Figures 11a and 1 lb are sectional side views of two layers of the fabric of Figure 1 in two variants of an assembled position in a third embodiment of the invention
- Figure 12 shows a pattern of a fabric of the invention in a fourth embodiment
- Figure 13 shows a pattern of a fabric of the invention in a fifth embodiment
- Figure 14 shows a pattern of a fabric of the invention in a sixth embodiment
- Figure 15 is a perspective view of three adjacent strips of the fabric assembled together with reinforcing strips in a seventh embodiment of the invention.
- Figure 16 is a sectional side view of two layers of a fabric of the invention with reinforcing strips in an eighth embodiment of the invention.
- Figure 17 is a perspective view of two adjacent strips of the fabric assembled together with reinforcing strips in a ninth embodiment of the invention.
- fabric 10 comprises a polymeric film sheet 12, having an upper surface 14 and a lower surface 16 and opposing side edges 20.
- the fabric 10 can be constructed from one or more elongated strips, or from a plurality of shorter strips, and is shown in Figures 1 and 2 as a shorter strip, having opposing ends 18. Where fabric 10 is to be constructed of a plurality of strips, depending on the intended manner of interconnection of the strips, some or all can be provided with planar edge areas (not shown).
- a plurality of apertures 40 is provided to the sheet 12, in this embodiment defined by a plurality of slits 30 (see Figure 7), each of which passes through from the upper surface 14 to the lower surface 16 of the sheet 12. Between selected pairs of adjacent slits 30, the sheet material is pressed to form protrusions 50, in this embodiment in the form of rectangular deformations, each having an upper protrusion surface 51, and remaining attached at each end to the sheet 12 by protrusion sides 52.
- a plurality of land areas 60 are provided in locations between slits where protrusions are not formed in the sheet material.
- the land areas 60 between the protrusions 50 retain a substantially planar configuration.
- Figure 5 is an enlarged view from area 5 in Figure 4, and shows the upper protrusion surfaces 51 of the protrusions 50, and angular protrusion sides 52 connected to the sheet 12, defining apertures 40 within each protrusion 50, and defining land areas 60 between each successive protrusion 50 in the length direction of the sheet 12, i.e. between opposing ends 18.
- Figure 6 is an enlarged view from area 6 in Figure 3, and shows the upper protrusion surfaces 51, defining apertures 40 within each protrusion 50, and defining land areas 60 between each successive protrusion 50 in the width direction of the sheet 12, i.e. between opposing edges 20.
- Figure 7 provides an enlarged detailed perspective view of a portion of the fabric 10 of Figure 1, in which the protrusions 50 can be seen as having substantially planar protrusion upper surfaces 51, and angled sides 52, to define the apertures 40.
- the protrusion upper surfaces 51 of this embodiment are substantially rectangular, and the slits 30 are substantially linear, defining a regular pattern of rows of protrusions 50, in which the protrusions of one row are offset from the protrusions of adjacent rows in the length direction between opposing ends 18.
- the protrusions 50 are provided in a symmetrical pattern, in which each protrusion has the same configuration, and appears only in the upper surface 14 of the sheet 12.
- the slits 30 can be of a variety of shapes, for example a single line, or a complex shape comprising joined linear segments, or symmetrical or asymmetrical curves, resulting in a large variety of possible shapes for the protrusions 50, which need not be identical to each other in a single sheet 12.
- some of the protrusions can be provided so as to extend from the upper surface 14 and others from the lower surface 16, or a complex shape can be provided so that at least some of the protrusions 50 will individually extend from each of upper and lower surfaces 14, 16.
- a further material for example a layer of porous material, can be applied to one or both surfaces, for example by being bonded to the tops of the protrusions 50; alternatively multiple layers could be built up on the surfaces.
- FIG. 8 to 10 a second embodiment of the invention is shown, which comprises a two layer arrangement of a plurality of sheets, each provided with a symmetrical pattern of protrusions having the same general shape as protrusions 50 in the embodiment shown in Figures 1 to 7.
- upper sheet 90 is placed in an offset position in relation to lower sheet 80, so that protrusion-bearing lower surface 92 of upper sheet 90 is over the protrusion-bearing upper surface 82 of lower sheet 80, and protrusions 50 on sheet 90 are located over land areas 60 between protrusions 50 on lower sheet 80, and protrusions 50 on sheet 80 are located under land areas 60 between protrusions 50 on upper sheet 90.
- apertures 40 in upper sheet 90 are located between apertures 40 in lower sheet 80, and the two sheets are spaced apart in the direction perpendicular to the their respective planes, to create passages 70 between opposing land areas 60 between the rows of protrusions 50 in the two layers.
- the protrusions 50 are shown as being in symmetrical rows, and spaced apart in such manner that two layer fabrics can be constructed by aligning a plurality of upper sheets 90 and lower sheets 80 to form the layers, and securing them together to provide fabrics of the required final dimensions.
- selected ones of the protrusions of each layer can be secured to land areas of the opposing layer.
- the edge areas 22 can be secured together if desired.
- the securing of the respective protrusions 50 and land areas 60 may be sufficient to retain the respective layers together.
- the protrusions and land areas can be of any suitable shape, location and distribution pattern according to the intended end use of the fabric.
- the layers can be secured together in any suitable manner, for example by either securing the selected ones of the protrusions 50 of one layer to opposing land areas 60 of the opposing layer, or by securing selected ones of the protrusions 50 of each layer to each other.
- FIGs 1 la and 1 lb show two further methods of securing the layers of a two layer fabric 110 in a third embodiment, in which the layers are aligned with their flat (non-protrusion) sides together, so that all the protrusions extend outwardly from the finished fabric.
- flat lower surface 94 of upper layer 90 is secured over flat upper surface 84 of lower layer 80, so that protrusions 50 in upper layer 90 are aligned over protrusions 50 in lower layer 80, and land areas 60 in upper layer 90 are aligned over land areas 60 in lower layer 80, creating passages 70 between upper layer 90 and lower layer 80.
- Figure 12 shows the pattern of a fabric 120 in a fourth embodiment of the invention, in which a high open area is achieved by the use of relatively large protrusions 54, formed from linear slits 32, to create apertures 42, the protrusions 54 being interspaced by relatively small land areas 62.
- the film can be selectively perforated, by any appropriate method, such as by laser, so as to provide additional openings in either the land areas or the protrusions, or both, for enhanced air or fluid permeability.
- perforations can be provided at or following film extrusion, or at the time the protrusions and slits are formed, or following fabric assembly.
- a low open area fabric can be constructed by providing for relatively larger land areas between the protrusions.
- Figure 13 shows an example of such fabric, in which fabric 130, in a fifth embodiment of the invention, has relatively small protrusions 56 formed from slits 34, to create apertures 44, the protrusions 56 being interspaced by relatively large land areas 64.
- the pattern of a two layer fabric 140 in a sixth embodiment of the invention is shown.
- the slits 36 comprise linear segments which result in a hexagonal upper surface for each of the protrusions 8, 59 in the respective fabric layers.
- the protrusions 58, 59, and land areas 66 are dimensioned such that the protrusions of one layer can be secured between the protrusions of the other layer.
- the fabrics of the invention as described above are constructed in the following manner.
- a supply of film is unwound in the selected length or width direction of the intended fabric from a beam or other supply means.
- the film is precisely and discontinuously slit at selected locations across its width and along its length to provide regularly or irregularly arranged incisions across and along the surface of the film.
- Each incision has a defined length and is precisely located on the film, and passes through the entire thickness of the film to form an opening.
- the film After slitting, the film is subjected to appropriate heat and pressure to provide for selective and precise embossing, or crimping or deformation, according to the selected pattern for the fabric, at locations between and along two adjacent incisions using either opposed plates, embossing rolls or similar means so as to deform the selected portions of the film between pairs of incisions.
- Either the film, or the embossing means, or both, is heated so as to create at the selected locations a pattern of permanent out-of-plane deformations in the film, which are retained after cooling, and in the intended end use of the fabric.
- the film can be pre- embossed, either with a preliminary partial embossing, including various types of surface treatment to provide desired physical properties to the film, as noted below, or with the eventual complete profile, and then the deformed/embossed portions selectively cut to provide the desired pattern of apertures. If the pre-embossing is performed to create only a partial profile, the film can be subjected to a further embossing step after being cut, to produce the intended finished pattern and profile.
- one or both of the film surfaces can also be profiled, etched, or patterned, in addition to the embossing for creation of the protrusions 50.
- a micro-level patterning can be used to impart very small striations and surface roughness, preferably between 5um and lOOum as described in US
- the second and similarly deformed layer of film can be laid over the first in an offset manner to provide a partial overlap, but aligned so that the out-of-plane deformations of the second film layer either mate with, or are located on the land areas between the deformations of the first film layer.
- the two film layers can be placed with their flat sides together, i.e. so that after joining of the layers, the out-of-plane deformations of each layer are on the outer exposed surfaces, for example in the embodiment shown in Figures 11a, l ib, which can reduce or eliminate any internal stress in the fabric.
- the outer surface must travel a greater distance than the inner surface as it passes around the periphery of curved surfaces such as rolls, which do not all have the same diameter. This causes internal stress in the fabric which may lead eventually to premature delamination.
- there is a region between the MS surface and the PS surface that undergoes zero strain when the fabric bends as it is wrapped around the curved surfaces.
- This region in the fabric termed the "neutral line” in EP 806519 (para. 0009, line 21 ), always travels at the same speed regardless of the fabric radius of curvature.
- the alignment of the two layers with their flat sides together, so that the contact and joining region of the two layers will be at the "neutral line” in the interior of the fabric, enables the protrusions on the two outer surfaces, by reason of their discontinuity, to accommodate the effects of the curvatures without being subjected to the amount of strain to which the more continuous planar surfaces of the flat sides would be subjected if they comprised the outer surfaces of the fabric.
- the layers are then bonded together using a laser or similar bonding means.
- the flat sides of the layers are to be placed together, they can be aligned in any manner to provide the required open area, for example as in the embodiment shown in Figures 11a, l ib.
- the surfaces of the respective layers having the out-of-plane deformations are to be placed together, either the deformations of each layer are in contact with and bonded to the corresponding undeformed land areas of the opposing layer; or the deformations of each layer are in contact with and bonded to the deformations of the opposing layer.
- the CD and MD distance across and along a surface of each layer of film between adjacent incisions and deformations is constant so that the deformations of the first layer can be accommodated between those of the second layer and the bonding will be from protrusions 50 (deformation) to land areas 60.
- the CD distance between adjacent incisions will generally be in the range of from about 1.5 to 5.0 mm; more preferably it is from about 2.0mm to about 3.0mm.
- the length or MD distance between successive incisions is constant and is from about 2mm to 5mm. Each incision is about 5mm in length.
- the film is embossed at the strips formed between pairs of adjacent incisions to provide a surface having a preselected surface texture which is permeable to the passage of air and water.
- the embossing process forms a regular deformation in the film, the sides of the deformation being angled at approximately 30° to the plane of the film.
- the deformation has a flat top surface which is raised about 0.45mm above the plane of the film.
- the width of the deformation, corresponding to the distance between the adjacent slits, is 2.5mm, and is selected to correspond to the width of the
- the flat top of the deformation is thus dimensioned so as to lie flat on the undeformed land area to maximize contact at that point between the first and second layers of film; this in turn maximizes bond strength when the two layers are bonded together such as by laser welding.
- the deformation is in this embodiment nested between deformations adjacent to the land area, thus bracing this contact point between other raised areas. This serves to increase the overall dimensional stability of the fabric structure as the bracing will resist lateral movement of one layer relative to the other.
- bonding of the two layers is preferably effected by laser welding.
- the flat sides of the two layers 80, 90 can be bonded at all contact points on their contacting surfaces 94, 84, but it will generally be sufficient to bond the layers at regular intervals along their contacting surfaces 94, 84.
- the fabric can advantageously be assembled from two or more layers of relatively narrow strips of film (e.g. from about 0.25m to about lm in width).
- Each strip is slit and embossed as described above as it is paid off a back beam and unrolled.
- a length of strip equal to the length or width of the final fabric is prepared.
- a second strip is similarly prepared and then laid beside the first so the longitudinal edge of the first is in abutting contact with the second strip.
- a third strip is then unrolled, slit and embossed in the same manner as the first two, and is laid over the butt join formed between the two (i.e. it is offset laterally in the CD by about 50% of the width of one strip so that it fully covers the join between the first two overlaps).
- the third strip is preferably oriented so that its deformations (embossments, projections, protrusions, crimps, etc) are facing towards those on the first two strips (see Figure 9) and are located on the land areas in between those deformations.
- the two layers (comprised now of strips 1 and 2, plus strip 3 overlapping both 1 and 2 at the butt join) are then exposed to laser light energy and welded together at selected locations to the interior of the now double layer fabric.
- the resulting fabric is thus comprised of a series of slits through each of the two surface films and to the interior of the structure, and the films themselves are joined together at the projections and troughs. Other suitable locations may be chosen for enhancing the strength of the bond or other properties of the resulting textile.
- lateral edges can be placed in contact, rather than in an overlapping arrangement, for example by providing individual strips of the slit and embossed film, in suitable widths of from as little as 5cm to 50cm or as much as lm or more, which can be either spirally or annularly wound or laid adjacent to one another to form a single layer fabric structure.
- the strips, shown here as 10a, 10b and 10c can be joined to each other along respective lateral edges, by any suitable joining means, such as butt-welding, as at 152. It will generally be preferable to perform this step at the same time as the strips are laid down in adjacent arrangement, but this step can also be performed at a later time.
- reinforcing materials such as yarns or other polymeric ribbon like materials 151 can be provided and secured along selected land areas between the protrusions, extending over at least two of the adjacent strips. This serves to secure the strips to each other, and if used as an alternative to a welding step, this can allow for increased flex in the resulting fabric so that it will exhibit properties more like a textile than a more rigid sheet of film when in use.
- the embossed and slit films are aligned adjacent to each other, such that their land areas and protrusions are continuous from one strip to the next adjacent strip, in this embodiment in the cross- machine direction.
- the yarns or strips are welded or otherwise bonded in place to the land areas by means of suitable adhesives and traverse the butt join at multiple locations along the fabric length.
- the yarns are preferably dimensioned so that they lie within the land area between the protrusions and do not stand proud of the fabric surface.
- the yarns would be sized relative to that available space.
- the reinforcing yarns 151 can be laid in all, or only selected ones of the land areas (for example, every second, third, fourth line) and would allow one strip to move or flex relative to another because there is no rigid bond between adjacent strips, but without any undesirable lateral separation. Instead, the individual yarns which now bridge each adjacent strip are used to hold the fabric together, but due to their discrete nature (as opposed to a continuous weld or bond) still allow for some relative but limited movement of the strips.
- reinforcing yarns 151 can be provided in the same manner to secure or reinforce the connection between adjacent portions of the film in the machine direction. They can also be provided in any direction in which a suitable line is created by adjacent land areas of adjacent film strips, depending on factors including the intended physical properties for the fabric.
- Figure 17 shows the provision of reinforcing yarns 171 provided in a diagonal direction to partly adjacent film strips lOd and lOe.
- reinforcing yarns can be used in the manner exemplified by yarns 151 in Figure 15, in either or both of the machine direction and the cross-machine direction; alternatively a diagonal arrangement, such as exemplified by yarns 171 in Figure 17, can be used. Such diagonal arrangement would also be particularly suitable for embodiments such as that shown in Figure 14.
- a structure having two or more layers where one layer of slit and embossed film is overlaid a second which has a compatible pattern, it is also possible to insert reinforcing materials into channels which are formed when protrusions of one layer rest on or are bonded to the land areas of a second layer.
- the arrangement shown provides larger passages 70, alternated with smaller passages 71.
- Reinforcing materials can be inserted into any selected ones of the passages 70, 71, and the yarns or other reinforcing structures can have any cross- sectional shape depending on the physical properties required for the reinforcements, provided that they are dimensioned so as to fit into the passages without deforming the planarity of the fabric.
- reinforcement yarn 160a is shaped so as to generally fill one of the passages 71, whereas reinforcement yarn 160b has a substantially circular cross-section and can also be inserted in one of the passages 71.
- reinforcement yarn 161a is a larger sized yarn which can be inserted into passages 70; and larger yarns of various cross-sectional shapes, for example similar to yarn 160a, can readily be inserted into passages 70.
- Yarns having the shape of any of yarns 160a, 160b and 16 la, or any other shape compatible with the configuration of passages 70, 71, or other passages resulting from the particular structure and arrangement of the strips forming a two or more layer fabric can be secured in place by any suitable bonding or similar means, such as laser bonding, or by an adhesive.
- the reinforcement yarns for each of these embodiments shown in Figures 15 to 17 can be monofilaments, multifilaments, spun yarns, hollow yarns and the like such as are known and used in the industrial textile arts.
- suitable yarns include bi-component yarns, known and used in the industrial textile industry, and shown in Figure 16 as 161b.
- Such yarns comprise an inner core material having a first melt point, and an outer sheath material having a second melt point which is lower than the first.
- the fabric can then be heat treated to a
- the opposing ends . of the fabric can then be prepared for seaming, for example by the installation, at each end of the fabric, of mutually compatible connectible components of a polymeric seam element, as noted above.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Laminated Bodies (AREA)
- Treatment Of Fiber Materials (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080053987.3A CN102713041B (zh) | 2009-12-11 | 2010-12-10 | 由开缝和激凸薄膜构成的工业用织物 |
US13/514,704 US8563114B2 (en) | 2009-12-11 | 2010-12-10 | Industrial fabric comprised of selectively slit and embossed film |
CA2738918A CA2738918C (fr) | 2009-12-11 | 2010-12-10 | Tissu industriel forme d'une pellicule gaufree dans laquelle on a pratique des fentes disposees de maniere selective |
EP10835344.2A EP2510142B1 (fr) | 2009-12-11 | 2010-12-10 | Tissu industriel composé de film sélectivement fendu et gaufré et procédé de fabrication associé |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2,688,470 | 2009-12-11 | ||
CA2688470A CA2688470A1 (fr) | 2009-12-11 | 2009-12-11 | Tissu industriel fait d'une pellicule gaufree munie de fentes selectives |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011069259A1 true WO2011069259A1 (fr) | 2011-06-16 |
Family
ID=44144940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2010/001956 WO2011069259A1 (fr) | 2009-12-11 | 2010-12-10 | Tissu industriel composé de film sélectivement fendu et gaufré |
Country Status (5)
Country | Link |
---|---|
US (1) | US8563114B2 (fr) |
EP (1) | EP2510142B1 (fr) |
CN (1) | CN102713041B (fr) |
CA (1) | CA2688470A1 (fr) |
WO (1) | WO2011069259A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013023272A1 (fr) * | 2011-08-18 | 2013-02-21 | Astenjohnson, Inc. | Élément de couture profilé pour textiles industriels |
WO2013086609A1 (fr) | 2011-12-16 | 2013-06-20 | Astenjohnson, Inc. | Élément d'assemblage multi-broche non tissé |
WO2014075170A1 (fr) * | 2012-11-13 | 2014-05-22 | Astenjohnson, Inc. | Élément de jonction pour textiles industriels et procédé de fabrication |
WO2014153644A1 (fr) * | 2013-03-26 | 2014-10-02 | Astenjohnson, Inc. | Tissu industriel non tissé à interverrouillage mécanique |
DE102016107811A1 (de) | 2016-04-27 | 2017-11-02 | AstenJohnson PGmbH | Industrielles Gewebe, insbesondere Transportband |
US9873980B2 (en) | 2014-09-25 | 2018-01-23 | Albany International Corp. | Multilayer belt for creping and structuring in a tissue making process |
US9957665B2 (en) | 2014-09-25 | 2018-05-01 | Albany International Corp. | Multilayer belt for creping and structuring in a tissue making process |
EP2861417B1 (fr) * | 2012-06-18 | 2020-10-07 | AstenJohnson, Inc. | Materiaux résistants au cisaillement en ligne constitués d'un film sélectivement coupé et gaufré |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2391768B1 (fr) * | 2009-01-28 | 2021-05-12 | Albany International Corp. | Toile de papeterie pour la production de papier toilette et serviettes en papier, et système et procédé pour fabriquer la toile |
US9640954B2 (en) * | 2010-10-13 | 2017-05-02 | Komax Holding Ag | Wire-processing device with deposit unit |
CA2779131A1 (fr) * | 2012-06-07 | 2013-12-07 | Allan R. MANNINEN | Pellicules gaufrees munies de fentes selectives et resistantes a la compression et textiles industriels composes de celles-ci |
CA2791864A1 (fr) * | 2012-10-04 | 2014-04-04 | Allan R. MANNINEN | Structures de film pour textile industriel non tisse autobloquant |
US10040018B2 (en) | 2013-01-09 | 2018-08-07 | Imagine Tf, Llc | Fluid filters and methods of use |
WO2014166984A1 (fr) * | 2013-04-10 | 2014-10-16 | Voith Patent Gmbh | Entoilage pour machine de production de matériau en bande continue |
US9587351B2 (en) | 2013-12-06 | 2017-03-07 | Astenjohnson, Inc. | Non-woven double-layer industrial textile assembled from sleeve configuration panels, and panels therefor |
USD770188S1 (en) * | 2014-03-04 | 2016-11-01 | Hangzhou Jeenor Cleaning Supplies Co., Ltd. | 3D embossed non-woven fabric with rectangular pattern |
US9861920B1 (en) | 2015-05-01 | 2018-01-09 | Imagine Tf, Llc | Three dimensional nanometer filters and methods of use |
US10730047B2 (en) | 2014-06-24 | 2020-08-04 | Imagine Tf, Llc | Micro-channel fluid filters and methods of use |
WO2016022653A1 (fr) | 2014-08-06 | 2016-02-11 | Delstar Technologies, Inc. | Feuille de support en plastique fluoré à nervures et à ouvertures pour un substrat filtrant et procédé de fabrication associé |
US10124275B2 (en) | 2014-09-05 | 2018-11-13 | Imagine Tf, Llc | Microstructure separation filters |
FR3031755B1 (fr) * | 2015-01-16 | 2017-07-07 | Aplix Sa | Nappe de non-tisse renforcee, ensemble comprenant une telle nappe, et procede de traitement d'une nappe de non-tisse |
WO2016133929A1 (fr) | 2015-02-18 | 2016-08-25 | Imagine Tf, Llc | Dispositifs de filtre tridimensionnels et appareils |
USD771394S1 (en) * | 2015-06-02 | 2016-11-15 | Astenjohnson, Inc. | Industrial textile panel |
US10118842B2 (en) | 2015-07-09 | 2018-11-06 | Imagine Tf, Llc | Deionizing fluid filter devices and methods of use |
US10479046B2 (en) | 2015-08-19 | 2019-11-19 | Imagine Tf, Llc | Absorbent microstructure arrays and methods of use |
CA3071468A1 (fr) | 2017-09-12 | 2019-03-21 | Solmax International Inc. | Feuille polymere perforee dotee d'entretoises sous-jacentes |
USD918336S1 (en) * | 2018-05-03 | 2021-05-04 | Morito Co., Ltd. | Water purifier |
EP3759277B1 (fr) | 2018-10-10 | 2023-01-25 | Astenjohnson International, Inc. | Outil d'insertion d'aiguille |
TWI669430B (zh) * | 2018-10-31 | 2019-08-21 | 許翃銘 | Sound-absorbing panels |
CN112630088A (zh) * | 2020-12-28 | 2021-04-09 | 国家珠宝检测中心(广东)有限责任公司 | 一种低纯度金定量检测方法 |
USD1015524S1 (en) * | 2021-04-21 | 2024-02-20 | Jiabing Tang | Air vent plate for car window |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6124015A (en) * | 1996-04-18 | 2000-09-26 | Jwi Ltd. | Multi-ply industrial fabric having integral jointing structures |
US20040119208A1 (en) * | 2002-12-20 | 2004-06-24 | The Procter & Gamble Company | Method for making a polymeric web exhibiting a soft and silky tactile impression |
US7083843B2 (en) * | 2000-02-02 | 2006-08-01 | Uni-Charm Corporation | Top sheet for absorbent articles, and method for producing it |
CA2611246A1 (fr) * | 2005-06-08 | 2006-12-14 | The Procter & Gamble Company | Motifs amorphes comportant des saillies allongees destines a etre employes avec des materiaux en bande |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1918149A (en) * | 1931-05-08 | 1933-07-11 | Burgess Lab Inc C F | Sound transmitting and sound absorbing construction |
US2132642A (en) * | 1932-07-21 | 1938-10-11 | Johns Manville | Sound absorbing unit |
US3121660A (en) | 1961-02-13 | 1964-02-18 | Jr Edward H Hall | Fourdrinier wire and method of making the same |
US3162567A (en) * | 1961-05-18 | 1964-12-22 | Kimberly Clark Co | Papermaking machine forming member |
US3097787A (en) * | 1961-09-15 | 1963-07-16 | Olin Mathieson | Packaging film |
GB1037003A (en) | 1963-05-28 | 1966-07-20 | Huyck Corp | Supplemental belt for use in paper making machine and method of making such belt |
GB2235705B (en) | 1987-03-31 | 1991-06-19 | Leonard Robert Lefkowitz | Nonwoven fabric and method of manufacture |
US4740409A (en) | 1987-03-31 | 1988-04-26 | Lefkowitz Leonard R | Nonwoven fabric and method of manufacture |
US4842794A (en) | 1987-07-30 | 1989-06-27 | Applied Extrusion Technologies, Inc. | Method of making apertured films and net like fabrics |
US5207962A (en) | 1991-06-25 | 1993-05-04 | Applied Extrusion Technologies, Inc. | Method of making apertured film fabrics |
US5262107A (en) | 1991-06-25 | 1993-11-16 | Applied Extrusion Technologies, Inc. | Method of making apertured film fabrics |
US5916462A (en) | 1993-09-13 | 1999-06-29 | James; William A. | Laser drilling processes for forming an apertured film |
ATE187922T1 (de) | 1995-10-23 | 2000-01-15 | Clopay Plastic Prod Co | Produkt, vorrichtung und verfahren zum laminieren eines polymerfilms mit einer nichtgewebten bahn |
GB9609761D0 (en) | 1996-05-10 | 1996-07-17 | Jwi Ltd | Low air permeability papermaking fabric including flattened secondary weft yarns and pin seam |
TW338078B (en) | 1996-07-08 | 1998-08-11 | Scapa Group Plc | Membrane felt for use in yankee machine |
GB9713309D0 (en) | 1996-11-08 | 1997-08-27 | Scapa Group Plc | Papermachine clothing |
GB9712113D0 (en) | 1997-06-12 | 1997-08-13 | Scapa Group Plc | Paper machine clothing |
US7722588B1 (en) | 1999-06-30 | 2010-05-25 | Mcneil-Ppc, Inc. | Multilayered apertured film wrapping element for absorbent articles |
ES2213602T3 (es) | 1999-09-21 | 2004-09-01 | Asten Privatgesellschaft Mit Beschrankter Haftung | Cubierta para una maquina papelera. |
US7589249B2 (en) | 2000-02-16 | 2009-09-15 | Mcneil-Ppc, Inc. | Multiple zone apertured web |
US6700036B2 (en) | 2000-09-22 | 2004-03-02 | Tredegar Film Products Corporation | Acquisition distribution layer having void volumes for an absorbent article |
JP2002113775A (ja) | 2000-10-06 | 2002-04-16 | Dainippon Printing Co Ltd | 凹凸シートの製造方法 |
US6616812B2 (en) | 2001-09-27 | 2003-09-09 | Voith Paper Patent Gmbh | Anti-rewet felt for use in a papermaking machine |
US20040121120A1 (en) | 2002-12-20 | 2004-06-24 | The Procter & Gamble Company | Apparatus for making a polymeric web exhibiting a soft and silky tactile impression |
US7029264B2 (en) | 2003-03-28 | 2006-04-18 | The Procter & Gamble Company | Forming structure for embossing and debossing polymeric webs |
US6989080B2 (en) | 2003-06-19 | 2006-01-24 | Albany International Corp. | Nonwoven neutral line dryer fabric |
US7297233B2 (en) | 2004-01-30 | 2007-11-20 | Voith Paper Patent Gmbh | Dewatering apparatus in a paper machine |
KR101606722B1 (ko) | 2008-09-11 | 2016-03-28 | 알바니 인터내셔널 코포레이션 | 부직포 지지부재 및 이의 제조방법 |
EP3321405A1 (fr) | 2008-09-11 | 2018-05-16 | Albany International Corp. | Bande perméable pour la fabrication de mouchoirs, serviettes ou non-tissés |
CN106378970A (zh) | 2008-12-12 | 2017-02-08 | 阿尔巴尼国际公司 | 包括螺旋缠绕材料条带的工业织物 |
EP2391768B1 (fr) | 2009-01-28 | 2021-05-12 | Albany International Corp. | Toile de papeterie pour la production de papier toilette et serviettes en papier, et système et procédé pour fabriquer la toile |
CA2688168A1 (fr) | 2009-12-11 | 2011-06-11 | Richard Stone | Element de couture du type a charniere pour joindre les bouts d'un textile industriel |
DE102011002498B4 (de) | 2011-01-11 | 2022-01-13 | Voith Patent Gmbh | Rissfester Rand für perforierte Folienbespannung |
DE102011005673A1 (de) | 2011-03-17 | 2012-09-20 | Voith Patent Gmbh | Laminiertes Endlosband |
-
2009
- 2009-12-11 CA CA2688470A patent/CA2688470A1/fr not_active Withdrawn
-
2010
- 2010-12-10 CN CN201080053987.3A patent/CN102713041B/zh active Active
- 2010-12-10 WO PCT/CA2010/001956 patent/WO2011069259A1/fr active Application Filing
- 2010-12-10 EP EP10835344.2A patent/EP2510142B1/fr active Active
- 2010-12-10 US US13/514,704 patent/US8563114B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6124015A (en) * | 1996-04-18 | 2000-09-26 | Jwi Ltd. | Multi-ply industrial fabric having integral jointing structures |
US7083843B2 (en) * | 2000-02-02 | 2006-08-01 | Uni-Charm Corporation | Top sheet for absorbent articles, and method for producing it |
US20040119208A1 (en) * | 2002-12-20 | 2004-06-24 | The Procter & Gamble Company | Method for making a polymeric web exhibiting a soft and silky tactile impression |
CA2611246A1 (fr) * | 2005-06-08 | 2006-12-14 | The Procter & Gamble Company | Motifs amorphes comportant des saillies allongees destines a etre employes avec des materiaux en bande |
Non-Patent Citations (1)
Title |
---|
See also references of EP2510142A4 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013023272A1 (fr) * | 2011-08-18 | 2013-02-21 | Astenjohnson, Inc. | Élément de couture profilé pour textiles industriels |
CN103748381A (zh) * | 2011-08-18 | 2014-04-23 | 阿斯顿约翰逊公司 | 工业纺织品的成形接缝元件 |
US20140199510A1 (en) * | 2011-08-18 | 2014-07-17 | Astenjohnson, Inc. | Profiled seaming element for industrial textiles |
US9487911B2 (en) | 2011-08-18 | 2016-11-08 | Astenjohnson, Inc. | Profiled seaming element for industrial textiles |
EP2745029A4 (fr) * | 2011-08-18 | 2015-06-17 | Astenjohnson Inc | Élément de couture profilé pour textiles industriels |
WO2013086609A1 (fr) | 2011-12-16 | 2013-06-20 | Astenjohnson, Inc. | Élément d'assemblage multi-broche non tissé |
EP2861417B1 (fr) * | 2012-06-18 | 2020-10-07 | AstenJohnson, Inc. | Materiaux résistants au cisaillement en ligne constitués d'un film sélectivement coupé et gaufré |
US9334606B2 (en) | 2012-11-13 | 2016-05-10 | Astenjohnson, Inc. | Seaming element for industrial textiles and method of manufacture |
WO2014075170A1 (fr) * | 2012-11-13 | 2014-05-22 | Astenjohnson, Inc. | Élément de jonction pour textiles industriels et procédé de fabrication |
CN105247135A (zh) * | 2013-03-26 | 2016-01-13 | 阿斯顿约翰逊公司 | 机械互锁的无纺工业织物 |
WO2014153644A1 (fr) * | 2013-03-26 | 2014-10-02 | Astenjohnson, Inc. | Tissu industriel non tissé à interverrouillage mécanique |
US9616638B2 (en) | 2013-03-26 | 2017-04-11 | Astenjohnson, Inc. | Mechanically interlocked nonwoven industrial fabric |
US9873980B2 (en) | 2014-09-25 | 2018-01-23 | Albany International Corp. | Multilayer belt for creping and structuring in a tissue making process |
US9957665B2 (en) | 2014-09-25 | 2018-05-01 | Albany International Corp. | Multilayer belt for creping and structuring in a tissue making process |
US10415186B2 (en) | 2014-09-25 | 2019-09-17 | Albany International Corp. | Multilayer belt for creping and structuring in a tissue making process |
US10961660B2 (en) | 2014-09-25 | 2021-03-30 | Albany International Corp. | Multilayer belt for creping and structuring in a tissue making process |
DE102016107811A1 (de) | 2016-04-27 | 2017-11-02 | AstenJohnson PGmbH | Industrielles Gewebe, insbesondere Transportband |
Also Published As
Publication number | Publication date |
---|---|
US20120244311A1 (en) | 2012-09-27 |
CA2688470A1 (fr) | 2011-06-11 |
US8563114B2 (en) | 2013-10-22 |
CN102713041A (zh) | 2012-10-03 |
EP2510142B1 (fr) | 2015-10-28 |
CN102713041B (zh) | 2015-07-15 |
EP2510142A4 (fr) | 2013-05-22 |
EP2510142A1 (fr) | 2012-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2510142B1 (fr) | Tissu industriel composé de film sélectivement fendu et gaufré et procédé de fabrication associé | |
EP2938780B1 (fr) | Tissu industriel comprenant des bandes de matière enroulées en spirale et son procédé de production | |
CA2746845C (fr) | Tissu industriel comprenant des bandes de matiere enroulees en spirale | |
EP3077593B1 (fr) | Textile industriel à double couche non tissé assemblé à partir de panneaux configurés en manchon, et panneaux associés | |
CA3014325A1 (fr) | Courroie ou tissu comprenant une couche polymere pour machine a papier | |
EP2847380B1 (fr) | Tissu industriel comportant des bandes de matériau enroulées en spirale avec renfort | |
CA2738918C (fr) | Tissu industriel forme d'une pellicule gaufree dans laquelle on a pratique des fentes disposees de maniere selective | |
US8764943B2 (en) | Industrial fabric including spirally wound material strips with reinforcement | |
JP2008539341A (ja) | 干渉を減少させたパターンを有する多軸布 | |
EP2861417B1 (fr) | Materiaux résistants au cisaillement en ligne constitués d'un film sélectivement coupé et gaufré | |
US20150167215A1 (en) | Compression resistant, selectively slit and embossed films and industrial textiles made thereof | |
CN115176055A (zh) | 造纸机网毯 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080053987.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2738918 Country of ref document: CA |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10835344 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1258/MUMNP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13514704 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010835344 Country of ref document: EP |